PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/13585
GO6F 1721, 17/30 Al
’ (43) International Publication Date: 18 May 1995 (18.05.95)
(21) International Application Number: PCT/US94/00049 | (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN,
CZ, DE, DK, ES, F1, GB, HU, JP, KP, KR, KZ, LK, LU,
(22) International Filing Date: 3 January 1994 (03.01.94) LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD,
SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE,
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
(30) Priority Data: patent (BF, BJ, CF, CG, Cl, CM, GA, GN, ML, MR, NE,
08/151,335 12 November 1993 (12.11.93) US SN, TD, TG).
(71) Applicant: TALIGENT, INC. [US/US]; 10201 N. de Anza | Published

Boulevard, Cupertino, CA 95014 (US).

(72) Inventors: ANDERSON, David, R.; 10671 W. Estates Drive,
Cupertino, CA 95014 (US). PALEVICH, Jack, H.; 1759
Lark Lane, Sunnyvale, CA 94087 (US). SCHAEFFER,
Amold; 5 Skymont Court, Belmont, CA 94002 (US).
WATANABE, Ryoji; 22284 Palm Avenue, Cupertino, CA
95014 (US).

(74) Agent: STEPHENS, Keith; Taligent, Inc., 10201 N. de Anza
Boulevard, Cupertino, CA 95014 (US).

With international search report.

(54) Titlee COMPOUND DOCUMENT FRAMEWORK

20 21
/-11 /10 /16 /14
e |18
CPU ROM RAM]
| T Tl ’
/ 34
12
COMM
22
24 N\
INTERFACE DISPLAY
ADAPTER ADAPTER
\36 %
32
26

(57) Abstract

28

An object-oriented compound document architecture provides system level support for document processing features. The object-
oriented compound document framework supports a variety of document processing functions. The framework provides system level support
of collaboration, linking, eternal undo, and content based retrieval, among other things. System level support is provided for document
changes, annotation through model and linking, anchors, model hierarchies, enhanced copy and pasting, command objects, and a generic

retrieval framework.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-1-
COMPOUND DOCUMENT FRAMEWORK

COPYRIGHT NOTIFICATION
Portions of this patent application contain materials that are subject to
copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

Field of the Invention

The present invention generally relates to computer systems, and more
particularly to a method and system for object-oriented compound document
processing.

Background of the Invention

Document processing has virtually revolutionized the way society generates
paper. Typical prior art document processing systems run on top of operating
systems, such as DOS or OS/2. More recently, these document processing systems
have been designed to run in a Windows environment. Many of these document
processing systems are commercially available.

While these document processing systems have vastly improved the ability
to process documents and text, there is great inconsistency among document
processors with respect to the particular methodologies of these processing. The
result of these inconsistencies creates problems for both application developers and
users of the applications.

Application developers must continuously "reinvent the wheel" when
creating a new document processor. While operating systems and interface
programs provide some tools which may be used, the great majority of the design
process for a particular document processor is directed toward creating a group of
processing modules which cooperate to allow the user to process documents.
Application developers often design processing modules which have already been
developed by another company. This requires great duplication of effort, and
requires each developer to deal with the details of how to implement various
desired functions.

Application users run into other problems. While particular functions may
be present in one application, they may be lacking in another. Or a function
available in one application may be slightly varied in another, either in use or in
performance. For exarriple, a function in application A may require certain user
interaction and input to activate the function, while a similar function in

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-2-

application B may require a slightly varied, or totally different, user interaction and
input.

Summary of the Invention

It is an.object of the present invention to provide a document processing
system in which object-oriented frameworks are utilized to implement particular
document processing techniques, including an object-oriented compound
document system. These and other objects of the present invention are re?lized by
a document framework which supports at the system level a variety of compound
document processing functions. The framework provides system level support of
collaboration, linking, eternal undo, and content based retrieval. These and other
objects are carried out by system level support of document changes, annotation
through model and linking, anchors, model hierarchies, enhanced copy and
pasting, command objects, and a generic retrieval framework.

Brief Description of the Drawings

Figure 1 is a block diagram of a personal computer system in accordance with
a preferred embodiment of the invention;

Figure 2 is a block diagram of a link, anchors, and a model;

Figure 3 is a block diagram representing the functions associated with undo;

Figure 4 is a diagram demonstrating the system level indexing and query
processing features of the present invention;

Figure 5 is a block diagram of class representation in accordance with the
present invention;

Figure 6 is a diagram of a typical document which may be made using the
present invention;

Figure 7 is a diagram showing the hierarchical structure of the document
shown in Figure 6;

Figure 8 is a diagram of the general characteristics of TModel;

Figure 9 is a diagram of a notification framework which could be used with
the document framework system;

Figure 10 is a diagram of the relationship defining specification classes;

Figure 11 is a diagram of the relationships associated with TModel Command
Group;

Figure 12 is a diagram demonstrating the processing flow for DoBegin();

Figure 13 is a diagram demonstrating the processing flow for DoRepeat();

Figure 14 is a diagram showing the relationships established for
TModelAnchor; '

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-3-

Figure 15 shows the relationships established for TModelLink;

Figure 16 is a diagram depicting the processing of links;

Figure 17 shows the processing of Complete Link;

Figure 18 demonstrates the use of annotations and scripts being linked to a
document;

Figure 19 shows some of the link properties which are available in the
system;

Figure 20 shows the document framework client/server with respe%t to
external documents; and :

Figure 21 is a block diagram showing the method and system of the present
invention.

Detailed Description of the Invention

The detailed embodiments of the present invention are disclosed herein. "It
should be understood, however, that the disclosed embodiments are merely
exemplary of the invention, which may be embodied in various forms. Therefore,
the details disclosed herein are not to be interpreted as limiting, but merely as the
basis for the claims and as a basis for teaching one skilled in the art how to make
and/or use the invention.

The history of object-oriented programming and the developments of
frameworks is well-established in the literature. C++ and Smalltalk have been
well-documented ‘and will not be detailed here. Similarly, characteristics of objects,
such as encapsulation, polymorphism and inheritance have been discussed at
length in the literature and patents. For an excellent survey of object oriented
systems, the reader is referred to "Object Oriented Design With Applications” by
Grady Booch, ISBN 0-8053-0091-0 (1991).

While many object oriented systems are designed to operate on top of a basic
operating system performing rudimentary input and output, the present system is
used to provide system level support for particular features.

The invention is preferably practiced in the context of an operating system
resident on a personal computer such as the IBM ® PS/2 ® or Apple ® Macintosh ®
computer. A representative hardware environment is depicted in Figure 1, which
illustrates a typical hardware configuration of a computer in accordance with the
subject invention having a central processing unit 10, such as a conventional
microprocessor, and a number of other units interconnected via a system bus 12.
The computer shown in Figure 1 includes a Read Only Memory (ROM) 16, a
Random Access Memory (RAM) 14, an I/O adapter 18 for connecting peripheral
devices such as disk units 20 and other I/O peripherals represented by 21 to the

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-4-

system bus 12, a user interface adapter 22 for connecting a keyboard 24, a mouse 32, a
speaker 28, a microphone 26, and/or other user interface devices such as a touch
screen device (not shown) to the bus 12, a communication adapter 34 for connecting
the workstation to a data processing network represented by 23. A display adapter 36
for connecting the bus to a display device 38. The workstation has resident thereon
an operating system such as the Apple System 7 ® operating system.

The main goal of the document framework disclosed herein is to raise the
base level of applications by enabling several new features at the system lqzvel. In
addition, the lack of system support for these features limits their implementation.
For example, there are applications that allow users to annotate static
representations (pictures) of any document, but not the “live” document itself. The
content-based retrieval applications have trouble accessing the contents of
document because each application has a custom file format. Also, once the
application finds a document, it is difficult to do anything with it. There’s no
system-level support for opening the document, for example. The document
framework also includes a number of higher-level capabilities, such as annotation
support, which are built upon these basic services. To the extent possible, the
document framework does not specify any policy or user interface decisions. These
details will be provided by the particular applications using the document
framework.

Collaboration

Screen sharing is one popular type of collaboration on the Macintosh, because
it is relatively easy to implement and can be put to many uses. Its main
disadvantages are that some applications draw directly to the screen (complicating
the implementation) and the large bandwidth required to transmit all drawing
operations from one machine to another. Also, it is very restrictive, since it is based
on all collaborators viewing the document in exactly the same way.

Screen sharing is one kind of simultaneous, real-time collaboration. The
document framework provides support for a different kind of simultaneous, real-
time collaboration. This operates at the level of changes to the document, rather
than changes to the screen, which will be more efficient because the amount of data
needed to specify a document change is usually less than the amount needed to
update the screen.

It is also useful to have asynchronous (i.e., non real-time) collaboration. One
form of this is the ability to annotate a document. The document framework
provides low-level support for annotations through its model and linking
mechanisms (described below).

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-5-

Hypermedia Linking

Figure 2 shows an illustration of the present invention. The blocks represent
both the apparatus and the methods involved in the system. As shown in Figure 2,
in the document framework, a link 204 is a bi-directional connection between
anchors 202 and 206. The meaning of an anchor is application-specific, but in most
cases an anchor identifies a sticky selection. An anchor is sticky in that it always
refers to the same data regardless of the user’s editing changes. For example, if the
anchor refers to a word within a text block, it always refers to that word, even if the
text around it changes. Anchors are associated with a particular encapsulated block
of data (called a model) 200. Each kind of data in the system is represented as a
specific subclass of TModel. The abstract base class, TModel, defines generic protocol
to enable other models to embed, display, and manipulate this data as a “black box.”
For example, an application can ask the model to create a presentation (view) of the
data. These presentations range from a small thumbnail to a fully editable
presentation. There is also protocol for accessing the anchors associated with the
model’s data and for accessing other models embedded within it. A document’s
data is represented by a hierarchy of models, with a single model at the root called
the “root model.”

Once the user creates a link, the user can operate upon it. First, the user can
navigate from one end of the link to the other. In general, this involves opening
the document containing the target anchor, scrolling the anchor into view, and
highlighting the corresponding selection. Applications can change this behavior;
for example, navigating to a sound document may simply play the sound without
opening the document. It is also possible to transfer data across the link in either
direction. The semantics of transferring data is (roughly) equivalent to copying the
source data, navigating to the destination anchor, and replacing the existing data
with the transferred data. It makes no difference to the document framework
whether the data is pushed or pulled through the link (i.e., whether the source or
destination initiates the transfer).

The document framework also allows one application to send an arbitrary
command across a link. This will allow cooperating applications to implement
custom features using the same basic linking mechanism. The straightforward use
for the document framework’s low-level linking mechanism is to allow users to
create links between documents, navigate those links, transfer data across them, etc.
This isn’t the only use for links, however. Links will also be used to implement
other application features. In these features, the fact that links are created and
manipulated will be transparent to the user.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-6-

For example, the system-wide annotation facility uses links to associate an
annotation with the part of the base document to which it refers. The system can
position a posted note icon (representing the annotation) near the part of the
document to which it refers. In addition, if the annotation contains a suggested
change to the document, it is possible for the author to “accept” the suggestion and
have the system automatically transfer data across the link from the annotation to
the document.

Another user-transparent use of linking would be to implement a gunction
performed by the Edition Manager of System 7. The user could publish patt of a
drawing and subscribe to that data in a word processing document. Internally, the
system would create a link between the documents, and perhaps attach an attribute
to the link that indicates the nature of the link (e.g., which end is the source of the
data). The existence of the link may be transparent to the user.

Changes to the drawing are sent across the link to the word processing
document. The document framework does not restrict which end of the link
initiates this transfer. The user can navigate from the destination to the source of
the data (from the word processing document to the drawing document). The
document framework also supports navigating in the opposite direction because all
links are bi-directional.

The document framework’s models also improve the way simple copy and
paste works. On the Macintosh, an application handles a paste command in three
different ways, depending on the type of the data model in the Clipboard. (1) The
document can fully understand the pasted data, and the data becomes a first-class
part of the document. (2) The receiving document can display the incoming data
but not manipulate it. A typical example is a picture pasted into a text document.
In this case, the incoming data can be displayed but not edited. (3) The incoming
data type isn’t understood by the receiving document. Here, the paste command
can’t be completed, and should be disabled.

If the data can’t be absorbed, then it can be embedded in the receiving
document in the form of a model. Because models support generic protocol for
creating editable presentations of the data, embedded data is not “dead” as is true on
the Macintosh. Instead, the user can open up an embedded model and view or edit
the data it contains. This capability is similar to that provided by HP’s New Wave
system or Microsoft’s OLE specification. An important difference is that the object-
oriented document framework makes it easier for a developer to implement a new
data type. Finally, if an application supports embedded models, then it can paste
every type of data. The paste command would never be disabled as long as the
Clipboard wasn’t empty.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

Eternal Undo

In most Macintosh applications, the undo command is precious, since only
the last change can be undone. The document framework uses the same kind of
command objects as MacApp, but saves as many command objects as possible.

This decision has several benefits. First, it isn’t as important to be choosy
about what commands are undoable. For example, in existing Macintosh
applications, changes to the selection are not undoable, even though some
selections can be difficult to create. In a drawing program, the user can speénd much
time selecting the right combination of shapes and lose everything with an extra
click. If the system supports only one level of undo, then it is unwise to save a
selection change if it means forgetting about the last Cut command, for example.
With multiple levels of undo, it is feasible to save selection changes.

Another benefit of using command objects is increased reliability. If every
command is saved, then it is possible to replay those commands in the event of an
application or system crash. The document framework uses concurrency control
and recovery classes to save command objects in a robust manner. In the event of a
crash, the user should not lose more than the last couple of commands. With
multi-level undo comes the added burden of providing a good way to visualize and
navigate the list of commands. This is especially true if selection changes are
included, because it will be easy for the user to create hundreds of commands.

Figure 3 shows The document framework linear list 300 of command objects
302, which can be likened to a stack. There are many other ways in which the undo
processing could be carried out. This means that undo 306 returns the document to
a previous state. It is also contemplated that the user can selectively undo
commands 304 (i.e., undo a Cut command but keep all subsequent commands
intact). It should be remembered that commands are dependent on one another. A
command that copies a shape is dependent on the command that first created the
shape. These dependencies would complicate the user interface to undo, as well as
the underlying implementation.

A good solution is to integrate the undo and scripting mechanisms, for
example to automatically create a script of everything that is done. The user can
then edit the script to remove arbitrary commands, rearrange commands, etc. and
execute the script. This gives users the maximum flexibility and control.

Content-based Retrieval
Increasingly, users have more and more information available on their
computers. Local hard disks are getting larger, and there are many CD-ROMs

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-8-

available that contain hundreds of megabytes of data. It is impossible to browse
through this data without some assistance from the system. In the Macintosh, the
standard tool used to be Find File, which located documents based on their names.
System 7 provides a Find command that is integrated within the Finder. Third
party developers also provide tools that go beyond Find File and search for
documents based on their content, but which aren’t well-integrated with the system.

It is important that these retrieval tools be integrated into the system. There’s
little point in locating documents if the user can’t do anything with them.gThe
third party content-based retrieval tools on the Macintosh get no system support in
examining the contents of the document, or even opening the document with the
appropriate application.

Figure 4 shows the generic retrieval framework of The document framework
from a source of information 400. The framework handles both indexing 402 and
queries 404. Although many future operating systems will deliver with a default
indexing and query package, users will still want the ability to plug in new search
packages into the basic framework. The point of designing a framework is so that
the background indexing mechanism and query user interface are the same
regardless of the underlying retrieval technology.

The framework will provide for automatic, background indexing of
documents when they are added to a volume or changed. A retrieval system is
worthless if only some of the documents are indexed, and it is unreasonable to place
this burden on the user. A generic query front-end will allow a user to install a new
retrieval engine and not have to learn a new front-end.

Classes, The Developer’s View
This section contains class and member function descriptions. Certain
conventions are followed. All classes have virtual destructors. If the destructor
does anything more than release storage, it is discussed; otherwise, nothing is said.
Methods inherited from MCollectible (Figure 5, element 500), such as streaming
operators, are not discussed here. Many of the classes have getters and setters which
simply do field accesses.

Object Surrogates
Several objects in the document framework provide object surrogates, which
act as compact, address space independent references to the real object. This use of
surrogates can be described as "Explicit master and surrogates"”. In a few cases,
surrogates and real objects can be used interchangeably, but in most cases the

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

9-

surrogate serves as a "key" for finding the real object. In all cases the relationship
between the surrogate and real object is defined by a common abstract base class. The
abstract base class provides the address space independent identification for the
object and implements the protocol for comparison between objects (IsEqual). This
allows a surrogate to be compared directly against a real object and used as a key into
a set of real objects for lookup. Surrogate objects provide a constructor which will
create a surrogate from a real object allowing easy creation of surrogates.

For example, it is necessary for TModelSelections to identify TMode} objects
in an address space independent manner to allow commands to access data in
multiple collaborator's address spaces. TModel and TModelSurrogate both derive
from the common base class TAbstractModel. TAbstractModel provides the address
space independent identification of the object and implements the protocol for
comparison between objects. TModel provides static member functions for looking-
up the real model from a surrogate. When a selection is streamed, it streams only a
surrogate for the model to which it refers. When the command attempts to access
the data through the selection, the real model is looked up using the surrogate to
provide the command access to the real model data.

Data Representation

Figure 5 shows Representation classes. The abstract base class that
encapsulates the data for a particular data type is TModel 506. Derived classes of
TModel 506 are the containers for “document” data. They provide type specific
protocol for accessing and modifying the data contained in the model. They must
also override generic protocol that supports embedding other models and for being
embedded in other models. This mostly involves overriding protocol for creating
selections and user interfaces on the data.

TModel objects 506 also provide notification of changes to the contained data
to interested objects (typically presentations). Notification could be provided using a
standard notification facility of the underlying system, if the system has such
notification available. See the “Data Presentation” section for details on model
notification.

The class TModelSurrogate 504 provides a lightweight stand-in or “name” for
an actual TModel 506. It does not actually contain the data, only the real model does
that, but it does provide protocol for a subset of the behavior supported by TModel.
Specifically, the behavior necessary to appear and operate within the “Workspace”.
The behavior which TModelSurrogate 506 and TModel 506 share is defined by their
common base class TAbstractModel 502.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-10-

Compound Document Structure

A document, such as shown by element 600 in Figure 6, can contain many
models which can be of many different classes. The basic structure of the document
is a hierarchy of models which reflects the containership hierarchy of the
document. A single model exists at the root of the hierarchy and is referred to as the
“root model.” Each model in the hierarchy may be a container for other models
embedded within. A container model refers to its embedded models with model
surrogates. C++ pointers must not be used because the embedded models may be
filed using separate contexts from the container and are not necessarily in memory
with the container. By accessing a model through a surrogate it will automatically
be filed in if not already in memory. Optionally, the embedded document can be a
directed acyclic graph. Multi-column text can be implemented this way; the
individual columns of text were going to be models that all embedded a single
shared text-flow model. Also, each model can be locked independently, providing
more potential concurrency at the cost of more complexity.

“The Standard Example” shown in Figure 6 illustrates a specific model
hierarchy. Each model in the hierarchy which has a presentation included in the
document has an associated TUserInterface (which is itself a model containing user
interface objects). The TUserInterface for a particular model is managed by that
model and is accessible only through that model. Models which are not viewed
directly, but rather through another “presentation model”, would not have an
associated TUserInterface. For example, a TTableModel which was viewed only
through a TGraphModel as a scatter plot, would not have a TUserInterface, while
the TGraphModel would, since it is providing a presentation to the user.

Figure 7 demonstrates the hierarchical nature of the document of Figure 6.
In particular, sections 0-5 represent various types of information which may be
embedded within other types of information. For example, Section 1 is the
Taligent® text, which is embedded within the Taligent® logo, which is shown by
Section 2. The lower right corner of Figure 7 shows the hierarchical structure of the
document of Figure 6.

Data Types
The compound document architecture supports the seamlesss integration of
many data types. These may include, but are not limited to, voice, graphics, bit-
mapped images, pictures, tables, video, text, financial data, files, and program
components. Virtually any visible or audible data type may be incorporated into the
compound document in a seamless manner.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-11-

Managing Embedded Models
It is up to a derived class of TModel to provide an implementation to manage
any embedded models it contains. TModel does not provide an implementation for
this because it is extremely data dependent as to how the embedded models fit into
the container’s data structures. The document framework does include a
TContainerModel that provides an implementation for simplistic embedding in

which the embedded model presentations simply “float” over the containing

presentation.

Copying, Streaming and Filing
Models which are embedded in another model are considered part of the
containing model’s data for purposes of copying and streaming. When a model is
copied, streamed or filed, the embedded models it contains must be handled
appropriately. TModel provides default implementations which make the handling
of embedded models straightforward for these cases.

Streaming

The standard streaming operators (operator>>= and operator<<=) provided
by TModel stream all data owned by TModel, including anchors and links. These
streaming operators also take care of streaming any embedded models contained
within the model being streamed. A derived class overrides these operators to
stream its own data. If the model contains embedded models, only the surrogates
for those models need to be streamed. The inherited streaming operators take care
of streaming the real embedded models. For models which file their data by
streaming, these methods may be identical to the filing methods. In such cases, it is
usually desirable to create private helper functions which can be called by both the
streaming operators and the filing methods.

Copying
When copying an entire model, or copying selected data from the model, the
embedded models must be copied by the container. This is easily accomplished by
using the “CopyModel” method of the TModelSurrogate for the embedded model.
This method copies the surrogate and real model providing a new consistent
model/surrogate pair.

Filing
When filing a model, its embedded models must also be filed. The embedded
models must be filed independently from the container to allow customization of

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-12-

storage for the embedded models. When a model is asked to file its data in
FileOutData(), it only files surrogates for any embedded models which it contains.
The embedded models are filed automatically by the document framework. The
filed surrogates are read back in FileInData(), and may be used to access the real
model. All dirty models in a document are always filed out together. This simplifies
the handling of the Roll-Forward log. Models are individually filed in when
requested from model surrogates.

When a new model is added to the document it must be given the
opportunity to create a new store for itself. The method CreateModelStore() is called
passing in the document root model’s store. If this store is acceptable to the model
no new store is created. Otherwise, the embedded model will create a new store to
use for its storage requirements. The actual creation of the store is done in a lazy
fashion, so that models created in memory for temporary use that do not require a
store will not create one.

When a model is removed from the document it must be deleted from both
memory and storage. Deleting a model will delete the model from memory and
from store. If the model is to be deleted from memory only the method
TModel::DeleteFromMemoryOnly() can be used rather than calling delete.

Concurrency Control
A single monitor protects all the data in a document. This monitor is entered

by creating a TModelEntry object on the stack.

Attributes

TModel provides an extensible interface and implementation for attaching
attributes to models. The attributes are inheritable via the model hierarchy. That is,
a model can inherit attributes from its ancestors. TModel provides support for
looking up attributes on a specific selection in a model and for including or
excluding ancestors from the lookup. Attributes are maintained in a simple
attribute group and provides its own inheritance support rather than using the
TInheritableAttributeGroup because all models in the hierarchy are not necessarily
in memory at one time, and this behavior is not supported by
TInheritableAttributeGroup.

TAbstractModel
TAbstractModel is the base class for TModel and TModelSurrogate. It
provides the protocol which is common to both of these classes and provides the

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-13-

common base class between the real and surrogate classes as described in the “Object
Surrogates” section of this document. TAbstractModel is an abstract base class. It is
only instantiated as part of a derived class. The following methods provide access to
the model’s storage: 1) SetModelStoreReference, 2) AdoptModelStoreReference, 3)
CopyModelStoreReference, 4) GetModelStore. TModel and TModelSurrogate are
the only classes which derive from TAbstractModel. TAbstractModel is abstract
and therefore is always created and deleted as part of a derived class. Any data
created by TAbstractModel as part of its implementation is managed by the. class.

TModelSurrogate

TModel Surrogate is a lightweight “stand-in” or “name” for a TModel which
provides full addressability of the real model in storage. Any number of
TModelSurrogates may exist for a single TModel. TModelSurrogate also serves as
the address-space independent specifier of a TModel for purposes of collaboration.
TModel Surrogate is a concrete class and may be freely instantiated and destroyed.
TModelSurrogate provides concrete implementations for all of the abstract
functions of TAbstractModel. The following methods support access to and
management of the real model represented by this surrogate: 1) GetModel, 2)
CopyModel, 3) DeleteModel. The following methods provide access to the model’s
anchors: 1) CopyAnchor, 2) CreateAnchorlterator. The following methods support
presentation of the model represented by the surrogate. These presentations are
static. They do not reflect changes to the content of the real model. 1) Createlcon, 2)
CreateThumbnail.

TModel

Figure 8 demonstrates TModel 800, which is the container for all document
data 802, including anchors and links and serves as the unit of data exchange for
cut/copy/paste. It provides protocol that supports embedding 804 the data in other
alien data models and/or embedding alien data models within. The base class
TModel provides the implementation for managing a model’s anchors 806 and
links 808. Subclasses provide the protocol and implementation for accessing and
managing the type-specific data. Additionally, the subclass must implement the base
class protocol for creating a user interface, selections and accessing embedded
models. TModel derives from MDelegatingNotifier and therefore can be connected
to for notification on changes to the model’s data 810. All models in a TDocument
share the TModel class notifier and delegate all calls to that notifier. Several
member functions support management of a model’s user interface model.
Subclasses must override CreateUserInterface to create the appropriate user

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-14-

interface for this model. In the future the choice of interface could be determined
from a user preference. The member functions are: 1) CreateUserInterface, 2)
AdoptUserInterface, 3) GetUserInterface, 4) GetUserInterfaceSurrogate. Numerous
member functions also support accessing and modifying a model's set of anchors
and links, as well as accessing and modifying attributes associated with the models.

DATA PRESENTATION
Notification Classes

Data contained in a TModel is of little interest unless it can by viewed and/or
modified by the user. Although the document framework does not directly provide
the classes necessary to implement data presentations, the document framework
does provide support for managing presentations on models. This section deals
primarily with notification, since this is the extent of presentation support provided
directly by the document framework. For example, all other presentation support
could be provided by an object-oriented User Interface Toolbox.

User Interface Management

The document framework provides support for managing a model’s user
interface. Protocol is provided by TModel for creating, storing and retrieving a
model’s associated user interface. A client of TModel can ask the model for its user
interface. In turn the client can ask the user interface for an Embedded, or Window
presentation. The document framework provides no support for the contents of a
user interface, only for managing its access and storage. See the section, “Data
Representation” for a description of this facility of TModel.

Notification

Figure 9 sets out the notification system for the document framework. The
document framework provides change notification to clients of TModels (clients are
typically presentation views) on all changes made to the data contained in a model.
A presentation can connect to a model for notification on specific changes, or all
changes, to a model’s data. By performing the proper updates to the presentation
when the notifications are received, the presentation remains synchronized with
the underlying data. TModel provides notifications for changes to the data it
manages, specifically anchors & links, via TLinkNotification 906 and
TAnchorNotification 908, and selections, via TSelectionNotification 902. Standard
notifications are also provided for Cut/Copy/Paste operations (not explicitly
shown). Other notifications relative to the document framework are also
contemplated. For example, TDualSelectionNotification provides notification of

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-15-

dual selections. It is the responsibility of a subclass of TModel to provide
notifications specific to that model’s data. The notifications must be sufficient for
presentations to remain consistent with the underlying data.

Data Specification

In the document framework the class that supports the specification of
document data is TModelSelection. It is important to note that model selections are
truly specifications of the selected data, and do not actually contain the data.
Furthermore, the specification must identify the data in an address independent
way, so that selections can be applied in multiple collaborator’s address spaces. The
document framework manages data at the granularity of whole models and
provides default functionality that operates on whole models. TModelSelection is
no exception. TModelSelection provides protocol and implementation for
specifying the selected model. Typically an implementation of a derived class of
TModel will provide a corresponding derived class of TModelSelection which
supports specification of the data contained within the model at a finer grain than
the whole model. This allows commands to be applied to a subset of the data in a
model, rather than the entire model.

Data Exchange

Figure 10 shows the specification classes, which include TModelSelection
1002 and MCollectible 1000. TModelSelection 1002 defines protocol for the exchange
of data between selection objects. This protocol is used by a number of standard
commands provided by the document framework. These include, Cut, Copy, Paste,
Push and Pull commands. TModelSelection 1002 provides the protocol for
negotiating data types for exchange between selections. A source selection produces
a list of model types in which it can produce the selected data. The destination
selection chooses the type of model in which it prefers to receive the data and how
it will receive it (absorb or embed). After a type has been selected via the type
negotiation process, the source selection is asked for a copy of the data in the chosen
type by calling CopyData. The model returned is then passed to the destination
selection in AbsorbData or EmbedData depending on how the selection indicated it
would receive the data in the type negotiation. The negotiation may occur across
document teams when exchanging data between anchors. In this case services of
TRemoteDocument are used to access remote information. The entire exchange
process described above is typically carried out by a command object such as
TPasteCommand or TPushDataCommand.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-16-

TModelSelection

The class, TModelSelection 1002, provides most of the protocol that
document selections and anchors (persistent selections) are expected to implement.
It serves as the base class for all selection objects. TModelSelection objects contain
the protocol for exchanging data between selections using cut, copy, and paste or
using push/pull (on anchors). This includes the protocol for type negotiation (what
types can I publish this data in, what types can I accept data in) and the protocol for
accepting or publishing data in a specified type. ,

Member functions CreatePreferredTypeList, ChoosePreferred Type, and
GetTypeAcceptKind are inherited from MTypeNegotiator and support type
negotiation for exchange of data between selections. Member functions are also
provided for supporting adding, removing, and creating anchors to the selection.
Member functions are also provided to support the exchange of their associated
model’s specific type of data. The subclass does not need to concern itself with the
copying of anchors and links. This is handled by TModelSelection automatically.
Member functions are also provided to override if anchors must be adjusted when
imported or export (e.g. anchors in text must be adjusted to be relative to the
exported data when exported and to the containing context when imported).

Data Modification
Figure 11 shows the basic relationships necessary for carrying out data
modification. TModelCommandGroup 1104, TModelCommand 1102, and
TCommand 1100 each cooperate to provide the necessary modifications required
within the system. '

Modification Classes

In the document framework the abstract base class that represents a
command made by the user is TModelCommand 1102. Subclasses of
TModelCommand 1102 encapsulate the semantics of a user action and can change
model based on the user action. Command objects can be “done”, “undone”, and
“redone”, and are typically independent of the user interface technique used to
create them.

TModelCommand 1102

TModelCommand 1102 is a derived class of the TCommand 1100 class.
TModelCommand 1102 objects encapsulate a user action which changes the model.
TModelCommands have protocol for: Doing, undoing and redoing the change to
the model, Identifying the collaborator who issued the command, and Doing the
change incrementally, as when dragging or typing.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-17-

TModelCommand objects 1102 typically operate on a selection which may be
part of the command object or more typically the current document selection. The
base class, TModelCommand 1102, provides the protocol that all model command
objects respond to. Subclasses override the “HandleXXX"” methods to provide
specific behavior.

Some TModelCommands are intended to be executed incrementally. These
commands are used to allow the user to incrementally modify a model. These
commands are called repeating commands. One example of a repeating command is
a shape dragging command for a drawing program. Even though a tracking
command might force the model to go through many intermediate states, it counts
as a single command. The means that the entire effect of the command is undone
and redone as a single atomic action.

The document framework uses the concept of a command object in its
framework for Undo. Command objects are also central to the collaboration
features of the document framework.

Model Based Tracking Details

Figure 12 shows a diagrammatic representation of a possible processing flow
for carrying out a part of the tracking operations in the document framework. As
indicated by 1200, when the tracker calls DoBegin() the command argument is
flattened 1202 and sent to the collaboration server, at 1204 . From there it is flattened
again and sent to each of the collaborators. At each collaborator the command’s
HandleDoBegin() method is executed, as indicated at 1206.

Figure 13 shows a diagrammatic representation of a possible processing flow
forvcarrying out another part of the tracking operations in the document
framework. When the tracker calls DoRepeat(), as indicated by 1300, the command
argument is asked to stream out the delta information 1302. The command delta is
sent to the collaboration server, at 1304. From there the delta is sent to each of the |
collaborators. At each collaborator the delta is streamed into the local copy of the
command, as indicated by 1306. Then the command’s HandleDoRepeat() method is
executed.

When the tracker calls DoEnd() similar operations as those shown with
respect to Figure 13 are performed. The command argument is asked to stream out
the delta information. The command delta is sent to the collaboration server. From
there the delta is sent to each of the collaborators. At each collaborator the delta is
streamed into the local copy of the command. Then the command’s
HandleDoEnd() method is executed. There are two ways an incremental command
can finish its extended Do phase. The standard way is for DoEnd() to be called. The

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-18-

other way is for the collaborator who is doing the tracking to unexpectedly leave the
collaboration. In that case the command on the collaboration server has it’s
HandleCollaboratorDied() method called. After the extended Do phase is finished,
the command is expected to be in the same state as if it’s HandleDo() method was
called.
TModelCommandGroup: TModelCommandGroup is a subclass for
TModelCommand which allows complex commands to be easily built from several
simple commands. TModelCommandGroup delegates most methods (e.g.
HandleDo) to each of the commands in the group. The commands are not truly
serialized, in that HandleLocalDo is called for all commands, and then HandleDo is
called for all commands. If the HandleLocalDo of a command relies on state set by
an earlier command’s HandleDo, this will not work.
The following member functions support the management of commands contained
in the command group: AdoptFirst, AdoptLast, Orphan, OrphanAll
Standard Commands

The following commands are all standard commands provided by the
document framework.
TSelectCommand: The TSelectCommand should be issued when changing
selections. TSelectCommand is an incremental command supporting direct
manipulation for selection. This command sets the selection for the collaboration
initiating the command and does not affect other collaborator's selections.
TCutCommand: The TCutCommand has the local effect of cutting the current
selection out of the document. It has the global effect of adding something to the
clipboard. The local effect is accomplished by subclassing TReplaceSelection
command.
TCopyCommand: The TCopyCommand has no local effect. It has the global effect
of putting something on the clipboard.
TPasteCommand: The TPasteCommand replaces the current selection with the data
on the clipboard. This is accomplished by subclassing TReplaceSelection command.
TReplaceSelectionCommand: The TReplaceSelectionCommand replaces the data
specified by a selection or anchor with data encapsulated in the command object.
The command object contains a TModel which is used to replace the selection’s
data. You will typically never create a TReplaceSelectionCommand yourself. the
document framework use this command object in cut, paste, push, pull, etc.
TNewAnchorCommand: The TNewAnchorCommand is issued whenever a new
anchor is created. A TStartLinkCommand acts as a TNewAnchorCommand after
the global effect of TStartLink is done.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-19-

TNewLinkCommand: The TNewLinkCommand is issued whenever a new link is
created. A TCompleteLinkCommand subclasses TModelCommandGroup with
TNewLinkCommands embedded in it.

TStartLinkCommand: The TStartLinkCommand has the global effect of putting a
new anchor on the “link board” and the local effect of adding a new anchor to the
document. The local effect is accomplished by subclassing TNewAnchorCommand.
TCompleteLinkCommand: The TCompleteLinkCommand has to do a lot of work.
It has the (possibly) non-local effect of posting a new link command to another
document (the document which issued the start link command). It has the local
effect of adding an anchor and a link to the current document. This is accomplished
using the appropriate command objects (TNewAnchor and TNewLink) in its
implementation.

TPushDataCommand: The TPushDataCommand has the (possibly) non-local effect
of posting a TPushedData command to the destination anchor. All type negotiation
is handled via the selection protocol.

TPullDataCommand: The TPullDataCommand command could be called the pull
command. It retrieves data from an anchor at the other end of a link.
TFollowCommand: The TFollowCommand will “follow” a link. This involves
posting a TFollowedCommand to the document containing the other side of the
link.

TFollowedCommand: The TFollowedCommand is posted to the document
containing the destination anchor in a link. The “there” side of the TModelLink
embedded in the TFollowedCommand is the destination anchor. The Follow
method of the destination anchor will be called. Override this method to
implement the proper follow behavior (typically scroll the anchor and its selection
into view).

Anchors & Links

Figure 14 demonstrates the relationships between MCollectible 1400,
MAbstractModeler 1102, TModelSelection 1404, TModelAnchorSurrogate 1106, and
TModelAnchor 1408.

Figure 15 demonstrates the relationships among MCollectible 1500,
TAbstractModelLink 1502, TModelLinkSurrogate 1504, and TModelLink 1506.
Anchor and Link Classes

Anchors are typically “sticky” document selections. Sticky means that the
data selected by the anchor is constant across editing changes in a model.

Links are connections between two anchors. Operations on links include
creating them, removing them, “following” them, pushing data from one sticky
selection to the other, or pulling data. To create a link between two anchors, the

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-20-

user must specify the anchors. The situation is similar to copying and pasting data
(the user needs to specify a source and destination), so one way to do this is to
maintain a kind of “linkboard,” analogous to the clipboard.

Figure 16, between 1600 and 1606, shows the Start Link command processing
flow. The Start Link command would create an anchor out of the current selection
at 1602 and place the anchor on the linkboard at 1604.

Figure 17, between 1700 and 1710, shows processing flow of The Complete
Link command. The Complete Link Command would also create an anchor at
1702, and then create a link between the new anchor and the one on the linkboard
at 1704. It is possible to choose Complete Link at 1706 several times, in order to
create several links that share a common anchor, as indicated by the processing flow
1708.

Figure 18 demonstrates links in a document 1800 which have been created by
an application programmatically. We expect that most of the “interesting” uses of
linking will fall into this category. For example, annotations 1802 can be attached to
the affected parts of the document with links 1804. Scripts 1806 can also refer to
parts of a document with links 1808. It should be noted that the links of Figure 18
are merely representative of software structures and are not intended to convey any
particular visual characteristics of links, scripts, annotations, or the document
portions linked to. There is only one kind of link in the document framework. It is
bi-directional, as indicated by the bidirectional links 1804 and 1808, and supports
both navigation (finding the other end of the link) and data transfer.

Figure 19 demonstrates some of the characteristics of links. Links also have
properties 1900, which applications can use to classify 1902 links and to restrict 1904
how links are used. For example, there could be properties that specify what the
user 1908 can do 1906 with a link. It might be desirable to allow certain users only to
pull data from a spreadsheet and not navigate to the spreadsheet or push data into
it. Links that are used to implement annotations will be identified by a certain
property. This property will indicate that the link is part of an annotation, and that
the appropriate annotation commands are enabled.

A fina] example is a link that indicates a master-copy relationship. This
would be used for import data. Instead of copying and pasting a static
representation of a graph, the user can create a link between the original graph and
the copy placed in the word processor document.

TModelAnchorSurrogate
TModelAnchorSurrogate, shown in Figure 14 as element 1406, is the
surrogate class for TModelAnchor 1408. It provides a subset of the protocol available

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

21-

from TModelAnchor 1408. Specifically it provides protocol for supporting data
exchange between anchors. By using the protocol of the surrogate, the client does
not need to distinguish between anchors in the local document or a remote
document. TModelAnchor 1408 maintain a list of attributes which describes
attributes of the link such as what operations may be performed (e.g. push, pull).

-Attributes are managed as a simple attribute group. Protocol is provided for adding,
removing and looking up attributes. TModelAnchors 1408 are owned by their

creator and it is the creator’s responsibility to delete them unless ownership has
been passed to another object like a TModel. Important member functions are:
CreatePreferredTypeList, ChoosePreferred Type and CopyData.

TModelAnchor

TModelAnchor, shown in Figure 14 as element 1408, is the base class for all
persistent selections which serve as anchors for hyperlinks. The default
implementation of TModelAnchor 1408 contains a TModelSelection 1104 to which
it delegates all TModelSelection calls. TModelAnchor 1408 maintain a list of
attributes which describes attributes of the link such as what operations may be
performed (e.g. push, pull). Attributes are managed as a simple attribute group.
Protocol is provided for adding, removing and looking up attributes. Important
member functions are: SetSelection, Follow, Execute, AddAttribute, scripting,
automated testing and AdoptLink.

TModelLink

The TModelLink class, shown in Figure 15 as element 1506, provides the
representation for a link. Specialization is accomplished by subclassing
TModelAnchor. There are no subclasses of TModelLink 1506. The “here” anchor
and the “there” anchor are just names for the two anchors in a link. The “here”
anchor in a TModelLink 1506 is typically part of the current document and can be
turned into a real anchor using a method of the TModel. The “there” anchor may
be part of the current document or could belong to another document.

TModelLinks 1506 also maintain a list of properties which describes attributes
of the link such as what operations may be performed (e.g. push, pull). Properties
are managed as a dictionary of property names and values. Protocol is provided for
adding, removing and looking up properties. Important member functions are:
GetHere, GetThere, AddAttribute and RemoveAttribute.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-22-

TDynamicModelAnchor
TDynamicModelAnchor is the base class for anchors whose data specification
is dynamic rather than static. The anchors are call “dynamic” because they may
specify different document data each time they are accessed. Normal anchors always
refer to the same data in the document. For example, a dynamic anchor could
represent the current selection in the document. When data was pushed from the

anchor it would be the data represented by the current selection at that moment.

Document Control & Communication

The classes in this section are included here to give the reader an idea how
documents use the process model. The class TDocument is created to start a
document in a team. It is responsible for creating the various frameworks and
services necessary for local control of a document team. This includes starting
servers for collaboration and external document control, and providing control of
the document filing operations. The class TRemoteDocument provides a remote
interface to documents in other teams. It allows data to be accessed from documents
in other teams, and supports control of those documents through commands.

Model Filing

TDocument provides support for initiating filing operations on a document.
When filing in a model, there is no real work to be done. TModels are filed in
automatically when they are first requested from a surrogate. A model may be
deleted from memory at any time by the container if desired. Of course, an exclusive
lock on the model must be acquired to delete it, and no pointers to the model
should be cached and held beyond the duration of a lock on the model. Model
surrogates may cache model pointers, but this will be transparent to clients.

For filing out there is a larger role. In order to support a saveless model and
maintain storage consistency, the document framework logs commands on all
models in a store to that store. Models cannot be written individually, but rather,
all dirty models are always written together. This simplifies handling of the
command log, by allowing the entire command log to be removed from each store
whenever models are written. The models are written when the document is
closed, but also on a periodic basis while the document is open, to reduce the restart
time for a document in case of a system failure.

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-23-

Inter-document Communication

In the document framework, each document runs in its own team.
Documents must be able to communicate with one another to support many of the
standard features of the document framework. For example hyper-text linking
allows data to be pushed and pulled across documents, and links to be followed
across documents. To accomplish this processing, as shown in Figure 20, the
document framework 1700 provides a client/server interface 2002 for external
documents 2004. To communicate with an external document, a
TRemoteDocument is created from a surrogate for the root model of the document.
The TRemoteDocument object may be used to open, send commands, query links,
etc.

Document Startup

A new team must be created for each new document started. Although an
“application” can be written which creates a document with a specific root type, this
is not necessary. The document framework will use the capabilities provided by the
runtime system in TTaskProgram, to create and start the appropriate objects in the
document team. A document is started by creating a TRemoteDocument with the
surrogate for the root model of the document, and then making a request of the
document, typically to open. This will start the document team and open the
requested document using the surrogate provided. Other requests may be made of
the document which do not require opening a user interface on the document (i.e.
copying selected data from an anchor).

TDocument

The TDocument class acts as the controller for the document data. It creates
the frameworks and servers necessary for a document team. It also provides control
of the filing process. TDocument is instantiated automatically by
TModelApplication when a document is started. Important member functions are:
SetSelection, GetSelection.

TRemoteDocument

This class provides access to a document in another team. This is the only
way for two documents to interact for purposes of Cut/Copy, Paste, Linking, etc.
because only a single document can operate in a team. It allows the document to be
controlled externally. Typical uses include, link navigation & data transfer,
opening/closing, etc. The following member function supports doing commands
on remote documents (documents in another team): Do.

The following member functions support data exchange with anchors in
remote documents: CreatePreferredTypeList, ChoosePreferredType,
CopyAnchorData and NotifyLink. The following member functions support

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

24-

opening and closing user interfaces on a remote document: Open, Close and
IsOpen. The following member functions support receiving notification on
opening and closing of documents: CreateOpeninterest and CreateCloseInterest.

Figure 21 shows the overall system design of the present system and method.
The application layer 2102 interacts with the current 2106 and related 2108
documents in storage 2104 via flow 2112. The application layer 2102 also interacts
with the system level document framework 2110 of the present invention via flow
2114, indicated by the circled 1. And finally, the document framework 211Q of the
present invention interacts with the current 2106 and related 2108 documents in
storage 2104 via flow 2116, indicated by the circled 2.

The particulars of the document framework 2110 have been discussed in
detail above. The document framework 2110 is a collection of objects for Anchor
and Link Support 2118, Notification 2120, Collaboration 2122, Embedding 2124, Data
Presentation 2126, Data Modification 2128, Multi-Level Undo 2130, Content-Based
Retrieval and Indexing 2132, Compound Document Support 2134, Data
Representation 2136, Data Specification 2138, Model Processing 2140 and Document
Communication 2142. As previously discussed, while many of the objects find
particular inventiveness by being placed at the system level, and providing
functions in conjunction with the other objects at the system level, it should also be
understood that certain of the objects may also be considered at other levels of the
system.

StockTicker Example

An example of a real life application may assist in clarifying the practical
application of the subject technology. First, to set the stage, a review of the
compound document technology. A model is something that holds data and makes
it available to facilities that access, modify, and present the data to users. A
presentation is a facility that provides a user with a view onto a model for reading
and editing. A clipboard is a special model associated with a user’s environment
containing a model that is on the clipboard in the cut/copy-paste operation.

The application implements a stock ticker which emulates the stock tickers
found in Merrill Lynch offices around the country. The stock ticker presents
current stock prices for various stocks traded on the New York Stock Exchange. It
receives as input current stock prices from a database residing ultimately at the stock
exchange in New York City. The communication link is well known in the art and
could for example be an asynchronous serial communication link transmitting
ASCII characters. The ASCII characters are displayed directly on a display using any
number of fonts encoded to synchronize with ASCII 8-bit characters. The display

10

15

20

25

30

35

WO 95/13585 PCT/US94/00049

-25-

mechanism will be referred to as a view and could be any number of common
window or other display mechanisms that are also well know in the art. A
clipboard model contains a model that is a StockTicker instance. The StockTicker
instance refers to communication and display information ready for simulating a
stock display. A destination model is going to receive the StockTicker instance in a
pasté operation to show how a preferred embodiment can be used to enable a
compound documents with diverse information.

The destination model is part of a document; it could either be the model for
the “root” model of the document or it could be an embedded model. A paste
command is issued on the destination document. The command includes two
specifications: 1) a reference to the source model on the clipboard that is to be
copied, and 2) a specification of a location in the destination document that it
should be pasted into. The paste command operation involves the following steps.
First, a type negotiation interaction between the destination model and source
model. The source provides a list of types that it can provide and the destination
selects a preferred type. In this case, the destination does not recognize the specific
StockTicker data type so it accepts it abstractly as a model and embeds it. The
destination side gets a new copy of the StockTicker model, and it is adopted into the
destination model. The destination model has been modified, so it sends a change
notification message to all presentations opened on it. Each presentation receives
the notification and re-synchronizes its state with the new model state that includes
the new StockTicker. For instance, the presentation could be done by completely re-
generating its state from the new model state. A more optimized model-
presentation relationship might involve a more special notification that tells the
presentation precisely what changed so that the presentation can update only what
changed. The outcome is that presentation queries the StockTicker model to
generate a presentation of itself. This is a complex operation that is detailed below.

When the StockTicker model responds by constructing a presentation view
instance, the constructor of this StockTicker view subclass performs the following
steps. It creates a thread owned by the view subclass and starts it. The thread enters
a function that performs the following steps. It prepares windowing and graphic
facilities for displaying continuously updating and animating graphics to the
StockTicker presentation view. A specific example of this is a "graphics port"
facility that is a conduit for graphics drawn by this thread onto the presentation
view. Then it goes into a loop which draws an animating presentation of the data
and queries the stock data as needed. The properly constructed StockTicker
presentation view is then adopted as a subview of the outer presentation, or more

WO 95/13585 PCT/US94/00049

-26-

generally, it is wrapped inside an intermediate view that supports facilities for
managing embedded entity as a whole.

While the invention has been described in terms of a preferred embodiment
in a specific system environment, those skilled in the art recognize that the
invention can be practiced, with modification, in other and different hardware and
software environments within the spirit and scope of the appended claims.

O 00 N N U b LN

= e e
W N = O

WO 95/13585 PCT/US94/00049

27-

CLAIMS
Having thus described our invention, what we claim as new, and desire to

secure by Letters Patent is:

1.

(a)
(b)
(©
(d)

(e)

®

An apparatus for document processing comprising:

processor means;

storage means attached to the processor means;

display means under control of the processor means;

at least one document resident in the storage means for display on the display
means;

system level document framework means for processing the displayed
document and documents related to the displayed document, including a
means for receiving at least one document processing request from an
application; and

an object for performing the at least one processing request; and
application means for processing the document and related documents
utilizing the document framework means.

The apparatus of claim 1, wherein the document framework means includes
means for linking data.

The apparatus of claim 2, wherein the means for linking data includes
means for transferring information across links.

The apparatus of claim 3, wherein the means for transferring information
across links includes means for transferring commands across links.

The apparatus of claim 3, wherein the means for transferring information
across links includes means for transferring document information across
links.

The apparatus of claim 1, wherein the document framework means includes
means for containing document data.

The apparatus of claim 6, wherein the means for containing data includes
means for manipulating the data.

WO 95/13585 PCT/US94/00049

10.

11.

12.

13.

14.

15.

16.

17.

18.

-28-

The apparatus of claim 1, wherein the document framework means includes
means for stacking one or more commands; and
means for undoing the commands.

The apparatus of claim 8, wherein the means for undoing commands
includes means for undoing commands in an order opposite from which the
commands were stacked.

The apparatus of claim 8, wherein the means for undoing commands
includes means for selectively undoing commands in an order unrelated to
an order in which the commands were stacked.

The apparatus of claim 1, wherein the document framework means includes
means for managing embedded models.

The apparatus of claim 1, wherein the document framework means includes
means for providing notification.

The apparatus of claim 1, wherein the document framework means includes
means for creating complex command groups.

The apparatus of claim 1, wherein the document framework means includes
hierarchical document support means for embedded data.

The apparatus of claim 14, wherein the hierarchical document support
means includes means for embedding data in a model when data cannot be
absorbed directly by a document.

The apparatus of claim 15, wherein the means for embedding includes means
for overriding protocols associated with the embedded data.

The apparatus of claim 1, wherein the document framework means includes
annotation means for providing additional information with respect to
document data.

The apparatus of claim 1, wherein the document framework means includes
retrieval framework means for providing indexing and query processing.

W N

O 00 N3 O U B W N =

WO 95/13585 PCT/US94/00049

19.

20.

21.

22.
(a)
()
()

(d)

23.

24.

25.

26.

27.

28.

-29-

The apparatus of claim 18, wherein the retrieval framework means includes
background indexing.

The apparatus of claim 1, wherein the document framework means includes
object surrogate means for providing address space independent references to
real objects.

The apparatus of claim 1, wherein the document framework means’includes
means for seamlessly integrating audio and visual information in a
compound document.

A method for document processing comprising the steps of:

storing a document;

displaying the document;

providing a system level document framework for processing the document
and related documents;

the processing including the steps of:

(d1) receiving document processing requests from an application; and

(d2) performing the request using system level objects of the document
framework.

The method of claim 22, including the step of linking data.

The method of claim 23, including the step of transferring information across
links.

The method of claim 23, including the step of transferring commands across
links.

The method of claim 23, including the step of transferring document
information across links.

The method of claim 22, including the step of containing document data.

The method of claim 27, including the step of modifying the data.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

WO 95/13585 PCT/US94/00049

-30-

The method of claim 22, including the step of stacking one or more
commands; and undoing the commands.

The method of claim 29, including the step of undoing commands in an
order opposite from which the commands were requested.

The method of claim 22, including the step of selectively undoing commands
in an order other than the order in which the commands were requested.

The method of claim 22, including the step of managing embedded models.
The method of claim 22, including the step of providing notification.

The method of claim 22, including the step of creating complex command
groups.

The method of claim 22, including the step of supporting hierarchical
document data including embedded data.

The method of claim 35, including the step of embedding data in a model
when data can not be absorbed directly by a document.

The method of claim 36, including the step of overriding protocols associated
with the embedded data.

The method of claim 22, including the step of annotating for providing
additional information with respect to document data.

The method of claim 22, including the step of indexing and query processing
using a retrieval framework .

The method of claim 39, including the step of background indexing.

The method of claim 22, including the step of providing address space
independent references to real objects using object surrogate means.

N

O 00 N\ O U WO N -

[S S G G S T =
N Ul b W NN =k O

WO 95/13585 PCT/US94/00049

43.

45,
(a)
(b)

(©)
(d)

()

(®)

(8

(h)

46.

47.

48.

31-

The method of claim 21, including the step of seamlessly integrating audio or
visual data into a compound document.

The method of claim 21, including the step of sharing access to a single
document by two or more users utilizing command-based-collaboration.

The method of claim 43, including the step of sharing access to a single
document via a communication link utilizing remote command execution.

A method for enabling an updateable display of data within an existing
document in a storage of a processor with an attached display, comprising the
steps of:

constructing an updateable data model in the storage of the processor;
constructing a source model in the storage of the processor with an instance
of the updateable data model;

constructing a destination model in the storage of the processor;

negotiating an interaction between the destination model and the source
model;

embedding an instance of the updateable data model from the source model
in the destination model;

sending a change notification message to the updateable data mode};
re-synchronizing each instance of the updateable data model with a set of
current information from the change notification message; and

displaying the current information on the display in each active instance of
the updateable data model.

A method as recited in claim 45, wherein the updateable data include one or
more stock prices.

A method as recited in claim 45, including the step of dynamically initiating a
task when a new instance of an updateable model is created.

A method as recited in claim 45, including the step of updating the data via a
communication link.

PCT/US94/00049

WO 95/13585

113

8¢

9z
LBl e 2
8¢ 9¢ /
H3Ldvay H3LdVay
AVIdSId JOVAHILNI
Nz
NINOD
2l
e’ /S
ez
o oon NvY NOH ndo
8l -~
- o o’ 1’

ve

WO 95/13585 PCT/US94/00049

2/13

206

204

/ 200

202 MODEL
FIG. 2 /T

UNDO
306
/ 302
FIG. 3 COMMAND OBJECT P
00
- COMMAND OBJECT d =
304 7 302
COMMAND OBJECT ||
SELECTIVE
UNDO
400
INFORMATION
N
AUTO INDEX .
402 7
-
FIG. 4 QUERY
404 -

WO 95/13585 PCT/US94/00049

3/13

500

MCollectible

502

FIG. 5

(TAbstractModel

506

(TModeISurrogateD C TModel
504

600

3 Taligent

Headline !

Some piece of incredible news over and over
agaln.Some pioca of Incredible news over and
over again.Some plece of incredible news over
and over again.Some piece of incredible news
over and over again,

Some plece of incrediblo news over and over
again.Some piace of incredible news over and
over again.Somae plece of incredible news over
and over again.Some plece of incredible news
over and over again.Some piece of incredible
news over and over again.Some place of
incredible news over and over again.Some place
of incredible naws over and over again.Some
plece of incredible nows over and over
agaln.Some piece

of incrodible news over and over again.Some
plece of incredible news over and over
agaln.Some piece of Incredible news over and
over again.Some piece of incrad ble news over
and over egain.Some piece of incredble news
over and over again.Some piece of incredble
news over and over again.Some plece of
incredibie news over and over again.Some
plece of incredible news over and over
again.Some piace of incredble news over and
over again.Some plece of Incredible news over
and over again.Soma plece of incredble naws
over and over again.Some piece of incredible
naws over and over again.Somae plece of
incredible news over and over again.Some plece
of incredibie news over and over again.Some
ploce of incredibie news over and over
epainSome piece of incredible news over and
over again.Some plece of incrodible nows over
and over again.Somae piece of incredible news
over and over again.Some plece of incredble
news over and over again.Some plece of
incredible news over and over again.Some piece
of incredible news over and over again.

FIG. 6

Some sy capton that everyone reads frst

Some piece of incredible news over and over
again.Some piece of incredible news over and
over again.Some plece of incradible news over
and over again.Some piece of incredibie news
over and over again,

Some placa of incredble news over and over
again.Some plece of incradible hows over and
over again.Some piece of incredible news over
and over again.Some piece of incredble news
over and over again.Some plece of incredble
news over and over again.Some plece of
incredible news over and over agakn.Some plece
of incredible news over and over again.Some
piece of Incredible news over and over

lscue, Lop-slaadly Ad_daadli
Jang2 Jun6,.1801 D6cZ-199)
Eab.2 Dac 2,100 Aug.8..189
—Aug.f.1904 . Se016.2901]

Ape.82 Son16.-1981 Oct24,..1991
Dci21 1901} Nouis..1021)

1002 Aow 1510011 Seni2 1991

/

WO 95/13585

PCT/US94/00049

4/13

0. DOCUMENT(TPAGESETUPMODEL)
9 1 1. TALIGENT TEXT (TTEXTMODEL)
2. TALIGENTLOGO(TGRAPHICMODEL)
3. DOCUMENT BODY (TTEXTMODEL)
4 4. HANDSHAKE ILLUSTRATION
(TGRAPHICMODEL)
8 5. TABLE (TTABLEMODEL)
: s RS
| LIRS
FIG. 7
800 — TModel
802 —Document Data Container
804 ——— Embedding
806 —_——|Anchor Management
808 —__|Link Management
810 —_{Data Change Notifications

FIG. 8

WO 95/13585 PCT/US94/00049

5/13
900
TNotrfcaton
908
(DualSelectlonl\btlfmta (TAnchoNotrfmton)
(TSebctonl\btrfcat pn
C TLinkNot fficat bn)
902
FIG. 9 906
1000
MCollectble
1002
(TModelSeIectbn)
FIG. 10
1100

1102
(TMode Command)/
1104
CTNode[bmmarﬂGlouD/

FIG. 11

WO 95/13585

6/13

PCT/US94/00049

P 1200
CALL DOBEGIN ()
FLATTEN 1202
COMMAND -
ARGUMENT
COLLABORATION |~ 1204
SERVER /|
\ 4
FLATTEN COMMAND
ARGUMENT
/\

1206 1206
|]
COLLABORATOR / \COLLABORATOR

| B B]
EXECUTE EXECUTE
HANDLEDOBEGIN() HANDLEDOBEGIN()

FIG. 12

WO 95/13585

7113

PCT/US94/00049

CALL —— 1300
DOREPEAT()
STREAM OUT
DELTA L 1302
INFORMATION
| 1304
COLLABORATION
SERVER
1306
1306
/
COLLABORATOR COLLABORATOR
STREAM DELTA INTO STREAM DELTA INTO
LOCAL COPY OF COMMAND | OCAL COPY OF COMMAND
i ERE ¢
EXECUTE EXECUTE
HANDLEDOREPEAT() HANDLEDOREPEAT()

FIG. 13

WO 95/13585 PCT/US94/00049

8/13

| MCollectible '__/ 1400

1402 ~. , /

‘ MAbstractModeIAnchor' ‘ TModelSelection '
1406 /. \ /.
(TModeIAnchorSurrogate' ‘ TModelAnchor '—/ 1408

FIG. 14

1404

1500
(MCollectible '
* 1502

TAbstractModelLink

1504 /- -\ -
(TModelLinkSurrogate ’ l TModelLink '

FIG. 15

1506

WO 95/13585 PCT/US94/00049

9/13

1602
CREATE ANCHOR L
OUT OF CURRENT
SELECTION

I

PLACE ANCHOR ON
LINK BOARD

-
(oo)

FIG. 16

WO 95/13585

10/13

1700
[START }/

CREATE ANCHOR |~

l

YES CREATE LINK BETWEEN /1704
NEW ANCHOR AND
LINKBOARD ANCHOR

1702

1706

CHOOSE
COMPLETE LINK
AGAIN?

1708

FIG. 17

PCT/US94/00049

WO 95/13585

11/13

G

—Tat

Headline !

Some place of incredibie news over and over
againSome plece of incredible news over and
over again.Some plece of incredible news over
and over again.Some piece of incredible news
over and over again,

Some piece of incredible news over and over
again.Some piece of incredible news over and
over again.Some plece of incredble news over
and over again.Some plecs of incredibie news
over and over again.Some place of incredbie
news over and over again.Some plece of
Incredible news over and over again.Some piece
of incredible news over and over again.Some
piece of incredible news over and over
agaln.Some piece

of incredible nows over and over again.Some
plece of incredible news over and over
again.Some plece of incredble news over and
over apaln.Some piece of incredible news over
and over again.Some plece of incrodible nows
over and over again.Some plece of incredble
news over and over again.Some piece of
incredible news over and over again.Some
plece of incredible news over and over
again.Some piece of incredible news over and
over again.Some plece of incredible news over
and over again, Some plece of incredible news
over and over again.Some place of incredble
hews over and over again.Some piece of
incredible news over and over again.Some plece
of incredibie news over and over again.Some
plece of Incredible news over and over
again.Some plece of Incredible news over and
over again.Some piece of incredible news over
and over again.Some place of incredble news
over and over again.Some piece of incredble
news over and over again.Some plece of
incredble news over and over again.Some piece
of incredibie news over and over again.

nant

Some elly capton that everyone reads frst
Some piece of incradble news over, r
again.Some ploce of incred and

over again.Soma plece of ble news over
and over again.Some piace W ncredible news
over and over apain.

Some plece of incredble news over and over
agaln.Soma plece of incredbie news over and
over again.Some place of incredble news over
and over again.Some piece of incredible news
over and over again.Some piece of incredible
news over and over again, plece of

‘\

lssua Coondaadlioh . A

iang2 Lins..1901 Dac.Z..180!

Eab.82. Dac.2,.190; Aug.£.100)

|Marg2.L.....Aug.6..123]

Ape.82. Seadf 1001 Oct21..1801

May92. Oct 21,1001 Mo 15,1801

Ling?2. Ao 15,1901 Seni2..1001

FIG. 18

1900 —— LINK PROPERTIES
1902 ——| CLASSIFICATION
1904 —— RESTRICTIONS
1906 —— OPERATIONS
1908 —— USERS

FIG. 19

PCT/US94/00049

1802

ANNOTATION

1804

1808 1806
/

SCRIPT

WO 95/13585 PCT/US94/00049

12/13

DOCUMENT 2000
FRAMEWORK

/ 2002

CLIENT/SERVER
INTERFACE

™~

\ / 2004

EXTERNAL
DOCUMENTS

FIG. 20

WO 95/13585 PCT/US94/00049

13/13

s 2102 2104

N
CURRENT | —2106
/2112 DOCUMENTS
APPLICATION
LAYER < >
RELATED | 2108
DOCUMENTS

®
@ }2114 l \—' 2116 ? 2110

SYSTEM LEVEL - DOCUMENT FRAMEWORK

ANCHORAND | 2118 MULTI-LEVEL | 2130
LINK SUPPORT UNDO
CONTENT-BASED
NOTIFICATION | —2120 | RETRIEVAL, |} 2132
INDEXING
COMPOUND
COLLABORATION | - 2122 DOCUMENT | 2134
SUPPORT
DATA 2136
EMBEDDING | — 2124 | pepreseNTATION |
DATA DATA 2138
PRESENTATION [2126 SPECIFICATION |~
DATA MODEL 2140
MODIFICATION | 2128 PROCESSING |~

DOCUMENT 2142
COMMUNICATION

FIG. 21

INTERNATIONAL SEARCH REPORT Inten nal Application No

PCT/US 94/00049

A. CLASSIFICATION

OF SUBJECT MATTER
IPC 6 GO6F17/21 G

06F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

us
pages 36 ~ 51

services'
see the whole document

B.J. HAAN ET AL. 'IRIS hypermedia

X COMPUTER 1-7,
vol. 21, no. 1, January 1988 , LONG BEACH 20-28,
us 41-43,45
pages 81 - 96
N. YANKELOVICH ET AL. 'Intermedia: The
concept and construction of a seamless
information environment'
see the whole document

X COMMUNICATIONS OF THE ASSOCIATION FOR 1-7,
COMPUTING MACHINERY 20-28,
vol. 35, no. 1, January 1992 , NEW YORK 41-43,45

_/__.

m Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

° Special categories of cited documents :

"A’ document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
gne&ts, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

9 June 1994

Date of mailing of the international search report

17 o 84

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Katerbau, R

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Inter. nal Application No

PCT/US 94/00049

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

COMMUNICATIONS OF THE ASSOCIATION FOR
COMPUTING MACHINERY

vol. 33, no. 3 , March 1990 , NEW YORK US
pages 296 - 310

J. NIELSEN 'The art of navigating through
hypertext'

see the whole document
INFORMATIONSTECHNIK IT

vol. 32, no. 4 , August 1990 , MUNCHEN BR
pages 231 - 240

E. SCHNELL ET AL. 'Konzeptionelle Ansitze
fiir kooperative Applikationen'

see the whole document

PROCEEDINGS OF THE CONFERENCE ON
COMPUTER-SUPPORTED COOPERATIVE WORK, CSCW
‘92 4 November 1992 , TORONTO, CANADA
pages 138 - 146

J. HAAKE ET AL. 'Supporting Collaborative
Writing of Hyperdocuments in SEPIA'

see the whole document

1-7,
20-28,
41-43,45

1,22,45

1,22,45

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

