DEMANDE DE BREVET D’INVENTION

Date de dépôt : 21.05.04.
Priorité :

Demandeur(s) : NEXANS Société anonyme — FR.

Inventeur(s) : JOHANIS PHILIPPE, CLAVIER JEAN MARC, BERGAYA FAIZA, AMIGOUET PASCAL et LE CAM ANNE GAELLE.

Titulaire(s) :

Mandataire(s) : FERAY LENNE CONSEIL.

COMPOSITION POLYMERIQUE CHARGEES RESISTANTE AU FEU ET REVETEMENT ISOLANT DE CABLE LA CONTENANT.

La présente invention concerne une composition résistante au feu comportant un polymère et une charge argileuse. L’invention est remarquable en ce que la charge argileuse est à base de sépiolite.
COMPOSITION POLYMERIQUE CHARGELEE RESISTANTE AU FEU ET
REVELEMENT ISOLANT DE CABLE LA CONTENANT

La presente invention concerne une composition qui
est en mesure de resister a des conditions thermiques
extrimes.

L'invention trouve une application
particuliereusement avantageuse, mais non exclusive, dans
le domaine des cables d'energie ou de telecommunication
destines a rester operationnels pendant un temps definit
lorsqu'ils sont soumis a de fortes chaleurs et/ou
directement a des flammes.

Aujourd'hui, un des enjeux majeurs de l'industrie
du cable est l'amélioration du comportement et des
performances des cables dans des conditions thermiques
extrêmes, notamment celles rencontres lors d'un
incendie. Pour des raisons essentiellement de sécurité,
il est en effet indispensable de maximiser les
capacités du cable à retarder la propagation des
flammes d'une part, et à résister au feu d'autre part.
Un ralentissement significatif de la progression des
flammes, c'est autant de temps gagné pour évacuer les
lieux et/ou pour mettre en œuvre des moyens
d'extinction appropriés. Une meilleure résistance au
feu offre au câble la possibilité de fonctionner plus
longtemps, sa dégradation étant moins rapide. Un câble
de sécurité se doit en outre de ne pas être dangereux
pour son environnement, c'est-à-dire de ne pas dégager
de fumées toxiques et/ou trop opaques lorsqu'il est
soumis à des conditions thermiques extrêmes.

Qu'il soit électrique ou optique, destiné au
transport d'énergie ou à la transmission de données, un
câble est schématiquement constitué d'au moins un
élément conducteur s'étendant à l'intérieur d'au moins
éléments isolants peut également jouer le rôle de moyen de protection et/ou que le câble peut comporter en outre au moins un élément de protection spécifique, formant gaine. Or il est connu que parmi les meilleurs matériaux isolants et/ou de protection utilisés dans la câblerie, nombre d'entre eux sont malheureusement aussi d'excellentes matières inflammables. C'est notamment le cas des polyoléfines et de leurs copolymères, comme par exemple le polyéthylène, le polypropylène, les copolymères d'éthylène et d'acétate de vinyle, les copolymères d'éthylène et de propylène. Quoi qu'il en soit, dans la pratique, cette inflammabilité excessive s'avère totalement incompatible avec les impératifs de tenue au feu précédemment évoqués.

Dans le domaine de la câblerie, il existe de nombreuses méthodes pour améliorer le comportement au feu des polymères employés comme matériaux d'isolation et/ou de gainage.

La solution la plus répandue jusqu'à maintenant a consisté à employer des composés halogénés, sous forme d'un sous-produit halogéné dispersé dans une matrice polymère, ou directement sous forme d'un polymère halogéné comme dans le cas d'un PVC par exemple. Cependant, les réglementations actuelles tendent désormais à interdire l'utilisation de ce type de substances en raison essentiellement de leur toxicité et de leur corrosivité potentielles, que ce soit au moment de la fabrication du matériau, ou lors de sa décomposition par le feu. Ceci est d'autant plus vrai que la décomposition en question peut intervenir accidentellement lors d'un incendie, mais également volontairement au cours d'une incinération. Quoi qu'il en soit, le recyclage des matériaux halogénés demeure toujours particulièrement problématique.
C'est pourquoi on a de plus en plus recours à des charges ignifugeantes non halogénées, et notamment aux hydroxydes métalliques tels que l'hydroxyde d'aluminium ou l'hydroxyde de magnésium. Ce type de solutions techniques présente toutefois l'inconvénient de nécessiter de grandes quantités de charges pour atteindre un niveau d'efficacité satisfaisant, que ce soit en terme de capacité à retarder la propagation des flammes, que de résistance au feu. A titre d'exemple, la teneur en hydroxydes métalliques peut atteindre typiquement 150 à 200% par rapport à la quantité totale de résine. Or toute incorporation massive de charges induit une augmentation considérable de la viscosité de la matière, et par conséquent une diminution notable de la vitesse d'extrusion, d'où une baisse de productivité importante. L'addition de trop grandes quantités d'additifs retardateurs de feu est également à l'origine d'une détérioration significative des propriétés mécaniques et électriques du câble.

Pour remédier à ces difficultés, il est aujourd'hui connu d'utiliser comme matériaux d'isolation et/ou de gainage, des nanocomposites se présentant sous la forme d'une matrice organique dans laquelle sont dispersées des particules inorganiques dont la taille est inférieure au micron. A cet égard, l'association d'une phase organique de type polymère, avec une phase inorganique à base d'argile à structure en feuillets, donne des résultats satisfaisants en terme de tenue au feu.

Toutefois, la préparation de ce type de nanocomposites nécessite un traitement préalable de la charge argileuse afin de lui conférer un caractère le plus organophile possible. Le but est en effet de faciliter la pénétration et l'intercalation des chaînes
polymériques entre les feuillets de l'argile. Dans l'état de la technique, il existe de nombreuses façons de réaliser un tel traitement de surface. Mais quelle que soit la technique utilisée, il n'en demeure pas moins que cette indispensable étape supplémentaire grève de manière particulièrement désavantageuse le prix de revient du matériau d'isolation et/ou de gainage final.

Aussi le problème technique à résoudre, par l'objet de la présente invention, est de proposer une composition résistante au feu comportant un polymère et une charge argileuse, composition qui permettrait d'éviter les problèmes de l'état de la technique en étant sensiblement moins onéreuse à fabriquer.

La solution au problème technique posé consiste, selon la présente invention, en ce que la charge argileuse est à base de sépiolite.

La sépiolite est un silicate de magnésium hydraté qui appartient, comme toutes les argiles, au groupe des phyllosilicates. La sépiolite se distingue cependant considérablement de ses homologues de par le fait que sa structure microscopique est fibrillaire, alors que les autres argiles, comme par exemple la montmorillonite, ont plutôt une structure d'agrégats à l'échelle microscopique et une structure en feuillets à l'échelle nanoscopique. Quoi qu'il en soit, la structure physico-chimique particulière de la sépiolite lui confère des propriétés qui lui sont propres: Porosité et aire spécifique très élevées, forte capacité d'absorption, faible capacité ionique et haute stabilité thermique.

Il est à noter que lorsqu'elle est dispersée dans une matrice polymère, la sépiolite ne peut pas être considérée comme une nanocharge, c'est-à-dire une
charge dont les particules sont de tailles nanométriques. Les dimensions des fibres qui la composent sont en effet majoritairement bien supérieures au nanomètre, ce que confirme du reste le fait que lesdites dimensions s'expriment communément en microns dans l'état de la technique.

Quoi qu'il en soit, une composition conforme à l'invention offre un comportement au feu tout à fait satisfaisant, et en tout cas compatible avec une utilisation de type matériau d'isolation et/ou de gainage pour câble. L'ajout de sépiolite accroît en effet significativement la tenue au feu du matériau polymère, aussi bien en terme de non propagation de flammes, que de résistance au feu.

Par rapport aux autres charges argileuses de l'état de la technique, la sépiolite présente l'avantage de pouvoir être utilisée sans traitement de surface préalable, et notamment sans l'indispensable traitement organophile de l'art antérieur.

Selon une particularité de l'invention, la composition est pourvue de moins de 60 parties en poids de sépiolite pour 100 parties en poids de polymère.

De manière particulièrement avantageuse, la composition comporte entre 5 et 30 parties en poids de sépiolite pour 100 parties en poids de polymère.

Selon une autre particularité de l'invention, le polymère est choisi parmi un polyéthylène, un polypropylène, un copolymère d'éthylène et de propylène (EPR), un terpolymeré-éthylène-propylène-diène (EPDM), un copolymère d'éthylène et d'acétate de vinyle (EVA), un copolymère d'éthylène et d'acrylate de méthyle (EMA), un copolymère d'éthylène et d'acrylate d'éthyle (EEA), un copolymère d'éthylène et d'acrylate de butyle (EBA), un copolymère d'éthylène et d'octène, un
polymère à base d'éthylène, un polymère à base de polypropylène, ou un quelconque mélange de ces composants.

De manière particulièrement avantageuse, la composition contient au moins un polymère greffé avec un composé polaire tel qu'un anhydride maléique, un silane, ou un époxyde par exemple.

Conformément à une autre caractéristique avantageuse de l'invention, la composition comporte au moins un copolymère fabriqué à partir d'au moins un monomère polaire.

Selon une autre particularité de l'invention, la composition est également dotée d'une charge secondaire qui est constituée d'au moins un composé sélectionné parmi les hydroxydes métalliques, les oxydes métalliques, les carbonates métalliques, les talcs, les kaolins, les noirs de carbone, les silices, les silicates, les borates, les stannates, les molybdates, les graphites, les composés à base de phosphore, les agents ignifugeants halogénés.

Il est à noter que dans la pratique, et ainsi que cela apparaîtra clairement dans les exemples décrits plus loin, de très bons résultats en terme de tenue au feu sont notamment obtenus en combinant la sépiolite avec une charge secondaire à base d'au moins un hydroxyde métallique.

De manière particulièrement avantageuse, le taux de charge secondaire est inférieur ou égal à 1200 parties en poids pour 100 parties en poids de polymère.

De préférence, la composition comporte entre 150 et 200 parties en poids de charge secondaire pour 100 parties en poids de polymère.

Selon une autre particularité de l'invention, la composition contient en outre au moins un additif
choisi parmi les anti-oxydants, les stabilisants ultraviolets et les lubrifiants.

L'invention concerne également tout câble comportant au moins un élément conducteur s'étendant à l'intérieur d'au moins un revêtement isolant, et dont au moins un revêtement isolant est réalisé à partir d'une composition telle que précédemment décrite.

L'invention est par ailleurs relative à tout câble doté d'au moins un élément conducteur s'étendant à l'intérieur d'au moins un revêtement isolant, et comportant en outre au moins une gaine de protection constituée d'une composition telle que précédemment décrite.

Il est à noter que la locution "élément conducteur" désigne aussi bien un conducteur électrique qu'un conducteur optique.

Dans tous les cas, il peut s'agir indifféremment d'un câble électrique ou optique, destiné au transport d'énergie ou à la transmission de données.

D'autres caractéristiques et avantages de la présente invention apparaîtront au cours de la description d'exemples qui va suivre ; ces derniers étant donnés à titre illustratif et nullement limitatif.

Il est à noter que les exemples I à III concernent plus particulièrement des compositions qui sont destinées à servir de matériaux isolants et/ou de gainage pour des câbles. Par ailleurs, l'ensemble des quantités figurant dans les différents tableaux sont classiquement exprimées en parties en poids pour cent parties de polymère.
Exemple I

Le tableau 1 détaille les proportions des différents constituants de quatre échantillons de matériaux. Il regroupe également certaines de leurs propriétés mécaniques telles que la résistance à la rupture et l'allongement à la rupture, ainsi que des résultats de tests de tenue au feu qui concernent plus particulièrement l'indice limite d'oxygène et l'éventuelle formation de gouttelettes enflammées. Il est à noter que pour l'ensemble de ces tests, les différents échantillons de matériaux sont classiquement conditionnés sous forme d'éprouvettes.

Tableau 1

<table>
<thead>
<tr>
<th></th>
<th>Ech.1</th>
<th>Ech.2</th>
<th>Ech.3</th>
<th>Ech.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>PE</td>
<td>35</td>
<td>35</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>PE greffé anhydride maléique</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydroxyde d'aluminium</td>
<td>200</td>
<td>195</td>
<td>170</td>
<td>165</td>
</tr>
<tr>
<td>Sépiolite</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>antioxydant</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>additifs</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Silane</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Résistance à la rupture (MPa)</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Allongement à la rupture (%)</td>
<td>290</td>
<td>233</td>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>Indice limite d'oxygène</td>
<td>35</td>
<td>35</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Formation de gouttelettes enflammées</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
</tr>
</tbody>
</table>
On remarque tout d'abord que les matrices organiques de ces quatre échantillons sont en fait toutes constituées d'un mélange de polymères, en l'occurrence d'éthylène vinyle acétate, de polyéthylène, et éventuellement de polyéthylène greffé anhydride maléique.

On note ensuite que les quantités cumulées d'hydroxyde d'aluminium et de sépiolite sont identiques entre l'échantillon 1 et l'échantillon 2 d'une part, ainsi qu'entre l'échantillon 3 et l'échantillon 4 d'autre part, afin de pouvoir effectuer des comparaisons avec une quantité de charges ignifugeantes constante.

Quoi qu'il en soit, on observe que la présence de sépiolite permet d'améliorer sensiblement les propriétés mécaniques des matériaux polymères. Cela se traduit par une augmentation notable de la résistance à la rupture et par une diminution plus ou moins importante de l'allongement à la rupture.

Mais surtout, la présence de sépiolite empêche la formation gouttelettes enflammées, phénomène communément désigné par l'anglicisme dripping. A cet égard, il est à noter que cette propriété particulièrement avantageuse n'est pas obtenue avec toutes les argiles.

Exemple II

Le tableau 2 détaille quant à lui les compositions de sept matériaux ayant subis un test de résistance au feu typique du domaine de la câblerie. Pour cela les différents échantillons de matériaux sont conditionnés
ici sous forme de gaines, et le test est réalisé directement sur des câbles dotés de telles gaines.

Les modalités de ce test sont schématiquement les suivantes: Chaque câble est mis en forme de U puis fixé sur un panneau support vertical en matière réfractaire. La partie basse du câble est alors soumis pendant 30 minutes à une flamme, c'est-à-dire à une température comprise entre 800 et 970°C. Durant les premières 15 minutes, des chocs sont appliqués toutes les cinq minutes à l'ensemble que constitue le câble solidaire et son panneau support. Pendant les 15 minutes suivantes, une projection d'eau est réalisée sur la partie brûlée du câble tandis que des chocs sont toujours appliqués toutes les cinq minutes à l'ensemble panneau et câble. Durant ces 30 minutes, une tension de 500 à 1000 volts est par ailleurs appliquée à chaque conducteur du câble. Le succès du test est conditionné à l'absence de disfonctionnement électrique, voire de panne.
Tableau 2

<table>
<thead>
<tr>
<th></th>
<th>Ech.5</th>
<th>Ech.6</th>
<th>Ech.7</th>
<th>Ech.8</th>
<th>Ech.9</th>
<th>Ech.10</th>
<th>Ech.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>PE</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>PE greffé anhydride maléique</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydroxyde d'aluminium</td>
<td>200</td>
<td>0</td>
<td>180</td>
<td>180</td>
<td>200</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Hydroxyde de magnésium</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sépiolite</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Borate de Zinc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Antioxydant</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>additif</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>silane</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Test au feu</td>
<td>échec</td>
<td>échec</td>
<td>succès</td>
<td>échec</td>
<td>échec</td>
<td>succès</td>
<td>échec</td>
</tr>
</tbody>
</table>

Les remarques qui peuvent être faites concernant la composition de chaque matrice polymère d'une part, ainsi que la quantité totale de charge ignifugante d'autre part, sont identiques à celles exprimées dans le cadre de l'exemple I.

Si l'on considère maintenant plus particulièrement les échantillons 5 à 8, on voit que les compositions contenant uniquement des charges ignifugantes classiques n'ont pas réussi le test de résistance au feu, qu'il s'agisse d'hydroxyde d'aluminium (échantillons 5) ou d'hydroxyde de magnésium (échantillon 6). La présence de borate de Zinc en lieu
et place de la sépiolite, c'est-à-dire d'un additif connu pour améliorer la cohésion des cendres, ne permet pas non plus de passer le test avec succès (échantillon 8).

Les résultats relatifs aux échantillons 9 à 11 montrent quant à eux qu'une composition conforme à l'invention (échantillon 10) est en mesure de réussir le test de résistance au feu, même si elle est dépourvue de tout agent compatibilisant tel que le polyéthylène greffé anhydride maléique. Cela signifie en d'autres termes que la sépiolite joue également un rôle de compatibilisant entre les différents polymères présent dans la composition. Ce que confirme d'ailleurs l'amélioration des propriétés mécaniques mise en évidence dans le cadre de l'exemple I.

Ainsi donc, seules les compositions contenant de la sépiolite ont passées avec succès le test de résistance au feu (échantillons 7 et 10). Il est donc clair que cette charge argileuse particulière améliore sensiblement la cohésion des cendres pendant et après une combustion. De par sa structure en fibres creuses, la sépiolite renforce le résidu de combustion qui se forme à la surface du matériau. Ce résidu est ainsi en mesure de constituer tout d'abord une barrière physique apte à limiter la diffusion d'éventuels composés volatils issue de la dégradation du matériau, mais également une barrière thermique à même de réduire l'apport de chaleur vers l'édit matériau.

Exemple III

Des analyses par calorimètre à cône ont été menées afin de déterminer les capacités retardatrices de flammes de compositions conformes à l'invention. Pour
cela, on a mesuré au cours du temps le taux de chaleur dégagée lors de la combustion de cinq échantillons présentant une teneur croissante en sépiolite. La figure unique illustre d'ailleurs les comportements des matériaux en question.

Le tableau 3 regroupe quant à lui les compositions respectives des différents échantillons, ainsi que leurs principales caractéristiques en terme de chaleur totale dégagée, de taux moyen de chaleur dégagée, et de taux maximum de chaleur dégagée.

<table>
<thead>
<tr>
<th></th>
<th>Ech.12</th>
<th>Ech.13</th>
<th>Ech.14</th>
<th>Ech.15</th>
<th>Ech.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sépiolite</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Chaleur totale dégagée (MJ/m²)</td>
<td>110</td>
<td>105,6</td>
<td>110,7</td>
<td>102,3</td>
<td>105</td>
</tr>
<tr>
<td>Taux moyen de chaleur dégagée (kW/m²)</td>
<td>208</td>
<td>279</td>
<td>133</td>
<td>152</td>
<td>128</td>
</tr>
<tr>
<td>Taux maximum de chaleur dégagée (kW/m²)</td>
<td>803</td>
<td>784</td>
<td>426</td>
<td>320</td>
<td>283</td>
</tr>
</tbody>
</table>

En ce qui concerne les valeurs relevées dans ce tableau, on remarque tout d'abord que la chaleur totale dégagée est pratiquement constante, ce qui prouve que sensiblement la même quantité de polyéthylène a bien été brûlée dans tous les cas.

On note ensuite que l'énergie de combustion est significativement diminuée lorsque l'on ajoute de la
sépiolite. Le taux maximum de chaleur dégagée décroît déjà avec une teneur en sépiolite de seulement 5 parties en poids pour 100 parties en poids de polymère. Cette baisse devient quasiment optimale avec 30 parties en poids de sépiolite puisque dès lors on atteint une sorte de palier ; une teneur de 50 parties en poids n'apportant comparativement pas de variations véritablement notables.

On observe par ailleurs sur les différentes courbes de l'unique figure, que l'utilisation de sépiolite permet en outre d'allonger le temps de la combustion, ce qui concouvre avantageusement à retarder la progression du feu.

En conclusion, il apparaît clairement que la présence de sépiolite permet d'améliorer significativement le comportement au feu d'un matériau polymère. Cette charge argileuse particulière présente en effet l'avantage en cas de combustion, d'accroître sensiblement la cohésion des cendres d'une part, et de supprimer les problèmes de dripping d'autre part. Au final, une composition conforme à l'invention présente de réelles capacités de résistance au feu et de non propagation de flammes. Ces propriétés s'avèrent notamment parfaitement compatibles avec des applications de type matériaux d'isolation et/ou de gainage pour câble d'énergie ou de télécommunication.
REVENDICATIONS

1. Composition résistante au feu comportant un polymère et une charge argileuse, caractérisée en ce que la charge argileuse est à base de sépiolite.

2. Composition selon la revendication 1, caractérisée en ce qu'elle comporte moins de 60 parties en poids de sépiolite pour 100 parties en poids de polymère.

3. Composition selon l'une des revendications 1 ou 2, caractérisée en ce qu'elle comporte entre 5 et 30 parties en poids de sépiolite pour 100 parties en poids de polymère.

4. Composition selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le polymère est choisi parmi un polyéthylène, un polypropylène, un copolymère d'éthylène et de propylène (EPR), un terpolymère-éthylène-propylène-diène (EPDM), un copolymère d'éthylène et d'acétate de vinyle (EVA), un copolymère d'éthylène et d'acrylate de méthyle (EMA), un copolymère d'éthylène et d'acrylate d'éthyle (EEA), un copolymère d'éthylène et d'acrylate de butyle (EBA), un copolymère d'éthylène et d'octène, un polymère à base d'éthylène, un polymère à base de polypropylène, ou un quelconque mélange de ces composants.

5. Composition selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comporte au moins un polymère greffé avec un composé polaire.
6. Composition selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle comporte au moins un copolymère issu d'au moins un monomère polaire.

7. Composition selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comporte une charge secondaire comprenant au moins un composé sélectionné parmi les hydroxydes métalliques, les oxydes métalliques, les carbonates métalliques, les talcs, les kaolins, les noirs de carbones, les silices, les silicates, les borates, les stannates, les molybdates, les graphites, les composés à base de phosphore, les agents ignifugeants halogénés.

8. Composition selon la revendication 7, caractérisée en ce qu'elle comporte moins de 1200 parties en poids de charge secondaire pour 100 parties en poids de polymère.

9. Composition selon l'une des revendications 7 ou 8, caractérisée en ce qu'elle comporte entre 150 et 200 parties en poids de charge secondaire pour 100 parties en poids de polymère.

10. Composition selon l'une quelconque des revendications 1 à 9, caractérisée en ce qu'elle comporte au moins un additif choisi parmi les antioxydants, les stabilisants ultraviolets et les lubrifiants.

11. Câble comportant au moins un élément conducteur s'étendant à l'intérieur d'au moins un revêtement isolant, caractérisé en ce qu'au moins un revêtement
isolant est réalisé à partir d'une composition selon l'une quelconque des revendications précédentes.

12. câble comportant au moins un élément conducteur s'étendant à l'intérieur d'au moins un revêtement isolant, caractérisé en ce qu'il comprend en outre au moins une gaine de protection réalisée à partir d'une composition selon l'une quelconque des revendications 1 à 10.
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 446 952 A (TOYOTA GOSEI KK ; TOYOTA CHUO KENKYUSHO KK (JP)) 18 septembre 1991 (1991-09-18) * page 3, ligne 4-20 * * page 3, ligne 39-53 * * exemples 1-5; tableau 1 *</td>
<td>1-4, 7-10</td>
<td>C08K3/34, C08L23/04, C08L23/10, C09K21/00, H01B7/295</td>
</tr>
<tr>
<td>Y</td>
<td>* tableaux 3,4 *</td>
<td>5-9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>EP 1 388 867 A (NEXANS) 11 février 2004 (2004-02-11) * colonne 1, alinéa 4-6 * * colonne 2, alinéa 7-14 *</td>
<td>5-9</td>
<td>C08K, C08L, H01B</td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHES (Int.CL.)

- C08K
- C08L
- H01B
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 11-01-2005
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 637467 B2</td>
<td>27-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7358091 A</td>
<td>26-09-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2038359 A1</td>
<td>17-09-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69124745 D1</td>
<td>03-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69124745 T2</td>
<td>12-06-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5231128 A</td>
<td>27-07-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1388867 A1</td>
<td>11-02-2004</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82