A multipurpose continuous processing line able for heat treating and hot dip coating a steel strip comprising: - an annealing section (1) for heating the steel strip to a predetermined annealing temperature and for maintaining the steel strip at said annealing temperature, - a first transfer section (2), - an overaging section (3) able to maintain the temperature of the steel strip between 300°C and 700°C, - a second transfer section (4) able to adjust the temperature of the steel strip to allow the hot dip coating of the strip and, - a hot dip coating section (5), wherein the first transfer section (2) comprises, in sequence, cooling means (21) and heating means (22).
The present invention is related to a multipurpose processing line for heat treating and hot dip coating a steel strip.

To manufacture various types of structural members and body panels for automobiles, it is common practice to use galvanized or galvannealed sheets made of DP (dual phase) steels or TRIP (transformation induced plasticity) steels. More recently, it was proposed to use also Q&P (quenching and partitioning) steels. Such sheets are produced in the form of strips on continuous processing lines such as continuous annealing lines coupled with coating facilities. But, due to the heat treatments required to manufactures these steel sheets and which treatments are different for DP steels, TRIP steels and Q&P steels, these steel sheets are produced on dedicated lines.

Thereby, the production of the various qualities of such steel sheets needs a plurality of lines which are very costly.

In order to reduce the investment costs, it is desirable to be able to produce DP, TRIP or Q&P steels on the same equipment.

For this purpose, the present invention is related to a multipurpose continuous processing line able for heat treating and hot dip coating a steel strip comprising:
- an annealing section for heating the steel strip to a predetermined annealing temperature and for maintaining the steel strip at said annealing temperature,
- a first transfer section,
- an overaging section able to maintain the temperature of the steel strip between 300°C and 700°C,
- a second transfer section able to adjust the temperature of the steel strip to allow the hot dip coating of the strip and,
- a hot dip coating section,
wherein the first transfer section comprises, in sequence, cooling means and heating means.

According to other advantageous aspects of the invention, the multipurpose processing line comprises one or more of the following features, considered alone or according to any technically possible combination:
- the cooling means of the first transfer section are controllable such that their cooling capabilities are adjustable between no cooling and rapid cooling to a predetermined quenching temperature and the heating means of the first transfer section
are controllable such that their heating capabilities are adjustable between no heating and rapid heating to a predetermined overaging temperature;
- the cooling means of the first transfer section are such that the cooling speed can be adjusted between 0°C/s and at least 70°C/s and the quenching temperature can be chosen between 100°C and 500°C;
- the heating means of the first transfer section comprise at least one controllable induction heater;
- the second transfer section comprises, in sequence, controllable cooling means and controllable heating means for adjusting the temperature of the strip by cooling or by heating;
- the overaging section comprises controllable means able to maintain the temperature of the strip around an overaging temperature or to allow the temperature of the strip to decrease slowly between an entry temperature and an exit temperature.
- the annealing section comprises controllable means such that the predetermined annealing temperature can be chosen between 700°C and 1000°C;
- the hot dip coating section comprises at least a liquid metal bath;
- the hot dip coating section further comprises alloying means for the coating;
- the hot dip coating section is a galvanizing section or a galvannealing section.

The invention will now be described in details but without limitations in view of the figures in which:
- Figure 1 is a schematic view of a continuous processing line according to the invention,
- Figure 2 schematically shows the temperature versus time diagrams corresponding to the various thermal paths in processing that can be performed on a line according to the invention.

As shown in figure 1, the multipurpose continuous processing line comprises an annealing section 1, a first transfer section 2, an overaging section 3, a second transfer section 4 and a hot dip coating section 5, in which a steel strip runs as indicated by the arrows.

The annealing section 1 comprises a preheating zone 10, a heating zone 11 and a soaking zone 12, which are able to heat the strip from the ambient temperature to a predetermined annealing temperature AT which is comprised between 700°C and 1000°C.

This annealing temperature must be chosen according to the type of sheets which are produced i.e. between about 750°C and 840°C for the DP steels, between about
830°C and 860°C for the TRIP steels and between about 790°C and 950°C for the Q&P steels.

For this purpose, the preheating and heating zones comprise controllable heating means known by those which are skilled in the art.

In the soaking zone, the strip has to be maintained at the annealing temperature or about this temperature i.e. preferably between the annealing temperature - 10°C and the annealing temperature + 10°C, for a time of preferably at least 45 s, preferably under a protective atmosphere. For this purpose, the soaking zone consists of a soaking furnace known per se, which length is adapted to maintain the temperature at least during the minimal required time, given the traveling speed of the strip.

The first transfer section 2, comprises at least, in sequence, first, cooling means 21, then heating means 22.

The cooling means 21, which can consist of a plurality of cooling boxes 211 known per se, is controllable between no cooling to a maximum cooling efficiency, in order to be able to cool the strip at an adjustable cooling rate to a predetermined quenching temperature or not to cool the strip. The cooling rate and the quenching temperature must be chosen according to the type of steel sheet which is produced. For example, for sheets made of DP steels, the strip has not to be cooled in the first transfer section, it has only to be able to cool naturally to an entry temperature into the overaging section. For sheets made of TRIP steels, the strip has to be cooled at a cooling speed around 25°C/sec for example, to an overaging temperature OAT of about 450°C for example. For sheets made of Q&P steels, the strip has to be quenched at a cooling speed of at least 40°C/s, preferably at least 50°C/s, to a quenching temperature QT adjustable between 100°C and 370°C, preferably between 140°C and 355°C, for example. The maximum difference between the annealing temperature and the quenching temperature is preferably less than 650°C.

For this purpose, the cooling means 21 have to be such that the cooling speed of a strip can be adjusted between 0°C/s and about 70°C/s and such that the quenching temperature can be adjusted between 100°C and 500°C.

Preferably, the strip is maintained at the quenching temperature for about 1 to 2 seconds before to be reheated, although up to 10 s has no adverse effect.

If the cooling means 21 consist of a plurality of cooling boxes 211, these cooling boxes are preferably independently controllable.

The cooling boxes 211 are, for example, blowing boxes known per se able to blow on the strip air, gas or a mixture of air or gas and water.
The heating means 22 which can consist for example of one induction coil able to be supplied by a power of 4.0 MW, or two induction coils each able to supply power of 4.0 MW, for a higher capacity line, and have to be controllable in order to heat rapidly the strips to a predetermined overaging temperature if the sheets are made of Q&P steels or not to heat the strip, if the sheets are made of DP or TRIP steels.

For the Q&P steels, the overaging temperature is generally between 340°C and 490°C, preferably between 350°C and 480°C.

The overaging section 3 is a soaking furnace comprising known controllable means able to maintain the temperature of the strip at the predetermined overaging temperature between 300°C and 700°C, preferably between 340°C and 480°C which is about the temperature at which the strip is introduced in the overaging section at the output of the first transfer section. But, this section is also able to not maintain the temperature but is able to allow it to steadily decrease down to an output temperature preferably equal or about equal to the coating temperature i.e. the temperature at which the strip has to be introduced in the hot dip coating section 5 given the coating that has to be done. Generally this temperature is about 460°C.

When the sheets are made of DP steel, the strip is introduced in the overaging section at a temperature generally between 650°C and 700°C, and it is regularly cooled down to an output temperature preferably equal to the coating temperature.

When the sheets are made of TRIP steel, the strip is introduced in the overaging section at an overaging temperature generally around 450°C or 460°C, or within the range of 400°C to 460°C and at the exit of the overaging preferably equal to the coating temperature and is maintained at this temperature or around it i.e. between the overaging temperature - 10°C and the overaging temperature + 10°C for a time generally between 20 s and 60 s.

When the sheets are made of Q&P steels, the strip is introduced in the overaging section at the overaging temperature obtained by the heating means of the first transfer section, and is maintained at or about at temperature i.e. between the overaging temperature - 10°C and the overaging temperature + 10°C, for a time generally between 20 sec and 60 sec.

As previously said the overaging temperature is generally between 340°C and 480°C and preferably between 350°C and 480°C. Moreover the difference between the overaging temperature and the quenching temperature must remain less than 330°C.

Generally, when the strip is then galvanized, the holding time at the overaging temperature is at least 30 s. When the strip is galvannealed, the holding time is preferably at least 45 s.
The length of the soaking furnace is adapted such that the holding time could be the specified time given the traveling speed of the strip in the line.

The second transfer section 4 comprises controllable cooling means 41 consisting for example in blowing boxes 411 able to cool the strip from an overaging temperature higher than the coating temperature down to the coating temperature i.e. between 460°C and 490°C but less than 460°C at a temperature between 450°C and 460°C for example. These means cannot be used if no cooling is necessary.

The second transfer section 4 comprises also controllable rapid heating means 42 such as induction heater able to heat the strip from an overaging temperature less than the coating temperature to heating temperature i.e. from a temperature less than 460°C but higher than 340°C to a temperature between 450°C and 460°C for example, or 400°C to 460°C. These heating means do not have to be used if no heating is necessary.

The hot dip coating section 5 comprises at least a liquid metal bath 51, alloying means 52 and cooling means 53 which are known by those which are skilled in the art. It further comprises after-pot-cooling (or APC) sections 54, 55, also known by those which are skilled in the art.

The liquid metal bath is for example a bath of liquid zinc or liquid zinc alloy for galvanizing or galvannealing.

The alloying means is a furnace able to maintain the strip at an alloying temperature often between 480°C to 570°C and is used when the strip is galvannealed.

With this line, it is possible to achieve the thermal cycles corresponding to what is necessary to produce DP, TRIP or Q&P steel sheets. The diagrams temperature versus time of these cycles are shown in Figure 2.

For a Q&P steel, the strip is heated in the annealing section 1, to annealing temperature AT between 795°C and 910°C, and maintained 101 at this temperature. Then, in the first transfer section, the strip is rapidly cooled 102 down to a quenching temperature QT between 140°C and 355°C then reheated 102a or 102b to an overaging temperature between 340°C and 490°C. Then, in the overaging section, the strip is maintained 103a or 103b at the overaging temperature which can be higher, lower or equal to the coating temperature.

Then, if the overaging temperature is not equal to the coating temperature, the strip is cooled 104a or heated 104b to the coating temperature.

The strip is coated by galvanizing 50, 50a or galvannealing 50, 50b.

For a TRIP steel, the strip is heated to an annealing temperature of between 830 and 870°C and maintained at this temperature 201, in the annealing section 1, then it is cooled 202 in the first transfer section 2 to an overaging temperature of about 450°C.
which is about the coating temperature. Then the strip is maintained at this temperature in the overaging section 3 and pass through the second transfer section 4 without changing its temperature or by adjusting it if necessary. Then the strip is coated by galvanizing or galvannealing for example.

For a DP steel, in the annealing section 1, the strip is heated to an annealing temperature between 770 and 840°C for example and maintained at this temperature. Then the strip pass through the first transfer section 2, without heating and without forced cooling in order to be introduced in the overaging section 3 at a temperature between 650°C and 700°C. In the overaging section, the temperature of the strip decreases regularly down to the coating temperature. In the second transfer section, the temperature of the strip is adjusted if necessary. Then the strip is coated by galvanizing or galvannealing for example.

It could be noticed that the hot dip coating is not necessarily zinc coating but can be of all type of hot dip metal coating.

As all the sections of the line are independently controllable, it is possible to produce successively on the same line various sheets made of TRIP steels, DP steels and Q&P steels.
1. A multipurpose continuous processing line able for heat treating and hot dip coating a steel strip comprising:
   - an annealing section (1) for heating the steel strip to a predetermined annealing temperature and for maintaining the steel strip at said annealing temperature,
   - a first transfer section (2),
   - an overaging section (3) able to maintain the temperature of the steel strip between 300°C and 700°C,
   - a second transfer section (4) able to adjust the temperature of the steel strip to allow the hot dip coating of the strip and,
   - a hot dip coating section (5),
wherein the first transfer section (2) comprises, in sequence, cooling means (21) and heating means (22).

2. The multipurpose continuous processing line according to claim 1, wherein the cooling means (21) of the first transfer section (2) are controllable such that their cooling capabilities are adjustable between no cooling and rapid cooling to a predetermined quenching temperature and the heating means (22) of the first transfer section (2) are controllable such that their heating capabilities are adjustable between no heating and rapid heating to a predetermined overaging temperature.

3. The multipurpose continuous processing line according to claim 2 wherein the cooling means (21) of the first transfer section (2) are such that the cooling speed can be adjusted between 0°C/s and at least 70°C/s and the quenching temperature can be chosen between 100°C and 500°C.

4. The multipurpose continuous processing line according to claim 2 or 3 wherein the heating means (22) of the first transfer section (2) comprise at least one controllable induction heater (221).

5. The multipurpose continuous processing line according to any claims 1 to 4, wherein the second transfer section (4) comprises, in sequence, controllable cooling means (41) and controllable heating means (42) for adjusting the temperature of the strip by cooling or by heating.

6. The multipurpose continuous processing line according to any claims 1 to 5, wherein the overaging section (3) comprises controllable means able to maintain the temperature of the strip around an overaging temperature or to allow the temperature of the strip to decrease slowly between an entry temperature and an exit temperature.
7. The multipurpose continuous processing line according to any claim 1 to 6, wherein the annealing section (1) comprises controllable means such that the predetermined annealing temperature can be chosen between 700°C and 1000°C.

8. The multipurpose continuous processing line according to any claims 1 to 7, wherein the hot dip coating section (5) comprises at least a liquid metal bath (51).

9. The multipurpose continuous processing line according to claim 8, wherein the hot dip coating section (5) further comprises alloying means for the coating (52).

10. The multipurpose continuous processing line according to claim 8, wherein the hot dip coating section (5) is a galvanizing section or a galvannealing section.
**INTERNATIONAL SEARCH REPORT**

**A. CLASSIFICATION OF SUBJECT MATTER**

<table>
<thead>
<tr>
<th>INV.</th>
<th>C23C2/02</th>
<th>C21D9/00</th>
<th>C23C2/06</th>
<th>C23C2/26</th>
<th>C21D9/60</th>
<th>C22H7/00</th>
</tr>
</thead>
</table>

**ADD.**

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>C23C</th>
<th>C21D</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

**Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)**

EPO-Internal, WPI Data

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2014/147697 AI (BERKHOUT BASJAN [NL] ET AL) 29 May 2014 (2014-05-29) paragraphs [0016] - [0028], [0031] - [0049], [0072] - [0074]; claim 5; figures 4-6</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>US 2010/237548 AI (OKADA RI E [JP] ET AL) 23 September 2010 (2010-09-23) paragraphs [0014], [0019] - [0021], [0038] - [0040], [0060]; figures 3,7; table 2</td>
<td>1-4,6,7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

**Date of the actual completion of the international search**

14 October 2015

**Date of mailing of the international search report**

17/12/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Tsi pouri di s, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>US 2014147697 Al 29-05-2014</td>
<td></td>
<td>CA 2841635 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103649347 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2732058 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014523970 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140048263 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2014105584 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014147697 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013010968 Al</td>
</tr>
<tr>
<td>US 2010237548 Al 23-09-2010</td>
<td></td>
<td>JP 2010222631 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010237548 Al</td>
</tr>
</tbody>
</table>