
US 20100114924A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0114924 A1

Zeidman et al. (43) Pub. Date: May 6, 2010

(54) SEARCHING THE INTERNET FOR Publication Classification
COMMON ELEMENTS IN A DOCUMENT IN (51) Int. Cl
ORDER TO DETECT PLAGARISM G06F 7/30 (2006.01)

(75) Inventors: Robert Marc Zeidman, Cupertino, CA (US); Timothy Douglas (52) U.S. Cl. 707/759; 707/E17.014
Hoehn, Coupeville, WA (US)

(57) ABSTRACT
Correspondence Address:
Software Analysis and Forensic Engineering
Corporation

A method and system for detecting plagiarism of Software
Source code is disclosed. In one embodiment, a database

15565 Swiss Creek Lane exists of program elements that have previously been found to
Cupertino, CA 95.014 (US) be matching within the source code for two different pro

grams. This embodiment searches the Internet for occur
(73) Assignee: Software Analysis and Forensic CCS of these matching program elements to determine how

Engineering Corporation many times they appear and thus whether they are commonly
used or not. The elements and their associated number of hits

(21) Appl. No.: 12/253,249 are placed in a spreadsheet for further observation and
manipulation. One of skill in the art will see that this invention

(22) Filed: Oct. 17, 2008 also applies to other kinds of text documents.

Computing Device 801

802

Data Storage
Element Search

Program

803
Search Engine

Patent Application Publication May 6, 2010 Sheet 1 of 13 US 2010/0114924 A1

Create sequences of tokens and
structure metrics to form program

structure profiles.

101
SOUrCe COCle files

Compare structure profiles to find 102
Structure profiles Similar COOle Structures.

Compare token sequences within
matching Source Code structures
using a variant of the Longest
Common Subsequence (LCS)

algorithm.

103

Similar pairs Indices H, HT

Figure 1 prior art

Patent Application Publication May 6, 2010 Sheet 2 of 13 US 2010/0114924 A1

20

SOUrCe COce files Remove comments and string 203
COnStants

204 Translate upper-case letters to
lower-Case.

Map synonyms to a common form. 205

ReOrder the functions into their 206
Calling order.

Remove all tokens that are not 207
Specific programming language

keywords.

202

Token file pairs Compare pairs of token files. Matching pairs

Figure 2 prior art

Patent Application Publication May 6, 2010 Sheet 3 of 13 US 2010/0114924 A1

301

SOUrCe COce files Remove whitespace, comments, 303
and identifier nameS.

Replace remaining language 304
statements by tokens

302

Token Compare token sequences using
sequences Greedy String Tiling algorithm. Matching pairs

Figure 3 prior art

Remove whitespace and 401
SOUrCe COde files punctuation from file and convert all

Characters to lower Case.

Divide the remaining non- 402
whitespace characters of each file

into k-grams.

Hash each k-gram and select a 403
k-grams subset of all k-grams to be the

fingerprints of the document.

404

Fingerprints Compare document fingerprints. Matching pairs

Figure 4 prior art

Patent Application Publication May 6, 2010 Sheet 4 of 13 US 2010/0114924 A1

She l OWes y Ou yeah, yeah, yeah - 501

Figure 5A prior art

ShelO hel O V elOWe loves O Vesy Vesy O eSy Olu Sy Ouy y Ouye
ouyea uyeah yeahy eahye ahy ea hyeah yeahy eahye ahye a
hyeah

N- 502

Figure 5B prior art

77 72 42 1.7 98 5 O 23 55 6 (66 34 24 39 11. 84 24 39 11 84

N- 503

Figure 5C prior art

72 24 84 24 84 504

Figure 5D prior art

/k - - - - begin routine - - - - * /
void foiv (

char *fname, // file name
char * path) // path

int Index1, j; - 601
printf (hello world');
While (1)

j = strlen (finantle) ;
A * find the file extension */

Figure 6A prior art

Patent Application Publication May 6, 2010 Sheet 5 of 13 US 2010/0114924 A1

SourceLine S10
SourceLine s11
SourceLine s12
SourceLine S13
SourceLine sl 4
SourceLine S15

void civ
chair finame'
char path’
int Index1 j'
while 1

strlen finame '

Y-60.
Figure

Cominentline s10
CommentLines.11
Comment Line s1(2)
Cominentlines 3
Comment Line sl 4

---- begin routine ----
'file name'
path’

'hello World
' find the file extension

N-60
6B prior art

Word 1 () = foiv'
Word11 = 'fname
Word 12) = path'
Word 13 = Index 1'

Figure

—604

6C prior art

Patent Application Publication May 6, 2010 Sheet 6 of 13 US 2010/0114924 A1

701

S de fi Create Statement, Comment/string,
OUCe COOle TeS and identifier lists.

702

Statement lists Statement Matching Matching
Statements

703

Comment/string Comment/String Matching Matching
lists Comment/strings

704

Matching
ldentifier lists ldentifier matching identifiers

705

Partialldentifier Matching Matching partial
ldentifier lists identifiers

706

Statement lists Statement Sequence Matching Matching
Statement
sequences

707

COrrelation Combine all SCOres. Total COrrelation
SCOGS SCO6

Figure 7 prior art

Patent Application Publication May 6, 2010 Sheet 7 of 13 US 2010/0114924 A1

Computing Device 801

802

Data Storage
Element Search

Program

s 803

Search Engine

Figure 8

Patent Application Publication May 6, 2010 Sheet 8 of 13 US 2010/0114924 A1

900

Matching Database Spreadsheet Spreadsheet
Element Interface Generator File
Database

Search Engine
Interface

Search Engine

Figure 9

912

Patent Application Publication May 6, 2010 Sheet 9 of 13 US 2010/0114924 A1

/- 1000
abc — 1001

Author: Robert Zeidman — 1002

Comment: fix this code later — 1003

for (i = 0; i < NumLines: it--); — 1004

— 1006
if (n == NumLines) — 1007

Index 1 — 1008

NumLines — 1009

wait for user response 1010

Figure 10

Patent Application Publication May 6, 2010 Sheet 10 of 13 US 2010/0114924 A1

Internet Search Results
1223, 2007

Analvsis date 2142008

Statements Hits
abo 626,000,000
Author: Robert Zeidman 4
Comment: fix this code later 0.
for (= 0; ig NumLines; ++); 0.
hello world 26,800,000

18,600,000,000
if (n = Numines
Index 1 36,600,000
NumLines 133,000
wait for user response 3,850

Figure 11

Patent Application Publication May 6, 2010 Sheet 11 of 13 US 2010/0114924 A1

1201

1202

Read a program element from
the database

1203

More ls element
elementS2 in element

list already?

Add to SOrted element list

NO

Read element from element list

1206

Send element to search engine 1207 1211

Read element from database

1208 1212

Find element in element list

Add hit number to hit list 1209 1213

1210 Find corresponding hit number
in hit list

NO
1214

1217 Add hit number to database

GE) 1215 216

NO

Receive number of hits from
search engine

More
elements?

More YES
elements? Generate statistics spreadsheet

from the database

Figure 12

Patent Application Publication May 6, 2010 Sheet 12 of 13 US 2010/0114924 A1

1301
Search the riterret for code eleperts

W S&atixis of states&tis
1302 SSS &eachi: coasters sigs 1304

W. Sess: its series
1303

Figure 13

Patent Application Publication May 6, 2010 Sheet 13 of 13 US 2010/0114924 A1

1401 1405
PROCESSOR

VIDEO DISPLAY
PROCESSING

1402
ALPHA- 1406
NUMERIC

1412 INPUT DEVICE

1403
CURSOR 1407

STATIC CONTROL
MEMORY DEVICE

1404 1409
NETWORK
INTERFACE
DEVICE

408
SECONDARY MEMORY

1413
MACHINE-ACCESSIBLE
STORAGEMEDIUM

1410
1414

DATABASE
FILES

Figure 14

US 2010/01 14924 A1

SEARCHING THE INTERNET FOR
COMMON ELEMENTS IN A DOCUMENT IN

ORDER TO DETECT PLAGARISM

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 The present invention relates to software tools for
comparing text files to determine the amount of similarity
between the files. In particular, the present invention relates to
searching the Internet to determine the frequency of usage of
terms that are common between two programs in order to
determine whether the files that have been copied or derived,
in full or in part, from each other or from a common third file.
0003 2. Discussion of the Related Art
0004 Software plagiarism detection programs and algo
rithms have been around for a number of years but have gotten
more attention recently due to two main factors. One reason is
that the Internet and search engines like Google have made
Source code very easy to obtain. Another reason is the grow
ing open Source movement that allows programmers all over
the world to write, distribute, and share code. It follows that
plagiarism detection programs have become more Sophisti
cated in recent years. An excellent Summary of available tools
is given by Paul Clough in his paper, “Plagiarism in natural
and programming languages: an overview of current tools
and technologies. Clough discusses tools and algorithms for
finding plagiarism in generic text documents as well as in
programming language source code files. Following are brief
descriptions of prior art consisting of four of the most popular
tools and their algorithms.
0005. The prior art Plague program was developed by
Geoff Whale at the University of New South Wales. Plague
uses an algorithm that creates what is called a structure
metric, based on matching code structures rather than match
ing the code itself. The idea is that two pieces of source code
that have the same structures are likely to have been copied.
The Plague algorithm ignores comments, variable names,
function names, and other elements that can easily be globally
or locally modified in an attempt to fool a plagiarism detec
tion tool.
0006 Plague has three phases to its detection, as illus
trated in FIG. 1:
0007. In the first phase 101, a sequence of tokens and
structure metrics are created to form a structure profile for
each Source code file. In other words, each program is boiled
down to basic elements that represent control structures and
data structures in the program.
0008. In the second phase 102, the structure profiles are
compared to find similar code structures. Pairs of files with
similar code structures are moved into the next stage.
0009. In the final stage 103, token sequences within
matching Source code structures are compared using a variant
of the Longest Common Subsequence (LCS) algorithm to
find similarity.
0010. The prior artYAP programs (YAPYAP2, andYAP3)
were developed by Michael Wise at the University of Sydney,
Australia. YAP stands for “Yet Another Plague' and is an
extension of Plague. All three version of YAP use algorithms,
illustrated in FIG. 2, that can generally be described in two
phases as follows:
0011. In the first phase 201, generate a list of tokens for
each source code file.
0012. In the second phase 202, compare pairs of token

files.

May 6, 2010

0013 The first phase of the algorithm is identical for all
three programs. The steps of this phase, illustrated in FIG. 2,
a.

0014. In step 203 remove comments and string constants.
0015. In step 204 translate upper-case letters to lower
CaSC.

0016. In step 205, map synonyms to a common form. In
other words, Substitute a basic set of programming language
statements for common, nearly equivalent statements. As an
example using the C language, the language keyword
'strincinp” would be mapped to “strcmp', and the language
keyword “function” would be mapped to “procedure”.
0017. In step 206, reorder the functions into their calling
order. The first call to each function is expanded inline and
tokens are Substituted appropriately. Each Subsequent call to
the same function is simply replaced by the token FUN.
0018. In step 207, remove all tokens that are not specifi
cally programming language keywords.
0019. The second phase 202 of the algorithm is identical
for YAP and YAP2. YAP relied on the Sdiff function in UNIX
to compare lists of tokens for the longest common sequence
oftokens. YAP2, implemented in Perl, improved performance
in the second phase 202 by utilizing a more Sophisticated
algorithm known as Heckel's algorithm. One limitation of
YAP and YAP2 that was recognized by Wise was difficulty
dealing with transposed code. In other words, functions or
individual statements could be rearranged to hide plagiarism.
So for YAP3, the second phase uses the Running-Karp-Rabin
Greedy-String-Tiling (RKR-GST) algorithm that is more
immune to tokens being transposed.
0020. The prior art JPlag is a program, written in Java by
Lutz Prechelt and Guido Malpohl of the University Karlsruhe
and Michael Philippsen of the University of Erlangen
Nuremberg, to detect plagiarism in Java, Scheme, C, or C++
Source code. Like other plagiarism detection programs, JPlag
works in phases as illustrated in FIG. 3:
0021. There are two steps in the first phase 301. In the first
step 303, whitespace, comments, and identifier names are
removed. As with Plague and the YAP programs, in the sec
ond step 304, the remaining language statements are replaced
by tokens.
(0022. As withYAP3, the method of Greedy String Tiling is
used to compare tokens in different files in the second phase
302. A larger number of matching tokens corresponds to a
higher degree of similarity and a greaterchance of plagiarism.
(0023 The prior art Measure of Software Similarity
(MOSS) program was developed at the University of Califor
nia at Berkeley by Alex Aiken. MOSS uses a winnowing
algorithm. The MOSS algorithm can be described by these
steps, as illustrated in FIG. 4:
0024. In the first step 401, remove all whitespace and
punctuation from each Source code file and convert all char
acters to lower case.
0025. In the second step 402, divide the remaining non
whitespace characters of each file into k-grams, which are
contiguous Substrings of length k, by sliding a window of size
kthrough the file. In this way the second character of the first
k-gram is the first character of the second k-gram and so on.
0026. In the third step 403, hash each k-gram and select a
Subset of all k-grams to be the fingerprints of the document.
The fingerprint includes information about the position of
each selected k-gram in the document.
0027. In the fourth step 404, compare file fingerprints to
find similar files.

US 2010/01 14924 A1

0028. An example of the algorithm for creating these fin
gerprints is shown in FIG. 5. Some text to be compared 501 is
shown in FIG.5A. The 5-grams 502 derived from the text 501
are shown in FIG. 5B. A possible sequence of hashes 503 is
shown in FIG.5C. A possible selection of hashes 504 chosen
to be the fingerprint for the text 501 is shown in FIG.5D. The
concept is that the hash function is chosen so that the prob
ability of collisions is very small so that whenever two docu
ments share fingerprints, it is extremely likely that they share
k-grams as well and thus contain plagiarized code.
0029. The prior art CodeMatch(R) program (CodeSuite is a
registered trademark of Software Analysis & Forensic Engi
neering Corporation) was developed by Robert Zeidman and
is sold by Software Analysis & Forensic Engineering Corpo
ration. CodeMatch corrects many, if not all, of the deficien
cies noted in the previous program. Initially CodeMatch
divides the source code files for two different programs into
lists of basic elements consisting of statements, comments,
strings, and identifiers as shown in FIG. 6. A Snippet of source
code 601 is shown in FIG. 6A. The statement list 602 derived
from the source code 601 is shown in FIG. 6B. The comment/
string list 603 derived from the source code 601 is shown in
FIG. 6B. The identifier list 604 derived from the Source code
601 is shown in FIG. 6C.

0030 CodeMatch then uses the method illustrated in FIG.
7 to calculatea correlation between the two sets of files. In the
first step 701, the Statement, comment and string, and identi
fier lists for the two files to be compared are created. In the
second step 702, the statement lists of the two files are com
pared using a statement matching algorithm. In the third step
703, the comment and string lists of the two files are com
pared using a comment and string matching algorithm. In the
fourth step 704, the identifier lists of the two files are com
pared using an identifier matching algorithm. In the fifth step
705, the identifier lists of the two files are compared using a
partial identifier matching algorithm. In the sixth step 706, the
statement lists of the two files are compared using a statement
sequence matching algorithm. Although all matching algo
rithms produce output for the user, in the seventh step 707, the
results of all matching algorithms are combined into a single
correlation score.

0031 All of these prior art methods identify possibly pla
giarized computer code, but rely on Subjective determinations
about whether or not plagiarism actually occurred. Finding a
correlation between the source code files for two different
programs does not necessarily mean that plagiarism
occurred. It has been determined that there are exactly six
reasons for correlation between the source code for two dif
ferent programs. These reasons can be summarized as fol
lows.

0032. Third-Party Source Code. It is possible that widely
available open source code is used in both programs. Also,
libraries of source code can be purchased from third-party
vendors. If two different programs use the same third-party
code, the programs will be correlated.
0033 Code Generation Tools. Automatic code generation

tools, such as Microsoft Visual Basic or Adobe Dreamweaver,
generate software source code that looks very similar with
similar and often identical elements. The structure of the code
generated by these tools tends to fit into specific templates
with identifiable patterns. Two different programs that were
developed using the same code generation tool will be corre
lated.

May 6, 2010

0034 Commonly Used Identifier Names. Certain identi
fier names are commonly taught in Schools or commonly used
by programmers in certain industries. For example, the iden
tifier result is often used to hold the result of an operation.
These identifiers will be found in many unrelated programs
and will result in these programs being correlated.
0035 Common Algorithms. An algorithm is a procedure
or a set of instructions for accomplishing some task. In one
programming language there may be an easy or well-under
stood way of writing a particular algorithm that most pro
grammers use. For example there might be a way to alpha
betically sort a list of names. Perhaps this algorithm is taught
in most programming classes at universities or is found in a
popular programming textbook. These commonly used algo
rithms will show up in many different programs, resulting in
a high degree of correlation between the programs even
though there was no direct contact between the programmers.
0036 Common Author. It is possible that one program
mer, or “author,” will create two programs that have correla
tion simply because that programmer tends to write code in a
certain way. This is the programmer's style of coding. Thus
two programs written by the same programmer can be corre
lated due to the style being similar even though there was no
copying and the functionality of each program is different
than that of the other.
0037 Copied Code (Authorized or Plagiarized). Code was
copied from one program to another, causing the programs to
be correlated. The copying may have taken place for only
certain sections of the code and may include Small or signifi
cant changes to the code. When each of the previous reasons
for correlation has been eliminated, the reason that remains is
copying. If the copying was not authorized by the original
owner, then it comprises plagiarism.
0038 A useful tool is one that can help determine whether
correlation is due to any of these factors in order to determine
whether plagiarism occurred.

SUMMARY OF THE INVENTION

0039 Plagiarism of software code is a serious problem in
two distinct areas of endeavor these days—cheating by stu
dents at Schools and intellectual property theft at corpora
tions. A number of methods have been implemented to check
Source code files for plagiarism, each with their strengths and
weaknesses. All of the previous methods identify possibly
plagiarized source code and rely on Subjective determinations
about whether or not plagiarism actually occurred. In particu
lar, identical program elements (statements, Strings, com
ments, identifiers, instruction sequences, etc.) between two
different programs may occur for reasons other than plagia
rism. They may simply occur, for example, because these
program elements are commonly used by programmers or are
common terms in the industry for which the programs were
written. The present invention searches the Internet for occur
rences of the identical program elements to determine how
many times they appear and thus whether they are in fact
commonly used or not.
0040. Further features and advantages of various embodi
ments of the present invention are described in the detailed
description below, which is given by way of example only.

BRIEF DESCRIPTION OF THE DRAWINGS

0041. The present invention will be understood more fully
from the detailed description given below and from the

US 2010/01 14924 A1

accompanying drawings of the preferred embodiment of the
invention, which, however, should not be taken to limit the
invention to the specific embodiment but are for explanation
and understanding only.
0042 FIG. 1 illustrates the prior art algorithm used by the
Plague program for source code plagiarism detection.
0043 FIG. 2 illustrates the prior art algorithm used by the
YAPYAP2, and YAP3 programs for source code plagiarism
detection.
0044 FIG. 3 illustrates the prior art algorithm used by the
JPlag program for Source code plagiarism detection.
0045 FIG. 4 illustrates the prior art algorithm used by the
MOSS program for source code plagiarism detection.
0046 FIG. 5 illustrates the prior art fingerprinting algo
rithm used by the MOSS program for source code plagiarism
detection.
0047 FIG. 6 illustrates prior art dividing a file of source
code into statements, comments and strings, and identifiers.
0048 FIG. 7 illustrates the prior art sequence of algo
rithms used by the CodeMatch program for measuring Source
code correlation.
0049 FIG. 8 illustrates a block diagram of a system for the
present invention, in accordance with one embodiment of the
invention.
0050 FIG. 9 illustrates the software architecture of one
embodiment of the present invention.
0051 FIG. 10 illustrates an example of an alphabetically
Sorted list of Statement program elements including state
ments, identifiers, comments, and strings, in accordance with
one embodiment of the invention.
0052 FIG. 11 illustrates an example of a spreadsheet gen
erated by one embodiment of the present invention.
0053 FIG. 12 illustrates the process of the present inven

tion, in accordance with one embodiment of the invention.
0054 FIG. 13 illustrates a user interface of the present
invention, in accordance with one embodiment of the inven
tion.
0055 FIG. 14 illustrates a block diagram of an exemplary
computer system, in accordance with one embodiment of the
invention.

DETAILED DESCRIPTION

0056. The present invention will be understood more fully
from the detailed description given below and from the
accompanying drawings of the preferred embodiment of the
invention, which, however, should not be taken to limit the
invention to the specific embodiment but are for explanation
and understanding only.
0057. Some portions of the detailed descriptions which
follow are presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading to
a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym
bols, characters, terms, numbers, or the like.

May 6, 2010

0058. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as "communicating”, “executing”, “passing”, “determining.
'generating, or the like, refer to the action and processes of
a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers
and memories into other data similarly represented as physi
cal quantities within the computer system memories or reg
isters or other such information storage, transmission or dis
play devices.
0059. The present invention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read
able storage medium, Such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran
dom access memories (RAMs), EPROMs, EEPROMs, mag
netic or optical cards, or any type of media Suitable for storing
electronic instructions, each coupled to a computer system
bus.
0060. The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear as set forth in the
description below. In addition, the present invention is not
described with reference to any particular programming lan
guage. It will be appreciated that a variety of programming
languages may be used to implement the teachings of the
invention as described herein.
0061 The present invention may be provided as a com
puter program product, or Software, that may include a
machine-readable medium having stored thereon instruc
tions, which may be used to program a computer system (or
other electronic devices) to perform a process according to
the present invention. A machine-readable medium includes
any mechanism for storing or transmitting information in a
form readable by a machine (e.g., a computer). For example,
a machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM), random access
memory (RAM), magnetic disk storage media, optical Stor
age media, flash memory devices, etc.), a machine (e.g., com
puter) readable transmission medium (electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.), etc.
0062. The present invention provides a way to determine
whether common elements in a program are due to copying or
not by examining these common elements and searching for
them on the Internet. If two programs contain common ele
ments that are due to the fact that both programs use third
party code, these elements will most likely appear on the
Internet. They may appear in code Snippets or entire program
Source code that is made available as open source code. Pro

US 2010/01 14924 A1

prietary code is still likely to be referenced in user guides,
specifications, and discussions by programmers on various
blogs and bulletin boards. Similarly if the common elements
are from automatically generated code, are commonly used
identifier names, or common algorithms there is a good
chance reference to these elements will appear on the Inter
net. If the common elements are due to the fact that both
programs had a common author, reference to the elements
may still be found on the Internet if the author has other code
samples available. If these common elements are rarely or
never referenced on the Internet, there is a significant chance
that the correlation of the programs is due to copying.
0063 A system for implementing one embodiment of the
present invention is shown in FIG. 8. The system includes a
computing device 801 and a data storage device 804. The data
storage device 804 may be a mass storage device. Such as a
magnetic or optical storage based disk or tape, and may be
part of the computing device 801, or be coupled with the
computing device 801 directly or via a network, which may
be a public network such as the Internet or a private network
Such as a local area network (LAN). The computing device
801 may be a personal computer (PC), palm-sized computing
device, personal digital assistant (PDA), server, or other com
puting device.
0064. The computer device 801 hosts the element search
program 802, one embodiment of the present invention, that
can be used to search the Internet for the number of times a
pair of matching program elements is found, where the pairs
of matching program elements are contained in a database.
The database containing the pairs of matching program ele
ments may be stored in the data storage device 804.
0065. In one embodiment, the element search program
802 connects to a search engine 803 that has indexed a large
number of pages on the Web and can search through them
very quickly. The search engine 803 may be part of the com
puting device 801, or be coupled with the computing device
801 directly or via a network, which may be a public network
Such as the Internet or a private network Such as a local area
network (LAN).
0066. The present invention takes a database that contains
matching program elements found in the source code or
object code of two different programs, then searches the
Internet to determine the number of times these terms can be
found in order to determine how common these terms are.
FIG.9 shows the software architecture of one embodiment of
the present invention. The Element Search program 900 con
sists in very basic terms of the User Interface 901, the Spread
sheet Generator 902, the Database Interface 903, and the
Search Engine Interface 904. The User Interface 901 allows
the user of the program to enter information Such as the name
and location of the Matching Element Database 910 to exam
ine, the types of program elements to examine, and the name
and location of the resultant Spreadsheet File 911 to produce.
The User Interface 901 also sends information back to the
user such as a display of the resulting Spreadsheet File 911 as
well as user instructions and error messages. The Database
Interface 903 reads the Matching Element Database 910 and
creates an alphabetically Sorted List of Program Elements
1000 as exemplified in FIG. 10. As Database Interface 903
reads each program element from the Matching Element
Database 910, if the element is not already in the Sorted List
of Program Elements 1000 the Database Interface 903 adds
the element to the Sorted List of Program Elements 1000 in
alphabetical order. If the element is already in the Sorted List

May 6, 2010

of Program Elements 1000, the Database Interface 903 takes
no action and reads the next element from the Matching
Element Database 910.
0067. When the Database Interface 903 has read each
program element from the Matching Element Database 910
and created the Sorted List of Program Elements 1000, the
Database Interface 903 reads each element from the Sorted
List of Program Elements 1000 and sends each element to the
Search Engine Interface 904. The Search Engine Interface
904 may wrap the program element in double quotation
marks or performany other necessary modifications required
by the particular Search Engine912, then sends the modified
program element to Search Engine 912. The Search Engine
912 returns the number of “hits” (the number of times the
term or expression was found on the Internet) for the program
element and sends that number to the Database Interface 903,
which inserts the hit value into a list of hit values that is
index-matched to the Sorted List of Program Elements 1000.
0068. The Search Engine 912 may be coupled with the
Element Search Program 900 directly on the same computer
or via a network, which may be a public network such as the
Internet or a private network Such as a local area network
(LAN). The communication between the Element Search
Program 900 and the Search Engine 912 is typically an appli
cation program interface (API) defined by the provider of the
Search Engine912. Examples of such Search Engines 912 are
the Yahoo! (R) search engine (Yahoo! is a registered trademark
of Yahoo! Inc.), the GoogleTM search engine (Google is a
trademark of Google Inc.), and the Ask.com TM search engine
(Ask.com is a trademark of IAC Search & Media), all acces
sible via the Internet. One example of the search engine API
is the Yahoo! Search BOSS (Build your Own SearchService)
from Yahoo! Inc.

0069. After the Database Interface 903 has created the hit
list, the Database Interface 903 reads each program element
in the Matching Element Database 910 starting at the begin
ning, finds each read program element in the Sorted List of
Program Elements 1000 and each corresponding hit value in
the hit list, and inserts the hit values into the Matching Ele
ment Database 910. When the entire Matching Element Data
base 910 has been read, and the number of hits for each
program element has been inserted into the Matching Ele
ment Database 910, the Database Interface 903 sends the lists
to the Spreadsheet Generator 902, which creates a Spread
sheet File 911, illustrated in FIG. 11, that shows each program
element and the number of hits. The Spreadsheet Generator
902 also sends the Spreadsheet File 911 to the User Interface
901 for displaying to the user.
0070. Note that in this embodiment the entire Internet is
searched by the Search Engine 912, not just an Internet data
base of Source code. This is because some source code is
licensed for a fee and would not appear in a database or for
distribution on the Internet. However, we would expect that
references to the code would be found in user's guides,
articles, technical notes, and on message boards. Thus for our
purposes a search of the entire Internet is more effective than
a search of just source code on the Internet.
0071 FIG. 10 shows an exemplary alphabetically Sorted
List of Program Elements 1000. The elements 1001, 1006,
1008, and 1009 are identifiers, which include variable names,
function names, constants, and other names used within a
program. The elements 1002, 1003, and 1010 are comments
that have no function within a program but are used to docu
ment the workings of the program. The elements 1004 and

US 2010/01 14924 A1

1007 are statements that instruct a computer to perform
operations. The element 1005 is a string that is a message
displayed to a user.
0072 FIG. 11 shows an exemplary spreadsheet 906. The
header section 1101 includes a user-defined title (“Internet
Search Results') and contains the date when the comparison
of program elements was performed (“Run date'. “12/23/
2007) and the date when the spreadsheet was created
(“Analysis date”, “2/14/2008). The title row 1102 shows that
the left column of element section 1103 contains program
elements that in the example are statement program elements.
The title row 1102 also shows that the right column of element
section 1103 contains the number of hits for each program
element in the same row in the left column. The element
section 1103 shows program elements sorted alphabetically
in the left column and corresponding hits in the right column.
The program elements can also be sorted numerically accord
ing to the hits in the right column. One skilled in the art will
See other ways of labeling and organizing a spreadsheet to
show program elements and hits.
0073. The elements that have 0 hits can be determined to
not be the result of third party source code, common identifier
names, or common algorithms because if that were the case,
these elements would show up elsewhere on the Internet. For
elements that have a small number of hits, these hits can be
examined manually by putting the program element into a
search engine and visiting all of the sites where the program
element occurs. It may turn out that the term shows up in some
use other than as a program element, which would again be
helpful for determining that the matching elements are not the
result of third party source code, commonidentifier names, or
common algorithms. The elements that have large number of
hits are definitely common terms and can usually be
explained as third party source code, common identifier
names, or common algorithms rather than other reasons for
correlation.

0074 The sequence of steps of one embodiment of the
present invention is shown in FIG. 12. Starting at step 1201,
upon initiation of the process by the user, the next step is 1202
where a program element is read from Matching Element
Database 904. The next step is 1203 where it is determined
whether the element read from the Matching Element Data
base 904 already exists in the Sorted List of Program Ele
ments 1000. If the program element is not in the Sorted List of
Program Elements 1000, it is added to the Sorted List of
Program Elements 1000 in step 1205 and then step 1204 is
performed. If the element is already in the Sorted List of
Program Elements 1000, step 1205 is skipped and step 1204
is performed. At step 1204 it is determined whether more
program elements exist in the Matching Element Database
904. If so, step 1202 and subsequent steps are repeated. If
there are no more program elements to be read from the
Matching Element Database 904, step 1206 is performed
where a program element is read from the Sorted List of
Program Elements 1000, starting at the beginning. The next
step 1207 sends the program element to a search engine with
any required modifications such as enclosing the element in
quotation marks so that it is treated as a single entity to be
searched. At the next step 1208 a number is received from the
search engine representing the number of “hits” for this pro
gram element. At step 1209 this hit number is added to a list
of hits that corresponds to the Sorted List of Program Ele
ments 1000. For each element in the Sorted List of Program
Elements 1000 there is a corresponding place in the hit list

May 6, 2010

that represents the number ofhits returned for that element. At
step 1210 it is determined whether there are more elements in
the Sorted List of Program Elements 1000. If so, step 1206
and Subsequent steps are repeated. If there are no more ele
ments in the Sorted List of Program Elements 1000, elements
are once again read from the Matching Element Database
904, starting at the beginning, in step 1211. At step 1212, the
program element read from the Matching Element Database
904 is found in the Sorted List of Program Elements 1000. At
step 1213, the hit number corresponding to the program ele
ment read from the Matching Element Database 904 is found
in the hit list. At step 1214, the hit number for the program
element is added to the Matching Element Database 904. At
step 1215 it is determined whether there are more program
elements in the Matching Element Database 904. If so, step
1211 and Subsequent steps are repeated. If there are no more
program elements in the Matching Element Database 904,
step 1216 generates a spreadsheet showing the program ele
ments in the Sorted List of Program Elements 1000 and their
corresponding hits. Finally step 1217 ends the process.
0075 FIG. 13 illustrates a user interface 1300 of the
present invention, in accordance with one embodiment of the
invention. Checkbox 1301 allows the user to select whetherto
search the Internet for statement program elements found in
the Matching Element Database 904. Checkbox 1302 allows
the user to select whether to search the Internet for comment
program elements and string program elements found in the
Matching Element Database 904. Checkbox 1303 allows the
user to select whether to search the Internet for identifier
program elements found in the Matching Element Database
904. When button 1304 is clicked, the search of the Internet
for program elements in the Matching Element Database 904
begins as diagrammed in FIG. 12. One skilled in the art will
See other ways of implementing a user interface for the
present invention.
0076 FIG. 14 illustrates a diagrammatic representation of
a machine in the exemplary form of a computer system within
which a set of instructions, for causing the machine to per
formany one or more of the methodologies discussed herein,
may be executed. In alternative embodiments, the machine
may be connected (e.g., networked) to other machines in a
Local Area Network (LAN), an intranet, an extranet, or the
Internet. The machine may operate in the capacity of a server
or a client machine in a client-server network environment, or
as a peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a personal computer (PC),
a tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, Switch or bridge, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while
only a single machine is illustrated, the term “machine' shall
also be taken to include any collection of machines (e.g.,
computers) that individually or jointly execute a set (or mul
tiple sets) of instructions to perform any one or more of the
methodologies discussed herein.
0077. The exemplary computer system includes a proces
sor 1301, a main memory 1302 such as read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) including synchronous DRAM (SDRAM) or Ram
bus DRAM (RDRAM), etc., a static memory 1303 such as
flash memory, static random access memory (SRAM), etc.,
and a static memory 1303 Such as a data storage device, which
communicate with each other via a bus 1309.

US 2010/01 14924 A1

0078 Processor 1301 represents one or more general-pur
pose processing devices Such as a microprocessor, central
processing unit, or the like. More particularly, the processor
1301 may be a complex instruction set computing (CISC)
microprocessor, reduced instruction set computing (RISC)
microprocessor, very long instruction word (VLIW) micro
processor, processor implementing other instruction sets, or
processors implementing a combination of instruction sets.
Processor 1301 may also be one or more special-purpose
processing devices such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the like.
Processor 1301 is configured to execute the processing logic
1311 for performing the operations and steps discussed
herein.

007.9 The computer system may further include a network
interface device 1304. The computer system also may include
a video display unit 1305 such as a liquid crystal display
(LCD) or a cathode ray tube (CRT), an alphanumeric input
device 1306 such as a keyboard, and a cursor control device
1307 such as a mouse.

0080. The secondary memory 1308 may include a
machine-accessible storage medium (or more specifically a
computer-accessible storage medium) 1313 on which is
stored one or more sets of instructions embodying any one or
more of the methodologies or functions described herein. The
software 1312 may reside, completely or at least partially,
within the main memory 1302 and/or within the processor
1301 during execution thereof by the computer system, the
main memory 1302 and the processor 1301 also constituting
machine-accessible storage media. The software 1312 may
further be transmitted or received over a network 1310 via the
network interface device 1304.

0081. The machine-accessible storage medium 1313 may
also be used to store database files 1314. While the machine
accessible storage medium 1313 is shown in an exemplary
embodiment to be a single medium, the term “machine-ac
cessible storage medium’ should be taken to include a single
medium or multiple media, Such as a centralized or distrib
uted database and/or associated caches and servers, that store
the one or more sets of instructions. The term “machine
accessible storage medium’ shall also be taken to include any
medium that is capable of storing or encoding a set of instruc
tions for execution by the machine and that cause the machine
to perform any one or more of the methodologies of the
present invention. The term “machine-accessible storage
medium’ shall accordingly be taken to include, but not be
limited to, Solid-state memories, and optical and magnetic
media.

0082 While these embodiments describe searching for the
number of occurrences of common program elements on the
Internet in order to determine whether copying occurred, one
skilled in the art will see that the methods and apparatuses
described herein can be applied to searching for common
elements of other kinds of things to determine whether copy
ing occurred. For example, these methods and apparatuses
can be used to search for common terms within term papers,
novels, technical specifications, textbooks, musical compo
sitions, etc. in order to determine whether copying has
occurred.

0083 Various modifications and adaptations of the opera
tions that are described here would be apparent to those
skilled in the art based on the above disclosure. Many varia

May 6, 2010

tions and modifications within the scope of the invention are
therefore possible. The present invention is set forth by the
following claims.
We claim:
1) A computer-implemented method comprising:
reading an element from a database containing elements

that appear in each of multiple documents;
sending said element to a search engine;
receiving from said search engine the number of hits;
displaying to a user said element and said number of hits

for said element.
2) The method of claim 1) where sending said element to a

search engine includes modifying said element before send
ing.

3) The method of claim 1) where sending said element to a
search engine includes first placing said element into a sorted
list.

4) The method of claim 1) where displaying to the user said
element and said number of hits for said element comprises
generating a spreadsheet with said element in one column and
said number of hits for said element in the same row as said
element and a different column as said element.

5) The method of claim 1) further comprising writing said
number of hits to said database.

6) A computer-readable storage medium storing execut
able instructions to cause a computer system to perform a
method comprising::

reading an element from a database containing elements
that appear in each of multiple documents;

sending said element to a search engine;
receiving from said search engine the number of hits;
displaying to a user said element and said number of hits

for said element.
7) A computer-readable storage medium storing execut

able instructions to cause a computer system to perform the
method of claim 6) where sending said element to a search
engine includes modifying said element before sending.

8) A computer-readable storage medium storing execut
able instructions to cause a computer system to perform the
method of claim 6) where sending said element to a search
engine includes first placing said element into a sorted list.

9) A computer-readable storage medium storing execut
able instructions to cause a computer system to perform the
method of claim 6) where displaying to the user said element
and said number of hits for said element comprises generating
a spreadsheet with said element in one column and said num
ber of hits for said element in the same row as said element
and a different column as said element.

10) A computer-readable storage medium storing execut
able instructions to cause a computer system to perform the
method of claim 6) further comprising computer-readable
storage medium storing executable instructions to cause a
computer system to write said number of hits to said database.

11) An apparatus comprising:
a database interface for reading an element from a database

containing elements that appear in each of multiple
documents;

a search engine interface for sending said element to a
search engine and receiving from said search engine the
number of hits:

a user interface for displaying to a user said element and
said number of hits for said element.

12) The apparatus of claim 11) where said search engine
interface modifies said element before sending.

US 2010/01 14924 A1 May 6, 2010

13) The apparatus of claim 11) where said search engine element in the same row as said element and a different
interface first places said element into a sorted list. column as said element.

15) The apparatus of claim 11) where said database inter
14) The apparatus of claim 11) further comprising a face writes said number of hits to said database.

spreadsheet generator that generates a spreadsheet with said
element in one column and said number of hits for said ck

