woO 2007/1311277 A2 |10 00000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 November 2007 (15.11.2007)

(10) International Publication Number

WO 2007/131127 A2

(51) International Patent Classification:
G1IC 16/10 (2006.01) G11C 7/10 (2006.01)

(21) International Application Number:
PCT/US2007/068172

(22) International Filing Date: 3 May 2007 (03.05.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/381,996

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 601 Mccarthy Blvd.,
Milpitas, CA 95035 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): LI, Yan [US/US]; 695
Kevenaire Drive, Milpitas, CA 95035 (US).

(74) Agent: PARSONS, Gerald, P.; Davis Wright Tremane
LLP, 505 Montgomery Street, Suite 800, San Francisco,
CA 94111 (US).

5 May 2006 (05.05.2006) US

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: NON-VOLATILE MEMORY WITH MANAGED EXECUTION OF CACHED DATA AND METHODS THEREFOR

In a memory having a core array and data latches for latching
data associated with an addressed page of the array,
providing a first-in-first-out queue for ordering incoming memory
operations to be executed in the core array

710

y
Accepting an incoming memory operation into the queue
whenever data latches are available for caching the data of the
incoming memory operation,

720

0
4 'f73

Can the executing memory operation in the core array potentially
merge with any of the memory operations in the queue?

YES NO
740

Y \ 4
Whenever the next one or Waiting untif the completion
more memory operations of the memory operation in
from the queue are the core; and

mergeable with the memory Whenever the next two or
operation in the core array, more memory operations
terminating the execution of from the queue are

the memory operation in the mergeable,

core and begin executing executing the merged
instead the merged memory memory operations in the
operations; core array,

Else else _

Waiting until the completion executing the next memory
of the memory operation in operation from the queue in
the core before executing the core array

the next memory operation
from the queue

750

MULTIPLE MEMORY OPERATIONS MANAGEMENT

(57) Abstract: Methods and circuitry are present for execut-
ing current memory operation while other multiple pending
memory operations are queued. Furthermore, when certain
conditions are satisfied, some of these memory operations are
combinable or mergeable for improved efficiency and other
benefits. The management of the multiple memory operations
is accomplished by the provision of a memory operation queue
controlled by a memory operation queue manager. The mem-
ory operation queue manager is preferably implemented as a
module in the state machine that controls the execution of a
memory operation in the memory array.

WO 2007/131127 A2 |00 00 0T 000000 0 00 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/131127 PCT/US2007/068172

NON-VOLATILE MEMORY
WITH MANAGED EXECUTION OF CACHED DATA AND METHODS
THEREFOR

FIELD OF THE INVENTION

[0001] This invention relates generally to non-volatile semiconductor memory
such as electrically erasable programmable read-only memory (EEPROM) and flash
EEPROM, and specifically to cache operations based on shared latch structures

allowing overlapping memory operations.
BACKGROUND OF THE INVENTION

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly
in the form of EEPROM and flash EEPROM packaged as a small form factor card,
has recently become the storage of choice in a variety of mobile and handheld
devices, notably information appliances and consumer electronics products. Unlike
RAM (random access memory) that is also solid-state memory, flash memory is non-
volatile, retaining its stored data even after power is turned off. In spite of the higher
cost, flash memory is increasingly being used in mass storage applications.
Conventional mass storage, based on rotating magnetic medium such as hard drives
and floppy disks, is unsuitable for the mobile and handheld environment. This is
because disk drives tend to be bulky, are prone to mechanical failure and have high
latency and high power requirements. These undesirable attributes make disk-based
storage impractical in most mobile and portable applications. On the other hand, flash
memory, both embedded and in the form of a removable card is ideally suited in the
mobile and handheld environment because of its small size, low power consumption,

high speed and high reliability features.

[0003] EEPROM and clectrically programmable read-only memory (EPROM)
are non-volatile memory that can be erased and have new data written or
“programmed” into their memory cells. Both utilize a floating (unconnected)

conductive gate, in a field effect transistor structure, positioned over a channel region

WO 2007/131127 PCT/US2007/068172

in a semiconductor substrate, between source and drain regions. A control gate is
then provided over the floating gate. The threshold voltage characteristic of the
transistor is controlled by the amount of charge that is retained on the floating gate.
That is, for a given level of charge on the floating gate, there is a corresponding
voltage (threshold) that must be applied to the control gate before the transistor is

turned “on” to permit conduction between its source and drain regions.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons

are pulled from the substrate to the intervening floating gate.

[0006] The memory device may be erased by a number of mechanisms. For
EPROM, the memory is bulk erasable by removing the charge from the floating gate
by ultraviolet radiation. For EEPROM, a memory cell is electrically erasable, by
applying a high voltage to the substrate relative to the control gate so as to induce
clectrons in the floating gate to tunnel through a thin oxide to the substrate channel
region (i.e., Fowler-Nordheim tunneling.) Typically, the EEPROM is erasable byte
by byte. For flash EEPROM, the memory is electrically erasable either all at once or
one or more blocks at a time, where a block may consist of 512 bytes or more of

memory.

WO 2007/131127 PCT/US2007/068172

EXAMPLES OF NON-VOLATILE MEMORY CELLS

[0007] The memory devices typically comprise one or more memory chips that
may be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs
intelligent and higher level memory operations and interfacing. There are many
commercially successful non-volatile solid-state memory devices being used today.
These memory devices may employ different types of memory cells, each type having

one or more charge storage element.

[0008] FIGs. 1A-1E illustrate schematically different examples of non-volatile

memory cells.

[0009] FIG. 1A illustrates schematically a non-volatile memory in the form of an
EEPROM cell with a floating gate for storing charge. An electrically erasable and
programmable read-only memory (EEPROM) has a similar structure to EPROM, but
additionally provides a mechanism for loading and removing charge electrically from
its floating gate upon application of proper voltages without the need for exposure to
UV radiation. Examples of such cells and methods of manufacturing them are given

in United States patent no. 5,595,924.

[0010] FIG. 1B illustrates schematically a flash EEPROM cell having both a
select gate and a control or steering gate. The memory cell 10 has a “split-channel”
12 between source 14 and drain 16 diffusions. A cell is formed effectively with two
transistors T1 and T2 in series. T1 serves as a memory transistor having a floating
gate 20 and a control gate 30. The floating gate is capable of storing a selectable
amount of charge. The amount of current that can flow through the T1’s portion of
the channel depends on the voltage on the control gate 30 and the amount of charge
residing on the intervening floating gate 20. T2 serves as a select transistor having a
select gate 40. When T2 is turned on by a voltage at the select gate 40, it allows the
current in the T1’s portion of the channel to pass between the source and drain. The
select transistor provides a switch along the source-drain channel independent of the

voltage at the control gate. One advantage is that it can be used to turn off those cells

WO 2007/131127 PCT/US2007/068172

that are still conducting at zero control gate voltage due to their charge depletion
(positive) at their floating gates. The other advantage is that it allows source side

injection programming to be more easily implemented.

[0011] One simple embodiment of the split-channel memory cell is where the
select gate and the control gate are connected to the same word line as indicated
schematically by a dotted line shown in FIG. 1B. This is accomplished by having a
charge storage element (floating gate) positioned over one portion of the channel and
a control gate structure (which is part of a word line) positioned over the other
channel portion as well as over the charge storage element. This effectively forms a
cell with two transistors in series, one (the memory transistor) with a combination of
the amount of charge on the charge storage element and the voltage on the word line
controlling the amount of current that can flow through its portion of the channel, and
the other (the select transistor) having the word line alone serving as its gate.
Examples of such cells, their uses in memory systems and methods of manufacturing
them are given in United States patents nos. 5,070,032, 5,095,344, 5,315,541,
5,343,063, and 5,661,053.

[0012] A more refined embodiment of the split-channel cell shown in FIG. 1B is
when the select gate and the control gate are independent and not connected by the
dotted line between them. One implementation has the control gates of one column in
an array of cells connected to a control (or steering) line perpendicular to the word
line. The effect is to relieve the word line from having to perform two functions at the
same time when reading or programming a selected cell. Those two functions are (1)
to serve as a gate of a select transistor, thus requiring a proper voltage to turn the
select transistor on and off, and (2) to drive the voltage of the charge storage element
to a desired level through an electric field (capacitive) coupling between the word line
and the charge storage element. It is often difficult to perform both of these functions
in an optimum manner with a single voltage. With the separate control of the control
gate and the select gate, the word line need only perform function (1), while the added
control line performs function (2). This capability allows for design of higher
performance programming where the programming voltage is geared to the targeted

data. The use of independent control (or steering) gates in a flash EEPROM array is

WO 2007/131127 PCT/US2007/068172
described, for example, in United States patent nos. 5,313,421 and 6,222,762.

[0013] FIG. 1C illustrates schematically another flash EEPROM cell having
dual floating gates and independent select and control gates. The memory cell 10 is
similar to that of FIG. 1B except it effectively has three transistors in series. In this
type of cell, two storage elements (i.e., that of T1 - left and T1 - right) are included
over its channel between source and drain diffusions with a select transistor T1 in
between them. The memory transistors have floating gates 20 and 20°, and control
gates 30 and 30, respectively. The select transistor T2 is controlled by a select gate
40. At any one time, only one of the pair of memory transistors is accessed for read
or write. When the storage unit T1 - left is being accessed, both the T2 and T1 - right
are turned on to allow the current in the T1 - left’s portion of the channel to pass
between the source and the drain. Similarly, when the storage unit T1 - right is being
accessed, T2 and T1 - left are turned on. Erase is effected by having a portion of the
select gate polysilicon in close proximity to the floating gate and applying a
substantial positive voltage (e.g. 20V) to the select gate so that the electrons stored

within the floating gate can tunnel to the select gate polysilicon.

[0014] FIG. 1D illustrates schematically a string of memory cells organized into
an NAND cell. An NAND cell 50 consists of a series of memory transistors M1, M2,
... Mn (n= 4, 8, 16 or higher) daisy-chained by their sources and drains. A pair of
select transistors S1, S2 controls the memory transistors chain’s connection to the
external via the NAND cell’s source terminal 54 and drain terminal 56. In a memory
array, when the source select transistor S1 is turned on, the source terminal is coupled
to a source line. Similarly, when the drain select transistor S2 is turned on, the drain
terminal of the NAND cell is coupled to a bit line of the memory array. Each memory
transistor in the chain has a charge storage element to store a given amount of charge
so as to represent an intended memory state. A control gate of each memory
transistor provides control over read and write operations. A control gate of each of
the select transistors S1, S2 provides control access to the NAND cell via its source

terminal 54 and drain terminal 56 respectively.

[0015] When an addressed memory transistor within an NAND cell is read and

verified during programming, its control gate is supplied with an appropriate voltage.

-5-

WO 2007/131127 PCT/US2007/068172

At the same time, the rest of the non-addressed memory transistors in the NAND cell
50 are fully turned on by application of sufficient voltage on their control gates. In
this way, a conductive path is effective created from the source of the individual
memory transistor to the source terminal 54 of the NAND cell and likewise for the
drain of the individual memory transistor to the drain terminal 56 of the cell. Memory
devices with such NAND cell structures are described in United States patent nos.

5,570,315, 5,903,495, 6,046,935.

[0016] FIG. 1E illustrates schematically a non-volatile memory with a dielectric
layer for storing charge. Instead of the conductive floating gate elements described
carlier, a dielectric layer is used. Such memory devices utilizing dielectric storage
element have been described by Eitan et al., “NROM: A Novel Localized Trapping,
2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11,
November 2000, pp. 543-545. An ONO dielectric layer extends across the channel
between source and drain diffusions. The charge for one data bit is localized in the
dielectric layer adjacent to the drain, and the charge for the other data bit is localized
in the dielectric layer adjacent to the source. For example, United States patents nos.
5,768,192 and 6,011,725 disclose a nonvolatile memory cell having a trapping
dielectric sandwiched between two silicon dioxide layers. Multi-state data storage is
implemented by separately reading the binary states of the spatially separated charge

storage regions within the dielectric.

MEMORY ARRAY

[0017] A memory device typically comprises of a two-dimensional array of
memory cells arranged in rows and columns and addressable by word lines and bit
lines. The array can be formed according to an NOR type or an NAND type

architecture.

NOR Array

[0018] FIG. 2 illustrates an example of an NOR array of memory cells.
Memory devices with an NOR type architecture have been implemented with cells of

the type illustrated in FIGs. 1B or 1C. Each row of memory cells are connected by

WO 2007/131127 PCT/US2007/068172

their sources and drains in a daisy-chain manner. This design is sometimes referred to
as a virtual ground design. Each memory cell 10 has a source 14, a drain 16, a control
gate 30 and a select gate 40. The cells in a row have their select gates connected to
word line 42. The cells in a column have their sources and drains respectively
connected to selected bit lines 34 and 36. In some embodiments where the memory
cells have their control gate and select gate controlled independently, a steering line

36 also connects the control gates of the cells in a column.

[0019] Many flash EEPROM devices are implemented with memory cells where
cach is formed with its control gate and select gate connected together. In this case,
there is no need for steering lines and a word line simply connects all the control gates
and select gates of cells along each row. Examples of these designs are disclosed in
United States patent nos. 5,172,338 and 5,418,752, In these designs, the word line
essentially performed two functions: row selection and supplying control gate voltage

to all cells in the row for reading or programming.

NAND Array

[0020] FIG. 3 illustrates an example of an NAND array of memory cells, such as
that shown in FIG. 1D. Along cach column of NAND cells, a bit line is coupled to
the drain terminal 56 of each NAND cell. Along each row of NAND cells, a source
line may connect all their source terminals 54. Also the control gates of the NAND
cells along a row are connected to a series of corresponding word lines. An entire
row of NAND cells can be addressed by turning on the pair of select transistors (see
FIG. 1D) with appropriate voltages on their control gates via the connected word
lines. When a memory transistor within the chain of a NAND cell is being read, the
remaining memory transistors in the chain are turned on hard via their associated
word lines so that the current flowing through the chain is essentially dependent upon
the level of charge stored in the cell being read. An example of an NAND
architecture array and its operation as part of a memory system is found in United

States patents nos. 5,570,315, 5,774,397 and 6,046,935.

WO 2007/131127 PCT/US2007/068172
Block Erase

[0021] Programming of charge storage memory devices can only result in adding
more charge to its charge storage elements. Therefore, prior to a program operation,
existing charge in a charge storage element must be removed (or erased). Erase
circuits (not shown) are provided to erase one or more blocks of memory cells. A
non-volatile memory such as EEPROM is referred to as a “Flash” EEPROM when an
entire array of cells, or significant groups of cells of the array, is electrically erased
together (i.e., in a flash). Once erased, the group of cells can then be reprogrammed.
The group of cells erasable together may consist one or more addressable erase unit.
The erase unit or block typically stores one or more pages of data, the page being the
unit of programming and reading, although more than one page may be programmed
or read in a single operation. Each page typically stores one or more sectors of data,
the size of the sector being defined by the host system. An example is a sector of 512
bytes of user data, following a standard established with magnetic disk drives, plus
some number of bytes of overhead information about the user data and/or the block in

with it is stored.

READ/WRITE CIRCUITS

[0022] In the usual two-state EEPROM cell, at least one current breakpoint level
is established so as to partition the conduction window into two regions. When a cell
is read by applying predetermined, fixed voltages, its source/drain current is resolved
into a memory state by comparing with the breakpoint level (or reference current
Iggr). If the current read is higher than that of the breakpoint level, the cell is
determined to be in one logical state (e.g., a "zero" state). On the other hand, if the
current is less than that of the breakpoint level, the cell is determined to be in the other
logical state (e.g., a “one” state). Thus, such a two-state cell stores one bit of digital
information. A reference current source, which may be externally programmable, is

often provided as part of a memory system to generate the breakpoint level current.

[0023] In order to increase memory capacity, flash EEPROM devices are being
fabricated with higher and higher density as the state of the semiconductor technology

advances. Another method for increasing storage capacity is to have each memory

WO 2007/131127 PCT/US2007/068172
cell store more than two states.

[0024] For a multi-state or multi-level EEPROM memory cell, the conduction
window is partitioned into more than two regions by more than one breakpoint such
that each cell is capable of storing more than one bit of data. The information that a
given EEPROM array can store is thus increased with the number of states that each
cell can store. EEPROM or flash EEPROM with multi-state or multi-level memory
cells have been described in U.S. Patent No. 5,172,338.

[0025] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the
floating gate defines a corresponding threshold voltage window or a corresponding

conduction current window.

[0026] Alternatively, instead of detecting the conduction current among a
partitioned current window, it is possible to set the threshold voltage for a given
memory state under test at the control gate and detect if the conduction current is
lower or higher than a threshold current. In one implementation the detection of the
conduction current relative to a threshold current is accomplished by examining the

rate the conduction current is discharging through the capacitance of the bit line.

[0027] FIG. 4 illustrates the relation between the source-drain current I and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid Ip versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V. Six
memory states may be demarcated by partitioning the threshold window into five
regions in interval of 0.5V each. For example, if a reference current, Iggr of 2 PA is
used as shown, then the cell programmed with Q1 may be considered to be in a

memory state “1” since its curve intersects with Irgr in the region of the threshold

WO 2007/131127 PCT/US2007/068172
window demarcated by Veg =0.5V and 1.0V. Similarly, Q4 is in a memory state “5”.

[0028] As can be seen from the description above, the more states a memory cell
is made to store, the more finely divided is its threshold window. This will require
higher precision in programming and reading operations in order to be able to achieve

the required resolution.

[0029] United States Patent No. 4,357,685 discloses a method of programming a
2-state EPROM in which when a cell is programmed to a given state, it is subject to
successive programming voltage pulses, cach time adding incremental charge to the
floating gate. In between pulses, the cell is read back or verified to determine its
source-drain current relative to the breakpoint level. Programming stops when the
current state has been verified to reach the desired state. The programming pulse train

used may have increasing period or amplitude.

[0030] Prior art programming circuits simply apply programming pulses to step
through the threshold window from the erased or ground state until the target state is
reached. Practically, to allow for adequate resolution, each partitioned or demarcated
region would require at least about five programming steps to transverse. The
performance is acceptable for 2-state memory cells. However, for multi-state cells,
the number of steps required increases with the number of partitions and therefore, the
programming precision or resolution must be increased. For example, a 16-state cell

may require on average at least 40 programming pulses to program to a target state.

[0031] FIG. 5 illustrates schematically a memory device with a typical
arrangement of a memory array 100 accessible by read/write circuits 170 via row
decoder 130 and column decoder 160. As described in connection with FIGs. 2 and
3, a memory transistor of a memory cell in the memory array 100 is addressable via a
set of selected word line(s) and bit line(s). The row decoder 130 selects one or more
word lines and the column decoder 160 selects one or more bit lines in order to apply
appropriate voltages to the respective gates of the addressed memory transistor.
Read/write circuits 170 are provided to read or write (program) the memory states of
addressed memory transistors. The read/write circuits 170 comprise a number of

read/write modules connectable via bit lines to memory elements in the array.

-10-

WO 2007/131127 PCT/US2007/068172

[0032] FIG. 6A is a schematic block diagram of an individual read/write module
190. Essentially, during read or verify, a sense amplifier determines the current
flowing through the drain of an addressed memory transistor connected via a selected
bit line. The current depends on the charge stored in the memory transistor and its
control gate voltage. For example, in a multi-state EEPROM cell, its floating gate can
be charged to one of several different levels. For a 4-level cell, it may be used to store
two bits of data. The level detected by the sense amplifier is converted by a level-to-

bits conversion logic to a set of data bits to be stored in a data latch.

FACTORS AFFECTING READ/WRITE PERFORMANCE AND ACCURACY

[0033] In order to improve read and program performance, multiple charge
storage elements or memory transistors in an array are read or programmed in
parallel. Thus, a logical “page” of memory elements are read or programmed
together. In existing memory architectures, a row typically contains several
interleaved pages. All memory clements of a page will be read or programmed
together. The column decoder will selectively connect each one of the interleaved
pages to a corresponding number of read/write modules. For example, in one
implementation, the memory array is designed to have a page size of 532 bytes (512
bytes plus 20 bytes of overheads.) If each column contains a drain bit line and there
are two interleaved pages per row, this amounts to 8512 columns with each page
being associated with 4256 columns. There will be 4256 sense modules connectable
to read or write in parallel either all the even bit lines or the odd bit lines. In this way,
a page of 4256 bits (i.c., 532 bytes) of data in parallel are read from or programmed
into the page of memory elements. The read/write modules forming the read/write

circuits 170 can be arranged into various architectures.

[0034] Referring to FIG. 5, the read/write circuits 170 is organized into banks of
read/write stacks 180. Each read/write stack 180 is a stack of read/write modules 190.
In a memory array, the column spacing is determined by the size of the one or two
transistors that occupy it. However, as can be seen from FIG. 6A, the circuitry of a
read/write module will likely be implemented with many more transistors and circuit
elements and therefore will occupy a space over many columns. In order to service

more than one column among the occupied columns, multiple modules are stacked up

-11-

WO 2007/131127 PCT/US2007/068172
on top of each other.

[0035] FIG. 6B shows the read/write stack of FIG. 5 implemented
conventionally by a stack of read/write modules 190. For example, a read/write
module may extend over sixteen columns, then a read/write stack 180 with a stack of
cight read/write modules can be used to service eight columns in parallel. The
read/write stack can be coupled via a column decoder to either the eight odd (1, 3, 5, 7,
9, 11, 13, 15) columns or the eight even (2, 4, 6, 8, 10, 12, 14, 16) columns among the
bank.

[0036] As mentioned before, conventional memory devices improve read/write
operations by operating in a massively parallel manner on all even or all odd bit lines
at a time. This architecture of a row consisting of two interleaved pages will help to
alleviate the problem of fitting the block of read/write circuits. It is also dictated by
consideration of controlling bit-line to bit-line capacitive coupling. A block decoder
is used to multiplex the set of read/write modules to either the even page or the odd
page. In this way, whenever one set bit lines are being read or programmed, the

interleaving set can be grounded to minimize immediate neighbor coupling.

[0037] However, the interleaving page architecture is disadvantageous in at least
three respects. First, it requires additional multiplexing circuitry. Secondly, it is slow
in performance. To finish read or program of memory cells connected by a word line
or in a row, two read or two program operations are required. Thirdly, it is also not
optimum in addressing other disturb effects such as field coupling between
neighboring charge storage elements at the floating gate level when the two neighbors

are programmed at different times, such as separately in odd and even pages.

[0038] The problem of neighboring field coupling becomes more pronounced
with ever closer spacing between memory transistors. In a memory transistor, a
charge storage clement is sandwiched between a channel region and a control gate.
The current that flows in the channel region is a function of the resultant electric field
contributed by the field at the control gate and the charge storage element. With ever
increasing density, memory transistors are formed closer and closer together. The

field from neighboring charge elements then becomes significant contributor to the

-12-

WO 2007/131127 PCT/US2007/068172

resultant field of an affected cell. The neighboring field depends on the charge
programmed into the charge storage elements of the neighbors. This perturbing field
is dynamic in nature as it changes with the programmed states of the neighbors. Thus,
an affected cell may read differently at different time depending on the changing

states of the neighbors.

[0039] The conventional architecture of interleaving page exacerbates the error
caused by neighboring floating gate coupling. Since the even page and the odd page
are programmed and read independently of each other, a page may be programmed
under one set of condition but read back under an entirely different set of condition,
depending on what has happened to the intervening page in the meantime. The read
errors will become more severe with increasing density, requiring a more accurate
read operation and coarser partitioning of the threshold window for multi-state
implementation. Performance will suffer and the potential capacity in a multi-state

implementation is limited.

[0040] United States Patent Publication No. US-2004-0060031-A1 discloses a
high performance yet compact non-volatile memory device having a large block of
read/write circuits to read and write a corresponding block of memory cells in
parallel. In particular, the memory device has an architecture that reduces redundancy
in the block of read/write circuits to a minimum. Significant saving in space as well
as power is accomplished by redistributing the block of read/write modules into a
block read/write module core portions that operate in parallel while interacting with a
substantially smaller sets of common portions in a time-multiplexing manner. In
particular, data processing among read/write circuits between a plurality of sense

amplifiers and data latches is performed by a shared processor.

[0041] Therefore there is a general need for high performance and high capacity
non-volatile memory. In particular, there is a need for a compact non-volatile
memory with enhanced read and program performance having an improved processor
that is compact and efficient, yet highly versatile for processing data among the

read/writing circuits.

13-

WO 2007/131127 PCT/US2007/068172
SUMMARY OF INVENTION

[0042] According to one aspect of the invention, cache operations are presented
that allow data to be transferred in or out of a memory while the internal memory is
engaged in another operation, such as a read, program or erase. In particular,
arrangements of data latches and methods of their use are described which allow such

cache operations.

[0043] Architectures are described where data latches are shared by a number of
physical pages. For example, read/write stacks are associated with the bit lines of the
memory, which shared by multiple word lines. While one operation is going on in the
memory, if any of these latch are free, they can cache data for future operations in the
same or another word line, saving transfer time as this can be hidden behind another
operation. This can improve performance by increasing the amount of pipelining of
different operations or phases of operations. In one example, in a cache program
operation, while programming one page of data another page of data can be loaded in,
saving on transfer time. For another example, in one exemplary embodiment, a read
operation on one word line is inserted into a write operation on another word line,
allowing the data from the read to be transferred out of the memory while the data

write continues on.

[0044] According to the various aspects, data from another page in the same
block, but on a different word line, can be toggled out (to, for example, do an ECC
operation) while a write or other operation is going on for the first page of data. This
inter-phase pipelining of operations allows the time needed for the data transfer to be
hidden behind the operation on the first page of data. More generally, this allows a
portion of one operation to be inserted between phases of another, typically longer,
operation. Another example would be to insert a sensing operation between phases
of, say, an erase operation, such as before an erase pulse or before a soft programming

phase used as the later part of the erase.

[0045] If a relatively long operation with different phases is being performed, a
primary aspect will interpose in a quicker operation using the shared latches of the

read/write stacks if latches available. For example, a read can be inserted into a

-14-

WO 2007/131127 PCT/US2007/068172

program or erase operation, or a binary program can be inserted into an erase. The
primary exemplary embodiments will toggle data in and/or out for one page during a
program operation for another page that shares the same read write stacks, where, for
example, a read of the data to be toggled out and modified is inserted into the verify

phase of the data write.

[0046] The availability of open data latches can arise in a number of ways.
Generally, for a memory storing n bits per cell, n such data latches will be needed for
cach bit line; however, not all of these latches are needed at all times. For example, in
a two-bit per cell memory storing data in an upper page/lower page format, one data
latches will be needed while programming the lower page (with another latch used if
quick pass write is implemented). Two data latches will be needed while
programming the upper page (with a third latch used if quick pass write is
implemented)). More generally, for memories storing multiple pages, all of the
latches will be needed only when programming the highest page. This leaves the
other latches available for cache operations. Further, even while writing the highest
page, as the various states are removed from the verify phase of the write operation,
latches will free up. Specifically, once only the highest state remains to be verified,
only a single latch is needed for verification purposes and the others may be used for

cache operations.

[0047] An exemplary embodiment is based on a four state memory storing two-
bits per cell and having two latches for data on each bit line and one additional latch
for quick pass write. The operations of writing the lower page, or erasing, or doing a
post erase soft program are basically a binary operation and have one of the data
latches free, which can use it to cache data. Similarly, where doing an upper page or
full sequence write, once all but the highest level has verified, only a single state
needs to verify and the memory can free up a latch that can be used to cache data. An
example of how this can be used is that when programming one page, such as in a
copy operation, a read of another page that shares the same set of data latches, such as
another word line on the same set of bit lines, can be slipped in between program
pulse and verifies of the write. The address can then be switched to the page being

written, allowing the write process to pick up where it left off without having to

-15-

WO 2007/131127 PCT/US2007/068172

restart. While the write continues, the data cached during the interpolated read can be
toggled out, checked or modified and transferred back to be present for writing back
in once the earlier write operation completes. This sort cache operation allows the
toggling out and modification of the second page of data to be hidden behind the

programming of the first page.

MANAGEMENT OF MULTIPLE CACHED COMMANDS

[0048] According to one aspect of the invention, a current memory operation
may be under execution while other multiple pending memory operations are queued.
Furthermore, when certain conditions are satisfied, some of these commands for
individual operations are mergeable into a combined operation. In one case, when
conditions are satisfied to merge one or more of the multiple pending memory
operations in the queue with the current memory operation under execution, the
current memory operation is terminated and replaced by the operation of the merged
operations. In another case, when conditions are satisfied to merge two or more of the
multiple pending memory operations in the queue, the operation of the merged

operations will commence after the current operation under execution has completed.

[0049] The management of the multiple commands is accomplished by the
provision of a memory operation queue controlled by a memory operation queue
manager. The memory operation queue manager is preferably implemented as a
module in the state machine that controls the execution of a memory operation in the

mcmory array.

[0050] In this way queuing more than one command in the background and
therefore caching more than one page of data is supported. Also, it is more conducive
to allowing all the bits necessary for all-bit programming to be cached so that all-bit
programming can take place. Furthermore, a command queue manager manages
multiple pending commands and allows certain commands to terminate before
completion in favor of the next pending command, depending on the status of their

associated data.

[0051] These features of the invention work together to enhance the program

-16-

WO 2007/131127 PCT/US2007/068172

performance by having more program data cached and allowing more efficient

programming algorithm to be employed.

[0052] Additional features and advantages of the present invention will be
understood from the following description of its preferred embodiments, which

description should be taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0053] FIGs. 1A-1E illustrate schematically different examples of non-volatile

memory cells.
[0054] FIG. 2 illustrates an example of an NOR array of memory cells.

[0055] FIG. 3 illustrates an example of an NAND array of memory cells, such as
that shown in FIG. 1D.

[0056] FIG. 4 illustrates the relation between the source-drain current and the
control gate voltage for four different charges Q1-Q4 that the floating gate may be

storing at any one time.

[0057] FIG. 5 illustrates schematically a typical arrangement of a memory array

accessible by read/write circuits via row and column decoders.

[0058] FIG. 6A is a schematic block diagram of an individual read/write

module.

[0059] FIG. 6B shows the read/write stack of FIG. 5 implemented

conventionally by a stack of read/write modules.

[0060] FIG. 7A illustrates schematically a compact memory device having a
bank of partitioned read/write stacks, in which the improved processor of the present

invention is implemented.

[0061] FIG. 7B illustrates a preferred arrangement of the compact memory

-17-

WO 2007/131127 PCT/US2007/068172
device shown in FIG. 7A.

[0062] FIG. 8 illustrates schematically a general arrangement of the basic

components in a read/write stack shown in FIG. 7A.

[0063] FIG. 9 illustrates one preferred arrangement of the read/write stacks

among the read/write circuits shown in FIGs. 7A and 7B.

[0064] FIG. 10 illustrates an improved embodiment of the common processor

shown in FIG 9.

[0065] FIG. 11A illustrates a preferred embodiment of the input logic of the

common processor shown in FIG. 10.
[0066] FIG. 11B illustrates the truth table of the input logic of FIG. 11A.

[0067] FIG. 12A illustrates a preferred embodiment of the output logic of the

common processor shown in FIG. 10.
[0068] FIG. 12B illustrates the truth table of the output logic of FIG. 12A.

[0069] FIG. 13 is a simplified version of FIG. 10 that shows some specific
clements that are relevant to the present discussion in a two-bit embodiment of the

present invention

[0070] FIG. 14 indicates the latch assignment for the same elements as FIG. 13

for upper page program where the lower page data is read in.
[0071] FIG. 15 illustrates aspects of cache program in the single page mode.

[0072] FIG. 16 shows a programming waveform that can be used in a lower

page to full sequence conversion.

[0073] FIG. 17 illustrates the relative timing in a cache program operation with a

full sequence conversion.

[0074] FIG. 18 describes the disposition of latches in a cache page copy

operation.

-18-

WO 2007/131127 PCT/US2007/068172

[0075] FIGs. 19A and 19B illustrate the relative timings in cache page copy

operations.

[0076] FIG. 20A illustrates threshold voltage distributions of the 4-state memory

array when each memory cell stores two bits of data using the LM code.

[0077] FIG. 20B illustrates the lower page programming in an existing, 2-round

programming scheme using the LM code.

[0078] FIG. 20C illustrates the upper page programming in an existing, 2-round

programming scheme using the LM code.

[0079] FIG. 20D illustrates the read operation that is required to discern the
lower bit of the 4-state memory encoded with the LM code.

[0080] FIG. 20E illustrates the read operation that is required to discern the

upper bit of the 4-state memory encoded with the LM code.

[0081] FIG. 21 is a schematic timing diagram for a lower page programming,
illustrating background operation of loading a next page of program data into unused

data latches.

[0082] FIG. 22 is a table showing the number of states that needs to be tracked
during various phases of a 4-state upper page or full sequence programming

employing QWP.

[0083] FIG. 23 is a schematic timing diagram for an upper page or full sequence
programming, illustrating background operation of loading a next page of program

data into unused data latches.

[0084] FIG. 24 is a flowchart illustrating latch operations contemporaneous with
a current multi-phase memory operation, according to a general embodiment of the

invention.

[0085] FIG. 25 is a schematic timing diagram for a lower page programming,

illustrating a read interrupt operation using available latches.

-19-

WO 2007/131127 PCT/US2007/068172

[0086] FIG. 26 is a schematic timing diagram for an upper page programming,

illustrating a read interrupt operation using available latches.

[0087] FIG. 27 illustrates the package of information associated with a typical

memory operation.

[0088] FIG. 28 illustrates a conventional memory system that supports simple

cache operations.

[0089] FIG. 29 is a flow diagram illustrating the queuing and possible merging

of multiple memory operations.

[0090] FIG. 30 illustrates a schematic block diagram of a preferred on-chip
control circuitry incorporating a memory operation queue and a memory operation

qucuc managcer.

[0091] FIG. 31 is a schematic flow diagram illustrating a cache operation in the

background during an erase operation.

[0092] FIG. 32 is a schematic timing diagram for an erase operation on the
memory array, illustrating a program data loading operation during the first, erase

phase of the erase operation.

[0093] FIG. 33 is a schematic timing diagram for an erase operation on the
memory array, illustrating a program data loading operation during the soft

programming/verifying phase of the erase operation.

[0094] FIG. 34 is a schematic timing diagram for an erase operation on the
memory array, illustrating a read operation being inserted and the resulting data

output operation using available latches.

[0095] FIG. 35 is a schematic flow diagram illustrating a specific cache
operation for read scrub application in the background during an erase operation in

STEP 780 of FIG. 31.

[0096] FIG. 36 illustrates a preemptive background read during erase.

20-

WO 2007/131127 PCT/US2007/068172
[0097] FIG. 37 illustrates schematically a typical read cache scheme.

[0098] FIG. 38A is a schematic timing diagram for cache reading a logical page
encoded with the LM code.

[0100] FIG. 38B is a schematic timing diagram for cache reading with LM
code in the special case of reading a lower-bit logical page when the upper-bit logical

page has not yet been programmed.

[0101] FIG. 39 illustrates a schematic timing diagram for cache read with all-

bit sensing for a 2-bit memory.

[0102] FIG. 40 illustrates an example of a memory having 2-bit memory cells
and with its pages programmed in an optimal sequence so as to minimize the Yupin

Effect between memory cells on adjacent wordlines.

[0103] FIG. 41 illustrates an implementation of read caching for the LM code

with LA correction according to the convention scheme shown in FIG. 37.

[0104] FIG. 42 illustrates an improved read caching scheme with the LM

code and LA correction.

[0105] FIG. 43 is a schematic flow diagram illustrating the improved read
caching.
[0106] FIG. 44 is a schematic flow diagram illustrating a further articulation

of STEP 850 of FIG. 43.

[0107] FIG. 45 is a schematic flow diagram illustrating a further articulation
of STEP 830 of FIG. 43.

21-

WO 2007/131127 PCT/US2007/068172

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0108] FIG. 7A illustrates schematically a compact memory device having a
bank of partitioned read/write stacks, in which the improved processor of the present
invention is implemented. The memory device includes a two-dimensional array of
memory cells 300, control circuitry 310, and read/write circuits 370. The memory
array 300 is addressable by word lines via a row decoder 330 and by bit lines via a
column decoder 360. The read/write circuits 370 is implemented as a bank of
partitioned read/write stacks 400 and allows a block (also referred to as a “page”) of
memory cells to be read or programmed in parallel. In a preferred embodiment, a
page is constituted from a contiguous row of memory cells. In another embodiment,
where a row of memory cells are partitioned into multiple blocks or pages, a block
multiplexer 350 is provided to multiplex the read/write circuits 370 to the individual

blocks.

[0109] The control circuitry 310 cooperates with the read/write circuits 370 to
perform memory operations on the memory array 300. The control circuitry 310
includes a state machine 312, an on-chip address decoder 314 and a power control
module 316. The state machine 312 provides chip level control of memory
operations. The on-chip address decoder 314 provides an address interface between
that used by the host or a memory controller to the hardware address used by the
decoders 330 and 370. The power control module 316 controls the power and

voltages supplied to the word lines and bit lines during memory operations.

[0110] FIG. 7B illustrates a preferred arrangement of the compact memory
device shown in FIG. 7A. Access to the memory array 300 by the various peripheral
circuits is implemented in a symmetric fashion, on opposite sides of the array so that
access lines and circuitry on each side are reduced in half. Thus, the row decoder is
split into row decoders 330A and 330B and the column decoder into column decoders
360A and 360B. In the embodiment where a row of memory cells are partitioned into
multiple blocks, the block multiplexer 350 is split into block multiplexers 350A and
350B. Similarly, the read/write circuits are split into read/write circuits 370A
connecting to bit lines from the bottom and read/write circuits 370B connecting to bit

lines from the top of the array300. In this way, the density of the read/write modules,

22-

WO 2007/131127 PCT/US2007/068172

and therefore that of the partitioned read/write stacks 400, is essentially reduced by

one half.

[0111] FIG. 8 illustrates schematically a general arrangement of the basic
components in a read/write stack shown in FIG. 7A. According to a general
architecture of the invention, the read/write stack 400 comprises a stack of sense
amplifiers 212 for sensing k bit lines, an I/O module 440 for input or output of data
via an I/O bus 231, a stack of data latches 430 for storing input or output data, a
common processor 500 to process and store data among the read/write stack 400, and
a stack bus 421 for communication among the stack components. A stack bus
controller among the read/write circuits 370 provides control and timing signals via

lines 411 for controlling the various components among the read/write stacks.

[0112] FIG. 9 illustrates one preferred arrangement of the read/write stacks
among the read/write circuits shown in FIGs. 7A and 7B. Each read/write stack 400
operates on a group of k bit lines in parallel. If a page has p=r*k bit lines, there will

be r read/write stacks, 400-1, ..., 400-r.

[0113] The entire bank of partitioned read/write stacks 400 operating in
parallel allows a block (or page) of p cells along a row to be read or programmed in
parallel. Thus, there will be p read/write modules for the entire row of cells. As each
stack is serving k memory cells, the total number of read/write stacks in the bank is
therefore given by r =p/k. For example, if r is the number of stacks in the bank, then
p = r*k. One example memory array may have p = 512 bytes (512x8 bits), k =8, and
therefore r = 512. In the preferred embodiment, the block is a run of the entire row of
cells. In another embodiment, the block is a subset of cells in the row. For example,
the subset of cells could be one half of the entire row or one quarter of the entire row.
The subset of cells could be a run of contiguous cells or one every other cell, or one

every predetermined number of cells.

[0114] Each read/write stack, such as 400-1, essentially contains a stack of
sense amplifiers 212-1 to 212-k servicing a segment of k memory cells in parallel. A

preferred sense amplifier is disclosed in United States Patent Publication No. 2004-

23-

WO 2007/131127 PCT/US2007/068172

0109357-A1, the entire disclosure of which is hereby incorporated herein by

reference.

[0115] The stack bus controller 410 provides control and timing signals to the
read/write circuit 370 via lines 411. The stack bus controller is itself dependent on the
memory controller 310 via lines 311. Communication among each read/write stack
400 is effected by an interconnecting stack bus 431 and controlled by the stack bus
controller 410. Control lines 411 provide control and clock signals from the stack bus

controller 410 to the components of the read/write stacks 400-1.

[0116] In the preferred arrangement, the stack bus is partitioned into a SABus
422 for communication between the common processor 500 and the stack of sense
amplifiers 212, and a DBus 423 for communication between the processor and the

stack of data latches 430.

[0117] The stack of data latches 430 comprises of data latches 430-1 to 430-k,
one for each memory cell associated with the stack The I/O module 440 enables the

data latches to exchange data with the external via an I/O bus 231.

[0118] The common processor also includes an output 507 for output of a
status signal indicating a status of the memory operation, such as an error condition.
The status signal is used to drive the gate of an n-transistor 550 that is tied to a FLAG
BUS 509 in a Wired-Or configuration. The FLAG BUS is preferably precharged by
the controller 310 and will be pulled down when a status signal is asserted by any of

the read/write stacks.

[0119] FIG. 10 illustrates an improved embodiment of the common processor
shown in FIG 9. The common processor 500 comprises a processor bus, PBUS 505
for communication with external circuits, an input logic 510, a processor latch PLatch

520 and an output logic 530.

[0120] The input logic 510 receives data from the PBUS and outputs to a BSI
node as a transformed data in one of logical states “1”, “0”, or “Z” (float) depending

on the control signals from the stack bus controller 410 via signal lines 411. A

4.

WO 2007/131127 PCT/US2007/068172

Set/Reset latch, PLatch 520 then latches BSI, resulting in a pair of complementary
output signals as MTCH and MTCH*.

[0121] The output logic 530 receives the MTCH and MTCH* signals and
outputs on the PBUS 505 a transformed data in one of logical states “1”, “0”, or “Z”

(float) depending on the control signals from the stack bus controller 410 via signal

lines 411.

[0122] At any one time the common processor 500 processes the data related
to a given memory cell. For example, FIG. 10 illustrates the case for the memory cell
coupled to bit line 1. The corresponding sense amplifier 212-1 comprises a node
where the sense amplifier data appears. In the preferred embodiment, the node
assumes the form of a SA Latch, 214-1 that stores data. Similarly, the corresponding
set of data latches 430-1 stores input or output data associated with the memory cell
coupled to bit line 1. In the preferred embodiment, the set of data latches 430-1

comprises sufficient data latches, 434-1, ..., 434-n for storing n-bits of data.

[0123] The PBUS 505 of the common processor 500 has access to the SA
latch 214-1 via the SBUS 422 when a transfer gate 501 is enabled by a pair of
complementary signals SAP and SAN. Similarly, the PBUS 505 has access to the set
of data latches 430-1 via the DBUS 423 when a transfer gate 502 is enabled by a pair
of complementary signals DTP and DTN. The signals SAP, SAN, DTP and DTN are

illustrated explicitly as part of the control signals from the stack bus controller 410.

[0124] FIG. 11A illustrates a preferred embodiment of the input logic of the
common processor shown in FIG. 10. The input logic 520 receives the data on the
PBUS 505 and depending on the control signals, either has the output BSI being the
same, or inverted, or floated. The output BSI node is essentially affected by either the
output of a transfer gate 522 or a pull-up circuit comprising p-transistors 524 and 525
in series to Vdd, or a pull-down circuit comprising n-transistors 526 and 527 in series
to ground. The pull-up circuit has the gates to the p-transistor 524 and 525
respectively controlled by the signals PBUS and ONE. The pull-down circuit has the
gates to the n-transistors 526 and 527 respectively controlled by the signals
ONEB<1> and PBUS.

25-

WO 2007/131127 PCT/US2007/068172

[0125] FIG. 11B illustrates the truth table of the input logic of FIG. 11A.
The logic is controlled by PBUS and the control signals ONE, ONEB<0>, ONEB<1>
which are part of the control signals from the stack bus controller 410. Essentially,

three transfer modes, PASSTHROUGH, INVERTED, and FLOATED, are supported.

[0126] In the case of the PASSTHROUGH mode where BSI is the same as the
input data, the signals ONE is at a logical “1”, ONEB<0> at “0” and ONEB<1> at
“0”. This will disable the pull-up or pull-down but enable the transfer gate 522 to
pass the data on the PBUS 505 to the output 523. In the case of the INVERTED
mode where BSI is the invert of the input data, the signals ONE is at “0”, ONEB<0>
at “1” and ONE<I1> at “1”. This will disable the transfer gate 522. Also, when
PBUS is at “0”, the pull-down circuit will be disabled while the pull-up circuit is
enabled, resulting in BSI being at “1”. Similarly, when PBUS is at “1”, the pull-up
circuit is disabled while the pull-down circuit is enabled, resulting in BSI being at “0”.
Finally, in the case of the FLOATED mode, the output BSI can be floated by having
the signals ONE at “1”, ONEB<0> at “1” and ONEB<1> at “0”. The FLOATED

mode is listed for completeness although in practice, it is not used.

[0127] FIG. 12A illustrates a preferred embodiment of the output logic of the
common processor shown in FIG. 10. The signal at the BSI node from the input
logic 520 is latched in the processor latch, PLatch 520. The output logic 530 receives
the data MTCH and MTCH* from the output of PLatch 520 and depending on the
control signals, outputs on the PBUS as either in a PASSTHROUGH, INVERTED
OR FLOATED mode. In other words, the four branches act as drivers for the PBUS
505, actively pulling it either to a HIGH, LOW or FLOATED state. This is
accomplished by four branch circuits, namely two pull-up and two pull-down circuits
for the PBUS 505. A first pull-up circuit comprises p-transistors 531 and 532 in
series to Vdd, and is able to pull up the PBUS when MTCH is at “0”. A second pull-
up circuit comprises p-transistors 533 and 534 in series to ground and is able to pull
up the PBUS when MTCH is at “1”. Similarly, a first pull-down circuit comprises n-
transistors 535 and 536 in series to Vdd, and is able to pull down the PBUS when
MTCH is at “0”. A second pull-up circuit comprises n-transistors 537 and 538 in

series to ground and is able to pull up the PBUS when MTCH is at “1”.

26-

WO 2007/131127 PCT/US2007/068172

[0128] One feature of the invention is to constitute the pull-up circuits with
PMOS transistors and the pull-down circuits with NMOS transistors. Since the pull
by the NMOS is much stronger than that of the PMOS, the pull-down will always
overcome the pull-up in any contentions. In other words, the node or bus can always
default to a pull-up or “1” state, and if desired, can always be flipped to a “0” state by

a pull-down.

[0129] FIG. 12B illustrates the truth table of the output logic of FIG. 12A.
The logic is controlled by MTCH, MTCH?* latched from the input logic and the
control signals PDIR, PINV, NDIR, NINV, which are part of the control signals from
the stack bus controller 410. Four operation modes, PASSTHROUGH, INVERTED,
FLOATED, and PRECHARGE are supported.

[0130] In the FLOATED mode, all four branches are disabled. This is
accomplished by having the signals PINV = 1, NINV = 0, PDIR = 1, NDIR = 0,
which are also the default values. In the PASSTHROUGH mode, when MTCH = 0, it
will require PBUS = 0. This is accomplished by only enabling the pull-down branch
with n-transistors 535 and 536, with all control signals at their default values except
for NDIR = 1. When MTCH = 1, it will require PBUS = 1. This is accomplished by
only enabling the pull-up branch with p-transistors 533 and 534, with all control
signals at their default values except for PINV = 0. In the INVERTED mode, when
MTCH = 0, it will require PBUS = 1. This is accomplished by only enabling the pull-
up branch with p-transistors 531 and 532, with all control signals at their default
values except for PDIR = 0. When MTCH = 1, it will require PBUS = 0. This is
accomplished by only enabling the pull-down branch with n-transistors 537 and 538,
with all control signals at their default values except for NINV = 1. In the
PRECHARGE mode, the control signals settings of PDIR = 0 and PINV = 0 will
either enable the pull-up branch with p-transistors 531 and 531 when MTCH = 1 or
the pull-up branch with p-transistors 533 and 534 when MTCH = 0.

[0131] Common processor operations are developed more fully in U.S. patent
application number 11/026,536, December 29, 2004, which is hereby incorporated in

its entirety by this reference.

27-

WO 2007/131127 PCT/US2007/068172

Use of Data Latches in Cache Operations

[0132] A number of aspects of the present invention make use of the data
latches of the read/write stacks described above in FIG. 10 for cache operations that
will data in and out while the internal memory is doing other operations such as read,
write, or erase. In the above-described architectures, data latches are shared by a
number of physical pages. For example, as on the read/write stacks of the bit lines,
shared by all of the word lines, so while one operation is going on, if any of these
latches are free, they can cache data for future operations in the same or another word
line, saving transfer time as this can be hidden behind another operation. This can
improve performance by increasing the amount of pipelining of different operations
or phases of operations. In one example, in a cache program operation, while
programming one page of data another page of data can be loaded in, saving on
transfer time. For another example, in one exemplary embodiment, a read operation
on one word line is inserted into a write operation on another word line, allowing the
data from the read to be transferred out of the memory while the data write continues

on.

[0133] Note that this allows data from another page in the same block, but on
a different word line, to be toggled out (to, for example, do an ECC operation) while
the write or other operation is going on for the first page of data. This inter-phase
pipelining of operations allows the time needed for the data transfer to be hidden
behind the operation on the first page of data. More generally, this allows a portion of
one operation to be inserted between phases of another, typically longer, operation.
Another example would be to insert a sensing operation between phases of, say, an
erase operation, such as before an erase pulse or before a soft programming phase

used as the later part of the erase.

[0134] To make the relative times needed for some of the operations
discussed, a set of exemplary time values for the system described above can be take

as:

Data write: ~700us (lower page~600us, upper page 800us)
Binary data write: ~200us

D8-

WO 2007/131127 PCT/US2007/068172

Erase: ~2,500us

Read: ~20-40us

Read and toggle out data: 2KB data, ~80us; 4KB ~160us; 8KB ~320us
These values can be used for reference to give an idea of the relative times involved
for the timing diagrams below. If have a long operation with different phases, a
primary aspect will interpose in a quicker operation using the shared latches of the
read/write stacks if latches available. For example, a read can be inserted into a
program or erase operation, or a binary program can be inserted into an erase. The
primary exemplary embodiments will toggle data in and/or out for one page during a
program operation for another page that shares the same read write stacks, where, for
example, a read of the data to be toggled out and modified is inserted into the verify

phase of the data write.

[0135] The availability of open data latches can arise in a number of ways.
Generally, for a memory storing n bits per cell, n such data latches will be needed for
cach bit line; however, not all of these latches are needed at all times. For example, in
a two-bit per cell memory storing data in an upper page/lower page format, two data
latches will be needed while programming the lower page. More generally, for
memories storing multiple pages, all of the latches will be needed only when
programming the highest page. This leaves the other latches available for cache
operations. Further, even while writing the highest page, as the various states are
removed from the verify phase of the write operation, latches will free up.
Specifically, once only the highest state remains to be verified, only a single latch is

needed for verification purposes and the others may be used for cache operations.

[0136] The following discussion will be based on a four state memory storing
two-bits per cell and having two latches for data on each bit line and one additional
latch for quick pass write, as described in U.S. patent application entitled “Use of
Data Latches in Multi-Phase Programming of Non-Volatile Memories” filed
concurrently with the present application that was incorporated above. The operations
of writing the lower page, or erasing, or doing a post erase soft program are basically
a binary operation and have one of the data latches free, which can use it to cache

data. Similarly, where doing an upper page or full sequence write, once all but the

9.

WO 2007/131127 PCT/US2007/068172

highest level has verified, only a single state needs to verify and the memory can free
up a latch that can be used to cache data. An example of how this can be used is that
when programming one page, such as in a copy operation, a read of another page that
shares the same set of data latches, such as another word line on the same set of bit
lines, can be slipped in during the verify phase of the write. The address can then be
switched to the page being written, allowing the write process to pick up where it left
off without having to restart. While the write continues, the data cached during the
interpolated read can be toggled out, checked or modified and transferred back to be
present for writing back in once the earlier write operation completes. This sort cache
operation allows the toggling out and modification of the second page of data to be

hidden behind the programming of the first page.

[0137] As a first example, a cache program operation for a two-bit memory
operating in single page (lower page/upper page format) program mode. FIG. 13 is a
simplified version of FIG. 10 that shows some specific elements that are relevant to
the present discussion in a two-bit embodiment, the other elements being suppressed
to simplify the discussion. These include data latch DLO 434-0, which is connected
Data 1/0 line 231, data latch DL1 434-1, connected to common processor 500 by line
423, data latch DL2 434-2, commonly connected with the other data latches by line
435, and sense amp data latch DLS 214, which is connected to common processor 500
by line 422. The various elements of FIG. 13 are labeled according to their
disposition during the programming of the lower page. The latch DL2 434-2 is used
for the lower verify (VL) in quick pass write mode, as is described in U.S. patent
application entitled “Use of Data Latches in Multi-Phase Programming of Non-
Volatile Memories” filed concurrently with the present application; the inclusion of
the register, and of using quick pass write when it is included, are optional, but the

exemplary embodiment will include this register.
[0138] The programming of the lower page can include the following steps:

(1) The process begins by resetting data latches DL0O 434-0 the default value “1”.
This convention is used to simplify partial page programming as cells in a selected

row that are not to be programmed will be program inhibited.

(2) Program data is supplied to DLO 434-0 along I/O line 231.

-30-

WO 2007/131127 PCT/US2007/068172

(3) The program data will be transferred to DL1 434-1 and DL2 434-2 (if this
latch is included and quick pass write is implemented).

(4) Once the program data is transferred to DL 1 434-1, data latch DL0 434-0 can
be reset to “1” and, during program time, the next data page can be loaded to DLO
434-0 along 1/0 line 231, allowing the caching of a second page while a first page is
being written.

(5) Once the first page is loaded into DL1 434-1, programming can begin. DLI
434-1 data is used for lockout of the cell from further programming. DL2 434-2 data
is used for the lower verify lockout that governs the transition to the second phase of
quick pass write, as described in U.S. patent application entitled “Use of Data Latches
in Multi-Phase Programming of Non-Volatile Memories” filed concurrently with the
present application.

(6) Once programming begins, after a programming pulse, the result of the lower
verify is used to update DL2 434-2; the result of the higher verify is used to update
DL1 434-1. (This discussion is based on the “conventional” coding, where the lower
page programming is to the A state. This, and other codings are discussed further in
U.S. patent applications entitled “Use of Data Latches in Multi-Phase Programming
of Non-Volatile Memories” filed concurrently with the present application and
entitled “Non-Volatile Memory and Method with Power-Saving Read and Program-
Verify Operations”, filed March 16, 2005. The extension of the present discussion to
other codings follows readily.)

(7) In determining of whether programming is complete, only the DL1 434-1

registers of the cells of row (or appropriate physical unit of program) are checked.

[0139] Once the lower page is written, the upper page can be programmed.
FIG. 14 shows the same elements as FIG. 13, but indicates the latch assignment for
upper page program where the lower page data is read in. (The description again uses
conventional coding, so that the programming of the upper page is to the B and C

states.) The programming of the upper page can include the following steps:

(1) Once the lower page finishes programming, the upper page (or next page)
write will begin with a signal from the state machine controller where the

(unexecuted) cache program commands are kept.

31-

WO 2007/131127 PCT/US2007/068172

(2) The program data will be transferred from DLO 434-0 (where it was
loaded into in step (3) during lower page write) to DL1 434-1 and DL2 434-2.

(3) The lower page data will be read in from the array and placed into DLO
434-0.

(4) DL1 434-1 and DL2 434-2 are again respectively used for the verify high
and verify low lockout data. Latch DLO 434-0 (holding the lower page data) is

checked as program reference data, but is not updated with the verify results.

(5) As part of verifying the B state, after sensing at the lower verify VBL, the
data will be updated in DL2 434-2 accordingly, with DL1 434-1 data being updated
with the high verify VBH results. Similarly, the C verify will have corresponding
commands to update latches DL2 434-2 and DL1 434-1 with the respective VCL and
VCH results.

(6) Once the B data is completed, then the lower page data (held in DLO 434-
0 for reference) is not needed as only the verify for the C state needs to be performed.
DLO0 434-0 is reset to "1" and another page of program data can be loaded in from I/O
line 231 and cached in latch DLO 434-0. The common processor 500 can set an

indication that that only the C state is to be verified.

(7) In determining of whether upper page programming is completed, for the
B state, both of latches DL1 434-1 and DLO 434-0 are checked. Once the cells being
programmed to the B state and only the C state is being verified, only the latch DL1

434-1 data needs to be checked to see if there are any bits not programmed.

Note that under this arrangement, in step 6, the latch DLO 434-0 is no longer required
and can be used to cache data for the next programming operation. Additionally, in
embodiments using quick pass write, once the second, slowly programming phase is
entered, the latch DL2 434-2 could also be made available for caching data, although,
in practice, it is often the case that this is only available in this way for a fairly short
time period that does not justify the additional overhead that is often required to

implement this feature.

-3)-

WO 2007/131127 PCT/US2007/068172

[0140] FIG. 15 can be used to illustrate many of the aspects of cache program
in the single page mode that has been described in the last few paragraphs. FIG. 15
shows the relative timing of what events are occurring internally to the memory (the
lower “True Busy” line) and as seen from external to the memory (the upper “Cache

Busy” line).

[0141] At time #, the lower page to be programmed onto the selected word
line (WLn) is loaded into the memory. This assumes the first lower page of data has
not been previously cached, as it will be for the subsequent pages. At time ¢, the
lower page is finished loading and the memory begins to write it. Since this is
equivalent to a binary operation at this point, only the state A needs to be verified
(“pvfyA”) and the data latch DLO 434-0 is available to receive the next page of data,
here taken as the upper pages to be programmed into WLn, at time #,, which is
consequently cached in latch DLO 434-0 during the programming of the lower page.
The upper page finishes loading at time #;3 and can be programmed as soon as the
lower page finishes at #,. Under this arrangement, although all of the data (lower and
upper page) to be written into physical unit of programming (here, word line WLn),
the memory must wait from time ¢; to time #, before the upper page data can be

written, unlike the full sequence embodiment described below.

[0142] The programming of the upper page begins at time #4, where initially
only the B state is verified (“pvfyB”), the C state being added at ¢5 (“pvfyB/C”).
Once the B state is no longer being verified at #5, only the C state needs to be verified
(“pvfyC”) and the latch DLO 434-0 is freed up. This allows the next data set to be

cached while the upper page finishes programming.

[0143] As noted, according to the single page algorithm with cache program,
as shown in FIG. 15, even though the upper page data may be available at time ¢, the
memory will wait until time #, before starting to write this data. In a conversion to a
full sequence program operation, such as is developed more fully in U.S. patent
application 11/013,125, once the upper page is available the upper and lower page

data can be programmed concurrently.

-33-

WO 2007/131127 PCT/US2007/068172

[0144] The algorithm for cache program in full sequence (low to full
conversion) write begins with lower page program as above. Consequently, steps (1)-

(4) are as for the lower page process in single page program mode:

(1) The process begins by resetting data latches DLO 434-0 the default value
“1”. This convention is used to simplify partial page programming as cells in a
selected row that are not to be programmed will be program inhibited.

(2) Program data is supplied to DLO 434-0 along I/O line 231.

(3) The program data will be transferred to DL1 434-1 and DL2 434-2 (if this
latch is included and quick pass write is implemented).

(4) Once the program data is transferred to DL 1 434-1, data latch DL0 434-0
can be reset to ““1” and, during program time, the next data page can be loaded to DLO
434-0 along 1/0 line 231, allowing the caching of a second page while a first page is

being written.

Once the second page of data is loaded, if correspond to the upper of the lower page
being written and the lower page is not yet finished programming, the conversion to
full sequence write can be implemented. This discussion focuses on the use of the
data latches in such an algorithm, with many of the other details being developed

more full in co-pending, commonly assigned U.S. patent application 11/013,125.

(5) After the upper page data is loaded into latch DL0O 434-0, a judgment will
be done in the address block to check if the 2 pages are on the same word line and the
same block, with one page is the lower page and one is upper page. If so, then the
program state machine will trigger a lower page program to full sequence program
conversion if this is allowed. After any pending verify is complete, the transition is
then effected.

(6) Some operation parameters will be typically be changed when the
program sequence changed from lower page to full sequence. In the exemplary
embodiment these include:

(1) Maximum program loop for the number of pulse verify cycles will
be changed from that of the lower page algorithm to that of the full sequence if the
lower page data has not been locked out, but the number of program loops completed

will not be reset by the conversion.

-34-

WO 2007/131127 PCT/US2007/068172

(i) As shown in FIG. 16, the programming waveform starts with the
value VPGM_L used in the lower page programming process. If the programming
waveform has progressed to where it exceeds the beginning value VPGM_U used in
the upper page process, at conversion to full sequence, the staircase will drop back
down to VPGM_U prior to continuing up the staircase.

(iii)) The parameters determining the step size and maximum value of
the program pulse are not changed.

(7) A full sequence read of the current state of the memory cells should be
performed to guarantee the right data will be programmed for multi-level coding.
This ensures that states that may have formerly locked out in the lower page
programming, but which require further programming to take account of their upper
page data, are not program inhibited when the full sequence begins.

(8) If quick pass write is activated, the data of latch DL2 434-2 will be
updated as well to reflect the upper page program data, since this was formerly based
on the lower verify for only the A state.

(9) The programming then resumes with the multi-level, full sequence
program algorithm. If the program waveform in the lower page process has increased
beyond the upper page starting level, the waveform is stepped back to this level at
conversion time, as shown in FIG. 16.

[0145] FIG. 17 is a schematic representation of the relative times involved in
the lower page to full sequence conversion write process. Up until time #3, the process
is as described above for the process in FIG. 15. At #; the upper page of data has
been loaded and the transition is made to the full sequence algorithm the verification
process is switched to include the B states with the A states. Once all of the A states
lock out, the verify process switches to checking for the B and C states at time 7.
Once the B states have verified at #5, only the C state needs to be checked and a
register can be freed up to load the next data to be programmed, such as the lower
page on the next word line (WL,11) as indicated on the Cache Busy line. At time #
this next data set has been cached and one the programming of the C data for the
previous set concludes at ¢, this next data set begins programming. Additionally,
while the (here) lower page on word line WL, is programming, the next data (such

as the corresponding upper page data) can be loaded into the open latch DL0 434-0.

-35-

WO 2007/131127 PCT/US2007/068172

[0146] During the full sequence write, a status report is implemented in a way
that gives lower page and upper page status independently. At the end of the program
sequence, if there are unfinished bits, a scan of physical page can be performed. A
first scan can check latch DLO 434-0 for unfinished upper page data, a second scan
can check DL1 434-1 for unfinished lower page data. Since, the verification of the B
state will change both DLO 434-0 and DL1 434-1 data, an A state verification should
be performed in the way that DL1 434-1 data “0” will be changed to “1” if the bit’s
threshold value is higher than the A verify level. This post verify will check on
whether any under programmed B levels are passing at the A level; if they are passing
at the A level, then the error is only on upper page and not on lower page; if they are

not passing at the A level, then both lower and upper pages have error.

[0147] If the cache program algorithm is used, after the A and B data are
programmed, the C state will be transferred to latch DL1 434-1 to finish
programming. In this case, the scan of latch is not necessary for lower page, because

the lower page will have already passed program without any failed bits.

[0148] Another set of exemplary embodiments of the present invention relate
to page copy operations, where a data set is relocated from one location to another.
Various aspects of data relocation operations are described in U.S. patent applications
number US 10/846,289, filed May 13, 2004; number 11/022,462, December 21,
2004; and number US 10/915,039, filed August 9, 2004; and U.S. patent number
6,266,273, which are all hereby incorporated by reference, which are all hereby
incorporated by reference. When data is copied from one location to another, the data
is often toggled out to be checked (for error, for example), updated (such as updating
a header), or both (such correcting detected error). Such transfers are also to
consolidate date in garbage collection operations. A principal aspect of the present
invention allows for a data read to an open register to be interpolated during the verify
phase of a write operation, with this cached data then being transferred out of the
memory device as the write operation continues, allowing the time for toggling the

data out to hide behind the write operation.

[0149] The following presents two exemplary embodiments of a cache page

copy operation. In both cases, an implementation that uses a quick pass write

-36-

WO 2007/131127 PCT/US2007/068172

implementation is described. FIG. 18 indicates the disposition of the exemplary

arrangement of latches as the process progresses.

[0150] The first version of cache page copy will write to a lower page and can
include the following steps, where read addresses are labeled M, M+1, ..., and write

addresses are labeled N, N+1, ..

(1) The page to be copied (“page M”) is read into latch DL1 434-1. This can

be either an upper or lower page of data
(2) Page M is then transferred into DLO 434-0.

(3) The data in DLO 434-0 is then toggle out and modified, after which it is

transferred back into the latch.

(4) The program sequence can then begin. After data to be written into the
lower page N is transferred to DL1 434-1 and DL2 434-2, the latch DL0O 434-0 is
ready for cache data. This lower page will be programmed. For this embodiment, the

program state machine will stop here.

(5) The next page to be copied is then read into DLO 434-0. Programming
can then resume. The state machine, stopped at the end of step (4), will restart the

program sequence from the beginning.
(6) Programming continues until the lower page finishes.

[0151] The copy destination page address will determine whether a write is to
a lower or an upper page. If the program address is an upper page address, then the
programming sequence will not be stopped until the programming finishes and the

read of step (5) will be executed after the write is complete.

[0152] In a second cache page copy method, the program/verify process can
be paused to insert a read operation and then restart the write operation, picking up at
the point where it left off. The data that was read during this interleaved sensing
operation can then be toggled out while the resumed write operation continues on.

Also, this second process allows for the page copy mechanism to be used in an upper

-37-

WO 2007/131127 PCT/US2007/068172

page or full sequence write process once only the C state is being verified and one
latch on each bit line opens up. The second cache page copy operation begins with
the same first three steps as in the first case, but then differs. It can include the

following steps:

(1) The page to be copied (“page M”) is read into latch DL1 434-1. This can
be either a lower or upper page

(2) The data from page M is then transferred into DLO 434-0. (As before, N,
etc. will denote a write address, M, etc., for a read address.)

(3) The data in DLO 434-0 is then toggled out, modified, and then transferred
back to the latch.

(4) The state machine program will go to an infinite wait state until the
command a read command is entered and then a read of another page, say the next
page M+1, to latch DLO 434-0 will begin.

(5) Once the read of step (4) is complete, the address is switched back to word
line and block address to program the data in steps (1-3) into page N (here, a lower
page) and the programming is resumed.

(6) After the read of page M+1 is finished, the data can be toggled out,
modified, and returned. Once the process is complete, the write can be converted to a
full sequence operation if the two pages are the corresponding upper and lower pages
on the same WL.

(7) Once the A and B levels are done in the full sequence write, the data in
DLO 434-0 will be transferred to DL1 434-1, as in the normal cache program
described ecarlier, and a read command for another page (e.g., page M+2) can be
issued. If there is not a single page to full sequence conversion, the lower page will
finish the writing and then the upper page will start. After the B level state is done
completely, the same DLO 434-0 to DL1 434-1 data transfer will occur, and the state
machine will go into state of waiting for the read command for page M+2.

(8) Once the read command arrives, the address is switched to the read
address and the next page (page M+2) is read out.

(9) Once the read is complete, the address will be switched back to previous

upper page address (program address N+1) until the write finishes.

-38-

WO 2007/131127 PCT/US2007/068172

[0153] As noted above, the exemplary embodiments include the latch DL2
434-2 used for the lower verify of the quick pass write technique in addition to the
latches DLO 434-0 and DL1 434-1 used in holding the (here, 2 bits) of data that can be
programmed into each of the memory cells. Once the lower verify is passed, the latch
DL2 434-2 may also be freed up and used to cache data, although this is not done in

the exemplary embodiments.

[0154] FIGs. 19A and 19B illustrate the relative timing of the second cache
page copy method, where FIG. 19B illustrates the algorithm with the full sequence
write conversion and FIG. 19A illustrates the algorithm without. (Both FIGs. 19A
and 19B are composed of two parts, the first, upper part beginning at the broken
vertical line A, corresponding to #y, and ending with the broken vertical line B,
corresponding to #s; the second, lower part is a continuation of the upper portion and
begins with the broken vertical line B, corresponding to #5. In both cases the line B at
time ¢5 is same in the upper portion as in the lower portion, being just a seam in two

parts allowing it to be displayed on two lines.)

[0155] FIG. 19A shows a process that starts with reading of a first page (page
M) that is taken to be a lower page in this example, assumes no data has previously
been cached, and operates in single page mode, waiting until the lower page has
finished writing before beginning to write the upper page. The process starts at time
tp with a read of the page M (Sense page M (L)), which here is a lower that is sensed
by a read at the A and C levels in this coding. At time at time #; the read is complete
and page M can be toggled out and checked or modified. Beginning at time 7, a next
page (here page M+1, the upper page corresponding to the same physical as lower
page M) is sensed by reading at the B level, a process that finishes at time #3. At this
point, the first page (originating from Page M) (lower) is ready to be programmed
back into the memory at page N and the data read from page M+1 is being held in a
latch and can be transferred out to be modified/checked. Both of these processes can
start at the same time, here #;. Using the typical time values described above, the data
from page M+1 has been toggled out and modified by time z,; however, for the

embodiment not implementing a full sequence conversion, the memory will wait until

-39-

WO 2007/131127 PCT/US2007/068172

page N finishes at time #5 to begin writing the second read page of data (originating

from Page M+1) into page N+1.

[0156] As page N+1 is an upper page, its write begins initially with a
verification at the B level, the C level being added at #. Once the storage elements
having a target state B all lock out (or the maximum count is reached) at time #;, the B
state verification is dropped. As described above, according to several principal
aspects of the present invention, this allows a data latch to be freed up, an ongoing
write operation is suspended, a reading operation (at a different address than the
suspended program/verify operation) is interposed, the write then resumes where it
left off, and the data sensed the interposed write operation can be toggled out while

the resumed write operation runs on.

[0157] At time #; the interposed write operation is performed for the, here,
lower page M+2. This sensing is finished at time 75 and the write of page N+1 picks
back up and the data from page M+2 is concurrently toggled out and modified. In this
example, page N+1 finishes programming at time ¢y before page M+2 is finished at
time #;9. At time #;, a write of the data originating from page M+2 could begin;
however, in this embodiment, instead a read of page M+3 is first executed, allowing
for this page’s data to be toggled out and the modification to be hidden behind the
writing of the data originating from page M+2 into page N+2, beginning at time ¢,;.
The process then continues on as in the earlier parts of the diagram, but with the page
numbers shifted, with time #;; corresponding to time ¢;, time #,, corresponding to time

t4, and so on until the copy process is stopped.

[0158] FIG. 19B again shows a process that starts with reading of a lower
page, page M that is taken to be a lower page, and assumes no data has previously
been cached. FIG. 19B differs from FIG. 19A by implementing a conversion to full
sequence write at time #,. This roughly speeds up the process by the time (#5-2,) of
FIG. 19A. At time #; (=t5 in FIG. 19A), the various changes related to the full
sequence conversion are implemented as described previously. Otherwise, the
process is similar to that of FIG. 19A, including those aspects of the present invention

found between times ¢7 and ¢;>.

-40-

WO 2007/131127 PCT/US2007/068172

[0159] In both the page copy processes and the other techniques described
here that involve writing data, which states are verified at a given time can be selected
intelligently, along the lines describe in U.S. patent publication number US-2004-
0109362-A1, which is hereby incorporated by reference. For example, in the full
sequence write, the write process can begin verifying only the A level. After ever A
verify, it is checked to see whether any bits have passed. If so, the B level can be
added to the verify phase. The A level verify will be removed after all storage units
with it as their target values verify (or except a maximum count based on a settable
parameter). Similarly, after the verifications at the B level, a verify of the C level can
be added, with the B level verify being removed after all storage units with it as their

target values verify (or except a maximum count based on a settable parameter).

CACHING OPERATIONS IN DATA LATCHES DURING PROGRAM
OPERATIONS

[0160] Programming operation with background data caching for other

operations is described with respect to a preferred multi-state coding.

Exemplary Preferred “LM” Coding for a 4-state Memory

[0161] FIGs. 20A-20E illustrate the programming and reading of the 4-state
memory encoded with a 2-bit logical code (“LM” code). This code provides fault-
tolerance and alleviates the neighboring cell coupling due to the Yupin Effect. FIG.
20A illustrates threshold voltage distributions of the 4-state memory array when each
memory cell stores two bits of data using the LM code. The LM coding differs from
the conventional Gray code in that the upper and lower bits are reversed for states “A”
and “C”. The “LM” code has been disclosed in U.S. Patent No. 6,657,891 and is
advantageous in reducing the field-effect coupling between adjacent floating gates by
avoiding program operations that require a large change in charges. As will be seen
in FIG. 20B and 20C, cach programming operation results in moderate change in the
charges in the charge storage unit as evident from the moderate change in the

threshold voltages Vr.

41-

WO 2007/131127 PCT/US2007/068172

[0162] The coding is designed such that the 2 bits, lower and upper, may be
programmed and read separately. When programming the lower bit, the threshold
level of the cell either remains in the unprogrammed region or is moved to a “lower
middle” region of the threshold window. When programming the upper bit, the
threshold level in either of these two regions is further advanced to a slightly higher

level not more than one quarter of the threshold window.

[0163] FIG. 20B illustrates the lower page programming in an existing, 2-
round programming scheme using the LM code. The fault-tolerant LM code
essentially avoids any upper page programming to transit through any intermediate
states. Thus, the first round lower page programming has the logical state (1, 1)
transits to some intermediate state (x, 0) as represented by programming the
“unprogrammed” memory state “U” to an “intermediate” state designated by (x, 0)
with a programmed threshold voltage among a broad distribution that is greater than
D4 but less than De. During programming, the intermediate state is verified relative a

demarcation DV .

[0164] FIG. 20C illustrates the upper page programming in an existing, 2-
round programming scheme using the LM code. In the second round of programming
the upper page bit to “0”, if the lower page bit is at “1”, the logical state (1, 1) transits
to (0, 1) as represented by programming the “unprogrammed” memory state “U” to
“A”. During programming to “A”, the verifying is relative to the DVa. If the lower
page bit is at “0”, the logical state (0, 0) is obtained by programming from the
“intermediate” state to “B”. The program verifying is relative to a demarcation DV5.
Similarly, if the upper page is to remain at “1”, while the lower page has been
programmed to “0”, it will require a transition from the “intermediate’’state to (1, 0) as
represented by programming the “intermediate” state to “C”. The program verifying
is relative to a demarcation DV¢. Since the upper page programming only involves
programming to the next adjacent memory state, no large amount of charges is altered
from one round to another. The lower page programming from “U” to a rough

“intermediate” state is designed to save time.

[0165] In the preferred embodiment, “Quick Pass Write” programming

technique mentioned in an earlier section is implemented. For example in FIG. 20C,

42-

WO 2007/131127 PCT/US2007/068172

initially the program-verify (“pvfyAr”) is with respect to DVar, which is set at margin
lower than DVa. Once the cell is program-verified at DVap, subsequent
programming will be at a finer step and program-verify (pvfyA) will be with respect
to DVa. Thus an additional transitional state Argw must be latched during the
programming operation to indicate that the cell has been program-verified to Day.
Similarly, if QPW is implemented for programming to the “B” state, there will be an
additional transitional state Brow to latch. The program verifying for Brow will be
relative to the demarcation DV, and the program verifying for “B” will be relative to
the demarcation DVi. When in the Ajow or Brow state, the programming for the
memory cell in question will be switched to a slower (i.e. finer) mode by suitable
biasing of the bit line voltage or by modifying the programming pulses. In this way,
larger programming steps can be used initially for rapid convergence without the
danger of overshooting the target state. “QPW” programming algorithm has been
disclosed in United States Patent Application Serial No. 11/323,596, filed December
29, 2005 and entitled, “Methods for Improved Program-Verify Operations in Non-
Volatile Memories,” the entire disclosure of which is hereby incorporated herein by

reference.

[0166] FIG. 20D illustrates the read operation that is required to discern the
lower bit of the 4-state memory encoded with the LM code. The decoding will
depend on whether the upper page has been programmed or not. If the upper page has
been programmed, reading the lower page will require one read pass of readB relative
to the demarcation threshold voltage Dg. On the other hand, if the upper page has not
yet been programmed, the lower page is programmed to the “intermediate” state
(FIG. 20B), and readB will cause error. Rather, reading the lower page will require
one read pass of readA relative to the demarcation threshold voltage Da. In order to
distinguish the two cases, a flag (“LM” flag) is written in the upper page (usually in
an overhead or system areca) when the upper page is being programmed. During a
read, it will first assume that the upper page has been programmed and therefore a
readB operation will be performed. If the LM flag is read, then the assumption is
correct and the read operation is done. On the other hand, if the first read did not
yield a flag, it will indicate that the upper page has not been programmed and

therefore the lower page would have to be read by a readA operation.

43-

WO 2007/131127 PCT/US2007/068172

[0167] FIG. 20E illustrates the read operation that is required to discern the
upper bit of the 4-state memory encoded with the LM code. As is clear from the
figure, the upper page read will require a 2-pass read of readA and readC, respectively
relative to the demarcation threshold voltages D and D¢. Similarly, the decoding of
upper page can also be confused by the “intermediate” state if the upper page is not
yet programmed. Once again the LM flag will indicate whether the upper page has
been programmed or not. If the upper page is not programmed, the read data will be

reset to ““1” indicating the upper page data is not programmed.

Latch Utilization during Program Operation with the LM Code and QPW

[0168] As shown in FIG. 10, cach bit line allows a read/write module to
access a given memory cell along a selected row of the memory array. There is a
page of p read/write modules operating in parallel on a page of memory cells in a
row. Each read/write module comprises a sense amplifier 212-1 and data latches 430-
1 coupled to a common processor 500. The sense amplifier 212-1 senses a
conduction current of the memory cell via the bit line. The data is processed by the
common processor 500 and stored in the data latches 430-1. Data exchange external
to the memory array is effected by the I/O bus 231 coupled to the data latches (see
FIGs. 13 and 14). In a preferred architecture, the page is formed by a contiguous run
of p memory cells along a row sharing the same word lines and accessible by p
contiguous bit lines of the memory array. In an alternate architecture, the page is
formed by either even or odd memory cells along a row. The data latches 430-1 are
implemented with a minimum of n latches, sufficient to perform the various required
memory operations, from DL1 to DLn. FIGs. 13 and 14 illustrate a preferred

configuration for a 4-state memory where there are three latches, DLO — DL2.

Next Page Program Data loading during Current Page Programming

[0169] FIG. 21 is a schematic timing diagram for a lower page programming,
illustrating background operation of loading a next page of program data into unused
data latches. The activities of the host, the I/O bus, the data latches and memory core
are shown contemporancously. The lower page programming in the LM code is

illustrated in FIG. 20B where the erased or unprogrammed state (1,1) is programmed

-44.-

WO 2007/131127 PCT/US2007/068172

to a “Lower Middle” or intermediate state (X,0). In this case, one bit, viz., the lower
bit, will be sufficient to distinguish between the unprogrammed “1” state from the
intermediate “0” state. For example, DL2 (see FIGs. 13 and 14) can be used to store

the lower bit.

[0170] When an Nth page of data is to be written, the host initially issues a
write command to the memory for writing the page of data to a specified address.
This is followed by sending the page of data to be programmed to the memory. The
program data are toggled through the I/0O bus and latched into DL2 of each read/write
module. Thus the I/O bus is temporary busy during this toggling-in period, which for

example may be of duration 300 us.

[0171] The lower page programming is binary and need only distinguish
between the “U” state from the “intermediate state” as demarcated by the DVa
threshold level (see FIG. 20B). Each programming pulse applied to the word line is
followed by a read back or program-verify to determine if the cell has reached the
target state representing the program data. In this case the program-verify is
(“pvtyA”) with respect to DV. Thus only one latch from each read/write module is

required to store one bit for each cell.

[0172] With regard to the data latches, DL2 containing the program data is
actively being used for the current lower bit programming operation which is taking
place in the memory array or the memory core. Thus, the number of latches in use by

the core is one while the other two latches, namely DLO and DL1 remain idle.

[0173] While programming at the core continues, the two idle latches and the
free I/O bus can be used for setting up a next page of program data. The host can
issue another command to write the (N+1)th page of data and toggle the data via the
I/O bus to be latched in one of the two free latches, say DLO. In this way, once the
core is done programming the Nth page, it can commence with programming of the

(N+1)th page without having to wait another 300 us to have the data toggled in.

[0174] At this point, two latches (e.g., DL2 and DLO0) have been used, one for

the on-going programming of the Nth page (lower page) and one for caching the

45-

WO 2007/131127 PCT/US2007/068172

(N+1)th page of program data. Thus, there is one more latch free, but utilization of it

will depend on whether the already cached (N+1)th page is an upper page or a lower
page.

[0175] If the (N+1)th page is an upper page, typically belonging to the same
page cells or word line, the last free latch must, in a preferred embodiment, be
reserved for optimizing subsequent programming of the upper page. This is because
the implementation of “Quick Pass Write” (“QPW”) programming algorithm
(mentioned in an earlier section) requires an additional latch to store a flag to indicate

if the cell has been programmed close to the target state.

[0176] If the (N+1)th page is another lower page belonging to another page of
cells or word line, then the last free latch can optionally be used to cache another

(N+2)th (lower or upper) page data if presented by the host.

[0177] FIG. 22 is a table showing the number of states that needs to be
tracked during various phases of a 4-state upper page or full sequence programming
employing QWP. The upper page or full sequence programming in the LM code is
illustrated in FIG. 20C where some of the lower page states “U” or (1,1) and the
“intermediate” state (X,0) are respectively further programmed to states “A” or (0,1),
“B” or (0,0) and “C” or (1,0). In particular, the state “A” is programmed from “U”
and the states “B” and “C” are programmed from “intermediate”. With the QWP
technique implemented for state “A” and “B” but not “C”, the programming initially
needs to distinguish between the basic states “A”, “B”, and “C” plus “Arow” and
“Brow’”, which amounts to a total of five states. With three bit in three latches, there
are 2° or nine possible codes which are more than adequate to distinguish between

those six states.

Several phases during programming may arise as programming progresses:

[0178] “A” Done — after all cells in the page targeted for “A” state have been
program-verified with respect to the Do demarcation. This would entail having first
completed the program-verified with respect to the Dar, demarcation. There are four

states “L” (Program Lockout), “Br”, “B” and “C” to keep track of. This would

-46-

WO 2007/131127 PCT/US2007/068172

require two latches storing two bits with a predefined coding provided by a code table

two-bit 2CT(“A”).

[0179] “B” Done — after all cells in the page targeted for “B” state have been
program-verified with respect to the Dy demarcation. This would entail having first
completed the program-verified with respect to the Dgr, demarcation. There are four
states “L”, “Ar”, “A” and “C” to keep track of. This would require two latches

storing two bits with a predefined coding provided by a two-bit code table 2CT(“B”).

[0180] “C” Done — after all cells in the page targeted for “C” state have been
program-verified with respect to the D¢ demarcation. There are five states “L”, “Ap”,
“A”, “Br” and “B” to keep track of. This would require three latches storing three

bits with a predefined coding provided by a three-bit code table 3CT(*C”).

[0181] “A”+”B” Done — after all cells in the page targeted for “A” state and
“B” state have been program-verified respectively to the Da demarcation and Dy
demarcation. There are two states “L” and “C” to keep track of. This would require

one latch storing one bit with a predefined coding provided by a one-bit code table

lCT(“A”+”B”)‘

[0182] “A”+”C” Done — after all cells in the page targeted for “A” state and
“C” state have been program-verified respectively to the Da demarcation and D¢
demarcation. There are three states “L”, “Br” and “B” to keep track of. This would

require two latches storing two bits with a predefined coding provided by a two-bit

code table 2CT(“A”+”C”).

[0183] “B”+”C” Done — after all cells in the page targeted for “B” state and
“C” state have been program-verified respectively to the Dy demarcation and D¢
demarcation. There are three states “L”, “Ar” and “A” to keep track of. This would

require two latches storing two bits with a predefined coding provided by a two-bit

code table 2CT(“B”+7C”).

[0184] “A”+”B”+”C” Done — after all cells in the page targeted for “A” state,
“B” state and “C” state have been program-verified respectively to the Da

demarcation, Dy demarcation and D¢ demarcation. All targeted states of the page

47-

WO 2007/131127 PCT/US2007/068172

have been program-verified and the programming for the page is completed. No latch

will be needed.

[0185] FIG. 23 is a schematic timing diagram for an upper page or full
sequence programming, illustrating background operation of loading a next page of
program data into unused data latches. The activities of the host, the I/O bus, the data

latches and memory core are shown contemporaneously.

[0186] When an Nth page of upper page data is to be written, reference must
be made to a previously programmed lower page data. The previously programmed
lower page is already latched in DL2 of each read/write module. With the Nth page
of upper page data, the host initially issues a write command to the memory for
writing the page of data to a specified address. This is followed by sending the page
of data to be programmed to the memory. The program data are toggled through the
I/O bus and latched into DLO of each read/write module. Thus the I/O bus is
temporary busy during this toggling-in period, which for example may be of duration

300 us.

[0187] The upper page or full sequence programming is multi-state with the
states “A”, “B” and “C” demarcated by the Da, Dy and D¢ respectively (see FIG.
20C). Each programming pulse applied to the word line is followed by a read back or
program-verify to determine if the cell has reached the target state representing the

program data.

[0188] As shown in FIG. 22, the number of latches required during
programming varies as to what phase the programming has proceeded to. For
example, initially all three latches are employed. When all the “A” states have been
program-verified (“A” Done”) only two latches (e.g., DL2 and DL1) are required by
the memory core during subsequent programming to store four possible states. This

leave one latch (e.g., DLO) free for cache operation.

[0189] While programming at the core continues, the free latch and the free
I/O bus can be used for setting up a next page of program data. The host can issue

another command to write the (N+1)th page of data (lower page data) and toggle the

48-

WO 2007/131127 PCT/US2007/068172

data via the 1/0 bus to be latched in the free latch DLO. In this way, once the core is
done programming the Nth page, it can commence with programming of the (N+1)th
page without having to wait another 300 us to have the data toggled in. The same
consideration applies to other programming phases where there is at least one free

latch as shown in FIG. 22.

[0190] Another possibility is when the programming enters a phase that only
requires one latch to operate and thus has two free latches for cache operation. For
example, as shown in FIG. 22, this happens when both “A” and “B” states have been
program-verified. At this point, two latches are available. If one is already used up
for loading (N+1) lower page data, then the remaining one may be used to load (N+2)

Upper or lower page data.

[0191] If the (N+1)th page is an upper page, typically belonging to the same
page cells or word line, the last free latch must, in a preferred embodiment, be
reserved for optimizing subsequent programming of the upper page. This is because
the implementation of “Quick Pass Write” (“QPW”) programming algorithm
(mentioned in an earlier section) requires an additional latch to store one or two flags

to indicate if the cell has been programmed close to the target state.

[0192] If the (N+1)th page is another lower page belonging to another page of
cells or word line, then the last free latch can optionally be used to cache another

(N+2)th (lower or upper) page data if presented by the host.

[0193] According to one aspect of the invention, when the multiple phases of
a write operation vary as to the number of states to track, a phase-dependent coding
enables efficient utilization of the available data latches, thereby allowing a maximum

of surplus latches for background cache operations.

[0194] FIG. 24 is a flowchart illustrating latch operations contemporaneous
with a current multi-phase memory operation, according to a general embodiment of

the invention.

[0195] STEP 600: Beginning to operate a memory having a memory array

with addressable pages of memory cells.

-49-

WO 2007/131127 PCT/US2007/068172

[0196] STEP 610: Providing for each memory cell of an addressed page a set

of data latches having capacity for latching a predetermined number of bits.
Current Multi-Phase Memory Operation In Memory Array

[0197] STEP 620: Performing a current memory operation on the memory
array, said memory operation having one or more phases, cach phase being associated

with a predetermined set of operating states.
Freeing Up Latches With Efficient Phase-Dependent Coding

[0198] STEP 622: Providing a phase-dependent coding for each phase so that
for at least some of the phases, their set of operating states are coded with
substantially a minimum of bits so as to efficiently utilize the set of data latches and to

free up a subset of free data latches.
Contemporaneous Latch Operation

[0199] STEP 624: Contemporancously with the current memory operation,
performing operations on the subset of free data latches with data related to one or

more subsequent memory operations on the memory array.

Read Interrupt During Current Programming

[0200] FIG. 25 is a schematic timing diagram for a lower page programming,
illustrating a read interrupt operation using available latches. The activities of the

host, the I/O bus, the data latches and memory core are shown contemporancously.

[0201] When an Nth page of data is to be written, the host initially issues a
write command to the memory for writing the page of data to a specified address.
This is followed by sending the page of data to be programmed to the memory. The
program data are toggled through the I/0O bus and latched into DL2 of each read/write
module (see FIGs. 13 and 14). Thus the I/O bus is temporary busy during this

toggling-in period, which for example may be of duration 300 ps.

-50-

WO 2007/131127 PCT/US2007/068172

[0202] The lower page programming is binary and need only distinguish
between the “U” state from the “intermediate state” as demarcated by the Da
threshold level (see FIG. 20A). Each programming pulse applied to the word line is
followed by a read back or program-verify to determine if the cell has reached the
target state representing the program data. In this case the program-verify is
(“pvfyA”) with respect to Da. Thus only one latch from each read/write module is

required to store one bit for each cell.

[0203] With regard to the data latches, DL2 containing the program data is
actively being used for the current lower bit programming operation which is taking
place in the memory array or the memory core. Thus, the number of latches in used

by the core is one while the other two latches, namely DLO and DL1 remain idle.

[0204] While programming at the core continues, the two idle latches and the
free I/0 bus can be used for a read operation. A read operation requires sensing in the
memory core (i.e., memory array) itself which is already preoccupied with the current
programming operation. However, the actual sensing phase of a read operation is
typically much shorter than a program operation (typically one-tenth of the
programming time) that the latter can be interrupted to insert a sensing operation
without incurring much penalty for performance. After the sensing, the read data are
latched in one or more of the free data latches. A user can then toggle out the read
data to the I/O bus. It is here that time can be saved since it is taking place at the

same time as the program operation in the memory array.

[0205] Thus, while the lower page is being programmed, the host can issue a
read command to interrupt the programming while saving the programming states in
the data latches at the instance of the pause. Another page of data is sensed and
latched in one of the two free latches, say DL0O. Then the programming can resume
with the saved programming states. The read data in the data latches can be toggled
out to the I/O bus while the memory array is still occupied with the resumed

programming.

[0206] As described earlier, in the example of a four-state (2-bit) memory, the

preferred number of latches for each memory cell of the page is three. Only one latch

51-

WO 2007/131127 PCT/US2007/068172

to store the lower page program data is required for the lower page programming.
This leaves two free latches. Only one free latch is needed in a typically read
operation to latch the sensed data bit. In a preferred Look-ahead (“LA”) read
operation, two free latches are need. This will be described in more details in a later

section.

[0207] FIG. 26 is a schematic timing diagram for an upper page
programming, illustrating a read interrupt operation using available latches. The
activities of the host, the I/O bus, the data latches and memory core are shown
contemporanecously. The multi-phase programming has already been described in
connection with FIG. 23, resulting in different number free data latches available
during the different phases. For example, one data latch is free after State “A” has
been program-verified and two data latches are free after both State “A” and State “B”

have been program-verified.

[0208] Thus, after State “A” has been program-verified, the single free latch
could be used to latch sensed data from a conventional read. On the other hand, if
both State “A” and State “B” have been program-verified, the two available latches

will be able to support a LA read as explained above.

MANAGEMENT OF MULTIPLE CACHED COMMANDS

[0209] Concurrent memory operations need to be managed in order to support
cache operation where one memory operation is under execution in the memory’s
core while data for additional pending memory operations are being cached at the data
latches or being transferred via the I/0 bus. Conventional memory devices typically
do not have sufficient number of free data latches to perform cache operations. Even
if they do, the pending memory operation whose data are being cached is executed

only after the current memory operation has completed.

[0210] FIG. 27 illustrates the package of information associated with a typical
memory operation. When a memory is requested to perform a memory operation, it

receives a pre-command signifying the start of a specified memory operation. This is

-50-

WO 2007/131127 PCT/US2007/068172

followed by the address in the memory array where the operation is to take place. In
the case of an erase operation, the address is the block of memory cells to be erased.
In the case of a program or read operation, the address is the page of memory cells to
be operated on. If the operation specified is a program operation, program data will
be supplied for loading into the data latches. When the program data is in place, an
execute-command will be issued to execute the program operation with respect to the
available program data. If the operation specified is a read operation, there will be no
data sent to the memory. The execute-command will be issued to execute the read
operation. The page of addressed memory cells will be sensed and the sensed data

will be latched in the data latches for eventual toggling out via the 1/0 bus.

[0211] FIG. 28 illustrates a conventional memory system that supports simple
cache operations. The memory system includes a memory controller 8 controlling a
memory chip 301 via a memory controller 8. The memory chip has a memory array
100 controlled by an on-chip host interface/control circuitry 310. The control
circuitry includes a state machine which manages the basic memory operations of the
memory array. A host 6 engages the memory system via the memory controller §

which performs higher level memory functions such as mapping and maintenance.

[0212] A status signal, Ready/Busy™* allows the host or the memory controller
to request a memory operation when the memory chip is not busy. The requested
memory operation is held in a buffer 322 and released to the state machine 312 for
execution when the state machine is not executing another memory operation. For
example, the memory operation MEM OPO is being executed in the memory array as
controlled by the state machine. If there are free data latches available, the controller
will be signaled to allow a pending memory operation MEM OP1 to be sent to the
memory chip and buffered in the buffer 322. At the same time data associated with
MEM OP1 will be toggled into the memory chip and latched into the data latches. As
soon as MEM OPO0 has completed execution, the state machine will release the MEM
OP1 in the buffer to begin its execution. Thus, in convention memory systems, a

pending memory operation is executed after the current one is completed.

[0213] In the example shown in FIG. 28, cach command must wait until the

last one is completed before it can begin execution, although its data is being cached

-53-

WO 2007/131127 PCT/US2007/068172

during the execution of the last one. Thus, while MEM OPO is executing in the
memory core, Datal associated with MEM OP1 is being latched. MEM OP1 will act
on the cached Datal after MEM OPO is completed. Similarly, while MEM OP1 is
executing in the memory core, Data2 associated with MEM OP2 is being latched.
This scheme forestalls the possibility of loading both lower and upper logical pages of
the same word line and efficiently programming multi-bits in the same programming

operation.

[0214] There are two factors affecting the performance of program operation,
particularly for sequential programming. The first relates to the time to load the
program data. As the flash memory capacity becomes larger, their page size also
increases with every new generation. The larger page of data to be programmed
therefore takes longer to load into the data latches. In order to increase the program
performance, it is desirable to hide the data loading time elsewhere. This is
accomplished by caching as much program data as possible in the background while a
program operation is busy with the memory core in the foreground but has its data

latches and /O bus idle.

[0215] One feature of the invention is to address the first factor by loading
more pages into the data latches in the background during programming so that as
soon as data latches are available, they are used for caching the pending program data.
This includes allowing data associated with more than one command to be cached in

the background during the same foreground operation.

[0216] The second factor for program performance relates to the time to
program a page, particularly for programming the page of multi-bit cells with the
same word line. As described before, a page of multi-bit cells can be treated as a
collection of individual single-bit pages. For example, a 2-bit page can be
programmed and read as two somewhat independent single-bit pages, namely a lower-
bit page and an upper-bit page. In particular, the lower-bit page can be programmed
as soon as the program data for the lower-bit page is available. The upper-bit page is
programmed to the same page of memory cells in a second pass and the programming
depends on the value of the lower page already programmed in the cells. In this way,

the two bits can be programmed in two separate passes at two different times.

-54-

WO 2007/131127 PCT/US2007/068172

However, a more efficient and more accurate way (with less program disturb) is to
program the two bits in a single pass in what is known as “all-bit” or “full-sequence”
programming. This is only possible if all the data bits are available during the
programming. Thus, it is preferable in practice to perform all-bit programming if all
the bits are available. On the other hand, if only the lower page data is available, the
lower page will first be programmed. Later if the upper page data belonging to the
same word line become available, the cells of the page will be programmed in a
second pass. Alternatively, if the upper page data becomes available before the
completion of the lower page programming, it would be desirable to cease the lower

page programming and instead convert to perform the all-bit programming.

[0217] The scheme shown in FIG. 28 would not support queuing more than
one command in the background and therefore not support caching more than one
page of data. Furthermore, it cannot handle the situation when a lower page
programming is terminated prematurely and instead converted to the execution of a

different, “all-bit” programming when all the bits become available.

[0218] Another feature of the invention is to address the second factor by
allowing all the bits necessary for all-bit programming to be cached so that all-bit
programming can take place. Furthermore, a command queue manager manages
multiple pending commands and allows certain commands to terminate before
completion in favor of the next pending command, depending on the status of their

associated data.

[0219] The two features of the invention work together to enhance the
program performance by having more program data cached and allowing more

efficient programming algorithm to be employed.

[0220] According to one aspect of the invention, a current memory operation
may be under execution while other multiple pending memory operations are queued.
Furthermore, when certain conditions are satisfied, some of these commands for
individual operations are mergeable into a combined operation. In one case, when
conditions are satisfied to merge one or more of the multiple pending memory

operations in the queue with the current memory operation under execution, the

-55-

WO 2007/131127 PCT/US2007/068172

current memory operation is terminated and replaced by the operation of the merged
operations. In another case, when conditions are satisfied to merge two or more of the
multiple pending memory operations in the queue, the operation of the merged

operations will commence after the current operation under execution has completed.

[0221] One example is in programming a multi-bit page of memory cells
sharing a common word line. Each of the multi-bits may be considered as forming
the bit of a binary logical page. In this way, a page of 2-bit memory cells will have a
lower logical page and an upper logical page. A page of 3-bit memory cells will have
in addition a middle logical page. Each binary logical page can be programmed
separately. Thus, for 2-bit memory cells, the lower logical page can be programmed
in a first pass and the upper logical page can be programmed in a second pass.
Alternately and more efficiently, if the program data for the 2 bits are available, the

multi-bit page is preferably programmed in a single pass.

[0222] Several scenarios are possible with multiple binary programming or a
merged and single-pass multi-bit programming depending on how many bits of
program data is available. Ideally, if all the bits are available before programming,
the multi-bit page of memory cells is programmed in a single pass. As described
carlier, if only the lower logical page program data is available, single-bit
programming of the lower logical page can commence. Subsequently, when the
upper logical page program data is available, the same page of memory cells can be
programmed in a second pass. Another possibility is that the upper page data
becomes available before the completion of the lower page programming. In that
case, to take advantage of the more efficient single-pass multi-bit or “full sequence”
programming, the lower page programming is terminated and replaced by the multi-
bit programming. It is as if the programming for the lower logical page and the upper

page are merged or combined.

[0223] For memories with multi-bit cells, the pages of logical program data
sent by a host could be a mixture of lower, upper or some other intermediate logical
pages. Thus, generally it is desirable to cache as many pages of program data as the

data latches would allow. This will increase the likelihood of merging the logical

-56-

WO 2007/131127 PCT/US2007/068172

pages belong to the same page of memory cells so as to perform multi-bit

programming.

[0224] FIG. 29 is a flow diagram illustrating the queuing and possible
merging of multiple memory operations. The algorithm for managing multiple
memory operations is applied to a memory having a core array and data latches for

latching data associated with an addressed page of the array.

[0225] STEP 710: Providing a first-in-first-out queue for ordering incoming

memory operations to be executed in the core array.

[0226] STEP 720: Accepting an incoming memory operation into the queue
whenever the data latches are available for caching the data of the incoming memory

operation.

[0227] STEP 730: Determining if the executing memory operation in the core
array can potentially merge with any of the memory operations in the queue. If they
are potentially mergeable, proceeding to STEP 740, otherwise proceeding to STEP
750.

(By “potentially mergeable”, it is meant that at least two logical pages
associated with the same page of memory cells can be programmed together in a
single pass. For example, the two operations respectively to program a lower logical
page and to program an upper logical page in a memory with 2-bit memory cells are
potentially mergeable. Similarly, in a memory with 3-bit memory cells, the
operations to program a lower logical page and an intermediate page are potentially
mergeable. Also, the program operations for lower, intermediate and upper logical
pages are potentially mergeable. Returning to the 2-bit cell example, if a lower
logical page is under execution in the core array, it is potentially mergeable with the
next program operation pending from the queue if the next program is to program the
upper logical page belonging to the same page of memory cells. On the other hand, if
an upper page is under execution in the core array, it is not potentially mergeable,
since the next pending page to be programmed will have to come from a different

page of memory cells. Similar considerations apply to when the memory operation is

-57-

WO 2007/131127 PCT/US2007/068172
a read operation.)

[0228] STEP 740: Whenever the next one or more memory operations from

the queue are mergeable with the memory operation in the core array,

terminating the execution of the memory operation in the core and begin
executing instead the merged memory operations;
Else

Waiting until the completion of the memory operation in the core before

executing the next memory operation from the queue. Proceeding to STEP 720.

(By “mergeable” it is meant that the condition for mergeability is satisfied. In
this case, the program data for both the lower and upper logical pages are available
after they have been latched in the data latches. Similarly, “merged memory
operations” would correspond to programming or sensing both lower and upper

logical pages together.)

[0229] STEP 750: Waiting until the completion of the memory operation in

the core; and

whenever the next two or more memory operations from the queue are
mergeable, executing the merged memory operations in the core array;
Else

executing the next memory operation from the queue in the core array.

Proceeding to STEP 720.

[0230] The management of the multiple commands is accomplished by the
provision of a memory operation queue controlled by a memory operation queue
manager. The memory operation queue manager is preferably implemented as a
module in the state machine that controls the execution of a memory operation in the

mcmory array.

[0231] FIG. 30 illustrates a schematic block diagram of a preferred on-chip
control circuitry incorporating a memory operation queue and a memory operation

queue manager. The on-chip control circuitry 310° includes a finite state machine

-58-

WO 2007/131127 PCT/US2007/068172

312’ that serves to control the basic operations of the memory array 100 (see also
FIG. 28.) A memory operation queue 330 is implemented by a First-In-First-Out
stack memory to hold any incoming memory operation requests. Typically, memory

operation requests are issued from the host or the memory controller (see FIG. 28.)

[0232] A memory operation queue manager 332 is implemented as a module
in the state machine 312’ in order to manage a plurality of pending and executing
memory operations. The queue manager 332 basically schedules pending memory

operations in the queue 330 to be released into the state machine 312’ for execution.

[0233] When a memory operation such as MEM OPO is released from the
queue into a program register 324 of the state machine, MEM OPO0 will be executed
on the memory array as controlled by the state machine. At any time, the state
machine is aware of the number of free data latches available and this status is
communicated to the host/memory controller via the signal Ready/Busy*. If one or
more free data latches are available, the host will be able to request additional
memory operations such as program or read. Thus, MEM OP1, MEM OP2, etc sent
by the host are admitted into the queue 330. The maximum number of memory
operations in the queue will be determined by the number of free data latches

available.

[0234] While the memory operations are pending in the queue 330, the queue
manager 332 will control the release of the pending memory operations from the
queue 330 to the program register 324 in the state machine. Furthermore, it
determines if any of the memory operations could be merged into a combined
operation as described in connection with FIG. 29. In the case where two or more
operations in the queue are mergeable, the queue manager 332 will release these
mergeable operations from the queue 330 and the combined operation will be
executed by the state machine 312 after the current operation in the state machine has
completed execution. In the case where one or more operations in the queue are
mergeable with the operation being executed by the state machine, the queue manager
will have the state machine terminate the currently executing operation and execute

the combined operation instead. Thus, the memory operation manager 332 cooperates

-59.

WO 2007/131127 PCT/US2007/068172

with the rest of the state machine 312’ to schedule and possibly merge multiple

memory operations.

[0235] The invention has been described using an example with a 2-bit
memory. As long as data latches are freed up during a current memory operation,
they can be used to cache more data for any pending memory operations. This will
allow more bits of data to be loaded into the available data latches as well as increase
the likelihood of merging memory operations. Those skilled in the art will easily be
able to apply the same principles to memory with cells that can each store more than
two bits of data, e¢.g., a 3-bit or 4-bit memory. For example, in a 3-bit memory, the
page of memory can be regarded as having three individual bit pages, namely lower-,
middle- and upper-bit pages. These pages can be programmed individually at
different times on the same page of memory cells. Alternatively, all three bits when
available can be programmed together in the all-bit programming mode. This
requires the cache program commands to be queued for many pages. In the 2-bit
memory, two program commands can be executed together when full sequence
conversion is possible. Similarly, in the 3-bit memory, three consecutive program
commands can be executed together when converted to all-bit or full sequence mode.
Again, the command queue manager will track which command has completed or
terminated and which is next to execute. In this way, during programming as certain
memory state milestones are reached, some data latches are freed up and can be

efficiently used for caching pending program data.

CACHE OPERATIONS DURING ERASE — Background Read and Write
Operations

[0236] The latency of an erase operation is one of the key contributors to
overall performance overhead of a flash storage system. For example, the period for
an erase operation may be four or five times longer than that of a program operation
and ten times longer than that of a read operation. To improve the performance of the
flash memory, background operations such as cache operation become very important
to make use of the time waiting for the erase operation to finish. The invention is to
make use of the data latches and I/O bus while the memory is busy occupying with an

erase operation in the memory core. For example, data for the next program operation

-60-

WO 2007/131127 PCT/US2007/068172

or data output from a read operation can be performed contemporancously with the
erase operation. In this way, when the next program or read operation does take
place, the data input or output portion of that operation is already completed, thereby

reducing program or read latency and increasing performance.

[0237] Erase operations can be implemented in a number of ways. One
method disclosed in United States Patent No. 5,172,338 is to erase by alternate erase
pulsing followed by verifying. Once a cell has been erased verified, it is inhibited
from further erase pulsing. Another erase operation, preferred for NAND memories,
includes two phases. In the first phase, there is erasure by removing charges from the
charge clements of the memory cells to some threshold level below a predefined
“erased” or “ground” state. In the second phase, the threshold values of the erased
cells are tighten to within a well-defined threshold distribution by a series of soft

programming/verifying to the predefined “erased” threshold.

[0238] According to a general aspect of the invention, while the erase
operation is taking place, any free data latches are used to cache data related to

another pending memory operation.

[0239] FIG. 31 is a schematic flow diagram illustrating a cache operation in

the background during an erase operation.

[0240] STEP 760: Providing for each memory cell of an addressed page a set

of data latches having capacity for latching a predetermined number of bits.

[0241] STEP 770: Performing an erase operation on a designated group of
pages.
[0242] STEP 780: Contemporaneously with the erase operation, performing

operations on the set of data latches with data related to one or more subsequent

memory operations on the memory array.

[0243] According to one aspect of the invention, while the erase operation is
taking place, program data for a pending program operation is loaded into the data

latches via the I/O bus. In particular, during the first phase of the erase operation

61-

WO 2007/131127 PCT/US2007/068172

when charges are being removed, all data latches are available for caching the
program data. During the second phase of the crase operation when a soft-
programming is taking place, all but one data latches are available for caching the
program data since one of the data latches is required to store a program lockout
condition after the soft programming has verified successfully at that location. If the
memory architecture supports 2 bits per cell, there are at least 2 data latches, one for
cach bit. In the preferred embodiment, an additional data latch is used for storing
certain conditions arising during the operation. Thus, depending on memory
architecture, for a 2-bit cell, there are at least two and preferably three data latches
provided for each cell. All these data latches are available for cache use during the
first phase of the erase, and all but one of these data latches are available for cache use
during the second phase of the erase operation. One or more pages of program data
can therefore be loaded into the available data latches depending on the erase phase

and the memory architecture.

[0244] FIG. 32 is a schematic timing diagram for an erase operation on the
memory array, illustrating a program data loading operation during the first, erase
phase of the erase operation. The activities of the host, the /O bus, the data latches
and memory core are shown contemporancously. As shown in the diagram, the erase
operation at the memory core includes a first, erasing phase, followed by a second,

soft programming/verifying phase.

[0245] During the first phase of an erase operation the memory array or core
is preoccupied, but the data latches and the I/O bus are free for a background
operation. During this time, the program data can be loaded into the data latches via
the 1/0 bus. For example, in the preferred embodiment where there are three data
latches for each cell, all these latches are available for cache operation during the first

erase phase.

[0246] For example, when an Nth page of data is to be written, the host
initially issues a write command to the memory for writing the page of data to a
specified address. This is followed by sending the page of data to be programmed to
the memory. The program data are toggled through the I/O bus and latched into DL2
of each read/write module (see FIGs. 13 and 14). Thus the I/O bus is temporary

-62-

WO 2007/131127 PCT/US2007/068172

busy during this toggling-in period, which for example may be of duration 300 ps.
With three data latches available, up to three pages of program data can in principle
be cached. For example, a lower page portion of the Nth page may be loaded, or both
lower and upper page portions of the Nth page may be loaded sequentially while the

erase operation is on-going.

[0247] FIG. 33 is a schematic timing diagram for an erase operation on the
memory array, illustrating a program data loading operation during the soft
programming/verifying phase of the erase operation. The activities of the host, the

I/O bus, the data latches and memory core are shown contemporancously.

[0248] During the second, soft programming/verifying phase of an erase
operation the memory array or core is also preoccupied. However, as described
above, all but one of the data latches and the I/O bus are free. Program data can be
loaded into the data latches not used by the erase operation. For example, in the
preferred embodiment where there are three data latches for each cell, only one of the
latches is employed by the soft programming/verifying operation. Therefore there are

still two free latches available for cache operation.

[0249] For example, when an Nth page of data is to be written, the host
initially issues a write command to the memory for writing the page of data to a
specified address. This is followed by sending the page of data to be programmed to
the memory. The program data are toggled through the I/O bus and latched into DL2
of each read/write module (see FIGs. 13 and 14). Thus the I/O bus is temporary
busy during this toggling-in period, which for example may be of duration 300 us.
With two data latches available, up to two pages of program data can in principle be
cached. For example, a lower page portion of the Nth page may be loaded, or both
lower and upper page portions of the Nth page may be loaded sequentially while the

erase operation is on-going.

[0250] In general, the maximum number of page can be loaded into the data
latches is a function of the memory architecture as well as how many planes/banks
and how many chips/dies are being programmed in parallel and the speed of data

transfer rate.

-63-

WO 2007/131127 PCT/US2007/068172

[0251] According to another aspect of the invention, while the erase operation
is taking place, a read operation can be inserted and the resultant read data in the data
latches can be output during the erase operations. Preferably, the read operation is
inserted in between the soft program/verify operation without breaking the soft
programming pulse itself. Once data is sensed and latched into the unused data
latches, they can be output to the host system via the I/O bus when erase is ongoing
inside the array. This feature is ideal to hide system overheads, for example to

perform read scrub operations and other system maintenance.

[0252] In prior art system, when an erase operation is interrupted, it will have
to be restarted from the beginning of the cycle. This could be very time consuming

especially in NAND memory.

[0253] The read operation can be inserted in between soft program and erase
verify pulses. As many read as the number of soft program pulses can be inserted into
the erase operation. The sense time is additional time, but of short duration compare
to the overall soft program/verify operation. The benefit comes in toggling out the
read data as it is taking place in parallel with the on-going program/verify operation.
The read operation can also be used to perform background operation in managing

internal control and data management.

[0254] One useful application for read during erase in a flash storage system is
where read scrub operations are implemented to maintain the stored data in good
condition. Portions of the memory where data have been stored are read periodically
to check if the programmed charges in the cells have shifted over time or changes in
their environment. If so, they are corrected by reprogramming the cells with the
proper margins. Various schemes of read scrub have been disclosed in United States
Patent No. 7,012,835, the entire disclosure is incorporated therein by reference. Since
a read scrub is a system operation extrancous to a host’s operation, it is best to hide a
read scrub behind some other operations where the memory will be busy anyway. In
this case, during an erase operation, read scrub operation could be inserted so that the

read latency can be hidden.

-64-

WO 2007/131127 PCT/US2007/068172

[0255] FIG. 34 is a schematic timing diagram for an erase operation on the
memory array, illustrating a read operation being inserted and the resulting data
output operation using available latches. The activities of the host, the 1/O bus, the
data latches and memory core are shown contemporancously. As shown in the
diagram, in the second phase of the erase operation the operation is soft
programming/verifying. One or more read operations are preferably inserted without

interrupting the completion of any soft program pulses.

[0256] While the chip is in the second phase of the erase operation, the
algorithm for soft program/verify will execute. A status signal such as
BUSY/READY * (not shown) will signals that the memory core is busy with internal
erase operation. At the same time, another status signal as
CACHEBUSY/CACHEREADY™* (not shown) will go from busy to ready to accept
read command input. As soon as a read command is entered,
CACHEBUSY/CACHEREADY* will goes to busy to prevent another command
from being entered. The read command will then wait until the current soft program
pulse is finished internally before being executed on another addressed block in the
same chip. After the read is done, the address is changed back to the erase block
previously being operated on. The soft program/verify operation can resume on the

erase block.

[0257] In the meantime, the read data in the data latches can be toggled out.
The toggle out time is usually much longer than the read time. For example, the read
time is about 25us while the toggle out time is about 200us. So the benefit of
inserting a read in an erase operation is to salvage about 200us from the otherwise

wasted time while waiting for erase to finish.

[0258] This cache read during erase can be inserted as many times as the erase
time would allow. However, too many reads could elongate the total erase time and a
balance should be struck between the time penalty on the erase operation the reads
may incur and the toggling time salvaged from the reads. If there are still free time
left during erase after one or more inserted reads, the available data latches can be

used to cache any program data as described in an earlier section. If program data are

-65-

WO 2007/131127 PCT/US2007/068172

loaded, the program operation can only start after the whole erase operation is
completed. Enough free latches must be reserved for proper execution of the program
operation, so in most cases other cache operations will not be possible after the

program data are load.

[0259] FIG. 35 is a schematic flow diagram illustrating a specific cache
operation for read scrub application in the background during an erase operation in

STEP 780 of FIG. 31.

[0260] STEP 780 shown in FIG. 31 is further articulated as follows:
[0261] STEP 782: Pausing the erase operation to sense a designated page.
[0262] STEP 784: Resuming the ecrase operation after the data for the

designated page are latched in the data latches.

[0263] STEP 786: Outputting the data for the designated page during the

erase operation.

[0264] STEP 788: Scheduling the designated page for reprogramming if the

output data contains errors.

[0265] The description for cache read so far has been made mostly to the
second phase of the preferred erase operation. The preferred erase operation is where
the first phase is to erase all cells to some threshold level below a predefined
threshold and the second phase is to soft-program the cells to the predefined
threshold. As described above, this erase scheme is preferred for flash memory with
NAND structure since they require a fairly accurate ground state and the memory is
erased by biasing the N-well, which takes time. Thus it is preferable to perform all
the erasing together before soft-programming. In other memory architecture using the
scheme of erase pulsing/verify/inhibit, caching operation is also contemplated. For

example, a read operation may be inserted during a verify portion of the cycle.

[0266] FIG. 36 illustrates a preemptive background read during erase. This is
a more preferably cache read when the read takes place just prior to the erase

operation so that the erase operation need not be interrupted. This is possible if the

-66-

WO 2007/131127 PCT/US2007/068172

read operation is known before the start of the erase operation. For example, the host
may have a read request pending or if the memory system has some read operation
scheduled. Alternatively, an intelligent algorithm may anticipate where the next read
is likely to be and schedule such a read. Even if it turns out to be a miss later, no
severe penalty will be incurred. If it is a hit, it can take advantage of the erase time to

toggle out read data.

[0267] The two aspects of caching read data and caching program data during
an erase operation can be combined to provide further flexibility to minimize overall
system or memory overhead. Even with multiple planes and multi-chip data input
operations, data input time might not fully utilize the busy time incurred by an erase
operation. In such cases, read operation and or program operation can also be added

to take full advantage of the erase time.

CACHE OPERATIONS DURING READ - Background Read and Write
Operations

[0268] Cache read is usually implemented to save time when many pages are
sequentially read out. The sensing for a page can be hidden during the time to
toggling out a previously sensed page so that the time for sensing does not incur extra
waiting time for the user. A common scheme would be to sense the next page when

the current page is being toggled out.

[0269] FIG. 37 illustrates schematically a typical read cache scheme. The (n-
I)th page was sensed in a previous cycle and latched in the data latches. At time t0,
the (n-1)th page is being toggled out from the data latches via the 1/0 bus as indicated
by T(n-1). While the toggling is taking place, the nth page can be sensed and latched
as indicated by S(n). At t2, the toggling of the (n-1) page is done and therefore it can
be followed by the toggling of the nth page of data from the data latches as indicated
by T(n). Similarly, as the nth page is being toggled out, the (n+1) page of data can be
sensed and latched as indicated by S(n+1). This (nt+l) page can be toggled

-67-

WO 2007/131127 PCT/US2007/068172

immediately after the nth page is done toggling. Ideally, the data latches and the I/O

bus are fully engaged throughout the read caching so that any idle time is minimized.

[0270] According to one aspect of the invention, a read cache scheme is
provided for the case of multi-state memory cells with the need to minimize
perturbation between the memory cells (Yupin Effect.) In a preferred
implementation, an efficient read caching scheme is employed for memory encoded
with the “LM” coding and read with look-ahead (“LA”) correction. Both the “LM”
coding and “LA” correction require additional latch and bus activities besides the
mere toggling of read data. A straight application of the conventional scheme

described in connection with FIG. 37 would not yield an optimized read caching.

[0271] With ever higher integration in semiconductor memories, the
perturbation of the electric field due to the stored charges between memory cells
(Yupin effect) becomes more and more appreciable when the inter-cellular spacing is
shrinking. It is preferably to encode the multi-state memory cells of a memory using
LM coding, to program the pages in the memory in an optimal order, and to read the
programmed pages using LA correction. An improved read operation will implement

optimum cache operation.

Cache Read Algorithm for LM Code

[0272] When the page to be read is multi-state, implementation of read cache
has to meet the requirements of the multi-state encoding used. As described before in
connection with FIGs 20A — 20E, the LM coding for a multi-state memory essentially
minimizes the changes in the charge programmed in a memory cell between different
programming passes. The examples shown are for a 2-bit memory for coding four
possible memory states (e.g., “U”, “A”, “B”, “C”) in each cell as demarcated by three
different demarcation threshold values (e.g., Da, Dg, D¢). For example in the 2-bit
memory cell, programming to the lower logical page advances the threshold level at
most slightly below the middle of the threshold window of the cell. A subsequent
upper logical page programming further advances the existing threshold level by
about another quarter of the way. Thus, from the first lower to the second final upper

programming pass, the net change is at most about one quarter of the threshold

-68-

WO 2007/131127 PCT/US2007/068172

window, and this will be the maximum amount of perturbation a cell may experience

from its neighbors along a wordline.

[0273] One feature of the LM coding is that each of the two bits, lower and
upper bits, may be considered separately. However, the decoding of the lower-bit
page will depend on whether the upper page has been programmed or not. If the
upper page has been programmed, reading the lower page will require one read pass
of readB relative to the demarcation threshold voltage Dg. If the upper page has not
been programmed, reading the lower page will require one read pass of readA relative
to the demarcation threshold voltage Da. In order to distinguish the two cases, a flag
(“LM” flag) is written in the upper page (usually in an overhead or system area) when
the upper page is being programmed. During a read of a lower-bit page, it will first
assume that the upper page has been programmed and therefore a readB operation
will be performed. If the LM flag is read, then the assumption is correct and the read
operation is completed. On the other hand, if the first read did not yield a flag, it will
indicate that the upper page is not programmed and therefore the lower page would

have to be re-read with the readA operation.

[0274] Decoding of the upper-bit page read will require operations readA and
readC, respectively relative to the demarcation threshold voltages Da and De.
Similarly, the decoding of upper page can also be confused if the upper page is not yet
programmed. Once again the LM flag will indicate whether the upper page has been
programmed or not. If the upper page is not programmed, the read data will be reset

to “1” indicating the upper page data is not programmed.

[0275] When implementing cache read for memory using LM code, there is
the additional consideration of needing to check the LM flag which is saved on the
same area as the data. In order for the state machine to check the LM flag, it will
have to be output from the data latches via the I/O bus. This would require allocation
of the I/O bus for outputting the LM flag in addition to the toggling of sensed data

during a read operation with caching.

[0276] FIG. 38A is a schematic timing diagram for cache reading a logical
page encoded with the LM code. The general scheme of toggling the last page data

-69-

WO 2007/131127 PCT/US2007/068172

while sensing the current page is similar to that of the conventional read shown in
FIG. 37. However, the sensing in the LM code is complicated by potentially having

to do two sensing passes with the checking of the LM flag in between.

[0277] At time t0, the (n-1) logical page sensed in the last cycle is being
toggled out from the data latches to the I/O bus as indicated by T(n-1). At the same
time Si(n) senses the next logical page (n). With the LM coding, two cases need be
distinguished: reading of a lower-bit logical page; and reading of an upper-bit logical

page.

[0278] For the case of reading a lower-bit logical page, a preferred sensing
will begin with the assumption that the upper logical page has alrcady been
programmed so a first sensing S;(n) will be at readB relative to the demarcation
threshold voltage Dg. At tl S;(n) is done and will yield an LM flag. However, it can
only be output at t2 after the I/O bus is finished toggling the (n-1) page. After the LM
flag is communicated to the state machine, it is checked to determine if an upper page
exists. If the LM flag is set, the assumption was correct and the lower-bit page was
read correctly. The page (n) data that has been latched is ready to be toggled out in

the next cycle.

[0279] For the case of reading an upper-bit logical page, Si(n) will step
through readA and readC, respectively relative to the demarcation threshold voltages
Da and Dc¢. The upper-bit page sensed data will be stored in DL2 and the DLO data
latch is used for toggle out data (see FIGs. 13 and 14.) At t2, the DL2 sensed data
will be transferred to DLO. Again the LM flag will be checked after it has been
outputted at the end of the toggling of the (n-1) page. If the upper page is
programmed, all is fine and the sensed data (page (n)) in the latch is ready to be
toggled out in the next cycle.

[0280] When reading an upper-bit logical page, if the LM flag is found to be
not set, it would indicate that the upper page is not programmed. The sensed data
from S;(n) will be reset to “1” so as to properly conform with the LM coding. The
sensed data is then ready for output. Then the first byte will be pre-fetched out and
followed by the whole page toggling out at the start of the next cycle.

-70-

WO 2007/131127 PCT/US2007/068172

[0281] FIG. 38B is a schematic timing diagram for cache reading with LM
code in the special case of reading a lower-bit logical page when the upper-bit logical
page has not yet been programmed. Again, at t0, a first sensing S;(n) is started and at
tl, a LM flag is read. The LM flag is output for checking at t2. If the LM flag is
found to be not set, Si(n) had read the lower-bit page incorrectly at readB. A second
sensing, Sy(n) will begin at t3 to be performed at readA. However, this additional
sensing (finishing at t4) can not be hidden behind the time to toggling of the (n-1)
page, ¢.g., T(n-1), since the checking of the flag from S;(n) before the second sensing
will require access to the I/O bus and will have to wait until the T(n-1) toggling is

done.

Cache Read Algorithm with All-bit Sensing

[0282] In an alternative scheme, when the page on a wordline to be read is
multi-bits with multiple logical pages on the same physical page, all the muti-bits can

be sensed together in one sensing operation to save power.

[0283] FIG. 39 illustrates a schematic timing diagram for cache read with all-
bit sensing for a 2-bit memory. In the 2-bit case, the two bits representing the four
memory states are sensed in the same operation. This would require sensing at readA,
readB and readC to distinguish the four states. In this case, the sensing will occur in
every other cycle. For example, the sensing is only occurring on the odd cycles and
will be skipped on the even cycles. The two logical pages obtained in one sensing

will be toggled out sequentially at each cycle.

[0284] In the 3-bit case where there are eight states, ¢.g, “U”, “A”, “B”, “C”,
“D”, “E”, “F” and “G”, the all-bit sensing will involve sensing at readA, readB,

readC, readD, readE, readF and readG to distinguish the eight states.

[0285] In general any multi-bit, less than all-bit sensing will serve to reduce
the number sensing needed to read all the bits of the page and will help in saving
power. The memory operation queue and queue manager described in connection
with FIG. 30 can be used to manage all-bit sensing operations by merging two or

more binary-page sensing. The all-bit sensing scheme is applicable to memory with

71-

WO 2007/131127 PCT/US2007/068172

LM code and also to ones with LA correction, which will be described in the next

section.

Cache Read Algorithm for LM code with LA Correction

[0286] As for perturbations between memory cells on adjacent wordlines, they
can be mitigated during programming using a preferred programming scheme. This
will effectively reduce the perturbation by half. The remaining half can also be

corrected during read by using a preferred LA reading scheme.

[0287] A preferred programming scheme would have the pages associated
with the wordlines programmed in an optimal sequence. For example, in the case of
binary memory where every physical page holds a page of binary data, the pages are
preferably programmed sequentially along a consistent direction, such as from bottom
to top. In this way, when a particular page is being programmed, the pages on the
lower side of it are already programmed. Whatever perturbative effects they may
have on the current page, they are being accounted for as the current page is being
program-verified in view of these perturbations. Essentially, the sequence of the
programming the page should allow the current page being programmed to see a
minimum of changes around its environment after it has been programmed. Thus,
cach programmed page is only perturbed by the pages on the upper side of it and the
wordline to wordline Yupin effect is effectively reduced in half by this programming

sequence.

[0288] In the case of a memory where each physical page of memory cells is
multi-state, the sequence is less straight forward. For example in a 2-bit memory,
each physical page associated with a wordline can be regarded as a single page of 2-
bit data or two separate logical pages, lower and upper-bit of 1-bit data each. The
physical page can therefore be programmed in one pass with the two bits or in two
separate passes, first with the low-bit page and then later with the upper-bit page.
When each physical page is to be programmed in two separate passes a modified

optimal sequence is possible.

72-

WO 2007/131127 PCT/US2007/068172

[0289] FIG. 40 illustrates an example of a memory having 2-bit memory cells
and with its pages programmed in an optimal sequence so as to minimize the Yupin
Effect between memory cells on adjacent wordlines. For convenience the notation is
such that the physical pages PO, P1, P2, ... reside respectively on wordlines W0, W1,
W2, ... For a 2-bit memory, each physical page has two logical pages associated with
it, namely lower-bit and upper-bit logical pages, each with binary data. In general a
particular logical page is given by LP(Wordline.logical page). For example, the
lower-bit and upper-bit pages of PO on WO would respectively be labeled as LP(0.0)
and LP(0.1), and the corresponding ones on W2 would be LP(2.0) and LP(2.1).

[0290] Essentially, the programming of the logical pages will follow a
sequence n so that the current page being programmed will see a minimum of changes
around its environment after it has been programmed. In this case, again moving
incrementally in one consistent direction from bottom to top will help to eliminate
perturbation from one side. Furthermore, because each physical page may have two
programming passes, as the programming moves up the physical pages, it will be
better for the current upper-bit page to be programmed after its adjacent lower-bit
pages have already been programmed so that their perturbative effects will be
accounted for when programming the current upper-bit page. Thus, if programming
starts from LP(0.0) then the sequence will be as earmarked by the page-programming
order, 0, 1, 2, ... n, ... which would yield: LP(0.0), LP(1.0), LP(0.1), LP(2.0),
LP(1.1), LP(3.0), LP(2.1), ...

Cache Read Algorithm for LM code with LA Correction

[0291] According to one aspect of the invention, a scheme for caching read
data is implemented so that even for read operation whose correction depend on data
from a neighboring physical page or wordline, the data latches and I/O bus are
efficiently used to toggle out a previously read page while a current page is being
sensed from the memory core. In particular, the preferred read operation is a “look
ahead” (“LA”) read and the preferred coding for the memory states is the “lower
middle” (“LM”) code. When the read for a current page on a current wordline must
be preceded by a prerequisite read of data on an adjacent wordline, the prerequisite

read along with any /O access is preemptively done in the cycle for reading a

73-

WO 2007/131127 PCT/US2007/068172

previous page so that the current read can be performed while the previously read

page is busy with the 1/O access.

[0292] The LA reading scheme has been disclosed in United States Patent
Application No. 11/099,049 filed on April 5, 2005, entitled, “Read Operations for
Non-Volatile Storage that Includes Compensation for Coupling,” which entire
disclosure is herein incorporated by reference. Read with the LA (“Look Ahead”)
correction basically examines the memory states programmed into the cells on an
adjacent wordline and corrects any perturbation effect they have on the memory cells
being read on the current wordline. If the pages have been programming according to
the preferred programming scheme described above, then the adjacent wordline will
be from the wordline immediately above the current one. The LA correction scheme

would require the data on the adjacent wordline to be read prior to the current page.

[0293] For example, referring to FIG. 40, if the current page (n) to be read is
on WLm (e.g., WL1), then the LA read, as will be denoted by Spa(n), will read the
next wordline WLm+1 (e.g., WL2) first and save the data result in one data latch.
Next, the current page will then be sensed in view of the Spa(n) result, and will be

denoted by S;’(n).

[0294] As described earlier in connection with FIG. 40, in the LM code with
the preferred programming sequence, the lower page (e.g., LP(1.0) will be
programmed to Dy or close to Dp (intermediate state). The upper page (e.g., LP(1.1))
will be programmed only after the WLm+1 lower page (e.g., LP(2.0) is programmed.
Then the lower page WL-WL Yupin effect will be eliminated completely. Therefore,
the data dependent correction will only be performed on the “A” and “C” states, and

not on the “U” or the “B” state.

[0295] In a preferred implementation of the LA read, a latch is used to
indicate whether the LA read found the “A” or “C” state or the “U” or “B” state. In
the former case, correction is needed and in the latter case, correction is not needed.
The corresponding cell in the current read Si(n) will be corrected accordingly by
suitable adjustment of the sensing parameters, such as raising the wordline voltage

during sensing. This is done for the entire current page by sensing once with

74-

WO 2007/131127 PCT/US2007/068172

adjustment and another time without adjustment. The data for each cell of the page
will then be selected from these two sensing according to whether the latch indicates

correction or not.

[0296] Read with LM code will need to check the LM flag before the read
result is finalized (either by a second pass read or by resetting the read data.) LA
correction needs to do the next wordline read first before reading the current wordline.
Therefore both the LM flag from the next wordline read and the LM flag from the
current wordline need to be checked by the state machine. These two LM flags need
to be output via the 1/O bus to the state machine when the I/O bus is not busying
toggling read data.

[0297] FIG. 41 illustrates an implementation of read caching for the LM code
with LA correction according to the convention scheme shown in FIG. 37.
Basically, the conventional scheme is for the sensing of the current page to be hidden
inside the data toggle out time of the previous page sensed. However, in this case, the
current page sensing S;‘(n) on WLm must be preceded by an additional lookahead
read Spa(n) on WLm+1. The LM flags for each of these sensing must be output via
the I/O bus before the sensed data are ascertained. The current page sensing S;‘(n) is
performed in view of the data from the Spa(n) to yield the corrected data for the
current page. It will be understood that S;’(n) may be followed by an additional
S2’(n) if n is a lower-bit page and the upper-bit page is not yet programmed as shown

in FIG. 38B.

[0298] In the next cycle beginning at t0, the corrected sensed data of page n is
then toggled out as indicated by T(n). At the same time, the current sensing has now
moved to the next page with S;‘(n+1), which must be preceded by Spa(nt+l).
However, the output of the LM flags from these sensing must wait until the toggling
of the page n, T(n) is done. Furthermore, Si(n+1) can only be performed after the
result of Spa(n+1) is definite. Thus, S;‘(n+1) can only be performed outside the data
toggling period and therefore cannot hide behind it. This adds an additional sensing
time when the latches and I/O bus are not fully utilized, and the wasted time is
repeated for every subsequent cycles. This implementation degrades read

performance for the user when the LA correction is used.

-75-

WO 2007/131127 PCT/US2007/068172

[0299] A preferred implementation of cache read in LM code with LA
correction is to pipeline the next wordline sensing and current wordline sensing in
such a way that all the sensing will be hidden inside the data toggle. The next
wordline sensing is always executed ahead of the current wordline sensing. Inside
cach group of data toggle, the current wordline sensing will be executed and followed
by the next-next wordline sensing. When the group of data has finished toggle out
and the I/O bus is available, the next-next wordline LM flag will be fetched out first
and checked. If the LM flag is in the state indicating the upper page not programmed,
then the next-next wordline sensed data will be reset to “1” (for no correction). The
current wordline LM flag will be checked subsequently. Depending on the current
wordline LM flag, either the sensed data is kept or another sensing need to be
executed (in the case of lower page read) or the data will be reset to all ‘1” (in the
case of upper page read). All these sensing and data toggle out can be managed with

3 data latches for a memory with 2-bit memory cells.

[0300] FIG. 42 illustrates an improved read caching scheme with the LM
code and LA correction. The first cycle from —t5 to t0 is when the current page (n) on
WLm is read and is different from the rest of the cycles. As before, the LA correction
require a preceding read of Spa(n) where readA, readB and readC will sense the cell
states on WLm+1. The LM flag from this read Fpa(n) will be output at —t4 and
checked. If the flag indicates the upper page is not programmed on WLm+1, the data
being sensed will be reset to all “1”, indicating that there will be no correction. If the
flag indicates the upper page is programmed, then the latched data indicating
correction or not will be kept as it is. At —t3, the current page on WLm will be sensed
with S;‘(n) and possibly S;’(n) in accordance with the LM code and LA correction
scheme described ecarlier. In contrast to the scheme illustrated in FIG. 41, a
preemptive lookahead read is also performed for the next page (n+1). Thus, at time —

t2, Spa(nt1) is performed and at —t1, its LM flag is output and checked.

[0301] After the first cycle, at the beginning of the next cycle at t0, the
previously sensed data from S,‘(n), now LA corrected, will be toggled out as
indicated by T(n). The page address will be incremented first to (n+1) which reside
on a wordline given by the order indicated in FIG. 38. Thus, at time t0, with the start

-76-

WO 2007/131127 PCT/US2007/068172

of T(n), sensing of the (n+1) page, S;’(n+1) can begin right away since its prerequisite
lookahead Sy a(n+1) has already been completed in the previous cycle. At the end of
Si’(n+1) at t1, the LM flag F(n+1) will be fetched out and checked and any additional
action will follow depending on the LM flag. The corrected page (n+1) data will then
be ready for toggling in the next cycle. In the meantime, while the page (n) is still
being toggled out, the lookahead sensing Sy a(n+2) for the next page can be performed

in advance and within the toggling period of T(n).

[0302] As soon as T(n), the toggling for page (n), is completed, the next cycle
will start and T(n+1) follows with the toggling out of the LA corrected page (n+1)
data. The cycle for page (n+1) continues in similar manner as that for page (n). The
important feature is that the lookahead read for a given page is preemptively

performed in an earlier cycle.

[0303] FIG. 43 is a schematic flow diagram illustrating the improved read
caching:
[0304] STEP 810: In cach reading cycle where a page from a series thereof is

to be sensed from a memory, outputting a previous page sensed in the last cycle in a

current cycle.

[0305] STEP 830: Sensing a current page during said outputting the previous
page, said sensing the current page being performed on a current wordline and
requiring a prerequisite sensing at an adjacent wordline so as to correct for any

perturbation effect from data on the adjacent wordline.

[0306] STEP 850: Preemptively performing said prerequisite sensing of the

adjacent wordline related to the current page in a cycle earlier than the current cycle.

[0307] FIG. 44 is a schematic flow diagram illustrating a further articulation
of STEP 850 of FIG. 41:

[0308] STEP 852: Outputting a first flag obtained as part of the data from said

prerequisite sensing.

-77-

WO 2007/131127 PCT/US2007/068172

[0309] STEP 854: Adjusting the data from said prerequisite sensing according
to the output first flag.

[0310] STEP 856: Latching the data to indicate whether corrections need to

be made for said sensing of the current page to follow.

[0311] FIG. 45 is a schematic flow diagram illustrating a further articulation
of STEP 830 of FIG. 41:

[0312] STEP 832: Performing said sensing of the current page with and

without the correction from the prerequisite sensing.

[0313] STEP 834: Outputting a second flag obtained as part of the data from

said current sensing.

[0314] STEP 836: Responsive to the second flag, revising the data from said
current sensing ecither by leaving the data unchanged, or adjusting the data a
predetermined value, or obtaining new data by repeating said sensing of the current

page under another set of sensing conditions.

[0315] STEP 838: Latching either the corrected or uncorrected revised data
according to whether the data from the prerequisite sensing indicate correction or no

correction.

[0316] The above algorithm has been described using the 2-bit LM code. The
algorithm is equally applicable LM codes for 3 bits or more.

[0317] Although the wvarious aspects of the present invention have been
described with respect to certain embodiments, it is understood that the invention is

entitled to protection within the full scope of the appended claims.

-78-

WO 2007/131127 PCT/US2007/068172

WHAT IS CLAIMED IS:

1. A non-volatile memory device having addressable pages of memory
cells, comprising:

a set of data latches for each memory cell of an addressed page, said set of
data latches having capacity for latching a predetermined number of bits;

a first-in-first-out queue for ordering incoming memory operations to be
executed in the core array, the first-out memory operation being the next memory
operation to be executed;

a set of mergeable conditions when two or more memory operations are
mergeable into a combined memory operation, the combined memory operation
operating on all data associated with the operations being combined;

a queue manager for accepting an incoming memory operation into the queue
whenever there are sufficient data latches available for caching the data associated
with the incoming memory operation; and

whenever an executing memory operation in the core array is mergeable with
one or more queued memory operations, said queue manager terminating the
executing memory operation and instead executing the combined memory operation
of the mergeable memory operations; or

whenever two or more queued memory operations are mergeable among
themselves but not with an executing memory operation in the core array, said queue
manager executing the combined queued memory operation of the mergeable memory

operations after the executing memory operation in the core array has completed.

2. The non-volatile memory device of claim 1, wherein the incoming

memory operation is a program operation.

3. The non-volatile memory device of claim 1, wherein the data
associated with the program operation is a page of binary program data to be

programmed.

4. The non-volatile memory device of claim 1, wherein the memory cells

individually store binary data.

-79-

WO 2007/131127 PCT/US2007/068172

5. The non-volatile memory device of claim 2, wherein the memory cells

individually store binary data.

6. The non-volatile memory device of claim 3, wherein the memory cells

individually store binary data.

7. The non-volatile memory device of claim 1, wherein the memory cells

individually store multi-bits of data.

8. The non-volatile memory device of claim 2, wherein the memory cells

individually store multi-bits of data.

9. The non-volatile memory device of claim 3, wherein the memory cells

individually store multi-bits of data.

10. The non-volatile memory device of claim 9, wherein each of the multi-
bits of data in the page of memory cells forms a single bit of data of a corresponding
logical page such that there are as many logical pages as there are multi-bits for each

page of memory cells.

11. The non-volatile memory device of claim 10, wherein the incoming
operation is one of a plurality of program operations each for programming a logical

page of data.

12. The non-volatile memory device of claim 11, wherein the set of
mergeable conditions includes when the data associated with the memory operations

to be merged are from logical pages belonging to the same page of memory cells.

13. The non-volatile memory device of claim 12, wherein the set of
mergeable conditions includes when the memory operations to be merged are queued

in a predetermined order.

14. The non-volatile memory device of claim 13, wherein the

predetermined order is specified by a coding system for the multi-bits memory cell.

-80-

WO 2007/131127 PCT/US2007/068172

15. The non-volatile memory device of any one of claims 7-14, wherein

the memory cells each stores two bits of data.

16. The non-volatile memory device of any one of claims 7-14, wherein

the memory cells each stores more than two bits of data.

17. The non-volatile memory device of claim 14, wherein:
the coding system is for a 2-bit memory cell having a lower bit and an upper
bit; and

the predetermined order is from the lower bit to the upper bit.

18. The non-volatile memory device of claim 17, wherein:
the memory operations to be merged include a program operation on a lower-

bit page and a program operation on an upper-bit page.

19. The non-volatile memory device of claim 14, wherein:
the coding system is for a 3-bit memory cell having a lower bit, a middle bit
and an upper bit; and

the predetermined order is from the lower bit to the middle bit to the upper bit.

20. The non-volatile memory device of claim 19, wherein:
the memory operations to be merged include a program operation on a lower-

bit page and a program operation on a middle-bit page.

21. The non-volatile memory device of claim 19, wherein:
the memory operations to be merged include a program operation on a middle-

bit page and a program operation on an upper-bit page.

22. The non-volatile memory device of claim 19, wherein:
the memory operations to be merged include a program operation on a lower-
bit page, a program operation on a middle-bit page and a program operation on an

upper-bit page.

23. A method of operating a non-volatile memory having addressable

pages of memory cells, comprising:

81-

WO 2007/131127 PCT/US2007/068172

providing for each memory cell of an addressed page a set of data latches
having capacity for latching a predetermined number of bits;

providing a first-in-first-out queue for ordering incoming memory operations
to be executed in the core array, the first-out memory operation being the next
memory operation to be executed;

specifying a set of mergeable conditions when two or more memory
operations are mergeable into a combined memory operation, the combined memory
operation operating on all data associated with the operations being combined;

accepting an incoming memory operation into the queue whenever there are
sufficient data latches available for caching the data associated with the incoming
memory operation; and

whenever an executing memory operation in the core array is mergeable with
one or more queued memory operations, terminating the executing memory operation
and instead executing the combined memory operation of the mergeable memory
operations; or

whenever two or more queued memory operations are mergeable among
themselves but not with an executing memory operation in the core array, executing
the combined queued memory operation of the mergeable memory operations after

the executing memory operation in the core array has completed.

24. The method of claim 23, wherein the incoming memory operation is a

program operation.

25. The method of claim 23, wherein the data associated with the program

operation is a page of binary program data to be programmed.

26. The method of claim 23, wherein the memory cells individually store
binary data.

27. The method of claim 24, wherein the memory cells individually store
binary data.

28. The method of claim 25, wherein the memory cells individually store
binary data.

-82-

WO 2007/131127 PCT/US2007/068172

29. The method of claim 23, wherein the memory cells individually store

multi-bits of data.

30. The method of claim 24, wherein the memory cells individually store

multi-bits of data.

31. The method of claim 25, wherein the memory cells individually store

multi-bits of data.

32. The method of claim 31, wherein each of the multi-bits of data in the
page of memory cells forms a single bit of data of a corresponding logical page such
that there are as many logical pages as there are multi-bits for each page of memory

cells.

33. The method of claim 32, wherein the incoming operation is one of a

plurality of program operations each for programming a logical page of data.

34. The method of claim 33, wherein the set of mergeable conditions
includes when the data associated with the memory operations to be merged are from

logical pages belonging to the same page of memory cells.

35. The method of claim 34, wherein the set of mergeable conditions
includes when the memory operations to be merged are queued in a predetermined

order.

36. The method of claim 35, wherein the predetermined order is specified

by a coding system for the multi-bits memory cell.

37. The method of any one of claims 29-36, wherein the memory cells

each stores two bits of data.

38. The method of any one of claims 29-36, wherein the memory cells

each stores more than two bits of data.

39. The method of claim 36, wherein:

-83-

WO 2007/131127 PCT/US2007/068172

the coding system is for a 2-bit memory cell having a lower bit and an upper
bit; and

the predetermined order is from the lower bit to the upper bit.

40. The method of claim 39, wherein:
the memory operations to be merged include a program operation on a lower-

bit page and a program operation on an upper-bit page.

41]. The method of claim 36, wherein:
the coding system is for a 3-bit memory cell having a lower bit, a middle bit
and an upper bit; and

the predetermined order is from the lower bit to the middle bit to the upper bit.

42, The method of claim 41, wherein:
the memory operations to be merged include a program operation on a lower-

bit page and a program operation on a middle-bit page.

43, The method of claim 41, wherein:
the memory operations to be merged include a program operation on a middle-

bit page and a program operation on an upper-bit page.

44, The method of claim 41, wherein:
the memory operations to be merged include a program operation on a lower-
bit page, a program operation on a middle-bit page and a program operation on an

upper-bit page.

-84-

WO 2007/131127
1/42

Control
Gate

’ / Floating

Gate

Source r_—[
FiIG. 1A

Drain

Control
Select Gate (Steering)

(Word Line) = Gate

N\ %

BL-left BL-right

FIG. 1B

Ri(gsht Cont;ol Select Gate Ri(gsht Control
teering A teering)
Gate (Wordline) ~ Gate

30"’\ 40’ / 30’

ENENE LD

left right

BL-left ‘ BL-right

FIG. 1C

20

20" . ‘)
_____ < TS| 0

PCT/US2007/068172

WO 2007/131127 PCT/US2007/068172

2/42
Drain
NAND CELL | 56
50‘\
Drain
Select _-l 52
Control ;
Gate 1 N M1
Control i
Gate 2 P M2
e
.
L]
Control '
ontro '
Gate n _'{ . Mn
Source
Select S1
™\ 54

FIG. 1D Source

Control
Gate
! / Dielectric
J I Drain

Source

FIG. 1E

PCT/US2007/068172

WO 2007/131127

3/42

100
/

42

WO 2007/131127

Word
Lines

PCT/US2007/068172
4/42
56 ~ /— 100
,—j—*'
— = | J
_5_0_ L 50
-+ 4
Source
Line

Bit Line

FIG. 3

WO 2007/131127 PCT/US2007/068172
5/42

ID u1 " L42|t «3!! u4n u5n “6”

Q4
!
Irer —
> Voa(V)
35 G
Q
2
e} (‘B
| 8 Memory Array
8 100
2
]
14
Addr L Column. Decoder 160
Read/Write Circuits 170
s 180 s 180
Read/ Read/ Read/
Write Write --- Write
Stack Stack Stack
Data
[1O

FIG. 5

WO 2007/131127 PCT/US2007/068172
6/42

Read/Write Module
190 Selected
“\ Bit Line
Y

Sense Amplifier

Verify & Bit(s)
Conversion Logic

A

Data Latch
A

osat0] FIG, 6A

(PRIOR ART)

Bit Lines
1 3 5 2k-1

@4 — ==

*—-—-;-

Read/Write Data,

Module

)
1

Read/Write Datag

Module,

Read/Write Datag

Moduleg

.—————————4————4————1————

Read/Write Datagy.q

MOdU‘82k-1

|
\

o’ FG. 68 7

(PRIOR ART)

WO 2007/131127 PCT/US2007/068172
7/42

Control
Circuitry
310
o
M
(]
Power 1%
Control - nat IR Memory Array
316 g
a 300
=2
o)
o
On-Chip
Address
Decoder
314
= Addr Block Multiplexer (Optional) 350
Read/Write Circuits 370
f400 [400 [‘430
MSte;‘tfe 1 R/W RW | | Rw |[|StackBus
3(:1 2|ne "1] Stack Stack Stack |} Controlier
Addr
ddr >~ Column Decoder 360

I Data
231 /0

Host/
Controller

FIG. 7TA

WO 2007/131127

PCT/US2007/068172
8/42 ,
Data
I/O
C.O"t.m' > Column Decoder 3608
Circuitry ' —
310
- > Read/Write Circuits 3708

Block Multiplexer (Optional) 3508

Memory Array
300

Row Decoder 330A
Row Decoder 3308

Block Multiplexer (Optional) 350A

‘Read/Write Circuits 370A

Y

Y

Column Decoder 360A

1 Data
231 /O

Host/
Controlier

FIG. 7B

WO 2007/131127

Read/Write Stack

9/42

Bit Lines

P

Stack Bus

[}
421
Stack Bus M

Controller - >

Sense

- - -

411:

Amps IJ’
l 212

Common

Processor

500
/

Data

Latches

430

I/O

PCT/US2007/068172

WO 2007/131127 PCT/US2007/068172

10/42
Bit Lines
1 k (r-1)k+1 p=r*k
Controller/310 /‘370 - eecoeen -—---
f400—1 [-400-r
\
/212-k | Sense
[N N N
State
Machine
SABus
f422
509
Flag B
ag Bus [.
M31 1 500
410
i
/‘ K 85071 }-550 :
Stack Bus . Common / Common
Controller > Processor eeve Processor
DBus
rf423
f430-1
| Data 430-k | Data
0 Latches / - | 1 |Latches
. |
< ;l————“ sese B —L———-“
y - y e -
\ Y Y
- [/O Bus N S
j l
231] 0 T

FIG. 9

WO 2007/131127 PCT/US2007/068172
11/42 ‘

Sense Amp / 212-1 Data Latches 430-1
Bit Line 1 Data
A oLt vo
434-1 — K
231
- 214-1
SA Latch | _ :
L]
[]
.
[]
. CTRL 1 on CTRL
& CLK 434-n J | scik
y :411 y :411
SBus 422 DBus 423
A e
Common Processor 500
f f‘507
SAP DTP
501 l l 502
_\ PBus K‘
- j 7 “
P 1
SAN DTN
R]
510 l 530‘
—>»[1/0/Z
input Logic /i)
Output Logic
—> [1/0/2]
w23 T 1 I T T
Bsi | NDIR
520 PINV PDIR
\ ™ NINV CTRL
SET—» [_ J & CLK
PLatch MTCH, MTCH* ‘
RESET—»| T et
\' 524

FIG. 10

WO 2007/131127 PCT/US2007/068172
12/42
PBus
505
Input Logic ~ 520 1/
524
AN
ONE — ONEB<(0> 505
N (| —one
526
N | — oneB<1>
527
AN
f523
FIG. 11A {
BSi
Input Logic Truth Table
Transfer PBus 8BSl
Mode ONE | ONEB<0> | ONEB<1> (nput) | (Output)
Pass- 0 PR
Through 0 PBUS us
Invert 1 1 PBus PBus*
Float 1 0 PBus Float

FIG. 11B

WO 2007/131127

PCT/US2007/068172
13/42

PBus
A
Output Logic /-530 | 505
531 533 ‘
532 534
N — wren o — piny
¢
535 537
536 538
N f—— MTCH* AN — NINV
Output Logic Truth Table
Transf PBu
Mode || PINV | NINV | PDIR | NDIR MTCH - (Outpﬁt)
Pass- D D D 1 0 0
Through 0 D)) . -
Invert D D 0 D 0 1
Pre-
Charge 0 D 0 D X 1

(Default Values: PINV=1, NINV=0, PDIR=1, NDIR=0)

FIG. 12B

WO 2007/131127 PCT/US2007/068172
14/42

Upper Page 434-0
Load IN Input
DLO [je—
VH Veri e 231
erity 435 OQutput
| ~214 >
DLS | 4342
bLz VL. Lockout
422 990
| Vs 434-1
Proc. g DL1 Lower Page
423 Lockout Data
VH Verify
Lower Page 434-0
{ockout Data Input
o 231
VH Venfy 435 e l Output
214 >~
DLS f434'2
' DL2
500 VL Lockout
| 422 | 4341
Proc. DL1 Upper Page
423 Lockout Data
VH Verify

FIG. 14

PCT/US2007/068172

WO 2007/131127

15/42

9. 9Id4
A

r N
7 WOdA
- . N WOdALL —
L.
|| - UCISIBAUOD DISTINS 0} 1Mo
‘ _A
-)
J _ I U _ N _
OAnd oralynd ghnd yAjnd
< ‘ > ‘ " Asng
Jaddn weiboid Jamo] weiboid oniL
_ Asng
U9M uo sabeq UM uo sebeyq SUED

Jaddn peo 1Mo peo

PCT/US2007/068172

WO 2007/131127

16/42

8L "9Old

MusA HA
Bje(INONOO0T] £Zh
obed Jomo 110 4./ 004d
e
L-pEY S
AuaA A oog— &
\L Ale
ot 444 sd
- /]
- vic
O oibbo indino | | ~SE¥ KB N
Lez)
—_— 01a :
Indu abed xeN
oper urpesy
4 I
4 9 =N 12) N 4 4y 9,
- v_\ | r_r ‘ r_\ l | r_ !
vAind okynd M oighnd gikiad viad
— > \ —>
L+U i Asn
MW weisbouy Y9 wesbos g
ve)s v ™ d aniy
_ ‘ Asng
HU9an uo sebey UM uo sefed Y\ uo sabeyg BU9ED
Jaddn peo leddn peo 1amo] peoT

PCT/US2007/068172

WO 2007/131127

17/42

V6l OId
A

N
| | o] | |
: olnd © o/ghnd T ghnd
m m m . Asng
> qgpeey < ~ : > SNl
() Z+N ebeyd weiboig “ \ epeay | (n) L+N abey weiboidy "
m i /OPESY ! ‘ . ksng
L ayoen)
APOIN 9 £+IA APON 8 Z+W !
abed inQ 9j6b0 | abed Qo 8|bbo @
_. _ ! _ | _
: : i Asng
(N) L+N obeq weibouiy | : b | gpesy e peay/opeay | N4l
S (1) N 9bed weiboid B . fsng
|+ abed (1) W ebeq | 8yoed
: asuag asusg
: AjIpoi 2 Aipoin g “
L+ 9bed ino 9660 | W ebed InQ oibbo). @

®

PCT/US2007/068172

WO 2007/131127

18/42

g6} 9ld
A

J
zy b o, 6 8 4 9 S
_ _ Lo ! | | _
! ofnd | T oghnd T givAmd
; ; _ Asng
—> gpesy -« R H > SnlL
(1) Z+N ebed weiboig " \ epeay ! (N) 1+N ‘(1) N sebed weiboid
sousnbag N4 — i jopeay : £
_ : sng
: 8YoED
AJIPO 8 €+ APOIN %8 Z+IN w
abed 1nQ 9jb60 | abed 1np oibbo | @
5= 5| 9 h O
| | | | |
) a/vAnd a vhind g
: B a Asng
L+N ‘N 'wesboid sousnbag jn4 ;. ' ¢ gpesy epesy/opesy | ML
i+ () N 9bed weiboid ". Asng
L+ abeg () webeq | ayoey
' ; asusg asusg ”
: - Aipopy Ayipoiy 8 “
W obed 1O sibboy @

@ L+ obed InQ eibbo

WO 2007/131127 PCT/US2007/068172

19/42
of Cells Upper Bit —~ y— Lower Bit
“1 1 ” “01 ” “0'0" (‘1 O”
D D D
| T | > Vr

Threshold Voltage

Multistate Memory (LM Gray Code)

FIG. 20A

of Cells
“1 177 “XO"

D
[U\ A /“Intermediate”
g

Lower Page Programming (LM Gray Code)

FIG. 20B

“Intermediate”

of Cells /—\ QWP

" QWP “ ” [13 ”" “ ”
11 DV DVey 00 10

i DV DV

Upper Page Programming (LM Gray Code)

FIG. 20C

WO 2007/131127 PCT/US2007/068172
20/42

Upper Bit — y— Lower Bit

“1 1" ((01 ” “00" ((1 O"
D
L —3 VT
Lower Bit = “0" 4

Lower Page Read (LM Gray Code)

FIG. 20D

Da Dc
< Upper Bit = “0" >
‘\ “1 171 1(01” ((00" u10n
ANNGECONNG
; —> V7

Upper Page Read (LM Gray Code)

FIG. 20E

PCT/US2007/068172
21/42

WO 2007/131127

¢ Old
ONININVHOOUd F9Vd ¥3IMOT1 ONIRMNA ONIAVOT V1Va 39Vd LX3IN GNNOAOANIVE
oWl -—
210D W\
r g 0 Emmmwc_
%§ k as bxoeg
B , ww uonesado
; ; seyoje g

93i4 9814 sng O/}

1SOH

PCT/US2007/068172

WO 2007/131127

22/42

¢¢ Old

S3ASVHd NVIO0¥d SNOINVA ONRING SALVLS 40 ONDOVIL
ONININVADOUd IOININD3S T1Nd YO IOVd ¥3dddn

NoX007 wesboud =, 1,

OUON 0 OUON « ..,m,. ...<= auog 0.+.9,+.V»
(Ou+.8,)102 Z Mo WV T On ‘8. - 8U0Q D+l
(Du+.¥,) 10T z @ '8 T On "N auoeQg D.+.V.
(8,+.¥.) 101 1 O =R auo(Q .g,+.Y.

()Log € & W Gn WY WV T «On auoQ .0,

(.8.,)102 Z O A A ¥ . suoQ g,
(V) 102 Z 2.8, '8, . Vo auoq .Y,

()Log € o M= WAL WA ARPL A W SUON (rentu) 1,

aJinba

PCT/US2007/068172

WO 2007/131127

23/42

Host

1/0 Bus Free

D Latches
Operation

Backgr Use 0

in use by
Core

Mem Core

:>= —u>= w :m: =>= u.»w: n-noun
Done Done Done

—P- time
BACKGROUND NEXT PAGE DATA LOADING DURING UPPER PAGE
OR FULL-SEQUENCE PROGRAMMING -

FIG. 23

WO 2007/131127 PCT/US2007/068172

24/42

Beginning to operate a memory having a memory array with
addressable pages of memory cells

y

Providing for each memory cell of an addressed page a set of
data latches having capacity for latching a predetermined number
of bits

CURRENT MULTI-PHASE
MEMORY OPERATION IN
MEMORY ARRAY y

Performing a current memory operation on the memory array,
said memory operation having one or more phases, each phase
being associated with a predetermined set of operating states

'FREE UP LATCHES WITH
- EFFICIENT PHASE-
DEPENDENT CODING 4

Providing a phase-dependent coding for each phase so that for at

least some of the phases, their set of operating states are coded

with substantially a minimum of bits so as to efficiently utilize the
set of data latches and to free up a subset of free data latches

CONTEMPORANEOUS
LATCH OPERATION !

Contemporaneously with the current memory operation,
performing operations on the subset of free data latches with data
related to one or more subsequent memory operations on the
memory array

LATCH OPERATION CONTEMPORANEOUS WITH
CURRENT MULTI-PHASE MEMORY OPERATION

FIG. 24

600

610

620

622

624

PCT/US2007/068172

WO 2007/131127

25/42

TAN) = |

ONINNYIOO™Ud 3OVd 4IMOT ONIRINA adv3y dNNOYOMIOVE

53]
o
)
S
7]
Sl “m.
o
Q;

Qa4 |

2100 WA

s 810D

asn 16xoeg

uonesado
sayole d

sng O/l

}SOH

PCT/US2007/068172

WO 2007/131127

26/42

Host

/O Bus

D Latches
Operation

Backgr Use

Core Use

Mem Core

Free

=>=
Finished

:>= w :muu

Finished

:>=-=m:~=o:
Finished

BACKGROUND READ DURING UPPER PAGE OR FULL-SEQUENCE PROGRAMMING

FIG. 26

WO 2007/131127 PCT/US2007/068172
27/42

MEMORY Pre- Address Program Execute-
Operation | Command Data Command

FIG. 27

Host 6

Memory Controller

8
? Data/Address
MEMORY CHIP 301
Control Circuitry 310 Datal
Address
P
322
—» MEM OP1
MEM Ops
Memory
Array

, 100

Cache | [MEMOPO |-t %7

Ready

/Busy*

Ready/Busy* < State Machine >
312

CONVENTIONAL CACHED MEMORY OPERATION

FIG. 28

WO 2007/131127 PCT/US2007/068172
28/42

In a memory having a core array and data latches for latching

data associated with an addressed page of the array, 710

providing a first-in-first-out queue for ordering incoming memory
operations to be executed in the core array

y
Accepting an incoming memory operation into the queue - 720

whenever data latches are available for caching the data of the |<—
incoming memory operation,

‘ 730

Can the executing memory operation in the core array potentially
merge with any of the memory operations in the queue?

YES NO

lr /‘ 740 il /‘ 760
Whenever the next one or Waiting until the completion
more memory operations of the memory operation in
from the queue are the core; and
mergeable with the memory Whenever the next two or
operation in the core array, more memory operations
terminating the execution of from the queue are
the memory operation in the mergeable,
core and begin executing executing the merged
instead the merged memory memory operations in the
operations; core array,
Else else
Waiting until the completion executing the next memory
of the memory operation in operation from the queue in
the core before executing the core array
the next memary operation
from the queue

MULTIPLE MEMORY OPERATIONS MANAGEMENT

FIG. 29

PCT/US2007/068172

WO 2007/131127
29/42
Control Circuitry 310'
Data 1/O Bus
> >
Incoming Queue
MEM O
Ps >
v 330

MEP OP2
MEM OP1

N

' Y

Cache Operation [~ 332
.| Ready Queue To Memory
Ready/Busy™ /Busy* Manager Array
- - -
MEM OP0 K| 324
State Machine
312'

MANAGEMENT OF MULTIPLE MEMORY OPERATIONS

FIG. 30

WO 2007/131127 PCT/US2007/068172

30/42
Providing for each memory cell of an addressed page a set of » 760
data latches having capacity for latching a predetermined number
of bits
Y.
770

Performing an erase operation on a designated group of pages |—

Y

Contemporaneously with the erase operation, performing
operations on the set of data latches with data related to one or |
more subsequent memory operations on the memory array

780

Cache Operation During Erase Operation

FIG. 31

PCT/US2007/068172

WO 2007/131127

31/42

¢€ Old

ISVHd ISV ONRING ONIAVO1 V.1VA NVIO0Ud ANNOYOMIVE

I

0

sayoje] Z pasu eje obed taddn @ Jamo
yolje | peau ejeq abed 1emo

9814

3914

810D WA

asn 810D

as() ibyoeg

uonelxdQ
sayole1 g

sng O/l

}SOH

PCT/US2007/068172

WO 2007/131127

32/42

€€ Old

JSVHd ONINNVYO0Yd 140S ONRING ONIAVOT V1vd NVIO0dd ANNOYOMOVE

b

sayoje g psau eje sbed 1oddn Jomo7
yoje | paau ejeq abed JamoT

9814

2914

210D WO

as() 240D

as 16)0eg

uonesadQ
sayole1 g

sng O/l

1SOH

PCT/US2007/068172

WO 2007/131127

33/42

v€ "Old

JASVY3 ONRING Av3d aNNOYOMOVE

9914 o914 9914

| eauq |2

WS4
/81070 WIS

asn 210D

as 1bxoeg

uonesadQ
sayolen d

sng O/l

JSOH

WO 2007/131127 PCT/US2007/068172

34/42
780
L/
Pausing the erase operation to sense a designated page [~ 782
Resuming the erase operation after the data for the | 784

designated page are latched in the data latches

Outputting the data for the designated page during the erase | | 786
operation R

Scheduling the designated page for reprogramming if the p 788
output data contains efrors

Caching Read Scrubbing Operation During Erase Operation

FIG. 35

PCT/US2007/068172

WO 2007/131127

35/42

Host

/O Bus

D Latches
Operation

Backgr Use

Core Use

Mem Core/
FSM

Free

Read Inserted

Phase 1|

A 4

PREEMPTIVE BACKGROUND READ DURING ERASE

FIG. 36

WO 2007/131127

36/42

PCT/US2007/068172

Toggling
Out Data /T('M) T(n) T(n+1)
——————— // /
Sensing
Page of | S(n) S(n+1) S(n+2)
Data
t0 t1 t2
Conventional Read Caching
MEMORY ARRAY
n WLm
T LP(4.1)
w4
7 LP(4.0) L
8 LP(3.1)
5 LP(3.0) W3
6 LP(2.1)
3 LP(2.0) w2
4 LP(1.1)
WL1
1 LP(1.0) L
2 LP(0.1) ‘
W
0 LP(0.0) Lo
Logical Pa
ogical 1 498 Logical Page Wordline

Programming

Order

Logical Page Programming Sequence
to Minimize WL-WL Yupin Effect

FIG. 40

PCT/US2007/068172

WO 2007/131127

37/42

pawuweiboid jou

g8¢ "Old

(powwesboad 324 jou si abed saddn usym abed jes160] Jomo] Buipeas jo ased |e1oads)
Buipod W1 uim Bulyoe) pesy

s obed Jjaddn yissed ,,Z #} aa 1 0l
(u)'s
(u)beid -
e
(1-u)L
V8¢ "‘Old
Buipod W1 uum Buiyoey peay
o ! 1 0}
(z+us (Lu)s (u)'s
(z+u)beyd (1+u)beiy \% -
(L+u)L (u)L (L-u)L

ejeq
jJo abed
buisuss

eleq N0
buybbo |

eleq
Jo abey
buisueg

elegino
Buybbo)

PCT/US2007/068172

WO 2007/131127

38/42

6€ "Old

Buisuag 3g-lIV YiM peay ayde)d

(z+u)evg (u)gvg
s T T
(z+u)l (1+u)L (UL (1-u)L

eleg
Jo abed
Buisueg

eleq 1ino
Buybbo |

PCT/US2007/068172

WO 2007/131127

39/42

Gl 3 €1 g1 11 01 ¥ PA R % ¥}

u U (7et) | U (Lat) | T .A

e HED 1 (gruis @O s 0] | s || s
Pz k\\:! XLI! .

(Z+u)4 Z+Uu)¥4 (L+u)d , L+u)¥y (u)4 f (g

(L+u) L _ ()1 4
S oeuny I_V swlp i—V suip
yoye alp) yoleT sipl yajen a|pj

Ly "OId

(swsyss jeuonuaAuod o} Buipiooaoe)
uonoa1109 v 8 Bulpod W yum Buiyse) pesy

eleq
jo abed
Buisuag

eyeq Jo
abed 1nO
buiibboy

PCT/US2007/068172

WO 2007/131127

40/42

¢y "Old

uondaLIo0) v 8 Buipo) W1 yim buiyoen pesy parosduwg

givigl o 1} 0} 13- A% € ¥i- Gk
-, = N T Ty — eieg
" Aﬁ% (Z+u)s " @) s | 9 | s | s | soebed
- Iml - Iml ' __ __ 1 buisusg
(e+u)7) (Z+u)v))
s [PPl \ G i
\ . eleq %O
_ (L+u)L (u)L _ aBed 1O
_ _ — buybbo
_ewl ewy o oewny

YaleT |ipi ysiet oipi yoje |ip

WO 2007/131127 PCT/US2007/068172
41/42

In each reading cycle where a page from a series thereof is to be 810

sensed from a memory, outputting a previous page sensed in the
last cycle in a current cycle

Y

Sensing a current page during said outtputing the previous page, | * 830
said sensing the current page being performed on a current H
wordline and requiring a prerequisite sensing at an adjacent

wordline so as to correct for any perturbation effect from data from
the adjacent wordline

v

Preemptively performing said prerequisite sensing of the adjacent |,
wordline related to the current page in a cycle earlier than the
current cycle

850

Improved Read Caching with Lookahead Correction

FIG. 43

850

Outputting a first flag obtained as part of the data from said 852
prerequisite sensing

Adjusting the data from said prerequisite sensing according to | |, 854
the output first flag

Latching the data to indicate whether corrections needtobe | | , 856
made for said sensing of the current page to follow

Operation of the Prerequisite Lookahead Sensing

FIG. 44

WO 2007/131127 PCT/US2007/068172
42/42

830

Performing said sensing of the current page with and without 832
the correction from the prerequisite sensing e

Outputting a second flag obtained as part of the data from said | |, 834
current sensing

Responsive to the second flag, revising the data from said

current sensing either by leaving the data unchanged, or 836

adjusting the data a predetermined value, or obtaining new |+~

data by repeating said sensing of the current page under
another set of sensing conditions

Latching either the corrected or uncorrected revised data 838
according to whether the data from the prerequisite sensing 1
“indicate correction or no correction

Operation of the Current Sensing

FIG. 45

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings

