交叉空翻式三足机器人

本发明涉及一种交叉空翻式三足机器人的设计，包括顶盘和腿脚系统。本设计具有三足机器人运动灵活性、稳定性等特点通过设计实现了以交叉翻转为核心的运动方案。设计采用闭环控制结构，具有 10 个自由度，用于完整确定机器人运动姿态。腿部设计考虑了用户在应用中大范围调整小范围微调的特殊要求。利用复杂传动装置的安装。顶盘设计在简化控制难度的情况下，设计了行星结构，将自由度控制设备以电机位置伺服控制结构紧凑。闭环结构提高了执行机构控制精度。该发明具有行进于一般平面、崎岖及光滑路面的特点，提出解决目前足式机器人设计瓶颈，成本高等方面问题，广泛应用于生产生活的侦察感知、人员探测领域，具有广泛的应用前景。
1. 一种交叉空翻式三足机器人，其特征在于，包括顶盘部与腿部两大主体部分结构，其中顶盘为正三角形，在正三角形的三个顶点内侧，分别与三条腿相连，顶盘中央具有行星轮系及其轨道结构，三条腿由大腿带动小腿进行运动，交叉空翻运动通过闭环控制的方式，实现整体机构的运动。

2. 根据权利要求1所述的一种交叉空翻式三足机器人，其特征在于，所述的顶盘部系统为顶盘部系统核心部件为由行星轮系构成的锥度形成三臂联合控制的实现方式及相关设计思路，由行星轮系构成的锥度形成三臂联合控制的实现方式及相关设计思路，利用顶盘滑槽的位置这一机械结构，能够有效地减少分别控制三条腿部的自由度，简化了控制难度，便于达到平衡位置与运动初始位置，且运动过程中无干涉，稳定性更强，实现了从静止到运动初始状态，到运动翻转过程状态，最后重回平衡状态的整个流程。

3. 根据权利要求1所述的一种交叉空翻式三足机器人，其特征在于，所述的腿部系统为腿部系统核心在于为了达到机器人各种传感器功能的有效实现的目的，需要灵活控制机器人高度的调节，腿部由三个自由度组成，除一个自由度用于反转旋转外，基于仿生学原理，两个自由度可分别实现顶盘的高度的垂直微调，在应用中考虑了大范围调整和小范围微调的不同需求，在摩擦系数相对小的运动平面上或不便于调整支撑点位置时，确保使下部小腿保持竖直，减少机器人主体保持站立需要的最小静摩擦力，实现对运动环境更长的适应性，能够调节机器人本体的实际高度。

4. 根据权利要求1所述的一种交叉空翻式三足机器人，其特征在于，所述的控制为按照本设计提出基于交叉空翻式的行进方式，闭环结构的实现为，在顶盘安装了水平倾角传感器用以检测顶盘的位置是否水平，在腿部一端安装有力传感器，用以检测是否落地，在设定值与检测反馈量不等时，由控制器驱动相关机构继续运动，直到设定位置为止。每条腿构成子系统，采用位于各子系统的分布式电源供电，另外利用子系统的控制器分别对位于各支撑腿上的三个电机进行控制，在顶盘的中央安置主系统主控制器，主控制器通过无线通讯协议方式与子系统的控制器进行信号的互连，进而使系统对其总体目标和任务可以进行综合协调与分配，同时解决了在实际运动过程中空翻的运动方式可能使物理连接的数据线不断缠绕的问题，在控制下放的前提下，减轻了主控制器的控制和运算的压力，使主控制器专注中心电机的控制，各条腿的协调动作和三轴加速度计传感器信号运算与采集，子系统控制器专注于在各腿部三个电机的控制和压力传感器的开关量的测量。

5. 根据权利要求2所述的一种交叉空翻式三足机器人，其特征在于，所述的顶盘部系统结构设计思路为：顶盘部系统结构由顶盘部中心板（1），顶部外齿轮上端连杆连接块（2），顶部外齿轮上端连杆（3），顶部外齿轮（4），顶部舵机连杆（5），顶部随动U型结构（6），顶部中心舵机舵盘（7），顶部中心舵机（8），顶部下中心板（9），顶部内齿轮（10），顶部边缘舵机支撑架（11），顶部边缘舵机U型结构（12），顶部边缘外下尼龙套筒（13），顶部边缘内金属套筒（14），顶部边缘舵机（15），顶部边缘外上尼龙套筒（16），六角铜柱组成（27）组成。

6. 根据权利要求5所述的一种交叉空翻式三足机器人，其特征在于，所述的顶盘部系统各部分的装配及运动关系为：在顶盘上中心板（1）和顶部下中心板（9）有顶部外齿轮上端连杆连接块（2），顶部外齿轮上端连杆（3）通过螺纹连接的方式固定在一起，顶部外齿轮（4）与顶部内齿轮（5）齿轮之间相互啮合，顶部舵机连杆（5）通过顶部中心舵机舵盘（7）以螺钉配合的方式与中心舵机相连接，同时，顶部外齿
轮(4)又与顶部外齿轮上端连接(3)通过螺栓螺母固定，三根连杆分别套接在顶部外齿轮上端连接块(2)上，顶部内齿轮(10)通过其周圈的三个孔用螺栓螺母固定在顶部下中心板(9)上，顶部中央轴(8)通过其两侧板上的通孔与顶部下中心板(9)用4个螺栓螺母固定，通过以上机构的组合使顶部中央轴(8)的旋转带动顶部外齿轮(4)围绕着顶部内齿轮(10)旋转，使连杆位于不同的位置，顶部外齿轮上端连接块(2)通过顶部随动U型轨道(6)分别调节(a)，(b)，(c)号舵机的位置，在平面水平转动，下面以(1)号舵机为例，介绍三角形中心板三边缘处舵机的连接和运动方式；(1)号舵机通过舵盘结构与腿部上端舵机(26)相连，使用螺栓形式固定方便拆卸，腿部上端舵机(26)通过螺钉螺母结构固定在顶部边缘舵机U型包架(12)，另一方面，(1)号舵机以螺钉螺母连接的方式与顶部边缘舵机支撑架(11)相连，顶部边缘舵机支撑架(11)的边缘加工有通孔，通孔处套有起其固定支撑作用的六角铜柱(27)，在通孔内六角铜柱(27)的外侧套有为了减小摩擦的顶部边缘内金属套筒(14)，顶部边缘内金属套筒(14)持在顶部上中心板(1)和顶部下中心板(9)之间，在其外并同样在通孔的上下边缘分别有顶部边缘外下尼龙套筒(13)和顶部边缘外上尼龙套筒(16)起轴向定位的作用，避免顶部边缘舵机支撑架(11)来回运动，顶部随动U型轨道(6)的一端通过4个螺钉与顶部边缘舵机支撑架(11)固连在一起，另一端与顶部外齿轮上端连接块(2)相互压紧套装，使顶部外齿轮上端连接块(2)能够装在承载板上平滑的前后移动。

7. 根据权利要求6所述的一种交叉空翻式三足机器人，其特征在于，所述的顶盘部腿部的连接方式实现为与每一条腿与顶盘连接处的轴一方面需要牢固固定，另一方面需要其自旋转，设计了内六角螺柱作为固定连接上下顶盘的连接轴，提供较硬刚度的轴，在其外围套上直径大小略大于六角螺柱的轻质金属外壳作为双层轴，同时实现了上述两种功能，实现制作成本低且完全实现功能需求。

8. 根据权利要求3所述的一种交叉空翻式三足机器人，其特征在于，所述的腿部系统结构设计思路为：腿部结构由腿部上连杆上端U形架(17)、腿部上连杆(18)、腿部连接舵机支撑架(19)、腿部连接舵机(20)、腿部连接U形架(21)、腿部下连杆(22)、腿部连接舵机舵盘(23)、腿部下连杆减震器(24)、腿部下连杆末端防滑套(25)、腿部上端舵机(26)组成。

9. 根据权利要求8所述的一种交叉空翻式三足机器人，其特征在于，所述的顶盘部系统各部分的装配及运动关系为：舵盘通过螺钉与腿部上连杆上端U形架(17)相连，舵机支撑架通过螺钉与U型包架连接，实现腿部上连杆上端U形架(17)相对于腿部上端舵机支撑架(11)绕舵机轴的上下摆动，腿部上连杆上端U形架(17)与腿部上连杆(18)固结为一个体，从而实现腿部上连杆(18)绕腿部上端舵机(26)舵机轴做上下摆动，腿部连接舵机(20)的舵机轴与腿部连接舵机舵盘(23)通过齿啮合相互连接，舵盘通过螺钉与腿部连接U形架相连，舵机支撑架通过螺钉与U型包架连接，实现腿部连接U形架(21)相对于腿部连接舵机支撑架(19)绕舵机轴的上下摆动，腿部连接U形架(21)与腿部下连杆(22)固结为一个体，腿部连接舵机支撑架(19)与腿部下连杆(18)固结为一个体，从而实现腿部下连杆(22)相对于腿部上连杆(18)绕腿部连接舵机(20)舵机轴做上下摆动，腿部下连杆(22)末端连接有腿部下连杆末端防滑套(25)，实现增大腿部下连杆(22)末端与地面的摩擦力，腿部下连杆(22)中部安装有腿部下连杆减震器(24)，实现对腿部运动的减震。

10. 根据权利要求9所述的一种交叉空翻式三足机器人，其特征在于，所述的基于仿生
学原理的大腿与小腿的设计为，为了达到机器人各种传感功能的有效实现的目的，需要灵活控制机器人高度的调节，腿部为由三个自由度组成，除一个自由度用于反转旋转外，两个自由度可分别实现顶盘的高度的竖直微调，在应用中考虑了大范围调整和小范围微调的不同需求，在摩擦系数相对小的运动平面上或不便于调整支撑点位置时，确保使下部小腿保持竖直，减小机器人主体保持站立需要偶的最小静摩擦力，实现对运动环境更强的适应性，能够调节机器人本体的实际高度。

11. 根据权利要求1所述的一种交叉翻翻式三足机器人，其特征在于，所述的三足机器人的整体特征为相较于传统运动方式的多足或三足机器人的不同特点，本发明的交叉翻翻式三足机器人通过的各项设计陈述的结构设计和控制设计实现了以交叉翻转顶盘方式为核心的从静止，到运动初始状态，到运动翻转过程状态，最后重回平衡状态运动的新方案。

12. 根据权利要求11所述的一种交叉翻翻式三足机器人，其特征在于，所述的三足机器人的运动方案在解决了目前足式机器人传统行进方式的弊端，一方面翻翻式行进方式能够迈越过较大障碍物和适当宽度的沟渠，另一方面步距加大减少了接触地面的几率，增强了其稳定性，适应于各类崎岖路面的行进，搭载各类传感器后，在军事，灾害，救援，地面侦测领域具有广泛的实用价值与前景。
交叉空翻式三足机器人

技术领域
[0001] 本发明属于仿生机器人应用领域，具体涉及一种交叉空翻式三足机器人运动设计。

背景技术
[0002] 在实验室和生活中机活人多采用两足或四足六足等多足行走或者采用相对传统的轮式移动。轮式机器人相对于足式机器人的越障能力要逊色许多，对地形的适应性强不如足式机器人。两足机器人行动较为灵活，但稳定性欠缺，行走时容易失去平衡而摔倒，四足六足等多足机器人虽然相对于两足更为稳定，但却失去了两足的灵活性，腿与腿之间会相互干扰、控制起来也比较复杂。三角形具有很好的稳定性，三足行走机器人自然也具有四足、六足机器人的稳定性。同时，由于采用三足的驱动方式，三足机器人便拥有了两足机器人的灵活性。常用的机器人在平面内大都是在前后左右四个方向运动，而采用三足的机器人，通过腿部的调整和幅度的步伐，使其更灵活，更稳定。
[0003] 因此设计一款可灵活运动的三足机器人是一个有较好应用前景的工作。
[0004] 事实上弗吉尼亚理工大学的丹尼斯•洪教授的团队首次提出了一种被动力的三足机器人，但是机器太重，太多的电机和笨重的材料使得运动很难实现。因此转而研究纯机械驱动步态的三足机器人，结果是缺乏控制的组织，该三足机器人仅能迈出第一步，没有实现灵活连续运动的目的。

发明内容
[0005] 本发明的内容在于提供一种可以实现交叉空翻运动方式的三足机器人的设计。该设计采用了闭环控制结构，机器人整体共有 10 个主动自由度，其中的 1 个主动自由度驱动 3 个被动自由度。用于完整的确定机器人的姿态，每个自由度都由电机（直流角位移伺服电机）驱动完成。其中用于连接小腿和大腿关节的电机，能够在竖直方向上在 0~180 度的范围内任意转动，三者的角度在装配时，必须保持相对位置协调一致，运动过程中三者的角度，必须相互协调一致，以保持机器人在水平状态，调整此电机的角位置，即可方便改变该三足机器人的相对地面竖直方向的高度，使作为安装传感器功能区的顶盘的高度可以方便调节，便于实现相关探测的自主功能；另外在腿部用于将自身连接到顶盘的电机，数量为 1 组 3 个，同样需要达到 0~180 度位置伺服，且电梯负载下的输出扭力相对前者大，三者装配需要协调一致，调整此电机的角位置，亦可实现顶盘的高度的竖直微调，在摩擦系数相对小的运动平面上，确保下部小腿保持竖直，减小机器人保持站立需要的最小摩擦力，实现对运动环境的适应性，因能够调节机器人本体的实际高度。此外位于顶盘上用于连接腿部的电机，由于对称性，共有 1 组 3 个，亦能够在水平 0~180 度的范围内实现位置伺服运动，三者的初始角度在装配时保持对称协调，在两者共轴条件下的运动过程中，使其中每两个电机的运动实现相对镜面对称转动，进而使同时转动的两个电机形成一条旋转轴，以此状态下未涉及的另一条腿及顶盘绕此旋转轴实现转动，实现交叉空翻的
效果；另外三个被动自由度，由中心电机提供动力，由尼龙套筒减小转动摩擦，使顶盘的电机能够带动三条腿实现水平方向的绕轴转动。经计算转动的范围为60度，以实现顶盘不同侧边为轴，机器人在不同方向运动的目的。最后一个自由度在顶盘中央，是整个机器人姿态调整，驱动电机带动的核心驱动，该电机需要具有较好的动态性能。相较于的传统方案，无静差或偏小，机械性能良好，输出力矩大，无电机振动，运动平稳。该电机能够实现轴90度恒定转动的位置调控功能。在本设计的顶盘结构单元中自由度实现两臂联合控制的基础上，使机器人的三足中相邻两足依次实现作为运动旋转轴，起到选择姿态的驱动作用。

【0006】腿部的设计采用类似生物体的设计方案，采用大腿带动小腿的模式，将腿部分成两段，增强了机器人运动的灵活性。在腿部的下半段增加了具有较大的弹性的减震装置。使得运动过程中不会因为存在机械装置时的缝隙，当机器人足接触地面时对关节的配合处造成不可逆转的损坏，此外从另一方面讲能够使姿态的运动更加平稳灵活连贯。在足部考虑到原支撑杆底部平面与地面平面的面接触不稳定的缺点，在机器人小腿的端部安装了球状橡胶质的足部，不仅在接触的过程中起到了缓冲的作用，而且保证了接触的平稳的性能。在腿部两部分长度比例的考量上，借鉴了整条腿部能够从下部空间翻转的适当长度，保留一定余量，最终选择小腿与大腿的长度比为2:1。三足机器人的结构比例及运动方式设计，使其自身具有较强的越障能力，其本身占有的空间小，具有较大的前进步伐，且相对于平移型步式机器人在伸缩升降方面具有更加灵活，足端可达域广、抗干扰能力强的特点。

【0007】顶盘的设计在简化控制难度的目的下，设计了行星轮的机械结构，巧妙将三个自由度的控制代之以一个中心电机的位置伺服控制，针对机器人的姿态变化，完全实现了各种运动要求，结构紧凑。中心电机带动的顶盘外齿轮上端连杆作为整个机器人主架的动力传输机构。具体方式为中心电机旋转驱动内连杆以同样的速度与方向转动，内连杆带动外齿轮在与顶盘内齿轮啮合下旋转，内齿轮旋转时，带动外连杆实现平面运动，驱动外连杆上的连接块，实现在平衡位置与运动位置的相互转化，经仿真连接块的运动轨迹为以中心电机为旋转中心的四叶盘形状。实现了机器人的各条腿在预定位置之间的变换。

【0008】在各处关节的设计上，本发明力图使结构进行最大限度的简化。在理论设计后去掉了不必要的齿轮及减速的冗余结构，将U型架直接安装在电机轴上，减少了安装复杂度，减小了实际应用成本，减轻了机构的重量，经静态校核与实际实验达到预设功能目的。

【0009】闭环结构的实现，在顶盘安装了水平倾角传感器用于检测顶盘的位置是否水平，在腿部一端安装压力传感器，用以检测是否落地，在设定值与检测反馈量不等时，由控制器驱动相关机构继续运动，直到设定位置为止。使每条腿构成一个系统，采用位于各子系统的分布式电源供电，另外利用子系统的控制器分别控制于各支撑腿上的三个电机进行控制，在顶盘的中央设置主系统主控制器，主控制器通过无通信协议方式与子系统的控制器进行信号的互连，进而使系统对其总体目标和任务可以进行综合协调与分配，同时解决了在实际运动过程中运动可能使物理连接的数据线不断缠绕的问题，在控制下放的前提下，减轻了控制的控制和运算的压力，使主控制器专注于中心电机的控制，各条腿的协调运动和水平倾角传感器的信号运算与采集，使子系统控制器专注于位于各腿部三个电机的控制和力传感器的开关量的测量。
为了实现上述发明目的，交叉空翻式足机器人整体结构有：顶部：上中心板、顶部外齿轮上端连杆连接块、顶部外齿轮上端连杆、顶部外齿轮、顶部齿轮连接杆、顶部随动U型轨道架、顶部中心舵机舵盘、顶部中心舵机、顶部下中心板、顶部内齿轮、顶部边缘舵机支撑架、顶部边缘舵机U型支架、顶部边缘外下尼龙套简、部边缘内金属套简、顶部边缘舵机、顶部边缘外下尼龙套筒、腿部上连杆、腿部上连杆、腿部连接舵机支撑架、腿部连接舵机、腿部连接U形架、腿部下连杆、腿部连接舵机舵盘、腿部下连杆缓冲器、腿部下连杆末端防滑套、腿部上端舵机、六角铜柱组成。

主要设计包括以下结构：①舵机包围结构；根据舵机的尺寸大小，来确定包围结构外壳的尺寸，并通过精确的测量来确定底板上和舵机对称位置安装轴的位置，从而保证了对称性。此外，在设计时两侧预留出了误差允许范围的安装间隙以方便调整。②连接舵机与腿部的U型架结构，根据舰机的尺寸，根据舵机的大小确定U型架的三维尺寸，经过精确的计算，并考虑到选用螺栓的φ值，机构装配精度，适当选择相应的孔距，安装位置。③顶盘连接腿部舵机的支撑架相对顶盘定轴旋转结构：根据要旋转的部分，在舵机外围绕结构留出安装轴的位置，上下顶板也通过此轴相互固定，由于一方面需要牢固固定，另一方面需要轴的旋转，在六角螺柱作为固定连接上下顶盘的连接轴的同时，在其外围套上直径大小略小于六角螺柱的轻质金属外壳，减小摩擦以实现转动的效果，在金属外壳的上下端分别套上长度不同的尼龙套筒，使绕轴旋转的舵机包围结构不能上下移动，在高度位置上相对固定。④顶部随动U型轨道架设计：当顶部外齿轮上端连杆连接块到达顶盘的边缘时，以此极限位置留出相应的误差及变差，进行U型轨道架的长度，U型轨道架的端部最好形成圆弧结构，U型轨道架的另一端通过螺栓连接于顶盘舵机包围结构的上端，连接处需保证有较强的机械强度与可靠性，轨道的刚性应保证一定的大小，使其尽量在带动连接块时不会变形。⑤顶盘中心行星轮系实现单自由度实现三全联合控制的设计，设计内齿轮、外齿轮、内连杆、外连杆及连接块结构，中心电机旋转驱动内连杆以同样的速度与方向转动，内连杆带动外齿轮在与顶盘内齿轮啮合下旋转，内齿轮旋转时，带动外连杆实现平面运动，驱动与外连杆上的连接块，实现平衡位置与运动位置的相互转化，以一个中心电机的旋转自由度代替三条支撑腿共计三个绕竖直轴的水平转动的自由度，经计算校核，记内连杆长度r1，外连杆的长度r2，外齿轮半径r3，内齿轮半径R，齿轮与内齿轮啮合，尺寸关系r1 = r2 = 2*r3，R = r1+r3。内齿轮通过法兰结构连接到顶盘上。

1) 本发明的优点在于：

(2) 设计了行星轮系结构，利用顶盘滑槽的位置这一机械结构，能够有效地减少分别控制三条腿部的自由度，简化了控制难度且稳定性更强，实现了运动位置与平衡位置的转化。

(3) 每一条腿是由三个自由度组成，除一个自由度用于反旋转外，两个自由度可分别实现顶盘的高度的直线运动，在摩擦系数相对小的运动平面上或不便调整支撑点位置时，确定使下部小腿保持竖直，减少机器人主体保持站立需要的最小静摩擦力，实现对运动环境更强的适应性，能够调节机器人本体的实际高度，达到机器人各种传感功能实现的目的。
（4）每一条腿与顶盘连接处的轴一方面需要牢固固定，另一方面需要其自旋转，设计了内六角螺柱作为固定连接上下顶盘的连接轴的同时，在其外围套上直径大小略大于六角螺柱的轻质金属外壳作为双层轴，同时实现了上述两种功能。

附图说明

附图 1 为交叉空翻式三足机器人顶盘部设计示意图；
附图 2 为交叉空翻式三足机器人顶盘平衡位置俯视图；
附图 3 为交叉空翻式三足机器人顶盘迈步初始位置俯视图；
附图 4 为交叉空翻式三足机器人顶盘主视图；
附图 5 为交叉空翻式三足机器人腿部结构图；
附图 6 为交叉空翻式三足机器人无顶板整体平衡位置图三视图；
附图 7 为交叉空翻式三足机器人无顶板整体迈步初始位置三视图；
附图 8 为交叉空翻式三足机器人无顶板整体运动过程位置空间三视图；
附图 9 为交叉空翻式三足机器人主空间三视图。

具体实施方式

如图1所示，为三足步态机器人顶盘运动示意图，包括上下两个等边三角形的中心板，板上每个角各自连有（1）号，（2）号和（3）号鸵杆，以及两中心板之间的转动结构。两中心板之间的结构有：在顶盘上中心板（1）和顶盘下中心板（9）有头部外齿轮上端连杆支架连接（2），顶部外齿轮上端连杆连接（2）与顶部外齿轮上端连杆，（3）通过螺纹连接的方式固定在一起，顶部外齿轮（4）与顶盘内部齿轮（10）齿轮之间相互啮合，顶部鸵杆连杆（5）通过顶部中心鸵杆舵盘（7）与螺杆配合的方式与鸵杆相连接，同时，顶部外齿轮（4）又与顶部外齿轮上端连杆（3）通过螺栓固定在顶部外齿轮上端连杆连接（2）上。顶部内齿轮（10）通过其周围的三个孔用螺栓螺母固定在顶部下中心板（9）上。顶盘中心鸵杆（8）通过其两侧板上的通孔与顶部下中心板（9）用4个螺栓螺母固定。通过以上结构的组合使顶部中心鸵杆（8）的旋转带动顶部外齿轮（4）围绕着顶部内齿轮（10）旋转，使连杆位于不同的位置，顶部外齿轮上端连杆连接（2）通过顶部随动U型架（6）分别调整（a），（b），（c）号鸵杆的位置，在平面水平转动。下面以（1）号鸵杆为例，介绍三角形中心板三个边缘处鸵杆的连接和运动方式：（1）号鸵杆通过鸵杆舵杆与腿部上端鸵杆（26）相连，使用螺栓形式用螺栓连接，腿部上端鸵杆（26）固定在顶部边缘鸵杆U型架（12），另一方面，（1）号鸵杆用螺栓螺母连接的方式
与顶部边缘舱机支撑架（11）相连，顶部边缘舱机支撑架（11）的边缘加工有通孔，通孔处套有起其固定支撑作用的六角铜柱（27），在通孔内六角铜柱（27）的外侧套有为了减小摩擦的顶部边缘内金属套筒（14），顶部边缘内金属套筒（14）加持在顶部上中心板（1）和顶部下中心板（9）之间，在其外并同样在通孔内的上下边缘分别有顶部边缘外下尼龙套筒（13）和顶部边缘外上尼龙套筒（16）起轴向定位的作用，避免顶部边缘舱机支撑架（11）来回运动。

顶部随动U型轨道（6）的一端通过4个螺丝与顶部边缘舱机支撑架（11）固定在一起，另一端与顶部外齿轮上端连杆连接块（2）相互压紧连接，使顶部外齿轮上端连杆连接块（2）能够在支架中平稳光滑的前后移动，通过以上结构可以在顶部中心舵机8的带动下，上下中心板以及腿部做平衡与初始运动位置的调节和180度的翻转运动。

【0028】如图2所示，为交叉空翻式三足机器人处于平衡状态时，顶部下中心板所示的状态，可以看到顶部外齿轮上端连杆连接块2处于正三角形的中心，三个互为对称的顶部随动U型轨道6相交形成120度角的中心对称位置。

【0029】如图3所示，为交叉空翻式三足机器人处于运动初始状态时，顶部下中心板所示的状态，可以看到顶部外齿轮上端连杆连接块2处于正三角形其中一边的中点处，三个顶部随动U型轨道6，其中两者共轴重合，另一个轨道与前两者垂直相交形成90度角的对称位置。

【0030】如图4所示，顶盘的主视图显示了顶部上下中心板间距离及顶盘部件相互之间的连接关系。

【0031】如图5所示，舵盘通过螺钉与腿部上连杆上端U型架（17）相连，舵机支撑架通过螺钉于U型包架连接，实现腿部上连杆上端U型架（17）相对于腿部上连杆支撑架（11）绕舵机轴的上下摆动。腿部上连杆上端U型架（17）与腿部上连杆（18）固定为一体。从而实现腿部上连杆（18）绕腿部上连杆（26）舵机轴做上下摆动。腿部连接舵机（20）的舵机轴与腿部连接舵机舵盘（23）通过齿啮合相互连接，舵盘通过螺钉与腿部连接U型架相连，舵机支撑架通过螺钉与U型包架连接，实现腿部连接U型架（21）相对于腿部连接舵机支撑架（19）绕舵机轴的上下摆动。腿部连接U型架（21）与腿部下连杆（22）固定为一体，腿部连接舵机支撑架（19）与腿部下连杆（18）固定为一体。从而实现腿部下连杆（22）相对于腿部上连杆（18）绕腿部连接舵机（20）舵机轴做上下摆动。

【0032】如图6所示，为无顶板整体平衡位置空间三维图，为便于展示项盘结构，隐藏了顶部上中心板。直观展示交叉空翻式三足机器人的两大部分——项盘和腿部在平衡时的的姿态状况。另外腿部下连杆（22）末端连接有腿部下连杆末端防滑套（25），实现增大腿部下连杆（22）末端与地面的摩擦力。腿部下连杆（22）中部安装有腿部下连杆减震器（24），实现对腿部运动的减震。

【0033】如图7所示，为无顶板整体运动初始位置空间三维图，为便于展示项盘机构，隐藏了顶部上中心板。直观展示交叉空翻式三足机器人的两大部分——项盘和腿部在初始位置时的姿态状况。

【0034】如图8所示，为无顶板整体运动过程中某一位置空间三维图，为便于展示项盘机构，隐藏了顶部上中心板。直观展示交叉空翻式三足机器人的两大部分——项盘和腿部在运动过程中项盘平面与地面垂直时的姿态状况。

【0035】如图9所示，为交叉空翻式三足机器人空间三维图，完整展示了机器人的静态全
貌。
图 2
图 5
图 6
图 7
图 8