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(54) 발명의 명칭 패턴 시퀀스를 가지는 커널 회귀 모델링을 사용하는 모니터링 시스템

(57) 요 약

객체의 상태를 결정하기 위한 모니터링 시스템은 객체의 정상 동작 상태를 표시하는 기준 데이터를 갖는 실험적

모델 및 입력 패턴 어레이를 포함한다.  각각의 입력 패턴 어레이는 복수의 시간 순서화된 입력 벡터를 갖고, 각

각의 입력 벡터는 객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력값을 갖는다. 실험적 모델은 입

력값과 기준 데이터 사이의 유사성 척도를 결정하기 위해 입력 패턴 어레이 및 기준 데이터를 사용하는 계산에

기초하여 추정값을 생성한다.  디퍼런싱 모듈이 추정값을 대응 입력값에 비교하여 비교로부터의 최종값이 객체의

상태를 결정하는데 사용될 수 있게 된다.

대 표 도
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특허청구의 범위

청구항 1 

객체(object)의 상태를 모니터링하기 위한 모니터링 시스템에 있어서,

객체의 정상 동작 상태(normal operational state)를 표시하는 기준 데이터를 갖는 실험적 모델 및 입력 패턴

어레이를 갖는 실험적 모델(an empirical model) - 각각의 입력 패턴 어레이는 복수의 시간 순서화된 입력 벡터

를 갖고, 각각의 입력 벡터는 객체의 현재 상태(current condition)를 표시하는 복수의 파라미터를 표현하는 입

력값을 가짐 - 과,

추정값을 대응 입력값과 비교하여 상기 비교로부터의 최종값이 객체의 상태를 결정하는데 사용될 수 있게 하는

디퍼런싱 모듈(differencing module)을 포함하되,

상기 실험적 모델은 입력값과 기준 데이터 사이의 유사성 척도(a similiarity measure)를 결정하기 위해 입력

패턴 어레이 및 기준 데이터를 사용하는 계산에 기초하여 추정값을 생성하도록 구성되는

모니터링 시스템.

청구항 2 

제 1 항에 있어서,

상기 입력 벡터들 중 적어도 하나는 다중 입력 패턴 어레이에 있는

모니터링 시스템.

청구항 3 

제 1 항에 있어서,

각각의 입력 패턴 어레이는 객체의 동작 상태를 표현하는 입력 벡터의 시퀀스를 따른 복수의 시간 지점을 포함

하는 시간 기간을 표현하는

모니터링 시스템.

청구항 4 

제 3 항에 있어서,

각각의 입력 패턴 어레이는 다른 입력 패턴 어레이들 중 적어도 하나의 시간 기간과는 상이하지만 이를 중첩하

는 시간 기간을 표현하는

모니터링 시스템.

청구항 5 

제 3 항에 있어서,

각각의 입력 패턴 어레이는 입력 벡터의 시퀀스로부터의 현재 1차 벡터를 갖고 입력 패턴 어레이 내의 가장 최

근의 시간 지점을 표현하는

모니터링 시스템.

청구항 6 
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제 5 항에 있어서,

입력 벡터는 시퀀스를 따라 룩백 윈도우(look-back window)를 이동시키고, 현재 1차 벡터를 선택하고, 시퀀스를

따라 1차 벡터를 추종하고 윈도우 내에 적합하는 하나 이상의 더 오래된 벡터를 선택함으로써 각각의 입력 패턴

어레이를 위해 선택되는

모니터링 시스템.

청구항 7 

제 6 항에 있어서,

상기 더 오래된 벡터는 시퀀스를 따라 연속적인

모니터링 시스템.

청구항 8 

제 6 항에 있어서,

상기 더 오래된 벡터는 시퀀스를 따라 연속적이지 않은

모니터링 시스템.

청구항 9 

제 1 항에 있어서,

입력 패턴 어레이 내의 입력 벡터에 의해 표현된 시간 지점들 사이의 시간 간격은 균일한

모니터링 시스템.

청구항 10 

제 1 항에 있어서,

입력 패턴 어레이 내의 입력 벡터에 의해 표현된 시간 지점들 사이의 시간 간격은 동일하지 않은

모니터링 시스템.

청구항 11 

제 1 항에 있어서,

입력 패턴 어레이 내의 입력 벡터에 의해 표현된 시간 지점들 사이의 시간 간격은 동일한 입력 패턴 어레이 내

의 이후의 입력 벡터들 사이의 시간 간격보다 더 최근인 입력 벡터들 사이에서 더 짧은

모니터링 시스템.

청구항 12 

제 1 항에 있어서,

상기 입력 패턴 어레이에 의해 표현된 총 지속기간은 변경되는
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모니터링 시스템.

청구항 13 

제 1 항에 있어서,

계산은

를 포함하는 식에 기초하는

모니터링 시스템.

청구항 14 

제 1 항에 있어서,

계산은

를 포함하는 식에 기초하는

모니터링 시스템.

청구항 15 

제 1 항에 있어서,

유사성 척도는 입력값 및 기준값이 범위의 일 종점에서 동일하고 범위의 다른 종점에서 유사성을 갖지 않는 것

을 표시하는 경계 형성된 범위 상의 값인
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모니터링 시스템.

청구항 16 

제 1 항에 있어서,

기준 데이터는 적어도 하나의 학습된 순차적 패턴 행렬을 포함하고, 각각의 학습된 순차적 패턴 행렬은 복수의

기준 벡터를 갖고, 각각의 기준 벡터는 복수의 파라미터를 표현하는 기준값을 갖는

모니터링 시스템.

청구항 17 

제 16 항에 있어서,

상기 기준 데이터는 학습된 순차적 패턴 행렬의 3차원 집합을 형성하는

모니터링 시스템.

청구항 18 

제 17 항에 있어서,

3차원 집합은 제 1 차원을 따른 파라미터, 제 2 차원을 따른 학습된 순차적 패턴 행렬 및 제 3 차원에서 기준

벡터에 의해 표현된 시간을 표현하는 3개의 차원에 의해 정의되는

모니터링 시스템.

청구항 19 

제 17 항에 있어서,

각각의 입력 패턴 어레이는 각각의 학습된 순차적 패턴 행렬에 대한 유사성 척도를 결정하기 위해 3차원 집합

내의 각각의 학습된 순차적 패턴 행렬에 비교되는

모니터링 시스템.

청구항 20 

제 17 항에 있어서,

각각의 학습된 순차적 패턴 행렬은 기준 벡터에 의해 표현된 시간 지점을 포함하는 시간 기간을 표현하고, 상기

시간 기간은 3차원 집합에서 다른 학습된 순차적 패턴 행렬의 적어도 일부의 시간 기간과는 상이하지만 이를 중

첩하는

모니터링 시스템.

청구항 21 

제 17 항에 있어서,

학습된 순차적 패턴 행렬은 입력 패턴 어레이와 동일한 수의 벡터를 갖는
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모니터링 시스템.

청구항 22 

제 17 항에 있어서,

학습된 순차적 패턴 행렬은 입력 패턴 어레이와 동일한 시간 지점을 표현하는

모니터링 시스템.

청구항 23 

제 17 항에 있어서,

학습된 순차적 패턴 행렬들 중 하나와 입력 패턴 어레이들 중 하나 사이의 유사성은 그 각각의 어레이 내에 표

현된 다른 벡터의 위치에 대한 동일한 벡터 위치를 표현하는 입력값과 대응 기준값 사이의 유사성에 기초하는

모니터링 시스템.

청구항 24 

제 17 항에 있어서,

학습된 순차적 패턴 행렬들 중 하나와 입력 패턴 어레이들 중 하나 사이의 유사성은 어레이에 의해 표현된 각각

의 파라미터를 위한 평균 스칼라 유사성 값을 계산하는 것을 포함하는

모니터링 시스템.

청구항 25 

제 17 항에 있어서,

입력 패턴 어레이의 적어도 일부는 학습된 순차적 패턴 행렬들 중 적어도 하나에 의해 표현된 시간 기간과는 상

이한 시간 기간을 표현하는

모니터링 시스템.

청구항 26 

제 17 항에 있어서,

학습된 순차적 패턴 행렬에 의해 표현된 시간 기간은 변경되는

모니터링 시스템.

청구항 27 

제 1 항에 있어서,

상기 실험적 모델은 복수의 추정 벡터를 갖는 추정 행렬의 형태의 추정값을 생성하도록 구성되는

모니터링 시스템.

청구항 28 
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제 27 항에 있어서,

각각의 추정 행렬 내의 추정 벡터는 입력 패턴 어레이 내의 입력 벡터에 의해 표현된 시간 지점에 대응하는

모니터링 시스템.

청구항 29 

제 27 항에 있어서,

추정 행렬 내의 모든 추정값 미만이 객체의 상태를 결정하는데 사용되는

모니터링 시스템.

청구항 30 

제 27 항에 있어서,

상기 디퍼런싱 모듈은 객체의 상태를 결정하기 위해 각각의 추정 행렬 내의 가장 최근의 시간 지점을 표현하는

추정값만을 사용하는

모니터링 시스템.

청구항 31 

제 27 항에 있어서,

객체의 상태를 결정하기 위해 다중 추정 행렬을 가로질러 표현된 각각의 시간 지점에 대해 단일 추정 벡터를 제

공하는 것을 포함하는

모니터링 시스템.

청구항 32 

제 31 항에 있어서,

상기 단일 추정 벡터는

다중 추정 행렬을 가로지르는 시간 지점에서 다른 추정 벡터들에 대한 최대, 최소 또는 중간값을 갖는 하나 이

상의 추정값을 갖는 추정 벡터를 선택하는 것과,

다중 추정 행렬을 가로지르는 시간 지점에 추정값의 평균, 가중 평균 또는 가중 노옴을 계산하는 것과,

다중 추정 행렬을 가로지르는 시간 지점에 다른 추정 벡터들에 대한 대응 입력 벡터에 대해 최대 유사성을 갖는

추정 벡터를 선택하는 것

중 적어도 하나를 사용함으로써 제공되는

모니터링 시스템.

청구항 33 

제 27 항에 있어서,

상기 실험적 모델은,

최대, 최소 또는 중간 추정값을 갖는 각각의 추정 행렬 내에 추정 벡터,
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각각의 행렬을 위한 단일 추정치를 형성하기 위한 추정 행렬 내의 추정값의 가중 평균 또는 가중 노옴, 및

각각의 대응 입력 벡터에 대해 최대 유사성을 갖는 추정 행렬 내의 추정 벡터

중 적어도 하나를 사용함으로써 객체의 상태를 결정하기 위해 추정 벡터를 제공하는

모니터링 시스템.

청구항 34 

제 1 항에 있어서,

상기 실험적 모델은 입력 패턴 어레이에 의해 표현되지 않은 파라미터를 표현하는 학습된 순차적 패턴 행렬의 3

차원 집합을 갖는 계산에서 가중치로서 유사성 척도를 사용하도록 구성되는

모니터링 시스템.

청구항 35 

제 34 항에 있어서,

유사성 척도를 생성하는데 사용된 기준 데이터는 3차원 집합에 의해 표현된 모든 파라미터를 표현하지 않는

모니터링 시스템.

청구항 36 

제 34 항에 있어서,

3차원 집합은 단지 입력 패턴 어레이 내에 표현되지 않는 파라미터만을 표현하는

모니터링 시스템.

청구항 37 

제 35 항에 있어서,

3차원 집합은 입력 패턴 어레이 내에 표현되지 않은 파라미터 및 입력 패턴 어레이 내에 표현된 파라미터의 모

두를 표현하는

모니터링 시스템.

청구항 38 

제 1 항에 있어서,

어느 기준 데이터가 각각의 입력 패턴 어레이를 위한 추정값을 생성하는데 사용되는지를 재결정하기 위한 국부

화 모듈을 포함하는

모니터링 시스템.

청구항 39 

제 1 항에 있어서,
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추정값이 대응 입력 패턴 어레이가 정상 동작을 표현하는 것을 표시할 때 기준 데이터에 입력 패턴 어레이를 가

산하도록 구성된 적응 모듈을 포함하는

모니터링 시스템.

청구항 40 

객체의 상태를 결정하기 위한 모니터링 시스템에 있어서,

적어도 하나의 프로세서에 의해 연산되고 객체의 정상 동작 상태를 표시하고 복수의 학습된 순차적 패턴 행렬의

형태의 기준 데이터를 포함하는 실험적 모델 - 각각의 학습된 순차적 패턴 행렬은 복수의 기준 벡터를 갖고, 각

각의 기준 벡터는 복수의 파라미터를 표현하는 기준값을 가짐 - 과,

객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력 데이터와,

추정값을 대응 입력값에 비교하여 비교로부터의 최종값이 객체의 상태를 결정하는데 사용될 수 있게 하는 디퍼

런싱 모듈을 포함하되,

상기 실험적 모델은 복수의 기준 행렬 내의 입력 데이터와 기준값 사이의 유사성 척도를 결정하기 위해 입력 데

이터 및 학습된 순차적 패턴 행렬을 사용하는 계산에 기초하여 추정값을 생성하도록 구성되는

모니터링 시스템.

청구항 41 

객체의 상태를 모니터링하기 위한 모니터링 시스템에 있어서,

객체의 정상 동작 상태를 표시하는 기준 데이터를 포함하는 실험적 모델과,

객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력 데이터와,

추정 행렬에 의해 표현된 각각의 시간 기간에 대한 적어도 하나의 추정 벡터를 입력 데이터에 비교하여 비교로

부터의 최종값이 객체의 상태를 결정하는데 사용될 수 있게 하는 디퍼런싱 모듈을 포함하되,

상기 실험적 모델은 입력 데이터와 기준 데이터 사이의 유사성 척도를 결정하기 위해 입력 데이터 및 기준 데이

터의 모두를 사용하는 계산에 기초하여 추정값을 생성하도록 구성되고, 추정값은 복수의 시간 순서화된 추정 벡

터를 갖는 추정 행렬의 형태로 생성되고, 각각의 추정 벡터는 다중 파라미터를 표현하는 추정값을 갖는

모니터링 시스템.

명 세 서

기 술 분 야

본 명세서에 개시된 요지는 일반적으로 머신(machine), 시스템 또는 프로세서와 같은 객체(object)의 예측 상태[0001]

모니터링 및 전조(prognostics)를 위해 사용되는 커널 회귀(kernel regression)의 분야에 관한 것으로서, 더 구

체적으로는 모니터링되는 객체의 평가(assessment)를 제공하기 위해 파라미터의 측정의 분석을 위한 다변량 모

델(multivariate model)의 사용에 관한 것이다.

배 경 기 술

커널 회귀는 데이터세트 내의 값들 사이의 비선형 함수 또는 관계를 결정하는데 사용되는 모델링의 형태이고,[0002]

머신 또는 시스템의 상태를 결정하기 위해 머신 또는 시스템을 모니터링하는데 사용된다.  일 공지의 형태의 커

널  회귀  모델링으로는  미국  특허  제  5,764,509호  및  제  6,181,975호에  의해  개시된  유사성-기반  모델링

(similarity-based modeling: SBM)이 있다.  SBM에서, 다중 센서 신호가 센서 데이터를 제공하기 위해 모니터

링되고 있는 머신, 시스템 또는 다른 객체의 물리적으로 상관된 파라미터를 측정한다.  파라미터 데이터는 센서
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신호에 기초하건 아니건간에 신호 또는 다른 계산된 데이터로부터 실제값 또는 현재값을 포함할 수 있다.  파라

미터 데이터는 이어서 이들 값의 추정치를 제공하기 위해 실험 모델에 의해 프로세싱된다.  추정치는 이어서 결

함이 모니터링되는 시스템 내에 존재하는지를 판정하기 위해 실제값 또는 현재값에 비교된다.

더 구체적으로, 모델은 공지의 작동 상태를 표현하는 센서값의 선택된 이력 패턴의 기준 라이브러리(reference[0003]

library)를 사용하여 추정치를 생성한다.  이들 패턴은 또한 벡터, 스냅샷 또는 관찰이라 칭하고, 다중 센서로

부터의 값 또는 시간 순간에 모니터링되고 있는 머신의 상태를 표시하는 다른 입력 데이터를 포함한다.  기준

라이브러리로부터 기준 벡터의 경우에,  벡터는 일반적으로 모니터링되고 있는 머신의 정상 동작을 표시한다.

모델은 시스템의 현재 상태를 추정하기 위해 현재 시간으로부터의 벡터를 기준 라이브러리의 공지의 상태로부터

다수의 선택된 학습된 벡터에 비교한다.  일반적으로, 현재 벡터는 기준 라이브러리로부터 선택된 벡터로 구성

된 행렬에 비교되어 가중 벡터를 형성한다.  다른 단계에서, 가중 벡터는 행렬로 곱해져서 추정값의 벡터를 계

산한다.  추정 벡터는 이어서 현재 벡터에 비교된다.  벡터의 추정값 및 실제값이 충분히 유사하지 않으면, 이

는 모니터링되고 있는 객체 내에 결함이 존재하는 것을 표시할 수 있다.

그러나, 이 커널 회귀 기술은 센서 신호 내의 시간 도메인 정보를 명시적으로 사용하지 않고, 대신에 추정치를[0004]

계산할 때 별개의 분리된 시간 동시적 패턴으로 데이터를 처리한다.  예를 들어, 각각의 현재 벡터가 기준 라이

브러리 벡터에 개별적으로 비교되기 때문에, 어느 순서로 현재 벡터가 기준 라이브러리의 벡터에 비교되는지는

중요하지 않다 - 각각의 현재 벡터는 그 자신의 대응 추정 벡터를 수신할 것이다.

몇몇 공지의 모델은 커널 회귀 모델링 구조 내에 시간 도메인 정보를 캡처한다.  예를 들어, 복소 신호(complex[0005]

signal) 분해 기술이 시간 가변 신호를 미국 특허 제 6,957,172호 및 제 7,409,320호에 의해 개시된 바와 같은

주파수 성분 또는 미국 특허 제 7,085,675호에 의해 개시된 바와 같은 스펙트럼 특징으로 변환한다.  이들 성분

또는 특징들은 단일 복소 신호가 동시에 발생하는 주파수값의 패턴 또는 벡터에 의해 표현되도록 실험적 모델링

엔진에 개별 입력으로서 제공된다.  실험적 모델링 엔진은 추출된 성분 입력(현재 또는 실제 벡터)을 추출된 값

에 대해 비교하여 실제 신호에 대한 또는 시간 가변 신호를 생성하는 시스템의 상태에 대한 더 많은 정보를 유

도한다.  이들 방법은 음향 또는 진동 신호와 같은 단일 주기적 신호로 동작하도록 설계된다.  그러나, 복소 신

호를 위한 시스템에 있어서도, 시간 도메인 정보는, 각각의 현재 벡터가 입력 벡터가 표현하는 시간 기간에 무

관하게 기준 벡터 또는 예측된 벡터를 갖는 행렬에 비교되기 때문에, 현재 벡터를 위한 추정치를 계산할 때 중

요하지 않다.

발명의 내용

일 양태에서, 객체의 상태를 모니터링하기 위한 방법은 객체의 정상 동작 상태를 표시하는 기준 데이터를 얻는[0006]

단계와, 입력 패턴 어레이를 얻는 단계를 포함한다.  각각의 입력 패턴 어레이는 복수의 시간 순서화된 입력 벡

터를 갖고, 반면 각각의 입력 벡터는 객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력값을 갖는

다.  다음에, 적어도 하나의 프로세서는 입력값과 기준 데이터 사이의 유사성 척도를 결정하기 위해 입력 패턴

어레이 및 기준 데이터를 사용하는 계산에 기초하여 추정값을 생성한다.  추정값은 대응 입력값에 비교되어 비

교로부터의 최종값이 객체의 상태를 결정하는데 사용될 수 있다.

다른 양태에서, 객체의 상태를 모니터링하기 위한 방법은 객체의 정상 동작 상태를 표시하고 복수의 학습된 순[0007]

차적 패턴 행렬의 형태의 기준 데이터를 얻는 단계를 포함한다.  이 경우에, 각각의 학습된 순차적 패턴 행렬은

복수의 기준 벡터를 갖고, 반면 각각의 기준 벡터는 복수의 파라미터를 표현하는 기준값을 갖는다.  방법은 객

체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력 데이터를 얻는 단계와, 이어서 복수의 기준 행렬

내의 입력 데이터와 기준값 사이의 유사성 척도를 결정하기 위해 입력 데이터 및 학습된 순차적 패턴 행렬을 사

용하는 계산에 기초하여 추정값을 생성하기 위해 적어도 하나의 프로세서를 사용하는 단계를 또한 포함한다.

그 후에, 추정값은 대응 입력값에 비교되어 비교로부터 최종값이 객체의 상태를 결정하는데 사용될 수 있다.

또 다른 양태에서, 객체의 상태를 모니터링하기 위한 방법은 객체의 정상 동작 상태를 표시하는 기준 데이터를[0008]

얻는 단계와, 객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력 데이터를 얻는 단계를 포함한다.

방법은 이어서 적어도 하나의 프로세서에 의해, 입력 데이터와 기준 데이터의 모두를 사용하는 계산에 기초하여

추정값을 생성하여 입력 데이터와 기준 데이터 사이의 유사성 척도를 결정하는 단계를 포함한다.  추정값은 복

수의 시간 순서화된 추정 벡터를 갖는 추정 행렬의 형태로 생성되고, 여기서 각각의 추정 벡터는 다중 파라미터

를 표현하는 추정값을 갖는다.  방법은 이어서 추정 행렬에 의해 표현된 각각의 시간 기간에 대한 적어도 하나
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의 추정 벡터를 입력 데이터에 비교하여 비교로부터의 최종값이 객체의 상태를 결정하는데 사용될 수 있게 하는

단계를 포함한다.

다른 형태에서, 객체의 상태를 모니터링하기 위한 모니터링 시스템은 객체의 정상 동작 상태를 표시하는 기준[0009]

데이터를 갖는 실험적 모델 및 입력 패턴 어레이를 갖고, 각각의 입력 패턴 어레이는 복수의 시간 순서화된 입

력 벡터를 갖는다.  각각의 입력 벡터는 객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력값을 갖

는다.  실험적 모델은 입력값과 기준 데이터 사이의 유사성 척도를 결정하기 위해 입력 패턴 어레이 및 기준 데

이터를 사용하는 계산에 기초하여 추정값을 생성하도록 구성된다.  디퍼런싱 모듈(differencing module)이 이어

서 추정값을 대응 입력값에 비교하여 비교로부터의 최종값이 객체의 상태를 결정하는데 사용될 수 있게 된다.

다른 형태에서, 객체의 상태를 결정하기 위한 모니터링 시스템은 적어도 하나의 프로세서에 의해 연산된 실험적[0010]

모델을 갖는다.  모델은 객체의 정상 동작 상태를 표시하고 학습된 순차적 패턴 행렬의 형태의 기준 데이터를

포함한다.  각각의 학습된 순차적 패턴 행렬은 복수의 기준 벡터를 갖고, 반면 각각의 기준 벡터는 복수의 파라

미터를 표현하는 기준값을 갖는다.  모델은 객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력 데

이터를 또한 갖는다.  실험적 모델은 복수의 기준 행렬 내의 입력 데이터와 기준값 사이의 유사성 척도를 결정

하기  위해  입력  데이터  및  학습된  순차적  패턴  행렬을  사용하는  계산에  기초하여  추정값을  생성하도록

구성된다.  시스템은 추정값을 대응 입력값에 비교하여 비교로부터의 최종값이 객체의 상태를 결정하는데 사용

될 수 있게 하는 디퍼런싱 모듈을 또한 갖는다.

또 다른 형태에서, 객체의 상태를 결정하기 위한 모니터링 시스템은 객체의 정상 동작 상태를 표시하는 기준 데[0011]

이터를 갖는 실험적 모델을 갖는다.  모델은 객체의 현재 상태를 표시하는 복수의 파라미터를 표현하는 입력 데

이터를 또한 갖는다.  다르게는, 실험적 모델은 입력 데이터와 기준 데이터 사이의 유사성 척도를 결정하기 위

해 입력 데이터 및 기준 데이터의 모두를 사용하는 계산에 기초하여 추정값을 생성하도록 구성된다.  추정값은

복수의 시간 순서화된 추정 벡터를 갖는 추정 행렬의 형태로 생성된다.  각각의 추정 벡터는 다중 파라미터를

표현하는 추정값을 갖는다.  시스템은 추정 행렬에 의해 표현된 각각의 시간 기간에 대한 적어도 하나의 추정

벡터를 입력 데이터에 비교하여 비교로부터의 최종값이 객체의 상태를 결정하는데 사용될 수 있게 하는 디퍼런

싱 모듈을 또한 갖는다.

도면의 간단한 설명

도 1은 모니터링 시스템의 예시적인 배열의 블록도이다.[0012]

도 2는 모니터링 시스템을 위한 기본 프로세스를 도시하는 흐름도이다.

도 3은 자기연상(autoassociative) 유사성 기반 모델링 식의 개략도이다.

도 4는 추론적(inferential) 유사성 기반 모델링 식의 일 형태의 개략도이다.

도 5는 추론적 유사성 기반 모델링 식의 다른 형태의 개략도이다.

도 6은 자기연상 순차적 유사성 기반 모델링 식의 개략도이다.

도 7은 모델링된 센서 차원에 외삽하는 추론적 순차적 유사성 기반 모델링 식의 일 형태의 개략도이다.

도 8은 모델링된 센서 차원에 외삽하는 추론적 순차적 유사성 기반 모델링 식의 다른 형태의 개략도이다.

도 9는 시간 차원에 외삽하는 추론적 순차적 유사성 기반 모델링 식의 개략도이다.

도 10은 시간 차원에 외삽하는 추론적 순차적 유사성 기반 모델링 식의 개략도이다.

도 11은 시간 차원 및 센서 차원에 외삽하는 추론적 순차적 유사성 기반 모델링 식의 개략도이다.

발명을 실시하기 위한 구체적인 내용

커널 회귀 모델, 특히 유사성 기반 모델에서의 추정치의 정확성은 시간 도메인 정보를 모델에 통합함으로써 실[0013]

질적으로 향상될 수 있는 것으로 판정되어 왔다.  따라서, 본 발명의 모니터링 시스템 및 방법의 일 기술적 효

과는 산업 프로세스, 시스템, 머신 또는 다른 객체를 모니터링하는 다수의 주기적 및 비주기적 센서 신호로부터

시간 도메인 정보를 캡처함으로써 추정 데이터를 생성하는 것이다.  본 발명의 시스템의 기술적 효과는 또한 이
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하에 상세히 설명되는 바와 같이, 벡터간 연산으로부터 행렬간(또는 어레이간) 연산까지 커널 회귀 모델링의 코

어에서 기본적인 비선형 수학을 확장하는 실험적 모델을 연산하는 것이다.  모니터링 시스템 및 방법의 다른 대

안적인 기술적 효과는 추정치를 생성하는데 사용된 기준 데이터가 모니터링되는 객체의 정상 동작을 표현하는

데이터인지 또는 결함을 표시하는 객체로부터 데이터에 더 양호하게 정합하기 위한 고장 모드 데이터인지 모니

터링되고 있는 객체의 미래 상태를 결정하기 위해 미래의 시점에 가상 또는 추론된 추정값을 생성하는 것이다.

도 1을 참조하면, 시간 도메인 정보를 통합하는 모니터링 시스템(10)이 하나 이상의 컴퓨터(100) 상에 그리고[0014]

하나 이상의 프로세서(102)에 의해 실행되는 하나 이상의 모듈의 형태의 컴퓨터 프로그램에서 구체화된다.  컴

퓨터(100)는 영구적으로 또는 일시적으로 센서 데이터 및/또는 컴퓨터 프로그램을 유지하기 위해 내장 또는 외

장인 하나 이상의 메모리 저장 디바이스(104)를 가질 수 있다.  일 형태에서, 자립형 컴퓨터가 구현된 머신, 프

로세스 또는 생명체, 측정 파라미터(온도, 압력 등)를 포함하는 다른 객체 상의 센서로부터 센서 데이터에 전용

된 프로그램을 실행한다.  모니터링되는 객체는, 특히 한정되는 것은 아니지만, 산업 플랜트 내의 하나 이상의

기계, 하나 이상의 차량 또는 몇몇 예를 들자면 제트 엔진과 같은 차량 상의 특정 기계일 수 있다.  센서 데이

터는 컴퓨터 네트워크 또는 인터넷을 통해 유선 또는 무선으로, 예를 들어 데이터 수집을 수행하는 컴퓨터 또는

데이터베이스에 전송될 수 있다.  하나 이상의 프로세서를 갖는 일 컴퓨터는 모든 모듈을 위한 모든 모니터링

작업을 수행할 수 있고, 또는 각각의 작업 또는 모듈은 모듈을 수행하는 그 자신의 컴퓨터 또는 프로세서를 가

질 수 있다.  따라서, 프로세싱은 단일의 위치에서 발생할 수 있고 또는 프로세싱은 유선 또는 무선 네트워크에

의해 모두 접속된 다수의 상이한 위치에서 발생할 수 있다는 것이 이해될 것이다.

도 2를 참조하면, 모니터링 시스템(10)에 의해 수행된 프로세스(300)에서, 시스템은 전술된 바와 같이 모니터링[0015]

되는 객체(16) 상에서 센서(12)로부터 데이터 또는 신호를 수신한다.  이 데이터는 모델(14)에 의한 사용을 위

해 입력 벡터(32) 내에 배열된다.  여기서, 용어 입력, 실제 및 현재는 상호 교환 가능하게 사용되고, 용어 벡

터, 스냅샷 및 관찰은 상호 교환 가능하게 사용된다.  입력 벡터(또는 예를 들어, 실제 스냅샷)는 단일 시간 순

간에 모니터링되고 있는 머신의 동작 상태를 표현한다.

부가적으로 또는 대안적으로, 입력 벡터(32)는 센서 데이터(또는 원본 데이터)에 기초하여 계산되거나 계산되어[0016]

있지 않을 수 있는 계산된 데이터를 포함할 수 있다.  이는 예를 들어 평균 압력 또는 압력의 강하를 포함할 수

있다.  입력 벡터(32)는 객체(16) 상의 센서에 의해 표현되지 않는 다른 변수를 표현하는 값을 또한 가질 수 있

다.  이는 예를 들어 연간 센서 데이터가 수신되는 평균 주위 온도 등일 수 있다.

모델(14)은 벡터(32)의 형태의 데이터를 얻고(302) 입력 벡터를 입력 어레이 또는 행렬로 배열한다(304).  그러[0017]

나, 모델(14) 자체는 입력 데이터로부터 벡터(32)를 형성할 수 있고, 또는 데이터를 벡터 및 어레이로 편성하는

집합 또는 입력 컴퓨터 또는 프로세서로부터 벡터를 수신한다는 것이 이해될 것이다.  따라서, 입력 데이터는

컴퓨터(100), 컴퓨터(100)의 위치 부근 또는 객체(16) 부근과 같은 다른 위치에서의 컴퓨터에 의해 벡터(32) 내

에 배열될 수 있다.

모델(14)은 또한 기준 라이브러리(18)로부터 기준 벡터 또는 행렬의 형태의 때때로 행렬(H)이라 칭하는 기준 데[0018]

이터를 얻는다(306).  라이브러리(18)는 시스템 내의 모든 이력 기준 벡터를 포함할 수 있다.  모델(14)은 이어

서  최종  추정  행렬  또는  어레이의  형태의  추정치(310)를  생성하기  위해  기준  데이터  및  입력  어레이를

사용한다.  추정 행렬은 추정 행렬 내의 추정값과 입력 어레이 내의 대응 입력값 사이의 차이(또는 나머지)를

결정하는(312) 디퍼런싱 모듈(20)에 제공된다.  나머지는 이어서 경보 또는 분석 관리 모듈(또는 단지 경보 모

듈)(22)에 의해 사용되어 결함이 존재하는지를 판정한다(314).

점선으로 도시된 바와 같이, 모니터링 시스템(10)은 또한 기준 라이브러리로부터의 어느 데이터가 각각의 입력[0019]

어레이 내의 벡터들을 비교하기 위해 서브세트 또는 행렬[D(t)][이하에 학습된 순차적 패턴 행렬의 3차원 집합

이라 칭함(도 6)]을 형성하는데(308) 사용되는지를 변경하는 국부화 모듈(28)을 가질 수 있다.  다르게는, 기준

데이터의 행렬[D(t)]은 이하에 상세히 설명되는 바와 같이 모든 입력 행렬에 대해 동일하게 유지될 수 있다.

또한, 모니터링 시스템은, 예를 들어 모델이 머신의 새로운 정상 상태가 이전에 경험하지 않은 것을 표시하는

데이터를 수신할 때와 같이, 특정 이벤트가 발생할 때 또는 라이브러리 내의 데이터를 업데이트하기 위해 기준

라이브러리 내에 입력 벡터를 연속적으로 배치하는 적응 모듈(30)을 가질 수도 있다.  이는 또한 이하에 상세히

설명된다.

경보 모듈(22)은 사용자가 그 자신의 진단 분석을 수행하게 하기 위해 인터페이스 또는 출력 모듈(24)에 경보[0020]

뿐만 아니라 나머지를 직접 제공할 수 있고, 또는 진단 모듈(26)은 출력 모듈(24)을 통해 사용자에 진단 결론

및 심각성 레이팅을 보고하기 위해 결함의 원인의 정확한 성질을 분석하도록 제공될 수 있다.
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출력 모듈(24)은 이들 결과를 표시하기 위한 메커니즘(예를 들어, 컴퓨터 스크린, PDA 스크린, 출력물 또는 웹[0021]

서버), 결과물을 저장하기 위한 메커니즘(예를 들어, 질의 능력을 갖는 데이터베이스, 플랫 파일, XML 파일) 및

/또는 결과물을 원격 위치 또는 다른 컴퓨터 프로그램에 통신하기 위한 메커니즘(예를 들어, 소프트웨어 인터페

이스, XML 데이터그램, 이메일 데이터 패킷, 비동기식 메시지, 동기식 메시지, FTP 파일, 서비스, 파이핑된 명

령 등)을 포함할 수 있다.

실험적 모델(14)의 더 상세한 설명은 커널 회귀의 특정 지식을 필요로 한다.  커널 회귀와 같은 패턴 인식 기술[0022]

에서, 패턴은 벡터로서 함께 그룹화된 입력 데이터(전술된 바와 같이)로 이루어진다.  각각의 벡터를 위한 데이

터는 명령 시점에 장비의 부분으로부터 수집된다.  그러나, 여기서 그리고 이하에 더 상세히 설명되는 바와 같

이, 현존하는 커널 회귀 방법과 연관된 동시성 센서값의 패턴(벡터)은 연속적인 시간 순간으로부터 패턴에 적용

된 시간 의존성 함수(예를 들어, 필터, 시간 도함수 등)로부터 출력 또는 연속적인 시간 순간으로부터 순차적

패턴과  같은  시간  관련  정보로  증대된다.   따라서,  전통적인  커널  회귀  방법에  의해  프로세싱된  개별

패턴(벡터)은 어레이(또는 간단히 패턴 어레이 또는 패턴 행렬)를 형성하는 패턴의 시간 관련 시퀀스로 대체된

다.

커널 회귀, 방사형 기저 함수 및 유사성 기반 모델링을 포함하는 커널 기반 모델링 기술은 이하의 식에 의해 기[0023]

술될 수 있고,

[0024]

여기서, 센서 신호 또는 센서값 추정치의 벡터(xest)는 센서 데이터의 L개의 학습된 패턴(xi)에 센서의 입력 벡터[0025]

(xnew)를 비교하는 커널 함수(K)의 결과의 가중합으로서 생성된다.  xi은 벡터(또한, 관찰, 패턴, 스냅샷 또는

표본이라 칭함)의 형태의 기준 또는 학습된 데이터로 형성된다.  커널 함수 결과는 벡터의 형태일 수 있고 다수

의 방식으로 결정될 수 있는 가중치(ci)에 따라 조합된다.  상기 형태는 모든 추정된 출력 신호가 또한 입력 신

호에 의해 표현되는 "자기연상" 형태이다.  달리 말하면, 각각의 입력값에 대해, 추정 센서값이 계산된다.  이

는 특정 추정 출력값이 현존하는 입력값을 표현하지 않고, 대신에 이하의 식으로 나타낸 입력으로부터 추론되는

"추론적" 형태와 대조되며,

[0026]

여기서, 이 경우에, yest는 이들 파라미터의 L개의 학습된 표본(xi)에 다른 파라미터의 입력 벡터(xnew)의 커널 기[0027]

반 비교로부터 얻어진 추론된 센서 추정치이다.  각각의 학습된 표본(xi)은 출력(yest)을 예측하기 위해 커널(K)

및 벡터(ci)(yi의 적어도 일부의 함수임)에 따라 가중된 방식으로 조합된 추정될 파라미터의 다른 예시적인 벡터

(yi)와 연관된다.  유사한 방식으로, 하나 초과의 센서가 동시에 추론될 수 있다.

커널 기반 추정자에는 표본을 구체화하는 벡터(ci) 및 커널 결과에 기초하여 표본의 선형 조합(예를 들어, 표본[0028]

또는 벡터의 행렬)으로부터의 결과의 생성 및 커널 함수가 통상적이다.  커널 함수(K)는 일반화된 내적(inner

product)이지만, 일 형태에서 xnew와 xi가 동일할 때 그 절대값이 최대인 다른 특성을 갖는다.

본  발명의  일  실시예에  따르면,  모델을  제공하기  위해  사용될  수  있는  커널  기반  추정자는  나다라야-왓슨[0029]

(Nadaraya-Watson) 커널 회귀 형태에 의해 예시되는 커널 회귀이다.

[0030]
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[0031]

추론적 형태에서, 추론된 파라미터(yest)의 다변량 추정치는, 각각의 xi와 각각 연관되고 커널 결과의 합에 의해[0032]

정규화되는 각각의 학습된 벡터(yi)에 따라 선형으로 조합된 L개의 학습된 표본 및 파라미터 측정치(xnew)의 입력

벡터 상의 커널 K 연산자의 결과로부터 생성된다.  yi는 X 내의 파라미터의 학습된 측정치와 연관되는(그와 동시

에 측정되는 것과 같은) Y 내의 파라미터에 대한 학습된 측정치의 세트를 표현한다.  예로서, X는 복수의 압력

판독치를 포함할 수 있고, Y는 공통 시스템으로부터 대응하는 복수의 온도 판독치를 표현할 수 있다.  달리 말

하면, 압력 판독치는 추정된 온도 판독치 또는 yest에 대한 센서값을 계산하기 위해 이어서 yi(누락 파라미터의

이전의 값을 갖는 기준 벡터)로 계산에 사용되는 가중치를 계산하는데 사용될 수 있다.

커널 회귀의 자기연상 형태에서, 파라미터(xest)의 다변량 추정치는 이들 파라미터(xi)의 학습된 측정치의 정규화[0033]

된 선형 조합[예를 들어, 이하에 설명되는 표본의 행렬(D)의 형태]에 학습된 관찰(xi)과 관련하여 입력 벡터

(xnew)에 대한 커널 연산 결과를 곱한 값에 의해 생성된다.

본 예에 대한 커널 회귀에서, 상기 식 1 및 2로부터의 ci는 커널 비교값의 합에 의해 정규화된 학습된 표본으로[0034]

구성된다.  추정 벡터(yest 또는 xest)는 나머지를 제공하기 위해 실제 측정된 값(추론적 경우에 모델에 입력되지

않는 xnew 또는 ynew)으로 디퍼런싱되는 일 예에 따른 추정된 파라미터의 세트를 포함한다.

커널 회귀의 특정예에서, 유사성 기반 모델(SBM)은 본 발명에 따른 모델로서 사용될 수 있다.  나다라야-왓슨[0035]

커널 회귀는 (가능하게는 노이즈가 있는) 학습된 표본의 세트가 주어지면 평탄한 추정치인 추정치를 제공하는

반면, SBM은 입력 벡터가 학습된 표본들 중 하나에 동일한 경우와 같이, 이들이 마찬가지로 또한 우연히 입력될

때 학습된 표본에 적합하는 내삽된 추정치를 제공한다.  이는 이들 신호 내의 노이즈가 특정 정도로 과적합될

수 있어(노이즈가 모델이 구성된 표본들 상에 유사하게 존재하는 경우), 따라서 나다라야-왓슨 커널 회귀 접근

법에 비교할 때 나머지로부터 노이즈를 다소 제거하기 때문에, 파라미터 내의 편차를 검출하는데 유리할 수 있

다.  SBM은 연산자 로서 커널 함수(K)를 재기입하고, 행을 형성하는 xi의 원소 및 그 열을 형성하는 xi 관찰

을 갖는 행렬(D)로서 학습된 표본(xi)의 세트를 수식화함으로써 커널 기반 추정자의 형태로서 이해될 수 있다.

[0036]

여기서 D는 전치되어 있고, 이는 D 내의 각각의 관찰 xi에 대해 하나씩, 커널값의 열 벡터를 생성한다.  유사하[0037]

게, 서로에 대한 모든 표본의 비교는 이하와 같이 표현될 수 있다.

[0038]

다음에, SBM의 자기연상 형태는 이하의 식에 따라 추정 벡터를 생성하고,[0039]

[0040]

여기서, xest는 추정 벡터이고, xnew는 입력 관찰이고, D는 파라미터의 학습된 예시적인 관찰의 세트(또는 서브세[0041]

트)를 포함하는 학습된 벡터 행렬이다.  유사성 연산자 또는 커널은 기호 에 의해 나타내고, 각각의 피연산자

(operand)로부터 임의의 2개의 벡터의 비교를 위해 유사성 스코어를 렌더링하는 일반적인 특성을 갖는다.  따라

서, 제 1 항 는 상기 식 (6)에 나타낸 바와 같이 D 내의 관찰의 수에 동일한 크기의 값의 정방 행렬

을 생성할 것이다.  항 는 식 5에 나타낸 바와 같이 D 내의 각각의 벡터에 대해 하나의 유사성 값

인, 유사성 값의 벡터를 생성할 것이다.  이 유사성 연산자는 이하에 더 상세히 설명된다.  식은 도 3에 개략적

으로 도시되어 있고, 어떻게 식의 각각의 성분이 직사각형 박스에 의해 표현된 바와 같이 벡터에 의해 형성되는

지를 도시한다.  본 예에서, 각각의 벡터는 파라미터 1 내지 5에 대해 센서값을 포함한다(이는 또한 전술된 바
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와 같이 다른 비-센서값을 포함할 수 있음).  번호 1 내지 5는 정확한 센서값이 아니라 어느 파라미터가 표현되

고 있는지를 표시한다는 것이 이해될 것이다.  따라서, 센서값 자체는 식의 상이한 부분에 대해 상이할 것이다

(예를 들어, 파라미터 1에 대한 값은 xest 내의 것에 대해 D 내의 것에 대한 xnew에서 상이할 수 있음).

식 (7)에 있어서, 입력 벡터의 그룹 사이의 시간 도메인 정보는 추정치를 생성하기 위해 무시된다는 것이 또한[0042]

이해될 것이다.  달리 말하면, 식 (7)은 단일 입력 벡터(xnew)를 사용함으로써 추정 벡터를 생성하기 때문에, 입

력 벡터의 그룹 내의 벡터가 추정 벡터를 생성하기 위해 분석되는 순서는 대체로 중요하지 않다.  시간에 관련

된 특정 순서(순차적과 같은)가 결함이 존재하는지를 판정하거나 예를 들어 특정 유형의 결함을 진단하기 위해

프로세스에서 이후에 요구되면, 벡터는 추정치를 생성한 후에 원하는 바와 같이 순서화될 수 있다.

추정치는 또한 이하의 식에 따라, 데이터의 기원에 독립적이게 함으로써 향상될 수 있는데, 여기서 추정치는 유[0043]

사성 연산자로부터 생성된 "가중치"의 합으로 나눔으로써 정규화된다.

[0044]

유사성 기반 모델링의 추론적 형태에서, 추론된 파라미터 벡터(yest)는 이하의 식에 따라 학습된 관찰 및 입력으[0045]

로부터 추정되고,

[0046]

여기서 Din은 xin 내의 실제 센서값(또는 파라미터)과 동일한 수의 행이고, Dout은 추론된 파라미터 또는 센서를[0047]

포함하는 파라미터의 총수와 동일한 수의 행이다.  식 (9)는 벡터의 위치, 입력값(1 내지 5) 및 최종 추론된 값

(6 내지 7)을 나타내기 위해 도 4에 개략적으로 도시되어 있다.

일 형태에서, 학습된 표본의 행렬(Da)은 입력 벡터(xin) 내의 센서값에 맵핑되는 행 및 추론된 센서에 맵핑되는[0048]

행의 모두를 포함하는 집합 행렬로서 이해될 수 있다.

[0049]

가중치의 합을 사용하여 상기와 같이 정규화하면, 이하와 같이 된다.[0050]

[0051]

학습된 표본의 전체 행렬(Da)로 Dout을 대체함으로써, 유사성 기반 모델링은 입력 센서(자기연상 형태) 및 추론된[0052]

센서(추론적 형태)에 대해 추정치를 동시에 계산할 수 있다는 것이 주목되어야 한다.

[0053]

도 5를 참조하면, 식 (12)는 입력값 및 추론된 값의 모두에 대한 기준값을 갖는 행렬(Da)을 사용한다.  이는 대[0054]

표적인 입력값 및 추론된 값의 모두를 갖는 추정 벡터를 생성한다.

상기와 유사한 또 다른 커널 기반 모델링 기술은 방사형 기저 함수의 기술이다.  신경학상 구조에 기초하여, 방[0055]

사형 기저 함수는 신경 네트워크의 특정 형태에서 각각의 필드를 사용하고, 여기서 각각의 기저 함수는 입력 벡

터의 n-차원 공간 내의 각각의 필드를 형성하고, 신경 네트워크 내의 은닉된 레이어 노드에 의해 표현된다.  수

용 필드는 전술된 커널의 형태를 갖고, 여기서 수용 필드의 "중심"은 특정 은닉된 유닛이 표현하는 표본이다.

표본이 존재하는 것과 동수의 은닉된 유닛 수용 필드가 존재한다.  다변량 입력 관찰은 은닉 레이어와 완전하게

연결된 입력 레이어에 입력된다.  따라서, 각각의 은닉 유닛은 전체 다변량 입력 관찰을 수신하고, 입력이 수용

필드의 "중심"에 일치할 때 최대인 결과를 생성하고, 이들이 점점 상이해짐에 따라(전술된 SBM과 같이) 감소한
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다.  수용 필드 노드의 은닉 레이어의 출력은 가중치(ci)에 따라 조합된다(식 1에서 상기와 같이).

전술된 바와 같이, 커널은 다양한 가능한 커널로부터 선택될 수 있고, 일 형태에서 그 커널에 의해 반환된 모든[0056]

값의 최대 절대값을 갖는 2개의 동일한 벡터의 비교를 위한 값(또는 유사성 스코어)을 반환하도록 선택된다.

다수의 예가 본 명세서에 제공되지만, 이들은 본 발명의 범주를 한정하도록 의도된 것은 아니다.  이하는 임의

의 2개의 벡터(xa, xb)의 비교를 위한 본 발명에 따라 사용될 수 있는 커널/유사성 연산의 예이다.

[0057]

[0058]

[0059]

식 13 내지 15에서, 2개의 벡터의 벡터차 또는 "노옴(norm)"이 사용되는데, 일반적으로 이는 2-노옴이지만, 또[0060]

한 1-노옴 또는 p-노옴일 수 있다.  파라미터 h는 일반적으로 커널의 "대역폭"이라 종종 칭하는 상수이고, 각각

의 표본이 중요한 결과를 반환하는 "필드"의 크기에 영향을 미친다.  멱(power) λ가 또한 사용될 수 있지만, 1

로 설정될 수 있다.  각각의 표본(xi)에 대해 상이한 h 및 λ를 이용하는 것이 가능하다.  일 접근법에 의해,

벡터차 또는 노옴을 이용하는 커널을 사용할 때, 특정된 데이터는 예를 들어 그 센서 데이터 세트의 최소 판독

치의 값을 모든 센서값에 가산하거나 감산하고, 이어서 모든 결과를 그 센서에 대한 범위로 나눔으로써 0 내지

1의 범위(또는 다른 선택된 범위)로 먼저 정규화되어야 한다.  대안적으로, 데이터는 1(또는 소정의 다른 상

수)로 설정된 표준 편차를 갖는 제로-중심화된(zero-centered) 평균 데이터로 이를 변환함으로써 정규화될 수

있다.  더욱이, 본 발명에 따른 커널/유사성 연산자는 또한 관찰의 요소의 견지에서 정의될수 있는데, 즉 유사

성은 벡터의 각각의 차원에서 결정되고, 이들 개별 원소 유사성은 전체 벡터 유사성을 제공하기 위해 몇몇 방식

으로 조합된다.  통상적으로, 이는 임의의 2개의 벡터 x 및 y의 커널 비교를 위한 원소 유사성을 평균화하는만

큼 간단할 수 있다.

[0061]

이어서, 본 발명에 따라 사용될 수 있는 원소 유사성 연산자는 이하를 비한정적으로 포함한다.[0062]

[0063]

[0064]

[0065]

대역폭(h)은 관찰 벡터의 m번째 파라미터의 예측된 범위의 소정의 측정치가 되도록 전술된 것들과 같은 원소 커[0066]

널의 경우에 선택될 수 있다.  이는 예를 들어 모든 표본을 가로질러 파라미터의 최대값과 최소값 사이의 차이

를 발견함으로써 결정될 수 있다.  대안적으로, 이는 표본 또는 기준 벡터 내에 존재하는 데이터에 무관하게 도

메인 지식을 사용하여 설정될 수 있다.  더욱이, 차이 함수를 사용하는 벡터 및 원소 커널의 모두에 대해, 대역

폭으로 나눈 차이가 1보다 크면, 이는 1로 설정될 수 있어, 예를 들어 식 14, 15, 18 및 19에 대해 0의 커널값
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을 생성한다는 것이 주목되어야 한다.  또한, 커널 또는 유사성 연산자가 1, h, λ 등 대신에, 상이한 상수의

가산 또는 승산에 의해 수정될 수 있다는 것을 즉시 알 수 있다.  삼각 함수가 예를 들어 또한 사용될 수 있다.

[0067]

일 형태에서, 유사성 연산자 또는 커널은 일반적으로 2개의 동일하게 치수 설정된 벡터의 비교를 위한 유사성[0068]

스코어를 제공하고, 이 유사성 스코어는

1. 각각의 종단에서 경계 형성되는 스칼라 범위 내에 놓이고,[0069]

2. 2개의 벡터가 동일하면 경계 형성된 종단들 중 하나에 1의 값(또는 다른 선택된 값)을 갖고,[0070]

3. 스칼라 범위에 걸쳐 단조적으로 변화하고,[0071]

4. 2개의 벡터가 동일하게 접근함에 따라 증가하는 절대값을 갖는다.[0072]

모델링을 위한 상기 방법들의 모두는 전술된 커널 기반 접근법을 사용하고 표본의 기준 라이브러리를 사용한다.[0073]

표본(또한 기준 관찰 또는 기준 벡터라 칭함)은 모델링된 시스템의 "정상" 거동을 표현한다.  선택적으로, 이용

가능한  기준  데이터는  표본의  라이브러리로서  기능하기  위한  특성  서브세트를  제공하도록  다운  선택(down-

select)될 수 있고, 이 경우에 커널 기반 모델을 "훈련"하기 위한 다수의 기술이 이용될 수 있다.  이 경우에,

다운 선택된 라이브러리 자체는 상기 식들에 사용된 행렬(D)을 형성할 수 있다.  일 훈련 방법에 따르면, 적어

도 이들 관찰은 모든 이용 가능한 기준 관찰을 가로질러 소정의 파라미터에 대해 최고 또는 최저값을 갖는 라이

브러리 내에 포함된다.  이는 부가의 관찰의 랜덤 선택 또는 데이터의 산란 또는 클러스터링을 신뢰적으로 표현

하기 위해 선택된 선택으로 보충될 수 있다.  대안적으로, 기준 데이터는 클러스터링될 수 있고, 새로운 인공적

으로 생성된 표본으로서 형성된 클러스터의 대표적인 "도심(centroid)"은 이어서 라이브러리를 형성한다.  광범

위한 기술이 표본의 라이브러리를 포함하도록 관찰을 선택하기 위해 당 기술 분야에 공지되어 있다.  따라서,

이 경우에 대해 적어도 일반적인 견지에서, 행렬(D)은 라이브러리가 변경되지 않으면(즉, 예를 들어 라이브러리

가 업데이트될 때) 모든 입력 벡터(xin)에 대해 식 7에서 동일하게 유지된다.

실험적 커널 기반 모델의 추론적 및 자기연상 형태의 모두를 위한 대안적인 배열에서, 행렬(D)은 입력 관찰의[0074]

품질 및 학습된 관찰의 대형 세트, 즉 기준 세트로부터 드로잉에 기초하여 "온더플라이(on-the-fly)"식으로 생

성될 수 있다.  이러한 것의 일 예는 미국 특허 제 7,403,869호에 설명되어 있다.  이 프로세스는 국부화라 칭

한다.  이에 따라, 커널 기반 모델링의 추론적 및 자기연상 형태는 입력 관찰에 기초하여 기준 관찰의 더 대형

의 세트로부터 선택되는 학습된 관찰(xi)의 세트(행렬 D)를 사용하여 수행될 수 있다.  커널 기반 모델은 예외

적으로 이들이 일 패스에 훈련되고 급속하게 업데이트될 수 있기 때문에 이 종류의 국부화를 위해 양호하게 적

합된다.  유리하게는, 후보자 표본의 대형 세트 상에 드로잉하지만 추정치를 생성하기 위해 각각의 새로운 입력

관찰을 갖는 서브세트를 선택함으로써, 여전히 모델링되는 시스템의 동역학을 양호하게 특정화하면서 모델링 계

산의 속도가 감소될 수 있고 모델의 강인성이 향상된다.

모니터링 시스템(10)에 있어서, 국부화 모듈(28)은 유사성 연산자 자체의 적용을 포함하는 집합[D(t)]를 위한[0075]

국부화된 행렬 멤버쉽을 구성하기 위해 다양한 기준을 사용할 수 있다.  그러나, 일반적으로, 모니터링 프로세

스의 부분으로서 모델에 의해 추정될 파라미터의 세트 또는 유도된 특징을 포함하는 입력 관찰(32)은 모델을 구

성하기 위해 이들 표본 관찰의 서브세트를 선택하기 위해, 기준 라이브러리(18)의 형태의 표본 관찰의 대형 저

장부에 액세스하는 국부화 모듈(28)에 제공된다.  국부화 모듈(28)은 라이브러리의 크기보다 훨씬 작은 세트일

수 있는 입력 관찰(32)에 관련된 라이브러리(18)로부터 표본을 선택한다.  예로서, 기준 라이브러리(18)는 모델

링되고 있는 파라미터에 의해 표현된 시스템의 정상 동역학을 특징화하는 100,000개의 표본 관찰을 포함할 수도

있지만, 국부화 모듈(28)은 입력 관찰(32)을 수신하는 것에 응답하여 국부화된 모델을 구성하기 위해 단지 수십

개의 관찰만을 선택할 수도 있다.  선택된 표본 관찰은 이어서 이제 국부화된 모델(14)에 제공된다.  벡터 기반

시스템에서, 이들 관찰은 이어서 커널 기반 추정자의 목적으로 학습된 표본(xi)의 세트(또한 상기 SBM과 관련하

여 D로서 나타냄)를 포함한다.  추정 관찰(xset)은 이어서 전술된 바와 같이 이에 따라 생성된다.  모니터링 시

스템(10)에 있어서, 선택된 학습된 표본은 각각 시간 지점(tp)에 벡터를 표현할 수 있어, 순차적 패턴 행렬이

이하에 설명된 집합[D(t)]을 형성하도록 tp에 각각의 벡터에 대해 구성된다.  다음의 입력 관찰(32)이 모니터링

시스템(10)에 제시됨에 따라, 프로세스는 새로운 입력 관찰에 기초하여 라이브러리(18)로부터 새로운 그리고 가
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능하게는 상이한 표본의 서브세트의 선택으로 반복된다.

일 접근법에 따르면, 입력 관찰(32)은 클러스터링 기술에 기초하여 학습된 관찰의 기준 라이브러리(18)에 비교[0076]

될 수 있다.  이에 따라, 라이브러리(18) 내의 표본 관찰은 벡터를 클러스터링하기 위한 당 기술 분야에 공지된

다수의 기술들 중 임의의 것을 사용하여 클러스터링되고, 국부화 모듈(28)은 어느 클러스터에 입력 관찰(32)이

가장 근접한지를 식별하고, 국부화된 모델(14)에 제공된 국부화된 관찰이 되도록 그 클러스터의 멤버 표본을 선

택한다.  적합한 클러스터링 방법은 k-평균 및 퍼지 c-평균 클러스터링 또는 자체 편성 맵 신경 네트워크를 포

함한다.

다른 접근법에 따르면, 커널은 입력 관찰에 관한 기준 관찰의 랭킹을 제공하는 유사성 값을 생성하기 위해 라이[0077]

브러리(18) 내의 각각의 표본에 입력 관찰(32)을 비교하는데 사용될 수 있다.  다음에, 이들의 특정 상위 분율

은 국부화된 집합[D(t)] 내에 포함될 수 있다.  이 국부화 양태의 추가의 개량으로서, 모든 기준 관찰의 랭킹된

리스트 내의 관찰은 이들의 성분 원소 중 하나가 입력 벡터 내의 대응값을 "괄호로 묶는(bracket)" 값을 제공하

는 정도로 국부화된 집합[D(t)] 내에 포함된다.  예를 들어, 랭킹된 리스트의 검색은 입력 벡터 내의 값들이 기

준 관찰들 중 하나 내의 값에 의해 낮은 및 높은 측의 모두에서 괄호로 묶일 때까지 수행된다.  이들 "괄호로

묶음" 관찰은 이어서 라이브러리(18) 내의 다른 관찰이 입력에 더 높은 유사성을 갖더라도 국부화된 집합[D(t)]

내에 포함된다.  검색은 입력 벡터 내의 모든 입력값이 괄호로 묶일 때까지, 집합[D(t)] 내에 포함되도록 순차

적 패턴 행렬을 구성하기 위한 사용자 선택 가능한 벡터의 최대 한계가 도달될 때까지, 또는 포함을 위해 유사

성 임계치를 능가하기 위해 입력에 충분한 높은 유사성을 갖는 추가의 기준 관찰이 존재하지 않을 때까지 계속

된다.

국부화된 집합[D(t)]의 멤버쉽을 결정하는데 있어서 다른 수정이 고려된다.  예로서, 전술된 클러스터링 선택[0078]

방법 및 유사성 선택 방법의 모두에서, 유사성을 위한 커널로 비교되거나 클러스터링된 벡터를 포함하는데 사용

된 원소의 세트, 즉 파라미터는 모델 및 추정치를 생성하는데 사용된 것들과 동일하지 않을 수도 있지만, 대신

에 서브세트가거나 파라미터의 부분 중첩 세트일 수 있다.  전술된 바와 같이, 시스템(10) 및 모델(14)을 위한

부가의 단계는 이어서 집합[D(t)]을 생성하도록 수행된다.  구체적으로, 일단 벡터[1차 벡터(tp)라 칭함]가 집

합[D(t)] 내에 포함을 위해 선택되면, 다른 시간 관련 벡터(시간상 전방으로 룩킹하거나 후방으로 룩킹함)가 각

각의 1차 벡터에 대해 선택되어 각각의 1차 벡터에 대한 학습된 순차적 패턴 행렬을 형성하고 집합[D(t)] 내에

포함된다.  시간 관련 벡터를 선택하기 위한 프로세스가 이하에 설명된다.  모듈(28)에 의한 국부화는 이하에

상세히 설명되는 학습된 순차적 패턴 행렬의 3차원 집합들 중 임의의 것에 적용될 수 있다는 것이 이해될 수 있

을 것이다.

이제 모델(14) 내에 시간 도메인 정보의 통합으로 전환하면, 본 명세서에 설명된 모니터링 시스템(10)에 대한[0079]

일 접근법에 의해, 2개의 벡터의 유사성을 비교하기 위해 동작하는 상기 커널 함수는 2개의 동일하게 치수 설정

된 어레이 상에서 동작하는 확장된 커널 함수(K)로 대체된다.

[0080]

여기서, Xnew는 입력 패턴 어레이이고, Xi는 학습 패턴 어레이이다.   패턴 어레이 또는 패턴 행렬은 시간 관련[0081]

벡터의 시퀀스로 구성되고, 여기서 각각의 그 성분 벡터는 별개의 시간 순간으로부터 센서 측정치를 포함한다.

패턴 어레이 내의 벡터들 중 하나는 1차 벡터로 나타내고, 그 데이터가 유도되는 시간은 현재 1차 시간 지점

(tp)으로 나타낸다.  다른 벡터는 계통적인 방식으로 1차 시간 지점에 관련하는 시간 지점과 연관된다.

일 형태에서, 1차 시간 지점은 패턴 어레이로 시간 순서화된 지점(또는 이들 시간 지점을 표현하는 시간 순서화[0082]

된 벡터)의 시퀀스를 구성하는 시간 지점들의 가장 최근의 것이다.  일 접근법에 의해, 다른 시간 지점은 균등

하게 이격되고 시간 지점들 사이의 균일한 시간 간격을 제공하는 시간 단계(Δt)의 정수배만큼 1차 시간 지점을

선행한다.  소정의 수의 샘플(n1b)에서, 시간 지점은 순서화된 시퀀스를 형성한다: (tp-n1bΔt, tp-(n1b-1)Δt,

..., tp-2Δt, tp-Δt, tp).  시간 지점의 시퀀스는 룩백 패턴 어레이를 정의한다.

[0083]

도 6에 도시된 바와 같이, 1차 벡터(tp)는 각각의 패턴 어레이의 최우측열로서 위치되어 있고, 다른 (n1b) 데이[0084]

터 벡터는 1차 벡터(tp)의 좌측에 위치된 열 벡터이다.  패턴 어레이의 행들은 모델링된 센서로부터 시간 가변
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신호의 짧은 세그먼트에 대응한다.

룩백 패턴 어레이를 사용함으로써, 식 (21)의 확장된 커널 함수는 실시간 시스템 모니터링에 적용될 수 있다.[0085]

입력 패턴 어레이(Xnew) 내의 1차 벡터(tp)(이는 시간 지점 tp에서 벡터를 의미함)는 현재 시간 지점으로부터 시

스템 데이터를 포함하고, 어레이의 나머지는 과거의 최근 시간 지점으로부터 데이터 벡터로 이루어진다.  따라

서, 입력 패턴 어레이는 전통적인 커널 방법에 의해 사용된 현재의 특히 정적 벡터를 포함할 뿐만 아니라, 모니

터링 시스템의 발생하는 동적 거동을 표현하는 벡터의 시퀀스를 또한 포함한다.  시스템 시간이 진행함에 따라,

새로운 1차 벡터가 어레이의 최우측 위치에 나타나고 가장 오래된 벡터가 최좌측 위치로부터 드롭되는 것을 제

외하고는, 선행 어레이와 동일한 많은 데이터를 포함하는 새로운 입력 패턴 어레이가 형성된다.  따라서, 단일

시간 순간을 표현하는 단일 입력 벡터는 다중 입력 패턴 어레이(Xnew)에 사용될 것이고, 벡터들이 순차적으로 사

용된다고 가정하면, 벡터들은 어레이 내에 벡터가 존재하는 것과 동일한 횟수로 사용될 것이다.  이 방식으로,

입력 패턴 어레이는 시간을 통한 패턴의 이동 윈도우를 기술한다.  여기서, 이동 윈도우는 윈도우가 타임라인을

따라 또는 시간 순서화된 센서값 벡터의 시퀀스를 따라 이동함에 따라 그 벡터가 세트 내에 포함되어 있는 것을

변경하는 연대적 순서의 고정된 수의 벡터의 세트 또는 그룹을 의미한다.

상기 식 (22)에 정의된 패턴 어레이는 nlb*Δt에 동일한 시간의 윈도우에 걸치는 nlb 데이터 벡터를 포함한다.[0086]

데이터 벡터들은 본 예에서 시간상 균등하게 이격된다.  이러한 것을 설명하는 다른 방식은 각각의 입력 패턴

어레이 또는 행렬이 단지 입력 패턴 어레이(Xnew) 내의 입력 벡터에 의해 표현된 시간 지점들 사이의 균일한 시

간 간격에 의해 정의된다는 것이다.

대안적으로, 커널은 상이한 시간 길이에 걸치는 패턴 어레이들을 비교하는데 사용될 수 있다.  패턴 어레이가[0087]

일 시간 단계(Δt1)만큼 이격된(즉, 예를 들어 1초 이격됨) 시간 지점으로부터 데이터를 포함하면, 그리고 다른

패턴 어레이의 시간 지점이 제 2 시간 단계(Δt2)만큼 상이하면(즉, 예를 들어 10초 이격됨), 패턴 어레이는 2

개의 상이한 시간 윈도우 n1b*Δt1 및 n1b*Δt2에 걸칠 것이고, 따라서 상이한 주기를 표현하는 2개의 패턴 어레

이가 존재하게 된다.  일 형태에서, 하나의 패턴 어레이가 다른 패턴 어레이 내에서와는 상이한 벡터들(또는 시

간 지점들) 사이의 시간 간격을 가질 수 있더라도 패턴 어레이가 동일한 수의 벡터를 포함하는 한, 2개의 패턴

어레이 내의 동일한 위치로부터 벡터에 정합하는 커널 함수(최우측을 갖는 최우측, 우측으로부터 제 2의 것을

갖는 제 2의 것 및 최좌측을 갖는 최좌측 상에)가 가변 시간 스케일을 가로질러 연산하는 것이 가능할 것이다.

따라서, 일 예에서, 행렬들은 시간 간격이 스펙트럼 시간 신호 내의 피크의 고조파(1/f)에 대응할 수 있도록 상

이하게 이격된 시간 지점을 가로질러 연장할 수 있다.  패턴 어레이에 의해 커버된 시간 지점 또는 주기의 이

차이는 입력 패턴 어레이 내의 각각의 벡터가 학습된 패턴 어레이 내의 대응 학습된 표본을 갖는 한(또는 달리

말하면, 학습된 행렬 및 입력 행렬의 모두가 동일한 수의 벡터를 가짐), 학습된 패턴 어레이들과 입력 패턴 어

레이들 사이에서, 입력 패턴 어레이로부터 입력 패턴 어레이로, 학습된 패턴 어레이로부터 학습된 패턴 어레이

로, 또는 이들의 임의의 조합으로 사용될 수 있다는 것이 또한 이해될 수 있을 것이다.

다른 예에 따르면, 커널은 그 패턴 벡터가 시간상 균등하게 이격되어 있지 않은 패턴 어레이들을 비교하는데 사[0088]

용될 수 있다.  일정한 시간 간격 또는 단계만큼 패턴 벡터를 이격하는 대신에, 시간 단계는 패턴 어레이 내의

위치에 의해 변경될 수 있다.  가장 최근의 벡터(어레이의 우측 부근에 위치됨)에 대해 작은 시간 단계 및 더

오래된 벡터(어레이의 좌측 부근에 위치됨)에 대해 더 큰 시간 단계를 사용함으로써, 커널 함수는 더 먼 과거에

서의 변화로부터 몇몇 효과를 여전히 유지하면서 가장 최근의 변화에 주의를 집중할 것이다.

도 1을 재차 참조하면, 부가의 필터링 단계가 커널 함수[식 (22)]에 의한 분석에 앞서 필터 모듈(106)에 의해[0089]

패턴 어레이 상에 수행될 수 있다.  필터링이 사용될 때, 이는 기준 벡터 및 입력 벡터의 모두 상에 수행되어

추정치를 생성하기 위해 사용될 2개의 최종적인 신호값 사이의 임의의 실질적인 비의도적인 오정합을 회피한다.

필터링 단계에서, 각각의 시간 가변 센서 세그먼트(패턴 어레이의 행)는 필터링 알고리즘에 의해 프로세싱되어

세그먼트 내의 데이터를 평탄화하거나 데이터로부터 통계적 특징을 계산한다.  이동 윈도우 평균화, 3차 스플라

인 필터링(cubic spline filtering) 또는 사비츠키-골레이(Savitsky-Golay) 필터링과 같은 평탄화 알고리즘은

원본 신호 내의 중요한 추세를 캡처하지만, 신호 내의 노이즈를 감소시킨다.  평탄화 알고리즘은 입력 신호 내

의 각각의 요소에 대한 평탄화된 값을 생성하기 때문에, 이들은 센서 데이터의 원본 패턴 어레이와 동일한 치수

를 갖는 패턴 어레이를 생성한다.  대안적으로, 필터링 단계는 각각의 신호 내의 데이터의 통계적 특징을 계산

하기 위해 하나 이상의 특징 추출 알고리즘의 적용으로 이루어질 수 있다.  이들 특징은 신호 데이터의 평균,

분산 또는 시간 도함수를 포함할 수 있다.  동일한 수의 특징 추출 알고리즘이 패턴 어레이 내의 데이터에 적용
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되는 한, 원본 패턴 어레이 내의 데이터 벡터의 수는 변경될 수 있다.

전술된 바와 같이, 패턴 어레이가 모델링되고 있는 시스템으로부터 시간적 정보를 표현하는데 사용되는 수많은[0090]

방법이 존재한다.  이들 방법은 이들에 한정되는 것은 아니지만, 균등하게 이격된 시간 지점으로부터 데이터 벡

터의 시퀀스, 패턴 어레이가 가변 주기를 갖도록 상이한 시간 기간에 걸치는 데이터 벡터의 시퀀스 및 그 데이

터 벡터가 시간상 균등하게 이격되지 않는 시퀀스를 포함한다.  입력 패턴 어레이는 기준 패턴 어레이와는 상이

한 간격을 가질 수 있고, 또는 이들은 동일할 수도 있다.  게다가, 패턴 시퀀스는 평탄화 또는 특징 추출 알고

리즘에 의해 필터링될 수 있다.  필터링 알고리즘에 의해 생성된 패턴 어레이 또는 어레이들의 형태에 대한 유

일한 제한은 확장된 커널 함수(식 21)에 의해 프로세싱된 2개의 어레이가 동일하게 치수 설정되어야 하는 것이

다(즉, 동일한 수의 행 및 열을 가짐).

전술된 벡터 기반 커널 함수에 유사하게, 확장된 커널 함수는 스칼라값 또는 유사성 척도를 반환하지만, 여기서[0091]

는 스칼라값이 2개의 벡터보다는 2개의 어레이 사이의 유사성을 표현한다.  확장된 커널 함수는 상기에 열거된

벡터 기반 커널 함수와 동일한 특성을 표시하는 유사성 스코어를 생성한다.  즉, 유사성 스코어는 그 범위가 경

계 형성되는 스칼라이고, 2개의 어레이가 동일할 때 경계들 중 하나에 대해 1(또는 다른 선택된 값)의 값을 갖

고,  범위에  걸쳐  단조적으로  변경되고,  그  절대값은  2개의  어레이가  동일하게  접근함에  따라  증가한다.

게다가, 확장된 커널 함수는 2개의 어레이의 정합하는 시간 성분 상에서 연산한다.  이는, 2개의 룩백 패턴 어

레이의 예에서, 확장된 커널 함수가 기준 및 입력 패턴 어레이 각각으로부터 2개의 1차 벡터(tp) 사이, 이어서

어레이 내의 선행 벡터들을 가로지르는 1차 벡터 -1의 좌측 등으로 2개의 데이터 벡터 상에서 유사성을 발견하

는 것을 의미한다.

확장된 커널 함수의 일 예는 미국 특허 제 6,952,662호에 설명된 유사성 연산자에 기초한다.  Xnew 및 Xi를 nsens[0092]

센서(또는 파라미터)로부터 데이터를 포함하고 nlb 순차적 시간 지점을 포함하는 2개의 동일하게 치수 설정된 패

턴 어레이라 하면, 확장된 커널 함수는 이하와 같이 기록된다.

[0093]

여기서, ρ 및 λ는 상수이다.  식 23의 시간 의존성 함수[θ(t)]는 패턴 어레이의 시간 요소 상에서 연산하여,[0094]

2개의 어레이 내의 동일한 시간 지점 벡터로부터 데이터를 정합한다.  이 시간 데이터 정합을 성취하는 일 수단

은 소정의 센서 j에 대한 시간 데이터의 가중 평균을 사용하는 것이다.

[0095]

소정의 센서 j에 대한 데이터 요소들 사이의 유사성(sj,k)은 센서 rangej에 대한 정상 동작 데이터의 범위에 의[0096]

해 정규화된 데이터 요소의 절대차로서 정의된다.  따라서, 소정의 센서의 데이터에 대한 시간 의존성 유사성

함수[θ(t)]는 이하와 같다.

[0097]
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식 23과 25를 조합하면, 2개의 패턴 어레이에 대한 확장된 커널 함수가 생성된다.[0098]

[0099]

확장된 커널 함수의 다른 예는 미국 특허 제 7,373,283호에 설명된 유사성 연산자에 기초한다.  재차, Xnew 및[0100]

Xi를 nsens 센서로부터의 데이터를 포함하고 n1b 순차적 시간 지점에 걸친 2개의 동일하게 치수 설정된 패턴 어레

이라 하면, 이 제 2 확장된 커널 함수는 이하와 같이 기록된다.

[0101]

이 확장된 커널 함수는 2개의 패턴 행렬 내의 소정의 센서의 시간적 데이터를 비교하기 위해 식 24 및 25에 의[0102]

해 정의된 바와 동일한 시간 의존성 함수[θ(t)]를 이용한다.

[0103]

도 6을 참조하면, 2개와 확장된 커널 함수(식 26 및 28)는 단지 어떻게 이들이 모델링된 센서로부터 정보를 수[0104]

집하는지에 대해서만 상이하고, 첫번째 식은 커널 함수의 원소 형태를 표현하고, 제 2 식은 커널 함수의 벡터차

형태(1-노옴과 같은)를 표현한다.  양 식은 2개의 어레이 Xnew 및 Xi 내의 시간 가변 신호의 세그먼트들 사이의

차이를 고려하기 위해 가중된 평균화를 이용한다.  구체적으로, 양 예시적인 식 26 및 28에 대해 그리고 각각의

순차적 학습된 패턴 행렬 a 내지 g에 대해, 절대차는 각각의 대응 쌍의 학습된 값 및 입력값에 대해 계산된다.

값들은 이들이 (1) 동일한 센서(또는 파라미터) 및 (2) 패턴 어레이 내의 동일한 시간 지점(양 값이 1차 시간

tp로부터 오는 것과 같은) 또는 어레이 내의 다른 벡터에 대해 동일한 위치(양 값이 패턴 어레이 내의 우측으로

부터 두번째인 벡터들 상에 있을 때와 같이)를 표현할 때 대응한다.  학습된 값과 입력값의 쌍으로부터의 절대

차는 특정 센서에 대한 최종적인 단일 평균값을 얻기 위해 가중된 평균화를 경유하여 조합된다.  이는 가중된

평균화 단계에서 각각의 센서/파라미터에 대해 하나의 최종 평균 스칼라가 존재하도록 패턴 행렬 a 내지 g 및

패턴 어레이(Xnew)에 의해 표현된 각각의 센서 또는 파라미터(1 내지 5)에 대해 반복된다.

다음에, 제 1 확장된 커널 함수(식 26)에서, 가중된 평균화 단계로부터의 결과는 이어서 어레이간 비교를 위한[0105]

스칼라값을 생성하기 위해 모든 센서를 가로질러 평균화된다.  마지막으로, 이 스칼라값은 예를 들어 0 내지 1
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의 범위 내에 있도록 전술된 바와 같은 유사성 스코어의 특성에 결부되는 값으로 변환되는데, 1은 동일한 것을

의미한다.  이 프로세스는 이어서 3차원 집합[D(t)] 내의 각각의 학습된 순차적 패턴 행렬 a 내지 g에 대해 반

복된다.  제 2 확장된 커널 함수(식 28)에서, 가중된 평균화 단계로부터의 결과는 각각의 센서에 대해 하나씩,

유사성 스코어로 곧바로 변환된다.   다음에,  유사성 스코어의 이 벡터는 단일 유사성 스코어가 3차원 집합

[D(t)] 내의 각각의 학습된 순차적 패턴 행렬 a 내지 g에 대해 함수에 의해 반환되도록 평균화된다.

유사성 기반 모델링의 환경 내에서 사용될 때, 전술된 확장된 커널 함수는 또한 일반성의 손실 없이 확장된 유[0106]

사성 연산자라 명명될 수 있다.  상기 식에서 사용된 표기 (S(Xnew,Xi))는 또한 전통적인 유사성 연산자 기호

를 사용하여 기록될 수 있다.

전술된 다른 벡터 기반 커널 함수(예를 들어, 식 13 내지 20)의 확장된 버전이 2개의 순차적인 패턴 어레이 내[0107]

의 동일한 시간 지점으로부터 시간적 데이터에 정합하도록 가중된 평균화를 사용하여 구성될 수 있다.  예를 들

어, Xnewa 및 Xi를 nsens 센서로부터의 데이터를 포함하고 n1b 순차적 시간 지점에 걸친 2개의 동일하게 치수 설정

된 패턴 어레이라 하면, 식 17의 원소 유사성 연산자를 사용하여 식 16에 정의된 커널 함수의 확장 버전은 이하

와 같다.

[0108]

가중된 평균화(식 23)는 더 최근의 데이터가 구식이 된 데이터보다 더 무겁게 가중되도록 가중치가 선택될 수[0109]

있기 때문에 패턴 어레이 내의 시간 가변 신호의 세그먼트들 사이의 차이를 고려하는데 사용된다.  따라서, 1차

시간 지점(tp)으로부터의 데이터는 통상적으로 최고 가중치가 제공되고, 선행 시간 지점(식 22)으로부터의 데이

터는 계속 감소하는 가중치가 제공된다.  1차 시간 지점에 대한 시간을 갖고 선형으로 또는 지수함수적으로 이

들을 감소시키는 것과 같은 수많은 방안이 가중치를 정의하는데 사용될 수 있다.

다양한 다른 시간 의존성 함수[θ(t)]가 시간 가변 신호의 2개의 세그먼트들 내의 순차적인 시간 지점으로부터[0110]

데이터를 정합하는데 사용될 수 있다는 것이 이해될 수 있을 것이다.  이러한 방법은 이들에 한정되는 것은 아

니지만, 다른 가중된 노옴(2-노옴 및 p-노옴) 및 최대, 최소 또는 중간차를 포함한다.  함수에 단지 요구되는

것은 2개의 시퀀스가 동일하면 최소화되는 스칼라값(0의 값)을 반환하고 시퀀스가 더 상이해짐에 따라 값이 증

가하는 것이다.

SBM의 자기연상 형태(식 7)에서 확장된 유사성 연산자(예를 들어, 식 26 또는 28)와 순차적 패턴 어레이의 개념[0111]

을 조합하기 위해, 벡터 기반 학습된 벡터 행렬(D)의 개념이 확장된다.  전술된 SBM의 표준 형태에서, 학습된

벡터 행렬은 정상 동작의 기간 중에 다양한 시간 지점으로부터 선택된 학습된 표본(벡터)의 세트로 이루어진다.

그로부터 이들 벡터가 선택되는 시간 지점이 1차 시간 지점을 표현하게 하면, 각각의 학습된 벡터는 각각의 1차

시간 지점을 선행하는 시간 지점의 시퀀스로부터 데이터를 수집함으로써 학습된 순차적 패턴 행렬 내로 확장될

수 있다.  이 방식으로, 학습된 벡터 행렬(D)은 학습된 순차적 패턴 행렬[D(t)]의 집합으로 확장된다.  학습된

패턴 행렬의 이 집합은 3차원 행렬을 형성하고, 여기서 차원은 제 1 차원에서 모델링된 센서 또는 파라미터, 제

2  차원에서  1차  시간  지점으로부터  학습된  표본(벡터)  및  제  3  차원에서  1차  시간  지점에  대한  시간을

표현한다.

SBM의 벡터 기반 형태에 사용된 학습된 벡터 행렬을 구성하기 위해 사용된 전술된 훈련 방법은 SBM의 순차적 패[0112]

턴 형태에 의해 요구된 학습된 순차적 패턴 행렬[D(t)]의 3차원 집합을 생성하는데 이용될 수 있다.  이는 순차

적 패턴 행렬을 구성하기 위해 선행 시간 지점으로부터 기준 벡터로 훈련 알고리즘에 의해 선택된 각각의 기준

벡터를 증대함으로써 성취된다.  훈련 알고리즘에 의해 선택된 각각의 기준 벡터에 대해 하나씩, 학습된 패턴

행렬의 집합은 모델링된 시스템의 "정상" 거동을 표현하는 표본의 기준 라이브러리(18)로부터 드로잉된다.  순

차적 SBM(이하에 설명됨)의 시간-추론적 형태가 사용되면, 후속 시간 지점으로부터의 부가의 벡터는 각각의 순

차적 패턴 행렬에 추가된다.

SBM의 벡터 기반 형태를 위해 사용되는 훈련 방법은 기준 데이터 내에 고유적인 시간 도메인 정보에 관련하지[0113]

않고, 정상 동작의 기간 중에 다양한 시간 지점으로부터 표본(벡터)을 선택한다.  SBM의 순차적 패턴 어레이 형
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태에서, 그 시간 도메인 정보는 1차 시간 지점에 바로 선행하고 (가능하게는) 후속하는 시간 지점의 시퀀스로부

터 데이터 벡터로 각각의 선택된 표본을 증대함으로써 공급된다.  시간 도메인 정보 내에서 인수분해하면서 순

차적 학습된 패턴 행렬의 집합[D(t)]을 구성하고 국부화하기 위한 대안 프로세스에서, 각각의 입력 패턴 어레이

는 입력 패턴 어레이 내의 것에 수가 동일한(즉, n1b+1) 기준 벡터의 모든 시퀀스에 비교될 수 있다.  비교는 입

력 패턴 어레이와 가장 유사한 기준 벡터의 이들 시퀀스를 식별하기 위해 유사성 연산자(예를 들어, 식 26 또는

28)의 확장된 형태를 사용함으로써 성취된다.  기준 벡터의 각각의 식별된 시퀀스는 집합[D(t)] 내의 순차적 학

습된 패턴 행렬들 중 하나를 형성한다.  어떠한 선택 프로세스이건간에, 훈련 방법이 서로 매우 근접한 1차 시

간 지점으로부터 표본을 선택하는 것이 가능하다.  2개의 표본이 가까운 1차 시간 지점으로부터 선택될 때, 대

응 순차적 패턴 행렬은 통상의 데이터 벡터를 포함할 수 있다.

도 6을 참조하면, 식 7은 입력 패턴 어레이(Xnew) 및 학습된 순차적 패턴 행렬[D(t)]의 3차원 집합을 갖고 도시[0114]

되어 있다.  입력 패턴 어레이(Xnew)는 또한 이것이 현재 시간 순간을 표현하는 벡터(tp)를 포함하고 D(t) 내의

학습된 패턴 행렬에 대조되기 때문에 현재 또는 실제 패턴 어레이라 칭할 수도 있다.  도시된 예에서, 입력 패

턴 어레이(Xnew)는 4개의 벡터를 포함하고, 여기서 벡터 tp는 어레이 내의 최종(최우측) 벡터이다.  다른 벡터는

간단화를 위해 tp에 앞서 시간 간격의 수를 칭하는 -3 내지 -1이라 넘버링된다.  따라서, 도 6의 벡터 -3은 (tp-

n1bΔt)와 동일한 것을 표현하고, 여기서 n1b=3이라는 것이 이해될 수 있을 것이다.  도 6에 도시된 바와 같이,

학습된 순차적 패턴 행렬(모델링된 센서, 1차 시간 지점 및 패턴 시퀀스)의 집합의 3개의 차원은 이하와 같이

도시되어 있는데, 즉 번호 1 내지 5는 5개의 모델링된 센서로부터의 데이터를 표현하고, 번호의 4개의 열(또는

벡터)은 4개의 순차적 시간 지점을 표현하고, 7개의 레이어링된 직사각형은 정상 동작의 다양한 기간으로부터

선택된 1차 시간 지점(tp)을 각각 갖는 순차적 패턴 행렬 a 내지 g를 각각 표현한다.  학습된 순차적 패턴 행렬

[D(t)]의 3차원 집합은 7개의 순차적 패턴 행렬 a 내지 g를 포함한다.  따라서, 각각의 순차적 패턴 행렬 a 내

지 g는 5개의 센서 및 4개의 순차적인 시간 지점으로부터의 데이터를 포함하고, 입력 패턴 행렬(Xnew)과 동일한

치수를 갖는다.  비교를 위해, 2차원 행렬(D)(도 3)을 갖는 종래의 벡터 기반식과 학습된 순차적 패턴 행렬

[D(t)](도 6)을 갖는 3차원 집합 사이의 차이를 시각화하기 위한 다른 방식은 종래의 2차원 어레이가 단지 3차

원 집합[D(t)]으로부터 tp 벡터만을 포함하도록 7개의 순차적 패턴 어레이 a 내지 g를 가로질러 절단한 단일 행

렬에 의해 형성되어 있다는 것이다.

도 6의 최우측 괄호에서, 확장된 유사성 연산자( )는 입력 패턴 어레이(Xnew)와 전술된 바와 같은 7개의 학습된[0115]

순차적 패턴 행렬 a 내지 g 사이의 유사성을 계산한다.  도 6의 예에서 그리고 식 26 또는 28로부터 가중 평균

단계를 사용하여, 모델은 센서 1에 대한 단일 평균값을 얻기 위해 입력 패턴 어레이(Xnew) 내의 센서 1에 대한

시간 가변 신호에 순차적 패턴 행렬 a 내의 센서 1에 대한 시간 가변 신호를 비교한다.  이는 하나의 평균값이

각각의 센서에 대해 제공될 때까지 센서 2 내지 5에 대해 반복된다.  다음에, 이들 스칼라값(또는 식 28에 대해

유사성 스코어)은 순차적 패턴 행렬 a에 대한 단일 유사성 척도를 결정하도록 평균화된다.  이는 이어서 각각의

순차적 패턴 행렬 b 내지 g에 대해 반복되어, 각각의 학습된 순차적 패턴 행렬 a 내지 g에 대해 하나의 유사성

스코어씩, 7개의 유사성 스코어를 포함하는 유사성 벡터를 반환한다.

중간 괄호 내의 연산은 집합[D(t)] 내의 한 쌍의 학습된 순차적 패턴 행렬 a 내지 g의 각각의 조합에 대해 하나[0116]

씩, 유사성 값의 7×7 정방 유사성 행렬을 생성한다.  유사성 벡터를 갖는 최종적인 유사성 행렬의 역의 곱셈은

7개의 원소를 포함하는 가중 벡터를 생성한다.  최종 단계에서, 가중 벡터는 집합[D(t)]으로 곱해져서 추정 행

렬(Xest)을 생성한다.  일 형태에서, 추정 행렬(Xest)은 입력 패턴 어레이(Xnew)와 동일한 크기여서, 입력 패턴 어

레이 내의 입력 벡터에 의해 표현된 각각의 시간 기간에 대응하는 추정 벡터를 갖게 된다.  도 6의 본 예에서,

추정 행렬(Xest)은 현재 시간 순간(tp)에 대한 그리고 룩백 윈도우에 형성된 것처럼 각각의 3개의 선행 시간 지점

-1 내지 -3에 대해 추정 벡터를 갖는다.  추정 행렬(Xest)의 사용은 이하에 더 상세히 설명된다.  현재 또는 1차

벡터를 갖거나 갖지 않고 함께 그룹화된 선행 벡터는 본 명세서의 임의의 위치에서 룩백 윈도우라 칭할 수

있고, 현재 또는 1차 벡터를 갖거나 갖지 않고 함께 그룹화된 후속 벡터는 본 명세서의 임의의 위치에서 그리고

이하에 설명된 룩어헤드(look-ahead) 윈도우라 칭할 수도 있다는 것이 또한 주목된다.

확장된 유사성 연산자를 갖는 순차적 패턴 행렬을 이용하는 SBM의 추론적 형태의 확장(식 9)이 즉시 명백하다.[0117]

추론적 모델링의 벡터 기반 형태와 유사하게, 학습된 순차적 패턴 행렬[Da(t)]은 입력 패턴 어레이(Xin) 내의 센
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서값에 맵핑되는 학습된 순차적 패턴 행렬 및 추론된 센서에 맵핑되는 순차적 패턴 행렬 a 내지 g[Dout(t)]를 포

함하는 집합 행렬로서 이해될 수 있다.  도 7을 참조하면, 식 9는 입력 패턴 어레이(Xin) 및 5개의 입력 센서 1

내지 5에 대해 7개의 학습된 순차적 패턴 행렬을 갖는 학습된 순차적 패턴 행렬[Din(t)]의 3차원 집합을 갖고 도

시되어 있다.  집합 행렬[Da(t)]은 식 10에 정의된 2차원 집합 행렬의 3차원 확장인 것이 이해된다.  도 7의 도

시를 도 6의 것에 비교하면, 양 도면들의 괄호 내의 행렬은 어떻게 이들이 표시되는지를 제외하고는 동일하다.

따라서, 추론적 모델을 위한 가중 벡터의 계산은 자기연상 모델에 대해 전술된 것과 동일한 방식으로 진행된다.

다음에, 도 4에서와 같이, 여기서 행렬[Dout(t)]이 이제 학습된 순차적 패턴 행렬의 3차원 집합인 것 외에, 가중

벡터는 도 7에서 추론된 센서에 대해 학습된 순차적 패턴 어레이에 의해 곱해지고, 이 단계는 단지 추론된 센서

를 표현하는 추정 행렬(Yest)을 형성한다.  추론적 모델링의 벡터 기반 형태를 위해 전술된 바와 같이, 가중 벡

터는 또한 입력 및 추론된 센서(도 8에 도시됨)에 대해 추정 행렬을 생성하기 위해 Din(t) 및 Dout(t)의 모두를

포함하는 학습된 순차적 패턴 행렬[Da(t)]의 전체 3차원 집합에 의해 곱해질 수 있다.

추론적 모델링은 이들 데이터에 대한 기준 데이터가 학습된 순차적 패턴 행렬[Da(t) 또는 Dout(t)]의 3차원 집합[0118]

에 포함되기 때문에 그 데이터가 입력 데이터 스트림 내에 포함되어 있지 않은 센서에 대한 추정치의 계산을 가

능하게 한다.  개념적으로, 추론적 모델은 모델링된 센서의 치수를 따라 외삽한다.  시간 차원에 외삽하는 추론

적 모델을 생성하는 것이 또한 가능하다.  이는 식 22의 1차 시간 지점 및 룩백 윈도우의 개념을 재고려함으로

써 이해될 수 있다.  룩백 윈도우의 시간 지점은 1차 시간 지점에 선행하는데, 이는 이들 시간 지점이 1차 시간

에 대해 과거에 놓여 있다는 것을 의미한다.  1차 시간에 후속하는 시간 지점들로 구성된 룩어헤드 윈도우를 또

한 정의할 수 있다.  룩어헤드 윈도우 내의 시간 지점은 1차 시간에 대해 미래에 있다.  1차 시간 지점에 선행

하는 시간 지점의 주어진 수(n1b) 및 1차 시간 지점에 후속하는 시간 지점의 주어진 수(n1a)로 구성된 시간 지점

의 순서화된 순서를 고려한다:  (tp-n1bΔt,  tp-(n1b-1)Δt,  ...,  tp-2Δt,  tp-Δt,  tp,  tp+Δt,  tp+2Δt,  ...,

tp+(n1a-1)Δt, tp+n1aΔt).  시간 지점의 시퀀스는 룩백 및 룩어헤드 데이터의 모두를 포함하는 패턴 어레이를

정의한다.

[0119]

도 9를 참조하면, 학습된 순차적 패턴 행렬[Da(t)]의 3차원 집합이 룩백 및 룩어헤드 데이터의 모두를 포함하는[0120]

순차적 패턴 행렬 a 내지 g로 생성되면 시간 차원으로의 외삽을 지원하는 SBM의 추론적 형태로의 확장(식 9)이

생성된다.  입력 패턴 어레이(Xin)는 단지 현재 시간 지점 및 선행 시간 지점으로부터의 데이터(미래 시간 지점

으로부터의 데이터는 아직 존재하지 않음)만을 포함하기 때문에, 학습된 순차적 패턴 행렬[Da(t)]의 집합은 시간

차원을 따라 분리된 2개의 서브-행렬로 구성된 집합 행렬이다.  이들 서브-행렬 중 첫번째 것[D1b(t)]은 다양한

1차 시간 지점으로부터 그리고 룩백 시간 지점으로부터 데이터를 포함한다.  제 2 서브-행렬[D1a(t)]은 룩어헤드

시간 지점으로부터 데이터를 포함한다.  식 9는 시간 지점 tp 내지 -3 사이의 3개의 시간 간격의 룩백 윈도우

및 5개의 입력 센서의 입력 패턴 어레이(Xin)를 갖고 나타낸다.  룩백부 또는 서브-행렬[D1b(t)]은 5개의 입력

센서(1 내지 5), 그 자신의 순차적 패턴 행렬 a 내지 g 상의 각각의 7개의 1차 시간 지점 및 각각의 순차적 패

턴 행렬 a 내지 g 상의 4개의 룩백 시간 지점 또는 기준 벡터 tp 내지 -3으로부터의 데이터를 포함하는 학습된

순차적 패턴 행렬의 3차원 집합이다.  룩어헤드부 또는 서브-행렬[D1a(t)]은 5개의 입력 센서(1 내지 5), 그 자

신의 1차 시간 지점을 갖는 7개의 학습된 순차적 패턴 행렬 a 내지 g 및 2개의 미래의 또는 연속적인 시간 지점

또는 벡터 +1 및 +2로부터의 데이터를 포함하는 학습된 순차적 패턴 행렬의 3차원 집합이다.  2개의 세트의 괄

호 내의 연산에 의해 생성된 최종 가중 벡터는 학습된 순차적 패턴 행렬[D1a(t)]의 룩어헤드 집합에 의해 곱해져

서 시간에 외삽하는 추정 행렬(Y1a)을 생성한다.  본 예에서, 2개의 외삽된 추정 벡터 +1 및 +2는 추정 행렬

(Y1a)에 대해 계산되어 미래로의 1개 및 2개의 시간 단계 Δt인 시간 지점을 표현한다.  벡터 기반식에 의해 전

술된 바와 같이(도 5), 가중 벡터는 과거, 현재 및 미래 시간 지점(도 10에 도시됨)에 대한 추정 데이터를 포함

하는 추정 행렬(XYe1) 내의 추정 행렬(X1b, Y1a)을 생성하기 위해 D1a(t) 및 D1b(t)의 모두를 포함하는 학습된 순
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차적 패턴 행렬[Da(t)]의 전체 집합에 의해 또한 곱해질 수 있다.

도 9 및 도 10의 예시를 도 7 및 도 8의 것들과 비교하면, 모든 4개의 도면의 괄호 내의 행렬 계산은 동일하다.[0121]

이는 시간 차원에 외삽하는 추론적 모델에 대한 가중 벡터의 계산이 모델링된 센서의 차원을 따라 외삽하는 추

론적 모델에 대한 것에 동일하다는 것을 의미한다.  2개의 형태의 추론적 모델링은 단지 학습된 순차적 패턴 행

렬의 완전 집합 내에 포함되는 데이터에 의해서만 상이하다.  1차 시간 지점에 대해 미래에 있는 시간 지점에

대한 데이터를 포함하는 모델은 미래에 외삽한다.  입력 데이터 스트림에 있지 않은 센서에 대한 데이터를 포함

하는 모델은 이들 센서 내에 외삽한다.  도 11을 참조하면, 시간 및 모델링된 센서 차원의 모두에 외삽하는 추

론적 모델이 도시되어 있다.  학습된 순차적 패턴 행렬[Da(t)]의 그 3차원 집합은 모델링된 센서 및 시간 차원

을 따라 분리된 4개의 서브-행렬로 구성된 집합 행렬이다.  그 서브-행렬은 입력 센서의 룩백 윈도우에 대한 데

이터[Dlb(t)],  입력 센서의 룩어헤드 윈도우에 대한 데이터[Dla(t)], 출력(추론된) 센서의 룩백 윈도우에 대한

데이터[Dlbout(t)] 및 출력(추론된) 센서의 룩어헤드 윈도우에 대한 데이터[Dlaout(t)]를 포함한다.  계산은 입력

및 출력(추론된) 센서의 모두에 대해 과거, 현재 및 미래 시간 지점(도 10에 도시됨)에 대해 추정 데이터를 포

함하는 추정 행렬(XYe2) 내에 추정 행렬(Xlb, Yla)을 생성한다.

전술된 순차적 패턴 어레이를 갖는 커널 회귀 모델링의 다양한 형태의 각각은 모델 추정 데이터의 추정 행렬을[0122]

생성한다.  일 예에서, 추정 행렬(Xext)은 각각의 입력 패턴 어레이(Xnew)(도 6)에 대해 형성된다.  전술된 예로

부터 이해되는 바와 같이, 현재 시간 지점에 대응하는 벡터 외에, 추정 행렬은 룩백 및/또는 룩어헤드 윈도우

내의 각각의 시간 지점에 대한 벡터를 포함한다.  추정 행렬 내의 순차적 벡터의 수는 모델링 식의 형태(자기연

상 또는 추론적) 및 룩백 윈도우 내의 시간 지점의 수(n1b) 및 룩어헤드 윈도우 내의 시간 지점(n1a)의 수에 의

존한다.  시스템 시간이 진행함에 따라, 타임라인을 따른 각각의 고정된 시간 지점은 입력 패턴 어레이가 도달

함에 따라 다수의 추정 벡터를 축적하고, 시간 지점을 통해 이동하고, 통과한다.  고정된 시간 순간에 대해 계

산될 추정 벡터의 총수는 모델에 의해 분석된 순차적 패턴 행렬에서 순차적 패턴(벡터)의 총수에 동일하다.  센

서 차원을 따라 외삽하는 자기연상 모델 또는 추론적 모델에 대해, 이 총수는 룩백 윈도우 내의 각각의 패턴에

대한 추정 벡터 및 1차(현재) 시간 지점에 대한 추정 벡터에 대응하는 n1b+1에 의해 제공된다.  시간 차원을 따

라 외삽하는 추론적 모델에 대해, 이 총수는 룩백 및 룩어헤드 윈도우 내의 각각의 패턴에 대한 추정 벡터 및 1

차(현재) 시간 지점에 대한 추정 벡터에 대응하는 n1b+1+n1a에 의해 제공된다.

다중 추정 벡터는 고정된 시간 지점에 대해 계산되기 때문에, 상태 모니터링 또는 진단을 위해 알고리즘을 공급[0123]

하기 위해 순차적인 커널 회귀 모델을 이용하는 것은 다수의 이들 알고리즘이 단지 단일 추정 벡터만이 시간 지

점에 대해 존재하는 것을 예상하는 사실에 의해 복잡해진다.  다중 추정 벡터를 처리하는 가장 간단한 수단은

모델 추정치의 소스로서 추정 행렬 내의 모든 다중 벡터 미만을 간단히 지정하고 임의의 다른 것들은 무시하는

것이다.  일 형태에서, 각각의 추정 벡터로부터 추정 벡터들 중 단지 하나만이 추가의 진단 분석을 위해 선택된

다.  통상적으로, 이는 다중 추정 행렬을 가로질러 검색하면서 고정된 임의의 시간 지점(ti)에 대해 선택된 추정

행렬 내의 추정 벡터가 시간 지점이 현재 시간 지점(ti=tcur)이 될 때 또는 달리 말하면 가장 최근의 시간 지점

(도 6 내지 도 8의 예시적인 추정 행렬에서 tp)일 때 생성된 것이다.  입력 패턴 윈도우가 ti를 지나 이동하고

ti가 새로운 현재 시간 지점으로의 룩백 윈도우의 부분이 됨에 따라, ti에 대해 계산된 새로운 추정 데이터는 무

시된다.  달리 말하면, 추정 행렬의 현재 벡터(tp)에 대한 더 오래된 또는 선행하는 벡터는 무시된다.

다른 더 복잡한 방법은 다중 벡터 내의 정보의 장점을 취하면서 다중 추정 행렬을 가로지르는 각각의 고정된 시[0124]

간 지점에 대한 단일 추정 벡터를 생성하거나 선택하는데 사용될 수 있다.  이러한 방법은, 이들에 한정되는 것

은 아니지만, 평균, 가중 평균, 다른 가중 노옴(2-노옴 및 p-노옴), 최대, 최소, 중간값 등을 포함한다.  진단

분석을 위해 선택된 추정 벡터는 또한 그 대응 입력 벡터에 최대 유사성을 갖는 벡터일 수 있고, 가중 벡터를

결정하는데 사용된 것과 유사한 유사성 식을 사용할 수 있다.  이들 방법은 다중 추정 행렬을 가로지르는 단일

고정 시간 지점보다는 추정 행렬 내의 다중 순차적 시간 지점을 표현하기 위해 각각의 추정 행렬에 대한 단일

추정 벡터를 제공하도록 적용될 수 있다는 것이 또한 이해될 것이다.

시간 차원에 외삽하는 추론적 모델에 대해, 전조 모듈(34)(도 1)은 자산의 잔여 사용 수명의 계산과 같은 전조[0125]

알고리즘에 공급하기 위해(또는 다른 방식으로 말하면, 모니터링되고 있는 객체의 미래 상태 또는 동작 상태를

결정하기 위해) 미래 추정 행렬(X1a)을 사용할 수 있다.  이는 모델링된 센서의 외삽된 추정치의 시퀀스가 모델
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링된 센서의 미래 거동을 예측하는 추세선인 사실에 기초한다.  시스템 시간이 진행하고 새로운 입력 패턴 어레

이가 새로운 1차 벡터를 포함하여 형성됨에 따라, 새로운 미래 추정 행렬이 계산된다.  전술된 다른 커널 회귀

모델과 같이, 새로운 추정 행렬은 실질적으로 이전의 행렬을 중첩하는데, 이는 다중 추정값이 각각의 시간 지점

에 각각의 센서에 대해 생성되는 것을 의미한다.

또한, 다른 커널 회귀 모델과 유사하게, 추론적 시간 외삽 모델은 센서의 추세를 위해 적합한 단일값으로 고정[0126]

된 시간 지점에 계산된 다중 추정값을 감소시키도록 안출된 다양한 방법을 사용할 수 있다.  가장 간단한 방법

은 룩어헤드 윈도우 내의 시간 지점의 각각에서 추정 데이터를 공급하기 위해 가장 최근에 계산된 추정 행렬을

선택하는 것이다.  구체적으로, 미래로 양호하게 고정된 시간 지점(ti)에 대해, 추정 벡터는 룩어헤드 윈도우가

먼저 도달할 때 이에 대해 생성될 것이다: ti=tcur+n1a*Δt.  룩어헤드 윈도우가 고정 지점을 통해 통과함에 따라

각각의 연속적인 시간 단계에서, 새로운 추정 벡터가 이에 대해 계산되고, 최종 벡터를 대체한다.  따라서, 모

든 추정 벡터는 추세선을 구성하는데 사용되고, 추정 벡터에 의해 표현된 각각의 시간 지점(또는 고정 지점)에

대한 결과는 이들이 추정 행렬을 구성하는데 사용된 룩어헤드 윈도우를 통해 통과함에 따라 벡터에 대응하도록

더 최근의 추정값에 의해 계속 업데이트된다.

간단한 것 이외에, 이 접근법은 단지 가장 최근에 계산된 추정 행렬만이 사용되기 때문에, 동적 변화에 신속하[0127]

게 반응하는 센서 추세를 생성한다.  추세선 내의 추정 데이터는 각각의 연속적인 시간 단계에 대해 대체되기

때문에, 추세는 랜덤 변동에 민감하다.  이는 고정된 시간 지점에서 추세값이 연속적인 시간 단계들 사이에 극

적으로 변동될 수 있는 것을 의미한다.  평균, 가중 평균 또는 다른 가중 노옴과 같은 다른 더 복잡한 방법은

그를 위한 단일 추정값을 생성하기 위해 다중 추정 행렬을 가로질러 고정된 시간 지점에 계산된 추정값의 2개

이상 또는 모두를 이용한다.  이들 방법에 의해 생성된 추세선은 더 평탄하지만, 급속한 동적 변화에 대해 덜

응답성이다.  예측된 시스템 거동을 표현하는 추세선을 생성하도록 설계되는 상기 방법에 추가하여, 가능한 거

동의 범위를 표시하는 다른 추세선이 생성된다.  예를 들어, 최소 추정값을 연결하는 추세선으로 결합된 각각의

미래 시간 지점에서 최대 추정값을 연결하는 추세선이 모델에 의해 생성된 결과들을 결합한다.

도 1을 재차 참조하면, 전술된 바와 같이, 전체 추정치 행렬(Xext) 또는 단일 대표적인 추정치 벡터가 디퍼런싱[0128]

엔진(20)에 통과된다.  디퍼런싱 엔진은 입력 패턴 어레이(Xin 또는 Xnew)로부터 추정 행렬을 감산하고 또는 현재

시간 지점의 입력 벡터로부터 대표적인 추정 벡터를 감산한다.  구체적으로, 추정 행렬로부터 각각의 선택된 추

정값은 입력 패턴 어레이로부터 대응 입력값으로부터 감산된다.  나머지 벡터 또는 단일 대표적인 나머지 벡터

의 이 어레이는 이어서 경보 모듈(22)에 제공된다.  경보 모듈(22)은 추정치 및 입력 데이터가 통계적으로 상이

한지의 여부를 판정하기 위해 나머지 데이터에 통계 테스트를 적용한다.  경보 모듈(22)은 결함 판정을 행하기

위해 임의의 다양한 테스트를 수행한다.  이는 하나 이상의 나머지값을 사용하여 규칙 로직에 액세스하기 위한

규칙 엔진을 포함할 수도 있다.  규칙은 간단한 단변량 임계치 측정치로부터 다변량 및/또는 시간 시리즈 로직

까지 임의의 다양한 통상적으로 사용되는 규칙일 수 있다.  더욱이, 몇몇 규칙의 출력은 예를 들어 간단한 임계

치 규칙이 윈도잉된 경보 카운팅 규칙(예를 들어, y 관찰에서 x개의 임계치 경보)으로 공급될 때와 같이, 다른

규칙으로의 입력일 수도 있다.  더욱이, 통계 기술은 그 자체가 규칙으로의 입력일 수 있는 다른 측정치 및 신

호를 유도하기 위해 나머지 데이터에 사용될 수 있다.  적용 가능한 통계적 분석은 이들에 한정되는 것은 아니

지만 이동 윈도우 통계(평균, 중간값, 노옴 편차, 최대, 최소, 왜도, 첨도), 통계적 이력 테스트[예를 들어, 순

차적 확률비 테스트(SPRT)], 추세 및 통계적 프로세스 제어[예를 들어, CUSUM, S-차트]를 포함하는 당 기술 분

야에 공지된 광범위한 기술로부터 선택될 수 있다.

경보 모듈(22)은 추정치와 입력 데이터 사이의 임의의 차이가 훈련 중에 마주치지 않는 정상 동작 상태에 기인[0129]

하는 것으로 판정할 수 있다.  이 경우에, 새로운 동작 상태를 표시하는 센서 데이터는 예를 들어 라이브러리

(18)를 경유하여 모델(14)의 학습에 그 데이터를 통합하는 선택적 적응 모듈(30)에 제공된다.  게다가, 적응 모

듈(30)은 어느 입력 벡터 또는 입력 어레이가 모델(14)을 업데이트하는데 사용되어야 하는지를 판정하기 위해

데이터 및/또는 나머지 분석 결과에 그 자신의 자동화 테스트를 선택적으로 수행할 수 있다.

모델을 적응시키는 프로세스는 원본 커널 기반 모델이 "훈련"되었던 라이브러리(H) 내의 기준 데이터의 세트에[0130]

새로운 동작 상태를 표시하는 센서 데이터를 추가하는 것을 포함한다.  가장 간단한 실시예에서, 모든 기준 데

이터는 모델 표본으로서 사용되고, 따라서 모델을 적응시킨다는 것은 모델의 표본 세트에 새로운 센서 데이터를

추가하는 것이다.  순차적 커널 회귀 모델은 의도적으로 관찰 벡터의 시퀀스 상에서 동작하기 때문에, 기준 데

이터에 추가된 새로운 동작 데이터는 관찰 벡터의 시퀀스로 이루어져야 한다.  임의의 적응 이벤트 중에 추가된

벡터의 최소 수는 모델에 의해 분석된 순차적 패턴(벡터)의 총수에 동일하다.  전술된 바와 같이, 이 총수는 센
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서 차원을 따라 외삽하는 추론적 모델 또는 자기연상 모델에 대해 n1b+1에 의해 또는 시간 차원을 따라 외삽하는

추론적 모델에 대해 n1b+1+n1a에 의해 제공된다.  훈련 방법이 학습된 순차적 패턴 행렬[D(t)]의 3차원 집합을

형성하기 위해 전술된 바와 같이 시스템 동역학의 "대표적인" 것으로서 저장된 서브세트에 기준 관찰을 다운 선

택하는데 사용되어 있으면, 관찰 벡터(또는 달리 말하면, 전체 입력 패턴 어레이)의 새로운 시퀀스가 원본 기준

데이터세트에 추가되고, 다운 선택 기술이 이어서 새로운 관찰의 표현을 포함해야 하는 새로운 대표적인 표본

세트를 유도하도록 적용된다.  다운 선택 기술을 재실행하지 않고, 학습된 패턴 어레이의 다운 선택된 세트에

새로운 시퀀스를 단지 추가하는 것도 또한 가능하다.  더욱이, 이 경우에, 새로운 데이터로 효율적으로 대체되

고 모델이 관리 가능한 크기로 유지되도록 모델로부터 몇몇 학습된 패턴 어레이를 제거하는 것이 유용할 수 있

다.  오래된 학습된 패턴 어레이가 제공되는 기준은 오래된 1차 시간 지점에서의 관찰에 새로운 1차 시간 지점

에서의 관찰을 비교하고 이들 순차적 패턴 어레이를 가장 가능한 새로운 순차적 패턴 어레이로 대체하는 전술된

식을 사용하는 클러스터링 및 유사성 판정을 포함할 수 있다.

지금까지,  본  발명은  정상  동작의  기간으로부터  대표적인  데이터로  훈련된  순차적  커널  회귀  모델을[0131]

설명하였다.  이러한 모델은 시스템 결함을 검출하고 진단하는데 사용될 수 있다는 것이 개시되어 있다.  게다

가, 본 발명의 시간-추론적 형태는 시스템 거동을 미래에 외삽할 수 있는 모델을 생성한다.  그러나, 모델은 단

지 정상 동작 데이터로만 훈련되기 때문에, 시스템 거동이 정상으로부터 더욱 더 멀리 이탈하기 때문에 결함이

진행함에 따라 이들의 실용성은 제한된다.

결함 발생 중에 진단 및 전조를 향상시키기 위해, 결합 상태 중에 수집된 데이터(또는 고장 모드 기준 데이터)[0132]

로 훈련된 개별의 순차적인 커널 회귀 모델이 이용될 수 있다.  이들 결함 모델은 결함이 시스템 내에서 발생한

다는 표시가 존재한 후에만 활성화된다.  결함 표시는 정상 시스템 데이터로 훈련된 순차적 모델에 의해 또는

이들에 한정되는 것은 아니지만 벡터 기반 커널 회귀 모델(예를 들어, SBM), 신경 네트워크, k-평균 클러스터링

모델 및 규칙 기반 결함 검출 모델을 포함하는 수많은 다른 수단에 의해 제공될 수 있다.  결함 모델은 모니터

링되는 자산에 대한 공지의 결함 이벤트의 전체 과도적 이력으로 훈련된다.  이들 결함 이벤트는 조기의 시간

기간으로부터 실제 자산에 발생할 필요는 없고, 이들은 모니터링되는 자산에 실질적으로 등가인 다른 기계류 상

에 발생한 결함 이벤트로부터 올 수 있다.  결함 이력은 결함이 먼저 표시되었던 시간으로부터 시스템 고장 또

는 시스템 정지와 같은 이벤트의 최종 종료 상태까지 수집된 모든 시스템 데이터로 이루어진다.

상기 실시예들에 대한 수정이 다양한 양태로 이루어질 수 있다는 것이 당 기술 분야의 숙련자들에 의해 이해될[0133]

것이다.  다른 변형이 명백하게 또한 작용할 것이고, 본 발명의 범주 및 사상 내에 있다.  본 발명은 첨부된 청

구범위에서 구체적으로 설명된다.  당 기술 분야의 숙련자에게 명백하고 본 출원의 교시에 친숙할 것이기 때문

에 본 발명의 사상 및 범주는 본 명세서의 실시예의 이러한 수정 및 변형을 포함하는 것으로 간주된다.

부호의 설명

10: 모니터링 시스템 12: 센서[0134]

14: 모델 16: 객체

18: 기준 라이브러리 20: 디퍼런싱 모듈

22: 경보 또는 분석 관리 모듈 24: 출력 모듈

26: 진단 모듈 28: 국부화 모듈

30: 적응 모듈 32: 입력 벡터

100: 컴퓨터 102: 프로세서
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