(86) Date de dépôt PCT/PCT Filing Date: 2008/11/20
(87) Date publication PCT/PCT Publication Date: 2009/06/25
(85) Entrée phase nationale/National Entry: 2010/06/18
(86) N° demande PCT/PCT Application No.: EP 2008/065920
(87) N° publication PCT/PCT Publication No.: 2009/077289
(30) Priorité/Priority: 2007/12/19 (EP07123598.0)

(54) Titre : PROCEDE DE FABRICATION DE PARTICULES DE PERCARBONATE DE SODIUM REVETUES
(54) Title: METHOD FOR PRODUCING COATED SODIUM PERCARBONATE PARTICLES

(57) Abrégé/Abstract:
In a method for producing encapsulated sodium percarbonate particles by spraying a sodium-sulphate-containing aqueous solution onto sodium percarbonate particles in a fluidized bed and simultaneous evaporation of water, for producing the sodium sulphate-containing aqueous solution, use is made of sodium sulphate and sodium percarbonate-containing dust.
Abstract:

In a process for producing coated sodium percarbonate particles by spray application of a sodium sulfate-containing aqueous solution onto sodium percarbonate particles in a fluidized bed and simultaneous evaporation of water, sodium sulfate and sodium percarbonate-containing dust is used to prepare the sodium sulfate-containing aqueous solution.
Method for producing coated sodium percarbonate particles

The invention provides a process for producing coated sodium percarbonate particles by spray application of a sodium sulfate-containing aqueous solution onto sodium percarbonate particles in a fluidized bed and simultaneous evaporation of water, wherein the sodium sulfate-containing aqueous solution is prepared using sodium sulfate and sodium percarbonate-containing dust.

Sodium percarbonate is increasingly being used as a bleaching constituent in detergents and cleaning compositions. For this application, sodium percarbonate must have sufficient storage stability in detergent and cleaning composition formulations, since there is otherwise undesired loss of active oxygen and hence of bleaching action in the course of storage of the detergents and cleaning compositions. Sodium percarbonate is moisture-sensitive and decomposes in detergent and cleaning composition formulations under the action of moisture with loss of active oxygen. To produce detergents or cleaning compositions, sodium percarbonate is therefore typically used in coated form, in which case the coating layer prevents the action of moisture on the coated sodium percarbonate particles.

DE 2 417 572 discloses the stabilization of sodium percarbonate by a coating composed of a mixed salt of sodium carbonate and sodium sulfate. The mixed salts have a molar ratio of sodium carbonate to sodium sulfate in the range from 0.3:1 to 3:1. The coating is applied by spray application of an aqueous solution of sodium carbonate and sodium sulfate onto sodium percarbonate particles and simultaneous evaporation of water. The spray application can be effected in a fluidized bed. The coating composed of a mixed salt of
sodium carbonate and sodium sulfate achieves better stabilization than a coating consisting only of sodium carbonate or only of sodium sulfate.

WO 97/19890 discloses the stabilization of sodium percarbonate particles obtainable by fluidized bed granulation by means of a coating of sodium sulfate, which is applied by spray application of an aqueous solution of sodium sulfate to the sodium percarbonate particles in a fluidized bed and simultaneous evaporation of water. The use of sodium percarbonate obtainable by fluidized bed granulation achieves, with sodium sulfate alone, the same stabilizing effect as with a mixed salt of sodium carbonate and sodium sulfate. The sodium percarbonate particles coated with sodium sulfate have better silo storability compared to the particles coated with a mixed salt of sodium carbonate and sodium sulfate.

WO 2006/003155 describes coated sodium percarbonate particles with a mean particle size of 300 to 1600 μm and a coating layer which comprises small sodium percarbonate particles with a mean particle size of less than 100 μm. The particles are produced by applying a solution or suspension of a coating material in a mixer or in a fluidized bed to sodium percarbonate particles, in the course of which the small sodium percarbonate particles are supplied simultaneously and thus incorporated into the coating layer.

In the course of spray application of a solution of sodium sulfate in a fluidized bed, it is possible not only for sodium sulfate dust to form, but also for the abrasion of particles in the fluidized bed to form sodium percarbonate-containing dust which is discharged from the fluidized bed with the fluidizing gas. This sodium percarbonate-containing dust may contain from 50 to 80% by weight of sodium percarbonate, the rest being
essentially sodium sulfate. Such a sodium percarbonate-containing dust does not meet the requirements for use in detergents.

5 In a similar manner, in the course of production of sodium percarbonate by buildup granulation from a sodium carbonate solution and aqueous hydrogen peroxide in a fluidized bed, sodium percarbonate-containing dust forms, which is discharged from the fluidized bed with the fluidizing gas. This sodium percarbonate-containing dust consists essentially of sodium percarbonate and may additionally also contain small amounts of additives which increase the stability of sodium percarbonate. This sodium percarbonate-containing dust too does not meet the requirements for use in detergents.

Finally, in the course of pneumatic delivery of sodium percarbonate particles, abrasion of the particles or fracture of particles may also form sodium percarbonate-containing dust which is not suitable for use in detergents.

It has now been found that such sodium percarbonate-containing dust can be used advantageously in combination with sodium sulfate for the coating of sodium percarbonate particles and can thus be recycled into a production process for sodium percarbonate particles for detergent and cleaning composition formulations.

The invention therefore provides a process for producing coated sodium percarbonate particles by spray application of a sodium sulfate-containing aqueous solution onto sodium percarbonate particles in a fluidized bed and simultaneous evaporation of water, in which the sodium sulfate-containing aqueous solution is prepared using sodium sulfate and sodium percarbonate-
containing dust.

The sodium percarbonate particles used in the process according to the invention preferably consist essentially of sodium carbonate perhydrate of the composition $2 \text{Na}_2\text{CO}_3 \cdot 3 \text{H}_2\text{O}_2$. They may additionally also contain small amounts of known stabilizers for peroxxygen compounds, for example magnesium salts, silicates, phosphates and/or chelate complexing agents, such as phosphonates. The proportion of sodium percarbonate in the sodium percarbonate particles is preferably more than 80% by weight and more preferably more than 95% by weight. The proportion of organic carbon compounds is preferably less than 1% by weight, more preferably less than 0.1% by weight.

The sodium percarbonate particles used preferably contain small amounts of additives which have a stabilizing effect on the active oxygen content, the proportion of stabilizing additives preferably being less than 2% by weight. The stability-increasing additives used are preferably magnesium salts, waterglass, stannates, pyrophosphates, polyphosphates, polyacrylates, and chelate complexing agents from the group of the hydroxycarboxylic acids, aminocarboxylic acids, aminophosphonic acids, phosphonocarboxylic acids and hydroxyphosphonic acids, and the alkali metal, ammonium and magnesium salts thereof. In a particularly preferred embodiment, the sodium percarbonate particles contain, as a stabilizing additive, an alkali metal silicate, preferably waterglass with an $\text{SiO}_2/\text{Na}_2\text{O}$ modulus in the range from 1 to 3, in an amount of 0.1 to 1% by weight. In the most preferred embodiment, the sodium percarbonate particles contain, in addition to this amount of alkali metal silicate, also a magnesium compound in an amount of 50 to 2000 ppm of Mg^{2+}.

The sodium percarbonate particles used in the process
according to the invention can be prepared by one of the known preparation processes for sodium percarbonate. A suitable preparation process for sodium percarbonate is the crystallization of sodium percarbonate from aqueous solutions of hydrogen peroxide and sodium carbonate, the crystallization being performable either in the presence or in the absence of a salt precipitant, on the subject of which reference is made by way of example to EP-A 0 703 190 and DE 2 744 574. Sodium percarbonate particles produced by the crystallization process in the presence of a salt precipitant may also contain small amounts of the salt precipitant used, for example sodium chloride. Likewise suitable is fluidized bed buildup granulation by spray application of aqueous hydrogen peroxide solution and aqueous sodium carbonate solution onto sodium percarbonate nuclei in a fluidized bed with simultaneous evaporation of water, reference being made by way of example to WO 95/06615. A further suitable preparation process is also the reaction of solid sodium carbonate with an aqueous hydrogen peroxide solution and subsequent drying.

In a preferred embodiment, the sodium percarbonate particles used are obtainable by buildup granulation from sodium carbonate and hydrogen peroxide in a fluidized bed. Such a buildup granulation in a fluidized bed affords sodium percarbonate particles which are distinguished from the sodium percarbonate particles obtained by other production processes by a particularly dense, shell-like structure and a smoother surface. Sodium percarbonate particles coated by the process according to the invention, the core of which has been produced by buildup granulation in a fluidized bed, exhibit improved storage stability in detergent and cleaning composition formulations compared to particles whose core has been produced by another process. Surprisingly, sodium percarbonate particles
coated by the process according to the invention, the core of which has been produced by buildup granulation in a fluidized bed, also have a further-improved storage stability in detergent and cleaning composition formulations compared to particles whose core has been produced in the same way but which have been coated only with a solution of sodium sulfate.

In the process according to the invention, the sodium sulfate-containing aqueous solution is prepared using sodium sulfate and sodium percarbonate-containing dust. To prepare the solution, sodium sulfate can first be dissolved in water and the sodium percarbonate-containing dust can be dissolved in this solution. In a preferred alternative embodiment, sodium percarbonate-containing dust is separated from a gas stream in a scrubber and the aqueous solution obtained is used to prepare the sodium sulfate-containing aqueous solution. In this case, an aqueous scrubbing solution is preferably circulated in the scrubber, in which the sodium percarbonate-containing dust dissolves to release sodium carbonate and hydrogen peroxide. The scrubber can be operated such that the hydrogen peroxide released is decomposed to water and oxygen in the scrubbing solution.

In a preferred embodiment, the process according to the invention uses sodium percarbonate-containing dust removed from the offgas from a fluidized bed in which sodium percarbonate is prepared by buildup granulation from sodium carbonate and hydrogen peroxide.

In a further preferred embodiment, the process according to the invention uses sodium percarbonate-containing dust removed from the offgas from the fluidized bed of the process according to the invention. As well as sodium percarbonate, this sodium percarbonate-containing dust also contains sodium
sulfate. The proportion of sodium percarbonate in the
dust is preferably in the range from 50 to 80% by
weight and the proportion of sodium sulfate in the
range from 50 to 20% by weight. With this embodiment,
it is possible to avoid losses of sodium sulfate when
the coating layer is applied to the sodium percarbonate
particles, and to use the applied sodium sulfate
completely for the production of the coating.

In a likewise preferred embodiment, the process
according to the invention uses sodium percarbonate-
containing dust removed from a gas stream from a
pneumatic delivery of sodium percarbonate particles.
With this embodiment, it is especially possible to
recycle the abraded coating material which arises in a
pneumatic delivery of coated sodium percarbonate
particles back into the process, and to use it again
for coating.

In a further preferred embodiment, the process
according to the invention uses two or more different
sodium percarbonate-containing dusts which originate
from different stages of a process for producing coated
sodium percarbonate particles to produce the sodium
sulfate-containing aqueous solution. With this
embodiment, it is possible to recycle all dusts
obtained in a process for producing coated sodium
percarbonate particles completely back into the
process, and to use them for coating.

In the process according to the invention, the sodium
sulfate-containing aqueous solution is sprayed onto
sodium percarbonate particles in a fluidized bed.
During the spray application of the sodium sulfate-
containing aqueous solution, the majority of the water
present therein, especially more than 90% of the water
present in the aqueous solution, is preferably already
evaporated through supply of heat, such that only a
small portion of the underlying material is dissolved again during the application of the coating layer and a firm coating layer forms already during the spray application. The spray application of the aqueous solution is effected preferably by the process described in EP-A 0 970 917, with which a dense coating layer can be achieved even with small amounts of coating layer material. The spray application is effected preferably with supply of a drying gas to the fluidized bed, such that a temperature in the range from 30 to 90°C, preferably 50 to 70°C, is established in the fluidized bed.

Sodium sulfate and sodium percarbonate-containing dust are preferably used in such amounts that the aqueous solution which is sprayed onto the sodium percarbonate particles contains sodium sulfate and sodium carbonate in a weight ratio in the range from 95:5 to 75:25. The spray application of solutions with this ratio of sodium sulfate and sodium carbonate affords coated sodium percarbonate particles which, compared to sodium percarbonate particles with a coating layer of sodium sulfate, have improved storage stability in detergent and cleaning composition formulations and simultaneously have good silo storability.

In a preferred embodiment, the aqueous solution prepared using sodium sulfate and sodium percarbonate-containing dust contains a total of not more than 25% by weight of dissolved salts. While the prior art teaches applying a coating layer by using highly concentrated solutions of the coating components in order to minimize the amount of water to be evaporated, it has been found that, surprisingly, sodium percarbonate particles with a coating layer which has been produced by spray application of an aqueous solution with not more than 25% by weight of dissolved salts have better storage stability in detergent and
cleaning composition formulations than sodium percarbonate particles obtainable by spray application of an aqueous solution with a higher content of dissolved salts.

Examples:

Production of coated sodium percarbonate particles

To produce the coated sodium percarbonate particles, sodium percarbonate particles which have been produced from aqueous hydrogen peroxide solution and aqueous sodium carbonate solution by fluidized bed buildup granulation by the process described in EP-B 0 716 640, and had a mean particle diameter x_{50} of 0.70 mm and a fines fraction smaller than 0.2 mm of less than 2% by weight, were used. The coating layer was applied to these particles by the process described in paragraph [0021] of EP-B 0 863 842, by spray application of a 20% by weight aqueous solution of the coating materials in a fluidized bed at a fluidized bed temperature of 60°C and simultaneous evaporation of water. In total, 4% by weight in each case of coating materials, calculated without water of crystallization, relative to the total amount of sodium percarbonate particles and coating materials used, were sprayed on.

The dust 1 used in examples 2, 3 and 4 to produce the coating material solutions was separated from the air discharged from a production plant for coating sodium percarbonate particles with sodium sulfate in a fluidized bed. The dust 2 used in examples 5, 6 and 7 was separated from the air discharged from a production plant for producing sodium percarbonate particles by fluidized bed buildup granulation. The composition of the two dusts is depicted in table 1.

In example 8, the solution of the coating materials was
prepared by dissolving 20 parts by weight of sodium sulfate in 80 parts by weight of an aqueous solution which was obtained in a scrubber in which dust was separated from the air discharged from a production plant for coating sodium percarbonate particles with sodium sulfate in a fluidized bed and from the air discharged from a production plant for producing sodium percarbonate particles by fluidized bed granulation. The solution from the scrubber contained a total of 6.1% by weight of dissolved solids.

In comparative example 9, the dust 2 was not dissolved together with sodium sulfate, and instead a solution of pure sodium sulfate was sprayed on and the dust was supplied directly in solid form to the fluidized bed.

Table 1
Composition of the sodium percarbonate-containing dusts used in % by weight

<table>
<thead>
<tr>
<th>Component</th>
<th>Dust 1</th>
<th>Dust 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium percarbonate</td>
<td>71.2</td>
<td>89.8</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>5.1</td>
<td>7.3</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Sodium sulfate</td>
<td>21.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Waterglass, calculated as SiO₂</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Storage stability in detergents

To determine storage stability in detergents, 405 g of zeolite-containing IEC-A⁺ BASE heavy-duty powder detergent (wfk-Testgewebe GmbH, Krefeld) were mixed with 15 g of TAED and 80 g of sodium percarbonate in a tumbling mixer for at least 10 min. The mixture was introduced into an E2 powder detergent box (dimensions 19 x 14 x 4.5 cm) with water-repellent impregnation, which was sealed with hot-melt adhesive. The powder
detergent box was then stored in a climate-controlled cabinet at 35°C and 80% relative humidity. After the powder detergent box had been cooled to room temperature outside the climate-controlled cabinet, the contents of the powder detergent box were divided into samples of 12 g each using a sample divider. The active oxygen content before and after storage was determined by permanganometry in a customary manner. The retention of the active oxygen content (Oₐ retention) in percent was determined from the active oxygen content before storage and the active oxygen content after 8 weeks of storage as a measure of the storage stability in detergents.

The test results compiled in table 2 show that the use of sodium percarbonate-containing dust to prepare the solution of the coating materials gives coated sodium percarbonate particles with an improved storage stability in detergents. This result was unforeseeable since it is known from WO 97/19890 examples B1 and VB5 that, when the sodium percarbonate particles with the coating layer composed of a mixture of sodium sulfate and sodium carbonate known from DE 2 417 572 were used for the tests, the storage stability achieved was no better than with a coating of pure sodium sulfate.

The test results also show that the addition of sodium percarbonate-containing dust directly into the coating without preceding dissolution of the dust, known from WO 2006/003155, gives sodium percarbonate particles with significantly poorer storage stability in detergents.
Table 2
Storage stability of coated sodium percarbonate particles in detergents

<table>
<thead>
<tr>
<th>Example</th>
<th>Composition of the coating layer in parts by weight</th>
<th>Storage stability [Oa retention in percent]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Na$_2$SO$_4$ 100</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>Na$_2$SO$_4$/dust 1 95:5</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Na$_2$SO$_4$/dust 1 90:10</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Na$_2$SO$_4$/dust 1 85:15</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Na$_2$SO$_4$/dust 2 95:5</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>Na$_2$SO$_4$/dust 2 90:10</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>Na$_2$SO$_4$/dust 2 85:15</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>Na$_2$SO$_4$/Na$_2$CO$_3$/NaHCO$_3$ 82:14:4</td>
<td>72</td>
</tr>
<tr>
<td>9*</td>
<td>Na$_2$SO$_4$/dust 2** 90:10</td>
<td>52</td>
</tr>
</tbody>
</table>

* not according to the invention
** addition of the dust in solid form
Claims

1. A process for producing coated sodium percarbonate particles by spray application of a sodium sulfate-containing aqueous solution onto sodium percarbonate particles in a fluidized bed and simultaneous evaporation of water, characterized in that the sodium sulfate-containing aqueous solution is prepared using sodium sulfate and sodium percarbonate-containing dust.

2. The process as claimed in claim 1, characterized in that sodium percarbonate-containing dust is separated from a gas stream in a scrubber and the aqueous solution obtained is used to prepare the sodium sulfate-containing aqueous solution.

3. The process as claimed in claim 1 or 2, characterized in that sodium percarbonate-containing dust removed from the offgas from the fluidized bed is used.

4. The process as claimed in any one of claims 1 or 2, characterized in that sodium percarbonate-containing dust removed from a gas stream from a pneumatic delivery of sodium percarbonate particles is used.

5. The process as claimed in any one of claims 1 or 2, characterized in that sodium percarbonate-containing dust removed from the offgas from a fluidized bed, in which sodium percarbonate is prepared by buildup granulation from sodium carbonate and hydrogen peroxide, is
used.

6. The process as claimed in any one of claims 1 to 5, characterized in that the aqueous solution contains sodium sulfate and sodium carbonate in a weight ratio in the range from 95:5 to 75:25.

7. The process as claimed in any one of claims 1 to 6, characterized in that the aqueous solution is sprayed onto sodium percarbonate particles which are obtainable by buildup granulation from sodium carbonate and hydrogen peroxide in a fluidized bed.

8. The process as claimed in any one of claims 1 to 7, characterized in that the aqueous solution contains not more than 25% by weight of dissolved salts.