(12) STANDARD PATENT (11) Application No. AU 2005310796 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(74)

(56)

Title
Reproducing apparatus, reproducing method, reproducing program, recording medium,
and data structure

International Patent Classification(s)
G11B 27/10 (2006.01)

Application No: 2005310796 (22) Date of Filing: 2005.11.10
WIPO No: WO06/059483

Priority Data

Number (32) Date (33) Country
2004-350193 2004.12.02 JP
Publication Date: 2006.06.08

Accepted Journal Date: 2011.03.10

Applicant(s)
Sony Computer Entertainment Inc_;Sony Corporation

Inventor(s)
Hamada, Toshiya;Kakumu, Tatsuya;lhara, Koji;Utsumi, Shusuke;Fujinami, Yasushi

Agent / Attorney
Spruson & Ferguson, Level 35 St Martins Tower 31 Market Street, Sydney, NSW, 2000

Related Art

JP 10-271454

US 2003/0161615
JP 2004-328450

(12) FHHFBAFEHICE TV T ARSI -ERHEE

%) R
(19) 1t S EN I FT A HE 14 R)
‘ﬂm'; R0 O O 0 0 OO T O

EREXER
43) ERARRA 10) B RES

2006 ££6 A8 B (08.06.2006) PCT WO 2006/059483 Al

(51) B4 E: (HAMADA, Toshiya) [JP/IP]; T 1410001 3 3 #B 5
GI11B 27/10 (2006.01) NRIEERN 6 TH7&E35E v-—#HXEsHHA
- Tokyo (JP). &% 3 (FUJINAMI, Yasushi) [JP/JP]; T
21 $: PCT/IP2005/021075
@D ERHRES 1410001 REHBRINRELRING6TE7E355 vV
(22) EFHEER: 2005 ££11 A10 B (10.11.2005) ——# XS %K Tokyo UP). &% FEik (KAKUMU,
(25) ERSHED S E: AAE Tatsuya) [JP/JP]; T 1070062 ER#MBERFHFIL=T
==z, - Be&E21E5E#AEtYy——--avEa—41T>
(26) EIFAEDE 8- B 854 ¥+ FH Tokyo (JP). FiE &1+ (UTSUML,
(30) BEIET—4: Shusuke) [JP/JP]; T 1070062 RRBERBFEIL=T
$§FE2004-350193 2004 £12 A2 H (02.12.2004) JP BeE21E#tety=—— - avFa—41T>
) HEA CKEEKR2TOEREECDOLT: v %74 2 X2 kN Tokyo (JP). 3R 7 = (IHARA,
="/ &% (SONY CORPORATION) [JP/IP}; = Koj) [JP/JP]; T 1070062 RF#MAER &1L =T H
1410001 ERHEIIRALS)I1 6 TH 7 %3 58 Tokyo cE21BHA#Y=—-30E2—-FTL%
0P, HERHYZ— - AV Ea—FIVETA 74 X2 b Tokyo UP).
2 A 2 bk (SONY COMPUTER ENTERTAINMENT (74) {£¥E A: ## IE4] (SUGIURA, Masatomo); T 1710022
INC.) [JP/JP]; T1070062 RRHPERFEEFIL_TH6 & REHEERFEHE 2 THOE 75 B/ -V EL
2 18 Tokyo (JP). 7 B Tokyo (JP).
(72) HEAF; LUV 8 EEE (RFTOHEWVRY ., ETOEEOERNREN
(75) HEAF/HEA CRKEIZOWWTOH): EH#H T HE): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,
[(mEH)

(54) Title: REPRODUCING APPARATUS, REPRODUCING METHOD, REPRODUCING PROGRAM, RECORDING
MEDIUM, AND DATA STRUCTURE

(54 FADLEW: BEEE, BEAERSLIUBETOT S A, BHREA, GoTIC, T—4HBE&ERK

AA o BB
302~ 24Tk *FTOxOk,
ARUIIET

300 ARUR T\,312 313’\19“}%:

L—E—=TL—v
F—HER—2 A
| TLAYRE EVa—-)L
A Gy T TH A=Ay T
320

y K . -
y ARUK] | #uuE
HEavLFho311 321 314’ s

RATATRETSUR T — L avko—3

+Iszor | 301

(
31041—%)\7: 330

AA- SCRIPT

BB- OBJECT, EVENT HANDLER 311- CONTROL COMMAND

312- EVENT 301- NATIVE IMPLEMENTATION PLATFORM
313- METHOD 310- USER INPUT

300- BEAM PLAYER 314-EVENT

320- DATABASE, PLAY LIST 315- METHOD

CLIP INFORMATION 330-CONTROLLER OBJECT
321- PLAYBACK MODULE

483 A1 |0 O 0 0 O 0 0 00

@\ (57) Abstract: The state transition of a player operation is clearly defined to facilitate the production of interactive contents. Con-
sider, as a player model for reproducing a disc, a model comprising a player (300) for reproducing a stream; a platform (301) serving
as an interface between the player (300) and hardware; and a script layer (302) for achieving a scenario intended by a content pro-

N\ ducer. The states of the player (300) are defined as being four states resulting from combining two states as to whether or not a play

S listis being reproduced with two states as to whether or not a command (311) is accepted. A state transition between the four states
of the player (300) occurs in response to a method (313) from the script layer (302) but does not occur in response to the player (300)
itself or the command (311). Since the number of the states of the player (300) is small and the conditions of the state transition are
clear, it is easy to produce interactive contents and implement them into devices.

B (REH]

WO 2006/059483 A1 [N 00000 00000 A 0O

BW,BY,BZ,CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR),
ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, OAPI (BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MR, NE, SN, TD, TG).

MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU,
SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, #{+/ABEE:
TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW. — ERRTHRss

84 BEE ETROLZELRY, 2TOEEDLEFRELT
HE): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, 2XFa— FRUMDEREIZDOINTIE, THRITIHNS
SL, SZ, TZ, UG, ZM, ZW), 1— 35 ¥ 7 (AM, AZ, BY, &PCTHEw FOHBFEIZEEHE SN TS Ta— FEBKE
KG, KZ, MD, RU, TJ, TM), 3 — 0w/ (AT, BE, BG, DHAHF R/ —+] 288,

(57) E#): TL—VEEOREBBZABICERZL, 1 V23350 T47RaVTUoVDHEE2BEET D, T4 RY
FBETDHTL—NVETILELT, APU—LDBEZET3TL—%300, FL—¥300&N—FDz7ED
AVB—DIARTHEITSY FI+r—L301RVaAVTUVHEEADERLELFIAEERT IH-HDR
DYT LAV 302h0H2ETIVEEAD, TL—V300DKREZ, TLAURMBEFEITHOTWEHLED
D2REELE, TV F3 1122 HIELEID2RELEZRAEDLELIRETERT S, FL—Vv3000
ARERDREBRBIZ, ROUTRLAY3020h56DAY Y F313THAEL, 7L—V3008H8RTaTY
F311TEBEELELEL, TL—VY300DREHMMSVPEIREBBOEHEIAREDT, 124509 FT T4
UFUYDHECHEBADEENEZTH S,

10

15

20

25

DESCRIPTION
REPRODUCING APPARATUS, REPRODUCING METHOD, REPRODUCING

PROGRAM, RECORDING MEDIUM, AND DATA STRUCTURE

TECHNICAL FIELD

This invention relates to a reproducing apparatus,
a reproducing method, a reproducing program, a
recording medium and a data structure in which the
reproduction of a program recorded in a large-capacity

recording medium can be easily controlled.

BACKGROUND ART

It is a long time since the DVD (digital
versatile disc) appeared as a random-access and
removable recording medium. In recent years, a disk-

shaped recording medium larger in capacity and more

convenient to carry than DVD has been under development.

A DVD-Video has been laid down as a standard for
recording video contents in DVD. According to DVD-
Video, the DVD player in disk reproduction operation
can assume various states. In DVD-Video, the state
that can be assumed by the DVD player are classified
into five types of what is called domains, and a model
in which transition is made between the domains
according to various conditions is used in the DVD

player. Specifically, the DVD domains can be regarded

10

15

20

25

as state variables having five possible values. The
DVD player monitors the state variables to grasp the
type of the contents being read from the disk.

The following five types of domains are defined
in DVD-Video:

(1) First play domain (FP_DOM)

(2) Video manager menu domain (VMGM_DOM)
(3) Video title set menu domain (VTSM_DOM)
(4) Title domain (TT_DOM)

(5) Stop state

Incidentally, the stop state in (5) is not the
domain in real terms.

The first play domain in (1) is defined as the
first section of the disk and the preparatory state for
reproduction in the DVD player. No-reproduction
command is considered valid. The video manager menu
domain in (2) is defined as the main menu on the whole
disk or the whole disk surface and indicative of the
display of the title menu. The command related to the
menu is considered valid. The video title set menu
domain in (3) is defined as the menu or the submenu
(sub-picture, language, audio or angle) of the title or
the title group and indicative of the root menu or
submenu. The title domain in (4) is defined as the
video contents in the title and the reproduction

command is considered valid. The stop state in (5) is

10

15

20

25

defined as the state in which the head has left the
position for disk reproduction and returned to the
original position, and the reproduction command is
considered valid.

The navigation command for controlling the
operation of the DVD player is limited by the domain
used for the current state. The SELECT BUTTON command
for selecting a predetermined item from the menu, for
example, is significant as long as the menu is
displayed. Specifically, the SELECT BUTTON command is

significant in either state of the video manager menu

domain of (2) or the video title set menu domain of (3).

The FAST FEED command designating the video
reproduction higher in speed than the normal unity
speed, for example, is not significant as long as the
player is stationary or the menu screen configured with
a still image is on display. In other words, the FAST
FEED command is significant in the title domain.

These domains of DVD-Video are described in, for
example, "Jim Taylor: New Book on DVD Anatomy, 1lst
edition, Nexus Intercom Ltd., June 7, 2003, p. 271"
(Non-Patent Document 1).

The conventional DVD-Video described above has
many domain types and detailed conditions for state
transition between the domains, thereby posing the

problem that it cannot be easily mounted on the DVD

10

15

20

25

player.

Another problem is that unless the transition
between the domains is fully understood, the disk
production is impossible and it is difficult for the
content producer to produce the disk. Specifically,
due to the many domain types and the detailed
conditions for transition between the domains, the
transition between domains cannot be fully grasped.
This imposes a heavy burden on the producer in
producing the disk of a complicated configuration.

Further, the domain name and the actual operating
method are not always coincident with each other, and
therefore, the necessity of the significance of
existence of the domains is small. This poses the
problem that the many domain types, coupled with the
detailed conditions for transition between the domains,
constitute a factor for increasing the burden of disk
production on the part of the producer.

In the DVD-Video, for example, as described above,
the title domain and two types of menu domains (the
video manager menu domain and the video title set menu
domain) are defined. Originally, the main content
(such as the original story of the movie) recorded in
DVD should be reproduced in the title domain. Actually,
however, the reproduction of the original story of the

movie in the menu domain poses no problem. Although

10

15

20

25

commands are different for transition between domains,
however, the player operation is not different between
the menu domain and the title domain after state
transition to these domains. This is by reason of the
fact that both the menu reproduction in the menu domain
and the reproduction of the original story of the movie
in the title domain are realized by a common logic
structure called PGC (program chain) with the content
data and the related reproduction control program
combined.

This poses the problem that the otherwise free
content production is restricted. Specifically, the
determination of a given content as a menu or a title
somewhat depends on the subjective viewpoint of the
disk producer. Assuming that in the case where the

original story of the currently reproduced movie has

branches, for example, the contents employing the
interactiveness is conceived by displaying the select
button to select any one of the branches. In this case,
the method using the conventional DVD-Video is

ambiguous as to which, the menu domain or the title
domain, is to be used for reproducing the contents
displayed by the select button. In the case where it

is desired to prepare, after the particular content, a
content having interactiveness, for example, the state

transition is hard to predict and the operation is

02 Feb 2011

2005310796

20

25

30

35

liable to be difficult to verify.

Thus, a need exists to provide a reproducing apparatus, a reproducing method,
a reproducing program, a recording medium and a data structure in which the state
transition of the player operation is positively defined and the production of the interactive
contents facilitated.

SUMMARY

An aspect of the present disclosure provides a reproducing apparatus for
reproducing content data recorded in a recording medium, including: read means for
reading data from a recording medium having recorded therein content data including at
least one of a video stream and an audio stream and a reproduction contro! program for
controlling the reproduction of the content data; player means for reproducing the content
data in accordance with reproduction control program; and control command output
means for giving a control command corresponding to a user operation to the player
means, wherein the player means controls the reproduction of the content data based on
four states defined by combinations of two states classified according to whether the
content data is reproduced or not and two states classified according to whether the
control command from the control command output means is accepted or ignored by the
player means, wherein when the player means is in the state where the control
command is ignored by the player means then the user operation is provided through the
reproduction control program, and wherein any state transition among the four states of
the player means is caused by the reproduction control program and is not caused by the
control command;
said reproducing apparatus further comprising: first storage means for storing
reproduction state information indicating a state of the content data during the
reproduction by the player means; and second storage means for backing up the
reproduction state information stored in the first storage means, wherein the reproduction
state information stored in the first storage means is backed up in the second storage
means and the reproduction state information backed up in the second storage means is
restored to the first storage means along with the state transition among the four states
of the player means.

Another aspect of the present disclosure provides a reproducing method for
reproducing content data recorded in a recording medium, comprising: the reproduction

of content data by player means in accordance with a reproduction control program read

3197383-1

02 Feb 2011

2005310796

20

25

30

35

7
from the recording medium having recorded therein the content data including at least
one of a video stream and an audio stream and the reproduction control program for
controlling the reproduction of the control data, is controlled based on four states of the
player means defined by combinations of two states classified according to whether the
content data is reproduced or not and two states classified according to whether the
control command corresponding to a user operation is accepted or ignored by the player
means, wherein when the player means is in the state where the control command is
ignored by the player means then the user operation is provided through the
reproduction control program, and wherein any state transition among the four states of
the player means is caused by the reproduction control program and is not caused by the
control command,;

said reproducing method further comprising: storing reproduction state information
indicating a state of the content data during the reproduction by the player means in a
first storage means; and backing up the reproduction state information stored in the first
storage means, wherein the reproduction state information stored in the first storage
means is backed up in the second storage means and the reproduction state information
backed up in the second storage means is restored to the first storage means along with
the state transition among the four states of the player means.

Another aspect of the present disclosure provides a reproducing program for
causing a computer system to execute a reproducing method for reproducing content
data recorded in a recording medium, wherein the reproducing method is such that the
reproduction of content data by player means in accordance with a reproduction control
program read from a recording medium having recorded therein the content data
including at least one of a video stream and an audio stream and the reproduction
control program for controlling the reproduction of the content data, is controlied based
on four states of the player means defined by combinations of two states classified
according to whether the content data is reproduced or not and two states classified
according to whether the control command corresponding to a user operation is
accepted or ignored by the player means, wherein when the player means is in the state
where the control command is ignored by the player means then the user operation is
provided through the reproduction control program, and wherein any state transition
among the four states of the player means is caused by the reproduction control program
and is not caused by the control command;
said reproducing method further comprising: storing reproduction state information

indicating a state of the content data during the reproduction by the player means ina

3197383-1

02 Feb 2011

2005310796

20

25

30

35

8
first storage means; and backing up the reproduction state information stored in the first
storage means, wherein the reproduction state information stored in the first storage
means is backed up in the second storage means and the reproduction state information
backed up in the second storage means is restored to the first storage means along with
the state transition among the four states of the player means.

Another aspect of the present disclosure provides a computer-readable
recording medium having recorded therein a reproducing program method for
reproducing content data recorded in a recording medium, wherein the reproducing
method is such that the reproduction of content data by player means in accordance with
a reproduction control program read from a recording medium having recorded therein
the content data including at least one of a video stream and an audio stream and the
reproduction control program for controlling the reproduction of the content data, is
controlled based on four states of the player means defined by combinations of two
states classified according to whether the content data is reproduced or not and two
states classified according to whether the control command corresponding to a user
operation is accepted or ignored by the player means, wherein when the player means is
in the state where the control command is ignored by the player means then the user
operation is provided through the reproduction control program, and wherein any state
transition among the four states of the player means is caused by the reproduction
control program and is not caused by the control command,
said reproducing method further comprising: storing reproduction state information
indicating a state of the content data during the reproduction by the player means in a
first storage means; and backing up the reproduction state information stored in the first
storage means, wherein the reproduction state information stored in the first storage
means is backed up in the second storage means and the reproduction state information
backed up in the second storage means is restored to the first storage means along with
the state transition among the four states of the player means.

Another aspect of the present disclosure provides a computer-readable
recording medium having recorded therein content data including at least one of a video
stream and an audio stream and a reproduction control program for causing player
means to control the reproduction of the content data, wherein the reproduction control
program is executed in such a manner that the player means for controlling the
reproduction of the content data is instructed to control the reproduction of the content
based on four state defined by combinations of two states classified according to

whether the content data is reproduced or not and two states classified according to

3197383-1

02 Feb 2011

2005310796

20

25

30

9

whether the control command corresponding to a user operation is accepted or ignored
by the player means, wherein when the player means is in the state where the control
command is ignored by the player means when the user operation is provided through
the reproduction control program, and wherein any state transition among the four states
of the player means is caused by the reproduction control program and is not caused by
the control command,
said reproducing control program further comprising: a program for storing reproduction
state information indicating a state of the content data during the reproduction by the
player means in a first storage means; and a program for backing up the reproduction
state information, stored in the first storage means, in a second storage means, wherein
the reproduction state information stored in the first storage means is backed up in the
second storage means and the reproduction state information backed up in the second
storage means is restored to the first storage means along with the state transition
among the four states of the player means.

Another aspect of the present disclosure provides a data structure comprising
content data including at least one of a video stream and an audio stream and a
reproduction control program for causing player means to control the reproduction of the
content data, wherein the reproduction control program is executed in such a manner
that the reproduction of the content is controlled by giving a reproduction control
instruction to the player means for controlling the reproduction of the content data based
on four states defined by combinations of two states classified according to whether the
content data is reproduced or not and two states classified according to whether the
control command corresponding to a user operation is accepted or ignored by the player
means, wherein when the player means is in the state where the control command is
ignored by the player means then the user operation is provided through the
reproduction control program, and wherein any state transition among the four states of
the player means is caused by the reproduction control program and is not caused by the
control command,
said reproducing control program further comprising: a program for storing reproduction
state information indicating a state of the content data during the reproduction by the
player means in a first storage means; and a program for backing up the reproduction
state information, stored in the first storage means, in a second storage means, wherein
the reproduction state information stored in the first storage means is backed up in the

second storage means and the reproduction state information backed up in the second

3197383-1

—
—
-
@\
O

)
~
-\
-

2005310796

20

25

30

10
storage means is restored to the first storage means along with the state transition
among the four states of the player means.

Another aspect of the present disclosure provides a reproducing apparatus for
reproducing content data recorded in a recording medium, including: a read unit for
reading data from a recording medium having recorded therein content data including at
least one of a video stream and an audio stream and a reproduction control program for
controliing the reproduction of the content data; a player unit for playing the content data
in accordance with the reproduction control program; and a control command output unit
for giving a control command corresponding to a user operation to the player unit,
wherein the player unit controls the reproduction of the content data based on four states
defined by combinations of two states classified according to whether the content data is
reproduced or not and two states classified according to whether the control command
from the control command output unit is accepted or ignored by the player means,
wherein when the player means is in the state where the control command is ignored by
the player means then the user operation is provided through the reproduction control
program, and wherein any state transition among the four states of the player means is
caused by the reproduction control program and is not caused by the control command;
said reproducing apparatus further comprising: first storage means for storing
reproduction state information indicating a state of the content data during the
reproduction by the player means; and second storage means for backing up the
reproduction state information stored in the first storage means, wherein the reproduction
state information stored in the first storage means is backed up in the second storage
means and the reproduction state information backed up in the second storage means is
restored to the first storage means along with the state transition among the four states
of the player means.

As described above, according to the present disclosure as recited in claims 1,
12, 13, 14 and 19, the reproduction of the content data performed by the player means in

accordance with the reproduction

3197383-1

L]
.

06 Jan 2011

2005310796

~

20

25

-

control program read from the recording medium having
recorded therein the content data including at least
one of the video stream and the audio stream and the
reproduction control program for controlling the
reproduction of the content data is controlled based on
four states of the player means defined by combinations
of two states classified according to whether the
content data is reproduced or not and two states
classified according whether the control command
corresponding to the user operation is accepted or not.
Therefore, the number of the states of the player means
is reduced and the understanding of the operation of
state transition is facilitated, thereby facilitating
the mounting of the player while at the same time
reducing the burden of content production.

According to another aspect of the present disclosure
there is provided the computer readable recording
medium having recorded therein the content data
including at least one of the video stream and the
audio stream and the reproduction control program for
the player means to control the reproduction of the
content data, wherein the reproduction control program
gives a reproduction control instruction to the player
means for controlling the reproduction of the content
data based on four states defined by combinations of

two states classified according to whether the content

11

06 Jan 2011

2005310796

20

25

data is reproduced or not and two states classified
according to whether the control command corresponding
to the user operation is accepted or not thereby to
control the content reproduction. Therefore, even the
content requiring the complicated control operation can
be easily produced. _

According to another aspect of the present disclosure
there is provided the data structure including the
content data including at least one of the video stream
and the audio stream and the reproduction control
program for the player means to control the content
data reproduction, wherein a reproduction control
instruction is given to the player means for
controlling the content data reproduction based on four
states defined by combinations of two states classified
according to whether the content data is reproduced or
not and two states classified according to whether the
control command corresponding to the user operation is
accepted or not thereby to control the content
reproduction. Therefore, even a content requiring a
complicated control operation can be easily produced
and provided as a data structure.

Aécording fo aﬁdthef aspécf of the bresént disclosure
movie player for reproducing the play list are defined
including two states, i.e. a stop state and a play

state from the viewpoint of play list reproduction and

12

10

15

20

25

two states, i.e. a normal mode and a menu mode based on
whether a control command corresponding to a user
operation is accepted or not, and the play list
reproduction is controlled by state transition among
these four states. As a result, the invention has the
advantage that the reproduction of the AV stream can be
controlled from a script program.

Another advantage is that the number of states of
the movie player is small, and the state definition is
clear. Thus, the conditions for generating the state
transition and the operation of generating the state
transition are easily understood, thereby facilitating
the mounting of the player for reproducing the AV
stream.

Further, the number of states of the movie player
is small, and the state definition is clear. Therefore,
the conditions for generating the state transition and
the operation for generating the state transition are
easily understood, thereby making it easier for the
content producer to produce the contents having the

interactiveness.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram showing a layer
structure of a UMD video standard; FIG. 2 is a diagram

schematically showing an exemplary player model

13

10

15

20

25

according to an embodiment of the invention; FIG. 3 is
a schematic diagram showing the internal configuration
of a movie player; FIG. 4 is a diagram for explaining a
play state and a stop state of the movie player; FIG. 5
is a schematic diagram showing an event model of the
movie player according to an embodiment of the
invention; FIG. 6 is a schematic diagram showing an
exemplary event generated during the play list
reproduction; FIGS. 7A and 7B are schematic diagrams
showing a list of exemplary properties held by a movie
player object; FIG. 8 is a schematic diagram showing a
list of exemplary methods for the movie player object;
FIG. 9 is a schematic diagram showing an exemplary key
input operation by the user; FIG. 10 is a schematic
diagram showing an exemplary key input operation by the
user; FIGS. 11A, 11B and 11C are schematic diagrams
showing an exemplary control command corresponding to
the key input; FIG. 12 is a schematic diagram showing
an exemplary event corresponding to the key input; FIG.
13 is a schematic diagram showing an exemplary event
handler; FIG. 14 is a schematic diagram showing the
exemplary event handler; FIG. 15 is a flowchart
showing an exemplary process executed by a program
prepared with the user input event as a motive; FIG. 16
is a diagram for explaining an exemplary script

program; FIG. 17 is a schematic diagram showing the

14

10

15

20

25

exemplary script program; FIG. 18 is a schematic
diagram showing an exemplary management structure of a
file applied to the UMD video standard; FIG. 19 is a
schematic diagram showing an exemplary syntax
indicating the entire structure of a file
"PLAYLIST.DAT"; FIG. 20 is a schematic diagram showing
an exemplary internal structure of a block
"PlayItem()"; FIG. 21 is a schematic diagram showing an
exemplary internal structure of a block
"PlayListMark()"; FIG. 22 is a diagram for explaining a
field "mark_type" in a block "Mark()"; FIG. 23 is a
diagram for explaining the designation of a mark time
in a clip AV stream file; FIG. 24 is a schematic
diagram showing an exemplary syntax indicating the
entire structure of a clip AV stream file "XXXXX.CLP";
FIG. 25 is a diagram for explaining a relation of a
block "StreamInfo()" to an elementary stream; FIG. 26
is a schematic diagram showing an exemplary internal
structure of a block "StaticInfo()"; FIG. 27 is a
schematic diagram showing an exemplary internal
structure of a block "DynamicInfo()"; FIG. 28 is a
schematic diagram showing an exemplary internal
structure of a block "EP_map()"; FIG. 29 is a block
diagram schematically showing an exemplary
configuration of a disk reproducing apparatus to which

the invention can be applied; FIGS. 30A and 30B are

15

10

15

20

25

function block diagrams for explaining the operation of
the disk reproducing apparatus in more detail; FIG. 31
is a schematic diagram showing the definition of states
of the movie player according to the invention; FIG. 32
is a schematic diagram showing a current state and a
state after state transition by the methods combined
into each of the four states of the movie player; FIGS.
33A, 33B, 33C, 33D and 33E are schematic diagrams for
explaining an example of state transition of the movie
player upon execution of a method "play()"; FIG. 34 is
a schematic diagram for explaining a method of
reproducing a play item; FIG. 35 is a schematic diagram
showing an exemplary operation of the movie player upon
arrival at the starting and ending points of a play
list during the play list reproduction; FIG. 36 is a
schematic diagram for explaining the reproduction
between play lists; FIG. 37 is a flowchart showing, in
more detail, a processing flow in a script player at
the end of the play list and an exemplary operation of
the movie player; FIG. 38 is a schematic diagram for
explaining three types of memory areas of a UMD video
player; FIG. 39 is a schematic diagram for explaining
the backup of a player status; FIG. 40 is a schematic
diagram for explaining the backup of the player status;
FIG. 41 is a schematic diagram for explaining the

restoration and discard of resume information: FIG. 42

le

10

15

20

25

is a schematic diagram for explaining the restoration
and discard of the resume information; FIG. 43 is a
schematic diagram for explaining the restoration and
discard of the resume information; FIG. 44 is a
schematic diagram for explaining the restoration and
discard of the resume information; FIG. 45 is a
schematic diagram showing an exemplary operation of the
UMD video player using an argument
"resumeInfoClearFlag" of a method "stop()"; FIG. 46 is
a schematic diagram showing an exemplary life cycle of
the player status; FIGS. 47A and 47B are schematic
diagrams showing an exemplary life cycle of the resume
information; and FIG. 48 is a schematic diagram showing

an exemplary life cycle of user data.

BEST MODE FOR CARRYING OUT THE INVENTION

An embodiment of the invention will be explained
below in the following order:

1. UMD video standard

2. Player model of UMD video standard

3. Event model of the movie player

4. Movie player object

5. Example of script program

6. File management structure

7. Disk reproducing apparatus

8. State transition model of movie player

17

lm
|
|

15

|

|
20
25

8-1 Definition of movie player state

8-2 Method of generating the state transition
of movie player

8-3 Operation of movie player during play list
reproduction

8-4 Reproduction restore function of movie
player

8-5 Life cycle of each data
1. UMD video standard

First, to facilitate the understanding, a system
applicable as an embodiment of the invention is briefly
explained. According to an embodiment of the invention,
a player model is described using a script language
called an ECMA script. The ECMA script is a script
language for a cross platform based on JavaScript
(registered trademark) laid down by ECMA (European
Computer Manufacturers Association). The ECMA script
is suitably used for the player model according to the
invention for its high affinity with an HTML text and
the possibility of its own object definition.
Specifically, a conventional DVD-Video uses a

non-general-purpose command defined by the DVD-Video
standard to describe a control program for realizing an
interactive function. The control program is embedded
in a plurality of files, at a plurality of points in a

data file or distributively in an AV stream file. The

18

10

15

20

25

conditions for and the order of execution of the
control programs thus embedded are defined by the DVD
standard.

In such a DVD-Video system, a general-purpose
content production system is difficult to construct,
and therefore, the story is produced according to a
predetermined script, i.e. the contents are produced
using a template. In producing a complicated content
that cannot be dealt with a template, on the other hand,
the first step is to prepare a content production
system as a custom made system. According to the
embodiment of the invention, this problem is solved by
using the ECMA script which is a general-purpose script
language high in extensibility to control AV contents.

In the description that follows, a standard based
on the embodiment of the invention using the script
language based on the ECMA script is called a UMD
(Universal Media Disc (registered trademark)) video
standard. Also, a portion of the UMD video standard
relating to the script is specifically called a UMD
video script standard.

The UMD video script will be explained briefly.
FIG. 1 shows a layer structure of the UMD video
standard. In the UMD video standard, a three-layer
structure including a script layer, a play list layer

and a clip layer is defined, and the stream management

19

10

15

20

25

is performed based on this structure.

In the UMD video standard, digitally coded video
and audio data and subtitles are handled as a
multiplexed MPEG2 stream as a packetized elementary
stream of MPEG2 (Moving Pictures Experts Group 2). The
elementary stream of the video and audio data and
subtitles multiplexed into the MPEG2 stream is called a
clip AV stream. The clip AV stream is stored in a clip
AV stream file. At the same time as recording a clip
AV stream file, the clip information file is prepared
in one-to-one correspondence with the clip AV stream
file. A set of the clip information file and the
corresponding clip AV stream film is called a clip.

The clip is what is called a unit of disk
recording, and the order, in which the clip is
reproduced, is managed by the play list layer higher
than the clip. The play list layer is for designating
a clip reproduction path, and includes one or a
plurality of play lists. The play list is a mass of
play items. The play item includes a set of "In"
points and "Out" points indicating a clip reproduction
range. By connecting the play items, the clip can be
reproduced in an arbitrary order. The play item can be
designated by doubling the clips. The "In" and "Out"
points of the clip AV stream file are designated by a

time stamp (in-clip time), which is converted into a

20

10

15

20

25

byte position on the clip AV stream by the information
in the clip information file.

The play list has only a structure for
sequentially reproducing the play items designating the
whole or a part of the clips, and the branching of the
order of reproduction or the interactiveness with the
user using only the play list cannot be realized.
According to an embodiment of the invention, a
plurality of play lists are collected into a single
file "PLAYLIST.DAT".

The script layer is constructed by a UMD video
script extended from the ECMA script of the language
specification. In the UMD video script, the extension
for realizing a function unique to the UMD video is
added based on the ECMA script.

The script layer is higher than the play list
layer and configured with a play list reproduction
instruction and a command string for setting the player.
The play list reproduction with the condition branching
such as to select any one of the streams prepared for a
plurality of languages or to change the reproduction
flow to a play list selected according to a certain
condition can be realized by a command of the script
layer. An example of the application using the play
list reproduction with this condition branching is the

multistory. This script layer introduces the

21

10

15

20

25

interactive function with the user.

According to this embodiment of the invention,
the script layer is configured with a file called
resource file. The resource file includes script data
(script program) described based on an actual ECMA
script, sound data for outputting an effect sound at
the time of button operation, and a screen design
having image data used for a background image of a menu
screen and image data (bitmap data) for displaying GUI
parts such as a button image.

A plurality of the resource files can exist.
Also, according to this embodiment of the invention,
the resource file is given a file name according to a
predetermined naming rule. An extension "RCO" of the
file name, for example, indicates that the file is a
resource file.

2. Player model of UMD video standard

Next, a model of a reproducing apparatus (player)
for reproducing data in accordance with the UMD video
standard, i.e. a player model will be explained. The
player first reads a resource file, a play list file
and a clip information file from a disk, and in
accordance with the predetermined order of reproduction,
reads a clip AV stream file and reproduces video and
audio data and subtitles.

According to the language specification of the

22

10

15

20

25

script program, a function block for reproducing a play
list is mounted as an object in the script program.

The object for the play list reproduction is called
movie player object according to the UMD video standard.
The play list reproduction instruction and the command
for setting the player constitutes a method associated
with the movie player object. The movie player object
is controlled by the method from the script layer. 1In
the process, a function is required to notify a state
change and a reproduction position from the movie
player object to the script layer. This corresponds to
the issue of an event by the movie player object to the
script program, and a process corresponding to this
event is described as an event handler.

As described above, a model is constructed in
which the information is transmitted from the movie
player object to the script program by an event and the
movie player object is controlled according to the
script program by a method, so that the reproduction of
the clip AV stream can be controlled by the script
program.

FIG. 2 schematically shows an exemplary player
model according to this embodiment of the invention
described above. A movie player 300 is a module taking
charge of reproducing the video and audio data and

subtitles according to the UMD video standard. The

23

10

15

20

25

movie player object described above is a movie object
formed as an object in the script program to operate
the movie object from the script program. In other
words, the movie player object is an implementation
module for realizing the function of the movie player
abstracted into a form that can be handled according to
the script program.

Incidentally, the movie player 300 and the movie
player object are considered to represent substantially
the same object, and therefore, designated by the same
reference numeral below.

In FIG. 2, in the movie player 300, a clip AV
stream file is read and the clip AV stream thus read is
decoded and displayed based on a play list and a
database of clip information in accordance with a
method from a lower layer (a native implementation
platform 301 in the case of FIG. 2) induced by a user
input 310 or a script layer 302 constituting a higher
layer.

The interior of the movie player object 300 is
dependent on the mounting of a UMD video player for
playing a UMD video, and API (application programming
interface) such as a method and a property is provided
as an object in the form of a black box from the script
layer 302. The UMD video player indicates an actual

device having mounted the movie player thereon. All

24

10

15

20

25

the UMD video players have a movie player mounted
thereon in accordance with the UMD video standard and
have the compatibility for reproduction.

As shown in FIG. 2, the movie player object 300
has three input/output paths including a path for
receiving a control command 311 from the native
implementation platform 301, a path for notifying an
event 312 to the script layer 302 and a path for
receiving a method 313 from the script layer 302.

The control command 311 controls the operation of
the movie player object 300 from the native
implementation platform 301. The native implementation
platform 301 is, for example, an interface between the
parts specific to a device and the movie player 300 in
the UMD video player as an actual device. The event
312 is a script event for the script layer 302 from the
movie player 300. The method 313 is designated by the
movie player 300 from the script program of the script
layer 302.

The movie player object 300 includes a database
320 containing a play list of the UMD video standard
and clip information therein. The movie player object
300 invalidates (masks) the user input 310 or executes
a process for converting a time-designated reproduction
position into a byte position in the clip AV stream by

using the database 320.

25

10

15

20

25

A playback module 321 in the movie player object
300 decodes the clip AV stream constituting the video
and audio data and subtitles multiplexed as MPEG2 PS
(program stream). The playback module 321 has two
states of play and stop and transits between these two
states in accordance with the control instruction and
the method (FIG. 3). Incidentally, the clip AV stream
is not limited to the MPEG2 PS. MPEG2 TS (transport
stream), for example, if used as a clip AV stream, can
also be handled in similar manner as a model.

The script player 302 executes the script program
based on the UMD video script standard to control and
display the movie player object 300 on the screen. The
script player 302 plays a role of realizing a scenario
intended on the part of a content producer. The script
layer 302 issues the method 313 to the movie player
object 300, and receives the event 312 from the movie
player object 300. The script layer 302 exchanges,
with the native implementation platform 301, a key
event 314 corresponding to the user input 310 or a
method 315 instructing the native implementation
platform 301 to draw a screen.

The native implementation platform 301 has
various functions other than specified in the UMD video
standard. According to this embodiment of the

invention, the method 315 exists in which the script

26

10

15

20

25

layer 302 acts on the native implementation platform
301. Therefore, the object with the function thereof
abstracted is defined also for the native
implementation platform 301, and the method 315 is
regarded as associated with the particular object on
the script program. This is because the method belongs
to the object. Thus, a controller object 330 is
defined in the native implementation platform 301, and
the method 315 is defined as that for the controller
object 330.

The buttons arranged on the menu screen, for
example, are drawn by the native implementation
platform 301 based on the method 315 delivered from the
script program of the script layer 302 to the native
implementation platform 301. Whenever the user
operates the buttons for selection or determination
(entry), the key event 314 corresponding to the user
input 310 is notified from the native implementation
platform 301 to the script layer 302, and the script
program in the script layer 302 executes the process
corresponding to the key input 310 based on the key
event 314.

As described above, the functions are distributed
in such a manner that the operation of decoding and
controlling the display of the video, audio and

subtitles is taken charge of by the movie player 300,

27

10

15

20

25

and the process relating to the arrangement or display
of the part image (hereinafter, referred to as the GUI
parts) constituting the GUI (graphical user interface)
such as buttons and the operation of selecting or
determining the GUI parts are executed by the script
player 302.

The native implementation platform 301 forms a
basis for the operation of the movie player object 300
and the script program. In the case where the actual
UMD video player is hardware, for example, the native
implementation platform 301 is mounted in a way unique
to the hardware to act as an intermediary between the
hardware and the player model.

The native implementation platform 301, for
example, receives a user input 310 from the user and
determines whether the user input 310 thus received is
an instruction to the movie player 300 or an
instruction issued to the button drawn or displayed in
the script layer 302. The native implementation
platform 301, upon determination that the user input
310 is an instruction to the movie player 300, converts
the user input 310 into a control command 311
constituting an internal control instruction to the
movie player 300, and issues a control instruction to
the movie player 300.

The native implementation platform 301, upon

28

10

15

20

25

determination that the user input 310 is an instruction
to the GUI part drawn and displayed in the script layer,
on the other hand, notifies the script layer 302 of the
key event 314 corresponding to the user input 310.
Then, the button image can be displayed on the screen,
for example, based on the method 315 designated from
the script layer 302 in accordance with the particular
key event 314. Specifically, the native implementation
platform 301 and the script layer 302 can receive and
deliver the event and the method directly without the
intermediary of the movie player 300.

Also, the native implementation platform 301 can
access the property of the movie player 300 as
described later and view the status of the movie player
300.

Next, the movie player 300 will be explained in
more detail. FIG. 3 shows an exemplary internal
configuration of the movie player 300. As described
above, the movie player 300 is configured with a
database 320 and a playback module 321. The database
320 is an area for storing information on a play list
read from a disk and information on a clip, i.e. clip
information.

The playback module 321 includes a decoder engine
322 and a property 323 representing a value indicating

the state of the playback module 321. The property 323,

29

10

15

20

25

like the language code, for example, is of two types
including a property 323A (read-only parameter) with a
value thereof determined by the initialization of the
movie player 300 and a property 323B (player status)
changing in value with the state of the playback module
321.

The value of the property 323A, which is
determined by initialization, is set by a native system
such as an actual device, and not changed by the play
list, the clip information or the script program. The
value of the property 323A is considered capable of
being read only from the script program. The value of
the property 323B indicating the state of the playback
module 321, on the other hand, can be read from the
script program on the one hand and can be written from
some script program on the other hand.

Incidentally, this operation model assumes that
the play list and the clip information are preloaded
from the disk before reproduction of the clip AV stream.
As an alternative, however, the operation determined by
the movie player model can be realized for other
mounting (package).

The movie player object 300 reproduces the play
list in accordance with the designation from the script
player 302 or the native implementation platform 301.

The movie player 300, for example, refers to the

30

10

15

20

25

database 320 and acquires a reproduction position of
the clip AV stream corresponding to the designated play
list as a byte position in the file. In the playback
module 321, the decoder engine 322 controls the
decoding of the clip AV stream based on the
reproduction position information.

The movie player 300, as shown in FIG. 4, has two
states of play and stop in accordance with the play
list reproduction condition. The play state is a state
in which the play list is designated and reproduced.

In addition to the normal reproduction, the play state
includes various states, i.e. the variable speed
reproduction such as double speed, half speed, forward
fast feed or reverse fast feed and pause. What is
frame-by-frame advance in which the reproduction is
advanced or returned by frame is a state in which pause
and play states are alternated. The stop state is
where the play list is not reproduced. In stop state,
the play list is not selected, and the value of the
player status indicating "number of currently
reproduced play list" is not determined.

The state of the movie player 300, for example,
accompanies the state transition of the play and stop
states in the decoder engine 322 in the movie player
300, and the value of the property 323B is updated in

accordance with the state transition of the decoder

31

10

15

20

25

engine 322.

A resume information 324 is stores a state
immediately before the stop state. In the case where
the movie player 300 decodes a given play list in a
play state, for example, the transition to the stop
state causes the state immediately before the stop
state to be stored. A plurality of items of the resume
information 324 can be stored in a way recognizable by
each disk title in a nonvolatile memory of the player
as hardware. The disk, for example, has unique
identification information (hereafter referred to as
title ID) for each disk title, and stores the resume
information 324 in association with the title ID. By
doing so, based on the information of the resume
information 324, the disk reproduction can be started
from a position immediately before the stop state from
which the disk having a title corresponding to the
title ID may have transferred to the play state.

3. Event model of movie player

The event model of the movie player 300 will be
explained. The movie player 300 generates various
events in the play state for playing the play list.
These events induce the execution of the processing
program called the evént handler described in script.
The event handler is a method accessed by the

generation of an event. The program execution model

32

10

15

20

25

for starting the execution of the processing program
upon generation of an event is called event driven
model. In the event driven model, an irregular event
is generated, and a program prepared with event
generation as a motive is executed. According to this
embodiment of the invention, the script program
controls the operation of the movie player object 300
with an event handler group.

FIG. 5 schematically shows the event model of the
movie player 300 according to an embodiment of the
invention. In FIG. 5, event handlers "onEventA()",
"onEventB()" and "onEventC()" are interfaces, and the
contents of each event handler are described in script.
The contents of the event handler are prepared and
mounted, for example, by the content producer.
According to the UMD video script standard, the event
handler is prepared for each event notified from the
movie player object 300 to the script program. In the
case of FIG. 5, for example, a processing program
executed upon generation of an event A is determined as
the event handler "onEventA()". This is also the case
with an event B and an event C. Specifically, upon
generation of the event B, the corresponding event
handler "onEventB()" is executed, while upon generation
of the event C, the corresponding event handler

"onEventC()" is executed.

33

10

15

20

25

The event handler accessed in accordance with the
event generation is selected by the system, and
therefore, the content producer is nbt required to
describe, in the script program, the process of
determining a particular event which may be generated.

FIG. 6 shows an exemplary event generated during
the reproduction of the play list. At the head of the
play list "PlayList, a chapter mark "ChapterMark” is
set. Thus, at the time of starting the reproduction
from the head of the play list, therefore, an event
"Chapter" corresponding to the chapter mark is
generated. Besides, each time the chapter changes, the
event "Chapter" is notified to the script layer 302 and
a corresponding event handler "onChapter" is executed.
Also, with the arrival of the reproduction at the time
set by an event mark "EventMark", a corresponding mark
event is generated. When the reproduction reaches the
end of the play list, the reproduction is temporarily
stopped at the end of the play list, and an event
"PlayListEnd" is notified from the movie layer 300 to
the script layer 302. In the script layer 302, the
start of reproducing another play list is designated
within a corresponding event handler "onPlayListEnd()".
In this way, the reproduction of a series of play lists
is continued in the order intended by the content

producer.

34

10

15

20

25

As described above, various events are assumed to
occur during the operation of the player, and by
notifying the event generation to an upper program, the
upper program can grasp the player state. In the upper
program, the program (event handler) executed at the
time of notifying of each event generation is prepared
to provide for the generation of various events. The
event and the event handler will be explained in more
detail later.

In the case where the event handler is not
described by the content producer, the operation built
in the player (default event handler) specified in the
standard is executed or the event is ignored and
nothing executed. In the case where nothing is
required to be executed, the event handler
corresponding to the event is not described thereby to
ignore the event positively.

Other possible event models include an event
listener model in which a listener corresponding to a
given event is registered by an object in a player
object, and in the case where the event generated in
the player object is a registered event, the event is
transmitted from the player object to the object having
registered therein the particular event and the
corresponding method is executed by the object, and a

single-method model in which a single method is

35

10

15

20

25

accessed regardless of an event which may be generated.

The event model according to this embodiment is
simpler than the event listener model requiring the
process of event registration and cancellation of the
event registration. The single-method model, on the
other hand, requires the description in the method the
pre-process of knowing a particular event generated and
switching the prepared processing routine for each
event. The method is mounted by the content producer,
and therefore, though simple as a model, imposes a
heévy burden on the content producer. Further, one
large processing program (method) is accessed each time
an event is generated, and therefore, a large memory
area is occupied while the execution speed is decreased.
The model, in which the processing program (event
handler) is prepared for each event according to this
embodiment of the invention, is considered advantageous
from this point of view.
4. Movie player object

Next, the external specification of the movie
player object 300 will be explained. Generally, an
object defined by a language according to the ECMA
script language specification has a property and a
method. The movie player object 300 according to this
embodiment of the invention, as explained already with

reference to FIGS. 2 and 3, similarly have a property

36

10

15

20

25

and a method. The property can be read and written
directly from an external object by designating an
object name and a property name involved. Further, by
defining a method "setXXX()" ("XXX" is the property
name involved) for setting a property value and a
method "getXXX()" for reading a property value, the
property of other objects can be read and written by
the method.

FIGS. 7A and 7B show a list of exemplary
properties held by the movie player object 300. This
corresponds to the property 323 in FIG. 3. FIG. 7A
shows an exemplary property associated with the read-
only parameter 323A shown in FIG. 3. A property
"scriptVersion" indicates the version of the UMD video
script. A property "audioChannelCapability" indicates
the number of audio channels that can be reproduced by
the UMD video player. A property "languageCode"
indicates a language code of a menu display language
set in the UMD video player. A property
"audioLanguageCode" indicates a language code of an
audio language set in the UMD video player. A property
"subtitleLanguageCode", on the other hand, indicates a
language code of a subtitle language set in the UMD
video player.

Once a disk is loaded, a script file to be read

from the disk is determined based on the language code

37

10

15

20

25

indicated in the property "languageCode" set in the
read-only parameter 323A. In the case where the loaded
disk lacks the script file corresponding to the
language, a default script file is read. For example,
of all the plurality of script files, a file arranged
at the head on the disk is read as a default script
file.

FIG. 7B shows an exemplary property associated
with the player status 323B in FIG. 3. A property
"playListNumber"” indicates a number of a currently
reproduced play list. A property "chapterNumber"
indicates a number of a currently reproduced chapter.
A property "videoNumber" indicates a number of a
currently reproduced video stream. A property
"audioNumber" indicates a number of a currently
reproduced audio stream. A property "subtitleNumber"
indicates a number of a currently reproduced subtitle
stream. A property "playListTime" indicates a time
assuming that the play list head is 0. A property
"AudioFlag" indicates the designation of the on/off of
audio reproduction and the dual mono LR. A property
"subtitleFlag" indicates the on/off of a subtitle
display.

The "dual mono" is a mode in which the left and
right (L, R) stereo audio channels are each used as an

each independent monaural audio channel.

38

10

15

20

25

Information on each property associated with this
player status 323B exists in the case where the movie
player 300 is in reproduction operation or in pause.
Once the operation transfers to the stop state, each
property associated with the player status 323B at the
particular time point is backed up as the resume
information (resume information) 324. At the same time,
the contents of the player status 323B may be cleared.

FIG. 8 shows a list of exemplary methods held in
the movie player object 300. This corresponds to the
method 313 shown in FIG. 2. A method "play()"
reproduces a video. A method "playChapter()"
reproduces a video by designating a chapter. A method
"resume()" starts the reproduction using the resume
information 324. A method "stop()" stops the video
reproduction. A method "pause()" temporarily stops the
video reproduction. A method "playStep()" reproduces
the video frame by frame advance. A method
"changeStream()" changes a video stream, audio stream
and/or the subtitle stream. A method
"getPlayerStatus()" acquires a state such as
reproduction, stop or pause in the movie player 300. A
method "changeResumeInfo()" changes the contents of the
resume information 324. A method "reset()" stops the
video reproduction and clears the contents of the

resume information 324.

39

10

15

20

25

According to the UMD video standard, the video
can be displayed in a part of the display screen. The
following four methods relate to this video display. A
method "setPos()" sets a video display position. A
method "getPos()" acquires a video display position. A
method "setSize()" sets a video display size. A method
"getSize()" acquires a video display size.

Actually, the movie player 300 and the native
implementation platform 301 are configured integrally
with each other. Specifically, in accordance with the
relation between the UMD player as hardware actually
loaded with a disk for reproduction and the software
for controlling the UMD player, a particular part
processed by hardware and a particular part processed
by software are dependent on the configuration at the
time of mounting. In the case where the UMD player is
configured with a personal computer, for example, the
parts other than the disk drive can be configured as
software. In the case where the UMD player is
configured as a simple unit, on the other hand, a video
decoder and an audio decoder other than the disk drive
can be configured as hardware. The methods, commands
and events processed between the movie player 300 and
the native implementation platform 301, therefore, are
not limited to the explicit exchange as an example

thereof is shown in FIG. 2.

40

10

15

20

25

With regard to the key input from the user, on
the other hand, as already explained with reference to
FIG. 2, the user input 310 is first received by the
native implementation platform 301. Specifically, the
native implementation platform 301 receives the key
input from the user as the user input 310, and
determines whether the user input 310 is a command to
the movie player 300 or an event for the script program
of the script layer 302. In accordance with the result
of determination, the native implementation platform
301 generates a control command 311 or a key event 314
and notifies the corresponding upper layer (movie
player 300 or the script layer 302) of them.

FIGS. 9 and 10 show an exemplary key input by the
user input 310. Incidentally, each key starting with
"VK" in FIGS. 9 and 10 indicates a virtual key.

FIG. 9 shows an exemplary key input for the
operation of the movie player 300. A key "VK_PLAY"
provides a function corresponding to a reproduction key
designating the reproduction. A key "VK_STOP" provides
a function corresponding to a stop key designating the
stop of the reproduction. A key "VK_PAUSE" provides a
function corresponding to a pause key designating the
temporary stop of the reproduction. A key
"VK_FAST_FORWARD" provides a function corresponding to

a fast forward key designating the fast forward

41

10

15

20

25

reproduction. A key "VK_FAST_REVERSE" provides a
function corresponding to a quick return key
designating the quick return reproduction. A key
"VK_SLOW_FORWARD" provides a function corresponding to
a slow (forward) key designating the slow forward
reproduction. A key "VK_SLOW_REVERSE" provides a
function corresponding to a slow (reverse) key
designating the slow reverse reproduction. A key
"VK_STEP_FORWARD" provides a function corresponding to
a frame-by-frame (forward) key designating the frame-
by-frame forward feed reproduction. A key
"VK_STEP_REVERSE" provides a function corresponding to
a frame-by-frame (reverse) key designating the frame-
by-frame reverse feed.

A key "VK_NEXT" provides a function corresponding
to a next designation key for inputting a value
indicating "next". A key "VK_PREVIQUS" provides a
function corresponding to a previous designation key
for inputting a value indicating "previous". By use of
the key "VK_NEXT" and the key "VK_PREVIOUS", for
example, the transfer to the preceding or following
chapter can be designated.

A key "VK_ANGLE" provides a function
corresponding to a video angle switching key
designating the angle switching of a multi angle video.

A key "VK_SUBTITLE" provides a function corresponding

42

10

15

20

25

to the subtitle switching key for switching the English
subtitle, Japanese subtitle or subtitle display/non-
display. A key "VK_AUDIO" provides a function
corresponding to an audio switch for switching the
audio setting such as surround or bilingual. A key
"VK_VIDEO_ASPECT" provides a function corresponding to
an aspect switching key designating the video aspect
ratio switching.

FIG. 10 shows an exemplary key input for menu
operation. A key "VK_UP" provides a function
corresponding to an up designation key for inputting a
value indicating "up". A key "VK_DOWN" provides a
function corresponding to an down designation key for
inputting a value indicating "down". A key "VK_RIGHT"
provides a function corresponding to a right direction
designation key for inputting a value indicating
"right”". A key "VK_LEFT" provides a function
corresponding to a left direction designation key for
inputting a value indicating "left". A key
"VK_UP_RIGHT" provides a function corresponding to a
diagnorally upward right designation key for inputting
a value indicating "right up". A key "VK_UP_LEFT"
provides a function corresponding to a diagnorally
upward left designation key for inputting a value
indicating "left up". A key "VK_DOWN_RIGHT" provides a

function corresponding to a diagnorally downward right

43

10

15

20

25

designation key for inputting a value indicating "right
down". A key "VK_DOWN_LEFT" provides a function
corresponding to a diagnorally downward left
designation key for inputting a value indicating "left
down". The use of these keys makes it possible to
designate the movement of the cursor indication on the
screen.

A key "VK_MENU" provides a function corresponding
to a menu key for displaying the menu. A key
"VK_ENTER" provides a function corresponding to an
ENTER key for designating "determination". A key
"VK_RETURN" provides a function corresponding to a key
designating the return of the process by one step.

Keys "VK_COLORED_KEY_1", "VK_COLORED_KEY_2",
"VK_COLORED_KEY_3", "VK_COLORED_KEY_4",
"VK_COLORED_KEY_5" and "VK_COLORED_KEY_6" provide
functions corresponding to a colored function key 1, a
colored function key 2, a colored function key 3, a
colored function key 4, a colored function key 5 and a
colored function key 6, respectively.

The key input shown in FIG. 9 and the key input
shown in FIG. 10 are different in function, and
therefore, the destination of notification is required
to be specified by the native implementation platform
301. As described above, the designation relating to

the reproduction of the video, audio and subtitles is

44

10

15

20

25

issued by the key input shown in FIG. 9. The native
implementation platform 301, upon receipt of the key
input shown in FIG. 9 as a user input 310, converts the
received key input to commands shown in FIGS. 11A, 11B
and 11C and notifies the movie player 300 of them.

The key input shown in FIG. 10, on the other hand,
is the user input 310 for the GUI, and therefore, this
user input is required to be notified to and processed
by the script layer 302 constructing the screen and
arranging the buttons. The native implementation
platform 301, upon reCeipt of the key input shown in
FIG. 10 as the user input 310, converts it into the
event 314 shown in FIG. 2 aﬁd notifies the script layer
302 of it. FIG. 12 shows an example of the event 314
corresponding to this key input.

FIGS. 9 and 10 also show the key input for stream
switching such as a key VK_ANGLE, a key VK_SUBTITLE and
a key VK_AUDIO. These keys are notified first to the
movie player 300 by the user input 310, from which an
event indicating the presence of a stream switching
request from the movie player 300 is notified to the
script. Then, the audio and subtitles are switched by
the stream switching method from the script program to
the movie player 300. This key input, therefore, is
required to be transmitted from the native

implementation platform 301 to the movie player 300.

45

10

15

20

25

The commands shown in FIGS. 11A, 11B and 11C are
described in more detail. A command
uo_timeSearch(playListTime)" designates the
reproduction of a currently reproduced play list from a
designated time. An argument "playListTime" indicates
a time when the head of the play list is set to 0.

This command cannot designate the play list number, and
therefore, the time indicated by the argument
"playListTime" is the designated time included in the
range of the currently reproduced play list. A command
"uo_play()" designates the reproduction start at unity
(normal) speed. A starting position is determined
based on the resume information 324. In the absence of
the information corresponding to the resume information
324, the user operation is regarded as invalid. This
command corresponds to the execution of the method
"play()" without designation of the play list number.
Also, the play list number cannot be designated with
this command by the user operation.

A command "uo_playChapter(chapterNumber)"
designates the reproduction start from a chapter
designated by the argument "chapterNumber" of the
currently reproduced play list. In the absence of
chapter designation, the reproduction start from the
head of the currently reproduced chapter is designated.

This corresponds to the method "playChapter()" without

46

10

15

20

25

designation of the chapter number. A command
"uo_playPrevChapter()" designates the reproduction
start from the chapter immediately preceding to a
current chapter. A command "uo_playNextChapter()", on
the other hand, designates the reproduction start from
a next chapter.

A command "uo_jumpToEnd()" designates a jump to
the end of the play list. This command corresponds to
the user operation to instruct the movie player 300 to
suspend the reproduction and generate the event
"playListEnd". 1In accordance with this command, the
script layer 302 executes the event handler
"onPlayListEnd". A command "uo_forwardScan(speed)"
designates the forward reproduction at a reproduction
speed designated by an argument "speed". A command
"uo_backwardScan(speed)", on the other hand, designates
the reverse reproduction at the reproduction speed
designated by the argument "speed". The argument
"speed" in the commands "uo_forwardScan(speed)" and the
command "uo_backwardScan(speed)" depends on the
mounting of the UMD video player.

A command "uo_playStep(forward)" designates the
forward frame-by-frame advance. A command
"uo_playStep(backward)" designates the reverse frame-
by-frame advance". A command "uo_pauseOn()" designates

the temporary stop of the reproduction based on the

47

10

15

20

25

user operation. A command "uo_pauseOff()" cancels the
temporary stop of the reproduction based on the user
operation.

A command "uo_setAudioEnabled(boolean)"”
designates the on/off operation of an audio stream. At
the time of execution of this command, the value of the
flag "audioFlag" is also changed to the corresponding
contents. A command "uo_setSubtitleEnabled(boolean)"
designates the on/off state of a subtitle stream. At
the time of execution of this command, the value of the
flag "subtitleFlag" is also changed to the
corresponding contents. A command "uo_angleChange()"
designates the change in display angle. Upon
transmission of the user operation based on this
command to the movie player 300, the movie player 300
notifies the script layer 302 of the event
"angleChange". A command
"uo_audioChange(andioStreamNumber)"” designates the
change in an audio stream to be reproduced. A command
"uo_changeAudioChannel(value)" designates the audio
channel switching or the one-channel switching at the
time of dual mono reproduction. At the time of
execution of this command, a value of a flag
"audioFlag" is also changed to the corresponding
contents. A command

"uo_subtitleChange(subtitleStreamNumber) designates the

48

10

15

20

25

change in a subtitle stream to be reproduced.

The relation between the events shown in FIG. 12
and the method of the movie player 300 for the events
will be explained in more detail. An event "menu" is
to jump to the menu. This event is notified not to the
movie player 300 but to the script layer 302 from the
native implementation platform 301. The script layer
302, upon receipt of this event "menu", executes an
event handler "onMenu". An event "exit" is issued from
the native implementation platform 301 when the UMD
video application is ended by the native implementation
platform 301. Once this event "exit" is received by
the script layer 302, the script player 302 executes an
event handler "onExit".

An event "resourceChanged" is issued from the
native implementation platform 301 upon generation of
the resource file switching. Upon receipt of this
event "resourceChanged" by the script layer 302, the
script layer 302 executes an event handler

"onResourceChanged”.

An event "up", an event "down", an event "left",
an event "right", an event "focusIn", an event
"focusOut", an event "push" and an event "cancel" are
generated in the case where a button image constituting

a GUI part displayed on the screen is focused. These

events are notified not to the movie player 300 but to

49

20

25

the script layer 302 from the native implementation
platform 301. Incidentally, the wording "the case
where a button image is focused" is indicative of the
state in which a cursor for designating a position on
the screen indicates the display coordinate of the
button image and the particular button image is in a
selectable state. The event "up", the event "down",
the event "left" and the event "right" are generated
when the focus of the bottom image moves up, down,
leftward and rightward, respectively. The event
"focusIn" is generated in the case where a given button
image is focused, and the eveht "focusOut" generated in
the case where the button image in focus is displaced
out of focus. Also, the event "push" is generated in
the case where the button image in focus is depressed.
The event "cancel" 1is generated in the case where the
button image depression is canceled.

An event "autoPlay"” and an event "continuePlay"”
designate the start of the script execution in the
script layer 302. The event "autoPlay" designates
automatic start of the script at the time of loading
the disk. The event "continuePlay" designates the
resumption of script execution from the time point of
the previous suspension based on the resume information
324, for example, at the time of loading the disk.

For the event shown in FIG. 12, the program

50

10

15

20

25

executed upon generation of the event exists. The
program corresponding to this event is called event
handler. The correspondence between the event and the
event handler can be established by attaching a name,
for example. As an example, the event handler name is
obtained by attaching "on" to the head of the event
name. FIGS. 13 and 14 show exemplary event handlers.
The content of the event handler is described by the
content producer, so that the various operations
intended by the content producer can be executed by the
UMD video player.

FIG. 13 shows a part of an example of the event
held by the movie player object 300 and a corresponding
event handler. The event shown in FIG. 13 corresponds
to the aforementioned event 312 shown in FIG. 2, and
notified from the movie player 300 to the script layer
302. The event handler is a kind of interface, and the
content thereof is mounted by the content producer, for
example, using the script language. By configuring the
event handler in this way, the operation intended by
the content producer can be realized at the time of
event occurrence.

An event "mark" and an event handler "onMark()"
are executed upon detection of the event mark (Event-
mark). The event mark is embedded, for example, in the

play list, and detected by the movie player 300 during

51

o

10

15

20

25

the reproduction of the play list. Upon detection of
the event mark by the movie player 300, the event
"mark" is notified from the movie player 300 to the
script layer 302. The script layer 302 executes the
event handler "onMark()" corresponding to this event
"mark". In a similar fashion, an event "playListEngd"
and an event "onPlayListEnd()" are executed at the end
of the play list. An event "chapter" and an event
handler "onChapter()" are executed upon detection of a
chapter mark (Chapter-mark). The chapter mark is
embedded, for example, in the play list, and detected
by the movie player 300 during the reproduction of the
play list.

An event "angleChange" and an event handler
"onAngleChange()" are executed upon designation of the
angle change by the user operation. In the case where
the key input "VK_ANGLE" is input to the native
implementation platform 301 as a user input 310 in
accordance with the user operation, for example, the
native implementation platform 301 converts the
particular user input 310 into the command
"uo_angleChange()" and delivers it to the movie player
300. The movie player 300 generates the event
"angleChange" in accordance with the command
"uo_angleChange()", and delivers it to the script layer

302. The script layer 302 executes the event handler

52

10

15

20

25

"onAngleChange()" corresponding to the event
"angleChange". In a similar manner, the event
"audioChange" and the event handler "onAudioChange()"
are executed upon designation of the audio change by
the user operation. An event "subtitleChange" and an
event handler "onSubtitleChange()" are executed upon
designation of the subtitle change by the user
operation.

FIG. 14 shows a part of the exemplary event
handler held by the controller object 330. The event
handler shown in FIG. 14 is associated with the
controller object 330 of the native implementation
platform 301, and executed by the notification from the
native implementation platform 301 to the script layer
302.

The event "menu" and the event handler "onMenu()"
are jumped to the menu. The event "menu" is notified
from the native implementation platform 301 to the
script layer 302, for example, upon depression of the
menu key by the user operation. The script layer 302,
upon receipt of this event, executes the corresponding
event handler "onMenu()", and arranges and displays the
GUI part constituting the menu screen in the event
handler "onMenu()". The event "exit" and the event
handler "onExit()" are an event issued from the native

implementation platform 301 at the end of the UMD video

53

10

15

20

25

application by the native implementation platform 301
and the corresponding event handler, respectively.

The event "exit" is notified from the native
implementation platform 301 to the script layer 302
upon designation of the end of the UMD video player
operation by the user operation, etc. The script of
the script layer 302, upon receipt of the event "exit"
thus notified, can execute the ending process in the
event handler "onExit()".

The event "resourceChanged" and the event handler
"onResourceChanged” are an event issued from the native
implementation platform 301 after the native
implementation platform 301 switches the resource file
and a corresponding event handler, respectively.

The event "autoPlay" and the event handler "on
AutoPlay()", and the event "continuePlay" and the event
handler "onContinuePlay()", respectively start the
execution of the script.

Incidentally, there exists an event handler for
the button other than the event handler of the
controller object 330. The event handler for the
button is not deeply associated with this invention and
therefore not described.

With reference to the flowchart of FIG. 15, an
exemplary process for executing a prepared program with

the user input event as a motive is briefly explained.

54

15

20

25

FIG. 15 shows an example in which in the case where the
key designating the reproduction of the next chapter
(for example, "next" key) is depressed by the user
during normal reproduction of the disk in the UMD video
player, the reproduction is started by jumping to the
next chapter in accordance with this key input while at
the same time displaying the prepared message on the
screen.

In the case where the key "next" is depressed
using the remote control commander of the UMD video
player by the user during the normal reproduction of
the disk by the UMD video player (step S10), for
example, the key VK_NEXT is delivered as the user input
310 to the native implementation platform 301. The
native implementation platform 301 generates a user
command "uo_playNextChapter()" corresponding to this
user input 310 (step S11). This user command
"uo_playNextChapter()" is notified to the movie player
300.

The movie player 300 that has received this
command “"uo_playNextChapter()" searches the database
320 and acquires the position of the next chapter mark
based on the position of the current reproduction from
the play list information (step S12). Step S13
determines whether the next chapter mark exists or not,

and upon determination that no such a chapter mark

55

10

15

20

25

exists, the current reproduction is continued without
chapter jump.

Upon determination in step S13 that the next
chapter mark exists, on the other hand, the process
proceeds to step S14. In step S14, the movie player
300 suspends the current reproduction, and acquires the
byte position in the clip AV stream file, indicating
the next chapter mark, from the feature point
information of the clip information file of the
database 320. 1In step S15, the acquired byte position
in the file is accessed, and the reproduction is
started by starting the reading of the stream from the
particular position.

Step S16 and subsequent steps are a series of
process for displaying the message notifying the
chapter switching on the screen. Once the chapter is
switched and the reproduction is started from the head
of the chapter, the chapter event is generated (step
S16). For example, the chapter mark arranged at the
head of the chapter is detected by the movie player 300,
and the event "chapter" is generated. This chapter
event is notified from the movie player 300 to the
script layer 302. At the time of notification of this
event, the movie player 300 notifies the script layer
302 also of the chapter number of the chapter to which

to be jumped. The script layer 302 starts the

56

10

15

20

25

execution of the event handler corresponding to the
notified event such as the event handler "onChapter()"
(step S17).

In the case under consideration, assume that the
operation indicating the message notifying the chapter
switching, if any, on the screen is described in the
event handler. The script of the script player 302
executes this event handler, acquires the chapter
number of the jump destination notified from the movie
player 300 at the time of event generation (step S18),
and issues an instruction to the native implementation
platform 301 to display on the screen a predetermined
message indicating, for example, the head of the
chapter of the chapter number acquired. The native
implementation platform 301, in response to this
instruction, displays the message on the screen (step
S19), and the process by the event handler is ended
(step S20).

By the user operation, through the aforementioned
process, of the key "next" designating the start of
reproduction of the next chapter, the chapter is jumped,
and at the time of starting the reproduction of the
next chapter to which the jump is made, the message
indicating the head of the chapter is displayed on the
screen.

As described above, the user input event

57

10

15

20

25

constitutes a motive for changing the state of the
movie player 300 and generating a new event, and
various processes can be executed using the newly
generated event.

The player model described above makes possible
the reproduction of video, audio and subtitles. By
generating a certain event at a given time point during
reproduction and executing an event handler prepared in
advance as preset by the content producer, the
operation intended by the content producer can be
realized. Also, in the case of user operation of the
player during the play list reproduction, a control
command is issued from the native implementation
platform 301 to the movie player 300 in accordance with
the user input 310 by user operation, and the player
status can be changed as intended by the user. Further,
the native implementation platform 301 that has
received the user input 310 by the user operation of
the player notifies the event to the script of the
script layer 302, so that the operation prepared by the
content producer can be executed in accordance with the
user operation.

By constructing the player model in this way., the
reproduction of video, audio and subtitles and the
interactive operation can be provided to the user.

5. Example of script program

58

10

15

20

25

Next, an exemplary script program of the script
layer 302 will be explained. First, assume that the
flow of the content reproduction as shown in FIG. 16 is
prepared by the content producer. The content shown in
FIG. 16 is configured with display elements including
play lists 400, 401, a top menu 402 and a message 403.
The play list 400 is to display an alarm text screen
automatically when the disk is loaded. The Play list
401 is the original story of the movie constituting the
feature of this content. The top menu screen 402 has
the GUI part such as the button arranged thereon to
designate the reproduction of the play list 401. Also,
the message 403 is displayed at an arbitrary time
during the reproduction of the play list 401.

Further, the configuration shown in FIG. 16 has
several event handlers. As soon as the disk is loaded
in the UMD player, the event handler "onAutoPlay()"
automatically reproduces the play list 400 and displays
an alarm message. The event handler "onPlayListEnd()"
is accessed at the end of the reproduction of the play
list, and in the example shown in FIG. 16, accessed at
the end of the play list 400 or 401. Specifically, the
event handler "onPlayListEnd()" determines which play
list is finished, and upon complete reproduction of the
play list 400, designates the start of the reproduction

of the play list 401. Also, at the end of the

59

v

10

15

20

25

reproduction of the play list 401, the event handler
"onPlayListEnd()" accesses the top menu screen 402.

The event handler "onMenu()" is accessed upon
operation of the menu key by the user, and accesses and
displays the top menu 402 on the screen. The event
handler "onMark()" is executed with the arrival of the
time designated by the mark "Mark" during the
reproduction. In the case shown in FIG. 16, the mark
"Mark" is set for the play list 401, and with the
arrival of the reproduction of the play list 401 at the
time point designated by the mark "Mark", the message
403 is displayed on the screen.

Specifically, in the case of FIG. 16, once the
disk is loaded in the UMD video player, the event
handler "onAutoPlay" is accessed, and the play list 400
is reproduced while at the same time displaying the
alarm screen. With the arrival at the end of the play
list 400 upon lapse of the reproduction time thereof,
the event handler "onPlayListEnd" is accessed, and the

reproduction to the end of the play list 400 is

determined. Thus, the next Play list 401 is reproduced.

Upon user operation of the menu key during the
reproduction of the play list 401, the event handler
"onMenu" is accessed and the top menu screen 402
displayed. Also, in accordance with the predetermined

operation on the top menu screen 402, the event handler

60

10

15

20

25

"onMenu" starts the reproduction from the head of the
play list 401. Further, with the arrival of the
reproduction time of the play list 401 at the time
point designated by the mark "Mark", the event handler
"onMark" is accessed, and the message 403 displayed on
the screen. Upon reproduction to the end of the play
list 401, the event handler "onPlayListEnd" is accessed,
and the reproduction to the end of the play list 401 is
determined, thereby displaying the top menu screen 402.
FIG. 17 shows an example of the script program
for realizing the operation shown in FIG. 16. As
described above, the script program has event handlers
arranged and any one of them is executed in accordance
with the event occurrence. The script program is
stored in the resource file with the extension "RCO".
The method designating the play list reproduction
to the movie player 300 is "movieplayer.play()". In
the parenthesis, a number of the play list to be
reproduced is described as an argument. Upon complete
reproduction of the play list, the event "playListEnd"
is generated. Upon generation of the event
"playListEnd", the event handler
"movieplayer.onPlayListEnd()" is retrieved from the
script. In the process, the object "event_info" is
delivered to the script together with the event

"playListEnd". The object "event_info" has stored

61

-

10

15

20

25

therein the play list number or the like indicating a
particular play list finished. Depending on the
content of the object "event_info", the next operation
can be changed in this script.

6. File management structure

Next, the file management structure used
according to the UMD video standard will be explained
with reference to FIG. 18. The file is managed
hierarchically in the directory structure and recorded
on the disk. The disk file system is applicable to the
file system defined by ISO (International Organization
for Standardization)-9660 or the UDF (Universal Disk
Format).

Under the root directory, a file "TITLEID.DAT"
and a directory "VIDEO" are placed. Under the
directory "VIDEO", a directory "RESOURCE", a directory
"CLIP", a directory "STREAM" and a file "PLAYLIST.DAT"
are placed.

The file "TITLEID.DAT" is for storing a title
identifier different for each title (type of content).
One file "TITLEID.DAT" is held for each disk.

Under the directory "RESOURCE", the resource file
("JA000000.RCO") is placed. The resource file has
stored therein, as described above, the script program
constituting the script layer 302 and the data used for

constituting the menu screen such as the part data

62

-

10

15

20

25

including the image data and the sound data. Under the
directory "RESOURCE", one resource file is normally
placed. Nevertheless, a plurality of resource files
may be placed under the directory "RESOURCE". A
plurality of the resource files are prepared for each
language at the time of preparing a plurality of menus
different in display language. Also in this case, only
one resource file is used at a time.

In the file name of the resource file, the
extension following the period constituting a delimiter
is fixed to "RCO", thereby indicating that the
particular file is the resource file. Also, the
character string before the period briefly indicates
the content of the particular resource file. For
example, the whole file name of the resource file
employs a format "CCdannnn.RCO", the two leading
characters "CC" indicates the language code
corresponding to the resource file, the next one
character "d" indicates a flag indicating whether the
language code is the default language or not, the next
"a" indicates an aspect ratio of the display screen,
and the next four characters "nnnn" indicate the
identification number. The identification number is
determined in such a manner that the same file name is
not included in a plurality of resource files.

By laying down the rule of naming the resource

63

O

10

15

20

25

file in this way, the language attribute of the source
data and the aspect ratio of the display screen can be
determined by the file name of the resource file. At
the time of selecting the resource file, an appropriate
resource file is determined based on the file name.

Under the directory "CLIP", one or more clip
information files is/are placed. In the clip
information file, the file name is determined by a
character string including five to several characters
such as "00001" (numerical characters in this case)
before the period constituting the delimiter and the
extension "CLP" following the period. The extension
"CLP" makes it possible to identify that the particular
file is the clip information file.

Under the directory "STREAM", one or more clip AV
stream files is/are placed. The clip AV stream file
has a file name configured with a character string
(numerical characters in this case) of five to several
characters such as "00001" before the period
constituting the delimiter and the extension "PS"
following the period. The extension "PS" makes it
possible to determine that the particular file is the
clip AV stream file. According to this embodiment, the
clip AV stream file is stored as a multiplex file
including the video stream, the audio stream and the

subtitle stream, and identified by the extension "PS"

64

10

15

20

25

as a program stream of MPEG2 (Moving Pictures Experts
Group 2).

As explained above, the clip AV stream file is
obtained by compression coding and time division
multiplexing of the video data and audio data, so that
by reading this file and executing the decoding process,
the video data and the audio data can be obtained.
Also, the clip information file is for describing the
properties of the clip AV stream file and corresponds
to the clip AV stream file. According to this
embodiment, the character string including five to
several characters before the extension in the file
name are made to coincident in the clip information
file and the corresponding clip AV stream file, thereby
making it possible to easily grasp the correspondence
between the two.

The resource file contains the script file
containing the description of the script program as
explained above, and has stored therein the program
used to make the disk reproduction according to this
embodiment interactive. The resource file is read
before the other files stored in the disk.

The file "PLAYLIST.DAT" is the play list file
containing the description of the play list designating
the order of reproduction of the clip AV stream. With

reference to FIGS. 19 to 21, the internal structure of

65

10

15

20

25

the file "PLAYLIST.DAT" will be explained. FIG. 19
shows an exemplary syntax showing the entire structure
of the file "PLAYLIST.DAT". 1In this case, the syntax
is shown based on the C language description method
used as the program description language for the
computer system, etc. This is also the case with other
syntaxes shown in the drawings.

A field "name_length" has a data length of 8 bits
and indicates the length of a name attached to the play
list file. A field "name_string" has a data length of
255 bytes and indicates a name attached to the play
list file. In the field "name_string", the part with
the byte length indicated by the field "name_length"
from the head thereof is used as a valid name. In the
case where the field "name_length" has the value "10",
for example, the part of the field "name_string" with
10 bytes from the head thereof is interpreted as a
valid name.

A field "number_of_PlayLists" has a data length
of 16 bits and indicates the number of successively
described blocks "PlayList()". The number of the
blocks "PlayList()" equivalent to the number of times
indicated in the field "number_of_PlayLists" by the
"for" loop on the next line, are described. The block
"PlayList()" is the play list itself.

An exemplary internal structure of the block

66

10

15

20

25

"PlayList()" will be explained. At the head of the
block "PlayList()", a field "PlayList_data_length" is
arranged. The field "PlayList_data_length" has a data
length of 32 bits and indicates the data length of the
block "PlayList()" including the field
"PlayList_data_length". Then, a field
"reserved_for_word_alignment" having a data length of
15 bits and a field "capture_enable_flag_PlayList”
having a data length of 1 bit are arranged. The field
"reserved_for_word_alignment"”, combined with the flag
"capture_enable_flag_PlayList" having a data length of
1 bit, is used to secure alignment at the position of
16 bits in the block "PlayList()".

The flag "capture_enable_flag_PlayList" indicates
whether the secondary use of the dynamic image
associated with the block "PlayList()" including
"capture_enable_flag_PlayList" is permitted or not. 1In
the case where the value of the flag
"capture_enable_flag_PlayList” is "1", for example, it
indicates that the secondary use of the dynamic image
associated with the play list() in the reproducing
apparatus is permitted.

The flag "capture_enable_flag PlayList", though
regarded as a 1-bit flag in the aforementioned case, is
not limited so. For example, the flag

"capture_enable_flag PlayList" may be configured with a

67

S

10

15

20

25

plurality of bits to describe the stepwise permission
of the secondary use. As an example, the flag
"capture_enable_flag PlayList" is configured with two
bits, and in the case where the value is "0", the
secondary use is totally prohibited, while in the case
where the value is "1", the secondary use is permitted
on condition that the data is compression coded to a
predetermined resolution or lower such as 64 pixels by
64 lines. Also, in the case where the value "2", the
secondary use may be permitted without any restriction.
As other alternatives, in the case where the bit 0 of
two bits is "1", the secondary use is permitted in the
application of the content reproduction, while in the
case where the value of bit 1 is "1", on the other hand,
the secondary use in other applications (such as the
wall paper image or the screen saver) in the same
housing is permitted. In such a case, the values of
bit 0 and bit 1 can be used in combination.

A field "PlayList_name_length"” has a data length
of 8 bits and indicates the length of a name attached
to this block "PlayList()". A field
"PlayList_name_string" has a data length of 255 bits
and indicates a name attached to the block "PlayList()".
The part of the field "PlayList_name_string” with the
byte length indicated by the field

"PlayList_name_string" from the head thereof is used as

68

20

25

a valid name.

A field "number_of_ PlayItems" has a data length
of 16 bits and indicates the number of successively
described blocks "Playltem()". The number of blocks
"PlaylItem()" equivalent to the number of times
indicated in the field "number_of_PlayItem2" by the
"for" loop on the next line, are described. The block
"Playltem()" is the play item itself.

The identification information (ID) is attached
to each block "Playltem()" in the block "PlayList()".
For example, number 0 is attached to the first block
"PlayItem()" described in the block "PlayList()",
followed by the serial numbers 1, 2,.... in the order
of appearance of the blocks "PlayItem()". These serial
numbers are used as the identification information of
each block "Playltem()". The argument "i" of the "for"
loop repeated as many times as the number of the blocks
"Playltem()" can be used as the identification
information of the corresponding block "PlayItem()".
The block "PlayItem()" is followed by the block
"PlayListMark()".

With reference to FIG. 20, an exemplary internal
structure of the block "Playltem()" will be explained.
At the head of the block "PlayItem()", a field "length"
is arranged. The field "length" has a data length of

16 bits and indicates the length of the particular

69

o

block "Playltem()". Then, a field
"Clip_Information_file_name_length" is arranged. The
field "Clip_Information_file_name_length" has a data
length of 16 bits and indicates the length of a name of
5 a clip information file corresponding to the block
"Playltem()". A field "Clip_Information_file_name" has
a data length variable by byte and indicates a name of
a clip information file corresponding to the block
"PlayItem()". The field "Clip_Information_file_name"”

10 with the byte length indicated by the field

"Clip_Information_file_name_length" including the head

thereof is used as a valid name. Upon designation of

the clip information file by the field

"Clip_Information_file name", the clip AV stream file
15 corresponding to the particular clip information file

can be specified based on the correspondence of the

file name described above.

A field "IN_time" and a field "OUT_time" each

have a data length of 33 bits and represent time

20 information designating the reproduction start and end
positions of the clip AV stream file corresponding to
the clip information file designated by the field

"Clip_Information_file_name" in the block "PlayItem()".

25 the field "OUT_time", the reproduction start can be

|

|
By use of the information of the field "IN_time" and
designated from the part other than the head of the

70

10

15

20

25

clip AV stream file. In a similar manner, the
reproduction end at other than the rear end of the clip
AV stream file can be designated. The field
"reserved_for word_alignment" is for adjusting the data
length of the data structure to an integer multiple of
16 bits and has a data length of 15 bits.

With reference to FIG. 21, an exemplary internal
structure of the block "PlayListMark()" will be
explained. At the head of the block "PlayListMark()",
a field "length" is arranged. The field "length" has a
data length of 32 bits and indicates the length of the
block "PlayListMark()". Then, a field
"number_of_PlayList_marks" is arranged. The field
"number_of_PlayList_marks" has a data length of 16 bits
and indicates the number of succeeding blocks "Mark()".
The blocks "Mark()" equal to the number of times
indicated in the field "number_of_PlayList_marks" by
the "for" loop on the next line, are described.

An exemplary the internal structure of the block
"Mark()" will be explained. At the head of the block
"Mark()", a field "mark_type" is arranged. The field
"mark_type" has a data length of 8 bits and indicates
the type of the block "Mark()" including the particular
field "mark_type". According to this embodiment, as an
example thereof is shown in FIG. 22, two types of marks

including the chapter mark and the event mark are

71

o

10

15

20

25

defined. The chapter is a search unit for dividing the
play list (block "PlayList()"), and the chapter mark
indicates the chapter position in terms of time
information. The event mark, on the other hand,
generates the mark event.

A field "mark_name_length"” has a data length of 8
bits and indicates the length of a name attached to the
block "Mark()". A field "mark _name_string” arranged on
the bottom line of the block "Mark()" indicates a name
attached to the block "Mark()". The part of the field
"mark_name_string"” with the byte length indicated by
the field "mark_name_length" including the head thereof
is used as a valid name.

The four elements including a field
"ref_to_PlayItem_id", a field "mark_time_stamp", a
field "entry_ES_stream" and a field
"entry_ES_private_stream_id" establish correspondence
between the block "Mark()" defined on the block
"PlayList()" and the clip AV stream file. Specifically,
the field "ref_to_PlayItem_id" has a data length of 16
bits and indicates identification information of the
block "PlayItem()". As a result, the clip information
file and the clip AV stream file are specified.

The field "mark_time_stamp", having a data length
of 33 bits, is used to designate the time of the mark

in the clip AV stream file. With reference to FIG. 23,

72

10

15

20

25

this field will be explained briefly. In FIG. 23,
assume that the play list is configured with three play
items (PlayItem(#0), Playltem(#1) and PlayItem(#2))
designated as numbers 0, 1 and 2, respectively, and the
time t, on the play list is included in the play item
(PlayItem(#1)) of number 1. Also, assume that the play
items of number 0, 1 and 2 correspond to the program
streams A, B and C of the clip AV stream file through
the corresponding clip information files, respectively.

In such a case, in the case where the mark is
designated at time point t, on the play list, the value
of the field "ref_to_Playltem_id" is set as "1"
indicating the play item including the time t,, and
further, the time corresponding to the time t, on the
corresponding clip AV stream file B is described in the
field "mark_time_stamp”.

Returning to FIG. 21, the field "mark_time_stamp"
is followed by the arrangement of the field
"entry ES_stream"” and the field
"entry_ES_private_stream_id". The field
"entry_ES_stream_id" and the field
"entry_ES_private_stream_id" have the data length of 8
bits, respectively, and in the case where the block
"Mark()" is associated with a specified elementary
stream, are used to specify the particular elementary

stream. The field "entry_ ES_stream_id" and the field

73

10

15

20

25

"entry_ ES_private_stream_id" indicate a stream ID
"stream_id" of a packet "packet()" multiplexed with the
corresponding elementary stream and a private stream ID
"stream_id" of a private packet header
"private_packet_header()", respectively.

Incidentally, the stream ID "stream_id" of the
packet "packet()" and the private stream ID
"private_stream_id" of the private packet header
"private_packet_header ()" are based on the rule of the
program stream of, for example, the MPEG2 system.

The field "entry_ ES_stream_id" and the field
"entry_ES_private_stream_id" are used, for example, in
the case where the clip AV stream #0 and the clip AV
stream #1 have different chapter configurations. 1In
the case where the corresponding block "Mark()" is not
associated with a specified elementary stream, the
values of these two fields are regarded as "O0".

Next, the internal structure of the clip
information file will be explained with reference to
FIGS. 24 to 28. The clip information file "XXXXX.CLP"
describes the properties of the corresponding clip AV
stream file "XXXXX.PS" placed under the directory
"STREAM", as explained above.

FIG. 24 shows an example of the syntax indicating
the entire structure of the clip AV stream file

"XXXXX.CLP". The clip AV stream file "XXXXX.CLP"

74

15

20

25

includes a field "presentation_start time"” and a field
"presentation_end_time" arranged at the head thereof.
The field "presentation_start_time"” and the field
"presentation_end_time" each have a data length of 33
bits and indicate the time at the head and tail of the
corresponding clip AV stream file. The time
information can use the PTS (Presentation Time Stamp)
in the MPEG2 system. PTS has the accuracy of 90 kHz.
Next, the field "reserved_for_word_alignment"
having a data length of 7 bits and the flag
"capture_enable_flag_Clip" having a data length of 1
bit are arranged. The field
"reserved_for_word_alignment”, combined with the flag
"capture_enable_flag Clip" having a data length of 1
bit, is used to align the arrangement in the file
"XXXXX.CLP" to the position of 16 bits. The flag
"capture_enable_flag Clip" indicates whether the
secondary use of the dynamic image included in the clip
AV stream file corresponding to the file "XXXXX.CLP" is
permitted or not. In the case where the value of the
flag "capture_enable_flag_Clip" is "1", for example, it
indicates that the secondary use of the dynamic image
of the clip AV stream file corresponding to the file
"XXXXX.CLP" in the reproducing apparatus is permitted.
A field "number_of_streams" has a data length of

8 bits and indicates the number of succeeding blocks

75

10

15

20

| 25

"StreamInfo ()" structures. Following the field
"number_of_streams"”, the number of blocks
"StreamInfo()" equivalent to the number of times
indicated in the field "number_of_streams"” by the "for"
loop, are described. After the "for" loop, the block
"EP_map()" is arranged.

An exemplary internal structure of the block
"StreamInfo()" will be explained. At the head of the
block "StreamInfo()", a field "length" is arranged.

The field "length" has a data length of 16 bits and
indicates the length of the block "StreamInfo()". Then,
a field "stream_id" and a field "private_stream id"

each having a data length of 8 bits are arranged. As

an example is shown in FIG. 25, the block

"StreamInfo()" is associated with the elementary stream.
In the case shown in FIG. 25, the block "StreamInfo()"
is associated with the video stream by the value "0xEQ"
to "OxEF" of the field "stream_id", and with the ATRAC
(Adaptive Transform Acoustic Coding) audio stream, LPCM
(Linear Pulse Code Modulation) audio stream or the
subtitle stream by the value "0xBD". Also, the block
"StreamInfo()" is associated with the ATRAC audio
stream, the LPCM audio stream and the subtitle stream
by the values "0x00" to "OxOF", "0x10" to "Ox1F" and
"0x80" to "O0x9F", respectively, of the field

"private_stream_id".

76

(__—_______7—_—_____________——_____——___________________________________“

10

15

20

25

In the expression of values in FIG. 25, "0Ox"
indicates that the succeeding numerical values are
expressed in hexadecimal notation. This is also the
case with similar expression below.

The block "StreamInfo()" is described roughly in
two types including the information not changed in the
stream and the information changed in the stream. The
information not changed in the stream is described in
the block "StaticInfo()". The information changed in
the stream, on the other hand, is described in the
block "DynamicInfo()" with the change point designated
by time information.

In the block StreamInfo()", the field
"reserved_for_word_alignment" having a data length of 8
bits is arranged to align the byte position to the back
of the block "StaticInfo()", followed by the field
"number_of DynamicInfo". The field
"number_of_DynamicInfo" has a data length of 8 bits,
and indicates the number of the blocks "DynamicInfo()"
described thereafter in the block "StreamInfo()". The
field "pts_change_point” and the block "DynamicInfo()"
are described by the number of times indicated in the
field "number_of_DynamicInfo()" by the "for" loop.

The field "pts_change_point" has a data length of
33 bits and indicates the time, by PTS, when the

information of the corresponding block "DynamicInfo()"

77

10

15

20

25

is validated. The time representing the head is also
indicated for each stream by the field
"pts_change_point", which is equal to the
aforementioned field "presentation_start_time" defined
in the file "XXXXX.CLP".

With reference to FIG. 26, an exemplary internal

structure of the block "StaticInfo()" will be explained.

The content of the block "StaticInfo()" varies with the
type of the corresponding elementary stream. The type
of the corresponding elementary stream can be
determined based on the values of the field "stream_id"
and the field "private_stream_id" explained with
reference to FIG. 25. In FIG. 26, the block
"StaticInfo()" describes, using the "if" syntax, as to
whether the type of the corresponding elementary stream
is the video stream, audio stream or the subtitle
stream. Now, the block "StaticInfo()" will be
explained for each elementary stream.

In the case where the elementary stream is the
video stream, the block "StaticInfo()" is configured
with a field "picture_size" and a field "frame_rate"
each having a data length of 4 bits and a flag
"cc_flag" having a data length of 1 bit. The field
“picture_size" and the field "frame_rate" indicate the
image size and the frame frequency, respectively, of

the video stream. The flag "cc_flag" indicates whether

78

10

15

20

25

the video stream includes the closed caption or not.

In the case where the flag "cc_flag" is "1" in value,
for example, the particular video stream includes the
closed caption. The field
"reserved_for_word_alignment” is used to align the data
arrangement to 16 bits.

In the case where the elementary stream is an
audio stream, the block "StaticInfo()" includes a field
"audio_language_code" having a data length of 16 bits,
a field "channel_configuration"” having a data length of
8 bits, a flag "l1lfe_existence" having a data length of
1 bit and a field "sampling_frequency" having a data
length of 4 bits. The field "audio_language_code"
indicates the code of the language included in the
particular audio stream. The field
"channel_configuration” indicates the channel attribute
of the audio data such as monaural, stereo or
multichannel. The field "lfe_existence" indicates
whether the low frequency emphasis channel is included
or not, it being included in the case where the value
is, say, "1". The field "sampling_frequency" indicates
the sampling frequency of the audio data. The field
"reserved_for_word_alignment"” is used to align the data
arrangement to 16 bits.

In the case where the elementary stream is a

subtitle stream, on the other hand, the block

79

10

15

20

25

"StaticInfo()" includes a field
"subtitle_language_code" having a data length of 16
bits and a flag "configurable_flag"” having a data
length of 1 bit. The field "subtitle_language_code"
indicates the code of the language included in the
subtitle stream. The flag "configurable_flag"”
indicates whether the change in character size or
position is permitted for displaying the subtitle
stream, or for example, that it is permitted with the
value of "1". The field "reserved_for_word_alignment"”
is used to align the data arrangement to 16 bits.

With reference to FIG. 27, an exemplary internal
structure of the block "DynamicInfo()" will be
explained. The block "DynamicInfo()" includes a field
"reserved_for_word_alignment" having a data length of 8
bits arranged at the head thereof. The succeeding
contents are varied with the type of the corresponding
elementary stream. The type of the corresponding
elementary stream can be determined based on the value
of the field "stream_id" and the field
"private_stream_id" explained with reference to FIG. 25.
In FIG. 27, the block "DynamicInfo()" contains the
description to determine, using the "if" syntax, as to
whether the type of the corresponding elementary stream
is the video stream, audio stream or subtitle stream.

Now, the block "DynamicInfo()" will be explained for

80

10

15

20

25

each elementary stream.

In the case where the elementary stream is the
video stream, the block "DynamicInfo()" includes a
field "display_aspect_ratio" having a data length of 4
bits. The field "display_ aspect_ratio"” indicates
whether the aspect ratio of the video display output is
16:9 or 4:3. The field "reserved_for_word_alignment"”
is used to align the data arrangement to 16 bité.

In the case where the elementary stream is the
audio stream, the block "DynamicInfo()" includes a
field "channel_assignment” having a data length of 4
bits. In the case where the audio stream is configured
with two channels, the field "channel_assignment"”
indicates whether the output is stereo or monaural.

The dual monaural state is used to make possible the
audio reproduction of two languages, for example. The
field "reserved_for word_alignment" is used to align
the data arrangement to 16 bits.

In the case where the elementary stream is the
subtitle stream, the block "DynamicInfo()" is
configured with the field "reserved_for_word_alignment"”
used to align the data arrangement to 16 bits. In
other words, the dynamically changing attribute is not
defined for the subtitle stream.

With reference to FIG. 28, an exemplary internal

structure of the block "EP_map()" will be explained.

81

10

15

20

25

The block "EP_map()" indicates, for each elementary
stream, the decode startable position (also called the
entry point or the random access point (RAMP)) in the
bit stream using the time information and the position
information. The position information may use the
minimum access unit in the recording medium for
recording, for example, the elementary stream. Each
elementary stream is assumed to be capable of being
decoded from the position indicated by the block
"EP_map()".

In the stream of a fixed rate, the decode
startable position can be determined by calculations,
and therefore, the information like the block
"EP_map()" is not required. With regard to the stream
of a variable rate or such a stream as the video
compression coding scheme of MPEG system in which the
data size is varied from one access unit to another,
however, the information such as the block "EP_map{()"
is important for random access.

The block "EP_map()" includes, at the head
thereof, a field "reserved_for word_alignment" having a
data length of 8 bits to align the arrangement to 16
bits. Then, a field "number_of_stream_id_entries" is
arranged. The field "number_of_stream_id_entities" has
a data length of 8 bits and indicates the number of the

elementary streams described in the block "EP_map()".

82

15

20

25

The numbers of the field "stream_id", the field
"private_stream_id" and the field

"number_of_ EP_entries" equivalent to the number of
times indicated in the field
"number_of_stream_id_entries"” by the first "for" loop,
are described. Further, for each one description of
the first "for" loop, a field "PTS_EP_start" and a
field "RPN_EP_start" are arranged the number of times
indicated in the field "number_of_ EP_entries"” by the
second "for" loop.

In the first "for" loop, the first step is to
arrange the field "stream_id" and the field
"private_stream_id" each having a data length of 8 bits
in the first "for" loop, and as an example is shown in
FIG. 25, the elementary stream is specified. The field
"number_of_EP_entries" arranged next has a data length
of 32 bits and indicates the number of entry points
described for the elementary stream. After that, the
field "PTS_EP_start" and the field "RPN_EP_start" are
arranged in the same number as indicated in the field
"number_of_ EP_entries"” by the second "for" loop.

The field "PTS_EP_start”" and the field
"RPN_EP_start"” each have a data length of 33 bits and
indicate the entry point itself. The field
"PTS_EP_start" indicates the time of the entry point in

the clip AV stream file in terms of PTS. The field

83

10

15

20

25

"RPN_EP_start", on the other hand, indicates the
position of the entry point in the clip AV stream file,
for example, in units of 2048 bytes.

According to this embodiment, one sector
constituting a disk-like access unit has 2048 bytes.
The position of the entry point in the clip AV stream
file, therefore, is indicated by sector in the field
"RPN_EP_start”.

A packet "private_stream_2" is always arranged
immediately before the reproduction startable position
of the video stream. This packet "private_stream_2"
has stored therein the information available to decode
the video stream. The entry point of the video stream,
therefore, is regarded as the position of the packet
"park()" for storing the packet "private_stream_2".

The block "EP_map()", as described above,
establishes correspondence between the time on the clip
AV stream and the position in the clip AV stream file.
In the case where the time information (time stamp) for
the access point to the clip AV stream is given,
therefore, the data address for starting to read the
data in the clip AV stream file can be easily retrieved,
thereby making possible smooth random access to the
disk.

According to this embodiment, both the set of the

time information and the position information (the set

84

10

15

20

25

of the field "PTS_EP_start" and the field
"RPN_EP_start” in the second "for" loop) for each
elementary stream and the set of the field
"PTS_EP_start" and the field "RPN_EP_start" in the
block "EP_map()" are arranged and registered in
ascending (or descending) order in advance. In other
words, the time information and the position
information are rearranged in a predetermined direction
in advance. As a result, the binary tree search can be
executed for the data as they are.

According to this embodiment, the video
elementary stream, though described above based on the
MPEG2-Video standard, is not limited to it. The video
elementary stream, for example, may be based on MPEG4-
Visual or MPEG4-AVC standard. Also, the audio
elementary stream, though explained above as the ATRAC
audio elementary stream above, is not limited to it,
but the MPEG 1/2/4 audio, for example, is also
applicable.

7. Disk reproducing apparatus

Next, the disk reproducing apparatus according to
an embodiment of this invention will be explained. FIG.
29 briefly shows an example of the configuration of a
disk reproducing apparatus 100 according to this
invention. A bus 111 is connected with a CPU (central

processing unit) 112, a memory 113, a drive interface

85

10

15

20

25

114, an input interface 115, a video decoder 116, an
audio decoder 117, a video output interface 118 and an
audio output interface 119. The parts of the disk
reproducing apparatus 100 can exchange the video stream,
the audio stream and various commands and data with
each other through the bus 111.

The drive interface 114 is further connected with
a disk drive 102. The disk drive 102 exchanges the
data and commands with the bus 111 through the drive
interface 114.

The CPU 112 includes a ROM (read-only memory) and
a RAM (random access memory) (not shown). 1In
accordance with the program and data stored in the ROM |
in advance, the CPU 112 exchanges the data and commands
with each part of the disk reproducing apparatus 100
through the bus 111 thereby to control the overall
operation of the disk reproducing apparatus 100. The
RAM is used as a work memory of the CPU 112.

Though not shown in FIG. 29, the disk reproducing

apparatus 100 can include a nonvolatile memory such as

a flash memory in which the data is rewritable and the
stored data can be held even after the power supply of
the disk reproducing apparatus 100 is turned off. The
nonvolatile memory is connected, for example, to the

bus 111 so that the CPU 112 can write the data in and

read the data from the nonvolatile memory.

86

10

15

20

25

The input interface 115 is supplied with an input
signal from the input unit through which the user
actually performs the input operation. The input unit
includes, for example, a remote control commander for
operating the disk reproducing apparatus 100 remotely
with an infrared light signal or a key directly mounted
on the disk reproducing apparatus 100. The input
signals supplied from these input units are converted
into a control signal for and output to the CPU 112 by
the input interface 115.

The disk 101 has recorded therein the play list,
script program, clip information file, clip AV stream
file, etc. in the format described with reference to
FIG. 18 and subsequent drawings. Once the disk 101 is
loaded in the disk drive 102, the disk 101 is
reproduced automatically or by the input operation of
the user. The script file, the play list file and the
clip information file read from the disk 101 are
supplied to the CPU 112 and stored, for example, in the
RAM of the CPU 112. The CPU 112 reads the clip AV
stream file from the disk 101 based on the script
program and the data stored in the RAM.

The clip AV stream file read from the disk 101 is
temporarily stored in the memory 113. The video
decoder 116, based on the instruction of the CPU 112,

decodes the video stream and the subtitle stream of the

87

10

15

20

25

clip AV stream file stored in the memory 113. The
video data and the subtitle data thus decoded are
enlarged, reduced or otherwise subjected to the image
processing, for example, by the CPU 112, while at the
same time synthesized or added to be a single video
data. These image processing steps can also be
executed by the video decoder 116 or the video output
interface 118. This video data is buffered in the
memory 113 and supplied to the video output interface
118. The video output interface 118 converts the
supplied video data into, for example, an analog video
signal, which is led to the video output terminal 120.

In similar fashion, the audio decoder 117, in
response to the instruction from the CPU 112, decodes
the audio stream of the clip AV stream file stored in
the memory 113. The audio data thus decoded is
buffered in the memory 113 and supplied to the audio
output interface 119. The audio output interface 119
converts the supplied audio data into, for example, an
analog audio signal, which is led to the audio output
terminal 121.

The parts shown in FIG. 29, though explained
above as independent in hardware fashion, are not
necessarily so. The video decoder 116 and/or the audio
decoder 117, for example, can alternatively be

configured in software fashion to operate on the CPU

88

10

15

20

25

112.

Also, the disk reproducing apparatus 100
described above, which includes the CPU 112 and the
memory and operates in accordance with a program, can
be regarded as a kind of computer system.

FIGS. 30A and 30B are function block diagrams for
explaining the more detailed operation of the disk
reproducing apparatus 100 shown in FIG. 29. The disk
reproducing apparatus 100 roughly includes an operation
system 201 and a video content reproducing unit 210.

The video content reproducing unit 210 is substantially

a software program operated on the operation system 201.

Nevertheless, the video content reproducing unit 210
may operate in combined software and hardware fashions.
The description that follows assumes that the video
content reproducing unit 210 is software. In FIGS. 30A
and 30B, the disk drive 102 is not shown.

The operation system 201 is first started in the
CPU 112 with the power supply of the disk reproducing
apparatus 100, and by executing the required processes
such as initialization of each part, the application
program (the video content reproducing unit 210 in this
case) is retrieved from the ROM. During the operation
of the video content reproducing unit 210, the
operation system 201 provides the video content

reproducing unit 210 with the basic services such as

89

10

15

20

25

the process of reading the file from the disk 101 or
interpreting the file system. In response to the file
read request received from the video content
reproducing unit 210, for example, the operating system
201 controls the disk drive 102 through the drive
interface 114 and reads the data recorded in the disk
101. The data thus read is delivered to the video
content reproducing unit 210 under the control of the
operation system 201.

Also, the operation system 201 has the multitask
processing function, and can control a plurality of
software modules apparently in parallel with each other
by time division. Specifically, as an example is shown
in FIGS. 30A, 30B, the modules constituting the video
content reproducing unit 210 can be all operated in
parallel by the multitask processing function of the
operation system 201.

The operation of the video content reproducing
unit 210 will be explained more specifically below.

The video content reproducing unit 210 has several
other modules therein and carries out the following
functions:

(1) To determine whether the loaded disk 101
({hereinafter, referred to as the UMD video disk)
conforms with the UMD video standard or not.

(2) Upon determination that the loaded disk 101 is the

90

10

15

20

25

UMD video disk, to read the resource file from the disk
101 and deliver it to the script control module 211.
(3) Upon determination that the loaded disk 101 is the
UMD video disk, further to read the files constituting
the database (play list file, clip information file,
etc.) and deliver them to the player control module 212.

The operation of each module of the video content
reproducing unit 210 will be explained below.

The script control module 211 stores the received
resource file in a predetermined area of the RAM, not
shown, of the CPU 112. The CPU 112 (script control
module 211) reads, interprets and executes the script
program stored in the RAM. As an alternative, the
resource file may be stored in a predetermined area of
the memory 113, and read by the RAM, not shown, of the
CPU 112 as required.

As already described in connection with the
player model, the GUI operations such as the production
and output of the menu screen, the cursor movement and
the change of the menu screen in accordance with the
user input can be realized by controlling the graphics
processing module 219 on the script program. 1In the
process, the image data and the sound data stored in
the resource file on the memory 113 are used to produce
the menu screen, etc. Also, the script control module

211 can control the player control module 212 by

91

10

15

20

25

executing the script program.

The player control module 212, by referring to
the database information stored in the files such as
the play list file "PLAYLIST.DAT" and the clip
information file "XXXXX.CLP" read from the disk 101,
performs the control operation for réproduction of the
video contents recorded in the disk 101.

(1) To analyze the database information including the
play list and the clip information.

(2) To control the content data supply module 213, the
decode control module 214 and the buffer control module
215.

(3) To control the transition of the player statuses
such as reproduction (play), reproduction stop (stop),
temporary stop of reproduction (pause) and control the
reproduction process such as stream switching in
accordance with the instruction from the script control
module 211 or the input interface 115.

(4) To acquire the time information about the currently
reproduced video stream from the decode control module
214 and displays the time or generates the mark event.

The content data supply module 213, in response
to the instruction of the player control module 212,
reads the content data including the clip AV stream
file from the disk 101 and delivers it to the buffer

control module 215. The buffer control module 215

92

10

15

20

25

accumulates the content data thus delivered thereto in
the memory 113 as a buffer entity 215A. The content
data supply module 213 controls the buffer control
module 215 in such a manner that in response to the
requests from the video decoder control module 216, the
audio decoder control module 217 and the subtitle
decoder control module 218, the content data
accumulated in the memory 113 are supplied to the
modules 216, 217 and 218 in a predetermined way. Also,
the content data supply module 213 reads the control
data from the disk 101 in such a manner as to control
the amount of the content data accumulated, in a
predetermined way by the buffer control module 215.

The decode control module 214, in response to the
instruction from the player control module 212,
controls the operation of the video decoder control
module 216, the audio decoder control module 217 and
the subtitle decoder control module 218. Also, the
decode control module 214, having the clock function
therein, controls the operation of the decoder control
modules 216, 217 and 218 in such a manner as to output
the video data and the audio data synchronously.

The buffer control module 215 constituting the
buffer entity 215A uses a part of the memory 113
exclusively. Also, the buffer control module 215

stores the data head pointer and the data write pointer.

93

10

15

20

25

The buffer control module 215 further has the internal
modules such as the video read function, the audio read
function and the subtitle read function. The video
read function has the video read pointer therein. Also,
the video read function has therein a register for
accumulating the information "au_information()"
constituting the access unit information. The audio
read function has therein the audio read pointer. The
subtitle read function has therein the subtitle read
pointer and the subtitle read function flag. The
subtitle read function flag controls the
validity/invalidity of the subtitle read function in
accordance with the value written. In the case where
"1" is written in the subtitle read function flag, for
example, the subtitle read function is regarded as
valid, while when "0" is written, the subtitle read
function is regarded as invalid.

The video read function, the audio read function
and the subtitle read function providing the internal
modules of the buffer control module 215 further have
the demultiplex function to separate the video stream,
the audio stream and the subtitle stream from the clip
AV stream in which the respective streams are
multiplexed. According to an embodiment of the
invention, a clip AV stream is formed by time division

multiplexing of a plurality of elementary streams in

94

10

15

20

25

the form of the program stream of the MPEG2 system.
The video read function, the audio read function and
the subtitle read function, therefore, have the
function of demultiplexing the program stream of the
MPEG2 system.

The video read function reads and holds the wvalue
of the field "stream_id" (FIG. 25) arranged in a
predetermined way in the stream. In similar fashion,
the audio read function and the subtitle read function
read and hold the values of the field "stream_id" and
the field "private_stream_id" (FIG. 25), respectively.
The values of the fields "stream_id" and
"private_stream_id" are used for analyzing the bit
stream supplied.

The video decoder control module 216 instructs
the video read function in the buffer control module
215 to read a single video access unit of the video
stream from the memory 113 and supply the video decoder
116. The video decoder control module 216, controlling
the video decoder 116, decodes, by access unit, the
video stream supplied to the video decoder 116. The
video data prepared by decoding the video stream is
supplied to the graphics processing module 219.

In similar fashion, the audio decoder control
module 217 instructs the audio read function in the

buffer control module 215 to read a single audio access

95

10

unit of the audio stream from the memory 113 and supply
the audio decoder 117. According to this embodiment,
the access unit constituting the audio stream (audio
frame) is assumed to have a known fixed length. The
audio decoder control module 217, controlling the audio
decoder 117, decodes the audio stream supplied to the
audio decoder 117, by access unit. The audio data
generated by decoding the audio stream is supplied to
the audio output module 242.

Further, the subtitle decoder control module 218
instructs the subtitle read function in the buffer
control module 215 to read a single subtitle access
unit of the subtitle stream from the memory 113 and
supply the subtitle decoder control module 218.
According to this embodiment, the subtitle access unit
constituting the subtitle stream has the unit length
information stored at the head of the unit. The
subtitle decoder control module 218 has the subtitle
decode function and can decode the supplied subtitle
stream. The subtitle image data decoded from the
subtitle stream by the subtitle decode function of the
subtitle decoder control module 218 is supplied to the
graphics processing module 219.

The graphics processing module 219, as described
above is supplied with the video data decoded in the

video decoder 116 under the control of the video

96

10

15

20

25

decoder control module 216 and the subtitle image data
decoded by the subtitle decoder control module 218.

The graphics processing module 219 generates a video
signal for outputting by adding the subtitle image data
to the supplied video data as predetermined. Further,
in the graphics processing module 219, the menu image
and the message image are generated and synthesized
(overlaid) on the output video signal in accordance
with the instructions of the script control module 211
and the player control module 212.

In the graphics processing module 219, for
example, the subtitle image data supplied are enlarged
or reduced in response to the instruction from the
script control module 211 and added to the video data
as predetermined.

Also, the graphics processing module 219 changes
the aspect ratio of the output signal based on the
aspect ratio of a pre-designated output video device
and the output aspect ratio designated in the content
reproduced from the disk 101. 1In the case where the
aspect ratio of the output video device is 16:9 and the
output aspect ratio is 16:9, for example, the video
data is output as it is. In the case where the output
aspect ratio is 4:3, on the other hand, the output
video data is squeezed so that the image height is

flush with the screen height of the output video device,

97

10

15

20

25

and the black image is inserted and output on the left
and right sides of the image. In the case where the
output video device has the aspect ratio of 4:3 and the
output aspect ratio is 4:3, the video data is output as
it is, while in the case where the output aspect ratio
16:9, on the other hand, the output video data is
squeezed so that the image width coincides with the
screen width of the output video device while the black
image inserted and output above and under the image.

The graphics processing module 219, in response
to the request from the player control module 212,
further captures the video signal in process, and
returns it to the player control module 212.

The video output module 241 occupies a part of
the memory 113 exclusively and uses it as a FIFO
(first-in first-out) buffer. The video data processed
by the graphics processing module 219 is provisionally
accumulated in this buffer thereby to control the read
operation at a predetermined timing. The video data
read from the buffer is output from the video output
interface 118.

The audio output module 242 occupies a part of
the memory 113 exclusively and uses it as a FIFO buffer.
The audio data output from the audio decoder 117 are
accumulated in this buffer, and read at a predetermined

timing. The audio data read from the buffer is output

98

10

15

20

25

from the audio output interface 119.

In the case where the audio mode of the content
is dual monaural (bilingual, for example), the audio
output module 242 outputs the audio data in accordance
with a pre-designated audio output mode. In the case
where the audio output mode is designated as "main
audio", the audio data of the left channel is copied to
the right channel in the memory 113, for example, so
that both the two-channel outputs are output as audio
data of the left channel. In the case where the audio
output mode is "second audio", on the other hand, the
audio data of the right channel is copied to the left
channel in the memory 113, for example, so that both
the two-channel outputs are output as the audio data of
the right channel. In the case where the audio output
mode is "main/second sound channel” or the contents are
stereo, the audio data is output as it is.

In this way, the audio output mode can be set by
the user interactively through the menu screen
generated by the video content reproducing unit 210.

The nonvolatile memory control module 250, in
response to the instruction from the player control
module 212, writes the data in the area not erased at
the end of the operation of the video content
reproducing unit 210 and reads the data from the

particular area. The nonvolatile memory control module

99

10

15

20

25

250 has the function of storing a plurality of sets of
the data "Saved_Player_Status" and the data
"Saved_User_Data" in the same area with the title ID
(Title_ID) as a key. As the data "Saved_Player_Status",
the data "Backup_Player_Status" held by the player
control module 212 is stored. This data

"Backup_Player_ Status" corresponds, for example, to the
data immediately before the end of the play control
module 212 of the player status 323B described above,
and the data "Saved_Player_Status" corresponds to the
resume information 324. Also, the data "User_Data"
held in the player control module 212 is stored as the
data "Saved_User_Data". The data "User_Data" is a
predetermined data set for the player control module
212 by the user.

The nonvolatile memory control module 250 stores
the set of the data "Saved_Player_Status" and the data
"Saved_User_Data" in association with the title ID of
the disk 101 in a predetermined area of the nonvolatile
memory held in the disk reproducing apparatus 100. The
storage medium of the nonvolatile memory control module
250 for storing the data is not limited to the
nonvolatile memory but may alternatively be a hard disk.
8. State transition model of movie player
8-1 Definition of movie player state

Next, the state change model of the movie player

100

10

15

20

25

300 according to an embodiment of the invention will be
explained in more detail. According to this invention,
the state of the movie player 300 is defined only as an
internal state of the movie player 300. Specifically,
according to this invention, the state of the movie
player 300 is defined based on the operation and the
function of the movie player 300 itself.

More specifically, the operation of the movie
player 300 is defined into two states including the
play state and the stop state from the viewpoint of
play list reproduction. Also, the function is defined
into two states according to whether the movie player
300 accepts the control command from the native
implementation platform 301 or not.

FIG. 31 schematically shows the definition of the
state of the movie player 300 according to the
invention. The state of the movie player 300 from the
viewpoint of operation will be explained. In FIG. 3,
the movie player 300 is in either play state or stop
state from the viewpoint of play list reproduction. 1In
play state, the movie player 300 selects the play 1list
and reproduces the selected play list. In stop state,
on the other hand, the play list is not reproduced by
the movie player 300. In stop state, the play list is
not selected. In other words, in play state, the clip

AV stream is decoded by the playback module 321 of the

101

10

15

20

25

movie player 300, while in stop state, it is not
decoded.

The play state is subdivided into several states
and includes various reproduction states such as the
normal reproduction in forward direction at unity speed,
the variable speed reproduction in forward and reverse
directions at other than normal speed, and pause. The
frame-by-frame forward and frame-by-frame reverse
reproduction can be realized by alternating between
normal reproduction and pause. During the reproduction
of the play list, therefore, the movie player 300 is
substantially in play state.

The state of the movie player 300 from the
viewpoint of the functions thereof will be explained.
The movie player 300, for the viewpoint of the
functions thereof, has two operation modes, i.e. the
mode (called the normal mode) for accepting the control
command 311 from the native implementation platform 301
and the mode (called the menu mode) for ignoring the
control command 311. These two operation modes of the
movie player 300 are each defined as a state of the
movie player 300.

In normal mode, the operation of the movie player
300 can be controlled by the user input 310 without the
script program of the script layer 302.

In menu mode, on the other hand, the control

102

10

15

20

25

command 311 is not accepted by the movie player 300.
The movie player 300 accepts only the method 313 from
the script layer 302. As a result, the operation of
the movie player 300 can be controlled in its entirety
by the script program of the script layer 302. The
user input 310, for example, is delivered to the script
layer 302 as an event 314 from the native
implementation platform 301. The script program of the
script layer 302 controls the operation of the movie
player 300 using the method 313 corresponding to this
event 314.

Specifically, the operation of the movie player
300 can be controlled on the part of the content
producer by use of the menu mode. Also, the use of the
menu mode makes possible a great variety of control
operations with a few types of keys.

As described above, the movie player 300 has two
states including the play state and the stop state in
terms of operation on the one hand, and two operation
modes of normal mode and menu mode in terms of
functions at the same time. For the movie player 300,
therefore, four states can be defined including
combinations of the two operation state and two
function modes. Specifically, the movie player 300 is
associated with any one of the four states during the

period from its generation to extinction. The

103

10

15

20

25

generation and extinction of the movie player 300 are
explained later.

Incidentally, in the case where the method 313 is
issued instructing the movie player 300 to transfer to
a state different from the current state, the movie
player 300 transfers the state immediately in
accordance with the issued method 313 as a model. 1In
an actual device, however, the time length from the
time when a given method 313 is issued to the movie
player 300 to the time when the movie player 300
completes the state transition in accordance with the
method 313 is dependent on the mounting of the
particular device.

Also, even in the case where the method 313
designating the state transition to the same state as a
given state of the movie player 300 is issued to the
movie player 300, the state of the movie player 300
remains unchanged. Even in the case where the method
313 to transfer the state of the movie player 300 to
normal mode and stop state is issued to the movie
player 300 already in normal mode and stop state, for
example, the state of the movie player 300 is not
changed.

Further, the temporary stop (pause) state is
included as a kind of play state. For transition from

stop state to pause, the method "play()" with the value

104

10

15

20

25

"pauseMode" designating the temporary stop as an
argument is used.

Next, each of the four states including
combinations of the two states and the two operation
modes of the movie player 300 and the state change
among the four states are explained. In the
description that follows, assume that the normal mode
included in the state of the movie player 300
classified according to the function is called "normal",
and the menu mode "menu". Of the state of the movie
player 300 classified by operation, on the other hand,
the play state is called "play" and the stop state
"stop”". Also, a combination of the modes and the state
of the movie player 300 is expressed as "mode, state"
for convenience sake. Further, in the description that
follows, the state change and the mode switching in the
movie player 300 are both called the state or state
change or transition.

As understood from FIG. 31, 16 (= 4 x 4) state
changes exist for the movie player 300 including the
change to its own state. These state changes are
caused by the method 313 delivered from the script
layer 302 to the movie player 300. Specifically, the
state change in the movie player 300 is caused by a
factor external to the movie player 300, and no

automatic state change occurs in the movie player 300

105

10

15

20

25

without instruction by the method from the script layer
302. Also, the state change never occurs in the movie
player 300 even with the control command from the
native implementation platform 301.

According to this embodiment, the combination of
arguments of the method 313 is limited, and therefore,
all the 16 possible state changes in the movie player
300 cannot be generated.

The four states or states ("Menu,Stop",
"Normal,Stop", "Menu,Play" and "Normal,Play") that the
movie player 300 can assume are explained below one by
one.

(1) State "Menu, Stop"

This is the stop state in which the play list is
not reproduced by the movie player 300, and in which
the control command 311 from the native implementation
platform 301 is not accepted. This state is used, for
example, on the menu screen with no dynamic image
reproduced in the background.

In order to positively secure the control
operation from the script program immediately after
generation of the movie player 300, it is effective not
to accept the control command 311 from the native
implementation platform 301 at the particular time
point. For this reason, the state "Menu,Stop" is set

immediately after generation of the movie player 300.

106

10

15

20

25

(2) State "Normal,Stop"

This is the stop state in which the play list is
not reproduced by the movie player 300, and in which
the control command 311 from the native implementation
platform 301 is accepted. This state is used in the
state, for example, in which the dynamic image is not
reproduced. This state, in which the control command
311 is accepted, is nqt preferably used immediately
after generation of the movie player 300
(3) State "Menu,Play"

This is the play state in which the play list is
reproduced by the movie player 300, and in which the
control command 311 from the native implementation
platform 301 is not accepted. This state is used, for
example, on the menu screen with the dynamic image
reproduced in the background.

(4) State "Normal,Play"”

This is the play state in which the play list is
reproduced by the movie player 300, and in which the
control command 311 from the native implementation
platform 301 is accepted. This state is used, for
example, during the reproduction of the original story
of the movie.

The models for generating the movie player 300
are briefly explained. In the generation of the movie

player 300, as explained above, for example, the power

107

10

15

20

25

is switched on for the disk reproducing apparatus 100

and the operation system 201 is activated in the CPU

112. Then, the required process such as initialization

is executed for each part, while accessing the video

content reproducing unit 210 from the ROM. This video

content reproducing unit 210 is executed by the CPU 112.

Once the power is turned off for the disk reproducing

apparatus 100, the movie player 300 is extinguished.

In this case, the movie player 300 is regarded to

generate an implicit object, and the movie player 300
is not required to be explicitly generated in the
script program.

As explained above, the state immediately after
generation of the movie player 300 is regarded as the
stop state (state "Menu,Stop") of menu mode.
Immediately after generation of the movie player 300,
the following properties, for example, held in the
movie player 300 assume indefinite wvalues:

Property "audioFlag"

Property "audioNumber"

Property "chapterNumber"

Property "playListNumber"
Property "playSpeed"
Property "subtitleFlag"
Property "subtitleNumber"

Property "videoNumber"

108

10

15

20

25

In the UMD video player having the "continued
reproduction function" to start the reproduction from
the position at which the previous reproduction is
suspended, the movie player 300 can be initialized by
setting the value of each property as held in the
nonvolatile memory instead of a default value. For
example, the resume information 324 can be used.

8-2 Method for generating state change in movie player

Next, the method 313 for generating the state
change or transition in the movie player 300 will be
explained. FIG. 32 shows combinations of the current
state "Mode,Status" and the state "Mode,Status" after
state change by the method 313 for each of the four
states of the movie player 300. As understood from FIG.
32, the method "stop()", the method "play()" and the
method "resume()" are prepared as the methods 313 to
generate the state change of the movie player 300.
Incidentally, the operation of the method "resume()"
changes depending on whether the resume information 324
exists or not.

The method "stop()" will be explained. The
method "stop()" changes the movie player 300 to the
stop state regardless of the state thereof. The method
"stop()" can designate the mode for the argument, and
simultaneously with the transition to stop state, the

mode of the movie player 300 can be changed. As

109

10

15

20

25

described later, upon execution of the method "stop()"
meeting a certain condition, the player status 323B is
backed up and held as the resume information 324.

The method "play()" will be explained. The
method "play()" changes the movie player 300 to play
state. The method "play()" can designate the mode for
the argument, and simultaneously with the change to
play state, can change the mode of the movie player 300.
As described later, upon execution of the method
"play()" meeting a certain condition, the player status
323B is backed up while at the same time holding the
resume information 324.

The method "resume()" will be explained. The
method "resume()" is to restore the reproduction by
restoring the resume information 324 to the player
status 323B. Specifically. the method "resume()"
causes the movie player 300 to start the reproduction
from the position indicated by the resume information
324. Even in the case where the method "resume()" is
executed in the absence of the resume information 324,
the state of the movie player 300 is not changed.

The conditions on which the resume information
324 is restored by the method "resume()" are as follows.
Specifically, in the case where the resume information
324 exists at the time of execution of the method

"resume()"” and the current state is not "Normal,Play”,

110

10

15

20

25

then the movie player 300 restores the resume
information 324. In other words, as long as the resume
information 324 exists at the time of execution of the
method "resume()" and the current state is one of
"Menu, Stop", "Normal,Stop" and "Menu,Play", then the
movie player 300 restores the resume information 324
simultaneously with the transition to the state
"Normal,Play".

The method "play()" has a plurality of arguments.

In the case under consideration, by way of explanation,
the method "play()" is assumed to have three arguments
including "pauseMode", "menuMode" and "playListNumber"”.
Actually, however, more arguments are defined.

The argument "pauseMode" designates the condition
of reproduction in play state, and may assume the value
"x1", "pause" or "-1". The value "x1" designates the
forward reproduction at normal speed. The value
"pause” designates the temporary stop. The value "-1"
designates the maintenance of the current reproduction
speed. 1In this way, the argument "pauseMode" sets the
detail of the play state of the movie player 300 after
execution of the method "play()". Incidentally, in the
case where the pause is designated in the absence of
the picture at the position designated by the argument
or the designation by the argument, then the picture at

the position designated by the select rule laid down

111

10

15

20

25

separately is displayed, and the pause state is entered.

The argument "menuMode" may designate the mode
(normal mode or menu mode) of the movie player 300, and
may assume any of the value "Normal", "Menu" and "-1".
The value "Normal" designates the switch to the normal
mode. The value "Menu" designates the switch to the
menu mode. The value "-1" designates the maintenance
of the current mode.

The argument "playListNumber" designates the
number of the play list to be reproduced. The argument
"playListNumber" can be omitted, which indicates that
the currently selected play list remains unchanged.

With reference to FIGS. 33A, 33B, 33C, 33D, 33E,
an example of state change of the movie player 300 at
the time of execution of the method "play()" will be
explained. In each of FIGS. 33A, 33B, 33C, 33D, 33E,
the left side indicates the current state 340A of the
movie player 300, and the right side the state 340B
changed by issuance of the method 313 from the script
program to the movie player 300 in the current state
340A. Also, under the state 340A and 340B, the play
list numbers (PL1, PL2) designated for the particular
state are shown.

FIG. 33A shows an example of the case in which
the method "play(xl,Normal,PL2)" is issued to the movie

player 300 in the state "Normal,Stop". This indicates

112

10

15

20

25

that, in accordance with the method play(xl,Normal,PL2),
the state of the movie player 300 changes to a state in
which the play list of the play list number "PL2" is
reproduced in normal mode at normal speed. The movie
player 300 changes from state "Normal,Stop" to state
"Normal,Play".

FIG. 33B shows an example of the case in which
the method "play(xl,Normal,PL2)" is issued to the movie
player 300 in state "Normal,Play" in which the
reproduction of the play list of the play list number
"PL1" is temporarily stopped. This indicates that in
accordance with the method "play(xl,Normal,PL2), the
state of the movie player 300 changes to the state in
which the reproduction of the play list of the play
list number "PL2" is started in normal mode at normal
speed. In this case, the reproduction operation of the
movie player 300 changes from pause to forward
reproduction at normal speed in accordance with the
method "play(xl,Normal,PL2). In this case, the
reproduction operation of the movie player 300 changes
from the pause to the forward reproduction at normal
speed. The state, however, remains at "Normal,Play"
before and after issue of the method
"play(xl,Normal,PL2), and no state change occurs.

FIG. 33C shows an example of the case in which

the method "play(-1,-1,PL2)" is issued to the movie

113

10

15

20

25

player 300 in state "Normal,Play" during the forward
reproduction of the play list of the play list number
"PL1" at normal speed. This indicates that in
accordance with the method "play(-1,-1,PL2), the movie
player 300 is in such a state that the play list of the
play list number "PL2" is reproduced in normal mode at
normal speed. Also in this case, although the play
list reproduced by the movie player 300 is changed, the
state "Normal,Play" remains unchanged and no state
change occurs.

FIG. 33D shows an example of the case in which
the method "play(pause,-1,PL2)" is issued to the movie
player 300 which in state "Normal,Play", is in the
forward reproduction operation to reproduce the play
list of the play list number "PL1" at normal speed.
This indicates that in accordance with the method
"play(pause,-1,PL2)", the movie player 300 is in normal
mode in which the play list of the play list nuﬁber
"PL2" is selected and the operation is temporarily
stopped at the head of the play list of the play list
number "PL2". Also in this case, the reproduction
operation of the movie player 300 changes from the
forward reproduction at normal speed to the pause,
while the state remains at "Normal,Play" and no state
change occurs.

FIG. 33E shows an example of the case in which

114

10

15

20

25

the method "play(-1,Menu)" is issued to the movie
player 300 in state "Normal,Play" during the pause of
the reproduction of the play list of the play list
number "PL1". 1In the method "play()", the argument
"playListNumber" is omitted. This indicates that in
accordance with the method "play(-1,Menu)", the movie
player 300 selects the play list of the play list
number "PL1" while at the same time in the menu mode
being temporarily stopped at the head of the play list
of the play list number "PL1". The movie player 300
changes to the state "Menu,Stop" from the state
"Normal,Play".

As described above, the movie player 300 performs
various operation by receiving the method "play()" from
the script program, while at the same time generating
the state transition depending on the conditions. The
content producer can implement various operations in
the movie player 300 by describing the method "play()"
with a different argument in the script program.

The movie player 300 starts the reproduction of
the play list of a selected play list number only by
executing the method "play()" from the script program.
The play list reproduction start indicates the start of
reproduction of the play list from stop state or the
selection of a new play list by suspending the play

list reproduction and starting the reproduction of the

115

10

15

20

25

selected play list.

In the case where the script program issues the
method "play()" with an argument to the movie player
300, the value of the argument is set in the player
status 323B. In the case where the argument is omitted,
the value of the particular argument is set as a
default value or by automatic selection in accordance
with the rule determined for each parameter.

The reproduction of the play list in the order
not intended by the content producer would pose a
problem. Therefore, the start of the play list
reproduction by designating the play list number with
the control command 311 attributable to the user
operation is prohibited. This is one of the features
of the operation model of the movie player 300
according to an embodiment of the invention.

Further, in the case where an invalid play 1list
or the nonexistent time is designated as a value of the
argument of the method "play()", the execution of the
particular method "play()" would fail. This indicates
that the script program is erroneous, and the script
program contains a violation of the standard. The
error handling against this case is dependent on the
mounting of the movie player 300.

Now, the reproduction between play items will be

explained. The movie player 300, with the starting of

116

10

15

20

25

the play list reproduction, continues the reproduction
of the particular play list to the end. The
reproduction from the head to the end of a given play
list requires neither the user operation nor the
control operation from the script program. In the
movie player 300, as briefly shown in FIG. 34, the play
items constituting the play list are sequentially
reproduced in the order designated by the play list
file "PLAYLIST.DAT" (FIG. 19). The play items
constituting the play list are continuously reproduced
without being controlled by the event handler.

The operation during the period from the end of
the reproduction of a play item to the reproduction of
the next play item is dependent on the mounting of the
movie player 300, and not specified as a format. For
example, the operation between play items as to whether
the last picture of the play item continues to be
displayed or immediately changed to the black screen is
dependent on the mounting. By the appropriate
authoring operation such as setting the IN point of the
play item at a random access point (entry point, FIG.
28), however, the gap time between the play items can
be shortened as far as possible.

8-3 Movie player operation during play list
reproduction

Next, the operation of the movie player 300

117

10

15

20

25

during the reproduction of the play list will be
explained. The variable speed reproduction instruction
of the user such as the high-speed reproduction
including the double speed reproduction or the triple
speed reproduction, the low-speed reproduction
including the half-speed reproduction or the reverse
reproduction is input to the native implementation
platform 301 as a user input 310, and in response to
this user input 310, a control command 311 dependent on
the mounting is transmitted to the movie player 300
from the native implementation platform 301.

The variable reproduction speed is dependent on
the mounting of the movie playexr 300. In an example of
realizing a variable-speed reproduction, the
instruction "faster" or "slower" is delivered as an
argument to the movie player 300 from the native
implementation platform 301 capable of speed
designation, which 1is converted by the movie player 300
into a realizable speed. Which method should be
employed depends on the mounting of the movie player
300. According to the script program, the speed
determined by the movie player 300 can be known by the
method "getPlayerStatus()".

With the method "play()" to the movie player 300
from the script program, on the other hand, the speed

cannot be designated by the argument. In the method

118

10

15

20

25

"play()". only two including "pause" (argument "pause")
and "normal speed reproduction" (argument "x1") can be
designated.

The movie player 300, upon arrival at the end of
the play item during the forward variable speed
reproduction of the play list, carries out the
reproduction of the next play item. At the same time,
the movie player 300 continues the variable speed
reproduction of the next play item in the same
direction and at the same speed as the previous play
item.

FIG. 35 shows an example of the operation of the
movie player 300 in the case where the start or end of
the play list is reached during the play list
reproduction. The movie player 300, upon arrival at
the end of the play list during the reproduction in
forward direction, enters the pause while displaying
the last picture. To erase the last picture, the stop
(issue of the method "stop()") is required to be
designated explicitly for the movie player 300 in the
event handler "onPlayListEnd" or the like.

Incidentally, upon arrival at the end point of
the play list during the high-speed reproduction higher
in speed than normal mode, the last picture of the play
list, even if not corresponding to the jump point, is

displayed.

119

10

15

20

25

Upon arrival at the head of the play item during
play list reproduction in reverse direction, on the
other hand, the movie player 300 reproduces the
previous play item, i.e. a play item which is
reproduced temporally earlier in forward reproduction.
Also in this reproduction of the previous play item,
the reverse reproduction from the end toward the head
is continued. The reproduction speed is also
maintained. Also, upon arrival at the head of the play
list during the reverse reproduction, the variable
speed reproduction is canceled, and the movie player
300 enters the pause at the head of the play list.

Further, the state of the movie player 300 is
changed to "pause" also by the control command 311
designating the pause. The direction and speed of play
list reproduction upon cancellation of the pause by the
control command 311 is dependent on the mounting of the
UMD video player.

Next, the event generated during play 1list
reproduction will be explained. The event generated
during play list reproduction, as explained with
reference to FIG. 13, includes the event "angleChange"
corresponding to the user operation, the event
"audioChange" and the event "subtitleChange", and the
event "chapter" and the event "mark" corresponding to

the mark embedded in the play list. Also, a detailed

120

10

15

20

25

example of the operation at the time of event
generation is already explained with reference to FIG.
15.

Now, the last processing of the play list will be
explained. As already explained, the movie player 300
reproduces the play list of the number designated by
the method "play()". The play list reproduction, once
started, is continued to the end of the play list
without being controlled by the script program or the
control command 311. Upon arrival at the end of the
play list reproduction, the movie player 300 notifies
the event "playListEnd" to the script program. Any
method can be used before reaching the end of the play
list. Specifically, regardless of whether the
reproduction of the play list is normal, fast or due to
the jump from other play list, the movie player 300
generates the event "playListEnd" at the time point
when the end of the play list is reached.

In the case where the reproduction reaches the
end of the play list and the event "playListEnd" is
generated, the state of the movie player 300 enters the
pause, and the time of the play list reproduction
internally held by the movie player 300 coincides with
the end time of the play list. Incidentally, the end
time of the play list is defined as the time of ending

the reproduction of the last picture of the play list

121

10

15

20

25

and coincides with the OUT point of the last play item
along reproduction time axis.

The event "playListEnd" can be used for
reproducing the play list serially or displaying the
menu at the branching point of the multistories.

The script program executes the event handler
"onPlayListEnd", if held as a program to be executed,
upon generation of the event "playListEnd". 1In the
case where the method "play()" for starting the
reproduction of other play list is described in this
event handler "onPlayListEnd", the movie player 300
starts the reproduction of the other play list. 1In
this way, the play list reproduction is continued.

A specific explanation is given with reference to
FIG. 36. At the end of reproduction of the play 1list
of the play list number "PL1l", the event "playListEnd"
is generated. Upon generation of this event
"playListEnd", the event handler "onPlayListEnd" held
in the script program is executed. This event handler
"onPlayListEnd" designates the reproduction of the play
list of the play list number "PL2". The movie player
300, in response to this event handler "onPlayListEnd",
reproduces the play list of the designated play list
number "PL2".

The reproduction path transfers provisionally to

the event handler "onPlayListEnd" from the end of the

10

15

20

25

play list of the play list number "PL1", and further
transfers to the head of the play list of the play list
number "PL2".

In the case where the menu is to be displayed at
the branching point of the multistories, for example,
the instruction to reproduce the play list may be
described to such an effect that the menu screen is
displayed by the event handler "onPlayListEnd"
corresponding to the event "playListEnd" with the end
of the play list as a branching point.

FIG. 37 shows, in more detail, the flow of the
process of the script layer 302 and an example of the
operation of the movie player 300 at the end of the
play list. In FIG. 37, steps S30 to S33 indicate the
process on the part of the script layer 302, and steps
S40 to S44 the process on the part of the movie player
300.

After reproduction of a given play list to the
end, an explicit instruction for reproduction by the
script program is required to reproduce the next play
list. The order in which the play lists are reproduced
is determined by the script program, and therefore, the
play list to be reproduced next cannot be voluntarily
determined on the part of the movie player 300.

Once the reproduction reaches the end of the play

list (step S40), the movie player 300 notifies the

123

10

15

20

25

event "playListEnd" to the script layer 302 (step S41).
The movie layer 300, while continuing to display the
last picture of the play list reproduced to the end in
step S40, transfers to the state "pause" (step S$42).

In the script layer 302, upon receipt of the
event "playListEnd", the event handler "onPlayListEnd"
is executed (step S30). The next operation of the
movie player 300 is determined by the description of
the script in this event handler "onPlayListEnd".

Incidentally, the movie player 300, after step
S40, ignores the method or the control command 311
which may be received to cancel the pause or the start
the forward reproduction during the pause at the end of
the play list. The method to start the forward
reproduction is the method "play()" and the method
"playStep()" designating the forward reproduction with
an argument. Also, the control command 311 to start
the forward reproduction includes the command
"uo_play()"., the command "uo_playNextChapter()", the
command "uo_forwardScan()", the command "uo_playStep()",.
the command “"uo_pauseOn()" or the command
"uo_pauseOff()". These commands are ignored in the
case where the operation is in pause at the end of the
play 1list.

Even in the case the operation is in pause at the

end of the play list, the method "stop()" and the

124

10

15

20

25

method "resume()" are valid. Also, the mode switching
is valid during the pause at the end of the play list.

Even after generation of the event "playListEnd",
the movie player 300 in normal mode accepts the control
command 311 other than for starting the forward
reproduction. Also in that case, upon execution of the
method 313 for the movie player 300 from the script
program, the operation designated by the particular
method 313 is performed.

In the example shown in FIG. 37, the method
"stop()" is designated by the event handler
"onPlayListEnd" (step S31). The operation of the movie
player 300 caused by the control command 311 is
suspended upon execution of the method "stop()", and
transfers to stop state (step S43). In stop state, for
example, the last picture of the play list thus far
reproduced is erased and the black screen appears.

Further, in the script layer 302, the method 313
for reproducing the next play list is designated by the
event handler "onPlayListEnd" (step S32). In the
method "play()", for example, the value "x1" is
designated as the argument "pauseMode", the value
"Menu" as the argument "menuMode", and the play list
number next to be reproduced as the argument
"playListNumber"”. Then, the movie player 300 is

instructed to switch to the menu mode and to reproduce

125

10

15

20

25

the play list of the number designated by the argument
"playListNumber" at normal speed. In the script layer
302, the event handler "onPlayListEnd" is ended (step
S33). On the part of the movie player 300, the mode is
switched in accordance with the method "play()"
designated by step S32, while at the same time starting
the reproduction at the speed designated by the
designated play list (step S44).

Incidentally, to improve the user operability,
the content producer, after ending the reproduction of
the play list, should not leave without designating the
next operation for the movie player 300. The next
operation should be described in the event handler
"onPlayListEnd", and the movie player 300 should be
transferred to stop state, instructed to reproduce the
play list by the method "play()" or authored to return
to the menu screen.

8-4 Function to restore the reproduction of movie
player

Next, the state transition and the reproduction
restoration function of the movie player 300 are
explained. First, with reference to FIG. 38, the three
types of memory areas held in the UMD video player are
explained. In the model of the UMD video player, the
essential three types of memory areas including the

player status area 501, the resume information area 502

126

10

15

20

25

and the user data area 503 are defined. These three
types of memory areas 501, 502 and 503 are formed, for
example, on the memory 113. They may alternatively be
formed on the RAM as a work memory of the CPU 112.

The player status area 501 is the memory area for
holding the information indicating the reproduction
state of the movie player 300. Specifically, the
player status 323B shown in FIG. 3 is held in the
player status area 501. The contents of the player
status area 501 can be read by the method
"getPlayerStatus()" from the script program 500.

The resume information area 502 is the memory
area for provisionally saving (backing up) a part of
the information held in the player status area 501.
Specifically, a part of the information in the player
status area 501 is held in the resume information area
502 in the form of the resume information 324 shown in
FIG. 3. The part of the information in the player
status area 501 saved in the resume information area
502 is restored to the player status area 501 as
required. The backup operation and the restore
operation are performed by the native implementation
platform 301. The information held in the resume
information area 502 is used by the resume reproduction
function to start the reproduction from the previous

reproduction stop point.

127

10

15

20

25

The contents of the resume information area 502
can be read by the method "getResumeInfo()" from the
script program 500. In the resume information 324
saved in the resume information area 502, the
parameters related to the stream can be changed in
value by the method "changeResumeInfo()" from the
script program 500.

The information held in the resume information
area 502 is written (saved) in the nonvolatile memory
510 as required by the native implementation platform
301. In similar fashion, the information written into
the nonvolatile memory 510 from the resume information
area 502 is read (loaded) from the nonvolatile memory
510 as required by the native implementation platform
301, and stored in the resume information area 502.

Incidentally, the backup operation into the
resume information 502 from the player status area 501
and the restore operation from the resume information
area 502 into the player status area 501 are the
processes dgenerated with a specified state transition
of the movie player 300 by method execution, and
automatically performed by the movie player 300.

The user data area 503 is the one for holding the
information dependent on the contents, and can be
arbitrarily used by the content producer. This area

can be used in arbitrary way in accordance with the

128

10

15

20

25

contents such as the route history of the play list
reproduction by the move player 300 or the correct or
incorrect solution of a quiz.

The data can be written in the user data area 503
by the method "setUserData()" from the script program
500. The contents of the user data area 503 can be
read by the method "getUserData()" from the script
program 500. The information held in the user data
area 503 is written (saved) in the nonvolatile memory
510 as required by the native implementation platform
301. In similar fashion, the information written into
the nonvolatile memory 510 from the user data area 503
is read (loaded) from the nonvolatile memory 510 as
required by the native implementation platform 301 and
stored in the user data area 503.

In order to realize the reproduce restoration
function, a model of the UMD video player constructed
according to an embodiment of this invention will be
explained.

First, the resume operation will be explained
briefly. The operation of restoring the reproduction
state using the information backed up in the resume
information area 502 is called "resume". The "resume"
is executed by the method "resume()".

More specifically, the player state 232B in the

player status area 501 is backed up in the resume

129

10

15

20

25

information area 502 into the resume information 324,
and in accordance with the method "resume()", the
reproduction state is restored using the resume
information 324 backed up in the resume information
area 502. The player status 323B constitutes the state
of the movie player 300, i.e. the play list number, the
chapter number or the selected stream number currently
reproduced by the movie player 300.

The operation of the movie player 300 with the
method "resume()" issued thereto is varied depending on
whether the resume information 324 is existent in the
resume information area 502 or not. In the case where
the resume information 324 exists in the resume
information area 502, the particular resume information
324 is restored as a player status 323B in the player
status area 501. In the process, the resume
information 324 in the resume information area 502 is
discarded.

In the case where the reproduction stream is
changed in the menu accessed during the content
reproduction, the method "changeResumelInfo()" is used.
By performing the resume operation with the method
"resume()" after the resume information 324 held in the
resume information area 502 is changed in a
predetermined way by the method "changeResumeInfo()",

the reproduction can be started by changing the

130

10

15

20

25

reproduction stream.

By executing the method "resume()", the movie
player 300 is caused to perform the resume operation.
As an alternative, the resume operation can be realized
by executing the method "play()" with a designated
argument after acquiring the resume information 324 by
the method "getResumelInfo()".

The backup of the player status 323B in the
resume information area 502 will be explained with
reference to FIGS. 39 and 40. FIG. 39 shows, among the
four states defined by the movie player 300, the state
transition in which the player status 323B held in the
player status area 501 is backed up in the resume
information area 502. FIG. 40 shows the conditions on
which the player status 323B is backed up in the resume
information area 502.

In the case where the movie player 300 playing in
normal mode (state "Normal,play"”) for reproducing the
play list changes to the stop state, the player status
323B held in the player status area 501 is backed up in
the resume information area 502, and held in the form
of the resume information 324. Incidentally, in stop
state, a part of the player status 323B comes to assume
an indefinite value.

Also, with the transition of the movie player 300

from the state "Normal,play" to the state "Menu,play",

131

10

15

20

25

the player status 323B held in the player status area
501 is backed up in the resume information area 502.

Even in the case where the movie player 300
reproducing the play list in menu mode changes the
state, however, the player status 323B held in the
player status area 501 is not backed up in the resume
information area 502.

Specifically, the player status 323B is backed up
in the resume information area 502 in the form of the
resume information 324 in the following cases:

(1) The current state of the movie player 300 is
"Normal,Play", and directly changed to state

"Menu, Play"” by the execution of the method "play()".
(2) The state of the movie player 300 is "Normal,Play",
and changed to the state "Normal,Stop"” or "Menu,Stop"
by the execution of the method "stop()". In this case,
the argument "resumeInfoClearFlag" of the method
"stop()" is "false" in value.

The player status 323B is held (backed up) in the
resume information area 502 with the intention of
holding the return position in the original story. A
series of operations including the jump to the dynamic
image menu during the reproduction of the original
story and returning again to the original story for
reproduction are realized, for example, based on the

assumption of the use of the resume information 324 as

132

10

15

20

25

the data of the player status 323B backed up in the
resume information area 502.

During the reproduction of the original story,
i.e. in the case where the movie player 300 is in the
state "Normal,Play", the resume information 324 in the
resume information area 502 is discarded. With the
transition of the movie player 300 from the state
"Normal,Play" to other state, the player status 323B is
backed up in the resume information area 502 into the
resume information 324.

As described above, in order to realize the
resume reproduction, the player status 323B is backed
up in the resume information area 502 or the resume
information 324 in the resume information area 502 is
discarded appropriately in accordance with the state
transition of the movie player 300. Also, upon
designation of the method "resume()" in the script
layer 302, the resume information 324, if existent in
the resume information area 502, is restored in the
player status area 501 into the player status 323B.

The resume information 324 in the resume
information area 502 can be read using the method
"getResumeInfo()" from the script layer 302. The
parameters related to the stream in the resume
information 324 in the resume information area 502 can

be changed by the method "changeResumelInfo()". Further

133

10

15

20

25

by designation with the argument of the method "stop()",

the resume information 324 in the resume information
area 502 can be discarded.

The restoration of the resume information 324
held in the resume information area 502 to the player
status area 501 and the discard thereof are explained
with reference to FIGS. 41 to 44. The resume
information 324 held as a return position in the
original story is discarded after the movie player 300
returns to the reproduction of the original story, i.e.
to the state "Normal,Play". In the process, the resume
information 324 may be discarded either after being
restored as the player status 323B in the player status
area 501 or without being so restored.

Specifically, in this model, once the movie
player 300 returns to the state "Normal,Play", the
resume information 324 in the resume information area
502 is discarded. At the same time, in the case where
predetermined conditions are met by the movie player
300, the resume information 324 in the resume
information area 502 is discarded after being restored
to the player status area 501. In the case where the
resume information 324 is restored to the player status
area 501, the reproduction is started from the point
designated by the resume information 324. This

corresponds to the resume reproduction.

134

10

15

20

25

FIG. 41 shows the state transition among the four
states defined by the movie player 300, in which the
resume information 324 is restored in the player status
area 501 and then discarded.

In the case where the three conditions described
in (1) to (3) below are met, the resume information 324
is discarded after being restored.

(1) The current state of the movie player 300 is
"Menu, Stop"”, "Normal,Stop" or "Menu,Play".

(2) The resume information 324 is existent within the
resume information area 502.

(3) By executing the method "resume()", the transition
is made to the state "Normal,Play".

FIG. 42 shows these conditions collectively. 1In
the case where the movie player 300 is in the state
"Normal,Play", the resume information 324 is
nonexistent, and therefore, not defined in FIG. 42.

Incidentally, upon execution of the method
"resume()}"” while the resume information 324 is existent
in the resume information area 502, the state of the
movie player 300 is changed to the state "Normal,Play".
Also, in the absence of the resume information 324 in
the resume information area 502, the method "resume()"
does not change the state of the movie player 300. At
this time, the state "Mode,State” immediately before

execution of the method "resume()" prevails and the

135

15

20

25

player status 323B is not changed either.
Once the three conditions described in (4) to (6)

below are all met, on the other hand, the resume

information 324 is discarded without being restored.

(4) The current state of the movie player 300 is

"Menu, Stop", "Normal,Stop" or "Menu,Play".

(5) The resume information 324 is existent in the

resume information area 502.

(6) The state is changed to "Normal,Play" by execution

of the method "Play()".

FIG. 43 shows these conditions collectively. In

the case where the movie player 300 is in "Normal,Play",

the resume information 324 is not existent in the
resume information area 502 and therefore not defined
in FIG. 43.

In the absence of the resume information 324,
assume that the state of the movie player 300 is
changed to "Normal,Play" by the execution of the method
"play()". As a result, the situation lacking the
resume information 324 is held.

The resume information 324 in the resume
information area 502 can be discarded also by setting
the argument of the method "stop()". Specifically,
according to an embodiment of the invention, the
argument "resumeInfoClearFlag" of the method "stop()"

is defined as an argument of the method "stop()" to

136

10

15

20

25

determine whether the resume information 324 in the
resume information area 502 is to be discarded or not.
As shown in FIG. 44, the resume information 324 is
discarded in the case where the value "True" is
designated for the argument "resumeInfoClearFlag" at
the time of executing the method “stop()".

In the case where the original story of the movie
is reproduced to the end and the movie player 300 is
stopped, for example, the last position of the original
story of the movie is recorded as the resume
information 324. Upon subsequent reproduction
(continued reproduction) by the user, the process jumps
to the end of the original story of the movie and
enters the pause inconveniently for the purpose of
operation.

An improvement of this problem requires a means
for discarding the resume information 324 automatically
recorded in model definition. The position of the end
of the original story of a movie is not in the
knowledge of other than the content producer.
Therefore, a means is employed in which the discard of
the resume information 324 can be designated by the
argument "resumeInfoClearFlag" of the method "stop()"
for the movie player 300 from the script program 500.

FIG. 45 shows an example of the operation of the

UMD video player using the argument

137

10

15

20

25

"resumeInfoClearFlag" of the method "stop()". In FIG.
45, steps S50 to S54 indicate the process on the part
of the script layer 302, and steps S60 to S64 the
process on the part of the movie player 300.

With the arrival of the reproduction at the end
of the play list (step S60), the movie player 300
notifies the event "playListEnd" to the script layer
302 (step S61). The movie player 300, while continuing
to display the last picture of the play list reproduced
to the end in step S60, changes the state to pause
(step S62).

The script player 302, in response to the event
"playListEnd", executes the event handler
"onPlayListEnd" (step S50). The next step S51
determines whether the play list notified of the event
"playListEnd" is the last one of the author scenario or
not. Whether a given play list is the last one of the
scenario or not can be determined, for example, based
on the script program 500.

Upon determination that the play list is not the
last one, the process proceeds to step S53, in which
the argument "resumeInfoClearFlag" of the method
"stop()" is made "false" in value and the method
"stop()" not to discard the resume information 324 is
issued to the movie player 300. The movie player 300,

upon receipt of this method "stop()", changes the state

138

10

15

20

25

to stop state, while the player status 323B is backed
up in the resume information area 502.

Upon determination in step $51 that the end of
the scenario is reached in the script layer 302, on the
other hand, the process proceeds to step S52, and the
value of the argument "resumeInfoClearFlag" of the
method "stop()" is set "True". Then, the method
"stop()" to discard the resume information 324 is
notified to the movie player 300. The movie plaver 300,
upon receipt of the method "step()", changes to the
stop state, while the resume information 324 in the
resume information area 502 is discarded.

In the script layer 302, the method "end()" is
executed after step S52 depending on the description of
the script program 500.

8-5 Life cycle of each data

Next, the life cycle of the player status 323B,
the resume information 324 and the user data will be
explained.

FIG. 46 shows an example of the life cycle of the
player status 323B. At the time of generation of the
movie player 300, the player status 323B is also
generated. Once the movie player 300 is extinguished,
so is the play state 323B. The player status 323B is
initialized at the time of generation. At the time of

generation, the property indicating the state of the

139

10

15

20

25

movie player 300 represents "stop state", and the other
properties are not definite. The value of the player
status 323B changes with the change in reproduction
state in the movie player 300. Also, the value of the
player status 323B is changed with the restoration of
the contents of the resume information area 502. Also,
the player status 323B can be read by the method
"getPlayerStatus()" from the script layer 302.

A particular form in which the player status 323B
is to be stored depends on the mounting of the movie
player 300. As long as the information can be acquired
by the method "getPlayerStatus()" from the script, the
information can be held in any form.

FIGS. 47A and 47B show an example of the life
cycle of the resume information 324. At the time of
generating the movie player 300, the memory area of the
resume information is secured and initialized with the
generation of the resume information 324. Once the
memory area is initialized, the contents of the resume
information 324 are discarded. The UMD video player
having the nonvolatile memory mounted thereon loads the
resume information 324 from the nonvolatile memory at
the time of initializing the movie player 300. At the
same time, the user data is loaded.

When the state of the movie player 300 transfers

from "Normal,Play" to other state, the player status

140

10

15

20

25

323B is backed up in the resume information area 502.

The parameters "videoNumber", "audioNumber",
"audioFlag", "subtitleNumber" and "subtitleFlag"
related to the stream in the resume information 324 can
be changed by the method "changeResumelnfo()}" from the
script layer 302.

In the movie player 300, the contents of the
resume information 324 are discarded when the play list
reproduction is started in normal mode. The resume
information 324 may or may not be restored into the
player status 323B before discard. Also, upon
execution of the method "stop()" with the argument
"resumelInfoClearFlag" set to "True" in value, the
contents of the resume information 324 are discarded.

Upon execution of the method "resume()"” in the
presence of the resume information 324, the resume
information 324 is restored into the player status 323B.

The value of the resume information 324 can be
read by the method "getResumeInfo()" from the script
layer 302. In reading the resume information 324 in
discarded state, the value "0" is returned as a return
value "playStatus”", and therefore, the presence or
absence of the resume information 324 can be determined.

At the end (upon extinction) of the movie player
300, the resume information 324 is also extinguished.

The UMD video player with the nonvolatile memory

141

10

15

20

25

mounted thereon saves the resume information 324 in the
nonvolatile memory at the end (upon extinction) of the
movie player 300. In the process, the user data is
saved at the same time.

FIG. 48 shows an example of the life cycle of the
user data. At the time of generation of the movie
player 300, the memory area is secured, and the user
data generated. The movie player 300 is initialized at
the same time as generation thereof. Once initialized,
the contents of the user data are cleared (the
arrangement of the length "0" is restored by the method
"getUserData()"). The UMD video player with the
nonvolatile memory mounted thereon loads the user data
from the nonvolatile memory at the time of
initialization of the movie player 300. In the process,
the resume information is loaded at the same time.

Upon execution of the method "setUserData()", the
user data is written into the user data area 503. The
arrangement having the maximum data length of 64 bits
is held in the user data area 503 by the method
"setUserData()“. The data in the user data area 503
can be read by the method "getUserData()" from the
script layer 302. In the case where the user data is
not set, the arrangement of length 0 is returned.

No method is available for clearing the contents

of the user data area 503 from the script layer 302.

142

10

15

20

25

The contents can be rewritten by overwriting the user
data area 503.

At the end (upon extinction) of the movie player
300, the user data area 503 is also extinguished. The
UMD video player having the nonvolatile memory mounted
thereon saves the data held in the user data area 503
into the nonvolatile memory at the end (upon
extinction) of the movie player 300. In the process,
the resume information 324 is saved at the same time.

The foregoing description concerns an application
of the invention to the disk reproducing apparatus 100
for processing the audio stream and the video stream at
the same time. However, the invention is not limited
to this configuration. Only the audio stream, or only
the video stream may alternatively be reproduced
according to this invention.

Also, the foregoing description deals with the
disk recording medium used as a recording medium for
recording the content data, and the invention is not
limited to this configuration. A semiconductor memory,
for example, can be used as a recording medium for
recording the content data.

Further, in spite of the foregoing description
that the disk reproducing apparatus 100 according to
the invention has a dedicated hardware configuration,

the invention is not limited to such a configuration.

143

10

15

Specifically, the configuration of the disk reproducing
apparatus 100 other than the disk drive can be realized
also by the software operated on the computer system.
In such a case, the software for realizing the disk
reproducing apparatus 100 can be supplied by being
recorded in a recording medium such as CD-ROM (compact
disk read-only memory) or DVD-ROM (digital versatile
disc-ROM). The recording medium having recorded
therein the software for implementing the disk
reproducing apparatus 100 is loaded in the disk drive
of the computer system, and the particular software
recorded in the recording medium is installed in the
computer system. A configuration equivalent to the
disk.reproducing apparatus 100 can be realized by
connecting the disk drive unit corresponding to UMD to
the computer system. The recording medium having
recorded therein the UMD video contents may be provided

together with the particular software recorded therein.

144

02 Feb 2011

2005310796

20

25

30

145

The claims defining the invention are as follows:
1. A reproducing apparatus for reproducing content data recorded in a recording
medium, comprising:

read means for reading data from a recording medium having recorded therein
content data including at least one of a video stream and an audio stream and a
reproduction control program for controlling the reproduction of the content data;

player means for reproducing the content data in accordance with the
reproduction control program; and

control command output means for giving a control command corresponding to a
user operation to the player means,

wherein the player means controls the reproduction of the content data based on
four states defined by combinations of two states classified according to whether the
content data is reproduced or not and two states classified according to whether the
control command from the control command output means is accepted or ignored by the
player means, wherein when the player means is in the state where the control command
is ignored by the player means then the user operation is provided through the
reproduction control program, and wherein any state transition among the four states of
the player means is caused by the reproduction control program and is not caused by the
control command;
said reproducing apparatus further comprising:

first storage means for storing reproduction state information indicating a state of
the content data during the reproduction by the player means; and

second storage means for backing up the reproduction state information stored in
the first storage means,

wherein the reproduction state information stored in the first storage means is
backed up in the second storage means and the reproduction state information backed up
in the second storage means is restored to the first storage means along with the state

transition among the four states of the player means.

2. The reproducing apparatus according to claim 1, wherein
a state transition among the four states of the player means is caused by the

reproduction control program.

3. The reproducing apparatus according to claim 1, wherein

3197890-1 IRN: 736590

02 Feb 2011

2005310796

20

25

30

146

a state transition among the four states of the player means is not caused by the

control command.

4. The reproducing apparatus according to claim 1, wherein
the state transition among the four states of the player means is not voluntarily

caused by the player means.

5. The reproducing apparatus according to claim 1, wherein
the player means is in a state not generating the content data and not accepting
the control command from the control command output means immediately after

initialization.

6. The reproducing apparatus according to claim 1, further comprising:

first storage means for storing reproduction state information indicating a state of
the content data during the reproduction by the player means; and

second storage means for backing up the reproduction state information stored in
the first storage means, wherein the reproduction state information stored in the first
storage means is backed up in the second storage means and the reproduction state
information backed up in the second storage means is restored to the first storage means

along with the state transition among the four states of the player means.

7. The reproducing apparatus according to claim 6, wherein
the backup operation is performed at the time of the state transition of the player
means from the state in which the control command is accepted and the content data is

reproduced to another state.

8. The reproducing apparatus according to claim 6, wherein
the restoration is performed at the time of state transition of the player means to

the state in which the control command is accepted and the content data is reproduced.

9. The reproducing apparatus according to claim 6, wherein

The reproduction state information backed up in the second storage means 1s
discarded after the restoration in the case where the restoration is performed along with
the state transition based on an instruction of the reproduction control program to restore

3197890-1 IRN: 736590

17 Feb 2011

2005310796

15

20

25

30

35

147

the reproduction of the content data using the reproduction state information backed up in

the second storage means.

10. The reproducing apparatus according to claim 6, wherein

the reproduction state information backed up in the second stage means is
discarded in the case where based on an instruction of the reproduction control program
to reproduce the content data, the player means transits to the state in which the control

command is accepted and the content data is reproduced.

11. The reproducing apparatus according to claim 6, wherein
information as to whether the reproduction state information backed up in the
second storage means is to be discarded or not is added to the instruction of the

reproduction control program to the player means to stop the reproduction of the contents.

12. A reproducing method for reproducing content data recorded in a recording
medium, comprising:

the reproduction of content data by player means in accordance with a
reproduction control program read from the recording medium having recorded therein
the content data including at least one of a video stream and an audio stream and the
reproduction control program for controlling the reproduction of the content data, is
controlled based on four states of the player means defined by combinations of two states
classified according to whether the content data is reproduced or not and two states
classified according to whether the control command corresponding to a user operation is
accepted or ignored by the player means, wherein when the player means is in the state
where the control command is ignored by the player means then the user operation is
provided through the reproduction control program, and wherein any state transition
among the four states of the player means is caused by the reproduction control program
and is not caused by the control command;
said reproducing method further comprising;:

storing of reproduction state information indicating a state of the content data
during the reproduction by the player means in a first storage means; and

backing up of the reproduction state information stored in the first storage
means,

wherein the reproduction state information stored in the first storage means is

backed up in the second storage means and the reproduction state information backed up

3348894-1 IRN: 736590

02 Feb 2011

2005310796

20

25

30

35

148

in the second storage means is restored to the first storage means along with the state

transition among the four states of the player means.

13. A reproducing program for causing a computer system to execute a reproducing
method for reproducing content data recorded in a recording medium, wherein

the reproducing method is such that the reproduction of content data by player
means in accordance with a reproduction control program read from a recording medium
having recorded therein the content data including at least one of a video stream and an
audio stream and the reproduction control program for controlling the reproduction of the
content data, is controlled based on four states of the player means defined by
combinations of two stat4es classified according to whether the content data is
reproduced or not and two states classified according to whether the control command
corresponding to a user operation is accepted or ignored by the player means, wherein
when the player means is in the state where the control command is ignored by the player
means then the user operation is provided through the reproduction control program, and
wherein any state transition among the four states of the player means is caused by the
reproduction control program and is not caused by the control command,;
said reproducing method further comprising:

storing of reproduction state information indicating a state of the content data
during the reproduction by the player means in a first storage means; and

backing up of the reproduction state information stored in the first storage
means,

wherein the reproduction state information stored in the first storage means is
backed up in the second storage means and the reproduction state information backed up
in the second storage means is restored to the first storage means along with the state

transition among the four states of the player means.

14. A computer-readable recording medium having recorded therein a reproducing
program for causing a computer system to execute a reproducing method for reproducing
content data recorded in a recording medium, wherein

the reproducing method is such that the reproduction of content data by player
means in accordance with a reproduction control program read from a recording medium
having recorded therein the content data including at least one of a video stream and an
audio stream and the reproduction control program for controlling the reproduction of the

content data, is controlled based on four states of the player means defined by

3197890-1 IRN: 736590

t

02 Feb 2011

2005310796

20

25

30

35

149

combinations of two states classified according to whether the content data is reproduced
or not and two states classified according to whether the control command corresponding
to a user operation is accepted or ignored by the player means, wherein when the player
means is in the state where the control command is ignored by the player means then the
user operation is provided through the reproduction control program, and wherein any
state transition among the four states of the player means is caused by the reproduction
control program and is not caused by the control command;
said reproducing method further comprising:

storing of reproduction state information indicating a state of the content data
during the reproduction by the player means in a first storage means; and

backing up of the reproduction state information stored in the first storage
means,

wherein the reproduction state information stored in the first storage means is
backed up in the second storage means and the reproduction state information backed up
in the second storage means is restored to the first storage means along with the state

transition among the four states of the player means.

15. A computer-readable recording medium having recorded therein content data
including at least one of a video stream and an audio stream and a reproduction control
program for causing player means to control the reproduction of the content data, wherein

the reproduction control program is executed in such a manner that the player
means for controlling the reproduction of the content data is instructed to control the
reproduction of the content based on four state defined by combinations of two states
classified according to whether the content data is reproduced or not and two states
classified according to whether the control command corresponding to a user operation is
accepted or ignored by the player means, wherein when the player means is in the state
where the control command is ignored by the player means then the user operation is
provided through the reproduction control program, and wherein any state transition
among the four states of the player means is caused by the reproduction control program
and is not caused by the control command,
said reproducing control program further comprising:

a program for storing of reproduction state information indicating a state of the
content data during the reproduction by the player means in a first storage means; and

a program for backing up of the reproduction state information, stored in the first

storage means, in a second storage means,

3197890-1 IRN: 736590

02 Feb 2011

2005310796

20

25

30

150

wherein the reproduction state information stored in the first storage means is
backed up in the second storage means and the reproduction state information backed up
in the second storage means is restored to the first storage means along with the state

transition among the four states of the player means.

16. The computer-readable recording means according to claim 15, wherein
the reproduction control program causes the player means to generate the state

transition among the four states.

17. The computer-readable recording medium according to claim 15, wherein

the reproduction control program is executed in such a manner that information
as to whether reproduction state information backed up in second storage means is to be
discarded or not is added to the content reproduction stop instruction given to the player
means in which the state transition among the four states of the player means is
accompanied by the backup operation in which the reproduction state information
indicating the state of the currently reproduced content data and stored in first storage
means is backed up in the second storage means and the restoring operation in which the
reproduction state information backed up in the second storage means is restored into the

first storage means.

18. A data structure comprising content data including at least one of a video stream
and an audio stream and a reproduction control program for causing player means to
control the reproduction of the content data, wherein

the reproduction control program is executed in such a manner that the
reproduction of the content is controlled by giving a reproduction control instruction to
the player means for controlling the reproduction of the content data based on four states
defined by combinations of two states classified according to whether the content data is
reproduced or not and two states classified according to whether the control command
corresponding to a user operation is accepted or ignored by the player means, wherein
when the player means is in the state where the control command is ignored by the player
means then the user operation is provided through the reproduction control program, and
wherein any state transition among the four states of the player means is caused by the
reproduction control program and is not caused by the control command;

said reproducing control program further comprising:

3197890-1 IRN: 736590

02 Feb 2011

2005310796

20

25

30

151

a program for storing reproduction state information indicating a state of the
content data during the reproduction by the player reans in a first storage means; and

a program for backing up the reproduction state information, stored in the first
storage means, in a second storage means,

wherein the reproduction state information stored in the first storage means is
backed up in the second storage means and the reproduction state information backed up
in the second storage means is restored to the first storage means along with the state

transition among the four states of the player means.

19. A reproducing apparatus for reproducing content data recorded in a recording
medium comprising:

a read unit for reading data from a recording medium having recorded therein
content data including at least one of a video stream and an audio stream and reproduction
control program for controlling the reproduction of the content data;

a player unit for playing the content data in accordance with the reproduction
control program; and

a control command output unit for giving a control command corresponding to a
user operation to the player unit,

wherein the player unit controls the reproduction of the content data based on
four states defined by combinations of two states classified according to whether the
content data is reproduced or not and two states classified according to whether the
control command from the control command output unit is accepted or ignored by the
player means, wherein when the player means is in the state where the control command
is ignored by the player means then the user operation is provided through the
reproduction control program, and wherein any state transition among the four states of
the player means is caused by the reproduction control program and is not caused by the
control command,;
said reproducing apparatus further comprising:

first storage means for storing reproduction state information indicating a state of
the content data during the reproduction by the player means; and

second storage means for backing up the reproduction state information stored in
the first storage means,

wherein the reproduction state informaticn stored in the first storage means is

backed up in the second storage means and the reproduction state information backed up

3197890-1 IRN: 736590

¢

02 Feb 2011

2005310796

152

in the second storage means is restored to the first storage means along with the state

transition among the four states of the player means.

DATED this Second Day of February, 2011
5 Sony Corporation
And
Sony Computer Entertainment Inc.
Patent Attorneys for the Applicant

SPRUSON & FERGUSON

3197890-1 IRN: 7365%0

Fig. 1

1/57

CCdazzzz.RCO
A RESOURCE L RESOURCE -
SCRIPT SOUND DATA
SCRIPT LAYER SCREEN DESIGN BITMAP DATA
‘ PLAYL[ST.DAT:.""".,,. ------------------- PLAY LIST =, e PLAY LIST~., = PLAY LIST - A
L L
N pLay = | | PLAY PLAY ||
. | ITEM PLAYITEM |1 PLAYITEM | ITEM ITEM | !
LAYER | | RN i
7 / 7 /
ACCESS POINT
TIME
CLIP LAYER [y y vy 1y
; i ¥ CLIP H
{| CLIPINFORMATION | INFORMATION | i [INFORMATION
A \ diid])
svre | : g
POSITION +y r vy iy
E 3 CLIP ¥ cLIP
(| CUPAVSTREAM 1t Av STREAM |ii| AV STREAM
e CLIP «-memmmenenn e CLIP------- RN CLIP------
xxxxx.CLP
xxxxx.P

Fig.

2

302 ™

SCRIPT

OBJECT,
EVENT HANDLER

300 EVENT P\/31 2
N

313 ’\i METHOD

320 /

MOVIE PLAYER

PLAY LIST

(DATA BASE)
CLIP INFORMATION

PLAYBACK
MODULE

)

i \ EVENTT [IMETHOD
: CONTROL | 311 554 31
' COMMAND 314 5

NATIVE IMPLEMENTATION
PLATFORM

CONTROLLER
OBJECT

~301

3

310’\1USERINPUT 330

2/57

323

323A\\\\

Fig. 3

‘ SET PLAYER } SET

READ
STREAM

DISK
F/

LOAD
DATABASE

L -
i

STATE TRANSITION OF DECODER ENGINE

[

b

- PLAY LIST,

PLAY ITEM, MARK

CLIP INFORMATION, —4
SEQUENCE INFORMATION,

CPI

323B
321
300 \
MOVIE PLAYER
N PLAYBACK MODULE ——L
324
PROPERTY L — -
READ-ONLY [PLAYER RESUME
= PARAMETER | STATUS INFORMATION
4
UPDATE
]
DECODER ENGINE
322

3/57

_ '@319313S SI LS AV1d ON
_ "@30NA0Yd3Y LON SI LSIT AV1d HOIHM NI 3LV1S SILVOIANI

dOl1S

‘3SNVd ANY

0334 3S¥3A3Y ANV 0334 1S4 SY HONS NOILONAOHd3Y G33dS-318VIHVA
"31°SISNLYLS SNOIMVA SIANTONI ATTVHINID ‘NOLLONAONdIY

TYINHON OL NOILIQQY NI 'ONY SNLVLS OLNI @3QIAIQENS SI 3LY1S AVd
'd30NQ0¥d3Y ANV 0310373S SI LS AV1d 3HL HOIHM NI 31VLS S3LVDIANI

AVld

NOILdIYOS3a

31vl1s

p "bi4

4/57

Fig. 5

MOVIE PLAYER OBJECT
EVENT HANDLER

EVENT A OCCURRENCE > onEventA()
EVENT B OCCURRENCE = onEventB()
EVENT C OCCURRENCE > onEventC()

5/57

W31l AVd ~

h v__ms_ucgﬂ {ms_gwuamg

ﬁ{as_gmuachu

A

NOILONAOYd3Y 40 ¥3AQHO0 <€

v

puzisiAeld IN3A3

v

191dey) |NJA3

v
e\ IN3A3

9 ‘614

® IS AVd

v

493deyd IN3IA3

IN3AT

6/57

AV1dSIQ 371118nS 40 440/NO dejq4apngns

41 ONOW ¥NA ANV NOLLONA0™dIY 0IdNY 40 440/NO 40 NOILYNDIS3A 3ejjoipne
0 SI AV3H LSI'T AVld 3HL 1VHL ONINNSSY JNILL aw | 3srAed

WV3YLS FTL119NS d30NA0HdIY ATLNIHIND 40 Y3IGWNNN J9quINNaiiRgns

WY341S OIaNV d30Naodd3d ATLINIHAND 40 Y3IGWNN

Jaquinpolpne

WY3H1S 03dIA d30NA0HdIY ATLN3HYND 40 HIGWNN

19QWINNOIPIA

d31dVHO d30NA0Y¥d3Y ATLNIHHND 40 HIGANNN

JaquinNJaideyo

1SIT AVd d30NAd0dd3y ATLN3IHYND 40 Y38WNN

JaquinN3sinAe|d

NOILdIYOS3a

JANVN

43AV1d O3dIA AWN NI 13S 311119NS 40 3000 FOVNONV

sponadendue)spqns

\

d3AV1d O3AdIA dWN NI L3S OIaNY 40 3400 3DVNONV

aponsgdenduejolipne

d3AV1d O3AIA QNN NI 13S AV1dSId NNIW 30 3000 FOVNONY]

apopedensue|

v

H3IAV1d O3dIA NN
A8 030NA0Hd3IY 38 NVO LVHL ST3INNVHO 0lany 40 43GWNN

Ayjiqedegjeuueygolpne

1dI40S O3AIA AWN 40 NOISH3A

uotsaaA3duos

NOILLdIHOS3a

JWVN

SNLV1S
d3AvVld

g/ ‘b4

d313JWVvHvd

AINO-AV3Y <N .mwhs

1/57

3ZIS AV1dS1a O3AIA 3HINDOV

(5215308

3ZIS AV1dSIa O3dIA 13S ()ezisyes

NOLLISOd AV1dSIA O3AIA 3HINOIOV ()sodiez

NOILISOd AV1dSId O3AIA 13S ()sodies

NOILVIWHOJNI JWNS3Y ¥VY310 ANV NOLLONAOYd3Y dOLS (Fesad

NOILVINHOANI JWNS3Y 40 SLN3LNOD IDNVHO

()ojulswnsayaidueyo

d3AVd IAOW NI 3SNVd HO dOLS ‘NOILONAOHd3Y SY HONS 3LVLS IINDIY ()smeistahe|dyes
Wv34LS 3711L8aNS ANV OIaNY ‘03dIA IDONVHO (\weangasueyod

JONVAQY IWVH4-A9-IAVHS ()dergAeld

NOILONAOYd3Y dOLS ATIHVHOdWIL ()esned

NOILONAOYd3Y dOLS ()do3s

NOILVYIWHOINI IWNS3Y ONISN NOILONAOYdIY LHVLS ()ewnsaJ

Y31dVHO DNILYNDIS3A A8 30NA0Hd3Y (Me3deypAherd

30NQo¥day (Aeid

NOILdIMOS3a JNVN

g 'b14

8/57

Fig.

9

KEY NAME DESCRIPTION
VK_PLAY REPRODUCE
VK_STOP STOP
VK_PAUSE PAUSE

VK_FAST_FORWARD

FAST FORWARD FEED

VK_FAST_REVERSE

FAST REVERSE FEED

VK_SLOW_FORWARD

SLOW (FORWARD)

VK_SLOW_REVERSE

SLOW (REVERSE)

FRAME-BY-FRAME FEED

VK_STEP_FORWARD (FORWARD)
VK_STEP_REVERSE FRAME(",EEY\;ESQQ")E FEED
VK_NEXT NEXT

VK_PREVIOUS PREVIOUS

VK_ANGLE SWITCH ANGLE
VK_SUBTITLE SWITCH SUBTITLE
VK_AUDIO SWITCH AUDIO

VK_VIDEO_ASPECT

SWITCH VIDEO ASPECT RATIO

9/57

Fig.

10

KEY NAME DESCRIPTION
VK_UP uP
VK_DOWN DOWN
VK_RIGHT RIGHT
VK_LEFT LEFT
VK_UP_RIGHT RIGHT UP
VK_UP_LEFT LEFT UP
VK_DOWN_RIGHT RIGHT DOWN
VK_DOWN_LEFT LEFT DOWN
VK_MENU MENU
VK_ENTER ENTER
VK_RETURN RETURN

VK_COLORED_KEY_1

COLORED FUNCTION KEY 1

VK_COLORED_KEY_2

COLORED FUNCTION KEY 2

VK_COLORED_KEY_3

COLORED FUNCTION KEY 3

VK_COLORED_KEY 4

COLORED FUNCTION KEY 4

VK_COLORED _KEY_5

COLORED FUNCTION KEY §

VK_COLORED_KEY_6

COLORED FUNCTION KEY 6

10/57

“4aquinnaeideyd 40 NOLLYNDISIA LNOHLIM

QOHL3W ()Ma3deypAed Y04 QISN “YILdVHO GIONAOHCIY ATLNIYYND 40 QVaH

WOY¥4 NOILONAOUdIY LHVLS 'NOILVNDISIA 43LdVHO 40 JONISAY IHL NI "LSM AV1d
(Q33NA0YdIY ATLINTHHND A9 GILVYNOISIA YILdVHO WOYHSH NOILONAOYdIY LHVLS

(48quinN4e3deyolssrdeynAeidon

‘NOLLVH3dO 43SN A8 Q3LVNDIS3A 38 LONNVO
H38WNN LS AV1d “aqunnistiAeid 40 NOLLYNDISIA LNOHLIM AOHL3W ()Aeid
40 NOLLNO3X3 NOdN @3SN "QITVYANI SI NOILVH3dO 43SN IHL ‘NOILYWHOANI
JNNS3Y 40 JON3SAV JHL NI ‘NOILYIWHOANI INNSIY NO d3Sva QINIWYIL3Q
SINOILISOd ONILYVLS 'G33dS TVWHON LY NOILONAOHdIY QHVYMHOS LHV1S

()Aejd’on

‘Q31VNDIS3A SI 1S1T AV1d A30NA0Hd3Y ATLINIHIND

340 3ONVY 3HL NI G30NTONI IWIL 'FH04343HL "3 LVYNDIS3A 38 NYD H3IGWNN
1SITAVId ON 0 OL L3S SI 1SN AVld 30 QV3H NIHM IWIL STLVOIANI switisrAeld
‘JNIL A3LVNDIS3A WOHS 1SIT AV1d @30NA0"d3Y ATLN3HYND 40 30NA0HdIY

(swi]3sinAe|d)yoseagawiyon

NOILdIYOS3a

NOILVHY3dO ¥3sn Ol 3na
NOILONYLSNI TO0H41INOD

L1 bld |
gi) ‘b4
viL bi4

o Vi bid

O

11/57

‘H3AV1d O3AIA AN 40 ONLLNNOW NO SAN3Id3Q paads
‘Peads Ag @3LVNDIS3A d33dS LV A13SHIAIY 30NA0HdIY

(paads)ueogpiemyoeqon

'd3AVTd O3AIA AWN 40 DNILNNOW NO SAGN3d3Q peads
‘Peads A9 Q3LVNDISAA A33dS LV QYYMHE0L 30NA0HdIY

(Peads)ueogpiemioy on

. 'd31NO3X3 SI puistiAe|duo

Y3ITANVH LN3AT ‘LdIHOS NI ‘Pu3istiAeld | NIAT JLVHINID ANV NOILLONAOHC3Y
LN3HYND ANIASNS OL H3AVId 3IAOW DNILONYISNI HO4 NOILVYHIdO ¥3sn

‘ "LSI AV1d 4O AN3 3HL OL dNr

()pugzoj dwnlon

431dVHO 1LX3N 40 Av3H WOY4 NOILONQOHd3Y LYVLS

(493deynixasNAe|d on

H31dVHO SNOIAIHd 40 AV3IH WOY4 NOILONAOYdIY 1YV1S

(491deypasidAeld on

gLl b4

12/57

a30NA0dd3y 39 OL 311L1LENS FONVHO

(49quinNwWeas3ga|3qns)
adueynefiiagns on

‘3ejjoipne JHNVHO
‘'ONOW VNA 40 JALL 3HL 1V 1INNVHO INO ANV STINNVHO 0IaNY 40 YIGWNN HOLIMS

(3njeajjauueypotpnyadueys on

d30NAao0dd3d 39 Ol OIaNV IDNVHO

(4equinNwes.ygolpne)
8dueynoipne on

"a3ueygojdue | NIAI 40 LdI¥OS SIAHLLON HIAVId FIAOW ‘HIAVId JINOW
OL NOILVHIdO d3SN 3HL 40 NOISSINSNVYYL NOdN "ITONV AV1dSIA FONVHO

()@3ueypajdueon

Zej4apngns JHNVHO
WV3Y1S 311119NS 40 440/NO 3LVYNDIS3IA

(ues|ooq)ps|qeula|3Ignglas on

3e|joipne JHNVHO
WVY341S 0I1dNV 40 440/NO JLVYNDIS3A

(uesjooq)ps|qeugolpny3as on

dOlS AHVHOdWIL 130NVO (M30O?@snedon
d3SN A8 JdOLS AYVHOdW3Il ()upesnedon
JONVAQY JAVHI-A8-3WVYH4 3SHIATY 30NA0Hd3Y (Piemxoeq)daigAeldon
JONVAQY JWVH4-A8-INVH4 QY4VYMEO4 30NA0Yd3 (P4emuoy)daigAe|d on

J1L Biq

13/57

NOILNO3IXI LdI¥OS 40 LHVLS ONILVYNDISIA SINIAT

Ae|danunuoo ‘Agjqoine

@3sSNO04 SIN33YOS NO G3IAVIGSIA 13IDAIM NOLLNS FTHM GILVHINID INIAT

|9oues ‘ysnd
‘INQSN004 ‘u[sno0y
Y3uysj'umop'dn

G3HOLIMS SI 3114 30HNO0S3Y NIHM H3IAV1 LdIHOS OL GIIJILON LNIAT

padueyneoinosau
‘WH04.LV1d NOILVIN3WITdWI SAILVN A8 Q3AN3 SI NOLLYOIddV
O3dIA AWN N3HM WHO41V1d NOLLVLNIWITdNI SAILYN WOY4 A3NSSI LN3A3 Hxo
NN3N Ol dWNr nusw
NOILLdIYOS3a 1N3IAT

2l ‘b4

14/57

NOILYH3dO H3SN 40 3DNVHO

J1L1LENS 40 NOLLYNDISIA NOdN Q3LNO3X3 ()eBueynspngnguo s3ueypenngns
NOILVHIdO H3SN 40 IONVHO

0laNY 40 NOILYNDISIA NOdN d3LNd3xX3 (eBueygoipnyuo eSueynoipne
NOILYH3dO H3SN 40 IONVHO

319NV 40 NOLLYNDISIA NOdN d3LNO3X3 ()98ueynejBuyUo eSueyns|sue

WHVIN ¥3LdVHO 40 NOLLO3L3A NOdN A3LNO3X3 (Me1deyguo 103deyo

1S AV1d 40 GN3 3HL LV 3LN03X3 (OpuZIsriAe|guo puFisiAed

WYV LN3AT 40 NOILO3LIA NOdN A3LN03X3 ()Hejyuo spiew

NOLLdINOS3a AWVN YI1ONVH JWVN INIAZ

1N3AT ONIANOJSIHHOD

gl "bi14

15/57

()Aejdanunuogpuo

Ae|4anuijuod

1dI¥OS 40 NOLLNOIXT LHVLS ‘()AelgoInyuo ‘Ae|goine
d38140S30 SI DNIHOLIMS 30HNOSIY ¥IL4VY SST00Ud | ()peBueynesinosayuo paBueyad.nosal
WHO041V1d NOLLY INIWI 1dWI
JALLYN A8 NOLLYOIddV O3IA AWN 40 ON3 IHL 1V
WHO4LV1d NOLLYANIWI1dWI ALLYN WOY4 Q3NSSI INIAT (Hx3uo uxo
NNIW 01 a3dwne Onuspuo —
SIN3LNOg | VN 8I1ONVH IN3A3 IWVYN INIAT

ONIONOdS3dH0D

ARIE

16/57

Fig. 15

S10

S11

S12

NO \813

YES

+

S15

S16

S17

onAutoPlay

PLAY LIST

FBI WARNING

(ALARM SCREEN)

Fig. 16

402

TOP MENU

onPlayListEnd onMenu onPlayListEnd
——-//_—
400 PLAY LIST 401

ORIGINAL STORY

onMark -~
_—/—— 1Y
\

DISPLAY MESSAGE ON SCREEN -~ |
DURING VIDEO REPRODUCTION

18/57

Fig. 17

Controller.onAutoPlay = function(){
//Play PlayList # 1 FBI warning.
movieplayer.play(1);

J

movieplayer.onPlayListEnd = function(event_info)(
if(event_info.playListNumber == 1){
// play feature film after FBI warning ends.
movieplayer.play(2);
Jelsel
// transit to top menu after feature film ends.
resource.pagetable[“top_menu”].open();

}

Controller.onMenu = function(){
// transfer to top menu with display menu user

operation. . .
resource.pagetable[top_ menu”].open();
]

movieplayer.onMark = function(event_info){
//display dialog when event mark encountered.
if(event_info.mark_data == 1)(
resource.pagetable[”dialog window_1"].open();

}

19/57

ROOT

Fig. 18

TITLEID.DAT
VIDEO
—PLAYLIST.DAT
RESOURCE JA000000.RCO

CLIP 00001.CLP
00002.CLP
00003.CLP

STREAM 00001.PS

00002.PS

—— 00003.PS

20/57

Fig. 19

SYNTAX NIMBER | MNEMONIC
“PLAYLIST.DAT” {
name_length 8 uimsbf
name_string 8%255 bslbf
number_of PlayLists 16 uimsbf
for(i=0; i<number_of PlayLists; i++){
PlayList(){ // A PlayList()
PlayList_data_length 32 uimsbf
// ATTRIBUTE INFORMATION
reserved_for_ word_alignment 15 bsibf
capture_enable_flag PlayList 1 bslbf
PlayList_name_length 8 uimsbf
PlayList_name_string 8%255 bslbf
//
number_of_Playltems 16 uimsbf

for (i=0; i<number_of Playltems; i++) {

Playltem()

}

PlayListMark()

21/57

Fig. 20

NUMBER

SYNTAX OF BITS MNEMONIC
Playltem() {
length 16 uimsbf
Clip_Information_file_name_length 16 uimsbf
Clip_Information_file_name 8xClip_Infor bslbf
mation_file_
name_length
reserved for word_alignment 15 bslbf
IN_time 33 uimsbf
reserved_for_word_alignment 15 bsibf
OUT_time 33 uimsbf

22/51

Fig. 21

NUMBER

SYNTAX OF BITS MNEMONIC
PlayListMark() {
length 32 uimsbf
number_of PlayList_marks 16 uimsbf
for(i=0: i < number_of_PlayList_marks; i++) {
Mark(}{
mark_type 8 uimsbf
mark_name_length 8 uimsbf
ref_to_Playltem_id 16 uimsbf
reserved_for_word_alignment 15 bslbf
mark_time_stamp 33 uimsbf
entry_ES_stream_id 8 uimsbf
entry ES_private_stream_id 8 uimsbf
mark_data 32 bslbf
mark_name_string 8%24 bslbf

23/57

Fig. 22

mark_type STREAM CODING
0 RESERVE

1 CHAPTER MARK

2 EVENT MARK

3-255 RESERVE

24/57

Fig. 23

to
PLAY LIST—» PLAY LIST
PLAY ITEM — PLAY ITEM #0 PLAY ITEM #1 PLAY ITEM #2
CLIP A CLIP B CLIPC
Yy
cLPAv. _ PROGRAM STREAM A | PROGRAM STREAM B | PROGRAM STREAM C
STREAM FILE

*

mark_time_stamp

25/57

Fig. 24

SYNTAX NMS=S | MNEMONIC
XXXXX.CLP{
reserved_for_word_alignment 15 bslbf
presentation_start_time 33 uimsbf
reserved_for_word_alignment 15 bsibf
presentation_end_time 33 uimsbf
reserved_for_word_alignment 7 bslbf
capture_enable_flag Clip 1 bslbf
number_of_streams 8 uimsbf
for (i = 0;i < number_of_streams;i++) {
Streaminfo()
length 16 uimsbf
stream_id 8 uimsbf
private_stream_id 8 uimsbf
StaticInfo()
reserved_for_word_alignment 8 bslbf
number_of Dynamiclnfo 8 uimsbf
for (j = 0j < number_of_ Dynamiclnfo;j++) {
reserved_for_word_alignment 15 bslbf
pts_change_point 33 uimsbf
DynamicInfo()
}
}//end of oneStreaminfo
}
EP_map()
)

26/57

Fig. 25

KIND OF ELEMENTARY STREAM stream_id private_stream_id
VIDEO OxEO0-OxEF (NONE)
ATRAC AUDIO 0xBD 0x00-0x0F
LPCM AUDIO 0xBD 0x10-0x1F
SUBTITLE 0xBD 0x80-0x9F

21/57

Fig. 26

SYNTAX OF Bire | MNEMONIC
StaticInfo() {

if (stream == VIDEO) {
reserved_for_word_alignment 16 bslbf
picture_size 4 uimsbf
frame_rate 4 uimsbf
reserved_for_word_alignment 7 bslbf
cc_flag 1 bslbf

} else if (stream == AUDIO) {
audio_language_code 16 bslbf
channel_configuration 8 uimsbf
reserved_for_word_alignment 3 bslbf
ife_existence 1 bslbf
sampling frequency 4 uimsbf

} else if (stream == SUBTITLE) {
subtitle_language_code 16 bslbf
reserved_for_word_alignment 15 bsibf
configurable_flag 1 uimsbf

28/57

Fig. 27

SYNTAX NOMEES | MNEMONIC
Dynamiclnfo(ij) {
reserved_for_word_alignment 8 bsibf
if (stream == VIDEO){
reserved_for_word_alignment 4 bslbf
display_aspect_ratio 4 uimsbf
} else if (stream == AUDIO) {
reserved_for_word_alignment 4 bslbf
channel_assignment 4 uimsbf
} else if (stream == SUBTITLE) {
reserved_for_word_alignment 8 bslbf

29/57

Fig. 28

SYNTAX NMEES | MNEMONIC
EP_map(){
reserved_for_word_alignment 8 bslbf
number_of stream_id_entries 8 uimsbf
for (k=0; k<number_of_stream_id_entries; k++) |
stream_id 8 bslbf
private_stream_id 8 bslbf
number_of EP_entries 32 uimsbf
for (i=0; iK\number_of EP _entries; i++) {
reserved_for word_align 15 bslbf
PTS_EP_start 33 uimsbf
RPN_EP_start 32 uimsbf

SNLVYVddV ONIONAOHd3Y MSIa

LNdNI 43TT0HLNOD 31LONW3Y
LNdANI A3A

h

IVNINYEL 30VAYILNI ¥430003d HONGN 3OV44ILNI
1Nd1No o1any 1NdLNO o1any o1anv 1NdNI
(A 6L— & N:K [} e1i— ¥ SLL— i
Y) \ i
SN
| LL —«.\ 4
TVNINYIL I
1NdLNO O3dIA J0VA4ILNI ¥300953a o 30V4YILNI
oF 1NdLNO 03AIA 03aIA 3ARQ
gLL— gL zL1— v
IAINA NSIa
zoL—
_ LO _\A H
SoT ysIa

31/57

Fig. 30
Fig. 30A | Fig. 30B

— 201
I OPERATION SYSTEM I |
|
FILE SCRIPT CONTROL MODULE >
, 212 |
oy
INPUT PLAY CONTROL MODULE |
INTERFACE T
i+ Player i :
| Status i DD .
FILE { Backup_Movie |
E _Player_Status E |
|
FILE READ CONTENT DATA SUPPLY MODULE |
REQUEST
l l 215
FILE BUFFER CONTROL MODULE

BUFFER

215A

/—250

NONVOLATILE MEMORY CONTROL MODULE

Fig. 30B

/—210

I VIDEO CONTENT
REPRODUCING UNIT

|
214 \
| DECODE
CONTROL
MODULE
|
21 6\
| VIDEO 210
DECODER
CONTROL Y Y~ /"241
, MODULE
GRAPHIC VIDEO VIDEO
PROCESSING OUTPUT > DATA
MODULE MODULE
' SUBTITLE
DECODER
CONTROL
MODULE
242
~
AUDIO
AUDIO DECODER AUDIO
» OUTPUT —>
| CONTROL MODULE MODULE DATA

33/57

[P .. |STOP STATE IPLAY STATEI
¢ INITIALIZE

I MENU MODE I C

(Menu, Stop} {Menu, Play)

{Normal, Stop)

INORMAL MODEI

(Normal, Play]}

34/51

()swnsau ‘()Ae|d ()Aeld ()do3s ()dois | AVd IVWHON
()ewnsad ‘()Aeid | ()awnsau ‘()Ae|d ()do3s ()dois | AV1d NN3W
()ewnsau ‘()Ae|d ()Aeld | ()swnsau ‘()doys ()dois | 4Ol1S IAVWHON
()swnsau ‘()Ae|d (OAeld ()do3s | ()swnsau ‘()do3s dols AN3W
AVd AVd d01S dOl1s 31VLS LN3HYNO
TVINYON NN3IN TVINHON NN3IW

NOLLNO3IX3 QOHL3IW Y314V 3LVIS

2¢ b4

35/57

[zd | [1na |
TSR [¥
{Ae|d ‘JewuopN] ;1) r {Ae|d ‘{ewoN])
gaove - vore
_\\ (271d ‘1-"1-)Aeid
eLe-’
[z1d | [1d |
[1x] J_l ﬁ [esned]
{Ae|d ‘lewtoN]) ;1 [} ﬁ {fe|d ‘lew.oN}
gaove -~/ - vove
(271d ‘[lewdoN‘ | x)Ae|d
eLe~
d30NA0Yd3Y ATINIHYND LSO AVId —1—> 21d | _ - _
[3LVLS AV1d NI 033dS NOLLONGO¥3Y]). [[
{43AVd FINOW 40 Frvis)—CHeld 1PwoN] |7 g] {doss fjewion)
gove - vove

([4equinN3sijAe|d]‘spopnusw ‘spopyasned)Ae|d _.QAN._nh ‘ewioN | X)Aeyd

1dI40S WOY¥4 AOHL3IN

eLe-

o¢ce b4

ge¢ 'bi4

vee ‘b1

36/57

_

2d | {

ﬁ (esnea]) (

[esned]
{Aeld ‘|lewoN} ; [} ﬁ {Aeld ‘jew.opN]

aove -

_.n\ (27d ‘1-)Aeid

gre -~

|

¢d

~ vove

_
[esned] 4~l ﬁ
{Aeld ‘|lew.oN]) ;] ﬁ {Aeld ‘|ew.oN])

gove

_\R\AN._Q ‘|-‘asned)Ae|d

ere

- vove

3Je¢ b4

ace ‘b4

37/57

NOILONAOYHd3Y
40 43040

W31l AV1d

L~

// —® 1SI1 AVd

™~

R \\\\%CS\\\\\\\&

pe b1

38/57

Fig. 35

PLAY LIST
REPRODUCING OPERATION AT START AND END POINTS OF PLAY LIST
METHOD
UPON ARRIVAL AT END OF PLAY LIST, PAUSE AND CONTINUE
FORWARD DISPLAY OF LAST PICTURE OF PLAY LIST. (LAST PICTURE OF
PLAY LIST, EVEN IF FAILING TO CORRESPOND TO JUMP POINT,
IS DISPLAYED DURING HIGH SPEED REPRODUCTION)
REVERSE UPON ARRIVAL AT HEAD OF PLAY LIST, PAUSE.

39/87

Fig. 36

EVENT HANDLER

onPlayListEnd(){

play(PL2)
}

A\/—

REPRODUCTION PATH

EVENT playListEndE _/|

PLAY LIST 1

PLAY LIST 2

EVENT playlListEnd OCCURRENCE

40/57

Fig. 37

[PROCESSING IN SCRIPT LAYER] [OPERATION OF MOVIE PLAYER]
START START
S40
I EVENT
I_ playListEnd '
S30 S41
S42 I
METHOD st
| s31 | stop() N
Y
S43
\
METHOD pl
532 | D play() .
Y S44
S33
END END

41/57

Fig. 38

/f5OC)
SCRIPT I
getPlayerStatus()| getResumelnfo() getUserData() setUserData()
501 | 5083
| PLAYER STATUS I USER DATA I
oo
PLAYER STATUS PLAYER STATUS ' '
RESTORATION PROVISIONAL E E
(RESTORE) SAVING (BACKUP) E :
E E MEMORY
LOAD ! : SAVE
RESUME INFORMATION E E
(PLAY STATUS BACKUP) : E
changeResumelnfo(), ! ;
1 ' resume(), : E
LOADE ESAVE stop() OF ARGUMENT : :
' ! resumelnfoClearFlag ' ‘
! JE R e X510
: NONVOLATILE MEMORY]

42/57

Fig. 39

STOP STATE

MENU MODE O

NORMAL MODE

43/57

PLAY STATE

()Aeld ()doys ()doys
- HL1IM dNXOVE HL1IM dNXOVv4g HL1IM dNXOVvY AVld TVIWHON
ANV LISNVYL ANV 1ISNVYH1 ANV 1ISNVY1L
- - - - AVld NAN3IW
- - - - dOl1sS TVWHON
- - - - dOdsS NN3IW
AVld AVd d0l1S dOlS 31VLS INIHHND
TVIWHON NN3IW IVINHON NN3W

NOILNO3X3 AOHL13W H3L4V JLVIS

oy b1

44/57

Fig. 41

STOP STATE | PLAY STATE

MENU MODE O O

NORMAL MODE O __. O

45/57

(Q3INI43Q 1LON)

AVld TVINHON

()awnsal HiIM QYVOSIA NV 3H0LS3Y "LISNVYL

AVld NN3IW

()awnsad HiIM Q4VOSIAQ ANV 3H0LS3Y "LISNVYL

dO41S IVWHON

()awnsa4 H1IM QYYOSIA ANV IHOLSIY ‘LISNVHL

dod1s NN3IW

AVid

AVld

dol1S

dOol1sS

31V1S 1N3¥HNO

TVIWHON

NN3IW

TVINYON

N3N

NOILNO3IX3 AOHLINW H314V 3LVIS

2y "bi4

46/57

(Q3NI43Q 1ON) - - - AVd TVINYON
Aeld H1IM QYVOSIA ANV LISNVYHL - - - AVld NN3IW
Aeld H1IM QYVOSIA ANV LISNVHL - - - dOl1s TVINHON
Aejd HLIM QYVOSIA ANV LISNVH1 - - - dols NN3W

AVld

AVld

= [ONRY

dOl1S

TVNHON

NN3W

TVINHON

NN3IW

NOILNO3IX3 AOHLIW Y314V JLVIS

31V1S IN3HHNO

gy "b14

47/57

enJ| —3Je|44ea|)ojujewnsal

ana) —=3Je|{4ea|Dojujawnsau

- - 41 Q4vosIq 41 ayvosIa AVid TYIWHON
ani)| —3e|4Jes|nojujpwnsal anu4j —3e|4Jes|pojujawinsa
41 g4voSsIa 41 a¥vOSIa AVd ANIW
anJ| =3e|44es|Hojujewnsal an.| —38ej{4ea|Hoju[aWINsa
- 41 a4voSIqQ 41 a4voSIa dOls TVIWHON
ana| —3e|4Jea|nojulawinsal an4| =3e|44ea]Doju[awnsau
41 ayvosia 41 a4voSsIda dols ANIW
AVid AVd dols dols 31V1S INIHNND
IVWHON | NNawW IVWHON ANIW

NOILNO3X3 AOHL3IW H3ILdV ALVIS

pp b1

48/517

Fig. 45

[PROCESS IN SCRIPT LAYER] [OPERATION OF MOVIE PLAYER]
(START) START
S60

{’ EVENT PlayListEnd

S50 4

No

™

Yes

| S52 I METHOD stop()
a -

Y

S53 I METHOD stop()

S54 I S63

S64

(END) (END ’ (END ’ END

49/57

Fig. 46

STATE OF PLAYER STATUS

DESCRIPTION

GENERATE

AT THE TIME OF GENERATION OF MOVIE PLAYER, PLAYER STATUS IS
ALSO GENERATED. AT TIME OF GENERATION, PLAYER STATUS IS
INITIALIZED, AND PROPERTY INDICATING STATE OF MOVIE PLAYER

INDICATES STOP STATE, AND OTHER PROPERTIES ARE NOT DEFINITE.

VALUE CHANGE

(1) CONTENTS OF PLAYER STATUS CHANGE WITH
REPRODUCTION STATE
(2) WHEN CONTENTS OF RESUME INFORMATION ARE RESTORED

READ VALUE BY METHOD

CAN BE READ BY METHOD getPlayerStatus()

EXTINGUISHED

WHEN MOVIE PLAYER ENDS OR IS EXTINGUISHED

50/57

'Q4VvOSIA 340438 Q340LS3H 39 LON AVIN HO AV NOLLYWHOSNI 3WNS3Y 3HL
'd30QYVOSIA 3dV NOILYWYOANI IWNS3Y
40 SLN3LNOD 3HL 'JAOW TVIWHON NI Q3L1HVLS SI NOILONAOYdIY LSIT AV1d NIHM

(1) @4vosIa

‘(oguppwnsayasueyd oG AIDNVHO 38 NVO 3e|42)31qns gNV 4equnNajiIgns

‘3e|jolpne ‘JaquINNOIPNE "JaquINNO3pIA SV HONS WV3YLS OL 43iv13y SH3ILINVHEVYd FONVHO
‘NOILLYWHOANI SINNS3IY NI dN a3axdOoVva SISNIVLS ¥3IAV1d w:&ibﬁﬁ”%%&mv
‘J1V1S H3HIONVY Ol *>m_n_._mctoz_ WOY4 SLISNVYH1 H3AVId 3IAOW NIHM JLINM
‘d3avol SEviva ¥3sN 3NIL JWYS JHL 1V
‘HIAVId JINOW ONIZITVILINI NIHM AHOW3INW JTLLYTOANON WOH4 NOLLYWHOANI
JWNS3Y SAVOT NO3YIHL AILNNOW AHOWIW JILLYTOANON HL1IM H3AV1d O3dIA AWN 2LVY3INIO
‘A304VvOSIQ 34V NOLLYWHOINI JANS3Y JHL 40 SINILINOD JHL
‘NOILVZITVILINI NOdN "NOILYY3IN3D SV IWIL 3WVS IHL 1V QIZINVILINI ANV 'a34n9o3s Si
NOILLVIWHOINI 3IWNS3Y 40 Y3YV AHOW3IW ‘A3LVY3INID SI L23rg90 4IAVId JIAOW NIHM
NOILLYWHOANI
NOLLdIMOS3d INNSTY 40 ILVLS
g.¢ 614
v.y ‘b4
Ly b4

v.v bi4

51/57

'V1VQ 438N ONIAVS JNIL 3WVS 3HL LV ITIHM H3IAVTd JIAOW 40 (NOILONILX3 NOdN)
N3 1V AJOW3W 3T1LLYTOANON NI NOILYWHOSNI JWNS3Y SIAVS NOIHIHL

QG3LNNOW AHOW3W ITLYIOANON HLIM HIAVId O3AIA GWN IHL AIHSINDNILX3
OSTV SI NOLLYWHOSNI 3WNS3Y "H3AVId JIAOW 40 (NOLLONILXI NOdN) aN3 1V

Q3HSINONILX3

‘G31VNIANIMOSIA 39 NVO

NOILVIWHOANI JWNS3H 40 3ON3SAY YO 3ONISIU 'IHO43HIHL ANV
‘d340.1S3Y Sl 0=smeisAe|d ‘Qy3y SI NOLLYWHOANI IWNSIY A3QYVYOSIA IONO
‘"LdIMOS WOYHA ()osupwinsayiad QOHLIW A9 AV 39 NVD 3NTVA

GOH13W A8 INTVA Av3y

‘NOLLVWHOAINI 3WNS3Y 40

SN1V1S
d3AVid 3H01S3Y

'd3QYVOSIA 34V NOILYWHOANI 3WNS3Y 40 SINILNOD JHL
‘anJ | =38e|j4eejgojupewinsas 40 ()dors GOHLIW 40 NOLLNOIXI NOdN

(¢) ayvosia

JON3SIHd JHL NI ()3wnsas QOHLIW 30 NOLLNO3X3 NOdN a340LS3y

g.v ‘b4

52/57

‘A3AVS SI NOLLVIWHOJNI IWNS3Y 'SWIL IWVS IHL LV

‘d3AVd JINOW 40 (NOILONILX3 NOdN) N3 1V AHOW3W 3ILYTOANON NI V.1va

43SN S3IAVS NOFH3HL A3LINNOW AHOW3W FTLLYIOANON DNIAVH H3IAV1d O3AIA AWN
"@3HSINDNLLX3 OSTV SI V.LVA ¥43SN ‘Y3AV1d IIANOW 40 (NOILONILXI NOdN) ANJ LV

Q3HSINONILX3

FLUHEMHIAO A8 NILLIMIMIY 38 NVO SINILNOD
'1dI40S WOY4 V1vad 43sN 40 SINILNOD ¥v310 OL GOHL3W ON

SIN3ILINOO ¥v3I10

‘@3¥0.1S3Y SI 0 HLON3IT 40 LNIWIDNVYYHYY ‘L3S LON SI V1va ¥Y3SN NIHM
‘()e3e@49sN3I83 AOHLIW AS AV3IY 38 NVO

av3y

‘()eIeg4asnmiss QOHLIW A8
V1va Y3SN NI Q713H SI $9 40 HLONIT WNNIXVYIN DNIAVH LNIWIONVYHYY W]
‘(Oe¥e@+esnias QOHLIW 40 NOILNO3IXI NOdN NILLIYM

JLEIM

'‘G3aVvO07 SI NOLLVWHO4NI IWNS3YH

"INIL IWVS IHL LV "YIAVId IIAOW DNIZITVILINI NIHM AHOWIW J1ILVIOANON WOXHA
V1va 43SN SAVOT NO3YIHL A3LNNOW AHOW3IW ITILVIOANON HLIM H3IAV1d O3AIA QNN
(()e3eQ49sN3Id3 AQ Q340LS3Y SI 0 HLONIT 40 LNIWIDNVHYY)

'd34V3TO 38V VLVA Y3SN 40 SINILNOD JHL ‘NOILVZIVILINI NOdN

'NOLLVY3N3D SV 3WIL JWVS 3HL 1V G3ZNVILINI ANV ‘a34Nn03S SI

NOILVIWHOANI JWNS3Y 4O YIYVY AHOWIW ‘A3 LVHINID SI 193190 HIAVId JIAOW NIHM

31VY3IN3IO

NOLLdIYOS3d

viva y3sn 40 3LvVLS

8y 'bi4

53/57

101

112
113
115
116
17
|
\

118
119
201
210
211
212
214
215
216
2117
218
219
241
242
250

300

DESCRIPTION OF REFERENCE NUMERALS
DISK
CPU
MEMORY
INPUT INTERFACE
VIDEO DECODER
AUDIO DECODER
VIDEO OUTPUT INTERFACE
AUDIO OUTPUT INTERFACE
OPERATION SYSTEM
VIDEO CONTENT REPRODUCING UNIT
SCRIPT CONTROL MODULE
PLAYER CONTROL MODULE
DECODE CONTROL MODULE
BUFFER CONTROL MODULE
VIDEO DECODER CONTROL MODULE
AUDIO DECODER CONTROL MODULE
SUBTITLE DECODER CONTROL MODULE
GRAPHICS CONTROL MODULE
VIDEO OUTPUT MODULE
AUDIO OUTPUT MODULE
NONVOLATILE MEMORY CONTROL MODULE

MOVIE PLAYER

54/57

301
302
310
311
312
313
320
321
322
323
3238
324
500
501
502
503
510
S10
Sh
S12
S13
$14

$15

NATIVE IMPLEMENTATION PLATFORM
SCRIPT LAYER

USER INPUT

CONTROL COMMAND

EVENT

METHOD

DATA BASE

PLAYBACK MODULE

DECODER ENGINE

PROPERTY

PLAYER STATUS

RESUME INFORMATION

SCRIPT PROGRAM

PLAYER STATUS AREA

RESUME [NFORMATION AREA

USER DATA AREA

NONVOLATILE MEMORY

USER DEPRESSES "next" KEY DURING REPRODUCTION
"uo_playNextChapter ()" GENERATED
POSITION OF NEXT CHAPTER MARK KNOWN FROM PLAY LIST DATA BASE
NEXT CHAPTER MARK EXISTS?
SUSPEND CURRENT REPRODUCTION

JUMP TO POSITION INDICATED BY NEXT CHAPTER MARK AND START VIDEO

REPRODUCT I ON

55/57

Si6 MARK EVENT GENERATED

SI7 START EXECUTION OF EVENT HANDLER CORRESPONDING TO MARK EVENT
S18 CHAPTER NUMBER KNOWN FROM INFORMATION NOTIFIED WHEN EVENT 1S
GENERATED

S19 DISPLAY MESSAGE INDICATING CHAPTER HEAD

S20 END EXECUTION OF EVENT HANDLER

S30 START EXECUTION OF EVENT HANDLER "onPlayListEnd".

S METHOD "stop()” 1S DESIGNATED BY EVENT HANDLER "onPlayListEnd".
$32 "play(pauseMode, menuMode, PlayListNumber)” DESIGNATED BY EVENT

HANDLER "onPlayListEnd”.

$33
540
$41
542
LIST.
543
(BLACK
544
$50
$51

552

END EXECUTION OF EVENT HANDLER "onPlayListEnd”
PLAY LIST REPRODUCED TO THE END
MOVIE PLAYER TRANSMIT "PlayListEnd” EVENT TO SCRIPT

MOVIE PLAYER TRANSIT TO PAUSE WHILE DISPLAYING LAST PICTURE OF PLAY

MOVIE PLAYER TRANSIT TO STOP STATE. STOP DISPLAY OF LAST PICTURE
SCREEN APPEARS).

MOVIE PLAYER START REPRODUCTION OF PLAY LIST DESIGNATED.

START EXECUTION OF EVENT HANDLER "onPlayListEnd”.

END OF AUTHOR SCENARIO?

ISSUE "stop()” FOR DISCARDING RESUME INFORMATION TO MOVIE PLAYER.

56/57

$53 ISSUE "stop()” FOR NOT DISCARDING RESUME INFORMATION TO MOVIE
PLAYER.

$54 (DEPENDING ON SCRIPT DESCRIPTION, EXECUTE METHOD "end ()" HERE.)
S60 PLAY LIST REPRODUCED TO THE END.

$61 NOTIFY EVENT "PlayListEnd” TO SCRIPT

$62 PAUSE WHILE DISPLAYING LAST PICTURE OF PLAY LIST.

$63 MOVIE PLAYER TRANSIT TO STOP STATE. RESUME INFORMATION 1S CLEARED.
S64 MOVIE PLAYER TRANSIT TO STOP STATE. PLAYER STATUS IS BACKED UP AS

RESUME [NFORMATION.

57/57

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

