Abstract: A front face of a diamond table mounted to a substrate is processed to introduce a material which commingles with or semi-alloys with or partially displaces interstitial catalyst binder in a thermal channel to a desired depth. The material is selected to be less thermally expandable than the catalyst binder and/or more thermally conductive than the catalyst binder and/or having a lower heat capacity than the catalyst binder.
POLYCRYSTALLINE DIAMOND CUTTER WITH HIGH THERMAL CONDUCTIVITY

PRIORITY CLAIM

This application claims the benefit of United States Application for Patent No. 12/716,251 filed March 2, 2010, which claims priority from United States Provisional Application for Patent No. 61/164,104 filed March 27, 2009, the disclosures of which are hereby incorporated by reference.

TECHNICAL FIELD

The present invention relates generally to polycrystalline diamond cutters.

BACKGROUND

Polycrystalline diamond cutters, also known as Polycrystalline Diamond Compacts (PDCs), are made from synthetic diamond or natural diamond crystals mounted on a substrate made of tungsten carbide. The sintering process used to manufacture these devices typically begins with premium saw-grade diamond crystals. The diamond crystals are sintered together at temperatures of approximately 1400°C and pressures of around 61 kbar in the presence of a liquid metal synthesizing catalyst, most commonly cobalt, functioning as a binder. Other catalysts can be used including elements from the Group VIII metals (as well as alloys of Group VIII metals), silicon, and other alloys such as magnesium carbonate. The temperature of 1400°C is typically maintained for approximately 5 to 10 minutes. The system is then cooled and finally depressurized. The pressure rate, the heating rate and the cooling rate depend on the type of equipment (belt or cubic press) used, the particular catalyst used and the raw-grade diamond crystals used. Typically, the diamond is bonded to the tungsten carbide substrate during the same high-temperature, high-pressure process.

It is commonly recognized that PDC cutters wear according to three different modes characterized by the temperature at the cutter tip (see, Ortega and Glowka, "Studies of the
Frictional Heating of Polycrystalline Diamond Compact Drag Tools During Rock Cutting," June 1982; and Ortega and Glowka, "Frictional Heating and Convective Cooling of Polycrystalline Diamond Drag Tools During Rock Cutting," Soc. of Petr. Eng. Journal, April 1984; the disclosures of which are hereby incorporated by reference). Below 750°C, the primary mode of wear is micro-chipping of the sintered diamond. Above 750°C, the wear mode changes from micro-chipping of individual diamond grains to a more severe form of wear. This more severe form of wear is caused by 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite as it approaches 800°C.

The prior art teaches a way to extend cutter life by removing the cobalt catalyst from the PDC diamond table to a depth of less than 100 µm, or perhaps between 100 to 200 µm or more, using an acid attack. The acid leaches out substantially all of the interstitial cobalt from the face of the diamond layer to the desired depth leaving interstitial openings. This treatment suppresses the potential for differential thermal expansion between the diamond and the catalyst metal at least in the area of the leached depth from a front face of the diamond table. These products are known to those skilled in the art as leached PDCs and they have an industry recognized performance improvement over non-leached PDCs. The acids required by the leaching process can be harsh and difficult to handle safely.

Leached PDC cutters have been considered to have improved performance over non-leached cutters because of several reasons:

First: The absence of interstitial cobalt in a thermal channel situated along the front face of the diamond table improves heat transfer to drilling fluid, across the diamond table face and to the interior of the cutter through presence of diamond to diamond bonding. Heat transfer along the thermal channel helps to keep the temperature at the cutter tip below a critical temperature past which failure due to diamond chipping occurs. This is due at least in part to the absence of a substantial differential thermal conductivity characteristic (note: a 2000 W m⁻¹ K⁻¹ thermal conductivity for the diamond in comparison to a 60 W m⁻¹ K⁻¹ thermal conductivity for cobalt). Additionally, while the cobalt has been removed and replaced by a void in the interstices of the leached cutter, the void (which also has poor heat dissipation characteristics) nonetheless appears to create less interference with respect to
dissipation of heat across the diamond to diamond bonds than is experienced when interstitial cobalt is present. This explains to some degree why leached cutters perform better than non-leached cutters.

Second: The region where the cobalt has been removed does not appear to suffer bond breakage due to cobalt thermal expansion. This is due at least in part to the absence of a substantial differential thermal expansion characteristic (note: a 13 µm m⁻¹ K⁻¹ thermal expansion coefficient for cobalt in comparison to a 1 µm m⁻¹ K⁻¹ thermal expansion coefficient for diamond). This second point has, according to conventional wisdom, been the key reason for the success of leached PDC cutters.

Third, the heat capacity of the thermal channel situated along the front face of the diamond table decreases which results in a substantial improvement in thermal diffusivity.

There is a need in the art for a PDC cutter possessing better thermal properties without requiring the leaching or other removal of the interstitial cobalt binder.

SUMMARY

The inventors believe that the primary failing of currently available PDC cutters is not due to the incongruous thermal expansion property of cobalt in comparison to diamond, but rather is due to the fact that a PDC cutter, even with a leached diamond table, exhibits poor thermal conductivity of heat away from the diamond tip. A cutter constructed or treated to significantly improve thermal conductivity, especially along the front (working) face of the diamond table (along a thermal channel), in accordance with the present invention will outperform not only conventional PDC cutters, but leached PDC cutters as well. The improved thermal conductivity reduces the risk of 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite.

In accordance with an embodiment, a method is presented for the creation of a thermally stable diamond table for use in a PDC cutter. The method involves increasing the thermal conductivity of the diamond table by infusing, displacing, migrating and/or overlaying the synthesizing catalyst material (such as, cobalt) with a less thermally expandable material and/or more thermally conductive material and/or lower heat capacity material. In other words, the provided less thermally expandable material and/or more thermally conductive material and/or lower heat capacity material commingles or semi-alloys with the catalyst material in the diamond table to a desired depth along the front face. In connection with this, the less thermally expandable material and/or more thermally conductive material and/or lower heat capacity material may at least partially migrate into the front surface of the diamond table. Alternatively, or additionally, the less thermally expandable material and/or more thermally conductive material and/or lower heat capacity material may displace at least some of the interstitial synthesizing catalyst material to a desired depth. The desired depth referenced above may, for example, be between 0.020mm to 0.6mm. The catalyst material, however, in one implementation, is not removed from the diamond table by the process used to make the PDC cutter (for example, the catalyst is not leached out).

A material candidate for use in this application is cubic boron nitride, which has a thermal conductivity greater than 200 W m⁻¹ K⁻¹ (see, Nature volume 337, January 26, 1989).
and thermal expansion coefficient of 1.2 µm m⁻¹ K⁻¹. These values are advantageously comparable to and compatible with the thermal properties of diamond, and further are better than could be achieved in accordance with prior art leached cutter implementations.

Other elemental material candidates for use in this application include: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and gold. Combinations of these elements with other elements as well as alloys including one or more of these elements may be used. Again, the thermal properties of these material candidates are superior to interstitial catalyst or interstitial voids as would be present in leached cutters.

The material may alternatively comprise: alkali earth carbonates, sulfates, hydroxides, tungsten oxide, boron carbide, titanium carbide, iron oxides, double oxides, intermetallics and ceramics.

The material chosen for use in the method can be micronized or prepared in other suitable ways to be applied to a front surface of a target diamond table. A treatment is then performed which causes that material to commingle with or semi-alloy with the interstitial cobalt catalyst. For example, the material may partially migrate from the front surface into the diamond table. In connection with the process, the interstitial synthesizing catalyst material (such as, cobalt) may be at least partially displaced in a near surface region of the diamond table. In any event, the presence of the material in the diamond table along a front face forms a thermal channel having improved thermal properties (such as conductivity or expansion or heat capacity) in comparison to prior art leached and non-leached implementations. This thermal channel provides for better conducting of heat away from the cutter tip and for reducing the likelihood of diamond material failure in the diamond table during cutter operation.

In one implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises an imbibition treatment.

In another implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises a Hot Isostatic Pressing (HIPing) treatment.
In another implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises a cold pressing or cryogenic treatment or both in combination.

In another implementation, the treatment used to effectuate the introduction of the material to the diamond table comprises spark plasma sintering.

A number of techniques may be used for applying the material to the front surface of a target diamond table including: painting, coating, soaking, dipping, plasma vapor deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition. Other techniques are known to those skilled in the art. It will be recognized that some techniques used for applying the material to the front face of the diamond table may additionally and concurrently assist in effectuating migration of the material into the diamond table. For example, deposition techniques as described above, perhaps in conjunction with plasma treatments and selective heating, could produce commingling or semi-alloying effects with respect to the synthesizing catalyst material (such as, cobalt) in the near surface region of the diamond table. A displacement, commingling or alloying of materials may result to a certain depth.

The material may alternatively be applied and inserted using an ion implantation process at a suitable energy level. In this process, a selected dopant species (for example, boron) is implanted in the front surface of the target diamond table to a certain depth. This implantation may result in displacement, commingling or alloying of materials. A subsequent, and perhaps optional, annealing process may be used to diffuse the implanted dopant species to an increased surface depth and/or to cure defects in the diamond crystal structure resulting from the implantation process.

It will further be understood that other mechanical or chemical transfer means and processes could alternatively be used for the purpose of infusing, displacing, migrating and/or overlaying the synthesizing catalyst material (such as, cobalt) with less thermally expandable material and/or highly thermally conductive material and/or lower heat capacity material.

It will also be understood that the processes and techniques described herein are applicable not only to a cutter with a diamond table mounted to a substrate, but also to free-
standing diamond table bodies (which may subsequently be mounted to a substrate such as tungsten carbide).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a PDC cutter of conventional configuration;

Figure 2 illustrates a leached PDC cutter of conventional configuration;

Figure 3 illustrates a PDC cutter having improved thermal properties in comparison with the cutters of Figures 1 and 2;

Figures 4 and 5 illustrate patterns for application of improved thermal property materials to the face of the cutter;

Figure 6 illustrates application of a coating material to a cutter in accordance with a method of manufacture;

Figure 7 illustrates performance of a treatment step in the method; and

Figure 8 illustrates a cryogenic treatment mechanism and process.

DETAILED DESCRIPTION OF THE DRAWINGS

Reference is made to Figure 1 which illustrates a PDC cutter 10 of conventional configuration. It will be noted that Figure 1 is not drawn to any particular scale. The cutter includes a diamond table 12 mounted to a substrate 14. The diamond table 12 is formed of diamond crystals (designated by "x") sintered together at high pressure and temperature in the presence of a liquid metal catalyst (designated by "•"), most commonly cobalt. The "x" and "•" representations are illustrative in nature, and are not presented to illustrate the actual crystallographic structure of the diamond table, but rather to show the distributed presence of the diamond crystals "x" and interstitial cobalt binder "•" throughout the diamond table 12 (cobalt content can vary from 3 to 12%). The substrate 14 is typically formed of tungsten carbide. It will be recognized that the inclusion of the substrate 14 is optional (i.e., the diamond table could be a free standing body if desired).
When the PDC cutter 10 is used in a cutting application, it experiences significant heat exposure. Most commonly, heat is generated at an edge of the diamond table (on the working face) where cutting is being performed. The heat arising from cutting action radiates through the diamond table 12 and perhaps to the substrate 14. At elevated temperatures, the diamond table 12 begins to fail due to chipping and other destructive effects relating to the adverse affect heat has on the configuration of the diamond table.

To address this issue, the prior art teaches removing the interstitial cobalt from the PDC diamond table to a depth of less than 100 μm, or perhaps between 100 to 200 μm or more, using an acid attack. The acid attack leaches out substantially all of the interstitial cobalt from the face of the diamond layer to the desired depth. A leached PDC cutter 10 of conventional configuration is illustrated in Figure 2. Again, it will be noted that Figure 2 is not drawn to any particular scale. One should recognize, however, the absence of interstitial metal catalyst (designated by "•") near the top surface of the diamond table 12 (working face) as a result of the leaching operation. The leach depth 16 defines a thermal channel 18 which does not suffer as severely from the known differences in thermal properties between diamond and cobalt, and thus has been shown to provide superior performance in comparison to the conventional PDC cutter shown in Figure 1.

The present invention provides a PDC cutter having a thermal channel with thermal properties superior to those of the leached PDC cutter of Figure 2. The present invention further provides a method for manufacturing such a PDC cutter with an improved thermal channel. The improved thermal conductivity reduces the risk of 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and/or 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite.

With reference to Figure 3, a PDC cutter 20 in accordance with the present invention includes a diamond table 22 mounted to a substrate 24. The diamond table 22 is formed of diamond crystals (designated by "x") sintered together at high pressure and temperature in the presence of a liquid metal catalyst (designated by "•"), most commonly cobalt. The "x" and "•" representations are illustrative in nature, and are not presented to illustrate the actual crystallographic structure of the diamond table, but rather to show the distributed presence of the diamond crystals "x" and interstitial cobalt "•" binder within the diamond table. The
substrate 24 is typically formed of tungsten carbide, and is optional (i.e., the diamond table could be a free standing body if desired).

The PDC cutter 20 further includes, associated with its working face, a thermal channel 28 in which a less thermally expandable and/or more thermally conductive and/or lower heat capacity material (designated by "x", and referred to herein as the "material") is present. The starting point is a PDC cutter as shown in Figure 1, and the material (designated by "x") is introduced, for example through overlay, infusion, migration, and/or implantation, into the front face to commingle with, semi-alloy with and/or displace the synthesizing cobalt catalyst material to a desired depth 26. The "x", "•" and "*" representations are illustrative in nature, and are not presented to illustrate the actual crystallographic structure of the diamond table, but rather to show the distributed presence of the material "x" in the thermal channel 28 with respect to the diamond crystals "x" and interstitial cobalt "•" binder of the diamond table 22. The thermal channel 28 is defined by the depth 26 to which the material extends from the front face or top surface of the diamond table. It will be noted that the material need not completely displace or drive away substantially all of the interstitial cobalt binder in the thermal channel 28. Some alloying, commingling or mixing in the thermal channel of the material and the cobalt binder is permitted. The point is that the presence of the material to the depth 26 presents a thermal channel 28 whose thermal properties are superior to the Figure 2 channel 18 provided solely by leaching the interstitial cobalt out of the diamond table. The improved thermal conductivity in the channel 28 reduces the risk of 1) stresses resulting from differential thermal expansion between the diamond and the residual metal inclusions along the diamond grain boundaries, and/or 2) a chemical reaction of the diamond to the cobalt turning the diamond back to graphite.

The material in this application, for example, mixes, commingles or semi-alloys with the cobalt binder. The material may, for example, displace some of the cobalt binder at some to many of the interstitial locations in the diamond crystal structure. In connection with this, the cobalt is not removed, but rather migrates elsewhere (in the diamond table or to the tungsten carbide substrate), or is commingled or alloyed with the material. The depth 26 may, for example, range from 0.020mm to 0.6mm.

As a result, the thermal diffusivity (the ratio of thermal conductivity to volumetric heat capacity) of the thermal channel 28 is increased. This can be accomplished by
increasing the numerator of the ratio (for example, through the presence of a material with higher thermal conductivity) or decreasing the denominator of the ratio (for example, through the presence of a material with lower specific heat capacity), or a combination of both of increasing the numerator and decreasing the denominator. It is noted that leaching out the cobalt binder causes thermal conductivity to increase by about 2% while heat capacity drops by about 63% producing an overall increase in diffusivity of about 43%. This explains, to some degree, the advantage of a leached diamond table (see, Figure 2). Overlay, infusion, migration, and/or implantation of the material, as discussed above, is designed to provide for still further improvement (increase) in diffusivity where the chosen material contributes to effectively increasing the numerator and/or decreasing the denominator of the thermal diffusivity ratio with respect to the thermal channel 28.

The material may be provided over the entire top surface (front face) of the diamond table 22 (see, Figure 4), or be provided in accordance with a desired pattern on the top surface (front face) of the diamond table 22 (see, Figure 5). The pattern selected for material inclusion may assist in more efficiently channeling heat from a cutting tip across the diamond table. This pattern may be provided by the use of conventional masking techniques. In one exemplary implementation, the material is provided with a pattern as shown in the Figure 5 comprising a plurality of radially extending regions which include material to the desired depth.

A material candidate for use in this application is cubic boron nitride, which has a thermal conductivity greater than 200 W m⁻¹ K⁻¹ (see, Nature volume 337, January 26, 1989) and thermal expansion coefficient of 1.2 μm m⁻¹ K⁻¹. These thermal properties are comparable to and compatible with the thermal properties of diamond, and are an improvement over the thermal properties of interstitial voids (as would be pertinent in the cobalt leached cutter of Figure 2). Improved thermal and mechanical performance of the thermal channel 28 would be experienced from use of the cubic boron nitride as a coating or overlay material supporting the infusion, migration and/or introduction of boron into the diamond table to commingle and/or semi-alloy with, or alternatively displace some of, the synthesizing catalyst material (such as, cobalt) to a desired depth.

Other elemental material candidates for use in this application include: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and
gold. Combinations of these elements with other elements as well as alloys including one or more of these elements may be used as the material. Again, these materials each possess thermal properties comparable to and compatible with the thermal properties of diamond, and if interstitially included within the diamond table would present an improvement over the thermal properties of interstitial voids (as would be pertinent in the cobalt leached cutter of Figure 2).

Another material candidate for use in this application alternatively comprises one or more alkali earth carbonates such as Li₂CO₃, Na₂CO₃, MgCO₃, SrCO₃, K₂CO₃, and the like.

Another material candidate for use in this application alternatively comprises one or more sulfate such as Na₂SO₄, MgSO₄, CaSO₄, and the like.

Another material candidate for use in this application alternatively comprises one or more hydroxide such as Mg(OH)₂, Ca(OH)₂, and the like.

Another material candidate for use in this application alternatively comprises tungsten oxide (WO₃).

Another material candidate for use in this application alternatively comprises boron carbide (B₄C).

Another material candidate for use in this application alternatively comprises TiCo₆.

Another material candidate for use in this application alternatively comprises one or more iron oxide or double oxide such as FeTiO₃, Fe₂, SiO₄, Y₂Fe₃O₁₂, Fe₆Fe₂O₁₂, and the like.

Another material candidate for use in this application alternatively comprises one or more intermetallic materials.

Another material candidate for use in this application alternatively comprises one or more ceramic materials.

A number of different methods may be used to manufacture the PDC cutter 20.

In a first method, a coating of the material 30 (also referred to as "thermal channel material") is applied to the front surface of the diamond table shown in Figure 1. This is
shown in Figure 6. A number of techniques may be used for applying the material to the front surface of a target diamond table including: painting, coating, soaking, dipping, plasma vapor deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition.

A treatment is then performed which causes that material 30 (or specific components within that material) to commingle with the synthesizing catalyst material (such as, cobalt), semi-alloy with the synthesizing catalyst material, or partially migrate into the diamond table to perhaps displace some of the synthesizing catalyst material, in a near surface region 32 of the diamond table forming the thermal channel 28. This is shown in Figure 7. The unreacted material 30 may be removed, if desired.

In one implementation, the treatment used comprises an imbibition treatment. Imbibition treatment processes are disclosed in Published U.S. Applications for Patent 2008/0240879 and 2009/0032169, the disclosures of which are hereby incorporated by reference. These imbibition processes are disclosed in connection with effectuating cobalt migration in tungsten carbide substrates, but are believed to be pertinent as well to effectuating an introduction or migration of the material (or specific components within that material) from the front surface of the diamond table to a desired depth. In connection therewith, the introduced material (or specific components within that material) may commingle with and/or semi-alloy with the synthesizing catalyst material (such as, cobalt) in the near surface region 32 of the diamond table. The introduction or migration of the material (or specific components within that material) through imbibition may also result in the displacement of some of the interstitial synthesizing catalyst material (such as, cobalt) in the near surface region 32 of the diamond table.

In another implementation, the treatment used comprises a Hot Isostatic Pressing (HIPing) treatment. The operation and characteristics of the HIPing treatment are well understood by those skilled in the art. This process subjects a component to both elevated temperature and isostatic gas pressure in a high pressure containment vessel. The elevated temperature and isostatic gas pressure are believed useful to effectuating the introduction of the material (or specific components within that material) in the front face of the diamond table. In a preferred embodiment using this method the tungsten carbide substrate and a portion of the diamond layer closest to the tungsten carbide substrate may be encased or
masked to preclude treatment of these areas, reserving the treatment to the working face of the diamond layer. In the case of cobalt catalyst binder and the cubic boron nitride material, while submitted to temperature above 750°C, the cobalt expands at a rate that allows the cubic boron nitride material (or specific components such as elemental boron within that material) to diffuse and to fill the interstitial pores under the effect of the isostatic pressure. While filling these pores, the material (or specific components within that material) will react with the cobalt and the carbon to form a mix of (B,Co,C). The nature of the mix will depend on the temperature and the reaction of the boron.

In another implementation, the treatment used comprises a cold pressing or cryogenic treatment. Figure 8 illustrates an implementation of this treatment in which the material coated front surface of the diamond table is held in a liquid nitrogen chamber for a selected period of time and vacuum environment. A heated shell is used to hold the tungsten carbide substrate and provide some protection against damage to the tungsten carbide substrate and/or the diamond table bond due to the extreme cold of the liquid nitrogen chamber. The cold temperature and vacuum pressure are believed to facilitate the introduction of the material (or specific components within that material) in the front face of the diamond table. In a preferred embodiment of this method micronized particles of the material (or specific components within that material) can be pressed into the face of the diamond layer with a piston mechanism to further effect the entrance of the material (or specific components within that material) into the diamond layer. The thermal contraction of the cobalt within the face of the diamond layer brought about by the cryogenic environment enhances the infusion of the material (or specific components within that material) into the face of the diamond layer.

In another implementation, the treatment used comprises spark plasma sintering, or field assisted sintering or pulsed electric current sintering. Details concerning these processes are known to those skilled in the art (see, for example, Shen, "Spark Plasma Sintering Assisted Diamond Formation From Carbon Nanotubes At Very Low Pressure," 2006 Nanotechnology 17 pages 2187-2191 (2206), the disclosure of which is incorporated by reference). The application of the pulsed current of the sintering technique causes localized heating at high rates with the heat facilitating migration of the material (or components of the
material) into the thermal channel for commingling, semi-alloying, or partially migrating and displacing some of the synthesizing catalyst material (such as, cobalt).

In another method, the plasma vapor deposition, chemical vapor deposition, and plasma enhanced chemical vapor deposition used to coat the front surface of the diamond table provides for some penetration of the material (or specific components within that material) into the diamond table for commingling, semi-alloying, or partially migrating and displacing some of the synthesizing catalyst material (such as, cobalt). The material is heated at a temperature high enough to be vaporized and to be condensed at a temperature below the previous temperature but above 750°C. While submitted to temperature above 750°C, the interstitial catalyst binder expands at a rate that allows the vapor of the material (or components of the material) to diffuse and to fill the interstitial pores created by the expansion of the catalyst binder. While filling these pores, the material (or components of the material) will react with the catalyst binder and the carbon to form a mix of materials. The nature of the mix will depend on the temperature and the reaction of the material (or components of the material).

In another method, no coating with the material is performed. Instead, the material is selected because it is especially well suited to ion implantation. The selection of boron or phosphorous (or other known p-type or n-type dopants) as likely candidates for ion implantation is preferred as the use of these dopant species is well known from the field of semiconductor integrated circuit fabrication. A PDC cutter as shown in Figure 1 is placed within an ion implantation chamber and ions of a selected type comprising the material are implanted at high energy for commingling and/or semi-alloying with the synthesizing catalyst material (such as, cobalt). Alternatively, the ion implantation may cause displacement of some of the synthesizing catalyst material (such as, cobalt), and allow the ions to occupy vacant interstitial locations. The ion implantation could alternatively assist migrating material atoms into the diamond table. An annealing heat treatment may be performed following implantation to further diffuse the dopant species and/or repair damage to the diamond crystal structure which results from the implantation.

It will further be understood that other mechanical or chemical transfer means and processes could alternatively be used for the purpose of infusing, displacing, migrating and/or
overlaying the synthesizing catalyst material (such as, cobalt) with the material (or components of the material).

It will also be understood that the process, technique and resulting product is applicable not only to a cutter with a diamond table mounted to a substrate, but also to free-standing diamond table bodies (which may subsequently be mounted to a substrate such as tungsten carbide). Thus, the methods described above could be applied just to the diamond table (in the absence of a supporting tungsten carbide substrate).

Embodiments of the invention have been described and illustrated above. The invention is not limited to the disclosed embodiments.
WHAT IS CLAIMED IS:

1. A PDC cutter, comprising:
 a substrate; and
 a diamond table mounted to the substrate, the diamond table comprising diamond crystals and interstitial catalyst binder, the diamond table further having a front face with a thermal channel formed to additionally include a material, the material being less thermally expandable than the catalyst binder and/or more thermally conductive than the catalyst binder and/or having a lower heat capacity than the catalyst binder, the material being commingled with or semi-alloyed with or partially displacing the catalyst binder in the thermal channel to a desired depth.

2. The PDC cutter of claim 1 wherein the material is cubic boron nitride or a component of cubic boron nitride.

3. The PDC cutter of claim 1 wherein the material is an elemental material selected from a group consisting of: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and gold.

4. The PDC cutter of claim 3 wherein the material is one of a combination of two or more of the elemental materials listed in claim 3 or an alloy including one or more of the elemental materials listed in claim 3.

5. The PDC cutter of claim 1 wherein the material includes an alkali earth carbonate.

6. The PDC cutter of claim 1 wherein the material includes a sulfate.

7. The PDC cutter of claim 1 wherein the material includes a hydroxide.

8. The PDC cutter of claim 1 wherein the material is tungsten oxide.

9. The PDC cutter of claim 1 wherein the material is boron carbide.

10. The PDC cutter of claim 1 wherein the material is TiC$_6$β.
11. The PDC cutter of claim 1 wherein the material is one of an iron oxide or double oxide.

12. The PDC cutter of claim 1 wherein the material is an intermetallic material.

13. The PDC cutter of claim 1 wherein the material is a ceramic material.

14. The PDC cutter of claim 1 wherein the desired depth is between 0.020mm to 0.6mm.

15. A method, comprising:

introducing a material to a front face of a diamond table mounted to a substrate, the diamond table comprising diamond crystals and interstitial catalyst binder, the introduction of the material to the front face forming a thermal channel which additionally includes the material, the material being less thermally expandable than the catalyst binder and/or more thermally conductive than the catalyst binder and/or having a lower heat capacity than the catalyst binder, the introduced material being commingled with or semi-alloyed with or partially displacing the catalyst binder in the thermal channel to a desired depth.

16. The method of claim 15 wherein the material is cubic boron nitride or component thereof.

17. The method of claim 15 wherein the material is an elemental material selected from a group consisting of: carbon, germanium, zinc, aluminum, silicon, molybdenum, boron, phosphorous, copper, silver, and gold.

18. The method of claim 17 wherein the material is one of a combination of two or more of the elemental materials listed in claim 17 or an alloy including one or more of the elemental materials listed in claim 17.

19. The method of claim 15 wherein the material includes an alkali earth carbonate.

20. The method of claim 15 wherein the material includes a sulfate.

21. The method of claim 15 wherein the material includes a hydroxide.
22. The method of claim 15 wherein the material is tungsten oxide.

23. The method of claim 15 wherein the material is boron carbide.

24. The method of claim 15 wherein the material is TiCo₆.

25. The method of claim 15 wherein the material is one of an iron oxide or double oxide.

26. The method of claim 15 wherein the material is an intermetallic material.

27. The method of claim 15 wherein the material is as ceramic material.

28. The method of claim 15 wherein introducing comprises infusing the material into the diamond table thermal channel.

29. The method of claim 15 wherein introducing comprises implanting the material into the diamond table thermal channel.

30. The method of claim 15 wherein introducing comprises sintering the material into the diamond table thermal channel.

31. The method of claim 15 wherein introducing comprises hot isostatic pressing the material into the diamond table thermal channel.

32. The method of claim 15 wherein introducing comprises performing cryogenic methods or cold pressing or both to introduce the material into the diamond table thermal channel.
A
CLASSIFICATION OF SUBJECT MATTER
IPC(8) - E21B 10/36 (2010 01)
USPC - 175/434
According to International Patent Classification (IPC) or to both national classification and IPC

B
FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - E21B 10/36 (2010 01)
USPC - 175/434
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
MicroPatent

C
DOCUMENTS CONSIDERED TO BE RELEVANT
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 7,008,672 B2 (GORDEEV et al) 07 March 2006 (07 03 2006) entire document</td>
<td>9, 23</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,609,926 A (PRINS) 11 March 1997 (11 03 1997) entire document</td>
<td>32</td>
</tr>
<tr>
<td>A</td>
<td>US 4,536,442 A (BOVENK/ERK et al) 20 August 1985 (20 08 1985) entire document</td>
<td>1:32</td>
</tr>
</tbody>
</table>

D
Further documents are listed in the continuation of Box C

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search
30 April 2010

Date of mailing of the international search report
2 May 2010

Name and mailing address of the ISA/US
Mail Stop PCT, Attn ISA/US, Commissioner for Patents
P O Box 1450, Alexandria, Virginia 22313-1450
Facsimile No 571-273-3201

Authorized officer
Blame R Copenhagen

Form PCT/ISA/210 (second sheet) (July 2009)