

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2020/194288 A1

(43) International Publication Date
01 October 2020 (01.10.2020)

(51) International Patent Classification:
B23C 5/20 (2006.01) *B23C 5/10* (2006.01)

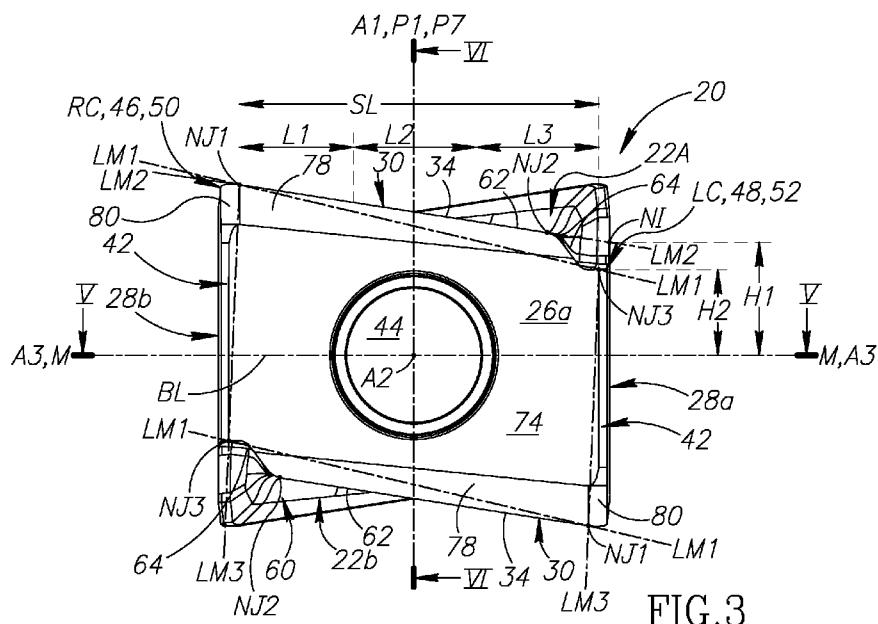
(72) Inventor: **ATAR, Osama**; First Street, No. 100, 24967 Yarka (IL).

(21) International Application Number:
PCT/IL2020/050224

(74) Agent: **ADAMS, Garry** et al.; ISCAR LTD., PATENT DEPARTMENT, P.O. Box 11, 24959 Tefen (IL).

(22) International Filing Date:
27 February 2020 (27.02.2020)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.


(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
16/366,088 27 March 2019 (27.03.2019) US

(71) Applicant: **ISCAR LTD.** [IL/IL]; P.O. Box 11, 24959 Tefen (IL).

(54) Title: DOUBLE-SIDED CUTTING INSERT HAVING DIAGONALLY OPPOSED RAISED CORNERS AND DIAGONALLY OPPOSED LOWERED CORNERS, AND ROTARY CUTTING TOOL

(57) Abstract: A cutting insert (20) has two opposing end surfaces (22a, 22b) interconnected by a peripheral side surface (24), the peripheral side surface having two major side surfaces (26a, 26b) and two minor side surfaces (28a, 28b). Major edges (30) are formed at the intersection of the major side surfaces and the end surfaces. Each end surface has two diagonally opposed raised corners (RC) and two diagonally opposed lowered corners (LC) with respect to a median plane, each raised corner adjoining one of the major edges at a first major point (NJ1) and each lowered corner adjoining one of the major edges at a third major point (NJ3). In a major side view, each major edge has an associated first imaginary straight line (LM1) containing its first and third major points, and an elevated edge portion (62) located on one side of the first imaginary straight line. The cutting insert is removably secured in a rotary cutting tool (82).

WO 2020/194288 A1

[Continued on next page]

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report (Art. 21(3))*

DOUBLE-SIDED CUTTING INSERT HAVING DIAGONALLY OPPOSED RAISED CORNERS AND DIAGONALLY OPPOSED LOWERED CORNERS, AND ROTARY CUTTING TOOL

FIELD OF THE INVENTION

The present invention relates to a rotary cutting tool and a double-sided cutting insert having diagonally opposed raised corners and diagonally opposed lowered corners. The cutting tool and cutting insert are for use in milling operations in general, and for ramping operations in particular.

BACKGROUND OF THE INVENTION

Within the field of cutting tools used in milling operations, there are some examples of double-sided cutting inserts having diagonally opposed raised corners and diagonally opposed lowered corners, used for performing ramping operations.

US 8,449,230 discloses a tangential cutting insert including two opposing end surfaces and a peripheral side surface extending between the two opposing end surfaces. The peripheral side surface includes two opposing major side surfaces connected to two opposing minor side surfaces via corner side surfaces. A peripheral edge is formed at the intersection of each end surface with the peripheral side surface. Each end surface has two raised corners with associated raised corner cutting edges and two lowered corners with associated lowered corner cutting edges. Each of the corner side surfaces includes a concave clearance depression which serves as a relief surface for an associated lowered corner cutting edge. The concave clearance depression extends from its associated lowered corner cutting edge in the direction of, but does not intersect, a raised corner associated with opposite end surface.

US 9,649,701 discloses a cutting insert and an indexable insert-type cutting tool including a cutting edge formed on each of a pair of side ridge portions of at least one of the side faces, wherein an insert main body is formed in the shape of having front-back inversion symmetry which is 180 degrees rotationally symmetrical with respect to a line of symmetry passing through the center of the side faces; a flank face adjacent to the cutting edge is formed on the side face in

the vicinity of each of the pair of polygonal faces; each of the flank faces is formed in the shape of a twisted face; the pair of side ridge portions on which the cutting edge is formed intersect each other in such a manner that the second corner portion of one side ridge portion protrudes outside the other side ridge portion.

US 10,112,242 discloses a double-sided, indexable, non-positive ramping insert having 180-degree rotational symmetry about each of the first, second and third axes of a three-dimensional Euclidean space. The ramping insert includes two first surfaces and an insert peripheral surface which extends therebetween. The ramping insert includes four cutting portions, each including a major cutting edge, a wiper edge connected transversely thereto via a corner cutting edge and a ramping edge which extends transversely from the wiper edge in a view parallel to the first axis. Each peripheral surface includes four non-positive ramping relief surfaces, each of which extends from a respective ramping edge towards, and not beyond, a first median plane which is defined by the second and third axes.

It is an object of the present invention to provide an improved double-sided cutting insert suitable for performing ramping operations.

It is also an object of the present invention to provide an improved double-sided cutting insert suitable for performing square shoulder milling operations as well as ramping operations.

It is further an object of the present invention to provide an improved double-sided cutting insert which has a compact and efficient means for chip evacuation during ramping operations.

SUMMARY OF THE INVENTION

In accordance with the present invention, there is provided a cutting insert comprising:

two opposing end surfaces interconnected by a peripheral side surface and an insert axis passing through the opposing end surfaces,

each end surface having a recessed central surface,

the peripheral side surface having two opposing major side surfaces and two minor side surfaces,

a major edge formed at the intersection of each major side surface and each end surface, and a major cutting edge formed along at least a portion of each major edge,

a minor edge formed at the intersection of each minor side surface and each end surface, and a minor cutting edge formed along at least a portion of each minor edge,

a median plane perpendicular to the first insert axis and intersecting the peripheral side surface to form an insert boundary line, and

each end surface having two diagonally opposed raised corners and two diagonally opposed lowered corners with respect to the median plane,

each raised corner having a convexly curved raised corner edge formed at the intersection of the peripheral side surface and its associated end surface, each raised corner edge adjoining one of the major edges at a first major point, and a raised corner cutting edge formed along at least a portion of each raised corner edge,

each lowered corner having a convexly curved lowered corner edge formed at the intersection of the peripheral side surface and its associated end surface, each lowered corner edge adjoining one of the major edges at a third major point, and a lowered corner cutting edge formed along at least a portion of each lowered corner edge,

wherein in a major side view of the cutting insert:

the first and third major points of each major edge define a major side length measured parallel to the median plane, the major side length being divided into equal first, second and third length portions, in which the first length portion is delimited by the first major point and the third length portion is delimited by the third major point,

each major edge has an associated first imaginary straight line containing its first and third major points and an elevated edge portion, the elevated edge portion being located on one side of the first imaginary straight line and the insert boundary line being located on the other side of the first imaginary straight line, and

each elevated edge portion has a second major point located: (i) furthest from its associated first imaginary straight line, and (ii) in the third length portion of its associated major side length.

Also, in accordance with the present invention, there is provided a rotary cutting tool rotatable about a tool axis in a direction of rotation, comprising a cutting body having at least one

insert receiving pocket, and at least one cutting insert of the sort described above removably secured in the insert receiving pocket.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding, the invention will now be described, by way of example only, with reference to the accompanying drawings in which chain-dash lines represent cut-off boundaries for partial views of a member and in which:

Fig. 1 is a perspective view of a cutting insert in accordance with some embodiments of the present invention;

Fig. 2 is an end view of the cutting insert shown in Fig. 1;

Fig. 3 is a major side view of the cutting insert shown in Fig. 1;

Fig. 4 is a minor side view of the cutting insert shown in Fig. 1;

Fig. 5 is a cross-sectional view of the cutting insert shown in Fig. 3, taken along the line V-V;

Fig. 6 is a cross-sectional view of the cutting insert shown in Fig. 3, taken along the line VI-VI;

Fig. 7 is a cross-sectional view of the cutting insert shown in Fig. 4, taken along the line VII-VII;

Fig. 8 is a cross-sectional view of the cutting insert shown in Fig. 2, taken along the line VIII-VIII;

Fig. 9 is a cross-sectional view of the cutting insert shown in Fig. 2, taken along the line IX-IX;

Fig. 10 is a cross-sectional view of the cutting insert shown in Fig. 4, taken along the line X-X;

Fig. 11 is a perspective view of a cutting tool in accordance with some embodiments of the present invention;

Fig. 12 is an exploded perspective view of the cutting tool shown in Fig. 11;

Fig. 13 is a side view of the cutting tool shown in Fig. 11; and

Fig. 14 is an end view of the cutting tool shown in Fig. 11.

DETAILED DESCRIPTION OF THE INVENTION

As shown in Figs. 1 to 4, one aspect of the present invention relates to a cutting insert **20** having two opposing end surfaces **22a**, **22b** interconnected by a peripheral side surface **24** and a first insert axis **A1** passing through the opposing end surfaces **22a**, **22b**.

In some embodiments of the present invention the cutting insert **20** may be indexable about the first insert axis **A1**.

Also, in some embodiments of the present invention, the cutting insert **20** may exhibit rotational symmetry about the first insert axis **A1**.

Further, in some embodiments of the present invention, the cutting insert **20** may preferably be manufactured by form pressing and sintering a cemented carbide, such as tungsten carbide, and may be coated or uncoated.

As shown in Figs. 1 and 2, the peripheral side surface **24** has two opposing major side surfaces **26a**, **26b** and two minor side surfaces **28a**, **28b**, with a major edge **30** formed at the intersection of each major side surface **26a**, **26b** and each end surface **22a**, **22b**, and a minor edge **32** formed at the intersection of each minor side surface **28a**, **28b** and each end surface **22a**, **22b**.

It should be appreciated that a major cutting edge **34** is formed along at least a portion of each major edge **30**, and a minor cutting edge **36** is formed along at least a portion of each minor edge **32**.

It should be appreciated that by virtue of having cutting edges associated with both end surfaces **22a**, **22b**, the cutting insert **20** can be described as 'double-ended' or 'double-sided'.

In some embodiments of the present invention, each end surface **22a**, **22b** may include a major land surface **38** immediately adjacent each of its associated major cutting edges **34**.

Also, in some embodiments of the present invention, each end surface **22a**, **22b** may include a minor land surface **40** immediately adjacent each of its associated minor cutting edges **36**.

Further, in some embodiments of the present invention, the peripheral side surface **24** may include four convexly curved corner surfaces **42** alternating with the two major side surfaces **26a**, **26b** and the two minor side surfaces **28a**, **28b**.

As shown in Figs. 1 and 2, a second insert axis **A2** passes through the two major side surfaces **26a**, **26b** (or more precisely, passes through planes defined by the major side surfaces).

In some embodiments of the present invention, an insert through bore **44** may extend along the second insert axis **A2** and intersect the two major side surfaces **26a**, **26b**.

The second insert axis **A2** may be perpendicular to and intersect the first insert axis **A1**.

It should be appreciated that by virtue of having the insert through bore **44** intersecting the two major side surfaces **26a**, **26b**, the cutting insert **20** can be retained in a rotary cutting tool in a 'tangential' manner as known in the art, and thus described as a 'tangential' cutting insert.

As shown in Figs. 1 to 4, a median plane **M** perpendicular to the first insert axis **A1** intersects the peripheral side surface **24** to form an insert boundary line **BL**, and each end surface **22a**, **22b** has two diagonally opposed raised corners **RC** and two diagonally opposed lowered corners **LC** with respect to the median plane **M**.

In some embodiments of the present invention, the second insert axis **A2** may be contained in the median plane **M**.

Also, in some embodiments of the present invention, the two diagonally opposed raised corners **RC** associated with each end surface **22a**, **22b** may be located an equal distance from the median plane **M**.

Further, in some embodiments of the present invention, the cutting insert **20** may be indexable about the second insert axis **A2**.

Yet further, in some embodiments of the present invention, the cutting insert **20** may exhibit rotational symmetry about the second insert axis **A2**.

As shown in Figs. 1 and 2, each raised corner **RC** has a convexly curved raised corner edge **46** formed at the intersection of the peripheral side surface **24** and its associated end surface **22a**, **22b**, and each lowered corner **LC** has a convexly curved lowered corner edge **48** formed at the intersection the peripheral side surface **24** and its associated end surface **22a**, **22b**.

In some embodiments of the present invention, each raised corner edge **46** may be formed at the intersection of one of the four corner surfaces **42** and its associated end surface **22a**, **22b**, and each lowered corner edge **48** may be formed at the intersection of one of the four corner surfaces **42** and its associated end surface **22a**, **22b**.

It should be appreciated that a raised corner cutting edge **50** is formed along at least a portion of each raised corner edge **46**, and a lowered corner cutting edge **52** is formed along at least a portion of each lowered corner edge **48**.

In some embodiments of the present invention, each raised corner cutting edge **50** may extend the entire length of its associated raised corner edge **46**.

Also, in some embodiments of the present invention, each end surface **22a**, **22b** may include a raised corner land surface **56** immediately adjacent each of its associated raised corner cutting edges **50**.

Further, in some embodiments of the present invention, each end surface **22a**, **22b** may include a lowered corner land surface **54** immediately adjacent each of its associated lowered corner cutting edges **52**.

As shown in Figs. 2 and 4, each lowered corner edge **48** may adjoin one of the minor edges **32** at a first minor point **NN1**, and each raised corner edge **46** may adjoin one of the minor edges **32** at a second minor point **NN2**.

In some embodiments of the present invention, each minor cutting edge **36** may extend the entire length of its associated minor edge **32**.

Also, in some embodiments of the present invention, as shown in Fig. 4, each minor edge **32** may continuously slope towards the median plane **M** from its associated raised corner edge **46** to its associated lowered corner edge **48**.

As shown in Fig. 2, in an end view of the cutting insert **20**, each minor edge **32** may be tangential to its adjoining raised corner edge **46** and tangential to its adjoining lowered corner edge **48**.

As shown in Figs. 1 and 2, each end surface **22a**, **22b** has a recessed central surface **58**.

In some embodiments of the present invention, each recessed central surface **58** may be planar and parallel to the median plane **M**.

Also, in some embodiments of the present invention, each lowered corner edge **48** may be entirely located closer to the median plane **M** than its associated recessed central surface **58**.

Further, in some embodiments of the present invention, each raised corner edge **46** may be entirely located further from the median plane **M** than its associated recessed central surface **58**.

As shown in Fig. 3, each raised corner edge **46** adjoins one of the major edges **30** at a first major point **NJ1**, and each lowered corner edge **48** adjoins one of the major edges **30** at a third major point **NJ3**.

Also, as shown in Fig. 3, in a major side view of the cutting insert **20**, the first and third major points **NJ1**, **NJ3** of each major edge **30** define a major side length **SL** measured parallel to the median plane **M**, and the major side length **SL** is divided into equal first, second and third length

portions **L1**, **L2**, **L3**, in which the first length portion **L1** is delimited by the first major point **NJ1** and the third length portion **L3** is delimited by the third major point **NJ3**.

In some embodiments of the present invention, each major cutting edge **34** may extend at least the entire extent of its associated first and second length portions **L1**, **L2**.

Also, in some embodiments of the present invention, each end surface **22a**, **22b** may include a major rake surface **60** adjacent each of its associated major cutting edges **34**.

It should be appreciated that in some embodiments of the present invention, each major rake surface **60** may be spaced apart from its associated major cutting edge **34** by its associated major land surface **38**.

As shown in Fig. 3, in a major side view of the cutting insert **20**, each major edge **30** has an associated first imaginary straight line **LM1** containing its first and third major points **NJ1**, **NJ3** and an elevated edge portion **62**. The elevated edge portion **62** is located on one side of the first imaginary straight line **LM1** whilst the insert boundary line **BL** is located on the other side of the first imaginary straight line **LM1**.

In some embodiments of the present invention, each elevated edge portion **62** may extend to the first major point **NJ1** of its associated major edge **30**.

Also, in some embodiments of the present invention, each elevated edge portion **62** may not extend to the third major point **NJ3** of its associated major edge **30**.

As shown in Fig. 4, in a minor side view of the cutting insert **20**, the first and second minor points **NN1**, **NN2** of each minor edge **32** define a minor side width **SW** measured parallel to the median plane **M**.

In some embodiments of the present invention, the major side length **SL** of each major edge **30** may be greater than the minor side width **SW** of each minor edge **32**, i.e. **SL > SW**.

As shown in Fig. 5, in a cross-section taken in the median plane **M** and intersecting the four corner surfaces **42**, the four corner surfaces **42** adjoin the two minor side surfaces **28a**, **28b** at four corner points **NC**.

Also, as shown in Fig. 5, the four corner points **NC** may define an imaginary parallelogram **PL** having first and second pairs of imaginary parallel sides **S1**, **S2**.

In some embodiments of the present invention, the first pair of imaginary parallel sides **S1** may be perpendicular to the major side length **SL** of each major edge **30**.

Also, in some embodiments of the present invention, the first and second pairs of imaginary parallel sides **S1**, **S2** may define an imaginary rectangle **RT**. The elements of the first pair of sides **S1** are shorter than the elements of the second pair of sides **S2**.

It should be appreciated that in some embodiments of the present invention, in a cross-section taken in any plane parallel to the median plane **M** and intersecting the four corner surfaces **42**, the four points at which the four corner surfaces **42** adjoin the two minor side surfaces **28a**, **28b** may define an imaginary parallelogram having first and second pairs of imaginary parallel sides, and the first pair of imaginary parallel sides may be perpendicular to the major side length **SL** of each major edge **30**.

As shown in Fig. 6, in a cross-section taken in a first plane **P1** intersecting one of the major cutting edges **34** and located along its associated second length portion **L2**, the adjacent major rake surface **60** may slope towards the median plane **M** whilst extending away from said one of the major cutting edges **34**.

Also, as shown in Fig. 6, in the cross-section taken in the first plane **P1**, said one of the major cutting edges **34** may be located further from the median plane **M** than its associated recessed central surface **58**.

In some embodiments of the present invention, the first plane **P1** may be perpendicular to the median plane **M**.

Also, in some embodiments of the present invention, the first plane **P1** may contain the second insert axis **A2**.

It should be appreciated that in some embodiments of the present invention, in a cross-section taken in any plane intersecting one of the major cutting edges **34** and located along its associated second length portion **L2**, the adjacent major rake surface **60** may slope towards the median plane **M** whilst extending away from said one major cutting edge **34**.

According to the present invention, as shown in Fig. 3, in a major side view of the cutting insert **20**, each elevated edge portion **62** has a second major point **NJ2** located furthest from its associated first imaginary straight line **LM1**, the second major point **NJ2** being located in the third length portion **L3** of its associated major side length **SL**.

It should be appreciated that use of the term "furthest" in the preceding paragraph, refers to each second major point **NJ2** being located further from its associated first imaginary straight line **LM1** than any other point along its associated elevated edge portion **62**.

In some embodiments of the present invention, each major cutting edge **34** may extend from its associated first major point **NJ1** to its associated second major point **NJ2**.

Also, in some embodiments of the present invention, each major edge **30** may include a non-cutting sub-portion **64** extending between its associated second major point **NJ2** and its associated third major point **NJ3**.

It should be appreciated that for embodiments of the present invention in which each major cutting edge **34** extends from its associated first major point **NJ1** to its associated second major point **NJ2** in the third length portion **L3** of its associated major side length **SL**, milling operations can be advantageously performed at large cutting depths.

As shown in Fig. 3, in a major side view of the cutting insert **20**, each major edge **30** has an associated second imaginary straight line **LM2** containing its first and second major points **NJ1**, **NJ2** and intersecting one of the minor cutting edges **36** at a projected intersection point **NI**.

As seen by comparing Figs. 3 and 4, the projected intersection point **NI** is not collinear with the first and second major points **NJ1**, **NJ2** in three-dimensional space.

It should be appreciated that in some embodiments of the present invention, each end surface **22a**, **22b** may have two projected intersection points **NI** associated therewith.

As shown in Fig. 7, in a cross-section taken in a second plane **P2** located (passing) in-between the two major side surfaces **26a**, **26b** and containing one of the projected intersection points **NI**, the adjacent minor land surface **40** may form an internal minor cutting angle **α1** with the adjacent minor side surface **28a**, **28b**, and the minor cutting angle **α1** may be at least 65 degrees and at most 115 degrees, i.e. $65^\circ \leq \alpha 1 \leq 115^\circ$.

It should be appreciated that use of the term "internal angle" throughout the description and claims refers to an angle between two surface components as measured internal to the member on which these components are formed.

In some embodiments of the present invention, the second plane **P2** may be perpendicular to the median plane **M**.

Also, in some embodiments of the present invention, the second plane **P2** may contain two projected intersection points **NI**, namely, one projected intersection point **NI** associated with each end surface **22a**, **22b**.

It should be appreciated that in some embodiments of the present invention, in a cross-section taken in any plane located (passing) in-between the two major side surfaces **26a**, **26b** and

intersecting one of the minor cutting edges **36**, the adjacent minor land surface **40** may form an internal minor cutting angle **α1** with the adjacent minor side surface **28a**, **28b**, and the minor cutting angle **α1** may be at least 65 degrees and at most 115 degrees, i.e. $65^\circ \leq \alpha_1 \leq 115^\circ$.

As shown in Fig. 8, in a cross-section taken in a third plane **P3** parallel to the first insert axis **A1** and intersecting one of the lowered corner cutting edges **52**, the adjacent lowered corner land surface **54** may form an internal lower cutting angle **α2** with the peripheral side surface **24**, and the lower cutting angle **α2** may be at least 65 degrees and at most 115 degrees, i.e. $65^\circ \leq \alpha_2 \leq 115^\circ$.

As shown in Fig. 9, in a cross-section taken in a fourth plane **P4** parallel to the first insert axis **A1** and intersecting one of the raised corner cutting edges **50**, the adjacent raised corner land surface **56** may form an internal raised cutting angle **α3** with the peripheral side surface **24**, and the raised cutting angle **α3** may be at least 65 degrees and at most 115 degrees, i.e. $65^\circ \leq \alpha_3 \leq 115^\circ$.

As shown in Fig. 4, in a minor side view of the cutting insert **20**, the minor side width **SW** of each minor edge **32** is divided into equal first, second and third width portions **W1**, **W2**, **W3**, in which the first width portion **W1** is delimited by the first minor point **NN1** and the third width portion **W3** is delimited by the second minor point **NN2**.

In some embodiments of the present invention, each projected intersection point **NI** may be located in the second width portion **W2** of its associated minor side width **SW**.

As shown in Fig. 2, in an end view of the cutting insert **20**, each projected intersection point **NI** may be coincident with the insert boundary line **BL**.

Also, as shown in Fig. 2, in an end view of the cutting insert **20**, each minor edge **32** may be coincident with the insert boundary line **BL**.

In some embodiments of the present invention, each minor side surface **28a**, **28b** may be perpendicular to the median plane **M**.

It should be appreciated that configuring the minor side surfaces **28a**, **28b** to be perpendicular to the median plane **M**, as opposed to having outwardly inclined sub-surfaces extending away from the minor edges **32**, enables the cutting insert **20** to be oriented with a greater range of flexibility opposite a workpiece, whilst providing sufficient clearance adjacent the operative minor cutting edge **36**.

In other embodiments of the invention (not shown), for example, in which each minor side surface **28a**, **28b** includes a lateral groove located midway between the end surfaces **22a**, **22b** and

extending parallel to the second insert axis **A2**, in an end view of the cutting insert **20**, each projected intersection point **NI** may be located outside the insert boundary line **BL**.

Also, in other embodiments of the present invention, in an end view of the cutting insert **20**, each minor edge **32** may be located outside the insert boundary line **BL**.

As shown in Fig. 3, each projected intersection point **NI** may be located further from the median plane **M** than its adjacent third major point **NJ3**.

Configuring each projected intersection point **NI** to be located further from the median plane **M** than its adjacent third major point **NJ3** results in at least a portion of its associated minor cutting edge **36** being located closer to the median plane **M** than the projected intersection point **NI**, which makes the cutting insert **20** suitable for performing ramping operations, also known as ramp-down, or ramp milling operations.

Also, as shown in Fig. 3, each projected intersection point **NI** is located a first height **H1** from the median plane **M**, and each third major point **NJ3** is located a second height **H2** from the median plane **M**.

In some embodiments of the present invention, the first height **H1** may be at least 120 percent of the second height **H2**, i.e. $H1 \geq 1.2 * H2$.

Also, in some embodiments of the present invention, the first height **H1** may preferably be at least 150 percent of the second height **H2**, i.e. $H1 \geq 1.5 * H2$.

It should be appreciated that for embodiments of the present invention in which the first height **H1** is at least 150 percent of the second height **H2**, the cutting insert **20** may be used to perform ramping operations at increased ramping angles.

Further, in some embodiments of the present invention, the first height **H1** may be no more than 220 percent of the second height **H2**, i.e. $H1 \leq 2.2 * H2$.

In a minor side view of the cutting insert **20**, as shown in Fig. 4, each minor cutting edge **36** may include a wiping edge portion **66** adjoining its associated raised corner edge **46**, a ramping edge portion **68** adjoining its associated lowered corner edge **48**, and a convexly shaped joining edge portion **70** extending between the wiping edge portion **66** and the ramping edge portion **68**.

As shown in Fig. 4, in a minor side view of the cutting insert **20**, each wiping edge portion **66** may be linear.

Also, as shown in Fig. 4, in a minor side view of the cutting insert **20**, each ramping edge portion **68** may include a first ramping edge sub-portion **68a** adjoining its associated lowered corner

edge **48**, a third ramping sub-portion **68c** adjoining its associated joining edge portion **70**, and a concavely shaped second ramping edge sub-portion **68b** extending between the first and third ramping edge sub-ports **68a, 68c**.

In some embodiments of the present invention, each projected intersection point **NI** may be located on the third ramping sub-portion **68c** of its associated minor cutting edge **36**.

It should be appreciated that each joining edge portion **70** may operate as a 'fourth' ramping edge sub-portion and participate in performing ramping operations.

It should also be appreciated that each lowered corner cutting edge **52** may participate in performing ramping operations.

In some embodiments of the present invention, each first ramping edge sub-portion **68a** may be entirely located closer to the median plane **M** than its associated recessed central surface **58**.

Also, in some embodiments of the present invention, each end surface **22a, 22b** may include a minor ramp surface **72** adjacent each first ramping edge sub-portion **68a**.

It should be appreciated that in some embodiments of the present invention, as seen in e.g., Fig. 10, each minor ramp surface **72** may be spaced apart from its associated first ramping edge sub-portion **68a** by its associated minor land surface **40**.

As shown in Fig. 10, in a cross-section taken in a fifth plane **P5** located (passing) in-between the two major side surfaces **26a, 26b** and intersecting one of the first ramping edge sub-ports **68a**, the adjacent minor ramp surface **72** may slope away from the median plane **M** whilst extending away from said one of the first ramping edge sub-ports **68a**.

In some embodiments of the present invention, each minor ramp surface **72** may slope towards its associated recessed central surface **58** whilst extending away from its associated first ramping edge sub-portion **68a**.

Also, in some embodiments of the present invention, the fifth plane **P5** may be perpendicular to the median plane **M**.

It should be appreciated that in some embodiments of the present invention, the minor ramp surface **72** advantageously provides a compact and efficient means for chip evacuation during ramping operations.

It should also be appreciated that in some embodiments of the present invention, in a cross-section taken in any plane located (passing) in-between the two major side surfaces **26a, 26b** and intersecting one of the first ramping edge sub-ports **68a**, the adjacent minor ramp surface **72**

may slope away from the median plane **M** whilst extending away from said one of the first ramping edge sub-portions **68a**.

As shown in Figs. 2 and 4, each major side surface **26a**, **26b** may have a major outer surface **74** perpendicular the first insert axis **A1**.

In some embodiments of the present invention, the two major outer surfaces **74** may define a maximum insert width **W_{MAX}** of the cutting insert **20**.

As shown in Figs. 2 and 4, a sixth plane **P6** (“longitudinal insert plane”) containing the first insert axis **A1** may be located mid-way in-between the major side surfaces **26a**, **26b** and also mid-way in-between the two major outer surfaces **74**.

The sixth plane **P6** may be defined by the intersection of the first insert axis **A1** and a third insert axis **A3** which is perpendicular to the first insert axis **A1** and passes through the minor side surfaces **28a**, **28b**. The third insert axis **A3** may be contained in the median plane **M**. The third insert axis **A3** may be perpendicular to the second insert axis **A2**. Also, the second plane **P2** and the fifth plane **P5** may be parallel to the sixth plane **P6**.

In some embodiments of the present invention, each minor side surface **28a**, **28b** may include two minor sub-surfaces **76a**, **76b** located on opposite sides of the sixth plane **P6**.

Also, in some embodiments of the present invention, the two minor sub-surfaces **76a**, **76b** may form an internal obtuse minor abutment angle **β1**, and the minor abutment angle **β1** may be greater than 160 degrees, i.e. **β1 > 160°**.

As shown in Figs. 1 to 4, each major side surface **26a**, **26b** may include a major relief surface **78** immediately adjacent each of its associated major cutting edges **34**.

As shown in Fig. 6, in a cross-section taken in a seventh plane **P7** intersecting one of the major cutting edges **34**, the adjacent major relief surface **78** may slope towards the median plane **M** whilst extending away from said one of the major cutting edges **34**.

In some embodiments of the present invention, the seventh plane **P7** may be perpendicular to the sixth plane **P6**.

Also, in some embodiments of the present invention, the seventh plane **P7** may be coincident with the first plane **P1**.

As shown in Fig. 6, in the cross-section taken in the seventh plane **P7**, the adjacent major relief surface **78** may slope away from the sixth plane **P6** whilst extending away from its associated major cutting edge **34**.

It should be appreciated that by virtue of each major relief surface **78** sloping away from the sixth plane **P6** whilst extending away from its associated major cutting edge **34**, each major relief surface **78** may be described as a 'reversed-relief' surface.

In some embodiments of the present invention, each major relief surface **78** may intersect one of the major outer surfaces **74**.

As shown in Figs. 1 to 4, each corner surface **42** may include a raised corner relief surface **80** immediately adjacent its associated raised corner cutting edge **50**.

It should be appreciated that each raised corner relief surface **80** may merge with its adjacent major relief surface **78**.

In some embodiments of the present invention, in a major side view of the cutting insert **20**, as shown in Fig. 3, each corner surface **42** may have an associated third imaginary straight line **LM3** containing its first and third major points **NJ1**, **NJ3**, and each third imaginary straight line **LM3** may be inclined with respect to the first insert axis **A1**.

It should be appreciated that for embodiments in which each third imaginary straight line **LM3** is inclined with respect to the first insert axis **A1**, in a major side view of the cutting insert **20**, the two major side lengths **SL** associated with each major side surface **26a**, **26b** may be mutually offset.

As shown in Figs. 11 to 14, another aspect of the present invention relates to a rotary cutting tool **82** rotatable about a tool axis **AT** in a direction of rotation **RT**.

The rotary cutting tool **82** comprises a cutting body **84** and at least one of the aforementioned cutting inserts **20**, whereby each cutting insert **20** is removably secured in an insert receiving pocket **86** of the cutting body **84**.

As shown in Fig. 13, the tool axis **AT** defines a forward-rearward direction **DF**, **DR**, and each insert receiving pocket **86** opens out at a forward end surface **88** of the cutting body **84**.

In some embodiments of the present invention, the cutting body **84** may be cylindrical shaped and have a circumferential wall **90** extending in the rearward direction **DR** from the forward end surface **88**.

Also, in some embodiments of the present invention, the rotary cutting tool **82** may be used for milling operations.

As shown in Fig. 12, the insert receiving pocket **86** may have a seat surface **92** facing in the direction of rotation **RT**, a radially outward facing first pocket wall **94** transverse to the seat surface **92**, and an axially forward facing second pocket wall **96** transverse to the seat surface **92**.

In some embodiments of the present invention, the second pocket wall **96** may intersect the circumferential wall **90**.

Also, in some embodiments of the present invention, the seat surface **92** may include a threaded bore **98** extending along a bore axis **AB**.

As shown in Figs. 11 to 14, in the assembled position of the rotary cutting tool **82**:
one of the two end surfaces **22a**, **22b** may be in contact with the seat surface **92**;
one of the two major side surfaces **26a**, **26b** may be in contact with the first pocket wall **94**;
and

one of the two minor side surfaces **28a**, **28b** may be in contact with the second pocket wall **96**.

In some embodiments of the present invention, the recessed central surface **58** of one of the end surfaces **22a**, **22b** may be in contact with the seat surface **92**.

Also, in some embodiments of the present invention, the major outer surface **74** of one of the two major side surfaces **26a**, **26b** may be in contact with the first pocket wall **94**.

Further, in some embodiments of the present invention, only one of the two minor sub-surfaces **76a**, **76b** of one of the two minor side surfaces **28a**, **28b** may be in contact with the second pocket wall **96**.

Yet further, in some embodiments of the present invention, the single minor sub-surface **76a**, **76b** in contact with the second pocket wall **96** may be adjacent the major side surface **26a**, **26b** not in contact with the first pocket wall **94**.

As shown in Figs. 11 to 14, in the assembled position of the rotary cutting tool **82**:
a clamping screw **100** may pass through the insert through bore **44** and threadingly engage the threaded bore **98**.

In some embodiments of the present invention, the second insert axis **A2** may be non-coaxial with the bore axis **AB**.

It should be appreciated that for embodiments of the present invention in which the first height **H1** is no more than 220 percent of the second height **H2**, a sufficient portion of the single

minor sub-surface **76a**, **76b** in contact with the second pocket wall **96** may be located rotationally ahead of the bore axis **AB** to enable stable clamping.

It should also be appreciated that for embodiments of the present invention in which the second insert axis **A2** is non-coaxial with the bore axis **AB**, the insert through bore **44** may be eccentric in relation to the threaded bore **98**.

It should be further appreciated that the eccentric relationship of the insert through bore **44** in relation to the threaded bore **98** promotes contact between one of the two end surfaces **22a**, **22b** and the seat surface **92**, and one of the two minor side surfaces **28a**, **28b** and the second pocket wall **96**, on tightening of the clamping screw **100**.

As shown in Fig. 13, the operative major cutting edge **34** of each cutting insert **20** may form a positive axial rake angle **δ1** with respect to the tool axis **AT**.

In some embodiments of the present invention, the operative major cutting edge **34**, together with the adjacent raised corner cutting edge **50** and wiping edge portion **66**, may be configured to performing square shoulder milling operations in a workpiece (not shown).

As shown in Fig. 13, the entire operative minor cutting edge **36** of each cutting insert **20** may be located axially forward of the forward end surface **88**.

It should be appreciated that for embodiments of the present invention in which each minor cutting edge **36** extends the entire length of its associated minor edge **32**, and the operative minor cutting edge **36** of each cutting insert **20** is entirely located axially forward of the forward end surface **88**, the rotary cutting tool **82** may be particularly suitable for performing ramping operations.

Although the present invention has been described to a certain degree of particularity, it should be understood that various alterations and modifications could be made without departing from the spirit or scope of the invention as hereinafter claimed.

CLAIMS

What is claimed is:

1. A cutting insert (20), comprising:

two opposing end surfaces (22a, 22b) interconnected by a peripheral side surface (24) and an insert axis (A1) passing through the opposing end surfaces (22a, 22b),

each end surface (22a, 22b) having a recessed central surface (58),

the peripheral side surface (24) having two opposing major side surfaces (26a, 26b) and two minor side surfaces (28a, 28b),

a major edge (30) formed at the intersection of each major side surface (26a, 26b) and each end surface (22a, 22b), and a major cutting edge (34) formed along at least a portion of each major edge (30),

a minor edge (32) formed at the intersection of each minor side surface (28a, 28b) and each end surface (22a, 22b), and a minor cutting edge (36) formed along at least a portion of each minor edge (32),

a median plane (M) perpendicular to the first insert axis (A1) and intersecting the peripheral side surface (24) to form an insert boundary line (BL), and

each end surface (22a, 22b) having two diagonally opposed raised corners (RC) and two diagonally opposed lowered corners (LC) with respect to the median plane (M),

each raised corner (RC) having a convexly curved raised corner edge (46) formed at the intersection of the peripheral side surface (24) and its associated end surface (22a, 22b), each raised corner edge (46) adjoining one of the major edges (30) at a first major point (NJ1), and a raised corner cutting edge (50) formed along at least a portion of each raised corner edge (46),

each lowered corner (LC) having a convexly curved lowered corner edge (48) formed at the intersection of the peripheral side surface (24) and its associated end surface (22a, 22b), each lowered corner edge (48) adjoining one of the major

edges (30) at a third major point (NJ3), and a lowered corner cutting edge (52) formed along at least a portion of each lowered corner edge (48), wherein in a major side view of the cutting insert (20):

the first and third major points (NJ1, NJ3) of each major edge (30) define a major side length (SL) measured parallel to the median plane (M), the major side length (SL) being divided into equal first, second and third length portions (L1, L2, L3), in which the first length portion (L1) is delimited by the first major point (NJ1) and the third length portion (L3) is delimited by the third major point (NJ3),

each major edge (30) has an associated first imaginary straight line (LM1) containing its first and third major points (NJ1, NJ3) and an elevated edge portion (62), the elevated edge portion (62) being located on one side of the first imaginary straight line (LM1) and the insert boundary line (BL) being located on the other side of the first imaginary straight line (LM1), and

each elevated edge portion (62) has a second major point (NJ2) located: (i) furthest from its associated first imaginary straight line (LM1), and (ii) in the third length portion (L3) of its associated major side length (SL).

2. The cutting insert (20) according to claim 1, wherein in a major side view of the cutting insert (20):

each major edge (30) has an associated second imaginary straight line (LM2) containing its first and second major points (NJ1, NJ2) and intersecting one of the minor cutting edges (36) at a projected intersection point (NI), and

each projected intersection point (NI) is located further from the median plane (M) than its adjacent third major point (NJ3).

3. The cutting insert (20) according to claim 1 or 2, wherein:

each end surface (22a, 22b) includes a minor land surface (40) immediately adjacent each of its associated minor cutting edges (36), and

in a cross-section taken in a second plane (P2) located in-between the two major side surfaces (26a, 26b) and containing one of the projected intersection points (NI), the adjacent minor

land surface (40) forms an internal minor cutting angle (α_1) with the adjacent minor side surface (28a, 28b), and the minor cutting angle (α_1) is at least 65 degrees and at most 115 degrees.

4. The cutting insert (20) according to claim 2 or 3, wherein:
 - each projected intersection point (NI) is located a first height (H1) from the median plane (M),
 - each third major point (NJ3) is located a second height (H2) from the median plane (M), and
 - the first height (H1) is at least 120 percent of the second height (H2).
5. The cutting insert (20) according to claim 4, wherein:
the first height (H1) is no more than 220 percent of the second height (H2).
6. The cutting insert (20) according to any one of the preceding claims, wherein:
in a cross-section taken in any plane located in-between the two major side surfaces (26a, 26b) and intersecting one of the minor cutting edges (36), the adjacent minor land surface (40) forms an internal minor cutting angle (α_1) with the adjacent minor side surface (28a, 28b), and the minor cutting angle (α_1) is at least 65 degrees and at most 115 degrees.
7. The cutting insert (20) according to any one of the preceding claims, wherein in an end view of the cutting insert (20), each minor edge (32) is either coincident with the insert boundary line (BL) or located outside the insert boundary line (BL).
8. The cutting insert (20) according to any one of the preceding claims, wherein each minor cutting edge (36) extends the entire length of its associated minor edge (32).
9. The cutting insert (20) according to any one of the preceding claims, wherein the peripheral side surface (24) includes four convexly curved corner surfaces (42) alternating with the two major side surfaces (26a, 26b) and the two minor side surfaces (28a, 28b).

10. The cutting insert (20) according to claim 9, wherein in a cross-section taken in the median plane (M) and intersecting the four corner surfaces (42):

the four corner surfaces (42) adjoin the two minor side surfaces (28a, 28b) at four corner points (NC),

the four corner points (NC) define an imaginary parallelogram (PL) having first and second pairs of imaginary parallel sides (S1, S2), and

the first pair of imaginary parallel sides (S1) are perpendicular to the major side length (SL) of each major edge (30).

11. The cutting insert (20) according to any one of the preceding claims, wherein in a minor side view of the cutting insert (20), each minor cutting edge (36) includes:

a wiping edge portion (66) adjoining its associated raised corner edge (30),

a ramping edge portion (68) adjoining its associated lowered corner edge (34), and

a convexly shaped joining edge portion (70) extending between the wiping edge portion (66) and the ramping edge portion (68).

12. The cutting insert (20) according to claim 11, wherein in a minor side view of the cutting insert (20), each ramping edge portion (68) includes:

a first ramping edge sub-portion (68a) adjoining its associated lowered corner edge (48),

a third ramping sub-portion (68c) adjoining its associated joining edge portion (70), and

a concavely shaped second ramping edge sub-portion (68b) extending between the first and third ramping edge sub-ports (68a, 68c).

13. The cutting insert (20) according to claim 12, wherein:

each end surface (22a, 22b) includes a minor ramp surface (72) adjacent each first ramping edge sub-portion (68a), and

in a cross-section taken in a fifth plane (P5) located in-between the two major side surfaces (26a, 26b) and intersecting one of the first ramping edge sub-ports (68a), the

adjacent minor ramp surface (72) slopes away from the median plane (M) whilst extending away from said one of the first ramping edge sub-portions (68a).

14. The cutting insert (20) according to claim 13, wherein in a cross-section taken in any plane located in-between the two major side surfaces (26a, 26b) and intersecting one of the first ramping edge sub-portions (68a), the adjacent minor ramp surface (72) slopes away from the median plane (M) whilst extending away from said one of the first ramping edge sub-portions (68a).

15. The cutting insert (20) according to any one of the preceding claims, wherein the cutting insert (20) exhibits rotational symmetry about the first insert axis (A1).

16. The cutting insert (20) according to any one of the preceding claims, wherein a second insert axis (A2) passes through the two major side surfaces (26a, 26b), and an insert through bore (44) extends along the second insert axis (A2) and intersects the two major side surfaces (26a, 26b).

17. The cutting insert (20) according to claim 16, wherein the cutting insert (20) exhibits rotational symmetry about the second insert axis (A2).

18. The cutting insert (20) according to any one of the preceding claims, wherein each elevated edge portion (62) does not extend to the third major point (NJ3) of its associated major edge (30).

19. A rotary cutting tool (82) rotatable about a tool axis (AT) in a direction of rotation (RT), comprising:

a cutting body (84) having at least one insert receiving pocket (86); and
at least one cutting insert (20) in accordance with any one of the preceding claims removably secured in the insert receiving pocket (86).

20. The rotary cutting tool (82) according to claim 19, wherein:

the tool axis (AT) defines a forward-rearward direction (DF, DR),

each insert receiving pocket (86) opens out at a forward end surface (88) of the cutting body (84),

each minor cutting edge (36) extends the entire length of its associated minor edge (32), and

the entire operative minor cutting edge (36) of each cutting insert (20) is located axially forward of the forward end surface (88).

21. The rotary cutting tool (82) according to claim 19 or 20, wherein:

the operative major cutting edge (34) of each cutting insert (20) forms a positive axial rake angle (δ_1) with respect to the tool axis (AT).

22. The rotary cutting tool (82) according to any one of claims 19 to 21, wherein:

the insert receiving pocket (86) has:

a seat surface (92) facing in the direction of rotation (RT);

a radially outward facing first pocket wall (94) transverse to the seat surface (92); and

an axially forward facing second pocket wall (96) transverse to the seat surface (92);

one of the two end surfaces (22a, 22b) is in contact with the seat surface (92);

one of the two major side surfaces (26a, 26b) is in contact with the first pocket wall (94); and

one of the two minor side surfaces (28a, 28b) is in contact with the second pocket wall (96).

23. The rotary cutting tool (82) according to claim 22, wherein:

the seat surface (92) includes a threaded bore (98) extending along a bore axis (AB),

an insert through bore (44) extending along a second insert axis (A2) intersects the insert's two major side surfaces (26a, 26b), and

a clamping screw (100) passes through the insert through bore (44) and threadingly engages the threaded bore (98).

1/7

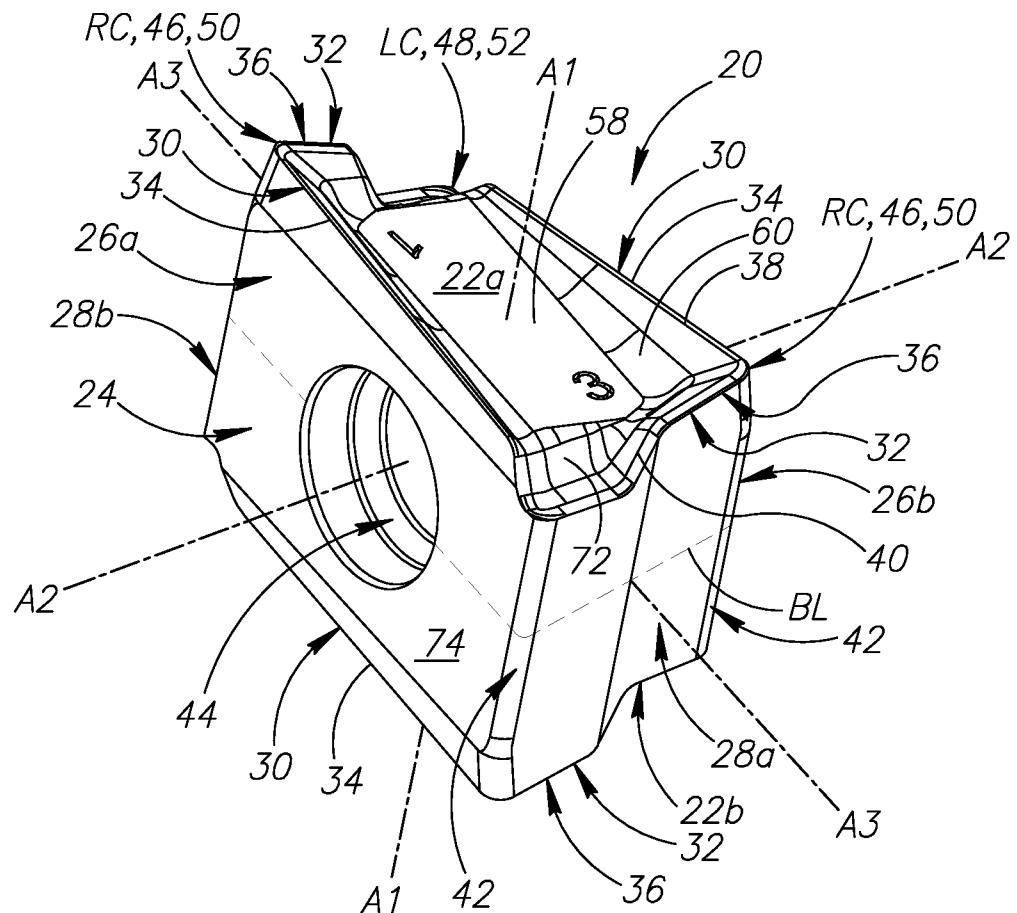


FIG.1

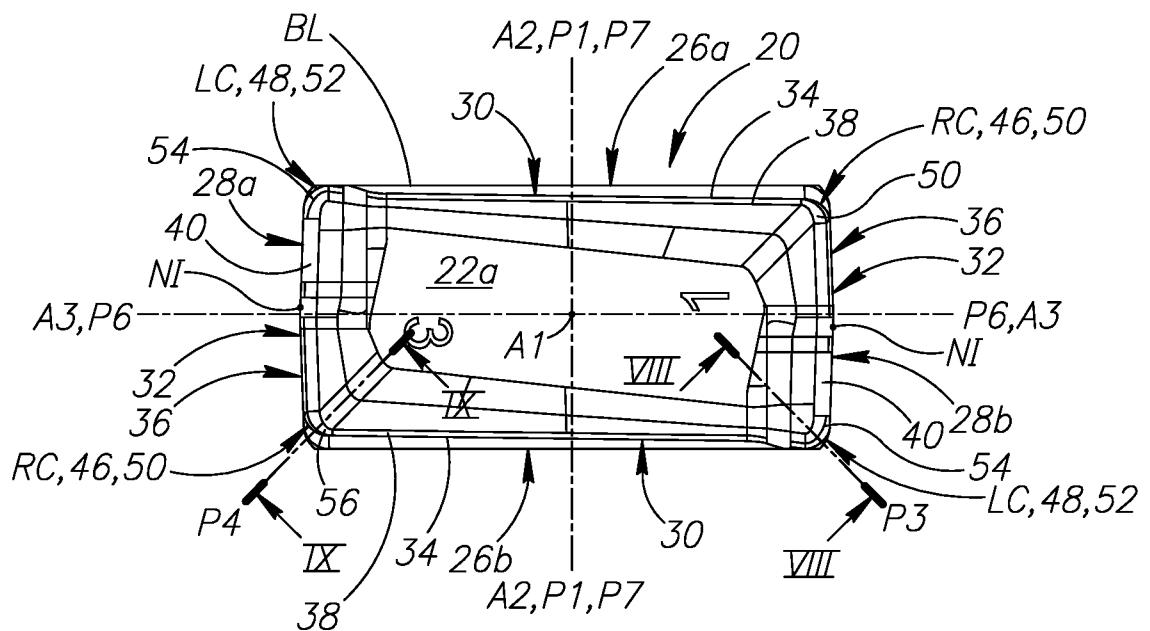
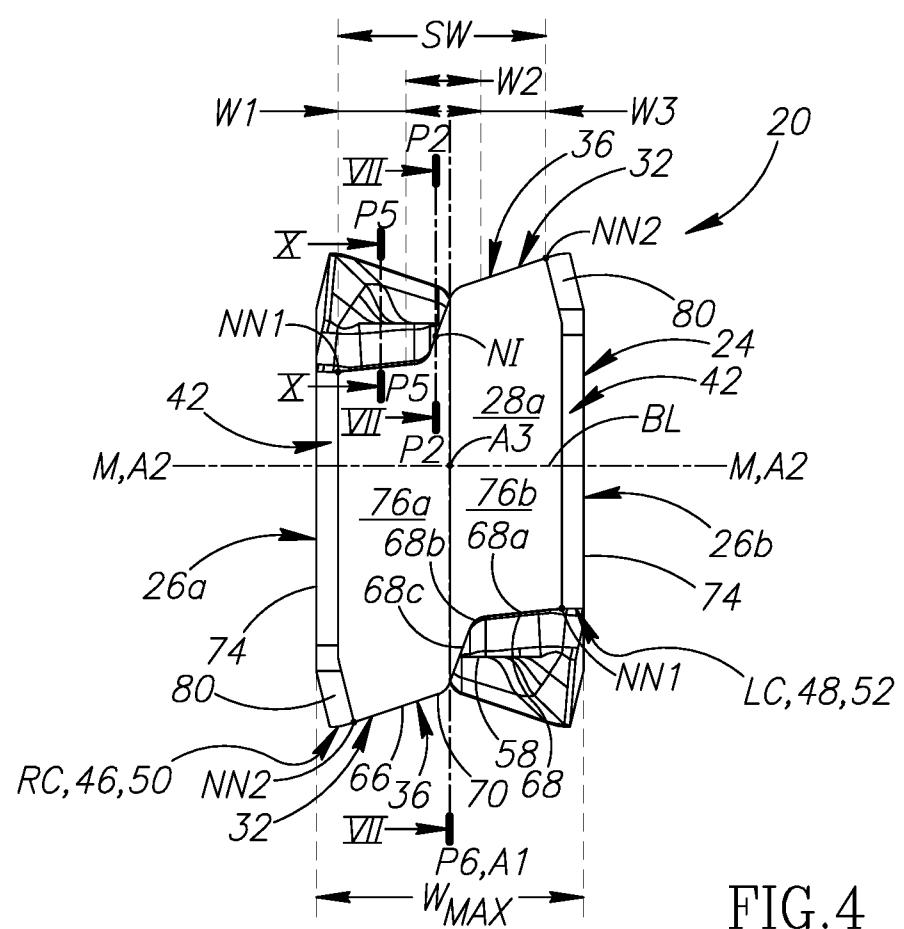
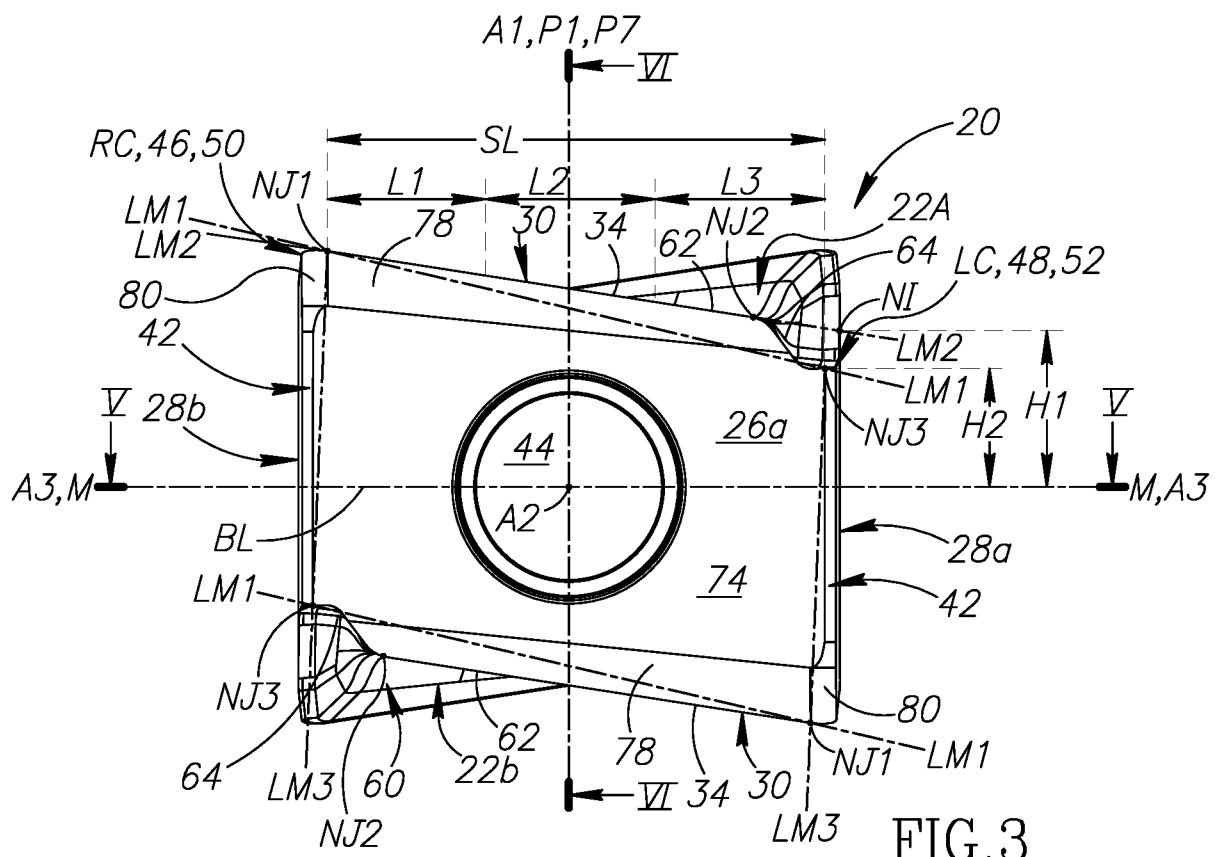




FIG.2

2/7

3/7

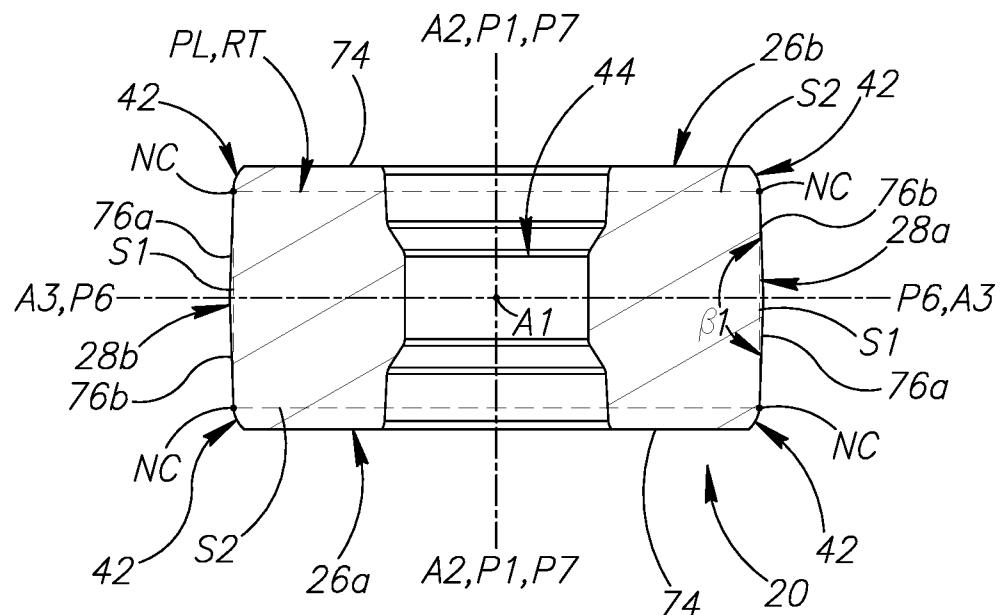


FIG. 5

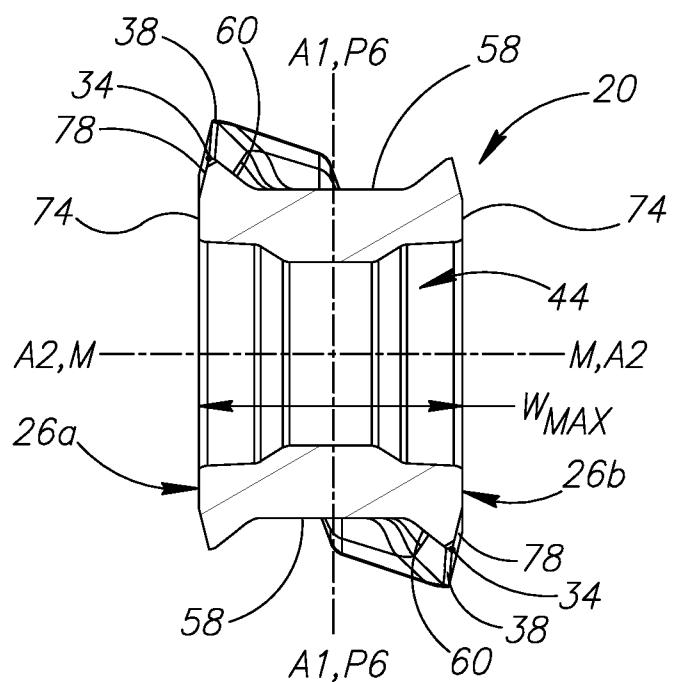


FIG. 6

4/7

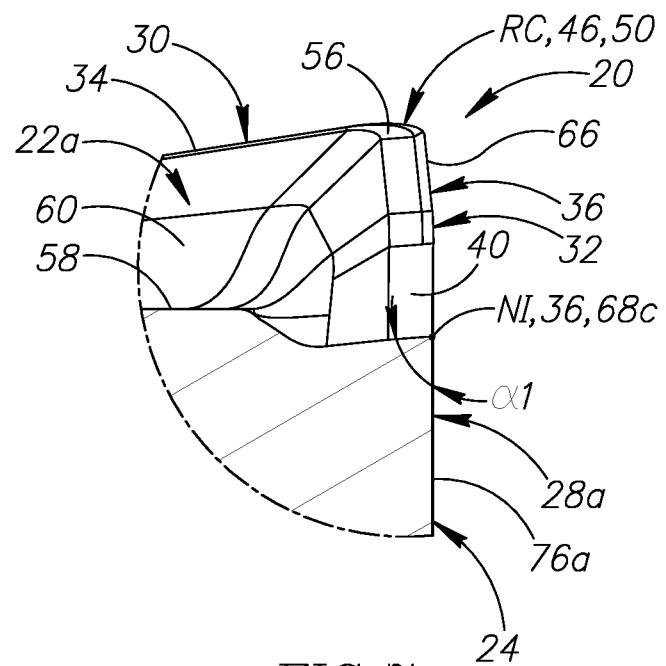


FIG. 7

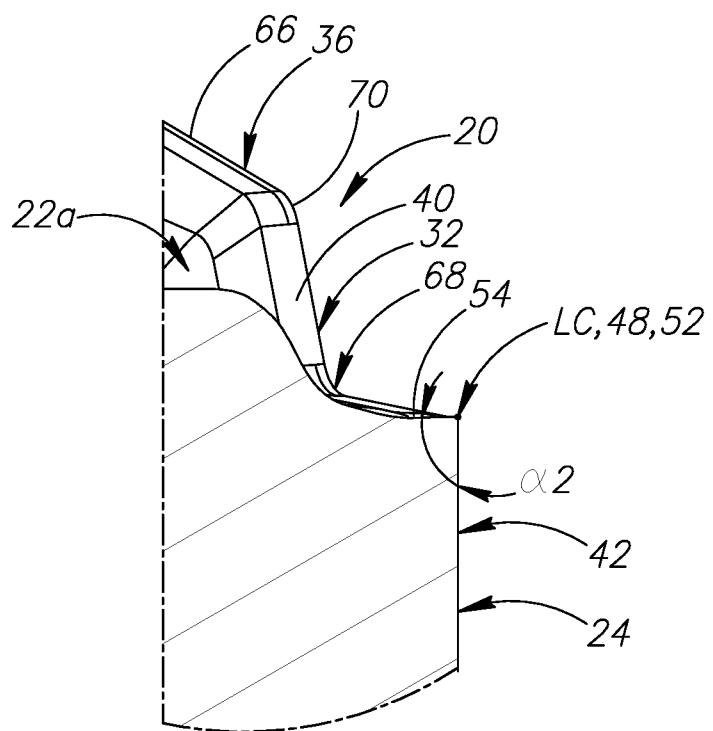


FIG. 8

5/7

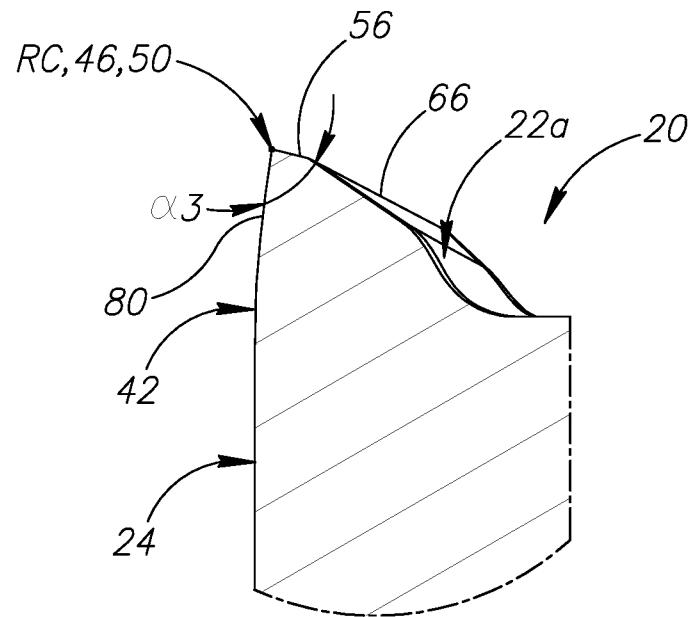


FIG.9

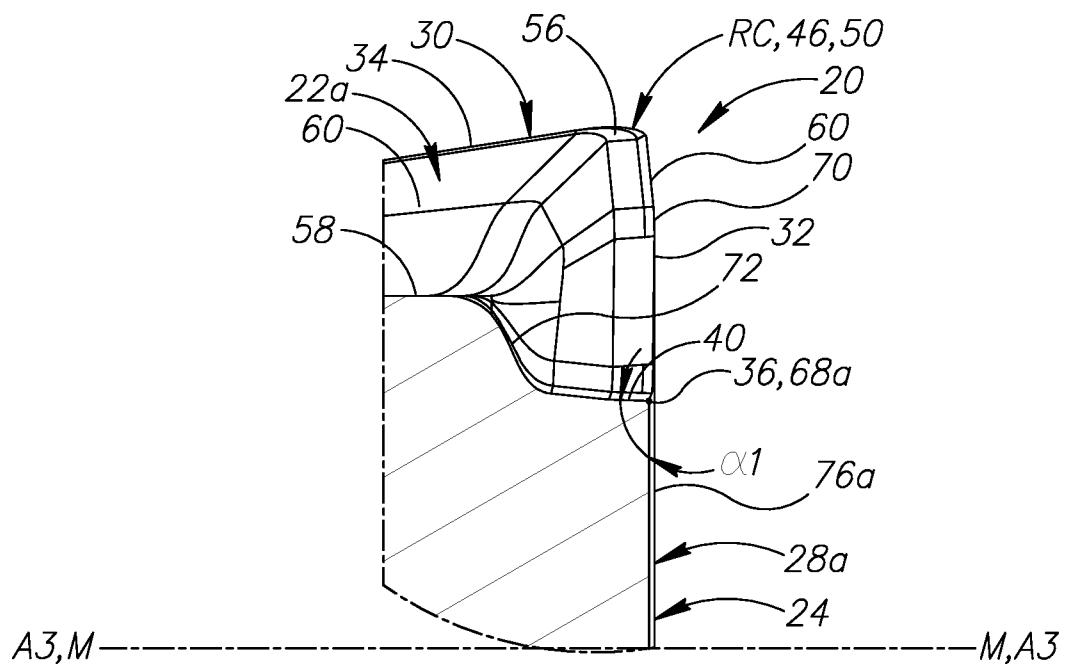


FIG.10

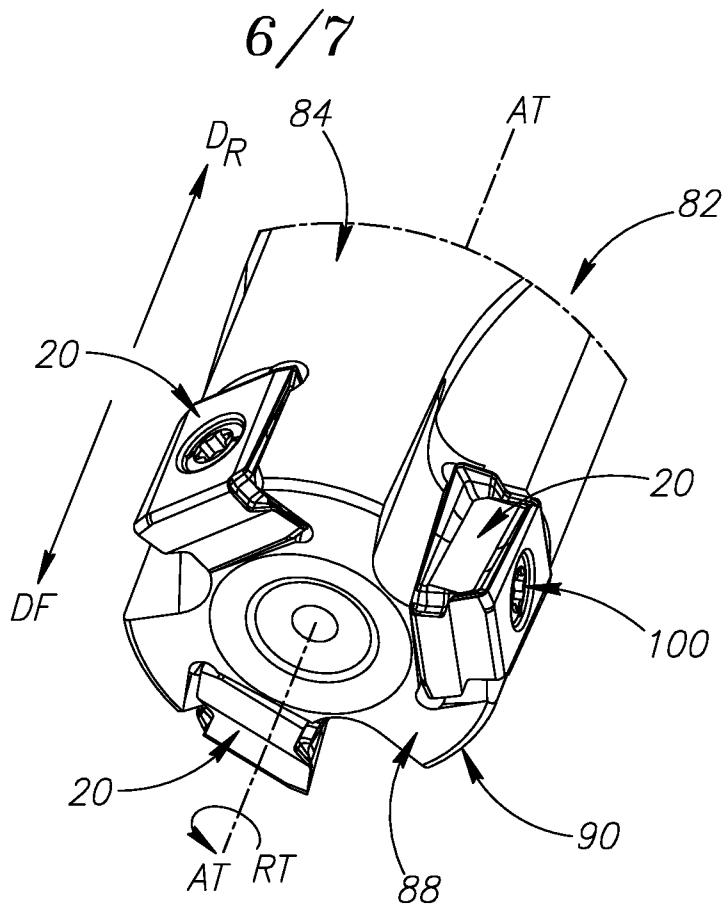


FIG.11

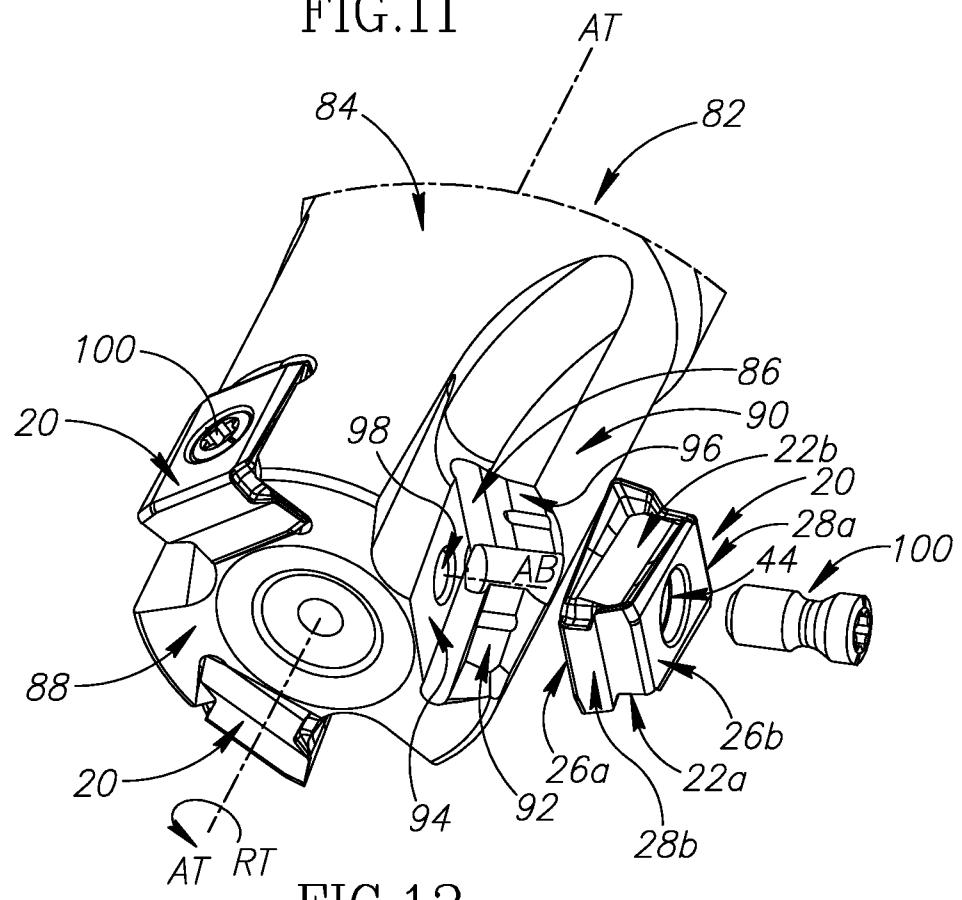


FIG.12

7/7

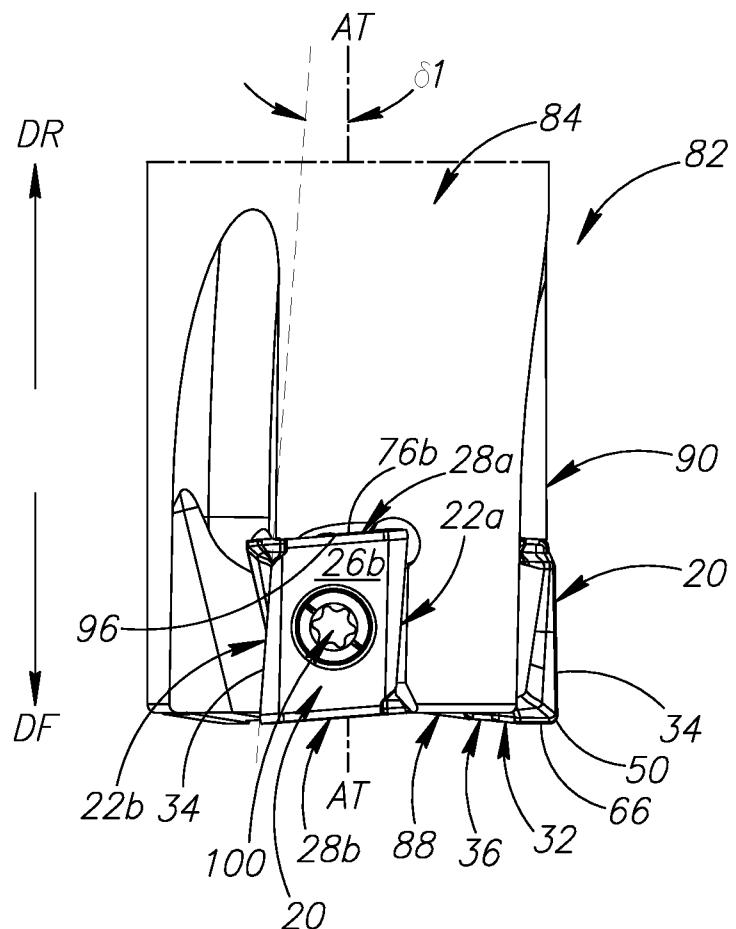


FIG.13

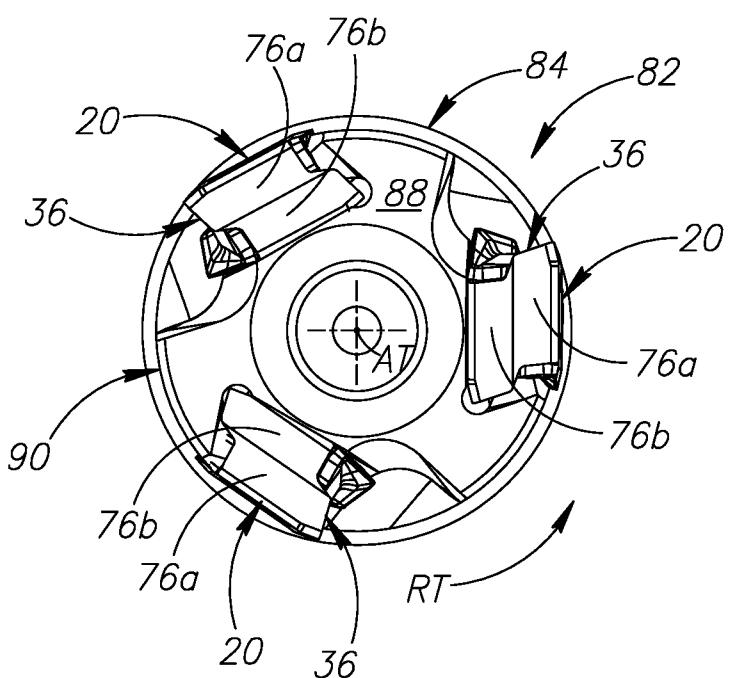


FIG.14

INTERNATIONAL SEARCH REPORT

International application No
PCT/IL2020/050224

A. CLASSIFICATION OF SUBJECT MATTER
INV. B23C5/20 B23C5/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B23C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 2 977 136 A1 (TUNGALOY CORP [JP]) 27 January 2016 (2016-01-27) paragraphs [0028], [0034] - [0037] figures 5, 6A-D, 15 ----- KR 100 958 403 B1 (TAEGU TEC LTD [KR]) 18 May 2010 (2010-05-18) figures 1-7 ----- EP 0 585 800 A1 (ISCAR LTD [IL]) 9 March 1994 (1994-03-09) figures ----- US 2012/009029 A1 (SAJI RYUICHI [JP]) 12 January 2012 (2012-01-12) paragraphs [0055] - [0057], [0096] figures ----- - / --	1-10, 15-23 1-10,15, 18-20,22 1-23 11-14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
5 June 2020	17/06/2020

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Schäfer, Lisa

INTERNATIONAL SEARCH REPORTInternational application No
PCT/IL2020/050224

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2012/039678 A1 (NGUYEN ERIC WILLIAM [US] ET AL) 16 February 2012 (2012-02-16) paragraphs [0030], [0031] figures 5-9 -----	11,12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IL2020/050224

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
EP 2977136	A1	27-01-2016	CN 105188999 A		23-12-2015
			EP 2977136 A1		27-01-2016
			JP 5939355 B2		22-06-2016
			JP WO2014148515 A1		16-02-2017
			US 2016023285 A1		28-01-2016
			WO 2014148515 A1		25-09-2014
KR 100958403	B1	18-05-2010	NONE		
EP 0585800	A1	09-03-1994	AT 156050 T		15-08-1997
			CN 1093629 A		19-10-1994
			DE 585800 T1		06-10-1994
			DE 69312603 D1		04-09-1997
			DE 69312603 T2		04-12-1997
			EP 0585800 A1		09-03-1994
			ES 2052473 T1		16-07-1994
			HK 1001187 A1		29-05-1998
			IL 103008 A		05-12-1996
			JP H06155127 A		03-06-1994
			RU 2110370 C1		10-05-1998
			US 5486073 A		23-01-1996
			ZA 9304918 B		09-02-1994
US 2012009029	A1	12-01-2012	BR PI1013672 A2		26-04-2016
			CA 2757400 A1		07-10-2010
			CN 102458741 A		16-05-2012
			EP 2415544 A1		08-02-2012
			EP 3050656 A1		03-08-2016
			JP 5007853 B2		22-08-2012
			JP WO2010114094 A1		11-10-2012
			KR 20110128904 A		30-11-2011
			US 2012009029 A1		12-01-2012
			WO 2010114094 A1		07-10-2010
US 2012039678	A1	16-02-2012	BR 112013003232 A2		07-06-2016
			CA 2808319 A1		16-02-2012
			CN 103189156 A		03-07-2013
			EP 2603339 A1		19-06-2013
			ES 2633849 T3		25-09-2017
			JP 5832539 B2		16-12-2015
			JP 2013535351 A		12-09-2013
			KR 20130100128 A		09-09-2013
			PL 2603339 T3		29-09-2017
			PT 2603339 T		15-06-2017
			RU 2013110838 A		20-09-2014
			US 2012039678 A1		16-02-2012
			WO 2012021414 A1		16-02-2012