PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/10787
GOGF 9/46 Al L .

(43) International Publication Date: 11 April 1996 (11.04.96)

(21) International Application Number: PCT/US95/10819 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

(22) International Filing Date: 24 August 1995 (24.08.95)

(30) Priority Data:

08/317,734 4 October 1994 (04.10.94) uUs

(71) Applicant: RECOGNITION INTERNATIONAL INC.
(US/US]; 2701 East Grauwyler Road, Irving, TX 75061
(US).

(72) Inventor: THOMAS, Tony, Clifton; 2012 Walden Boulevard,
Flower Mound, TX 75028 (US).

(74) Agents: GREEN, Robert, A. et al.; Nilsson, Wurst & Green,
Suite 3200, 707 Wilshire Boulevard, Los Angeles, CA
90017 (US).

CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE,
KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
TJ, T™, TT, UA, UG, UZ, VN, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ,
UG).

Published
With international search report.

(54) Title: AN OBJECT-ORIENTED COMPUTER ENVIRONMENT AND RELATED METHOD

(57) Abstract

An object-oriented computer environment is managed by storing, in a plurality of repositories accessible during the life cycles of
objects, information required to initiate object operations. The repositories can contain location information identifying the storage location
of system objects or information indicating preferences for a preselected manner of performing object operations. In another preferred form,
the repositories can be assigned to different levels of a hierarchy to control the distribution of stored information.

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
C1
CM
CN
CSs
Cz
DE
DK
ES
F1
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 96/10787 PCT/US95/10819

AN OBJECT-ORIENTED COMPUTER ENVIRONMENT
AND RELATED METHOD

BACKGROUND OF THE INVENTION

The present invention relates to computer and
communications systems and, more particularly, to an object-
oriented computer environment (for example, a comprehensive
composite of communication and computing facilities) and
method for managing the environment.

Recent advances in computer technology have
brovyht about the proliferation of relatively low cost, yet
extremely powerful computers. Despite the reduced cost of
these computers, it is still impractical in many situations
to install all of the information, computer software,
computer processing power and other computing resources that
a given user or group of users may need on a single
computer. Thus, in many computing environments, the
computing resources available to users are distributed among
several machines. As the number of machines in a
distributed environment grows, the problems associated with
sharing resources grow as well.

A variety of networking solutions have been
proposed to facilitate the sharing of resources among
different computers. However, due to the large number of
different microprocessors, operating systems and other
computer components that may be used on a given computer in
a distributed computing environment, managing resources in
such an environment can be quite difficult.

In addition, as the number and variety of
computers in a distributed environment increase, the
administration of the environment becomes more difficult
since more computers and more configurations must be
maintained. Furthermore, since computers are often assigned

10

15

20

25

30

WO 96/10787 PCT/US95/10819

2

to individual users in a distributed environment, the task
of administering a computer may fall upon the user. This is
troublesome because users often are neither capable of nor
interested in administration tasks.

Finally, as specific computing resources become
increasingly popular in a distributed computing environment,
the demand for such resources increases. In the past,
popular resources have often been duplicated to make them
more widely available. However, as a distributed computing
environment increases in size, the complexity of the network
connecting the computers increases, as well. This, in turn,
makes it more difficult to duplicate resources without

undesirably complicating and slowing computer operations.

One method for reducing the administrative burden
associated with complex computer systems, such as a
distributed computing environment, involves the use object-
oriented programming. In object-oriented programming, an
object is defined as a combination of data and operations to
be performed on that data. Such objects are invoked, as
needed, to perform a given task. For example, if a user
wants to draw an icon on a screen, the user invokes an
object capable of drawing the icon. Object-oriented
programming has the advantage that a routine calling the
object ("calling function") does not need to "know" how the
object performs its operations. The object is defined
solely by its interface, which consists of a set of named
operations along with any parameters required to perform
those operations. Thus, the calling function "knows" only
the operation performed by the object and how to invoke it.

An object can be changed at any time to perform
its function differently and the change is transparent to
the calling function so long as the interface to the object
remains unchanged. Thus, an object-oriented system can be
upgraded or maintained with minimal changes to applications

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

3

already present in the system. Programming code in an

object-oriented system is therefore more modular and
maintainable than that written using more traditional
programming techniques. As a result, object-oriented
programming reduces the overhead associated with changing
program code or installing new code to perform old
functions.

An industry consortium called the Object
Management Group ("OMG") has developed a standard for
object-oriented systems known as the Common Object Request
Broker Architecture ("CORBA"). The CORBA standard calls for
three basic system elements, that is, an object broker, an
implementation repository and an interface repository. The
object broker of CORBA provides a mechanism by which objects
or other applications can make requests to and receive
responses from other objects managed by the system. The
interface repository is used by the object broker to
determine which objects are being invoked by an object
operation request and to create an interface to new objects
as they are created. The implementation repository holds
information that allows the object broker to access the
actual executable code required to perform the object
operations.

As currently employed, the object broker handles
object requests from "client applications", which can be
programs implemented by a user or machine-based requests
stemming from operational events such as function calls.
Here, a client application passes to the object broker an
object reference identifying the desired object operation
along with any required parameters. After receiving an
object operation request from the client application, the
object broker uses the object reference to retrieve the
location of the executables from the implementation
repository. The object broker then activates the
executables, which causes the desired operation to be

10

15

20

25

30

WO 96/10787 PCT/US95/10819

4

performed. Thereafter, the implementation passes any
results back to the object broker, which passes them, in
turn, to the client application. This completes the object
operation sequence.

The CORBA approach makes use of multiple object
brokers, with the various components of the system
distributed, as needed, to accommodate growth or the
reassignment of system resources. Each of these multiple
object brokers is capable of accessing information in
corresponding implementation and interface repositories.
Object requests are transparent to the users in that an
object operation can be performed on an array of several
computing devices and the entity invoking the object
operation need not be aware of where the object operation
resides or is executed. Consequently, using the CORBA
approach the individual user is freed from the
responsibility of administrating where specific programs
reside or where they are executed since these details are
handled by the administrators of the CORBA-based system. In
addition, by defining a fixed set of operations, the CORBA
approach enables object brokers from different vendors to
communicate with each other, causing the system to be more

universally compatible.

Since the information on how to interface to an
object and execute the object are contained in the interface
and implementation repositories, respectively, new objects
can be added to a CORBA-based system simply by updating the
information in the respective repositories. Consequently,
such a system can be upgraded easily to accommodate new or
modified objects.

Because the object-oriented approach allows the
actual implementation of an object’s operations to be
transparent to the user, existing applications need only be
modified in their interface in order to function in a CORBA

10

15

20

25

30

WO 96/10787 PCT/US95/10819

5

based system. Consequently, existing applications need not
be completely rewritten in order to work with the system.

In spite of these advantages, however, CORBA does
not address problems in a number of areas. First, CORBA
does not provide a mechanism for moving objects after an
object is created. Second, CORBA does not make an
individual user‘’s information accessible throughout the
network or permit the system resources to be administered at
either the user level or the object level. In addition,
CORBA does not support the use of multiple versions of a
given object t&pe. CORBA also does not provide for an
effective means of duplicating highly used resources.

Accordingly, it is desirable in many applications
to provide an improved object-oriented computer environment
permitting greater flexibility and adaptability in its
operation and reducing the burden of system administration.

SUMMARY O NVENTION

The present invention relates to an object-
oriented computer environment managed by storing information
required to perform object operations in a plurality of
changeable repositories accessible to object brokers. The
stored information can relate, for example, to preferences
of users for the manner in which object operations are
performed or to default preferences of users in a specific
group or geographic area. The information is retrieved on a
selective basis when object operations are requested,
permitting objects to be customized to the needs of a user
or a group of users during an object activation sequence.

In one embodiment, information identifying the
storage location of an object is kept in a location
repository reserved for that purpose and updated

10

15

20

25

30

WO 96/10787 PCT/US95/10819

6

periodically. This is a form of "indirect addressing" which
enables an object to be moved, or one object to be
substituted for another, without altering the location
reference utilized by client application programs that
activate the object. Only the contents of the location
repository itself need be changed. The objects invoked in
any given situation therefore can be changed without
affecting the object’s client application.

Administration of the object-oriented environment
is further simplified in another embodiment of the invention
by organizing repository information in hierarchies and
selectively replicating information within the hierarchies.
The hierarchial arrangement facilitates growth by allowing
information to be distributed throughout a system to any
extent required. Information frequently used in one part of
the hierarchy but not in another can be installed only in
those parts where it is actually used, drastically reducing
information storage. Furthermore, since the depth and width
of any hierarchy can be increased as the system of the
disclosed embodiment grows, the system reduces
"bottlenecking" that often occurs when users access

information from a common source.

In one embodiment, the invention provides a
mechanism for each level of a hierarchy to access other
levels. This is done by storing at each level the
information needed to access repositories at that particular
level, at higher levels or at lower levels of the
repository.

Although the system of the invention is useful in
a wide variety of circumstances to distribute and process
information, it is particularly suited to the needs of
"distributed computing systems" where system resources, such
as networks, computing resources, computing applications and
transmission facilities, are distributed over a geographical

10

15

20

25

30

WO 96/10787 PCT/US95/10819

7

area or divided among several entities. A system
constructed according to the invention can easily
accommodate widespread growth and reallocation of resources
from one location or entity to another.

The primary components of the disclosed system
are: (1) objects written to perform specific tasks; (2)
object brokers capable of handling requests to have object
operations performed; and (3) changeable repositories
containing information required to perform object operations
and administer the larger system. The system performs an
object operation when a client application (such as a user
at a computer terminal, another object operation or a system
administrator) sends a request to perform the operation to
the object broker. The object broker then uses information
retrieved from the repositories to activate the object and
alter the manner in which the object operation is performed.
After the operation is complete, any results may be sent
back through the object broker to.the client application
that requested the operation.

By using information retrieved from changeable
repositories to affect object operations, the invention
permits a computer-based information processing and
distribution system to expand, as needed, with relative ease
and minimal administrative overhead. It also permits the
components of the system to be distributed over as wide an
area and among as many segments of the system as required.
In addition, it enables the performance of object operations
to be customized on the basis of user preferences, group
preferences, default preferences or preferences based on the
hardware and software on which an object is to run.

When repositories are accessible on a system-wide
basis, all upgrades can be performed by a system
administrator rather than a local user, significantly
reducing the user’s administrative workload. For example,

10

15

20

25

30

WO 96/10787 PCT/US95/10819

8

the present development allows software upgrades to be made
by an administrator merely changing the contents of
appropriate information repositories. Thus, software can be
upgraded or new software can be installed with minimal
effort by the user.

Moreover, since the present invention can work
within a distributed network, a user can utilize his or her
personal computer or take advantage of resources available
elsewhere in the network. Because the user’s personal
preferences and home operating environment are stored in
information repositories, the user can access his or her
home environment at any computer throughout the system.

In sum, the present invention provides a computer
system or environment wherein the manner of processing or
transmitting information can be altered in the course of
object operations, and where the resources required to
perform object operations can be distributed throughout the
system, as needed. Furthermore, the invention provides this
flexibility while simplifying administration of the system.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features of the present invention
may be more fully understood from the following detailed
description, taken together with the accompanying drawings,
wherein similar reference characters refer to similar
elements throughout and in which:

FIGURE 1 is a high-level system block diagram of an
object-oriented computer environment constructed according
to one embodiment of the present invention;

FIGURE 2 is a block diagram of a portion of the system
of FIGURE 1 illustrating the flow of information in the
course of object operations;

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

9

FIGURE 3 is a block diagram showing the hierarchical
arrangement of information repositories constructed in
accordance with the invention;

FIGURE 4 is a high-level flowchart illustrating a
sequence of steps performed in the course of object
operations;

FIGURES 5A, 5B and 5C together constitute a flowchart
illustrating a sequence of steps performed in creating an
instance of an object in accordance with the teachings of
the invention;

FIGURES 6A, 6B and 6C together constitute a flowchart
illustrating a sequence of steps performed in activating an
object in accordance with the teachings of the invention;

FIGURES 7A, 7B and 7C together constitute a flowchart
illustrating a sequence of steps performed in deleting an
instance of an object in accordance with the teachings of
the invention;

FIGURE 8 is a flowchart illustrating a sequence of
steps performed in searching through a repository to
retrieve its contents in accordance with the teachings of
the invention;

FIGURES 9A, 9B and 9C together constitute a flowchart
illustrating a sequence of steps performed in locating a
repository in accordance with the teachings of the
invention;

FIGURES 10A and 10B together constitute a flowchart
illustrating a sequence of steps performed in replicating
the contents of a repository in accordance with the
teachings of the invention;

FIGURE 11 is a flowchart illustrating a sequence of
steps performed in replicating the contents of a repository
on-demand in accordance with the teachings of the invention;
and

FIGURES 12A and 12B together constitute a flowchart
illustrating a sequence of steps performed in accessing the
computer environment in accordance with the teachings of the

invention.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

10

DESCRIPTION OF THE PREFERRED EMBODIMENTS

For purposes of illustration and explanation, the
object-oriented environment 20 of the present invention is
discussed in terms of a CORBA-based system. The CORBA
standard is described in a document entitled The Common
object Request Broker: Architecture and Specification,
published in 1992 by the Object Management Group, Inc. and
X/Open Company Limited, the teachings of which are hereby
incorporated by reference for all purposes. It will be
understood, however, that the features of the invention may
be applicable broadly to any object-oriented system or
network, regardless of how it is implemented.

Referring now to the drawings, specifically FIGURE

1, an object-oriented environment 20 constructed according
to one embodiment of the present invention coordinates the
storage, creation, invocation and other functions required
to manage a system of software objects. The environment 20
has a plurality of object brokers 22-22n (lower left)
capable of communicating with location repositories 24-24n
and profile repositories 26-26n through at least one
communication channel 28 to initiate object operations.

Implementation repositories 36-36n also are provided.

The initiation process is begun by a user (not
shown) acting through one or more client applications 30 by
sending an object operation request message to the object
broker 22 for example. The storage location(s) of the
object, and any restrictions as to which object brokers 22-
22n are entitled to access the particular object, are
obtained by addressing one of the location repositories 24-
24n with a message identifying the object to be activated.
In the illustrated embodiment, this may be accomplished by
the object broker 22. Any established preferences for the
manner in which the user or a group of users wishes to
implement objects of this particular type are then obtained

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

11

from the profile repositories 26-26n in response to user
identity and object type information. Specifically, such
preferences are obtained from a form of the profile
repositories 26-26n, i.e., user profile repositories 34
(FIGURE 2). To account for all contingencies, a set of
default preferences contained in the profile repositories
26-26n also may be obtained by the object broker 22 in
response to a message identifying the applicable operating
system, object type and geographic or other service area.
Armed with this information, the object broker 22 retrieves
the executable code and data libraries required to perform
object operations and configures, or otherwise customizes,
the object to perform in the intended manner. Note that the
environment of FIGURE 1 also includes one Or more
administration tools 32 and one or more miscellaneous
services 40 as will be described later.

The repositories (FIGURE 1) of the invention are
preferably arranged in hierarchies, as illustrated in FIGURE
3. In order to provide access to repositories throughout
the hierarchy, each branch of the hierarchy preferably has a
separate repository (not shown) containing information on
how to access the repositories in a hierarchy. In addition,
information within the repositories is selectively
replicated throughout the hierarchy depending on the demand
that exists for that information.

A high-level description of the program flow
described above is depicted in FIGURE 4. For purposes of
ease of reference, the blocks of this flow chart will be
preceded with the prefix "HL". As represented by Blocks
HL1-HL4, a client application sends an object operation
request message to the object broker 22 (FIGURE 1) which, in
turn, retrieves the location of the object and any
applicable preferences from the location and profile
repositories, 24-24n and 26-26n, respectively. As indicated
at Blocks HL5-HL7, the object broker 22 uses this

10

15

20

25

30

WO 96/10787 PCT/US95/10819

12

information to search an implementation repository 36-36n in
order to retrieve the location of the executable and other
information required to activate an object implementation.
When this information is found, the object broker 22
retrieves it and loads it into the appropriate computing
device. The object broker 22 then starts the object
implementation and passes back any results from the
implementation to the client application, as represented by
Blocks HL8 and HLS.

A typical client application can take a wide
variety of forms in the context of the present invention
including, for example, a computer interface that enables
the computer user to invoke object operation requests or a
computer program that invokes an object operation request
based on an occurrence in its program flow. Similarly, a
client application can take the form of one object operation
that invokes another object operation or any other computer
application seeking to access information managed by the
system.

The client application 30 may invoke an object
operation by sending a message to the object broker 22 for
example (FIGURE 1) through the communications channel 28.
The message identifies the object operation to be performed
and includes any other parameters required. After the
object broker 22 processes the message from the client
application 30 and invokes the desired object operation, the
object broker 22 passes any results from the object
operation back to the client application 30.

The communications channel 28 typically is
implemented using intra-process communications, e.g.,
subroutine calls, inter-process communications (through the
operating system), or network communications (through a
remote device over a network) depending on system and user
requirements. For example, applications requiring high-

10

15

20

25

30

WO 96/10787 PCT/US95/10819

13

speed communications to other applications on the same
computer typically use intra-process communications. 1In
contrast, applications communicating with geographically
remote applications typically use some form of network
communications. The implementation of these communication
techniques is well known in the art and will not be
described in detail here.

Administration tools 32 (FIGURE 1, upper central)
are used to administer the object-oriented environment 20.
This use includes adding new objects to the system,
upgrading the software in the system, changing the contents
of the profile repositories 26-26n, adding new client
applications and other basic system administration tasks.
The administration tools 32 typically contain a user
interface allowing a system administrator to access and
alter the information in the system.

Miscellaneous services 40 (FIGURE 1, upper right)
typically include such services as billing services,
security services, statistics services and delayed delivery
services. These services are preferably used in any system
where access to the system must be restricted, where users
of the system must be billed for their usage, where the
activity within the system is monitored in order to keep the
system functioning smoothly, or where other specialized

services are needed.

A typical implementation of the environment 20
includes numerous instances of each of the components
illustrated in FIGURE 1. For example, a particular system
typically contains multiple client applications 30 and, as
indicated, multiple profile repositories 26-26n. Also, as
indicated, several object brokers 22-22n along with various
administration tools 32 can be used depending on system
resource demands and how the components of the system are
distributed.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

14

An examination of the object broker 22 and the

information in the various repositories will illustrate how

the object broker 22 uses information in the repositories

to

control the manner in which object operations are performed.

Thus, the structure and operation of the object broker 22,
the profile repositories 26-26n and the repository
hierarchies are discussed hereinafter in detail.

TABLE OF CONTENTS

The BasiC SYStemcceeeeeeeeecensosscscsceosscssssnscns
Object Broker S s icisssssscccsccscrcnannees
RepOSitoriescievereecsessecccsncccsonscanans .o

Location RepOSitOry .ccceeeecccsccccsccnsoannnns
Service Profile ReposSitoryccccececencnsccs
User Profile RepoSitOryccceeeeecccescsnces
Implementation Repositorycceceeeeceececccs
Interface RepoOSitoOry .ccceeecscccssencssnnncens

Object Operation ,cceecccecsccccccscsscnsscsnssncscs
Object Creationceceeecececccesesccncscncsosens
Object Activation.....ceeeeeeceesessaseesccsenscnsns
Object Deletionccceeenceccccsncccccnscnccannas

Repository HierarChy ...c.ceceeecscccscscscsccssscossssonsssns
System Profile RepoSitoOry ...ceeeccecssossccconcnnas
Locating @ RepOSitOry ..cceceeesesccccrsccccnsesanas
Repository Replicationcceeeeee. Ceeececennns

Automatic Replicationcceeeeeecccccncanas
On-demand Replicationccceeeeeecccccccccns

EXAMPle .cvveeeccocvcescosssocscscscsscsscccsscosssosasossssces
Log=in Procedureccceccocscooscsccccsscsccccsccnas
Creating the Video Mail MeSSageccccececosossnnscs
Sending the Video Mail MesSSageccecevevcccscnscns
Viewing the Video Mail MeSSageccecveccvcccncnsscs

15
15
16
17
19
22
27
31
31
32
42
46
46
48
50
56
57
60
62
70
73
76
79

10

15

20

25

30

WO 96/10787 PCT/US95/10819

15

The Basic System

FIGURE 2 shows some principal components of FIGURE
1, as they are used in the course of a typical object
operation. The client applications 30, an object broker 22
and implementation repository 36 are the same as those shown
in FIGURE 1, but the profile repositories 26-26n have been
broken down into a service profile repository 38 and user
profile repository 34. A storage 42 (FIGURE 2, upper right)
contains the object executable and library information and
an object implementation 44 performs the actual execution of
an object operation. The arrows between the blocks indicate
message flow between the representative blocks over any of a

variety of communication channels (not shown).

Object Broker

The object broker 22 handles object operation
requests from the client application 30. 1In a typical
embodiment of the present invention, the object broker 22 is
based on the Object Request Broker and the Object Adapter,
as disclosed in the CORBA document previously incorporated
by reference. The implementation and functionality of the
object broker 22 in a typical embodiment generally follows
the details set forth by CORBA. Deviations from, or
additions to, the CORBA design are disclosed herein where
appropriate.

As indicated above, more than one object broker 22
may exist in a system depending on the resources available
in the system and the needs of the system. For example, as
the number of client applications 30 increases, either the
speed with which the object broker 22 operates must increase
or more object brokers 22-22n (FIGURE 1) must be distributed
throughout the environment 20 in order to prevent the object
broker 22 from becoming a bottleneck and slowing down the

10

15

20

25

30

WO 96/10787 PCT/US95/10819

16

speed at which the client application operation requests are

processed.

Typically, more than one object broker 22 is
likely to be used and the object broker 22 can pass object
operation requests to other object brokers in the system.
This provides the capability to distribute system processing
loads while maintaining a way to locate all objects within
the system. The mechanics of an object operation from
request to completion will be discussed in detail below.

Repositories

The present development uses various information
repositories to store preferences, defaults and other
information used to manage system resources in the course of
object operations. A typical embodiment, as disclosed
herein, uses an implementation repository 36 that holds the
information indicating where the executable and library
information used to implement object operations is located,
as well as an interface repository (not shown) that contains
information used by the object broker 22 to interpret object
operation requests and by client applications 30 to access
new objects. This embodiment may also use a service profile
repository 38 that contains storage information, processing
information and other default information for a given
service category, which may be a geographic area or other
organizational division. A typical embodiment also includes
a user profile repository 34 containing storage information,
processing information and other user preference information
for a given user. The location repository 24 contains
information identifying the location of objects in the
system.

The information in the profile repositories 26-26n
may be stored in a variety of ways, such as random access
memory, file system storage, data base storage, a DCE

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

17

directory or an X.500 directory. These and other methods of
storing data in computer systems are well-known in the art
and are not discussed in detail here.

A typical embodiment of the profile repository 26
also has a storage interface between the profile entries and
the actual storage resource. This enables the actual
storage resource to be changed, as needed, without impacting
the profile entries themselves.

Location Repository

The location repository 24 is made up of a
plurality of location entries, each of which contains
location information for a particular distributed object of
the system. For example, these location entries are used by
the object broker 22 to locate a distributed object
specified by an object operation request of the client
application 30. The object operation request contains a
reference to the specified location entry. The object
broker 22 uses this reference to locate the corresponding
location entry in the location repository 24 and uses the
location entry information, in turn, to locate the object.
As shown in TABLE 1, a location entry typically contains
Data Storage Locations, an Object Broker Restriction Flag,
and Accessor Object Broker lists.

TABLE 1
Location Repository

Object #1:
Data Storage Locations:
Location #1

Location #n
Accessor Object Brokers:
Object Broker #1

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

18

Object Broker #n
Object Broker Restriction Flag
Object #2:

.

Object #n:

Each Data Storage Location contains information
that identifies where data associated with an object is
stored. In the illustrated embodiment, the Data Storage
Location information is the name of a file, a database entry
or other storage reference containing this data. Multiple
locations are specified in TABLE 1 because a given object
may have more than one set of data.

By using a separate location entry to locate an
object instead of embodying the address of the object itself
in a client application, the location of the object can be
changed without changing the reference string used by other
system components use to access the object. According to
the invention, the system components that access the object
always use a fixed reference to the object--namely, the
location repository entry. By changing the data storage
location within the location repository, however, the actual
location of the object can be changed. Consequently, if an
object must be moved to reallocate system resources or for
some other reason, the client applications 30, object
implementations 44, and other system components that access
the object need not be changed in order to access the object
at its new location.

The Object Broker Restriction Flag in the location
repository 24 is used to force the object broker 22 to pass
the object operation request to another object broker. The
flag allows the processing of object operations requests to
be distributed throughout the system as regquired to
redistribute the load on a particular object broker 22 to
other parts of the system. Thus, some object operations are

10

15

20

25

30

WO 96/10787 PCT/US95/10819

19

limited to specific parts of the system. Also,
redistribution may serve some other purpose.

The Accessor Object Broker lists of the location
repository 24 store information about the object brokers
that can process an object operation request for a
particular object. In a typical embodiment, these lists are
used when an object broker restriction flag is set to
disqualify the current object broker 22 from handling a
particular object operation request. This information
includes any network information and network protocol
information required to communicate with other object
brokers.

Service Profile Repository

The service profile repository 38 contains a
plurality of service profile entries each of which contains
service profile information for a particular distributed
object of the system. Service profile entries are used by
the object broker 22 to manage system resources in the
course of object operations. 1In a typical embodiment of the
present invention, the service profile entries contain
storage information, processing information, and other
default information for a given service category. A service
category is defined as a set of objects within a particular
geographical area, a set of objects within certain divisions
of a particular organization, or any other related set of
objects.

In a typical embodiment, service profile entries
are used by the object broker 22 when the object broker 22
receives an object operation request for a particular object
from a client application. The object broker 22 accesses
the service profile repository and retrieves the information
in the service profile entry. The object broker 22 then
uses this service profile information to activate the

10

15

20

25

30

35

40

WO 96/10787 PCT/US95/10819

20

particular object’s implementation. As shown in TABLE 2, a
service profile entry typically contains Search Parameters,
Object Resource Assignments, Object Creation Information and
Operating System Defaults.

TABLE 2
Service Profile Repository

Object Type #1:

Search Parameters:
Object Type Name
Object Type Version
Replication Control
Last Update Time
Last Access Time

Object Resource Assignments:
Object Storage Information
Available Object Brokers
Location Object Storage Information
Default Attribute Values

Operating System Implementation Defaults:
Operating System #1:

Implementation #1

Implementation #n
Default Implementation
Operating System #2:

Operating System #n:
User Profile Required Flag
Object Type #2:

.

Object Type #n:

The Search Parameters perform two functions.
First, the object-type name and version is used by the
object broker 22 to match the information in a repository
with the object type to be activated. Second, when the
service profile repository 38 is set up in a hierarchy of
repositories, the revocation control and last update and
access time information are used to determine when

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

21

information is to be replicated to other repositories in the
hierarchy.

In a typical embodiment, the Object Resource
Assignments provide information regarding available object
brokers, object storage assignments, location repository
assignments and default object attributes. A list of object
brokers capable of handling object operation requests for a
particular object type is maintained for use when a first
object broker 22 cannot handle the object operation request
for some reason. The object storage assignments specify
where information associated with a given object type is to
be stored. This information is passed by the object broker
22 to the object implementation 44, which uses the
information if data storage is needed during implementation
of the object. The location-repository assignments
information specifies which location repository should be
used to store the location entry for a given object. By so
specifying at the object-type level, objects can be
distributed physically throughout the system as system
resources or storage capabilities require. The default
object attributes are used to specify an object’s
operational characteristics when a new instance of an object
of a particular type is created. During an object "create"
operation, the object broker 22 passes the default object
attribute information to the entity implementing the create
operation.

The service profile entries provide a mechanism
for readily accessing implementation information to be used
with a particular object in a particular operating system.
This information is desirable in systems where an object
operation might be invoked on different types of operating
systems that require different environmental information.
For example, a program running under Microsoft Windows
requires environment variables, search paths, ini-file
entries and custom files in specific locations. 1In

10

15

20

25

30

WO 96/10787 PCT/US95/10819

22

contrast, a UNIX application requires data from an
.Xdefaults file, environment variables, search paths and
custom files in specific locations, and an Apple Macintosh
environment requires custom files and resource fork files.

Referring to TABLE 2, in a typical embodiment,
each service profile entry contains a plurality of items of
information representing a particular type of operation.

For each type of operating system, information is stored for
use when the particular object is implemented on the
specified type of system. Thus, operating system
information such as environmental variables, search paths,
system configuration files, or other operating system
information can be stored for each operating system on which
a given object may be implemented.

In addition, a user may have a number of
implementations for any given operating system. Thus, each
operating system can support any number of operating system
implementations and from these implementations, a user
selects a preferred implementation.

User Profile Repository

The user profile repository 34 (FIGURE 2, lower
right) contains a plurality of user profile entries each of
which contains profile information for a particular user.
This information is used to manage system resources in the
course of object operations and to provide information about
particular users to whatever components of the system
require it. In a typical embodiment, the user profile
entries contain Storage Information, Processing Information,
and other preference information the system requires to
invoke a particular object operation for a given user. 1In
addition, the user profile object contains information
relating to the user’s access and use of the system.

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

23

When a user is a person seeking to make use of the
system, he or she is typically identified by a user name
typed in upon entering the system. 1In other circumstances,
a user may be an automated computer program that uses the
system’s resources. One example of such a program would be
a background maintenance routine invoked automatically by
the system. In either case, an identification string
assigned to the user is passed to the user profile
repository 34 to retrieve the corresponding user profile
entry.

User profile entries may be retrieved by a variety
of different components of the system. Object brokers
retrieve them, as when the object broker 22 receives an
object operation request from a client application. 1In
addition, system log-in routines that verify whether a user
is authorized to access the system can retrieve the user
profile entries. User profile entries can also be used by

certain object implementations or administration tools.

As shown in TABLE 3, user profile entries in a
typical embodiment of the invention contain System Resource
Assignments, Implementation and Interface Repository
Location Information, Distributed Object Information, User
Demographics, User Top Container, and Billing and Statistics

Information.

TABLE 3
User Profile Repository

User #1:
User Top Container:
Object #1

Object #n
User System Resource Assignments:
Home Implementation Repository
Home Interface Repository
Billing and Statistics Information
Object Type Entries:
Object Type #1:

10

15

20

25

- 30

35

40

45

WO 96/10787 PCT/US95/10819

24

User Object Resource Assignments:
Object Storage Information
Available Object Brokers
Location Object Storage Information
Default Attribute Values
Operating System Implementation Preferences:
Operating System #1:
Implementation #1

Implementation #n
Default Implementation
Operating System #2:

Operating System #n:
Object Destination Container
Object Type #2:

Object Type #n:
User Demographics
User #2:

User #n:

The User System Resource Assignments contains
information identifying the system resources of a particular
user. In a typical embodiment, this information includes
Home Implementation and Interface Repository Information,
Profile Repository Service Information, and Billing Service
and Statistic Service Information.

The Home Implementation Repository Information
identifies the server or servers that provide access to the
user’s primary implementation repository. This information
is used if it becomes necessary to redistribute the load on
a particular repository to other repositories, or if becomes
necessary to use different servers to access the repository.
The Home Interface Repository Information provides this same
type of information for the user’s Home Interface
Repository.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

25

The Profile Repository Service Information
identifies the server or servers that provide access to the
appropriate user profile repository for a particular user.
In a typical embodiment, this information is used by a log-
in application to locate the user profile repository of the
user accessing the systemn.

The Billing Service Information is used to bill a
user for use of the network and other system services. The
Statistics Service Information identifies the server or

servers that manage the user’s statistics.

A user’s Distributed Object Information contains
information used to manage system resources in the course of
object operations invoked by the particular user. 1In a
typical embodiment, the user profile Distributed Object
Information contains information similar to that stored in
the service profile entries; namely, Object Resource

Assignments and Operating System Implementation Information.

The User Object Resource Assignments give the user
the ability to manage the user’s system resources based on
the particular object type of the object operation being
performed. As shown in TABLE 3, the User Object Resource
Assignment contains information similar to that stored in
the system profile entries as Object Resource Assignments.

The Operating System Implementation Information is
also used to tailor the implementation of an object
operation to a particular operating system. Again, in a
typical embodiment, this information is the same as that
stored in the service profile object.

Since the user profile entries and the service
profile entries contain overlapping information, a typical
embodiment uses the information in the user profile entry
when such is present, and uses the information in the

10

15

20

25

30

WO 96/10787 PCT/US95/10819

26

service profile entries when more specific information is
not found in the user profile entries. This provides a
mechanism of providing default implementation preferences
while allowing a user to override the defaults and customize
object operations, as needed.

Object Resource Assignments also typically contain
object destination information which assigns specific
destination containers for objects invoked by the user.

This allows a user to specify the destination for objects
based on the type of object received.

User Demographics contains information used when a
user accesses the system. It typically includes the user’s
name, . the user’s password, and information about the user’s
standard computer environment. This information is used to
ensure that the user is authorized and to set up the user’s
interface to the system.

The User Top Container identifies the set of
objects a particular user can access. This information is
typically used by a computer program that displays the
user’s interface in order to display the objects available
to that user.

Using the user profile repository 34 to store User
Preferences provides a unique advantage in that a user can
access his home environment from any point in the system.
Since the Operating System Implementation Information and
Resource Assignment Information is contained in the user
profile repository, which is accessible anywhere in the
system, a user can access this information anywhere. Thus,
if a user accesses the system from a computing device that
is the user’s usual home environment, the above information
can be used to make the device operate like the user’s home
environment.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

27

Implementation Repository

The implementation repository 36 (FIGURE 2, lower
central) contains information used to activate an object
implementation. The implementation repository is typically
divided into a number of modules. In turn, each module
contains a number of object-type entries which contain the
implementation information for a particular type of
distributed object. In order to simplify the terminology
used in this document, the term "object type" will be used
to refer to a particular object type entry in a given
module.

The object type entries contain the implementation
information needed to activate an object of a particular
type. In a typical embodiment, the object broker 22
retrieves the implementation information for the particular
object from the implementation repository 36 using a variety
of search parameters. The search parameters are used to
select an implementation appropriate for the type of
hardware, operating system, and other implementation
preferences required for the particular object operation.
The information passed back from the implementation
repository includes that required to access the code to be
executed and the libraries to be used in activating the
object implementation.

As shown in TABLE 4, the implementation repository
36 arranged according to the illustrated embodiment contains
object-type entries which contain search parameters and
implementation information for various object types. These
object-type search parameters permit the actual executables
and libraries used to implement an object operation to be
selected based on system needs or user preferences.

10

15

20

25

30

35

40

45

WO 96/10787 PCT/US95/10819

28

TABLE 4
Implementation Repository

Module #1:
Object Type Entries:
Object Type #1:
Search Parameters:

Operating System

Implementation Preference

Network Protocol

Hardware Platform

Object Type Name

Object Type Version

Object Broker Vendor

Replication Control

Last Update Time

Last Access Time

Executable Information:

Executable Name

Executable Path

Executable Storage Location

Executable Storage Type

Library Path

Runtime Library #1:
Library Name
Library Storage Location
Library Storage Type

Runtime Library #2:

Runtime Library #n:
Object Type #2:

Object Type #n:
Module #2:

Module #3:

Referring now to the specific entries of Table 4,
the Operating System Name indicates the type of operating
system used on the computing device requesting the
implementation information. The Network Protocol identifies
the network protocol of the network over which the
requesting device communicates. The Hardware Platform

10

15

20

25

30

WO 96/10787 PCT/US95/10819

29

indicates the type of computing device hardware on which the
implementation will run.

The Implementation Preference indicates an object
implementation preference that is matched with the
implementation preference information stored in the user
profile repositories and the service profile repository.
Thus, the object broker 22 compares the information
retrieved from the various repositories in order to
determine which implementation is to be used. This occurs
when the contents of the implementation repository are
retrieved.

The Object Type Name indicates the type of the
object being invoked, and the Object Type Version is an
optional parameter allowing different implementation

versions to exist.

The contents of the Object Broker Vendor entry is
used to retrieve an implementation matched to a particular
object broker vendor. This allows a particular
implementation repository to service multiple object broker
vendors.

The implementation repository object-type search
parameters also include Replication Control, Last Update
Time and Last Access Time information. This information is
used to replicate information throughout the hierarchy on an
as-needed basis when the implementation repository is part
of a hierarchy of such repositories.

Once an object broker 22 matches a desired
implementation with an entry in the implementation
repository, the object broker 22 retrieves the
implementation information associated with that entry.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

30

The Object Type Implementation information
contains Activation Policy Information, Executable
Information and Operation Information. Of these, the
Activation Policy determines how the implementation is
loaded. Typical activation policies may include persistent
server, shared server and server-per-method, or any other
activation technique known in the art.

The Executable Information may be used to access
the executables, the libraries and any other information
required to perform the actual object implementation. As
shown in TABLE 4, Executable Information includes a number
of entries. Of these, the Executable Name is the name of
the executable file. The Executable Path is the exact file
path to be used on the computing device for the executable.
The Executable Storage Location is the actual location where
the executable has been centrally stored or, in the
alternative, the name of a service profile entry specifying
the actual storage location. The Executable Storage Type
indicates whether the executable is stored in a file system
or a database for downloading or stored in an area to be
linked into the file system space of the user’s computing
device.

In addition to executable code, many applications
use information contained in libraries to perform their
operations. The Library Path Name is the exact file path
used on the computing device to access the libraries. Run-
Time Libraries are those linked to the computing device
during run time. They can therefore be accessed by the
executable after the executable is compiled. 1In one
embodiment, the information stored in a Run-Time Library
includes the name of the library, the actual location where
the library has been centrally stored or, alternatively, the
name of a service profile entry that specifies the storage
location, the storage type and how the executable is stored.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

31

Since the implementation repository 36 can be
searched using the Object Type Version as a parameter, the
present invention provides a unique method for maintaining
the software applications. The maintenance tools can use
this information to search the implementation repositories
for outdated versions of a particular implementation and
upgrade it to the new implementation, if required.

In addition, by specifying the storage locations
of the libraries and the executables in the service profile
repositories, multiple servers can provide the needed
executables and libraries. This enables system resources to
be distributed as widely as required.

Interface Repository

The interface repository (not shown) is used by
client applications to build requests for object-types that
were not known when the application was built. In addition,
the interface repository is used by the object broker 22 to
interpret incoming operation requests and parameters. The
interface repository stores interface information for
multiple object types. In turn, each object type can have
multiple interfaces, depending on a variety of parameters.
Thus, in order to retrieve the interface for a given object
type, the desired parameters must be compared with the
search parameters in the interface repository. The basic
operation and implementation of an interface repository
constructed according to an exemplary embodiment of the
present invention is described by the CORBA specification
referenced above, the disclosure of which has previously
been incorporated by reference.

Object Operation

The steps performed by an object broker 22 (FIGURE
2) during a typical object life-cycle will now be examined

10

15

20

25

30

WO 96/10787 PCT/US95/10819

32

to illustrate how the object broker 22 uses information in
the profile repositories to control the manner in which
object operations are performed.

Before an object operation is invoked, certain
information needs to be installed in the system by the
administration tools 32 (FIGURE 1) or some other appropriate
mechanism. This information includes the object definitions
for the particular object type and the executable and
library information that perform the object’s operations.

In addition, the object creation parameters, default
preferences, and user preferences used to create and
activate a particular object are stored in the user and
service profile repositories. The executable and library
information associated with the default and user preferences
is then stored in the implementation repository 36 (FIGURES
1 and 2) in a manner that allows the proper executable and
library information to be retrieved using the appropriate
preference information.

Once a particular object type is installed in the
system, object operations of that type are invoked by
creating an instance of that object type and then activating
the instance of the object. Once an instance of an object
is no longer need, the instance previously created is
deleted. Thus, the life-cycle of an object, in a typical
embodiment of the present invention, consists of the
creation, activation and deletion of an instance of that
object type.

Obiject Creation

FIGURES 5A, 5B and 5C, hereinafter referred to
collectively as FIGURE 5, illustratively describe the object
creation ("OC") procedure in which an instance of a
particular object type is created. After receiving an
object creation request from a client application 30 (FIGURE

10

15

20

25

30

WO 96/10787 PCT/US95/10819

33

1), the object broker 22 queries the profile repositories
26-26N to retrieve object creation parameters required by
the object creation implementation. The object broker 22
then queries the profile repositories 26-26n to retrieve
user and default preferences that are used to select the
proper implementation for the create operation. After the
object broker 22 starts the implementation, the
implementation stores the newly created instance of the
desired object type. Then, after the implementation is
complete, the object broker 22 passes the object reference
of the newly created object back to the client application
30.

Considering now the object creation operation in
more detail, a client application 30 initiates the creation
of an object at Block OCl by sending an object creation
request message to its object broker 22. This object
creation request message contains an object type parameter
which identifies the particular type of object to be created
and any required parameters or other information needed to
perform the create operation. The object broker 22 then
accesses the user profile repository at a Block 0C2 to
retrieve any object creation parameters that have been
defined for this particular object type by the user invoking
the client application.

In order to retrieve information from a
repository, the address of the repository and any parameters
required to find the desired data within the repository must
be passed to the profile repository search ("RS") routine
depicted in FIGURE 8. These parameters are used when the
information in the repository is subdivided into various
categories.

Referring now specifically to FIGURE 8, in a
search of the user profile repository 34, the parameters
referenced at Block RS1 includes profile repository type,

10

15

20

25

30

WO 96/10787 PCT/US95/10819

34

service area, user identification, object type and operating
system type. The address of the profile repository is
obtained using the service area of the repository and the
repository type. As shown in TABLE 3, the information in
the user profile repository is divided into several
categories. Thus, in order to access the correct
information, the User Identification, the Object Type, and
the Operating System Type parameters may be required.

The search routine then checks at Block RS2 to see
whether the repository address has been cached. The address
of a user profile repository is normally cached when the
user "logs in" to the system, as described below in
connection with a typical "log in" procedure.

If the repository address has not been cached, the
address of the repository must be obtained. The address of
the local system profile repository (not shown) is then
retrieved, as represented by a Block RS4, and the local
service area is retrieved from that system profile
repository, as represented by a Block RS5. As indicated
summarily at a Block RS6, the system profile address and the
local service area are then passed to a locate repository
routine (FIGURES 9A, 9B and 9C) which is discussed in detail
below. If, on the other hand, the repository address has
been cached, the cached address is retrieved (Block RS3).

If the repository being searched is a user profile
repository 34, the information in the repository being
searched is not replicated to other repositories since, as
discussed in detail below, only the information required to
locate a particular user profile repository is replicated
throughout the repository hierarchy. This operation step is
depicted by a Block RS7 of FIGURE 8.

As represented by a Block RS10, since the

repository to be searched is a user profile repository 34,

10

15

20

25

30

WO 96/10787 PCT/US95/10819

35

the search routine gueries the repository using the
parameters passed in at the Block RS1. Since the
information in the user profile repository is grouped
according to user (Table 1), the object broker 22 first uses
the user identification parameter to find the correct user
entry in the repository. Next, since each user entry
typically contains multiple object type entries, the object
broker 22 uses the object type parameter to find information
that corresponds to the particular object type requested.

As represented by a Block RS8, if the repository
being searched is another type of repository, such as a
service profile repository 38 or an implementation
repository 36-36n, the search routine checks the replication
flag (binary) that was passed in as a parameter. If the flag
is set to TRUE, the search routine calls the on-demand
replication routine of FIGURE 11 which is described in
detail below. This step is depicted at a Block RS9.

As represented by a Block RS11, the contents
retrieved from the repository are passed back to the routine
that called this routine, which in this case is a step of
the Block 0OC2 representing the object creation procedure of
FIGURE 5.

With continuing reference to FIGURE 5, as
represented by a Block 0OC3, the information retrieved from
the user profile is checked for any object creation
parameters. These parameters are stored in the object
resource assignments and, as shown in TABLE 3, include
entries for default object attributes and available object
brokers. As represented by a Block 0C4, if any object
resource assignment information is found, it is stored
available to be merged later with similar information from
the service profile repository 38 and passed to the object
creation implementation 44.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

36

Next, with reference to a Block 0C5, the service
profile repository 38 is searched for creation parameters.
The object creation parameters stored in a service profile
repository 38 are used for all object creation operations
performed in the service area corresponding to that
repository. A service area can be defined based on
geographical boundaries, organizational lines, or any other
classification where it is desirable to have common object
behavior. For example, it is sometimes desirable to assign
each user in a given division of a business the same default
object activation preferences and object creation
parameters. In this case, these preferences and parameters
are then stored in one or more service profile repositories,
e.g., repository 38, that serve the service area defined by
the business division.

The object broker 22 thus searches the service
profile repository 38 (Block OC5) to get any object creation
parameters stored in it. The service profile repository
search is conducted in essentially the same manner as the
user profile search discussed above.

Referring now to FIGURE 8, the search parameters
used in the Block RS1 are slightly different in a service
profile repository search. As TABLE 2 indicates,
information in the service profile repository 38 is not
grouped according to user; therefore, no user identification
parameters would be used. In addition, since the
information in a service profile repository, e.g.,
repository 38, may need to be replicated throughout the
hierarchy, a replication flag parameter is used. Finally,
as shown by TABLE 2, a number of other search parameters,
such as Object Type Version, Update Time, and Access Time,
may be required to access the proper information in the
repository.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

37

Since a service profile repository 38 is being
searched, the profile search routine checks the replicated
flag, as indicated at the Block RS8. If the flag is set to
"TRUE," the repository information must be replicated and
the search invokes the replication on-demand routine, as
indicated at the Block RS9. The replication on-demand
routine then queries the repository, performs any needed
replication, and passes back the information retrieved from
the repository. If the replication flag is not set to
"TRUE," the service profile repository is queried using the
object type parameter to find the proper object type entry
information in the repository, as indicated at the Block
RS10.

As represented by the Block RS11 of FIGURE 8, the
results of the service profile search are then passed back
to the program that called this routine, which is the object
creation procedure illustrated by FIGURE 5.

Returning to FIGURE 5, a Block 0C6 illustrates
that the information retrieved by the service repository
search is checked to see if any object creation parameters
were defined for this particular object type in the service
area specified. As TABLE 2 shows, each object type entry in
the service profile repository 38 has an Object Resource
Assignment entry which contains Default Object Attributes,
Available Object Brokers, and other object creation
parameters. The object creation parameters for this service
area and object type are then stored, as shown at a Block
0C7.

The object creation parameters obtained from the
user and service profile repositories, e.g., repository 38,
if any, are then merged at a Block OC8 and all of the
parameters are stored so they can be passed later to the
create operation implementation. When the parameters are
merged, those defined in the user profile repository 34

10

15

20

25

30

WO 96/10787 PCT/US95/10819

38

override any conflicting parameters defined in the service
profile repository 38. For example, if both the user and
service profile repositories defined the Location Object
Storage Information shown in TABLES 2 and 3, the Location
Object Storage Information of the user profile repository
would be used. If the user profile repository 34 did not
define this parameter, however, the information in the
service profile repository 38 would be used.

Moving to a Block 0OC9, the object broker 22 checks
the available object brokers entries in the user and service
profile repositories (34 and 38), as defined by TABLES 2 and
3. If there are no object brokers specified by the
available Object Brokers Entries, any object broker 22 can
handle the particular object creation request and,
consequently, the object broker 22 handling the object
creation operation will continue to do so.

If there are object brokers 22-22n specified by
the available object brokers entries, however, only those
object brokers specified can handle the object creation
operation, e.g., broker 22. Therefore, the object broker 22
currently handling the request must verify that it can
handle this request, as represented by a Block 0Cl0. If the
particular object broker 22 cannot handle the request, it
passes the request to another object broker 22-22n as
represented at a Block 0Cl1l, causing the procedures
described here to be performed by another object broker.

As depicted in a Block 0Cl2, if the initial object
broker 22 can handle the object operation request, the
object broker 22 determines whether the object
implementation 44 for this object type is already activated.
If the object implementation 44 is already activated and can
service multiple objects, the object broker 22 passes the
object operation request directly to the object
implementation 44 in order to perform the operation.

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

39

If the implementation is not activated or cannot
service multiple objects, the object broker 22 queries the
user profile repository 34 to retrieve the user’s
implementation preferences for the operating system that
will run the "create" operation (Block OCl13). This query is
conducted basically as described above in reference to the
Block 0C2, with the object broker 22 using the user
identification and object type parameters to access
information pertaining to the specified user and object
type. 1In addition, however, an additional parameter
specifying an operating system is used because the object
operations invoked by a user may operate on a variety of
operating systems and the implementation for an object may
vary from one operating system to the next. Therefore, each
object type entry in the user profile repository 34 can have
several operating system entries each of which contains
implementation information required to perform an object
operation on a particular operating system.

The information retrieved from the user profile
repository 34 is checked at a Block OCl4 to see if any of
the user operating system implementation preferences listed
in TABLE 3 have been defined. If so, the information is
stored as indicated at a Block OC15 so it can be merged
later with similar information from the service profile
repository 38 and used to build the implementation
repository search query which is described in more detail
below.

Next, as represented by a Block 0C16, the service
profile repository 38 is searched for any default operating
system implementation preferences that apply to the
particular user’s service area. As in the query of the
service profile repository at the Block OC5, the service
area and object type parameters are used to retrieve the
information for the desired service area and object type.
In addition, as in the query of the user profile repository

10

15

20

25

30

WO 96/10787 PCT/US95/10819

40

34 for user implementation information described in
conjunction with the Block OCl13, the operating system
parameter is used to find the service area’s default
implementation information for the specified operating
system type.

As depicted in a Block 0OC17, the information
retrieved from the service profile repository 38 is checked
to see if any default implementation preferences are
defined. If so, this information is merged (Block 0C18)
with the user implementation preference information, if any,
and is stored for use in building the query for the
implementation repository (36-36n). Again, when this
information is merged, the parameters defined in the user
profile repository (26-26n) override any conflicting
parameters that are defined in the service profile
repository 38.

Now that the creation parameters, implementation
preferences and implementation defaults for the object being
created have been retrieved, the object broker 22 must
access the implementation repository to locate the
executable and library information required to activate the
create operation implementation.

As illustrated at a Block 0C19, the implementation
repository query is built using the object type and
operating system parameters obtained earlier. The
implementation preferences retrieved from the user and
service profile repositories and merged as described at the
Block 0C18 are also used, along with the hardware platform,
network protocol, and object broker vendor parameters. The
hardware, network, and vendor parameters are typically
defined when the system is configured and depend on the
system resources being used.

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

41

As represented by a Block 0C20, the object broker
22 then accesses the implementation repository using the
profile repository search routine discussed earlier. The
implementation information for a particular object type is
thus retrieved by identifying the appropriate module and
object type, as shown in TABLE 4. The remaining
parameters, as discussed above in connection with the Block
0C19, are compared with the object type search parameters of
TABLE 4. If a match of all the parameters is found, the
corresponding object type implementation information (also
shown in TABLE 4) is passed back to the object broker 22.
This object type implementation information is the
executable and library information that performs the object
creation implementation. This includes the name of the
executable or library, the file paths to be used on the
computing device for the executable or libraries, the
storage 42 location or other location where the executable
and libraries are stored, and other implementation
information.

Next, as depicted in a Block 0C21 and a Block
0C22, the executable and library information obtained from
the implementation repository is compared to any comparable
information already in place on the computing device that
will run the implementation. If any part of this
information is not already in place on the computing device,
it is linked in or loaded onto the computing device at this
time. The object broker 22 thus links in the implementation
information or downloads any implementation information from
the storage 42 or other remote storage, and activates the
object implementation 44 (Block 0C23). The object broker 22
then passes the create operation request to the object
implementation 44 at a Block 0C24 along with the creation
parameters described earlier. The object implementation 44
uses the object storage information that was obtained in a
prior access of the user profile repository (see TABLE 3) to

10

15

20

25

30

WO 96/10787 PCT/US95/10819

42

store the attributes of the newly created object in a
designated storage area.

As indicated at a Block 0C25, the object
implementation 44 requests the object broker 22 to create an
object reference for the newly-created object and passes the
object’s storage 42 location to the object broker. The
object broker 22 stores the newly created object’s location
in the location repository (Block 0C26), the object broker
22 passes the object reference back to the object
implementation 44 (Block 0C27), and the location repository
information is cached inside the object reference. As
indicated at a Block 0C28, the object implementation 44
completes processing and returns the results back to the
object broker 22.

Finally, as represented by a Block 0C29, the
object broker 22 passes the object reference of the newly-

created object back to the client application 30.

Object Activation

As shown above, the object creation operation
leaves the client application 30 with an object reference to
the newly-created object, enabling the client application to
initiate that object’s operations. The initiation process
begins with the client application 30 sending an object
operation request to its object broker 22-22n. The object
broker 22 then uses the information in the user profile, the
service profile and the implementation repositories to
retrieve and start the object implementation. These object
activation ("OA") steps are illustrated in FIGURES 6A, 6B
and 6C, hereinafter referred to collectively as FIGURE 6,
and will be discussed in detail below.

Referring to FIGURE 6, as represented by a Block
OAl the client application initiates a request to perform an

10

15

20

25

30

WO 96/10787 PCT/US95/10819

43

object operation by sending an object operation request
message to the object broker. This message contains an
object reference, which identifies the particular type of
object to be invoked, and any required parameters or other
information required perform the desired object operation.

The object broker 22 next determines (Block OA2)
whether this object’s implementation is already activated.
An object’s implementation may already be activated if a
previous operation was performed on the object and the
implementation has not yet ended. If the object
implementation 44 is already activated, the object broker 22
passes the object operation request directly to the
implementation in order to perform the operation.

If the object’s implementation 44 was not already
activated, the object broker 22 must determine where the
object is located. As represented by a Block OA3, this is
accomplished by looking for an entry in a location
repository 24-24n that corresponds to the object reference
information passed to the object broker 22 by the client
application. The location entry identifier and the address
of the location repository 24-24n are contained in this
object reference information. As stated above in discussing
the location repositories 24-24n, a client application
references an object’s location using location entry
information, as depicted in TABLE 1. Thus, at this step,
the object broker 22 retrieves the appropriate location
entry from the specified location repository.

As described at a Block OA4, the entry identified
in TABLE 1 as the Object Broker Restriction Flag may
indicate that only specific object brokers can handle object
operation requests for the specified object type. If the
flag indicates there are object broker restrictions, the
original object broker 22 cannot handle a request unless it
is one of the object brokers listed in the accessor Object

10

15

20

25

30

WO 96/10787 PCT/US95/10819

44

Broker entries of the location repository (TABLE 1) for the
particular object. This decision is made at a Block OAS.
If the original object broker 22 cannot handle the request,
the object broker 22 passes this request to another object
broker at a Block OA6, whereupon the object activation
procedure is performed by the other object broker.

If the original object broker 22 is able to handle
the object operation request, the object broker determines
whether the object implementation 44 for this object type is
already activated (Block OA7). If the object
implementation 44 is already activated and can service
multiple objects, the object broker 22 passes the object
operation request directly to the object implementation 44
in order to perform the operation. If the implementation is
not activated or cannot service multiple objects, the object
broker 22 retrieves any user preferences from the user
profile repository 34, indicated at Blocks OA8-0A10. After
the user preferences are obtained, the object broker 22
accesses the service profile repository 38 to retrieve any
default preferences that apply to this user’s particular
service area, as indicated at Blocks OA11-OAl12. These
preferences are then merged at a Block OAl13 and, if the
preferences from the user profile repository 34 conflict
with those obtained from the service profile repository 38,
the user preferences are used.

At this point in the object activation process,
the object broker 22 has assimilated the preferences and
other parameters needed for the object operation and has the
location of the desired object. Now the object broker 22
must retrieve the actual executables that will perform the
desired operation. As depicted at a Block OAl4, the object
broker 22 builds the query to retrieve the executable
information from the implementation repository 36-36n.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

45

After the object broker 22 retrieves the storage
42 or other storage reference location of the appropriate
executable and library information from the implementation
repository 36, as illustrated at a Block OAl1l5, the object
broker 22 then retrieves and loads the executable and
library information to the extent required (Blocks OAl16 and
OAl17). The object broker 22 then activates the object
implementation 44 and passes the object operation request to
the object implementation 44, as represented by a Block OA1l8
and a Block OA1l9. As represented by a Block OA20, the
object implementation 44 requests the object’s storage
information from the location repository 24. This storage
information consists of the locations, in the form of
storage 42 entries, for example, of the data associated with
this object. This information is stored in the Data Storage
Locations of the location entry that was created in the
location repository 24 (TABLE 1) by the object creation
operation for this object as discussed earlier.

As depicted by a Block OA21, the location
repository 24 passes this storage information back to the
object implementation 44 whereupon the object implementation
44 performs the desired object operation (Block OA22).
Finally, as represented by a Block OA23, the implementation
passes the results of the object operation back to the
object broker 22, whereupon the object broker passes these
results back to the client application 30 (Block OA24).

Although the Blocks OA4-0A19 of FIGURE 6 are
described more generally than the Blocks 0C9-0C24 of FIGURE
5, the underlying procedure is the same. Accordingly,
reference should be had to the description of FIGURE 5 for
additional details.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

46

Object Deletion

once a user no longer needs to use a particular
instance of an object, the object is ordinarily deleted.
FIGURES 7A, 7B, and 7C, hereinafter referred to collectively
as FIGURE 7, describe the steps in an object deletion ("OD")
operation. As FIGURE 7 shows, the object deletion
operations described by Blocks OD1-OD13 are the same as the
corresponding steps of a typical object activation
operation, as described in conjunction with FIGURE 6.
However, several additional steps are performed in the
object deletion operation, commencing with a Block OD19.

As depicted at the Block O0D20 of FIGURE 7, the
object implementation 44 deletes the storage of the object
being deleted. Then, as represented by Blocks 0OD21-0D23,
the object implementation 44 requests the object broker 22
to delete the object reference for the object whereupon the
object broker deletes the storage location entry for the
object in its location repository 24-24n and deletes any
cached information for the particular instance of the
object.

The object implementation 44 then completes
processing and returns any status back to the object broker
22, as represented by a Block 0D24, and the object broker
passes the results of the object deletion operation back to
the client application 30 (Block 0D25). This ends the life-
cycle of the particular instance of the object.

Repository Hierarchy

As illustrated in FIGURE 3, an object-oriented
environment 20 constructed according to the illustrated
embodiment of the invention contains a plurality of
repositories arranged in hierarchical fashion. For purposes
of illustration, each level in the hierarchy of FIGURE 3 is

10

15

20

25

30

WO 96/10787 PCT/US95/10819

47

assigned a designation, such as "2H" or "2A,3A,4A" in order

to identify that level in the hierarchy.

As shown in FIGURE 3, a typical hierarchy of
repositories resembles an inverted tree in that, as the
hierarchy is traversed from top to bottom, repositories
branch out from the repositories at the higher levels. 1In
addition, the designations assigned to the repositories in
FIGURE 3 reflect the tree-like relationship between them.
The repositories designated 2A through 22 branch out from
the Level 1 repository. In turn, the levels 2A through 22
repositories have a plurality of repositories branching out
from them. The repositories immediately below the 2A
repository are designated 2A,3A through 2A,3Z, while the
Level 3 repositories below the 2H repository are designated
2H,3A through 2H,32. Thus, the repository designations
distinguish the repositories that branch out from the 2A
repository from the other repositories that branch out from
the Level 2B through 2Z repositories. 1In FIGURE 3, the
repository designations do not refer to Level 1 because
there is only one master repository at Level 1 and,
consequently, it is understood that all repositories are
under the Level 1 repository.

The theoretical size of the repository hierarchy
is unlimited and the shape of the hierarchy is determined by
system needs. For example, some repository hierarchies are
wide and have a small number of levels while other
repository hierarchies are narrow but contain a large number

of levels.

Depending on system resource needs, any
repositories in the present invention, including the user
profile repository, the service profile repository, the
implementation repository and the interface repository, can
be organized in this hierarchical structure.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

48

Each repository in the hierarchy of FIGURE 3 can
be duplicated in order to improve system performance. Thus,
each level in the hierarchy can have a master repository and
a plurality of other repositories, called "peer replication
repositories", that contain the same information as the
master. A repository is typically duplicated when the
information in the repository is in high demand and
additional repositories are needed to increase the speed
with which the desired information can be retrieved by
users.

System Profile Repository

To provide access to information in repositories
throughout the hierarchy, a typical embodiment of the
present invention provides another type of repository,
called a system profile repository (not shown), at each
level in the hierarchy. For example, referring to FIGURE 3,
a system profile repository would reside at Level 2H, at
Level 2A,3A, at Level 2H,3Z,4A, and so forth.

TABLE 5 illustrates a typical embodiment of a
system profile repository which contains a Local Name and a
number of Entry Names. The Local Name is a descriptive name
of the level in the hierarchy where the particular service
profile repository resides. Each Entry Name contains
information corresponding to a particular level in the
repository hierarchy. This information includes addresses
and other information needed to access other repositories in
the hierarchy. The Parent Level Name and Child Level Names
shown in TABLE 5 are descriptive names for the parent level
above and the child levels below a particular entry’s level
in the hierarchy.

IABLE 5

Local Name
Entry Name #1:

10

15

20

25

30

35

40

WO 96/10787

49

Parent Level Name
Parent System Profile Repository
Parent Security Information
Peer Master System Profile Repository
Peer Replication System Profile Repositories:
Peer Replication System Profile Repository #1

Peer Replication System Profile Repository #n
Peer Security Information
Child Level Names
child System Profile Repositories:

Child System Profile Repository #1

Child System Profile Repository #n
Child Security Information
Implementation, Interface, and Service Repository
Configuration:
Parent Repository
Master Peer Repository
Peer Replication Repositories:
Peer Replication Repository #1:
Address Information
Child Master Repositories:
Child Master Repository #1

Child Master Repository #n
Peer Replication Repository #2:

Peer Replication Repository #n:

Entry Name #2:

Entry Name #n:

PCT/US95/10819

The Parent, Peer Master, Peer Replication, and
Child System Profile Repositories listed in TABLE 5 contain
the addresses of the system profile repositories located
immediately above, at the same level, and immediately below
this entry’s level in the hierarchy. For example, referring
again to FIGURE 3, in the entry name for the 2H repository,
the Parent System Profile Repository entry contains the
address of the system profile repository that is located at

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

50

the level in the hierarchy above the 2H repository, namely,
the Level 1 system profile repository. The Peer Master
System Profile Repository contains the address of the master
system profile repository located at this entry’s level in
the hierarchy, namely, the Master System Profile Repository
for the 2H level in the repository. The Peer Replication
System Profile Repositories contain the addresses of the
Peer Replication System Profile Repositories that are
located at this entry’s level in the hierarchy, namely, the
Peer System Profile Repositories for the 2H level in the
repository. Finally, the Child System Profile Repository
provides the addresses of the Master System Profile
Repositories at the next level in the hierarchy immediately
below the 2H repository, namely, the Master System Profile
Repositories for the 2H,3A through 2H,3Z levels in the
repository. For each of these system profile repository
entries, more than one server address can be specified for
each repository. Thus, more than one path can be provided
to access the information in the neighboring system profile
repositories.

The Parent, Peer, and Child Security information
of TABLE 5 provides the public encryption and decryption
keys required to access the corresponding repositories in
the hierarchy. There is one entry per server.

The Service, Implementation, and Interface
Repository Configuration entries contain address information
that is used to access the parent, peer, and child levels of
the service profile, implementation, and interface
repositories, respectively. Using the implementation
repository configuration as an example and referring to
TABLE 5, address information is provided for the Parent
Implementation Repository, the Master Peer Implementation
Repository, the Peer Replication Implementation
Repositories, and the Child Master Implementation
Repositories.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

51

Locating a Repository

When a system component requires information
contained in a repository in a different part of a
hierarchy, information in the system profile repositories is
used to retrieve the information in the remote hierarchy.
Under these circumstances, a repository search is typically
initiated by an object broker 22 or an implementation that
requires the information in a particular repository, or by a
repository passing a search request to another repository.
In order to retrieve the contents of a repository, the
address of the repository must be obtained. As discussed
above with regard to FIGURE 8, if the address of the
repository was not cached at a previous time by the system,
the locate repository routine ("LR") described by FIGURES
9A, 9B and 9C, hereinafter referred to collectively as
FIGURE 9, is used.

The search is conducted by looking for a system
profile repository (not shown) that contains, as shown in
TABLE 5, an entry name for the service area in which the
repository containing the desired information resides. The
entry name for the particular service area will contain the
address of the desired repository.

For these purposes, a service area is the name
used to identify a particular level in a hierarchy. For
example, referring to FIGURE 3, the service area of the
2H,3Z,4A,5A repository can be designated as /2H/3Z/4A.
Here, the "/" symbols merely separate the hierarchy levels.
The /2H/3Z/4A designation indicates that the 2H,3Z,4A,5A
repository can be found under this level in the hierarchy.

Referring now to FIGURE 9, the parameters used at
a Block LR1 of the locate repository routine include the
service area of the desired repository, the type of the
desired repository, the address of the system profile

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

52

repository of the service area where the search was
initiated, and a search control flag that determines how the
hierarchy is to be searched.

As represented by a Block LR2, if the downward
flag is set to disabled, the search for the repository
cannot be passed down the hierarchy. As represented by a
Block LR3, if the desired service area is not equal to or
above the local service area (the service area where the
search is being conducted), it will not be possible to find
a match for this service area without doing a downward
search. As a result, the search will return a status
indicating that the repository could not be found.

At a Block LR4, the partial match flag is reset.
This flag is used to indicate whether an entry found in a
system profile repository is an entry for the desired
service area or an entry for a service area above the
desired service area. The desired service area is compared
at a Block LR5 with the entry names in the system profile
repository at the level in the hierarchy where the search is
initiated. As represented by a Block LR6 and a Block LR7,
if an entry for the desired service area is found, the
locate repository routine checks the partial match flag. If
the partial match is not set, the routine has found an entry
for the desired service area. The routine then gets the
address of the desired repository from the system profile
repository (Block LR8) and the locate repository routine
passes this address back to the routine that requested the
search (Block LR11l). If the partial match flag is set, the
routine has found an entry for a service area above the
desired service area. That entry is searched to get the
address of its service area’s system profile repository.
Then, the downward flag is set to active (Block LR22) and,
as illustrated at a Block LR26, a connection is made to that
repository. As represented by a Block LR28, the locate
repository request is then passed to that service profile

10

15

20

25

30

WO 96/10787 PCT/US95/10819

53

repository 38, whereupon the process outlined here is
repeated using that service profile repository.

If a matching entry is not found at a Block LR6,
the locate repository routine compares the desired service
area with the entry names in the system profile repository
to determine whether the repository contains an entry name
for a service area above the desired service area. This is
done, as depicted in a Block LR9, by stripping off the
lowest level designation of the desired service area. For
example, if the desired service area was /2H/3Z/4A, the
system profile repository would be searched for an entry
name that corresponded to the /2H/3Z service area.
Similarly, if there was no /2H/3Z entry, on the next pass
through the loop defined by the Blocks LR5, LR6, LR9, LR1O,
and LR12, the system profile repository would be searched
for an entry name corresponding to the /2A service area.
This would continue up to the / service area which
represents the top of the hierarchy, Level 1 in FIGURE 3.

The partial match flag is set, as illustrated in a
Block LR10, when the lowest level designation is first
stripped off the desired service area name. This indicates
that the only entries that might be found in this system
profile repository are for service areas above the desired
service area.

Next, the locate repository routine must determine
whether the last hierarchy level in the current system
profile repository has been searched. 1In other words, the
routine determines whether the system profile repository
currently being searched should be searched for any other
service area entries. There are two ways to determine
whether the search in this repository should end. First,
the search for a matching entry above the desired service
area ends when the search reaches the top of the hierarchy.
This would occur, for example, when the search name is

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

54

truncated from "/" to "" at the Block LR9. Second, the
search of the current system profile repository ends when
the search name is equal to the name of the current system
profile. This prevents the search from inadvertently being
passed up the hierarchy when the search is to be passed down
the hierarchy.

As represented at the Block LR12, if the last
hierarchy level in the current system profile repository has
not been searched, the routine continues back to the Block
LR3 where the process of stripping off the lower levels of
the desired service area is continued. If the last
hierarchy level in the current system profile repository has
been searched, the search of this particular system profile
repository can go no further. The search then must be
passed to a system profile repository in another part of the
hierarchy. This takes place at a Block LR13, where the
Local Name in the system profile repository (see TABLE 5) is
retrieved and, as depicted at a Block LR14, the entry
information that corresponds to the service area for the
local name is then retrieved from the current system profile
repository.

The downward flag is examined at a Block LR15. If
it is active, this means that the search is being passed
down the hierarchy, causing the routine to pass to a Block
LR23 to extract the appropriate child level name from the
desired service area. If the downward flag is not active,
however, the search is being passed up the hierarchy. Thus,
the routine must check to see whether the top of the
hierarchy has been reached. If the top of the hierarchy has
been reached, the search must be turned downward. However,
as represented by a Block LR17, if downward searches are not
allowed a not found status will be returned. If downward
searches are allowed, the downward flag is set to "active",
indicating that the search is to be passed down the
hierarchy. This is depicted at a Block LR20 of FIGURE 9.

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

55

As indicated at a Block LR18, if the top of the
hierarchy has not been reached, the locate repository
routine compares the current service area with the desired
service area. The routine then checks at a Block LR19 to
see whether the search has reached a service area above the
desired service area in the hierarchy. If it has, the
search must be turned downward since the desired service
area is below the current level in the hierarchy. For
example, referring to FIGURE 3, if the desired service area
was /2H/3Z/4A and the current service area for the search
was /2H or /2H/3Z, the lowest common level has been reached
and the search must turn downward from the current service
area in order to find service area /2H/3Z/4A. The routine
then passes to the Block LR20 and sets the downward flag to
active.

As represented by a Block LR21, if the downward
flag is not active, the search is being passed up the
hierarchy to the system profile repository that resides at
the service area immediately above the current service area.
The address of that repository is then found in the current
service area’s system profile repository under the parent
system profile repository entry (Block LR24). The search is
passed to that repository, as indicated at the Blocks LR26
and LR28, discussed above, where the process is repeated
using the new service profile repository.

If the downward flag is active at the Block LR21,
the search is going down the hierarchy and the search must
be passed to the system profile repository at the next lower
level. The proper lower level repository is found using the
desired service area. For example, if the desired service
area was /2H/3Z/4A and the current service area for the
search was /2H, the search needs to be passed to the system
profile repository that is immediately below the 2H
repository and that is above the desired service area. In
this case, the proper service area is /2H/3Z. As indicated

10

15

20

25

30

WO 96/10787 PCT/US95/10819

56

at the Block LR23, the name of the child level is extracted
from the desired service area. In the example above, the
child level name to be searched for in the /2H service area
is /3Z. The address of the /2H/3Z repository is then found
at the Block LR25 in one of the child system profile
repository entries in the /2H service area’s system profile
repository. If the desired child entry is not found, the
search returns a status indicating that the desired
repository was not found (Blocks LR27 and LR29). If the
child entry was found, the locate repository routine then
connects to the system profile repository at Block LR26.

The locate repository request is passed to that
service profile repository, as illustrated at the Block
LR28, whereupon the process outlined above is repeated using
the information in that service profile repository. Once
the desired repository is found, the address of the
repository is passed back to this routine and back to the
routine that initiated the search, as indicated at a Block
LR30.

R ito eplication

In addition to providing a way to distribute
information anywhere in the repository hierarchy, a typical
embodiment of the present invention also provides a
mechanism for copying information throughout the repository
hierarchy, as needed. If certain information is frequently
used in a particular area of the hierarchy, it may be
desirable to move the information into that area. By using
information in the system profile repository embodying the
addresses of the parent, peer, and child repositories,
replication of the information in the repositories can be
performed automatically or on-demand.

Automatic replication is typically performed by
the repositories themselves. As new information is added to

10

15

20

25

30

WO 96/10787 PCT/US95/10819

57

a repository or as existing information is upgraded, the
repository looks up the addresses of the repositories at the
peer and next lower levels of the hierarchy and
automatically replicate the information into those
repositories. The repositories receiving the information
then perform the same replication process until all
appropriate repositories in the hierarchy below the first
one contain the desired information.

Oon-demand replication is typically used when
information is only needed in a certain area of the
hierarchy. For example, if a repository does not contain
the information it requires, it will search up the hierarchy
for the desired information and, once found, the information
would be replicated to the repositories in the hierarchy
down to the requesting repository. In this case,
duplication is typically made only in the chain of
repositories that leads from the requesting repository to
the repository containing the information. Thus, on-demand
replication disseminates information only as required,
thereby reducing the amount of storage used in the system.

Automatic Replication

Automatic repository replication is typically
performed periodically as a part of repository maintenance.
FIGURE 10A and 10B, hereinafter referred to collectively as
FIGURE 10, illustrate how information in the service
profile, implementation, and interface repositories are
replicated automatically throughout the hierarchy. The
repository performing the replication first retrieves its
repository configuration information from the system profile
repository. The repository then checks its configuration
information to determine whether it is the master of the
current service area. If the repository is the master, the
information in the repository is replicated to all peer
repositories in that service area. If the repository is not

10

15

20

25

30

WO 96/10787 PCT/US95/10819

58

the master, the information is replicated to that

repository’s child master repositories that are set for DEEP
replication, or that are set for SHALLOW and NON-REPLICATED
replication. The automatic replication ("AR") operation is

discussed in more detail below.

Referring now to FIGURE 10, the replication
process is begun by a repository accessing its system
profile repository to retrieve its repository configuration
information, as depicted at a Block AR1l. For example, if an
implementation repository 36 (FIGURE 2) is being replicated,
the Implementation Repository Configuration of TABLE 5 would
be retrieved. Similarly, if a service profile repository 38
is being replicated, the Service Repository Configuration
would be retrieved. As discussed above, these repository
configurations contain the addresses for the parent
repository, the master peer repository, the peer replication
repositories, and the child master repositories for the
current service area.

The repository compares its address with the
master peer repository address to determine whether it is a
master (Block AR2). If so, the flow proceeds to a Block AR3
and retrieves the addresses of all the peer replication
repositories. If the repository is not the master of this
service area, the repository retrieves the addresses of the
child master repositories, as indicated at a Block AR4.
This address information is stored for future use at a Block
ARS.

As indicated at a Block AR6, the repository again
compares its address with the master peer repository. If
the repository is the master, the information in the master
repository is copied to the peer replication repositories at
a Block AR7. If the repository is not the master, the
replication control information for all the entries in the
repository (TABLES 2 and 4) is retrieved at a Block AR8. If

10

15

20

25

30

WO 96/10787 PCT/US95/10819

59

the replication control for an entry is set to DEEP, that
entry will be replicated to all child master repositories.
If the replication control for an entry is set to SHALLOW,
only those entries whose replication control is also set to
NON-REPLICATED will be replicated to the child master
repositories. Those entries whose replication control is
set to SHALLOW and REPLICATED are replicated only using the
on-demand replication procedure described below.

As indicated at a Block AR9, a list of all entries
to be replicated is then created. The repository gets the
address of the first repository to be updated from the list
generated in the Block AR5, as indicated at a Block AR10.

A loop is entered at Blocks AR11-AR22 wherein the
entries on the list generated in the Block AR9 is
sequentially replicated to the target repositories specified
at the Block AR5. This loop is begun at a Block AR11 by the
repository making a connection to the target repository.
Then, as indicated at a Block AR12, the repository gets the
first entry on the list.

The repository queries the target repository at a
Block AR13 to see if the target repository already contains
this entry and adds the information, as described by a Block
AR14 and a Block AR15, if it does not. If the target
repository does contain the entry , the repository checks
the last update time information, shown in TABLES 2 and 4,
for that entry in the target repository. If the last update
time in the target repository is earlier than the last
update time of the entry being copied (which is determined
by the last update time in the repository doing the
replicating), the information in the target repository is
replaced, as described by a Block AR17.

If the information replicated is not the last
entry on the list, the repository gets the next entry, as

10

15

20

25

30

WO 96/10787 PCT/US95/10819

60

shown at a Block AR18 and a Block AR19, and the program flow
returns to the Block AR13. If the last entry has been
replicated, the repository disconnects from the target
repository, as indicated at a Block AR20, and gets the
address of the next repository to be updated, as shown at a
Block AR21.

As represented by a Block AR22, the process goes
back to the Block AR11 if there are more repositories to be
updated. If there are no more repositories to be updated,

the replication process is done (Block AR23).

Oon-demand Replication

In a typical embodiment of the present invention,
on-demand repository replication occurs when a repository
queried for information does not contain the requested
information. FIGURE 11 describes how information in the
service profile, implementation, and interface repositories
gets replicated in the hierarchy on an on-demand basis.

This process typically starts with an external query from an
object broker 22-22n, another repository, administration
tool 32 or object implementation 44 for information related
to a particular object type. If, a match is not found after
the repository compares the search parameters of the
requested object information with the object information in
the repository, the repository accesses its parent and
passes the search up to that repository. If the parent
contains the desired object information, it passes the
information back to the first repository. If the parent
repository does not contain the desired object information,
it passes the search request up to its parent. Thus, the
search continues up the hierarchy until either the object
type information is found or the top of the hierarchy is
reached. The on-demand replication ("OR") operation is
discussed in more detail below.

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

61

Referring now to FIGURE 11, using the
implementation repository as an example, as indicated at a
Block OR1, the implementation repository is queried using
the following parameters: object type, implementation
preference, hardware platform, network protocol, and object
broker vendor. The implementation repository is then
queried at a Block OR2. As shown in TABLE 4, the Object
Type Parameter identifies the module and particular object
type to be accessed. The remaining parameters are
compared with that the object type search parameters for the
particular object type. If a match is found, the Object
Type Implementation Information of TABLE 4 is passed back to
the requesting application, as indicated at a Block OR3 and
a Block OR4. 1If a match is not found, the repository
accesses the system profile repository illustrated in TABLE
5 and retrieves the repository c~nfiguration to get the
parent repository address (Block ORS5).

As indicated at a Block OR6 and a Block OR7, if
there is no parent repository in the hierarchy, an error
message is returned to the requesting application. If there
is a parent repository, a connection is made to that
repository at a Block OR8. Depending on how the
repositories are implemented, this connection can be made by
connecting to a server for that repository, by accessing a
distributed database that serves as the repository, or by
any other appropriate method.

As indicated at a Block OR9, a search request
including the parameters received at the Block OR1 are sent
to the parent repository. If the search at the higher
levels of the hierarchy is successful, the search results
are passed back to the repository that started the search
(Block OR10). This repository, in turn, passes the search
results back to the requesting application (Block OR11). As
indicated at a Block OR12, the search results are then
replicated into the current repository, thereby completing

10

15

20

25

30

WO 96/10787 PCT/US95/10819

62

the replication process. It will be understood, however,
that a failure status will be returned to the requesting
application if the object type information is not found at
any of the higher levels of the hierarchy.

Example

With the foregoing description of the components
and operation of one embodiment of the present invention in
mind, a specific example of an object operation sequence
will be given to illustrate how the object broker 22 uses
information in its repositories to manage system resources
in the performance of object operations and control the
manner in which object operations are performed.

The example involves a person named George Smith
who sends a video mail message to John Doe using a system
based on a typical embodiment of the present invention.
George lives in Orlando, Florida and John lives in Seattle,
Washington.

George uses his multi-media computer in Orlando to
access a computer program that creates and sends video mail
messages. George’s computer is a PowerPC running the MS-
Windows_NT operating system and using an ATM network
interface. The computer program is one of the objects
managed by the system and has an object type name of
“"ACME: :VIDEOMAIL."

John uses his multi-media computer in Seattle to
access a computer program that allows him to view the video
mail message from George. John’s computer is a Sun Sparc
machine running the Solaris 2.3 operating system and using
an ATM network interface. The program accessed by John is
the ACME::VIDEOMAIL object received from George.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

63

Before George and John can access the video mail
program, certain information about George, John, the
computer program and the hierarchy of information
repositories in the system must be stored in some of the
information repositories. This information would typically
be installed by a system administrator using the
administration tools of the system or by some other known
method.

The exemplary system uses a hierarchy of
repositories organized according to geographical boundaries.
The top level of the hierarchy encompasses the entire United
States and is designated "USA." The next level of the
hierarchy is divided along state lines. For example,

" /USA/FLORIDA"™ and "/USA/WASHINGTON" are two service areas
below the /USA service area. Likewise, the next level down
in the hierarchy is divided using the names of cities.

Thus, /USA/FLORIDA/ORLANDO and /USA/WASHINGTON/SEATTLE are
two service areas below the /USA/FLORIDA and /USA/WASHINGTON

service areas.

In order to identify individual users of the
system, each user is identified by a service area and a
unique user identification name. George’s service area is
/USA/FLORIDA/ORLANDO and John’s service area is
J/USA/WASHINGTON/SEATTLE. In addition, George has been
assigned a user identification of GEORGES1 and John has been
assigned a user identification of JOHNDOE2.

Each service area in the hierarchy has a system
profile repository that contains information used to access
the other’s repositories in the hierarchy. TABLE 6 shows
the system profile repository information that is relevant
for the purposes of this example.

WO 96/10787 PCT/US95/10819

64

TABLE 6
System Profile Repositories

/USA/FLORIDA service area:
Local Name = /USA/FLORIDA
Entry Name #1 = /USA/FLORIDA:

10

15

20

25

30

35

40

45

50

Parent Level Name = /USA
Parent System Prof. Repos. = USAServ2 SysProf
Peer Master System Prof. Repos. = FLServl SysProf
Peer Replication System Prof. Repos.:
Fl.Serv2 SysProf
Child Level Names:
Orlando
Miami
Child System Profile Repositories:
Orlando OrlServl SysProf
Miami MiaServl SysProf
Implementation Repository Configuration:
Parent Repository = USAServ2 ImpRep
Master Peer Repository = FLServl ImpRep
Peer Replication Repositories:
FLServ2 ImpRep
Child Master Repositories:
Orlando OrlServ2 ImpRep
Miami MiaServ3 ImpRep
Service Repository Configuration:
Parent Repository = USAServ2 SrvRep
Master Peer Repository = FLServl SrvRep
Peer Replication Repositories:
FLServ2 SrvRep
Child Master Repositories:
Orlando OrlServ2 SrvRep
Miami MiaServ3 SrvRep
User Repository Configuration:
Parent Repository = USAServ2 UserRep
Master Peer Repository = FLServl UserRep
Peer Replication Repositories:
FLServ2 UserRep

Entry Name #2 = /USA/WASHINGTON

Parent Level Name = /USA
Parent System Prof. Repos. = USAServ2 SysProf
Peer Master System Prof. Repos. = WAServl SysProf
Peer Replication System Profile Repository:
WAServ2 SysProf
Child Level Names:
Seattle
Walla Walla
Child System Profile Repositories:
Seattle SeaServl SysProf
Walla Walla WalServl SysProf
Implementation Repository Configuration:
Parent Repository = USAServ2 ImpRep
Master Peer Repository = WAServl ImpRep
Peer Replication Repositories:
WAServ2 ImpRep

10

15

20

25

30

35

40

45

50

WO 96/10787 PCT/US95/10819

65

Child Master Repositories:
Seattle SeaServ2 ImpRep
Walla Walla WalServ3 ImpRep
Service Repository Configuration:
Parent Repository = USAServ2 SrvRep
Master Peer Repository = WAServl SrvRep
Peer Replication Repositories:
WAServ2 SrvRep
Child Master Repositories:
Seattle SeaServ2 SrvRep
Walla Walla WalServ3 SrvRep
User Repository Configuration:
Parent Repository = USAServ2 UserRep
Master Peer Repository = WAServl UserRep
Peer Replication Repositories:
WAServ2 UserRep

/USA/WASHINGTON service area:
Local Name = /USA/WASHINGTON
Entry Name #1 = /USA/WASHINGTON:
See Entry Name #2 in /USA/FLORIDA service area
above.
Entry Name #2 = /USA/FLORIDA:
See Entry Name #1 in /USA/FLORIDA service area
above.

/USA/FLORIDA/ORLANDO service area:
Local Name = /USA/FLORIDA/ORLANDO
Entry Name #1 = /USA/FLORIDA/ORLANDO:
Parent Level Name = /USA/FLORIDA
Parent System Profile Repository = FLServ2 SysProf
Peer Master System Prof. Repos.= OrlServl SysProf
Peer Replication System Profile Repository:
OrlServ2 SysProf
Implementation Repository Configuration:
Parent Repository = FLServ2 ImpRep
Master Peer Repository = OrlServl ImpRep
Peer Replication Repositories:
OrlServ2 ImpRep
Service Repository Configuration:
Parent Repository = FLServ2 SrvRep
Master Peer Repository = OrlServl SrvRep
Peer Replication Repositories:
OrlServ2 SrvRep
User Repository Configuration:
Parent Repository = FLServ2 UserRep
Master Peer Repository = OrlServl UserRep
Peer Replication Repositories:
OrlServ2 UserRep

/USA/WASHINGTON/SEATTLE service area:
Local Name = /USA/WASHINGTON/SEATTLE
Entry Name #1 = /USA/WASHINGTON/SEATTLE:
Parent Level Name = /USA/WASHINGTON
Parent System Profile Repository = WAServ2 SysProf

10

15

20

25

30

35

40

WO 96/10787 PCT/US95/10819

66

Peer Master System Prof. Repos. = SeaServl SysProf
Peer Replication System Profile Repository:
SeaServ2 SysProf
Implementation Repository Configuration:
Parent Repository = WAServ2 ImpRep
Master Peer Repository = SeaServl ImpRep
Peer Replication Repositories:
SeaServ2 ImpRep
Service Repository Configuration:
Parent Repository = WAServ2 SrvRep
Master Peer Repository = SeaServl SrvRep
Peer Replication Repositories:
SeaServ2 SrvRep
User Repository Configuration:
Parent Repository = WAServ2 UserRep
Master Peer Repository = SeaServl UserRep
Peer Replication Repositories:
SeaServ2 UserRep

Entry Name #2 = /USA/WASHINGTON:
See Entry Name #2 in /USA/FLORIDA service area
above.

Default implementation preferences are installed
in the service profile repositories. As TABLE 7 shows, both
the /USA/WASHINGTON and the /USA/FLORIDA/ORLANDO service
areas contain an ACME::VIDEOMAIL object type entry. 1In this
example, these object type entries had to be replicated to
these repositories at some previous point in time because
these object type entries would not have been automatically
replicated throughout the hierarchy since the Replication
Control is set to NORMAL.

TABLE 7
Service Profile Repositories

J/USA/WASHINGTON service area:
Object Type #1 = ACME::VIDEOMAIL
Search Parameters:
Object Type Name = ACME: :VIDEOMAIL
Object Type Version = 1
Replication Control = NORMAL
Object Resource Assignments:
Object Storage Information:
Server = WAServ20; Database = VMailAA
Available Object Brokers = Any
Location Entry Storage Information:
Server = WALRServ6; Database = LocRep2l

10

15

20

25

30

35

40

45

WO 96/10787 PCT/US95/10819

67

Default Attribute Values:
Creation Attributes:
Compression_Type = MPEG
Resolution = 300 dpi
Activation Attributes:
Zoom_Ratio = 150%
Frames_Per_ Second = 32

/USA/WASHINGTON/SEATTLE service area:
(no entries)

/USA/FLORIDA/ORLANDO service area:
Object Type #1 = ACME::VIDEOMAIL
Search Parameters:
Object Type Name = ACME::VIDEOMAIL
Object Type Version = 1
Replication Control = NORMAL
Object Resource Assignments:
Object Storage Information:
Server = OrlServ20; Database = VMail
Available Object Brokers = Any
Location Object Storage Information:
Server = OrlLRServé6; Database = LocRep21
Default Attribute Values:
Creation Attributes:
Compression_Type = MPEG
Resolution = 300 dpi
Activation Attributes:
Zoom_Ratio = 150%
Frames_Per Second = 32
Operating System Implementation Defaults:
Operating System #1 = MS-Windows_NT
Default Implementation = PowerView
Operating System #2 = MS-Windows 4.0
Default Implementation = ViewMaster
Operating System #3 = Solaris 2.3

Default Implementation = Powerview

The user profile repositories that serve George
and John are configured as shown in TABLE 8. As TABLE 8

shows, only George’s user profile repository was assigned an
ACME: : VIDEOMAIL object type entry when the system was first

configured.

TABLE 8
User Profile Repositories

/USA/WASHINGTON/SEATTLE service area:
User #1 = JOHNDOE2
User Top Container: Empty
User System Resource Assignments:

10

15

20

25

30

35

40

45

WO 96/10787 PCT/US95/10819

68

Home Implementation Repository:
Server = SeaServ2; Database
Home Service Repository
Server = SeaServ2; Database
Home User Repository
Server = SeaServ2; Database
Object Type Entries: None
User Demographics
User Name
Password

ImpRep

SrvRep

UserRep

/USA/FLORIDA/ORLANDO service area:
User #1 = GEORGES1
User Top Container:
Object #1 = ACME::VIDEOMAIL
User System Resource Assignments:
Home Implementation Repository:
Server = OrlServ2; Database
Home Service Repository
Server = OrlServ2; Database
Home User Repository
Server = OrlServ2; Database
Object Type Entries:
Object Type #1 = ACME: :VIDEOMAIL
User Object Resource Assignments:
Object Storage Information:
OrlServ50; VidMail3
Available Object Brokers = Any
Location Entry Storage Information
OrlLRServ2; LRep3
Default Attribute Values:
Activation Attributes:
Zoom_Ratio = 100%
Frames Per_ Second = 32
Operating System Implementation Pref.:
Operating System #1 = MS-Windows NT
Default = PowerView
Object Destination Container
Object Type = SYSTEM: :CONTAINER
Location Repository:
Server = OrlLRServ2
Database = Lrep3
Database Entry = 145

ImpRep

SrvRep

UserRep

User Demographics
User Nanme
Password

The executable and library information that
implements the ACME::VIDEOMAIL object operations must be
installed before these object operations can be performed.
TABLE 9 shows the different implementation choices installed

10

15

20

25

30

35

40

45

WO 96/10787

PCT/US95/10819

69

in the implementation repositories. As discussed earlier in

conjunction with Table 7, since the Replication Control is
set to NORMAL, these entries must been replicated to these
repositories at some prior point in time.

TABLE 9

Implementation Repositories

/USA/FLORIDA/ORLANDO service area:

Module #1 = ACME

Object Type #1
Search Parameters:

Operating System = MS-Windows_NT
Implementation Preference = PowerView
Network Protocol = ATM

Hardware Platform = PowerPC

Object Type Name = ACME: :VIDEOMAIL
Object Type Version = 1

Replication Control = NORMAL

Executable Information:

Executable Name = NT_ VMAIL
Executable Path = C:\SRC\NT\VMAIL
Executable Storage Location = 573
Executable Storage Type = File System
Library Path = C:\LIB\NT\VMAIL
Run-time Library #1:
Library Name = NT_ VMAIL.LIB
Library Storage Location = 9124
Library Storage Type = File System

Object Type #2
Search Parameters:

Operating System = MS-Windows 4.0
Implementation Preference = ViewMaster
Network Protocol = WinSock

Hardware Platform = Intel 486 Based
Object Type Name = ACME::VIDEOMAIL
Object Type Version = 1

Replication Control = NORMAL

Executable Information:

Executable Name = VMAIL
Executable Path = C:\SRC\WIN\VMAIL
Executable Storage Location = 4123
Executable Storage Type = File System
Library Path = C:\LIB\WIN\VMAIL
Run-time Library #1:

Library Name = VMAIL.LIB

Library Storage Location = 67

Library Storage Type = File System

JUSA/WASHINGTON/SEATTLE service area:
Module #1 = ACME

10

15

20

25

30

35

40

WO 96/10787 PCT/US95/10819

70

Object Type #1
Search Parameters:
Operating System = Solaris 2.3
Implementation Preference = PowerView
Network Protocol = ATM
Hardware Platform = Sun Sparc
Object Type Name = ACME: :VIDEOMAIL
Object Type Version 1
Replication Control = NORMAL
Executable Information:
Executable Name = SUN_VMAIL
Executable Path = C:\SRC\SUN\VMAIL
Executable Storage Location = 345
Executable Storage Type = File System
Library Path = C:\LIB\SUN\VMAIL
Run-time Library #1:
Library Name = SUN_VMAIL.LIB
Library Storage Location = 234
Library Storage Type = File System

Log-In Procedure

George accesses the system by a procedure commonly
referred to as "logging in" to the system or "log-in" for
short. Two main operations are performed at log-in. The
first is a security function where the system verifies that
the user logging in is authorized to use the system. The
second major operation performed at log-in involves setting
up the user’s home environment. This second operation
typically involves initializing variables used by the system
when the user enters the system and displaying a person’s
home environment on his or her computer. Typical examples
include displaying icons that represent the computer
programs that the user can access and executing computer
programs that the user always wants executed when the user
logs in.

To facilitate these log-in procedures, certain
information must be stored in the system before the user
logs in and the system must be able to access this
information during the log-in process. A typical embodiment
of the invention uses the user profile repository to store
this information. For example, user demographics, such as
the user’s name and security information and the User Top

10

15

20

25

30

WO 96/10787 PCT/US95/10819

71

Container, which contains information about the objects the

user can access, are stored in the user profile.

Referring now to FIGURES 12A and 12B, hereinafter
referred to collectively as FIGURE 12, which depict a
typical log-in procedure ("LP"). As represented by a Block
LP1, a log-in application running on the user’s computer

receives the user’s name and password when the user logs in.

As represented by a Block LP2, the log-in
application retrieves the address of the system profile
repository. A system profile repository is located at each
service area in the hierarchy and contains information used
to access the repositories in the hierarchy. In this
example, George logged on to the system at his main
computer. Therefore, the local system profile repository is
in the /USA/FLORIDA/ORLANDO service area depicted in TABLE
6.

As represented by a Block LP3, the log-in
application extracts the local service area which is stored
as an environmental variable that would typically be set up
by a system administrator using the administration tools.
In this example, the local service area is
JUSA/ FLORIDA/ORLANDO.

As represented by a Block LP4, the log-in
application passes the ljocal service area and user profile
repository type parameters to the Locate Repository routine
represented by FIGURE 9 in order to locate the user profile
repository for this service area. In this example, the
Locate Repository routine locates the local service area in
the local system profile repository at Entry Name #1, as
shown in TABLE 6. The Locate Repository routine then
returns the address "OrlServ2 UserRep" contained within the
User Repository configuration. Here, worlServ2" is the

10

15

20

25

30

WO 96/10787 PCT/US95/10819

72

address of the server used to access the repository database
and "UserRep" is the address of the database.

If the address of the user profile repository had
not have been found, a log-in error would have been returned
to the user as represented by a Block LP5 and a Block LP6.
If the address of the user profile repository was found, the
log-in application retrieves the User Demographics shown in
TABLE 8 from the user profile repository at a Block LP7,
checks for a matching user entry (Block LP8) and a password
(Block LP10). If there is no user entry or if the password
entered does not match the user’s password, a log-in error
is returned to the user as indicated at a Block LP9 and a
Block LP11.

If the user is authorized to access the systemn,
the log-in application sets up the user’s home environment.
As represented by a Block LP12, the log-in application first
starts an object broker 22 for the user. Next, as
represented by a Block LP13, the log-in application saves
the information that the client application will need to
access the object broker just started. As represented by a
Block LP14, the log-in application retrieves the User Top
Container reference from the user profile repository in
order to get the references of the objects the user can
access.

Next, as represented by a Block LP15, the log-in
application caches the user’s system resource assignments
located in the user profile repository. As shown in TABLE
8, George’s system resource assignments contain the
addresses of his Home User Profile, Home Service Profile and
Home Implementation Repositories.

Finally, as represented by a Block LP16, the log-
in application returns the object reference of the User Top
Container.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

73

After receiving the object reference of the User
Top Container, the log-in application requests an open
operation on the User Top Container in order to display the
contents of the container. Once the User Top Container is
opened, the User Top Container implementation displays its
contents on George’s computer. Referring to TABLE 8,
George’s User Top Container only contains the
ACME: : VIDEOMAIL object. George selects the ACME::VIDEOMAIL
object in order to create and send the video mail message to
John.

In order to activate the ACME::VIDEOMAIL operation
that George has requested, the system must first create an
instance of the ACME::VIDEOMAIL object. After this instance
of the object is created, George performs an open operation
on the newly created object which causes the ACME: :VIDEOMAIL
implementation to perform the functions necessary for George
to record his video mail message. After George finishes
recording the message, he selects .the send operation which
causes the message to be sent to John. These procedures
will be discussed in detail.

Creating the Video Mail Message

When George selects the ACME::VIDEOMAIL object
from his User Top Container, a program running on George’s
computer sends an object creation request message to
George’s object broker. Referring now to the Object
Creation routine represented by FIGURE 5, the object broker
22 retrieves creation parameters from George’s user profile
repository and service profile repository using the
Repository Search routine represented by FIGURE 8. The
addresses of George’s user and service profile repositories
were cached when George logged in to the system. Therefore,
the Locate Repository routine will not be invoked by the
Repository Search routine. 1In addition, no replication of
George’s service profile repository is needed because, as

10

15

20

25

30

WO 96/10787 PCT/US95/10819

74

shown by TABLE 7, the /USA/FLORIDA/ORLANDO service profile
repository contains an ACME::VIDEOMAIL object entry.

As shown in TABLE 8, George’s user profile
repository contains Creation Parameters defined by the
ACME: :VIDEOMAIL object’s Object Resource Assignments.
Therefore, these parameters will be passed to the creation
operation instead of the parameters defined in George'’s
service profile repository shown in TABLE 7. For example,
the "OrlServ50 VidMail3" not the "OrlServ20 VMail" Object
Storage information will be used to determine where the
object is stored. However, the Compression_Type and
Resolution Creation Attributes defined in George’s service
profile repository are not defined in George’s user profile
repository. Consequently, these two attributes will be
passed to the creation operation.

Referring again to the Object Creation operation
represented by FIGURE 5, the object broker 22 retrieves the
Available Object Broker information from George’s user and
service profile repository. As TABLES 7 and 8 show, there
are no object brokers entries and, consequently, there are
no object broker restrictions.

Next, the object broker 22 checks whether the
ACME: :VIDEOMAIL implementation is activated. Since George
has not activated this object before now, the object will
have to be activated. The object broker 22 queries George’s
user and service profile repositories for implementation
defaults and preferences. As shown in TABLES 7 and 8,
George’s service profile repository does not contain any
implementation information that the user profile repository
does not supply. Therefore, only the entries in George'’s
user profile repository will be used to supply the
implementation preference information.

10

15

20

25

30

35

WO 96/10787 PCT/US95/10819

75

To retrieve the location information for the
executable and library implementation information, the
object broker 22 gqueries the implementation repository using
the address that was cached when George logged in. TABLE 8
shows that George’s Home implementation repository is
located at "OrlServ2 ImpRep." As the /USA/FLORIDA/ORLANDO
entry in TABLE 6 shows, this is the address of the Peer
Replication Implementation Repository in the
/USA/FLORIDA/ORLANDO service area. The Search Parameters
are based on George’s computing environment and the
Implementation Preferences retrieved from his user profile
repository above. As shown in TABLE 9, these parameters
match Object #1 in George’s implementation repository.

At this point in the object creation process, all
the information has been retrieved from the information
repositories and the next step is to activate the
implementation. If the object creation implementation
specified by the Executable Information in TABLE 9 is not
already loaded onto the compute device, the object broker 22
loads the implementation from the areas indicated by the
Executable Information. The implementation is started and
the create operation and the cached creation parameters are
passed to the implementation.

After the create operation is passed to the
implementation, the object is created. Here, the
implementation requests an entry in the "OrlServ50 vidMail3"
database specified in the Object Storage Information in
George’s user profile repository. Then, the implementation
stores the object’s attributes in the database entry
returned by the database. Next, the implementation requests
an object reference from the object broker. The object
broker 22 sets up an entry for the newly created object in
the "OrlLRServ2 Lrep3" location repository specified by the
Location Object Storage Information in George’s user profile
repository. The Data Storage Location of this entry will be

10

15

20

25

30

WO 96/10787 PCT/US95/10819

76

the database entry returned by the "OrlServ50 VidMail3"
database above. The object broker 22 then builds an object
reference for the newly created object. This object
reference will contain the ACME::VIDEOMAIL object type and
the location repository entry information from above.
Finally, the implementation initializes the ACME::VIDEOMAIL
object’s algorithm using the Creation Attributes and the
Activation Attributes retrieved earlier from George’s user
and service profile repositories.

An open operation is then performed on the newly
created object. After which, the implementation presents
the appropriate interface to George which allows him to
record the video mail message.

Sending the Video Majl Message

After George finishes recording the message, he
sends the message to John by selecting the send operation
and keying in John’s user identification. 1In order to
deliver the message to John, the object broker 22 will
attempt to locate the Destination Container for John’s
incoming ACME::VIDEOMAIL objects. This parameter should be
located in John’s user profile repository under the
ACME: :VIDEOMAIL object type entry.

The send operation will invoke the Repository
Search routine to locate John’s user profile repository.
Since John’s user profile repository address has not been
cached, the Repository Search routine will invoke the Locate
Repository routine.

The search for John’s user profile repository
starts with George’s system profile repository in the
/USA/FLORIDA/ORLANDO service area. As shown in TABLE 6,
this repository only contains an entry for its own service
area. Therefore, the search request will be passed up to

10

15

20

25

30

WO 96/10787 PCT/US95/10819

77

this service area’s Parent System Profile Repository. As
shown in TABLE 6, the address of the this service area’s
Parent System Profile Repository, /USA/FLORIDA, is "FLServ2
SysProf."

As TABLE 6 shows, the /USA/FLORIDA system profile
repository does not contain an entry for John’s service
area. As a result, the Locate Repository routine will
search for entries that are above John’s service area in the
hierarchy. Here, a match will be found with the
/USA/WASHINGTON service area. The search will be passed to
that service area’s system profile repository located at
"WAServl SysProf."

The search at the /USA/WASHINGTON service area
will find the Child Level Name entry for Seattle under Entry
Name #1. The address of the Seattle Child System Profile
Repository, as shown in TABLE 6, is "SeaServl SysProf." The
search will be passed to the /USA/WASHINGTON/SEATTLE system
profile repository.

The search at the /USA/WASHINGTON/SEATTLE service
area will find the Peer Replication Repository at address
"SeaServ2 UserRep" in the User Repository Configuration
information under Entry Name #1, as shown in TABLE 6. This
search result will be passed back to the send operation
through the search routines that were called at the
/USA/WASHINGTON/SEATTLE, /USA/WASHINGTON, and /USA/FLORIDA
service areas.

As TABLE 8 shows, John’s user profile repository
does not contain an entry for the ACME::VIDEOMAIL object.
Consequently, John does not have Destination Container for
this object type. Therefore, the send routine will query
John’s user profile repository for the address of his User
Top Container, shown in TABLE 8, in order to send the object
to the User Top Container.

10

15

20

25

30

WO 96/10787 PCT/US95/10819

78

The send operation delivers the ACME: :VIDEOMAIL
object to John’s User Top Container by executing a copy
operation that creates an new ACME::VIDEOMAIL object. This
Ccreate operation is performed essentially as described above
except that, here, John’s service profile repository which
is in the /USA/WASHINGTON/SEATTLE service area is queried
for Creation Parameters instead of George’s service profile
repository.

The Repository Search routine, as represented by
FIGURE 8, is used to get these Creation Parameters. Since
the Replicate_Flag parameter is set to TRUE, the Replication
On-Demand routine, as represented in FIGURE 11, will query
John’s service profile repository for the Creation
Parameters. However, as TABLE 7 shows, John’s service
profile repository, does not contain an ACME::VIDEOMAIL
entry. Therefore, the Replication On-Demand routine will
invoke the Locate Repository routine, described by FIGURE 9,
to get the address of the service profile repository at the
/USA/WASHINGTON service area in order to pass the search to
that repository.

As TABLE 7 shows, the /USA/WASHINGTON service area
does contain the ACME::VIDEOMAIL object. Therefore, the
Replication On-Demand routine will pass back the Creation
Parameters found here and will replicate the ACME::VIDEOMAIL
object to the /USA/WASHINGTON/SEATTLE service profile
repository.

The /USA/WASHINGTON Creation Parameters specify
that the object will be stored in the "WAServ20 VmailAA"
database and the location repository will be the "WALRServé
LocRep21" database. Therefore, the send operation will
request a storage entry for the newly created object in the
"WAServ20 VmailAA" database. In addition, that database
entry will be stored in the location repository named
"WALRServ6é LocRep21".

10

15

20

25

30

WO 96/10787 PCT/US95/10819

79

The send operation then gets an object reference
for the newly created object from the object broker 22 and
adds the reference to John’s User Top Container. George
then closes the ACME::VIDEOMAIL object which causes its
implementation to end and causes the object broker 22 to
delete that object’s cached information.

Viewing the Video Mail Message

John views the video mail message by requesting an
open operation on the ACME::VIDEOMAIL object. This
operation will follow the same procedures described above
except that John uses a different computer environment that
George does. John’s configuration uses the Solaris 2.3
Operating System, a Sun Sparc Hardware Platform, ATM Network
Protocol, and a PowerView Implementation Preference. As
shown in TABLE 9, this configuration matches the
implementation repository Search Parameters in the
/USA/WASHINGTON/SEATTLE service area. Consequently, the
Executable Information from that implementation repository
entry will be used instead of the Executable Information
that was used to invoke George’s ACME:VIDEOMAIL operations.
After viewing the message, if John deletes the message the
ACME:VIDEOMAIL object’s delete operation will be performed
which will delete this instance of the ACME:VIDEOMAIL
object.

The example above illustrates the advantages
provided by the present invention in managing a collection
of objects. By storing object creation and activation
attributes in repositories that are accessed when the object
is created and activated, the objects managed by the system
can be implemented on any given hardware platform, operating
system, or other system resource in a manner that is
transparent to the user of the object. Since the
information that provides this flexibility is stored in a
repository, the information can be changed whenever needed

10

15

WO 96/10787 PCT/US95/10819

80

to alter an individual user’s computing environment, to
shift system resource loads to other parts of a distributed
system, or to add new processing capabilities.

In addition, the present invention provides unique
solutions to the growth problems that arise in distributed
computing environments. Through the use of location
repositories and a hierarchy of repositories, system storage
can be changed as needed in a manner that is transparent to
the users of the objects that use the system storage
resources.

These advantages are provided in system that
inherently provides a simple and efficient method of
managing system objects and the system’s compute, network,
and storage resources, all of which can be accomplished with
minimal impact on the system’s users.

While certain specific embodiments of the
invention are disclosed as typical, the invention is not
limited to these particular forms, but rather is applicable
broadly to all such variations as fall within the scope of
the appended claims. For example, the information stored in
the disclosed repositories and the system resources managed
need not be limited to those described. Similarly, the
information in the repositories may be stored and retrieved
in a variety of different ways and the types of repositories
used can vary depending on the functionality required in a
given system. 1In addition, objects can be created and
deleted, object operations can be performed, repositories
can be located, or information in the repositories can be
replicated in a number of different ways without deviating
from the teachings of the invention. Thus, the specific
steps discussed in detail above concerning the performance
of these operations are merely illustrative of one
embodiment of the invention.

W 0 N 60 0 & W N =

T T T
O s W N KO

0 N oW e

N o e W e

WO 96/10787 PCT/US95/10819

81

WHAT IS CLAIMED IS:

1. A method of managing an object-oriented computer
environment for use by a plurality of users comprising the
steps of:

providing a plurality of objects for performing
object operations, each of said objects having a life cycle;

providing a plurality of object brokers to manage
said objects in the performance of said object operations;

storing, in a plurality of information
repositories, information required in performance of said
object operations;

causing the object brokers to access the
information in at least one of said repositories to activate
one or more of said objects; and

using the information within the repositories
during the life cycles of said objects to manage the use of

system resources by said objects.

2. The method of claim 1 wherein:

the information stored in said information
repositories includes implementation information as to which
of a plurality of object implementations is used in the
performance of said object operations; and

said implementation information is selectively
accessible in response to messages identifying specific
system resources to be used.

3. The method of claim 1 which further comprises:
storing, in at least one of said repositories,
location information identifying a storage location of one
of said objects; and
accessing the object by retrieving said location
information from one of the repositories and thereafter
using the retrieved information to locate the object.

4. The method of claim 3 wherein:

Lo VS B S B T

0 9 00 W N e

N oy oW

oW e

WO 96/10787 PCT/US95/10819

82

said location information is changed in the course
of object operations.

5. The method of claim 3 wherein:
new objects are created, as needed, and said
location information is changed to assign locations within
the environment at which said new objects are stored.

6. The method of claim 1 which further comprises:

storing, in at least one of said repositories,
information indicating preferences for a preselected manner
of performing said object operations; and

initiating object operations by retrieving said
preference information from one of the repositories and
thereafter using said preference information in the
performance of said operations.

7. The method of claim 6 wherein:
said preference information is changed in the
course of object operations.

8. The method of claim 6 wherein:
the information within said at least one
repository includes information as to preferences of at
least one user for a preselected manner of performing object
operations; and
said repository provides said user preference
information in response to user identification messages.

9. The method of claim 8 wherein:
said user identification messages include
information as to a type of object to be implemented and a
type of operating system to be used.

10. The method of claim 1 wherein:

[- PSR S 0 N o0 0 W W 0 3 00 0 W N

N oW e

WO 96/10787 PCT/US95/10819

83

at least one of said information repositories
contains information specifying default preferences for a
preselected manner of performing object operations within a
preselected service category; and

said at least one information repository provides
said default preferences in response to messages identifying
said service category.

11. The method of claim 10 wherein:
said identifying messages further identify a type
of object to be implemented and a type of operating system
to be used.

12. The method of claim 1 wherein:

at least one of said information repositories
contains information specifying default preferences for a
preselected manner of performing object operations within a
preselected geographic service category; and

said at least one information repository provides
said default system preferences in response to messages
identifying said geographic service category.

13. The method of claim 1 wherein:
the contents of said at least one information
repository further specifies restrictions on which of the
object brokers can be used to manage a particular object in
the performance of object operations.

14. A method of managing an object-oriented computer
environment for use by a plurality of users comprising the
steps of:

providing a plurality of objects for performing
object operations;

providing a plurality of object brokers to manage
said objects in the performance of said object operations;

10
11
12
13
14
15

16
17
18

L ¥ S N

O & W N w

DWW N

WO 96/10787 PCT/US95/10819

84

storing, in a plurality of information
repositories, which are themselves processing entities,
information to perform object operations;

assigning said information repositories to
different levels of a hierarchy to control the distribution
of said information;

accessing the information in at least one of said
repositories to activate one or more of said objects; and

using the information within the repositories to
manage system resources in the performance of said object
operations.

15. The method of claim 14 which further comprises:
storing, in a plurality of system profile
repositories, information required to access the information

in said information repositories.

16. The method of claim 15 wherein:
the service profile repositories are themselves
assigned to different levels of said hierarchy.

17. The method of claim 14 wherein:
the repositories at different levels of said
hierarchy query each other to locate requested information.

18. The method of claim 14 wherein:
the repositories replicate said information within
and between said levels of said hierarchy, as required to
make the information accessible throughout the computer
environment.

19. The method of claim 18 wherein:
a preselected one of the repositories at each
level of the hierarchy replicates changes in said
information to the other repositories at the same level.

20. The method of claim 18 wherein:

n & W N

0N & W N P

[N o W

P RN

WO 96/10787 PCT/US95/10819

85

at least one of the repositories at each level of
the hierarchy replicates changes in said information to the
repositories at the next lower level.

21. The method of claim 14 wherein:
one of said repositories queries another of said
repositories at a different level of the hierarchy when said
one repository does not contain information requested by a

computing entity of said environment.

22. The method of claim 21 wherein:
said other of said repositories is located above
said one of said repositories in the hierarchy.

23. The method of claim 21 wherein:
said other of said repositories queries an
additional repository at another level of said hierarchy if
said other repository does not contain the requested
information.

24. The method of claim 23 wherein:
the repository at which the requested information
is ultimately found communicates the requested information
or its address to said said one of said repositories; and
said one of said repositories, in turn,
communicates the requested information or its address to the
computing entity requesting it.

25. The method of claim 24 wherein:
said one of said repositories replicates the
requested information for storage therein.

26. An object-oriented computer environment for use by
a plurality of users comprising:
a plurality of objects for performing object
operations, each of said objects having a life cycle;

O ©® N o U

i e
N = O

n & W N VW 0 N 60 O > W N M

O 0 9 O

N & W N

WO 96/10787 PCT/US95/10819

86

a plurality of object brokers capable of managing
said objects in the performance of said object operations;
and

a plurality of information repositories containing
information selectively accessible to activate one or more
of said objects, the information within said repositories
being useable during the life cycles of said objects to
manage the use of system resources by said objects.

27. The object-oriented computer environment of claim

26 wherein:

the information stored in said information
repositories includes implementation information as to which
of a plurality of object implementations is used in the
performance of said object operations; and

said implementation information is selectively
accessible in response to messages identifying specific
system resources to be used.

28. The object-oriented computer environment of claim
26 wherein:
at least one of said information repositories
contains location information indicating a location within

the environment at which one of said objects is stored.

29. The object-oriented computer environment of claim
28 wherein:
said location information is changeable in the
course of object operations.

30. The object-oriented computer environment of claim
28 wherein:
said location information is changeable to assign
a location within the environment at which a new object is
stored when it is created.

O & W N =

0 o W N 0 N 6o U W N S W N R

0 N O O W N

WO 96/10787 PCT/US95/10819

87

31. The object-oriented computer environment of claim
26 wherein:
the information within said at least one
repository indicates preferences for a preselected manner of

performing said object operations.

32. The object-oriented computer environment of claim
31 wherein:
said preference information is changeable in the
course of object operations.

33. The object-oriented computer environment of claim

26 wherein:
the information within said at least one

repository includes information as to preferences of at
least one user for a preselected manner of performing said
object operations, said user preference information being
provided by said repository in response to user
identification messages.

34. The object-oriented computer environment of claim
33 wherein:
said user identification messages include
information as to a type of object to be implemented and a
type of operating system to be used.

35. The object-oriented computer environment of claim

26 wherein:
at least one of said information repositories

contains information specifying default preferences for a
preselected manner of performing object operations within a
preselected service category, said default preferences being
provided in response to messages identifying said service
category.

36. The object-oriented computer environment of claim

35 wherein:

N b W NN W N 6 W N

O 0 3 6 0 & W N B

BB B R
W N B O

WO 96/10787 PCT/US95/10819

88

said identifying messages further identify a type
of object to be implemented and a type of operating system
to be used.

37. The object-oriented computer environment of claim

26 wherein:
at least one of said information repositories

contains information specifying default preferences for a
preselected manner of performing object operations within a
preselected geographic service category, said default
characteristics being provided in response to messages
identifying said geographic service category.

38. The object-oriented computer environment of claim
26 wherein:
the contents of said at least one information
repository further specifies restrictions on which of the
object brokers can be used to manage a particular object.

39. An object-oriented computer environment for use by
a plurality of users comprising:

a plurality of objects for performing object
operations;

a plurality of object brokers capable of managing
said objects in the performance of said object operations;
and |

a plurality of information repositories which
themselves are processing entities containing information
selectively accessible to activate one or more of said
objects, said information repositories being assigned to
different levels of a hierarchy to control the distribution
of said information.

40. The object-oriented computer environment of claim
39 further comprising:

)]

O U W N A U oW N R S W oN R PRI N

s W

WO 96/10787 PCT/US95/10819

89

a plurality of system profile repositories
containing information required to access the information in
said information repositories.

41. The object-oriented computer environment of claim
40 wherein:
the service profile repositories are themselves
assigned to different levels of said hierarchy.

42. The object-oriented computer environment of claim
39 wherein:
the repositories at different levels of said

hierarchy query each other to locate requested information.

43. The object-oriented computer environment of claim
39 wherein:
the repositories are capable of replicating said
information within and between said levels of said
hierarchy, as required to make the information accessible
throughout the computer environment.

44. The object-oriented computer environment of claim
43 wherein:

a preselected one of the repositories at each
level of the hierarchy is capable of replicating changes in
said information to the other repositories at the same
level.

45. The object-oriented computer environment of claim
43 wherein:
at least one of the repositories at each level of
the hierarchy is capable of replicating changes in said
information to the repositories at the next lower 1level.

46. The object-oriented computer environment of claim

39 wherein:

N oo W

=W

O 0 N o o W a U - W N

W e

WO 96/10787 PCT/US95/10819

90

one of said repositories is capable of querying
another of said repositories at a different level of said
hierarchy when said one repository does not contain
information requested by a computing entity of said
environment.

47. The object-oriented computer environment of claim
46 wherein:
said other of said repositories is located above
said one of said repositories in the hierarchy.

48. The object-oriented computer environment of claim
46 wherein:
said other of said repositories is capable of
querying an additional repository at another level of said
hierarchy if said other repository does not contain the
requested information.

49. The object-oriented computer environment of claim

48 wherein:

the repository at which the requested information
is ultimately found is capable of communicating the
requested information or its address to said one of said
repositories; and

said one of said repositories, in turn,
communicates the requested information or its address to the
computing entity requesting it.

50. The object-oriented computer environment of claim
49 wherein:
said one of said repositories is capable of
replicating the requested information for storage therein.

WO 96/10787 PCT/US95/10819

1/22
v/\ 20
30 32 /ﬂjO
CLIENT ADMINISTRATION MISCELLANEOQUS
APPLICATIONS TOOLS SERVICES

’//~28

COMMUNICATIONS CHANNELS

22 24 26 36

OBJECT LOCATION PROFILE IMPLEMEN-TATION
BROKER REPOSITORY REPOSITORY REPOSITORY

I 1] {

!]] I

I | | |

: i : |

| 22n | 24n | 26n | 36n

I I I !

] /’/ I | /”/] /’/
OBJECT LOCATION PROFILE IMPLEMENTATION
BROKER REPOSITORY REPOSITORY REPOSITORY

FIG. 1
SUBSTITUTE SHEET (RULE 26)

PCT/US95/10819

WO 96/10787

S3IIHOLISOd3Y 3140dd

AYO1ISOd3y
317140dd ¥3SN

222

JOVHO1S

|

|

|

l

|

|

AHOLISOd3d _ AYOLISOd3d AdOLISOd3d
37140dd IJINH3S " NOILVINIWITdWI NOILVYOO01

m

| S S
i 9e ve
!

HIN0H4 v
1903r80
H3IXMOYY 103ra0
J1VNY3L1V Ol
f
¢c
NOILVININITdWI NOILVOIlddV
103rg0 IN311D
~ S

4%

SUBSTITUTE SHEET (RULE 26)

PCT/US95/10819

WO 96/10787

3122

AYOLISOd3Y
VS ‘v ‘Z€ ‘HZ
13AaN

AN

AHOLISO43Y
V¥ ‘Z€ ‘HZ 13731

AY0LISOd3N
VE ‘22 13A31

AYO1ISOd3Yd
ZZ 13N

¢ Old

AHOLISOd3d
VS ‘v 've Ve
I3ATT

AHO0LISOd3y
V¥ ‘W€ 'VZ 13AIT

\

AYOLISOd3Y
Z¢€ 'VZ 13ATN

AHOLISOd3d
Ve ‘'VZ 13A37

AdOL1ISOd3y AdOLISOd3N
Z€ 'HZ 13AT Ve 'HZ 13AT1
AdOLISOd3d
HZ 13A31
AHOLISOd3d
L 13ATT

/

AHOLISOd3d
VZ 13ATT

SUBSTITUTE SHEET (RULE 26)

WO 96/10787 PCT/US95/10819

4/22

OBJECT OPERATION |~ HL1
REQUEST

RETRIEVE OBJECT Vs HL2
LOCATION

RETRIEVE DEFAULT
PREFERENCES L~ HL3

y

RETRIEVE USER Vs HL4
PREFERENCES

y

SEARCH HL5
IMPLEMENTATION e
REPOSITORY

Y

RETRIEVE LOCATION OF Vs HL6
EXECUTABLE

RETRIEVE AND LOAD ~ HL7
EXECUTABLE

START IMPLEMENTATION [~ HL8

v

PASS RESULTS BACK |~ HL®

SUBSTITUTE SHEET (RULE 26) FIG.4.

WO 96/10787 PCT/US95/10819
5/
0C1 22
-
RECEIVE OBJECT
CREATION REQUEST
0C2
QUERY USER PROFILE
OCQ
0OC3
CREATION CACHE CREATION
PARAMETERS? PARAMETERS
0C5
QUERY SERVICE PROFILE |¢—
O(< O/CB
OocCe
CACHE MERGE
o A%iigggs'z CREATION » CREATION
PARAMETERS PARAMETERS
OoC11
o
0C9
PASS
BROKER BROKER REQUEST TO
RESTRICTIONS? AUTHORIZED? REMOTE
BROKER
0C12
OBJECT IMPLEM.
ACTIVATED?
2a
OCE
QUERY USER PROFILE
; ; SUBSTITUTE SHEET (RULE 26) FIG 5A

WO 96/10787 PCT/US95/10819
6/22

0C14 0/015

CACHE USER
PREFERENCES

USER
PREFERENCES?

QUERY SERVICE PROFILE

0C18
~

OC17

YES MERGE
PREFERENCES
AND DEFAULTS

DEFAULT
PREFERENCES?

A 4

BUILD IMPLEMENTATION
REPOSITORY QUERY

0C20
~ y

QUERY IMPLEMENTATION
REPOSITORY

0C21 OG22

YES | |INKIN ORLOAD

MISSING FILES

0C23 NO
—

ACTIVATE ' 2a
IMPLEMENTATION

R

PASS REQUEST TO
IMPLEMENTATION

A

* FIG. 5B
SUBSTITUTE SHEET (RULE 26)

WO 96/10787 PCT/US95/10819

7122

OC 25
N

ASK REQUEST
BROKER TO
CREATE OBJECT

0C26
N ‘

STORE OBJECT
LOCATION

0C27
S

RETURN OBJECT
REFERENCE

0ocCz8

A 4

IMPLEMENTATION
RETURNS
RESULTS

0C29
N

RETURN RESULTS
TO CLIENT

SUBSTITUTE SHEET (RULE 26) FIG. 5C

WO 96/10787

OA1 8122

Ny

RECEIVE OBJECT
OPERATION
REQUEST

OA2

OBJECT ALREADY
ACTIVATED?

<

QUERY LOCATION
REPOSITORY

BROKER
AUTHORIZED?

BROKER
RESTRICTIONS?

AZ

OBJECT
IMPLEMENTATION
ACTIVATED?

YES

OAS8 2a
g \/
QUERY USER PROFILE
| OA\‘S
ACTIVATION CACHE
PREFERENCES? ACTIVATION
? PREFERENCES
NO
O
QUERY SERVICE PROFILE

SUBSTITUTE SHEET (RULE 26)

PCT/US95/10819

OA6

PASS REQUEST
TO REMOTE
BROKER

FIG. 6A

WO 96/10787 PCT/US95/10819

9/22

OA13
N

OA12

MERGE
PREFERENCES
AND DEFAULTS

DEFAULT
PREFERENCES?

OAg
BUILD IMPLEMENTATION
REPOSITORY QUERY A
OA15
~N y
QUERY IMPLEMENTATION
REPOSITORY

OA17
OA16 S

YES
MISSING FILES? LINK IN OR LOAD

MISSING FILES
NO
OA18
y
ACTIVATE
IMPLEMENTATION
OA&
PASS REQUEST
TO IMPLEMENTATION

SUBSTITUTE SHEET (RULE 26)

WO 96/10787

10/22

0A20

N

REQUEST
STORAGE
INFORMATION

OA21

S

PASS BACK
STORAGE
INFORMATION

2]

PERFORM OBJECT
OPERATION

OA23

N y

IMPLEMENTATION
RETURNS STATUS

o |

RETURN RESULTS
TO CLIENT

SUBSTITUTE SHEET (RULE 26)

PCT/US95/10819

FIG. 6C

WO 96/10787 PCT/US95/10819

OD1 11/22
N

RECEIVE OBJECT
OPERATION
REQUEST

0oD2

OBJECT ALREADY YES

ACTIVATED?

QUERY LOCATION
REPOSITORY

OoDé
OD4
PASS
BROKER BROKER REQUEST TO
RESTRICTIONS? AUTHORIZED? REMOTE
BROKER

OBJECT IMPLEM.
ACTIVATED?

QUERY USER PROFILE
0OD10
0oD9 /J
ACTIVATION AC??V?G?ON
PREFERENCES?
PREFERENCES

OD11

QUERY SERVICE PROFILE

SUBSTITUTE SHEET (RULE 26) FIG. 7A

WO 96/10787 PCT/US95/10819

12122

0OD13
OD12 _C
MERGE
DEFAULT
PREFERENCES
PREFERENCES? AND DEFAULTS
oD14 NO
N !
BUILD IMPLEMENTATION
REPOSITORY QUERY
oD15
S y
QUERY IMPLEMENTATION
REPOSITORY
OD17
0D16 -

LINK IN OR LOAD

MISSING FILES? MISSING FILES

NO

oD18
N y

ACTIVATE
IMPLEMENTATION

OD19 N

PASS REQUEST
TO IMPLEMENTATION

SUBSTITUTE SHEET (RULE 26) FIG. 7B

WO 96/10787

13/22

0D20
N

DELETE OBJECT
STORAGE

OD21
~ ,

REQUEST OBJECT
REFERENCE
DELETION

0D22
~N y

DELETE LOCATION
REPOSITORY
ENTRY

oD23
S

DELETE CACHED
INFORMATION

0D24
N

IMPLEMENTATION
RETURNS STATUS

0D25
N

RETURN RESULTS
TO CLIENT

SUBSTITUTE SHEET (RULE 26)

PCT/US95/10819

FIG. 7C

WO 96/10787

RS1
o

RECEIVE SEARCH
PARAMETERS

ADDRESS
CACHED?

PCT/US95/10819

14/22

RS3

GET CACHED
ADDRESS

GET SYSTEM PROFILE

ADDRESS

RSS

4

EXTRACT SERVICE AREA

RS6

4

LOCATE REPOSITORY
AND CACHE ADDRESS

RS7

USER PROFILE
REPOSITORY?.

RS8

RS9
Yo

REPLICATE FLAG
= TRUE?

REPLICATION
ON-
DEMAND
ALGORITHM

RS10 YES
N y
QUERY REPOSITORY
RS11
N vy
PASS BACK RESULTS

SUBSTITUTE SHEET (RULE 26)

FIG. 8

WO 96/10787

LR1
-

RECEIVE SEARCH
PARAMETERS

LR2

DISABLED?

DOWNWARD FLAG

RESET PARTIAL
MATCH FLAG

15/22

MATCH
POSSIBLE?

LR5
\

4

SEARCH FOR
SERVICE
AREA

PCT/US95/10819

3c

LR6

SERVICE AREA
FOUND?

<

STRIP OFF
LOWEST LEVEL
NAME

LR10
o y

SET PARTIAL
MATCH FLAG

LAST LEVEL?

PARTIAL MATCH?

YES

LR8

GET
REPOSITORY
ADDRESS

LR11
N v

PASS BACK
RESULTS

SUBSTITUTE SHEET (RULE 26)

FIG. 9A

WO 96/10787

16/22
LR13
g
GET LOCAL SYSTEM
PROFILE NAME
LR14 l
\\
GET LOCAL SYSTEM
PROFILE INFORMATION
YES

DOWNWARD

PCT/US95/10819

FLAG ACTIVE?

TOP OF THE
HIERARCHY?

COMPARE LOCAL NAME
AND DESIRED SERVICE
AREA

LR20
LR19 N

DOWNWARD
FLAG DISABLED?

h 4

LOWEST
COMMON POINT?

SET DOWNWARD
FLAG ACTIVE

SUBSTITUTE SHEET (RULE 26)

FIG. 9B

WO 96/10787

PCT/US95/10819

177122
3a

LR22

<

DOWNWARD O
FLAG ACTIVE? SET DOWNWARD
/ FLAG ACTIVE
YES
" LR24
GET PARENT SYSTEM

LR23 GET CHILD NA
™ D NAME

PROFILE ADDRESS

LR25
\

GET CHILD
SYSTEM PROFILE
ADDRESS

LR27

CHILD
ENTRY
FOUND?

NO

v

LR29
N

RETURN "NOT
FOUND" STATUS

A

y

LR26
)

CONNECT TO NEXT
SYSTEM PROFILE
REPOSITORY

A

LR28
J

PASS SEARCH REQUEST
TO NEXT SYSTEM
PROFILE REPOSITORY

LR30
g,

PASS BACK RESULTS

SUBSTITUTE SHEET (RULE 26)

FIG. 9C

WO 96/10787 PCT/US95/10819

18/22
AR1

RETRIEVE
REPOSITORY
CONFIGURATION

AR3
AR2 et

RETRIEVE PEER
YES REPOSITORY
LOCATIONS

AR4
N NO

RETRIEVE CHILD
REPOSITORY
LOCATIONS

AR5
~ \

CACHE
LOCATIONS

AR7

AR6

YES | ALLOW UNLIMITED
REPLICATION

% o

LIMIT
REPLICATION

AR9
g

Y

BUILD LIST FOR
REPLICATION

AR10
~ y

POINT TO FIRST
TARGET
REPOSITORY

FIG. 10A
SUBSTITUTE SHEET (RULE 26) |

WO 96/10787 PCT/US95/10819
19/22
AR11
—
CONNECT TO TARGET
REPOSITORY
AR2 [
POINT TO START OF
REPLICATION LIST
AR13
— y
QUERY TARGET FOR
MATCHING ENTRY
AR15
AR14 e N
s
ENTRY MISSING? > Aggp'f,'g?g;f
AR(
AR16
ENTRY REPLACE ENTRY
OUTDATED? IN TARGET
REPOSITORY
y
AR19
AR18
IS THIS LAST NO ADVANCE ENTRY
REPLICATION ONTER
ENTRY?
AR&)
DISCONNECT FROM
TARGET
AR21
— |
ADVANCE REPOSITORY
POINTER
AR22
ANOTHER YES
REPOSITORY?
AR23
END REPLICATION
PROCESS SUBSTITUTE SHEET (RULE 26) FIG' 10B

WO 96/10787

OR1
\

RECEIVE SEARCH

STRING

A

ORZ\

QUERY
REPOSITORY

OR3

YES

NO

GET HIGHER
LEVEL
REPOSITORY
ADDRESS

OR6

HIGHER
LEVEL
AVAILABLE?

OR8
A\l

CONNECT TO
HIGHER
REPOSITORY

v

OR9
\l

PASS SEARCH TO

OR10

OR13

HIGHER
REPOSITORY

YES

NO

PASS BACK
FAILURE STATUS

20122

OR4

PASS BACK
RESULTS

OR7

_

PASS BACK
FAILURE STATUS

OR11

~

PASS BACK
SEARCH RESULTS

PCT/US95/10819

OR12

~

REPLICATE THE

SUBSTITUTE SHEET (RULE 26)

ENTRY LOCALLY

FIG. 11

WO 96/10787 PCT/US95/10819
21/22
LP1
\ RECEIVE USER NAME
AND PASSWORD
LPZ\
GET SYSTEM PROFILE
ADDRESS

LP3\ v

EXTRACT SERVICE AREA
LP4\ y

LOCATE USER PROFILE

REPOSITORY
LP6
LP5 ~

REPOSITORY

FOUND?

RETURN LOG-IN ERROR

LP7\\

DEMOGRAPHICS

GET USER

LP8

LP10

MATCHING USER

LPS

P

ENTRY?

RETURN LOG-IN ERROR

LP11

~

PASSWORD
MATCH?

RETURN LOG-IN ERROR

FIG. 12A

SUBSTITUTE SHEET (RULE 26)

WO 96/10787

LP12

LP13

LP14

22122

\ START OBJECT BROKER

y

\. SAVE CONNECTION
INFORMATION

4

\ GET TOP CONTAINER
REFERENCE

Y

LP15
\ CACHE SYSTEM

LP16

RESOURCE
ASSIGNMENTS

y

\ RETURN TOP CONTAINER
REFERENCE

SUBSTITUTE SHEET (RULE 26)

PCT/US95/10819

FIG. 12B

INTERNATIONAL SEARCH REPORT

Int ‘onal Application No

PCT/US 95/10819

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/46

According to Internatonal Patent Classificaton (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classificauon system followed by classificaton symbols)

IPC 6 GO6F

Documentation searched other than minimum docurnentation to the extent that such documents are included in the fields searched

Electronic data base consulted duning the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citaton of document, with indication, where appropnate, of the relevant passages Relevant to claim No.
X 0S/2 DEVELOPER, 1-3,5,
vol.6, no.5, September/October 1994, US 14,
pages 46 - 53 26-28,
ROBERT ORFALI AND DAN HARKEY: 30,39
'Client/Server Programming with CORBA
Objects'
A see the whole document 2,6-13,
15-25,
29,
31-38,
40-50
A OPERATING SYSTEMS REVIEW (SIGOPS), 1-50
vol.24, no.4, October 1990, NEW YORK, US
pages 34 - 51
ZHAO HONG AND WAYNE MCCOY: 'An Associated
Object Model for Distributed Systems'
- / -

m Further documents are listed in the continuaton of box C.

D Patent family members are listed in annex.

° Speaial categories of ated documents :

"A° document defining the general state of the art which is not
considered to be of particular relevance

‘E® earlier document but published on or after the international
filing date

“L* document which may throw doubts on priority claim(s) or
which is ated to estatlish the publication date of another
atauon or other speaal reason (as specified)

‘0" document referting to an oral disciosure, use, exhibition or
other means

‘P document published prior to the internatonal filing date but
later than the priority date claimed

“T° later document published after the international filing date
or priority date and not in conflict with the application but
ated to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y® document of particular relevance; the claimed inventon
cannot be considered to invol ve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

“&° document member of the same patent family

Date of the actual completion of the international search

20 December 1995

Date of mailing of the international search report

03,09

Name and mailing address of the [SA

European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Ripwijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Fonderson, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Int ‘onal Applicauon No

PCT/US 95/10819

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of dc with indicauon, where appropnate, of the reievant passages Relevant to claim No.
A SBT/IEEE INTERNATIONAL TELECOMMUNICATIONS 1,14,26,
SYMPOSIUM, Septmber 3-6, 1990, RIO DE 39

JANERIO, BRAZIL

pages 577 - 581

ALEXANDER SCHILL AND GEROLD BLAKOWSKI:
'Configuration Management for Distributed
Object-Oriented Applications'

see the whole document

A IBM TECHNICAL DISCLOSURE BULLETIN, 14,16,
vol.37, no.7, July 1994, NEW YORK, US 39,41
pages 435 - 436

'Topology Database of Managed Objects'
see page 435, line 1 - line 12

see page 435, line 33 - page 436, line 7

Form PCT/1SA/110 (continuation of second sheet) (July 1992)

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

