wo 2015/130639 A 1[I I 0000 000 RO A0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/130639 Al

(51

eay)

(22)

(25)
(26)
(30)

(72)
1

74

31

3 September 2015 (03.09.2015) WIPOIPCT
International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GO8B 25/10 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
A L. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
International Application Number: HN. HR. HU. ID. IL. IN. IR. IS. JP. KE. KG. KN. KP, KR
PCT/US2015/017212 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
24 February 2015 (24.02.2015) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
-) SD, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Publication Language: English (84) Designated States (unless otherwise indicated, for every
Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/946,054 28 February 2014 (28.02.2014) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
61/973,962 2 April 2014 (02.04.2014) Us TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
14/463,738 20 August 2014 (20.08.2014) Us TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Inventor; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Applicant : RASBAND, Paul, B. [US/US]; 2981 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Windswept Drive, Lantana, Florida 33462 (US). GW, KM, ML, MR, NE, SN, TD, TG).
Agent: MALONEY, Denis, G.; Fish & Richardson P.C., Published:

P.O Box 1022, Minneapolis, MN 55440-1022 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

(34

Title: WIRELESS SENSOR NETWORK

30

Fiz. 2 Databases / Lists 44
34 ~ @ 8 8
interrupt-
hased Input App taysr L_r_“'_e__J Config Mgt i
P manager 20 /_35
. / sy Gen f Network
polling- 38 parsing Interface
based Input - 42
36 —

(57) Abstract: A networked system for managing a physical intrusion detection/alarm includes an upper tier of server devices, com-
prising: processor devices and memory in communication with the processor devices, a middle tier of gateway devices that are in
communication with upper tier servers, and a lower level tier of devices that comprise fully functional nodes with at least some of
the functional nodes including an application layer that execute routines to provide node functions, and a device to manage the lower
tier of devices, the device instantiating a program manager that executes a state machine to control the application layer in each of
the at least some of the functional nodes.

10

15

20

25

WO 2015/130639 PCT/US2015/017212

CLAIM OF PRIORITY
This application claims priority under 35 U.S.C. §119(e) to provisional U.S.
Patent Application 61/973,962, filed on April 2, 2014, entitled: “Wireless Sensor
Network”, and provisional U.S. Patent Application 61/946,054, filed on February 28,
2014, entitled: “Wireless Sensor Network™, and utility U.S. Patent Application
14/463,738, filed on August 20, 2014, entitled: “Wireless Sensor Network™, the entire

contents of which are hereby incorporated by reference.

Wireless Sensor Network

Background

This description relates to operation of sensor networks such as those used for
security, intrusion and alarm systems installed on commercial or residential premises.

It is common for businesses and homeowners to have a security system for
detecting alarm conditions at their premises and signaling the conditions to a
monitoring station or to authorized users of the security system. Security systems often
include an intrusion detection panel that is electrically or wirelessly connected to a
variety of sensors. Those sensors types typically include motion detectors, cameras, and
proximity sensors (used to determine whether a door or window has been opened).
Typically, such systems receive a very simple signal (electrically open or closed) from
one or more of these sensors to indicate that a particular condition being monitored has

changed or become unsecure.

SUMMARY
However, such networks generally use a combination of wired and wireless
links between the computing devices, with wireless links usually used for end-node
device to hub/gateway connections. Virtually all of the devices involved in the network
use some form of simple software, but in the end-nodes and hub/gateway this software
is simple in form, involves little advanced capability in data reduction and decision

making, and is quite static, meaning that the software typically does not change

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

frequently. However, when the software on these lower level devices is updated, which
is not frequently, traditional boot-loading methods are used. However, these boot-
loading methods are time-consuming, energy-consuming, and require rebooting of the
updated device, which can present a security/alarm issue.

According to an aspect a networked sensor system includes an upper tier of
server devices, the server devices including processor devices and memory in
communication with the processor devices. The system also includes a middle tier of
gateway devices that are in communication with one or more of the upper tier server
devices and a lower level tier of devices that include fully functional sensor nodes with
at least some of the fully functional sensor nodes including an application layer that
executes routines to provide node sensor functions and an application layer manager to
manage the application layer in the at least some of the functional nodes in the lower
tier of devices.

Aspects can also include methods, computer program products and systems.

One or more advantages may be provided from one or more of the above
aspects.

The network can use a combination of wired and wireless links, preferable
wired between the tiers, especially with wireless links between the middle and lower
tier connections (for example, end-node device to hub/gateway). The devices involved
in the network can include advanced capabilities areas such as data reduction and
decision making, and the capabilities of the device are dynamically changeable,
meaning that the software can be updated without the traditional boot-loading methods
avoiding the time-consuming, energy-consuming, and rebooting required by the
updated device, thus avoiding potential security/alarm issues when such sensor and
other end node devices are updated. This enables management of such sensors and
other end node devices having advanced capabilities in data reduction and decision
making.

The details of one or more embodiments of the invention are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the invention is apparent from the description and drawings, and from the

claims.

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram of an exemplary networked security system.

FIG. 2 is a block diagram of generic application layer manager.

FIG. 3 is a block diagram showing an example process on the application layer
manager.

FIG. 4 is a diagram of exemplary state transitions on the application layer
manager.

FIGS. 5 and 6 are flow charts.

FIG. 7 is a block diagram of components of an example networked security

System.

DETAILED DESCRIPTION

Described herein are examples of network features that may be used in various
contexts including, but not limited to, security/intrusion and alarm systems. Example
security systems may include an intrusion detection panel that is electrically or
wirelessly connected to a variety of sensors. Those sensors types may include motion
detectors, cameras, and proximity sensors (used, ¢.g., to determine whether a door or
window has been opened as well as other types of sensors). Typically, such systems
receive a relatively simple signal (electrically open or closed) from one or more of
these sensors to indicate that a particular condition being monitored has changed or
become unsecure.

For example, typical intrusion systems can be set-up to monitor entry doors in a
building. When a door is secured, a proximity sensor senses a magnetic contact and
produces an electrically closed circuit. When the door is opened, the proximity sensor
opens the circuit, and sends a signal to the panel indicating that an alarm condition has
occurred (e.g., an opened entry door).

Data collection systems are becoming more common in some applications, such
as home safety monitoring. Data collection systems employ wireless sensor networks
and wireless devices, and may include remote server-based monitoring and report
generation. As described in more detail below, wireless sensor networks generally use

a combination of wired and wireless links between computing devices, with wireless

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

links usually used for the lowest level connections (e.g., end-node device to
hub/gateway). In an example network, the edge (wirelessly-connected) tier of the
network is comprised of resource-constrained devices with specific functions. These
devices may have a small-to-moderate amount of processing power and memory, and
may be battery powered, thus requiring that they conserve energy by spending much of
their time in sleep mode. A typical model is one where the edge devices generally form
a single wireless network in which each end-node communicates directly with its parent
node in a hub-and-spoke-style architecture. The parent node may be, ¢.g., an access
point on a gateway or a sub-coordinator which is, in turn, connected to the access point
or another sub-coordinator.

Referring now to FIG. 1, an exemplary (global) distributed network 10 topology
for a Wireless Sensor Network (WSN) is shown. In FIG. 1 the distributed network 10
is logically divided into a set of tiers or hierarchical levels 12a-12c.

In an upper tier or hierarchical level 12a of the network are disposed servers
and/or virtual servers 14 running a “cloud computing” paradigm that are networked
together using well-established networking technology such as Internet protocols or
which can be private networks that use none or part of the Internet. Applications that
run on those servers 14 communicate using various protocols such as for Web Internet
networks XML/SOAP, RESTful web service, and other application layer technologies
such as HTTP and ATOM. The distributed network 10 has direct links between
devices (nodes) as shown and discussed below.

The distributed network 10 includes a second logically divided tier or
hierarchical level 12b, referred to here as a middle tier that involves gateways 16
located at central, convenient places inside individual buildings and structures. These
gateways 16 communicate with servers 14 in the upper tier whether the servers are
stand-alone dedicated servers and/or cloud based servers running cloud applications
using web programming techniques. The middle tier gateways 16 are also shown with
both local area network 17a (e.g., Ethernet or 802.11) and cellular network interfaces
170.

The distributed network topology also includes a lower tier (edge layer) 12¢ set

of devices that involve fully-functional sensor nodes 18 (e.g., sensor nodes that include

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

wireless devices, €.g., transceivers or in some implementations just transmitters or
receivers, which in FIG. 1 are marked in with an “F”’) as well as constrained wireless
sensor nodes or sensor end-nodes 20 (marked in the FIG. 1 with “C”). In some
embodiments wired sensors (not shown) can be included in aspects of the distributed
network 10.

Constrained computing devices 20 as used herein are devices with substantially
less persistent and volatile memory compared to other computing devices, sensors in a
detection system. Currently examples of constrained devices would be those with less
than about a megabyte of flash/persistent memory, and less than 10-20 kbytes of
RAM/volatile memory). These constrained devices 20 are configured in this manner;
generally due to cost/physical configuration considerations.

In a typical network, the edge (wirelessly-connected) tier of the network is
comprised of highly resource-constrained devices with specific functions. These
devices have a small-to-moderate amount of processing power and memory, and often
are battery powered, thus requiring that they conserve energy by spending much of
their time in sleep mode. A typical model is one where the edge devices generally form
a single wireless network in which each end-node communicates directly with its parent
node in a hub-and-spoke-style architecture. The parent node may be, ¢.g., an access
point on a gateway or a sub-coordinator which is, in turn, connected to the access point
or another sub-coordinator.

Each gateway is equipped with an access point (fully functional node or “F”
node) that is physically attached to that access point and that provides a wireless
connection point to other nodes in the wireless network. The links (illustrated by lines
not numbered) shown in FIG. 1 represent direct (single-hop network layer) connections
between devices. A formal networking layer (that functions in each of the three tiers
shown in FIG. 1) uses a series of these direct links together with routing information
used at intermediate routing-capable devices to send messages (fragmented or non-
fragmented) from one device to another over the network.

The WSN 10 implements a state machine approach to an application layer that
runs on the lower tier devices 18 and 20. Discussed below is an example of a particular

implementation of such an approach. States in the state machine are comprised of sets

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

of functions that execute in coordination, and these functions can be individually
deleted or substituted or added to in order to alter the states in the state machine of a
particular lower tier device.

The WSN state function based application layer uses an edge device operating
system (not shown, but such as disclosed in the above mentioned provisional
application) that allows for loading and execution of individual functions (after the
booting of the device) without rebooting the device (so-called “dynamic
programming’). In other implementations, edge devices could use other operating
systems provided such systems allow for loading and execution of individual functions
(after the booting of the device) preferable without rebooting of the edge devices.

Referring now to FIG. 2, an embodiment an application layer manager 30 is
shown. The application layer manager 30 is generic in the sense that the application
layer manager 30 does not depend upon a specific application solution or “business”
logic details in the devices that are updated, e.g., devices 18, 20 (lower tier 12¢ FIG. 1).
The application layer manager 30 handles “pass-offs” (changes in functions currently
operating) from function to function, on, e.g., the nodes, ¢.g., devices 18, 20. These
pass-offs are requested by actual state functions executing in the nodes or devices 18,
20.

The application layer manager 30 accomplishes such “pass-offs” (changes in
functions currently operating) using a transition table (FIG. 4) that serves as a central
descriptor for the state functions. Inputs to the application layer manager 30 include
parsed messages from the network layer via interface 32. The application layer
manager 30 includes interrupt and polling based inputs via processor peripheral
interrupts from interrupt interface 34 and polled sensor/peripheral inputs via interface
36.

The application layer manager 30 involves characterizing inputs sufficiently to
apply rules 38 that dictate changes in configuration, stored data, and/or precipitate
message generation. The application layer manager 30 has rules 38 and a configuration
manager 40 as well as a message generator/parser 42. The application layer manager

30 uses network message and sensor / processor peripheral based inputs, local data

10

15

20

25

WO 2015/130639 PCT/US2015/017212

stores 44 (for transition table) and lists, configuration management functions, rules set,

and report generation capabilities as shown.

Edge Application Laver Architecture

Referring to FIG. 3, an application module set 50 includes an application layer
50 for the edge devices 18 and 20 (FIG. 1) is shown. The application module set 50
includes a layer 52 that is managed by the application layer manager (FIG. 4) and a
layer 54 that is not managed by the application layer manager. In this embodiment, the
application layer manager is separate from, ¢.g., isolated from these other firmware
modules used at the edge of the WSN (e.g., wireless web modules, EDFF’s, etc. not
shown) in order to apply changes in the application layer code without requiring
changes to code in these other modules. In addition, as shown real-time processing of
motion ISR and motion filter are not handled by the application layer manager, whereas
motion report generator and heart beat generator are handled by the application layer
manager.

The application module set 50 depicted in the example of FIG. 3 includes
functions managed by the application layer, e.g., a motion report generator 53a and
heartbeat generator 53b that are in communication with a stack 56. Changes to the
application layer 52 are possible by having an understanding of the details of the
workings of the application layer 52 without the need to fully understand all of the
details of these other isolated modules. This is desirable as different groups of
individuals and/or systems may be tasked with the coding and maintenance of the
respective modules. Also, the application layer 52 is configured in a general way that
supports the upgrading of portions of the application layer (e.g., individual business
rules, reports, filters, and other functions) without requiring updating of the entire
application layer.

FIG. 3 in addition, depicts a state diagram among various processes running in

the application module set and with interaction with a transition table as set out below.

Function Function Allowed Function Execution

Name ID Transitions Index Type

10

15

20

25

WO 2015/130639 PCT/US2015/017212

(assigned (assigned (assigned (assigned by (assigned

externally) externally) externally) AppMgr) externally)

Referring now to FIG. 4, an exemplary situation involving the Application layer
manager 50 (App_Mgr()) where there are two states (State 1 with functions A, B, and
C, and State 2 with functions D and E) is shown. The transition table governs state
transitions.

The transition table shows what state (or states in the case of a nondeterministic
finite automaton) a finite semi-automaton or finite state machine will move to, based on
the current state of the machine and other inputs. A state table is essentially a truth
table in which some of the inputs are the current state and the outputs include the next
state along with other outputs. A state table is one of several ways to specify a state
machine, other ways being a state diagram, and a characteristic equation.

State 1 is the normal state and has an entry point, “Func A.” Normally, State 1
executes “Func A” which requests “Func B” which requests execution of “Func C.” In
the example, a condition occurs (actual condition is implementation specific and the
detail of which is not necessary to understand what follows). Under this situation with
the condition occurring State 1 transitions to State 2 when “Func B” requests execution
of “Func D” rather than “Func C.” State 2 may exists for only one cycle (D-E-exit) or
many cycles (D-E-D-E-...-exit). However, when the exit occurs in this example, it
does so without calling any function. By default then, the AppMgr’s Idle function runs

Func A since it is the entry point function.

App Laver Modularity

Referring to FIG. 5, a “typical” application 60 on a motion sensor handles a
motion sensor’s raw data with an interrupt routine, the motion sensor interrupt service
routing directly calls a motion filter that maintains its own state and declares, when
appropriate, a “motion event” 62. The motion event is handled 64 (after perhaps a bit
of un-deterministic latency) by a motion report generator that calls a wireless program

stack to place the report into that stack’s out-going queue. The motion report generator

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

waits 66 for an ACK message and re-sends the message, as necessary, until an ACK is
received. A heartbeat message is generated 68 periodically and placed into the wireless
stack out-going message queue, and an ACK is awaited. (Heartbeat messages are not
re-submitted after delivery failure, but a new heartbeat message is not sent until the
result of the previous send is obtained from the wireless stack.)

Referring now to FIG. 6, the application layer is configured to satisfy the
requirement of modularity by defining and linking together different portions of the
application layer so that individual portions are updatable over the wireless link without
breaking the overall application. The application layer instantiates 72 an “object” that
is a fundamental building block for application layer “machine.” The object has an
array of function pointers, with each function serving as a “keeper”, e.g., holding of a
particular state and a special manager function (application layer manager 30 or
“AppMgr”) that tracks 74 which function is running in the machine (i.e., which array
index is in effect).

State transitions are accomplished by the current function transferring 76
function control to the next appropriate function marking entrance into the new states
(e.g., FuncD in FIG. 4) by changing 76 this index (or asking AppMgr to change the
index. The AppMgr is general with “hardwired” business logic residing in the
individual state functions, rather than in the AppMgr and individual states are changed
by replacing the corresponding function with a new version of that function,
transmitted from an external host such as a gateway. Thus, making changes to an
allowed state transition (either adding a new transition or deleting an old one) is
accomplished by replacing the functions which participate in the state change with the
new functions.

In some embodiments, the AppMgr is configured 78 to actually change the
current index value for the current state function, whereas in others the old function
directly activates 80 the new function, without using the AppMgr() as an intermediary.
This is because the AppMgr has a mapping 82 of allowed transitions and check 84 for
violations of this mapping (i.c., a given function tries to pass control to another function
and in so doing make a state transition that is not allowed). This helps to verify that

changes to the state machine behavior are valid and that changes to the state machine

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

behavior actually take place, since an error message will be generated by AppMgr() 86
when an erroncous state change is requested by a function. Otherwise, individual states
are changed by replacing the corresponding function with a new version of that
function, 88.

Example Application

Let p_AppFunc[i] be a pointer to the i application function. Let N_i be the
“current index” value maintained by AppMgr(). N i is a global variable that retains its
value from one pass through AppMgr() to the next.

AppMgr is a root function that is executed by a (EDFF) scheduler such as in the
operating system running on the edge device. AppMgr runs completely through every
few milliseconds. Each time AppMgr() runs, AppMgr executes the function pointed to
by p_AppFunc[N i]. In some embodiments, the state machine can be implemented as
a set of arrays, whereas in more complex implementations the state machine is
implemented as a set of functions that are linked through a linked list to allow for an
indeterminate number of states in the state machine.

For some states, only one function call may be required. That is,
p_AppFunc[N_i] would run once and then N_i would change to a different value, say
N_k so that on the next call of AppMgr(), a different state would be entered (i.c.,
p_AppFunc[N_k] would run). For other states the corresponding function might run
many times before N_i changes. An example of the single-run function would be the
sending of a report. An example of the multi-run function would be the activity of a
sensor filter that acts on raw data from a sensor device.

The various functions p_AppFunc[i] not only decide when they should request
that AppMgr() make a state change, but these functions indicate what new function(s)
(e.g., what new value(s) of N_1) AppMgr() should choose from, as AppMgr() is
configured to be fairly generic and thus all business logic, including the description of

transitions between states, is contained in the p_ AppFunc[] functions.

Simultaneous actions

The two p_AppFunc[] functions need to have different tasks done at the same

time, for example, simultaneously filtering data from two sensors (e.g., de-bouncing a

10

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

switch and filtering motion data from an accelerometer. One general approach to
providing an AppMgr is to run two state functions at a time (execute both with each
pass through AppMgr). Another approach keeps AppMgr simple and just requires that
application states provided with code to make calls to each other and thus invoke each
other. That is, p_ AppFunc[N _i] requests execution of p_ AppFunc[N_k] upon
termination of execution of p_ AppFunc[N _i] and vice versa. In effect, the two app
functions split the time and attention of AppMgr without AppMgr planning for time
sharing.

The various versions of p_ AppFunc[] are maintained in an executable code
repository in the gateway and cloud, and each such function can have an ID number
that is used to differentiate one version of a function from another (and in many cases
the differences in the generations or versions of the function may be small but
important, so getting exactly the right ID number). Inside a given function, the
requested change to a different function or state becomes very specific with respect to a
code version, therefore there is logical that the parameter used by a function to request
a state change (function change) is actually the ID number of the new function.

A simple way to manage versions is to give App Layer state functions their own
file type. File type is maintained as one of the fields in the file index in, e.g., flash
memory so that the initialization process of AppMgr() during bootup searches for files
of that type in the flash memory, and produces the array of function pointers, with
index 1 running from 0 to a maximum value, i_max.

During this initialization AppMgr() maps each value i to a function,
p_AppFunc(i] and that function’s corresponding function ID, and produces a table
showing, for each function ID, the corresponding index value 1, and the allowed state
transitions (function IDs for functions reachable from the current function).

For example, during the course of operation of the current function, ¢.g.,
p_AppFunc[N_i] with its function ID,e.g., 0x31C7, the function might return to
AppMgr() a return value of 0x396B. This return value is a request to run the function
p_AppFunc|[] having the function ID “0x396B.” AppMgr() uses the state table to
determine if request to run p_ AppFunc[] having the function ID “0x396B is a transition

that is allowed for function ID 0x31C7, and if so, what value of i corresponds to

11

10

15

20

WO 2015/130639 PCT/US2015/017212

function 0x396B. If it is a valid request, AppMgr() sets N_i equal to the new value of i
corresponding to function ID “0x396B and, upon next execution of AppMgr(), the new
function ID “0x396B would run.

During initialization of AppMgr() and the producing of the state table, simple
graph analysis algorithms run to ensure that each state is reachable (no states are
isolated) and to make sure that all states are part of a single state machine (i.c., there are
not two smaller and totally separated sets of states). The state table validation also
requires that no state transition can involve a transition to a non-existent function.

AppMgr() always has a stem state (idle state) with function ID 0x0001 that runs
when the index N i is undefined. Initialization of the state machine is done in a second
state (initialize state) with its own generic function, with function ID 0x0000. Any time
any of the functions change (e.g., by a wireless download of a new function or
functions), AppMgr() will re-run function 0x0000 and then transition to state function
0x0001. It is a further requirement that one and only one of the user-supplied functions
in the complete function set is identified as the entry state. This is the state called by
0x0001 automatically. From that point on the user-supplied functions request the state
changes as part of their return values.

Returning to FIG. 3 the state diagram and the table mentioned above, the table

below is now populated with the state transitions for the example application described

above.
Function Function Allowed Function Execution
Name ID Transitions Index Type
(assigned (assigned (assigned (assigned by (assigned
externally) externally) externally) AppMgr) externally)
Motion ISR 0x31C7 0x31A2 2 On event
Motion Filter 0x31A2 0x31C7 3 On event

0x3362

Motion Report | 0x3362 None 4 On call
Generator (AppMgr Idle)

12

10

15

20

WO 2015/130639 PCT/US2015/017212

Heartbeat 0x33EB None 5 Perpetual
Generator (AppMgr Idle) (this is also

entry function)

AppMgr Idle 0x0001 1 Perpetual

AppMgr 0x0000 0 On boot, or

Initialize when called by
AppMgr Idle

The above example is simple for purposes of illustration of the concept.
However, more complex application sets can also be used. For example, suppose there
are two “states” in a node — the first state corresponding to the perpetual running of
functions A, B, and C in a continuous loop and the second state corresponding to the
running of functions D and E in another perpetual loop. In the first state (the normal
state) function A (the “entry function”) runs to completion and requests to AppMgr()
that it run function B. When function B is complete, it requests function C, which in
turn requests function A. Because function A is the entry function and the loop A-B-C-
A ... 1s a closed loop, functions D and E will normally not run. However, under special
conditions suppose function B, when it exits, requests function D rather than C.
Function D and E then run in a loop (D-E-D-E...) until one of them requests a function
in the first loop. In this way, functions or sets of functions correspond to states, and
functions operating in each state manage the state transitions.

When a function exits with no new function requested, AppMgr Idle will simply
run the entry point function again. In some cases with very simple nodes, there may be
NO entry function, in which case the idle function will just run itself until an event-
initiated function is run.

Referring back to FIG. 4, a hypothetical (generic) situation where there are two
states (State 1 with functions A, B, and C, and State 2 with functions D and E). State 1
is the normal state and has the entry point, Func A. Under special circumstances State
1 transitions to State 2 when Func B requests the execution of Func D rather than Func

C. State 2 may exists for only one cycle (D-E-exit) or many (D-E-D-E-...-exit), but

13

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

when exit occurs in this example, it does so without calling any function. By default
then, the AppMgr’s Idle function runs Func A since it is the entry point function.

FIG. 7 shows an example of a security system having features of the WSN
described with respect to FIGS. 1 to 6 and having the various functionalities described
herein. As shown in FIG. 7, correlation processing receives inputs from certain
constrained nodes (although these can also be fully functional nodes). These inputs
may include credential information and video information, and the correlation
processing may produce correlated results that are sent over the network. Context
management processing receives inputs from certain constrained nodes (although these
can also be fully functional nodes) e.g., credential information and video and grouping
information, and performs context processing with results sent over the network. The
network supports operation of emergency exit indicators; emergency cameras as well as
distributed rule processing and rule engine/messaging processing. Range extenders are
used with e.g., gateways, and a real time location system receives inputs from various
sensors (e.g., constrained type) as shown. Servers interface to the WSN via a cloud
computing configuration and parts of some networks can be run as sub-nets.

The sensors provide in addition to an indication that something is detected in an
arca within the range of the sensors, detailed additional information that can be used to
evaluate what that indication may be without the intrusion detection panel being
required to perform extensive analysis of inputs to the particular sensor.

For example, a motion detector could be configured to analyze the heat
signature of a warm body moving in a room to determine if the body is that of a human
or a pet. Results of that analysis would be a message or data that conveys information
about the body detected. Various sensors thus are used to sense sound, motion,
vibration, pressure, heat, images, and so forth, in an appropriate combination to detect a
true or verified alarm condition at the intrusion detection panel.

Recognition software can be used to discriminate between objects that are a
human and objects that are an animal; further facial recognition software can be built
into video cameras and used to verify that the perimeter intrusion was the result of a
recognized, authorized individual. Such video cameras would comprise a processor

and memory and the recognition software to process inputs (captured images) by the

14

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

camera and produce the metadata to convey information regarding recognition or lack
of recognition of an individual captured by the video camera. The processing could
also alternatively or in addition include information regarding characteristic of the
individual in the area captured/monitored by the video camera. Thus, depending on the
circumstances, the information would be either metadata received from enhanced
motion detectors and video cameras that performed enhanced analysis on inputs to the
sensor that gives characteristics of the perimeter intrusion or a metadata resulting from
very complex processing that seeks to establish recognition of the object.

Sensor devices can integrate multiple sensors to generate more complex outputs
so that the intrusion detection panel can utilize its processing capabilities to execute
algorithms that analyze the environment by building virtual images or signatures of the
environment to make an intelligent decision about the validity of a breach.

Memory stores program instructions and data used by the processor of the
intrusion detection panel. The memory may be a suitable combination of random access
memory and read-only memory, and may host suitable program instructions (e.g.
firmware or operating software), and configuration and operating data and may be
organized as a file system or otherwise. The stored program instruction may include
one or more authentication processes for authenticating one or more users. The
program instructions stored in the memory of the panel may further store software
components allowing network communications and establishment of connections to the
data network. The software components may, for example, include an internet protocol
(IP) stack, as well as driver components for the various interfaces, including the
interfaces and the keypad . Other software components suitable for establishing a
connection and communicating across network will be apparent to those of ordinary
skill.

Program instructions stored in the memory, along with configuration data may
control overall operation of the panel.

The monitoring server includes one or more processing devices (e.g.,
microprocessors), a network interface and a memory (all not illustrated). The

monitoring server may physically take the form of a rack mounted card and may be in

15

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

communication with one or more operator terminals (not shown). An example
monitoring server is a SURGARD™ SG-System III Virtual, or similar system.

The processor of each monitoring server acts as a controller for each monitoring
server , and is in communication with, and controls overall operation, of each server.
The processor may include, or be in communication with, the memory that stores
processor executable instructions controlling the overall operation of the monitoring
server. Suitable software enable each monitoring server to receive alarms and cause
appropriate actions to occur. Software may include a suitable Internet protocol (IP)
stack and applications/clients.

Each monitoring server of the central monitoring station may be associated with
an IP address and port(s) by which it communicates with the control panels and/or the
user devices to handle alarm events, etc. The monitoring server address may be static,
and thus always identify a particular one of monitoring server to the intrusion detection
panels. Alternatively, dynamic addresses could be used, and associated with static
domain names, resolved through a domain name service.

The network interface card interfaces with the network to receive incoming
signals, and may for example take the form of an Ethernet network interface card
(NIC). The servers may be computers, thin-clients, or the like, to which received data
representative of an alarm event is passed for handling by human operators. The
monitoring station may further include, or have access to, a subscriber database that
includes a database under control of a database engine. The database may contain
entries corresponding to the various subscriber devices/processes to panels like the
panel that are serviced by the monitoring station.

All or part of the processes described herein and their various modifications
(hereinafter referred to as “the processes”) can be implemented, at least in part, via a
computer program product, i.e., a computer program tangibly embodied in one or more
tangible, physical hardware storage devices that are computer and/or machine-readable
storage devices for execution by, or to control the operation of, data processing
apparatus, ¢.g., a programmable processor, a computer, or multiple computers. A
computer program can be written in any form of programming language, including

compiled or interpreted languages, and it can be deployed in any form, including as a

16

10

15

20

25

30

WO 2015/130639 PCT/US2015/017212

stand-alone program or as a module, component, subroutine, or other unit suitable for
use in a computing environment. A computer program can be deployed to be executed
on one computer or on multiple computers at one site or distributed across multiple
sites and interconnected by a network.

Actions associated with implementing the processes can be performed by one or
more programmable processors executing one or more computer programs to perform
the functions of the calibration process. All or part of the processes can be
implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable
gate array) and/or an ASIC (application-specific integrated circuit).

Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a processor will receive
instructions and data from a read-only storage arca or a random access storage area or
both. Elements of a computer (including a server) include one or more processors for
executing instructions and one or more storage area devices for storing instructions and
data. Generally, a computer will also include, or be operatively coupled to receive data
from, or transfer data to, or both, one or more machine-readable storage media, such as
mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical
disks.

Tangible, physical hardware storage devices that are suitable for embodying
computer program instructions and data include all forms of non-volatile storage,
including by way of example, semiconductor storage area devices, ¢.g., EPROM,
EEPROM, and flash storage area devices; magnetic disks, e.g., internal hard disks or
removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks and
volatile computer memory, ¢.g., RAM such as static and dynamic RAM, as well as
erasable memory, ¢.g., flash memory.

In addition, the logic flows depicted in the figures do not require the particular
order shown, or sequential order, to achieve desirable results. In addition, other actions
may be provided, or actions may be eliminated, from the described flows, and other
components may be added to, or removed from, the described systems. Likewise,

actions depicted in the figures may be performed by different entities or consolidated.

17

WO 2015/130639 PCT/US2015/017212

Elements of different embodiments described herein may be combined to form
other embodiments not specifically set forth above. Elements may be left out of the
processes, computer programs, Web pages, etc. described herein without adversely
affecting their operation. Furthermore, various separate elements may be combined
into one or more individual elements to perform the functions described herein.

Other implementations not specifically described herein are also within the

scope of the following claims.

18

WO 2015/130639 PCT/US2015/017212

WHAT IS CLAIMED IS:

1. A networked sensor system comprises:

an upper tier of server devices, the server devices comprising:

processor devices; and
memory in communication with the processor devices;

a middle tier of gateway devices that are in communication with one or more of
the upper tier server devices;

a lower level tier of devices that comprise fully functional sensor nodes with at
least some of the fully functional sensor nodes including an application layer that
executes routines to provide node sensor functions and an application layer manager to
manage the application layer in the at least some of the functional nodes in the lower

tier of devices.

2. The networked system of claim 1, wherein the lower tier fully-functional
nodes are wireless devices and constrained wireless nodes or end-nodes that are sensors

for a for physical intrusion detection/alarm monitoring system.

3. The networked system of claim 1, wherein the gateways are equipped with an
access point where a function node is physically attached to that provides a wireless

connection point to other nodes in the wireless network.

4. The networked system of claim 1, wherein the application layer manager
includes a state machine comprised of sets of functions that execute in coordination,
where functions can be individually deleted, substituted, or added unto in order to alter

states in the state machine.

5. The networked system of claim 1, wherein the application layer manager uses
an edge device operating system that allows for loading and execution of individual
functions after the booting of the device or without rebooting the device.

6. The networked system of claim 1, wherein an application layer manager
receives requests from state functions and in response handles pass-offs of functions

currently operating to destination functions.
19

WO 2015/130639 PCT/US2015/017212

7. The networked system of claim 6, wherein the application layer manager

accesses a transition table that stores a central descriptor for the state functions.

8. The networked system of claim 1, wherein the application layer manager is

firmware and is isolated from other firmware modules in the lower tier devices.

9. A method of managing a networked sensor system, the method comprising:

partitioning the networked system into an upper tier of server devices, a middle
tier of gateway devices that are in communication with upper tier servers and a lower
level tier of sensor devices that are fully functional nodes with at least some of the
functional nodes including an application layer that execute routines to provide sensor
node functions; and

managing the lower tier of devices through device executed program managers
that execute state machines to control application layers in each of the at least some of

the functional nodes.

10. The method of claim 9, wherein the lower tier fully-functional nodes are
wireless devices and constrained wireless nodes or end-nodes that are sensors for a for

physical intrusion detection/alarm monitoring system.
11. The method of claim 9, wherein the state machine is comprised of sets of

functions that execute in coordination, where functions can be individually deleted,

substituted, or added unto in order to alter states in the state machine.

20

PCT/US2015/017212

WO 2015/130639

1/7

o | AemoeB LG “j Aemsieb

MY

_ el

Eze

Q1 =

qcl

FETS- =N v IBASS

E.\, \ Pl —

01 BCI

PCT/US2015/017212

WO 2015/130639

2/7

auBLIBI
MIOMIBN

\:@m

-/
(43

wndu) paseg
~Guniod

Buisied v - 8¢
juss Bswy \
=Tl
0 isbeusw
1B Byuos i ke ddy 1%

by 81817 7 S95RYBIRC]

ndul pesey
ST EEVEIRT

0¢

N e

¢ "l

PCT/US2015/017212

WO 2015/130639

3/7

¢ DI

s ess sbmc bm sms. ss Wss saF. ceFs see. ss ss vems sss sWs. s ser. sse Fee ssrs ers

FYSIESYY

N A

NN

radipy

PP IIPRIRL 10y,
e &
A \\\\\\\\

e 2 o,
AAssromy g0 PSS

rreren,

g

A ARRIRAS 2 10,
" ettty

&

7z 7z \\“
z Y ¥ »wAvm.w i 4 %
z . Z 34885 z
1 L st uonow
% LRI 7
K N L, s \
“rs,,,, i \\ % Dtrn,,, st ey, i
.V W e e “ . fidais L
7
Z
vove wve sves ovs ves sovi ooe sovn wee soes soos soe. ove wow sov vee sves cove ool sove wer soon oee soes seis sve. soe. wes sovs sees voe, sevs ovs sooe wes oo
7
%
%
%,
)
B T i i T I,.....:.....m
§ hsb gppstity Asp raluasti

FOOND 00 N N0 00 OGN ND SR ON NS OB AN NS R NNONG NN NN 8NN

Ny
™

w\\\\\\ 7

P s
erre
ey,
o
s,
2,

%,

IR BI0LRTE LY s,

; %
7 %
w\ NP \.\m bR “w
7 A0 7
% F
% 4
%, LAY B
W, UDIOR
s - /
. . i, \\ e
AT Pt ey, A it 7
e “ersrs, ottt it o7
7 “r,,, Dbt inppsrnnnnrr st e
.
\»\\\\\
qes g
K
%,
F4 %
4 5o g %
7 AR IBUBTY Y,
7 - P,
% F ety
% o, S e, bty
% Y o ety Virrrs,
W EBGUIRBY, e e,
% Y rtire,, .,
%, p > bty st G

2,
\\\S p
trs, A
> A
\‘\\\\w\\\\.\\ 5 i PO s
AR A IO

9¢

WO 2015/130639

PCT/US2015/017212

4/7

v DId

R
N

o

N
o

g ummw

s,
o,

gy,

\\\ e \\\\\\\\\\\\\\\\\\\\\\\\\\
\S\\

L

2

o NN
5 E
o Ny,

>
&
o

A

0,
P e

e 7 \\\\\\\x\
>
%
, I %
m\.m LD % \\
bk o 7/

e
R e

ﬁ*’
\\

w

\\\\\\\\!(\\5\\

P

“,
K

e

g .
R

PO T

o WA i
- g
P e,
e, e,
o e 2
\ P
%
“
HAPIISIST P55
Va \\\\ \\\\\\\\\\
7 _\ ",
roe, 2% %
a.\ \\\\\\\\\\\\\\\ 7 2
\\\\\ \\é\\\\ “o mm m 2
%, >
%, “,
Vi [% % s, i
A \\M m\m \N Z iy, paiith i
\\ K
o \
D H
e \\\\\\\\\\\\\\\\ i H
£ \\ A b, \
;i P e,
3 oy %,
? 7 ; 22
{ % U Y,
* T,
K oA,
rrooerrrt it Ottt 00
x &
e w
2 i}
“ oy, L e
s, P
e

sy

A

\!WYS\\\

\%V\\\\ I
\ oy tyn g s
IV DR
% -

“,

o,

“,

Pir,,
2
\\\\\\\\\\\\xn\\\\\\\\\\

“

%,

%

p
%
m
%
W
/

"

P
%
%

s
i

TN

NNARMARMARSARRRRRN A

o

WO 2015/130639 PCT/US2015/017212
57

60

motion sensor handles a motion sensor’s raw data with an interrupt
routine, the motion sensor interrupts directly call a motion filter that
maintains its own state and declares, when appropriate, a “motion
event.” 62

motion event is handled by a motion report generator that calls a
wireless program stack to place the report into that stack’s out-going
queue, 64

The motion report generator waits for an ACK message and re-
sends the message, as necessary, until an ACK is received, 66

A heartbeat message is generated periodically and placed into
the wireless stack out-going message queue, and an ACK is
awaited, 68

FIG. 5

WO 2015/130639

6/7

PCT/US2015/017212

Instantiate application layer “object” having array of function pointers to hold

particular state of machine 72

'

application layer manager tracks which function is running in the machine, 74

'

current function transferring function control to the next appropriate function by

changing index (or asking AppMgr to change the index), 76

'

AppMgr is configured to change
the current index value for the
current state function, 78

:

old function directly
activates new function,
without using the AppMgr()
as an intermediary. 80

another function, 82

AppMgr accesses mapping of allowed transitions and checks for
violations of mapping by old function trying to pass control to

if not transition not allowed
AppMgr() generates error
message, 86

Allowed,

847

FIG. 6

l

individual states are changed by
replacing the corresponding
function with a new version of
that function, 88

PCT/US2015/017212

WO 2015/130639

717

S4/1 03pIA S4/] Jamod

2
3
s
.
u 3
STLY
3
o
3
A |pand =
Jurssoooid temaeh
Jusw
“ds 1xou0)
e E MY

BB

3urdessow
/ouI3ud

[y

3
BIOWERD b
Aoua3rowyg ‘
k:|
4
AemaieB
J2 18]
IOPUIIXD
J8uey

JaAleg

san|ea
/Hnsay

3

/L 9ld

2

A ‘Pa40

3urssaooid
UOIJR[ALI0))

BnBS

SI103BOTPUL
XD
Aouagrowyg

INTERNATIONAL SEARCH REPORT) lmema(fona] application No.
PCT/US2015/017212 ‘

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO8B 25/10 (2015.01)
CPC - GO8B 25/10 (2015.01) : .

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - G08B 25/10 (2015.01)
USPC - 340/521, 539.22, 541, 709/223, 224

Documentation searched other than minimum documentation to tﬁe extent that such documents are included in the fields searched
CPC - G08B 25/009, 016, 10 (2015.01) (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Orbit, Google Patents, Google Scholar.
Search terms used: wireless, sensor, network, intrusion, detection, alarm, application layer, nodes, gateway, server, tier, firmware

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category" " Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2008/0291017 A1 (YERMAL et al) 27 November 2008 (27.11 .2008) entire document 1,3-4,6,8-9, 11

Y 2,5,7,10

Y US 2004/0090329 A1 (HITT) 13 May 2004 (13.05.2004) entire document 2,10

Y US 2013/0239192 A1 (LINGA et al) 12 September 2013 (12.09.2013) entire document 5

Y US 5,414,812 A (FILIP et al) 09 May 1995 (09.05.1995) entire document : 7

A US 2011/0102171 A1 (RAJI et al) 05 May 2011 (05.05.2011) entire document 1-11

A US 8,487,762 B1 (MCMULLEN et al) 16 July 2013 (16.07.2013) entire document 1-11

A US 2008/0068150 A1 (NGUYEN et al) 20 March 2008 (20.03.2008) entire document . 1-11

D Further documents are listed in the continuation of Box C. [:l

* Special categories of cited documents: “T” later document published after the international filing date or priority

“A” document defining the general state of the art which is not considered date and not in conflict with the apﬁllqatlon but cited to understand
to be of particular relevance o the principle or theory underlying the invention

“E” earlier application or patent but published on or after the international «X> document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
(s:“egi;lor::;ggh(sa}; ;hec?tl_fg‘l;)cauon date of another citation or other “Y” document of particular relevance; the claimed invention cannot be
. pe S Spe . L ’ considered to involve an inventive step when the document is
“O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means . : being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than «g» i
the priority date claimed &” document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
24 April 2015 0ZJuU N 2015
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents . Blaine R. Copenheaver
P.O. Box 1450, Alexandria, Virginia 22313-1450
. PCT Helpdesk: 571-272-4300
Facsimile No. 571-273-8300 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report

