

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200051871 B2
(10) Patent No. 775872

(54) Title
A ventilation system and/or breathing tube

(51) 6 International Patent Classification(s)
A61M 016/16

(21) Application No: 200051871 (22) Application Date: 2000.08.07

(30) Priority Data

(31) Number (32) Date (33) Country
337174 1999.08.10 NZ

(43) Publication Date : 2001.02.15

(43) Publication Journal Date : 2001.02.15

(44) Accepted Journal Date : 2004.08.19

(71) Applicant(s)
Fisher and Paykel Healthcare Limited

(72) Inventor(s)
Daniel John Smith; Craig Karl White

(74) Agent/Attorney
A J Park, Level 11, 60 Marcus-Clarke Street, CANBERRA ACT 2601

(56) Related Art
US 5983896
US 5901705
US 5894839

ABSTRACT

A breathing tube for humidified gases ventilation system has an internal conduit and a surrounding conduit within which the internal conduit is disposed. A connector at one end of the internal conduit and the surrounding conduit has an inhalation gases port for connection to an inhalation gases supply port of a ventilator. A gases flow path leads from the inhalation gases port to the space between the internal conduit and the surrounding conduit.

A spirally wound heater wire may be disposed between the internal conduit and the surrounding conduit with turns of the spirally wound wire passing around the internal conduit.

1
2
3
4
5
6
7
8
9
10

AUSTRALIA
PATENTS ACT, 1990

COMPLETE SPECIFICATION

FOR A STANDARD PATENT

ORIGINAL

23
25
27A
27B

28

29

30

31

Name of Applicant: Fisher & Paykel Healthcare Limited
~~FISHER & PAYKEL LIMITED~~

Actual Inventors: DANIEL JOHN SMITH and CRAIG KARL WHITE

Address for service
in Australia: A J PARK, Level 11, 60 Marcus Clarke Street, Canberra
ACT 2601

Invention Title: A Ventilation System and/or Breathing Tube

The following statement is a full description of this invention, including the best method of performing it known to me/us

A Ventilation System and/or Breathing Tube

BACKGROUND TO THE INVENTION

I) Field of the Invention

5 The present invention relates to ventilation systems and to the form and configuration of breathing tubes therefor.

ii) Summary of the Prior Art

10 Administration of gases to patients from a ventilator via one or more breathing tubes is well known in the art. In particular it is well known to provide a pair of breathing tubes, being an inhalation and an exhalation tube which connects to a yoke connector at the patient. Furthermore it is known to provide a humidification device in the inhalation line, usually close to the ventilator, to provide the inhaled gases at 15 elevated humidity levels.

These systems have the disadvantage that the pair of breathing tubes are bulky and inconvenient to work with.

15 More recently breathing tubes have been suggested in which the inhalation line is concentrically located within a larger tube, with the space between the inhalation tube and the larger tube forming the exhalation path. These are said to improve upon the earlier dual tube configuration by reducing the bulk and inconvenience and by providing 20 counterflow heat exchange between the inhalation and exhalation gases. Examples of such circuits are shown in US3865106, US4007737, US4462397, US4463755, US4637384, US4967744 and US5404873.

25 These configurations have encountered problems with humidified gases as condensation forms on the inside of the wall of the outer tube (which wall is in contact on its outer side with the ambient air) and collects along the lower side of the tube. This poses a particular problem as the inner inhalation tube also tends to lie along the lower side of the larger exhalation tube and therefore in contact with the collected condensate. This has an adverse affect on the maintenance of the temperature of the inhalation gases in the inhalation tube. While some of the gases in the inhalation tube remain at 30 appropriate temperatures, those adjacent the lower wall of the inhalation tube can become subject to significant temperature drop and subsequent condensation onto the

tube or wall. It will be readily appreciated that formation of condensation makes it both difficult to control the operation of the humidifier to maintain comfortable levels of humidity at the patient and also can require the incorporation of devices which allow the egress of the condensation and ensure that such liquid does not reach the patient.

5

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a ventilation system and/or a breathing tube therefor which at least goes some way to overcoming the above disadvantages or which will at least provide the healthcare industry with a useful choice.

10 In a first aspect the invention consists in a humidified gases ventilation system comprising:

 a patient interface means for connection with a patient and immediate delivery of gases thereto,

 a humidified ventilation means for providing a flow of pressurised and
15 humidified gases, and

 a gases pathway connecting between said patient interface means and said humidified ventilation means and having an internal conduit and a surrounding conduit within which said internal conduit is disposed, a space between said internal conduit and said surrounding conduit connected with an inhalation port of said humidified

20 ventilation means for supply of said humidified gases therethrough to said patient interface means.

 In a still further aspect the invention consists in a breathing tube for a humidified gases ventilation system comprising:

25 an internal conduit,
 a surrounding conduit within which said internal conduit is disposed, and
 a connector at one end of said internal conduit and said surrounding conduit, said connector having an inhalation gases port for connection to the inhalation gases supply port of a ventilator, and a gases flow path from said inhalation gases port to a space
30 between said internal conduit and said surrounding conduit.

 In a still further aspect the invention consists in a breathing tube for a humidified

gases ventilator system comprising:

an internal conduit,

a surrounding conduit within which said internal conduit is disposed, and

a connector at one end of said internal conduit and said surrounding conduit, said

5 connector having an inhalation gases port for connection to the inhalation gases supply port of a ventilator, and a gases flow path from said inhalation gases port to a space between said internal conduit and said surrounding conduit,

10 a spirally wound heater wire disposed in the space between said internal conduit and said surrounding conduit, said spirally wound heater wire passing around said

internal conduit, wherein

15 said surrounding conduit has an externally corrugated form and an insulating jacket is provided over said surrounding conduit spanning said corrugations to provide an insulating air space within valleys of said corrugations.

To those skilled in the art to which the invention relates, many changes in

15 construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be in any sense limiting.

20 **BRIEF DESCRIPTION OF THE DRAWINGS**

Figure 1 shows a ventilation system according to the preferred embodiment of the present invention,

Figure 2 is a cut-a-way view of the breathing tube according to the preferred embodiment of the present invention, and

25 Figure 3 is a cross sectional view of the section of the breathing tube according to Figure 2.

Figure 4 is a cross sectional view of the connections between the ventilator and the breathing tube.

30 **DETAILED DESCRIPTION**

With reference to Figure 1 and Figure 4, the present invention provides for a

ventilation system including a ventilator 1 connected to a patient interface via a single breathing tube 4 providing both the inhalation and exhalation paths. The breathing tube 4 connects to the patient interface via a connector 5 at the patient end thereof. This interface may be for example a breathing mask (shown) or intubation tube. At the 5 ventilator end the breathing tube 4 will connect to the ventilator inhalation and exhalation ports generally by a pair of connectors 5, 7 as required to interface with existing ventilators. In this regard connector 5 includes a first port to interface directly with one of the inhalation or exhalation ports (preferably the exhalation port), while the second connector 7 is connected to a second port 6 of the connector 5 by a branch tube
10 8.

The ventilator 1 may in fact comprise a ventilator and an in line humidifier of known type in which case the inhalation connector of the breathing tube connects to the outlet port of the humidifier and the exhalation connector connects to the appropriate port on the ventilator. As with conventional systems the inhalation gases are passed
15 from the ventilator to the humidifier before reaching the breathing tube leading to the patient.

....
5
6
7
8
9
10
R
S
R

With regard to the above description of the configuration of connectors, it will also be appreciated that appropriately configured ventilators could be constructed which interface more directly with a single connector of the breathing tube and the above description is given to show the manner in which the present invention is adaptable to the connection requirements of existing ventilators.

Various configurations of the connection and connectors at both ends of the breathing tube are possible depending on the devices required to be interfaced with, and importance is only placed on the requirement that the connection be configured such that inhalation gases pass through the space between the surrounding tube 10 and the inner tube 11 (see Figure 2) and exhalation gases pass through the inside of the inner tube 11.

Referring now specifically to Figures 2 and 3, the preferred form of the breathing tube is depicted. In this preferred form the breathing tube broadly comprises an inner tube 11 disposed within a surrounding tube 10. A spirally wound heating wire is located in the space between the inner tube 11 and the surrounding tube 10. The heater wire 12 spirals around the inner tube 11 but preferably is not in intimate contact therewith, rather being provided generally within that space. It is possible that the heater wire 12 may be imbedded in the wall of the surrounding tube 10, for example, by forming the surrounding tube 10 over the heater wire 12 provided on a former.

The inner tube 11 is preferably a corrugated plastics tube, the form and manufacture of which is well known in the art. The heating wire 12 may be, for example, an electrical resistive heater wire covered with a thermoplastic insulating layer, and be formed spirally, for example, by winding on a former, raising to an elevated temperature above the plastic temperature of the thermoplastic and recooling to ambient temperature. The heater wire thus formed will retain its spiral configuration and may be stretched the length of the conduit within the space between the inner tube 11 and the surrounding tube 10. The heater wire 12 may further be formed to have a pitch between adjacent turns which varies in a preferred manner along the length of the conduit, for example, to have a higher turn per length density at the patient end than at the ventilator end.

It is possible to provide the heater wire as a straight or single looped wire lying

within either the inner tube or in the space between the inner tube and the surrounding tube. However such an embodiment is considered substantially inferior to the aforementioned spirally wound configuration and does not realise the advantages that are associated with the spirally wound configuration.

5 The surrounding conduit 10 preferably comprises a tube having a smooth inner wall and an outer wall including a plurality of corrugations. The outer wall corrugations are preferably formed by the inclusion of a series of spaced apart circumferential ribs 13. A jacket or sheath 14, preferably being a thin plastic membrane, is provided around the surrounding tube 10 and sized to be in intimate contact therewith, such that the 10 jacket 14, the outer surface 16 of the surrounding tube 10 between the ribs and the adjacent ribs 13 together form annular air spaces 15. The annular air spaces 15 are effectively dead spaces and provide significant additional insulation which complements the provision of the heating element 12 within the space between the inner tube 11 and the surrounding tube 10.

15 In one possible embodiment the spirally wound heater wire 12 may be embedded in the smooth inner wall of the surrounding conduit. This may be achieved by winding an extruded narrow web along a former of appropriate dimension on which an appropriately configured heater wire has been predisposed.

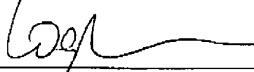
20 As previously described, the connectors 5, 6 and 7 of the breathing tube are all configured such that inhalation gases pass in the direction indicated by arrows 17 through the space between the inner tube 11 and the surrounding tube 10 to the patient, while exhalation gases are caused to pass as indicated by arrows 18 through the inner tube 11.

25 The present invention provides significant performance advantages with respect to the breathing tubes and systems set forth in the prior art. In particular, the provision of the inhalation gases through the space between the inner tube 11 and the surrounding tube 10, in conjunction with a heating element, ensures that the gases most closely in contact with the ambient temperature surrounding the breathing tube are maintained at the most appropriate and controlled temperature. In turn the accurate control of 30 temperature of those gases ensures that the temperature of the inner tube 11 is maintained also at an optimal temperature which in turn maintains the optimal

temperature of the exhalation gases lying in the inner tube 11. The provision of jacket 14 surrounding the inner tube 10, in conjunction with the ribs 13 (which also have the separate purpose of providing radial rigidity for the tube 10) provides additional insulation to the inhalation gases path. The smooth inner wall of the surrounding conduit 10 reduces the likelihood of condensation formation, and ensures that the inner tube 11 is supported away from the surrounding tube 10 by the turns of the heater element 12.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000

CLAIMS:


1. A humidified gases ventilation system comprising:
 - a patient interface means for connection with a patient and immediate delivery
 - 5 of gases thereto,
 - a humidified ventilation means for providing a flow of pressurised and humidified gases, and
 - 10 a gases pathway connecting between said patient interface means and said humidified ventilation means and having an internal conduit and a surrounding conduit
 - 15 within which said internal conduit is disposed, a space between said internal conduit and said surrounding conduit connected with an inhalation port of said humidified ventilation means for supply of said humidified gases therethrough to said patient interface means.
- 15 2. A humidified gases ventilation system as claimed in claim 1 including:
 - a spirally wound heating wire within the space between said internal conduit and said surrounding conduit, said heating wire passing around said internal conduit.
- 20 3. A breathing tube for a humidified gases ventilation system comprising:
 - an internal conduit,
 - 25 a surrounding conduit within which said internal conduit is disposed, and
 - a connector at one end of said internal conduit and said surrounding conduit, said connector having an inhalation gases port for connection to the inhalation gases supply port of a ventilator, and a gases flow path from said inhalation gases port to a space between said internal conduit and said surrounding conduit.
- 25 4. A breathing tube for a humidified gases ventilation system as claimed in claim 3 and further including:
 - a spirally wound heater wire disposed in the space between said internal conduit
 - 30 and said surrounding conduit, said spirally wound heater wire passing around said internal conduit.

5. A breathing tube for a humidified gases ventilator system comprising:
an internal conduit,
a surrounding conduit within which said internal conduit is disposed, and
a connector at one end of said internal conduit and said surrounding conduit, said
5 connector having an inhalation gases port for connection to the inhalation gases supply
port of a ventilator, and a gases flow path from said inhalation gases port to a space
between said internal conduit and said surrounding conduit,
a spirally wound heater wire disposed in the space between said internal conduit
and said surrounding conduit, said spirally wound heater wire passing around said
10 internal conduit, wherein
said surrounding conduit has an externally corrugated form and an insulating
jacket is provided over said surrounding conduit spanning said corrugations to provide
an insulating air space within valleys of said corrugations.

15 6. A breathing tube as claimed in claim 5 wherein said surrounding tube has a
smooth inner wall and a plurality of spaced apart circumferential ribs on an outer wall of
said surrounding tube, providing said corrugations.

20

FISHER & PAYKEL HEALTHCARE LIMITED

25

A J PARK

Patent Attorneys for the Applicants

Date 8 June 2004

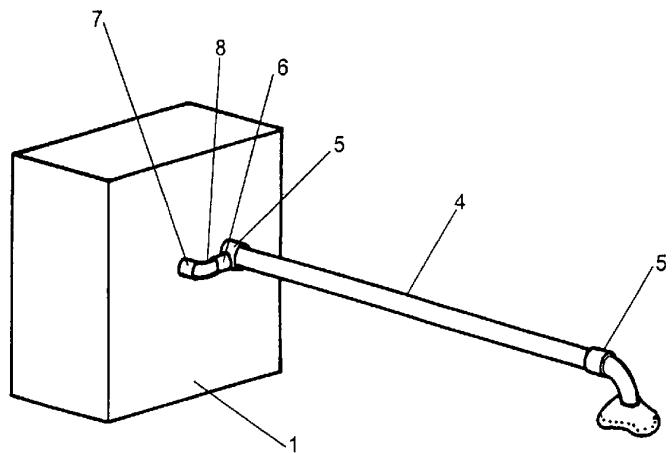
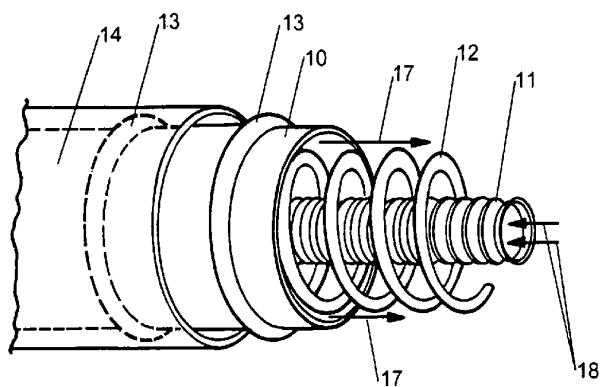
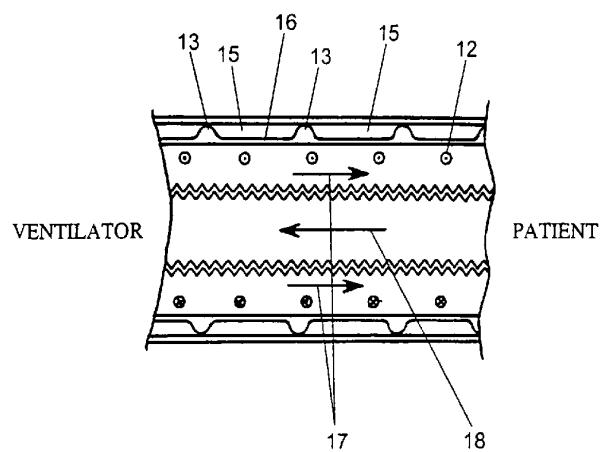
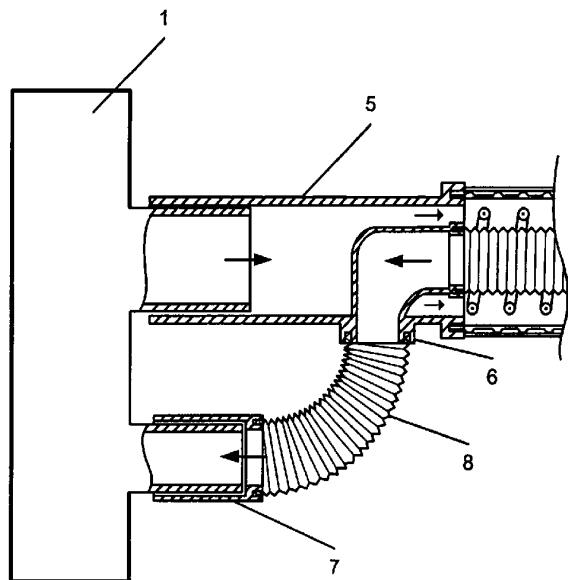


FIG. 1

16
15
14
13
12
11
18
17
10
13
14


FIG. 2

2/3

FIG. 3

55
52
50
88
84

FIG. 4

卷之三