发明名称

一种动态损伤传播速度的测量装置及方法

摘要

本发明公开了一种动态损伤传播速度的测量装置，包括动态拉伸装置、数字逻辑电路和信号采集器。动态拉伸装置对试样板的两端施加拉力，试样板上平行铺设有多条导电介质，导电介质朝向与动态拉伸装置对试样板施力方向相同，多条导电介质与数字逻辑电路连接，数字逻辑电路与信号采集器连接。其优点是动态拉伸装置对试样板的两端施加拉力，试样板断裂时试样板上的导电介质也随之断裂，导电介质的断裂经由数字逻辑电路转换在采集器呈现的是阶梯矩形波形，每个阶梯的宽度数值对应试样板上导电介质间隔动态损伤传播所需的时间，且信号的反应时间极短在纳秒级范围内，保证了实验的精度和可靠性。
1. 一种动态裂纹传播速度的测量装置，其特征在于包括动态拉伸装置、数字逻辑电路和信号采集器，所述的动态拉伸装置对试样板的两端施加拉力，所述的试样板上平行铺设有多条导电介质，所述的导电介质朝向与动态拉伸装置对试样板施力方向相同，所述的多条导电介质与数字逻辑电路连接，所述的数字逻辑电路与所述的信息采集器连接。

2. 根据权利要求1所述的一种动态裂纹传播速度的测量装置，其特征在于所述的数字逻辑电路包括多个异或门，多个或非门和与非门，所述的异或门包括两个输入脚，所述的或非门包括两个输入脚，所述的与非门包括四个输入脚，所述的多条导电介质的a端连接在一起并且接地，每条导电介质的b端与所述的异或门的一个输入脚连接，每条导电介质的b端同时通过一个分压电阻与5V电源连接，异或门的输出脚与或非门的一个输入脚连接，或非门的输出脚与与非门的一个输入脚连接。

3. 根据权利要求2所述的一种动态裂纹传播速度的测量装置，其特征在于多条导电介质与所述的数字逻辑电路之间设置有连接装置，所述的连接装置包括多根并列的L形导电插针和多根带有插孔的导线，并列的多根所述的导电插针用橡胶卡套连接在一起且固定在试样板上，所述的导电插针的一端与所述的导电介质的b端连接，所述的导电插针另一端插入所述导线的插孔内，所述的导线与异或门的输入脚连接。

4. 根据权利要求1所述的一种动态裂纹传播速度的测量装置，其特征在于所述的动态拉伸装置包括一个夹具和设置在夹具上的拉伸头，所述的每个夹具夹在所述的试样板的一端。

5. 根据权利要求4所述的一种动态裂纹传播速度的测量装置，其特征在于所述的夹具包括具有平台的基座和盖板，所述的试样板放在基座的平台上，所述的试样板通过螺栓固定在盖板与基座之间。

6. 根据权利要求3所述的一种动态裂纹传播速度的测量装置，其特征在于所述的导电介质为导电漆线条或导电油墨线条，所述的导电漆线条或导电油墨线条由丝网印刷印制而成。

7. 一种利用权利要求6所述的测量装置对动态裂纹传播速度进行测量的方法，其特征在于具体步骤如下：1) 预先设定动态拉伸装置的最大载荷数值，通过动态拉伸装置对试样板的两端进行加载，动态拉伸装置对试样板进行线性加载到设定的最大载荷数值，在最大载荷数值时停留一段时间使动态拉伸装置处于稳定状态，试样板内储存了一定的弹性能；2) 打开信号采集器；3) 用一锋利刀片垂直于试样板的拉伸方向在试样板的侧楞中间部位开个小口，试样板内储存的弹性能沿着小口释放开来，起初有个瞬间的沿着小口的裂纹起裂过程，随后裂纹在试样板上沿近似直线传播，裂纹依次切断试样板上的导电漆线条或导电漆墨线条，每断一根导电漆线条或导电油墨线条连接的数字电路经由它的逻辑转换后在信号采集器中呈现高低交替的矩形波形；4) 裂纹传播速度的测量：设试样板初始位置为s0，信号采集器的矩形波初始时刻t0为0，试样板上的导电漆线条或导电油墨线条从小口端开始依次标记为s1、s2、s3...... sn，与其相对应的信号采集器上显示的矩形波形的纵变系数记为t1、t2、t3...... tn，其中si 表示位移坐标，ti 表示时间坐标，然后以位移si 为y轴和时间ti 为x轴绘出位移-时间曲线，然后将上述曲线对时间求一阶倒数便得出速度-时间曲线，从速度-时间曲线便可以确定在某位置所对应时间的试样板裂纹传播速度。
一种动态裂纹传播速度的测量装置及方法

技术领域
[0001] 本发明涉及一种材料力学性能测试仪及测试方法，尤其是涉及一种动态裂纹传播速度的测量装置及方法。

背景技术
[0002] 目前，对材料动态裂纹传播速度的测试方法有几种，比较常见的为结合高速摄影的光弹性方法和焦散线方法。这两个测试方法需配置复杂的光路，其用到的光学测试仪器比较昂贵，且操作这些光学测试仪器比较麻烦。在测量过程中，由于人为参与的比较多，导致最后的测量精度较低，同时对材料试样的要求较高，试样必须是透光或者在试样表面镀膜，这就限制了对某些材料的动态裂纹传播速度的测试。

发明内容
[0003] 本发明所要解决的技术问题是提供一种操作简单且测试精度较高的动态裂纹传播速度的测量装置及方法。
[0004] 本发明解决上述技术问题所采用的技术方案为：一种动态裂纹传播速度的测量装置，其特征在于包括动态拉伸装置、数字逻辑电路和信号采集器，所述的动态拉伸装置对试样板的两端施加拉力，所述的试样板上平行铺设有多条导电介质，所述的导电介质朝向与动态拉伸装置对试样板施力方向相同，所述的多条导电介质与数字逻辑电路连接，所述的数字逻辑电路与所述的信号采集器连接。
[0005] 所述的数字逻辑电路包括多个异或门，多个或非门和与非门，所述的异或门包括两个输入脚，所述的或非门包括五个输入脚，所述的与非门包括四个输入脚，所述的导电介质的a端连接在一起并且接地，每条导电介质的b端与所述的异或门的一个输入脚连接，每条导电介质的b端同时通过一个分压电阻与5V电源连接，异或门的输出脚与或非门的一个输入脚连接，或非门的输出脚与与非门的一个输入脚连接。
[0006] 多条导电介质与所述的数字逻辑电路之间设置有连接装置，所述的连接装置包括多根并列的L形导电插针和多根带插入的导线，所述的多根所述的导电插针用橡胶卡套连接在一起且固定在试样板上，所述的导电插针的一端与所述的导电介质的b端连接，所述的导电插针另一端插入所述导线的插入孔内，所述的导线与异或门的输入脚连接。
[0007] 所述的动态拉伸装置包括两个夹具和设置在夹具上的拉伸头，所述的每个夹具夹在所述的试样板的一端。
[0008] 所述的夹具包括具有平台的基座和盖板，所述的试样板放在基座的平台上，所述的试样板通过螺栓固定在盖板与基座之间。
[0009] 所述的导电介质为导电漆线条或导电油墨线条，所述的导电漆线条或导电油墨线条由丝网印刷制而成。
[0010] 一种利用测量对动态裂纹传播速度进行测量的方法，其特征在于具体步骤如下：
1) 预先设定动态拉伸装置的最大载荷数值，通过动态拉伸装置对试样板的两端进行加载，
动态拉伸装置对试样板进行线性加载到设定的最大截荷数值，在最大截荷数值时停留一定时间使动态拉伸装置处于稳定状态，试样板内储存了一定的弹性能；

【0011】 2) 打开信号采集器；

【0012】 3) 用一把刀片垂直于试样板的拉伸方向在试样板的侧楞中间部位开个小口，试样板内储存的弹性能沿着小口释放开来，起初有个瞬间的沿着小口的裂纹起裂过程，随后裂纹在试样板上沿靠近直线传播，裂纹依次切断试样板上的导电漆线条或导电油墨线条，每断一根导电漆线条或导电油墨线条连接的数字电路由它的逻辑转换后在信号采集器中呈现高低交替的矩形波形；

【0013】 4) 裂纹传播速度的测定：设试样板初始位置为 s_0，信号采集器的矩形波初始时刻 t_0 为 0，试样板上的导电漆线条或导电油墨线条从小口端开始依次标记为 s_1、s_2、s_3、……、s_i，与其相对应的信号采集器上显示的矩形波形的纵边顺次记为 t_1、t_2、t_3、……、t_i，其中 s_i 表示位移坐标，t_i 表示时间坐标，然后以位移 s_i 为 y 轴和时间 t_i 为 x 轴绘出位移 - 时间曲线，然后将上述曲线对时间求一阶倒数便得出速度 - 时间曲线，从速度 - 时间曲线便可以确定在某位置所对应时间的试样板裂纹传播速度。

【0014】与现有技术相比，本发明的优点在于动态拉伸装置对试样板的两端施加拉力，试样板断裂后试样板上的导电介质也随之断裂，导电介质的断裂经由数字逻辑电路转换在采集器呈现的是阶梯矩形波形，每个矩形的宽度数值对应试样板上导电介质间隔动态裂纹传播所需的时间，且信号的反应时间极短在纳秒级范围内，保证了实验的精度和可靠性。

【0015】导电漆或者导电油墨代替铜导线或者铝导线，在动态断裂测速的过程中，避免了铜导线或者铝导线断开瞬时滞后，影响测定时问信号的准确性。同时采用丝网印刷技术，能很好的控制导电漆或者导电油墨间隔距离的精度，使引出的导线达 100 路以上，极大地提高了实验的精度，并且保证导电性和铜导线或者铝导线相同，在满足了测试要求且保证测试的精度。引线方面利用插孔方式引线，方便且电路可靠性强，大大减少了引线的工作量，缩短了实验的周期。

附图说明

【0016】 1) 图 1 为本发明测量装置的结构图；

【0017】 2) 图 2 为本发明所测试的试样板、导电介质和连接装置的结构图；

【0018】 3) 图 3 为本发明的连接装置的结构图；

【0019】 4) 图 4 为本发明的导线结构图；

【0020】 5) 图 5 为本发明的数字逻辑电路图；

【0021】 6) 图 6 为本发明的信号采集器上显示的波形图。

【0022】 7) 图 7 为本发明的位移 - 时间曲线图；

【0023】 8) 图 8 为本发明的速度 - 时间曲线图。

具体实施方式

【0024】以下结合附图实施例对本发明作进一步详细描述。

【0025】一种动态裂纹传播速度的测量装置，包括动态拉伸装置 1、数字逻辑电路和信号采集器，动态拉伸装置 1 对试样板 2 的两端施加拉力，试样板 2 上平行铺设有多条导电介质 3，
导电介质 3 朝向与动态拉伸装置 1 对试样板 2 施力方向相同，多条导电介质 2 与数字逻辑电路连接，数字逻辑电路与信号采集器连接。

【0026】数字逻辑电路包括多个异或门 XOR，多个或非门 NOR 和与非门 NAND，异或门 XOR 包括两个输入脚，或非门 NOR 包括五个输入脚，与非门 NAND 包括四个输入脚，多条导电介质 3 的 a 端连接在一起并且接地，每条导电介质 3 的 b 端与异或门 XOR 的一个输入脚连接，每条导电介质 3 的 b 端同时通过一个分压电阻 R 与 5V 电源连接，或非门 XOR 的输出脚与或非门 NOR 的一个输入脚连接，或非门 NOR 的输出脚与与非门 NAND 的一个输入脚连接。

【0027】多条导电介质 3 与数字逻辑电路之间设置有连接装置，连接装置包括多根并列的 L 形导电插针 4 和多根带插孔的导线 5，并列的多根导电插针 4 用橡胶卡套 6 连接在一起且固定在试样板 2 上，导电插针 4 的一端与导电介质 3 的 b 端连接，导电插针 4 另一端插入所述导线 5 的插孔内，导线 5 与异或门 XOR 的输入脚连接。

【0028】动态拉伸装置 1 包括两个夹具和设置在夹具上的拉伸头 12，每个夹具夹在试样板 2 的一端。

【0029】夹具包括具有平行的基座 11 和盖板 13，试样板 2 放在基座 11 的平台上，试样板 2 通过螺栓 14 固定在盖板 13 与基座 11 之间。

【0030】导电介质 3 为导电漆线条或导电油墨线条，导电漆线条或导电油墨线条由丝网印刷而成。

【0031】一种利用测量装置对动态裂纹传播速度进行测量的方法，具体步骤如下：1）预先设定动态拉伸装置 1 的最大载荷数值，通过动态拉伸装置 1 对试样板 2 的两端进行加载，动态拉伸装置 1 对试样板 2 进行线性加载到设定的最大载荷数值，在最大载荷数值时停留一段时间使动态拉伸装置 1 处于稳定状态，试样板 2 内储存了一定的弹性能；

【0032】2）打开信号采集器；

【0033】3）用一锋利刀片垂直于试样板 2 的拉伸方向在试样板 2 的侧棱中间部位开个小口，试样板 2 内储存的弹性能沿着小口释放开来，起初有个瞬间的沿着小口的裂纹起裂过程，随后裂纹在试样板 2 上沿近似直线传播，裂纹依次切断试样板 2 上的导电漆线条或导电油墨线条 3，每断一根导电漆线条或导电油墨线条 3 连接的数字电路经由它的逻辑转换后在信号采集器中呈现高低交替的矩形波形；

【0034】4）裂纹传播速度的测定：设试样板 2 初始位置为 s，信号采集器的矩形波初始时刻 t = 0，试样板 2 上的导电漆线条或导电油墨线条从小口端开始依次标记为 s_1，s_2，s_3，……，s_n，与其相对应的信号采集器上显示的矩形波形的纵边波次记为 t_1，t_2，t_3，……，t_n，其中 s_i 表示位移坐标，t_i 表示时间坐标，然后以位移 s_i 为 y 轴和时间 t_i 为 x 轴绘出位移 - 时间曲线，然后将上述曲线对时间求一阶倒数便得出速度 - 时间曲线，从速度 - 时间曲线便可以确定在某位置所对应时间的试样板裂纹传播速度。

【0035】如图 5 所示，当导线连接时，每根导线上面的点输出信号 A，当值为 logic 0(～0V)，导线断开时，A，的值变为 logic 1(～5V)。在 B_1，C_1 处和最后输出 0 分别为：

【0036】B_1 = A_1 \oplus A_2 = \overline{A_1 A_2} + A_1 A_2

【0037】C_1 = B_1 + B_2 + B_3 + B_4 + B_5

【0038】O = C_1 C_2 C_3 C_4 = \overline{C_1} + \overline{C_2} + \overline{C_3} + \overline{C_4} = B_1 + B_2 + \cdots + B_9 + B_{20}
[0039] \[(A_1A_2 + A_4A_3) + (A_2A_3 + A_4A_3) + \cdots + (A_{39}A_{40} + A_{39}A_{40}) \]
图8