US 20070061816A1

a2y Patent Application Publication o) Pub. No.: US 2007/0061816 A1

a9y United States

Atkinson et al.

43) Pub. Date: Mar. 15, 2007

(54) METHOD AND SYSTEM FOR NAMING AND
BINDING OBJECTS

(75) Inventors: Robert G. Atkinson, Woodinville, WA
(US); Antony S. Williams, Redmond,
WA (US); Edward K. Jung, Bellevue,
WA (US)

Correspondence Address:
KLARQUIST SPARKMAN LLP
121 S.W. SALMON STREET
SUITE 1600

PORTLAND, OR 97204 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 11/481,154

(22) Tiled: Jul. 3, 2006

Related U.S. Application Data

(60) Division of application No. 10/283,627, filed on Oct.
29, 2002, now Pat. No. 7,150,024, which is a con-
tinuation of application No. 09/867,853, filed on May
29, 2001, now Pat. No. 6,519,764, which is a con-
tinuation of application No. 08/916,999, filed on Aug.
20, 1997, now Pat. No. 6,263,379, which is a con-
tinuation of application No. 08/467,917, filed on Jun.
6, 1995, now Pat. No. 5,740,439, which is a division

of application No. 08/088,724, filed on Jul. 6, 1993,
now Pat. No. 5,581,760, which is a continuation-in-
part of application No. 07/909,983, filed on Jul. 6,
1992, now abandoned.

Publication Classification

(51) Int. CL

GOG6F 9/46 (2006.01)
(52) US. Cle oo 719/316
(57) ABSTRACT

A method and system for referring to and binding to objects
using a moniker object is provided. In preferred embodi-
ments a moniker object contains information to identify
linked source data and provides methods through which a
program can bind to the linked source data. A binding
method is provided that returns an instance of an interface
through which the linked source data can be accessed. In a
preferred embodiment, the moniker object provides other
methods including a reducing method that returns a more
efficient representation of the moniker object; equality and
hash methods for comparing moniker objects; and inverse,
common prefix, and relative-path-to methods for comparing
and locating moniker objects from other moniker objects.
Several implementations of a moniker object are provided.
Each implementation is a moniker class and has a class
identifier that identifies code to manage the moniker class.

CCompositeMoniker::

Hash

Y

this—>m_pmkiLeft—
Hash(8&dwHashLeft) | 2701

Y

this—m_pmkRight—
Hash(&dwHashRight) [~ 2702

y

“pdwHash =
dwHashleft »
dwHashRight

-~ 2703

Retum

Patent Application Publication Mar. 15,2007 Sheet 1 of 54 US 2007/0061816 A1

f—101

VAC1.D0OC
VAC1 PROJECT July 1, 1990
WK1 | WKZ | WK3 | WKa | WK5
102
MODULE2 /
MODULE1 :
GLOBAL
TABLE: SCHEDULE
/-———104
BUDGET:
ITEM EST EXP DELTA] RUNNING
$ | TODATE
SUPPLIES . 160.00 50.00 | +50.00 50.00.
COMPUTERS 4000.00) 3895.00 | +195.00 | 3945.00 .
MANUALS 500.00| 500.00 0.00 | 444500
TOTAL 5600.00 | - 4445.00 | +245.00 | 4445.00
‘ 103
TABLE 2: VAC1 BUDGET 10

FIG. 1

Patent Application Publication Mar. 15,2007 Sheet 2 of 54 US 2007/0061816 A1

201

/-
PROJECT

MANAGEMENT
PROGRAM

SCHEDULING
DATA

//,204
SPREADSHEET
PROGRAM
//,203
CLIPBOARD
BUDGETING
DATA

SCHEDULING DATA
BUDGETING DATA

WORD 206
PROCESSING &

PROGRAM

207

vy [

SCHEDULING
DATA

BUDGETING
DATA

EXPLANATORY
DATA

T

FIG. 2

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 3 of 54

G0t —

N Pouian

£ 'Ol

bOE -

| POYIBN

./

-

c0¢t

L0t

eje

slaqus

wa
K

£0E 1 X\cro:oc:m [eNUIA

0 POYIai

°|qe]

aJnonis ejeq
9oUB)SU|

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 4 of 54

2 v old
_ AAS
\I/IO v
. Mo (esesjor)y
6Ly]84 , (jodppVY)2
ozy aoepaluikionD)g |« - ndjA
90¥ 0P
e . (190199D)%
L oLy — (siewod)g
(ejnuso4)®
I (up3)%
_ - (CTE)
\ Lo (aseajon)s
viy ey
Giy e (JayppV)%
soeyBIuIAIOND)Y [. ndia
/ gov £op
Lip Ol¥. _ o (asesjay)y
AR
o (Joyppv)®
eoepajujlianD))g

60v

80%

L0t

—(aseqejeq)
—Q oiseq|

Lu umousun|

unodjRl

aseqejeq|d

~o oiseg(d

® ndia

104

Patent Application Publication Mar.

503

(

15,2007 Sheet 5 of 54 US 2007/0061816 A1

5017 VAC1 PROJECT ™"
SCHEDULE:

Twii Twiz [wac Twia Jwcs
MODULE2
MODULE
GLOBAL -
TABLE: SCHEDULE
BUDGET:
TTEM ES5TS | EXPTO]| DELTA JRUNNING]
5021 DATE E—

- 100.00 50.00 | +50.00 50.00
4000.00 | 3895.00 | +185.00 | 3945.00
MANUALS 500,00 500.00 0.00] 4445.00

TOTAL 5600.00 | 444500 | +245.00 | 4445.00
TABLE B: VAC1 BUDGET

v
5

WEEKLY REPORT

VAC1 EXECUTIVE SUMMARY

I 506

SUMMARY SHEET

FIG. 5

Patent Application Publication Mar. 15,2007 Sheet 6 of 54 US 2007/0061816 A1

RPT.DOC

‘ 601
-

602
- [CLSID_File Moniker ¥~
a3chi |

603

FIG. 6

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 7 of 54

ar0L

£0L
1HO'ED
TIQ Hiwend | sexnuoweld aIS10
ex3'Heyd | TIQHRYD| Heud aIs1o
1aneg Alojoe4sse|n) sse|D

L 9ld

904 aoue)suajeal)

T1q4IUoNa3

1slgoeleqd

504

1HO'ED

—) Weangsisiad)
@ JPL=) [1Ve]/V]

JHUOWBIIAD

!

0L

0L

YY0L.

Heud aIsT1o| LHD
oL SSB|D XWNS

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 8 of 54

€08
LHO'€D
8 'Old
808
ax3jyeyy
8v08 11g Hialid hmx_co_)_m__.n&HQ_m.._o V08 _
axg'ueyH 11a'HeyD Yeyd agisio veyd aisio| LHD
JaAaS AIoyoB4SSe|] sSBe|D sse|y Xng
p08

908 —

aougjsujsieald

11aveud

veyy gisio

5

1HO'€D

co8

JOYIUOWBIIHD

IOA_uom_nom._mo_

G081

Toslgoeieqrd

0

LO8 —

—QaMuoN|

»wd

User Name —|

Moniker class

Patent Application Publication Mar. 15,2007 Sheet 9 of 54 US 2007/0061816 A1
. caa3rPT.0OC SALESTBL . R2C2:R7C4
N FileMoniker ItemMoniker ltemMoniker

GenericCompositeMoniker

FIG. 9

US 2007/0061816 A1

€00} 1

Ja|UOWHEBYDD

wCLYVHO.

5

204 O

JOYIUOWNI _
200 ~—

JaYIUOWN3]I4D

wJLHO'€0.

Y

$00} —A

J3juopeIsOdWoD)

—g

«CLHVYHO.

€00} —1

JOMIUOWHEYDD

wCLYVHO.

Patent Application Publication Mar. 15,2007 Sheet 10 of 54

5

o

g0l "Old

5

—Q iU

saUo|

Ja4IUOW|

JANIUON3(I4D

.r_lIO.mo:

—(O JaxIuoW|

€00} —

5

Vol ‘Old

1001

Ja%UONLEYDD

wCLHVHO.
:HIO .mc:

—{(1exiuop|

5

Patent Application Publication Mar. 15,2007 Sheet 11 of 54 US 2007/0061816 A1

CFileMoniker:: \
BindToObject

~1101
pmkToleft

Is this

object in Y
ROT
? -
N GetObject from | —_ 1103
> ROT :
GetClassfile L —~ 1105
(m_szPath, &clsid) 3
Queryinterface of
object fromROT [~ 1104
FileBindToObject
(this, m_szPath,
CISid, pbc, L—~ 1106 4
pmkToleft, Ret
iidResult, etum
ppvResult)

(e) |

FIG. 11

Patent Application Publication Mar. 15,2007 Sheet 12 of 54 US 2007/0061816 A1

C FileBindToObject)

A

CoCreatelnstance
(clsid, NULL,
CLSCTX_SERVER,
IID_IUnknown,

& pUnk)

L~ 1201

y

pUnk— Queryinterface L — 1202
(IID_IPersistFile, &pPF)

A

pbc—GetBindOptions |~ 1203
(&bindopts)

\ 4

pPF—oload (szPath, }—~1204
bindopts.grfMode)

Y

pPF—Queryinterface | — 1205
(iidResult, ppvResult)

Y

=)

FIG. 12

Patent Application Publication Mar. 15,2007 Sheet 13 of 54 US 2007/0061816 A1

CltemMoniker::
BindToObject

Retum -
(error}

pmkTolLeft— BindToObject
(pbc, NULL,
IID_IOleltemContainer,
&pOleCont)

- ~1302

! :
pOleCont— GetObject

(m_lpszitem, L—~.1303
BINDSPEED INDEFINITE,

pbc, idResult, ppvResult)

-

(e)

FIG. 13

Patent Application Publication Mar. 15,2007 Sheet 14 of 54 US 2007/0061816 A1

CCompositeMoniker:.
BindToObject

1401

pmkToleft
GetObject from .
RunningObjectTable
1402 A .
Is this 1404
in RunningObject Y : T -
Table Querylnterface of
? object from ROT

A

1405 (Return)

pmkToleft

NULL
?

: » ‘

mkNewleft = pmkTolLeft —»ComposeWith
zmkAIIButLast 1406 | (pmkAllButLast, FALSE, | 1407
&pmkNewleft)
s _
pmkLast —BindToObject
(pbc, pmkNewleft, L~ 1408
iidResult, ppvResult)

A

(Return)

FIG. 14

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 15 of 54

2061

JoqIUONWSYD

19.S31vS

€0G 1 —

JOYIUOWW) D

1O RAOTA-]

siy1 = jsejud

(

50}°7
g6l 'Old
JaxyjuoWalI40
LS L 000 LHEDND
Bpwd W
yopwd W

905 | —

yaowd = iseingjiyiwd
(unsayadd ‘ynsaypi lseTing|ivywd ‘2qd) welaoo Lpuig«-iseiud

N

JaqIUONWBYD

[OJR=KAS 4=
—

\

G0S L~

Vel 'Old
- JlUOWa)D
2051 A 191S31vS
L y6iyywd W JoruoWa|I4D
tml_v._EQlEf
105} fOOT LIHEDVD
W,;m_mxsale
tml_nglE!

YOS

sit

—

(nsayndd Ynsaypi ‘11NN '2qd) 103lqOo) puig syl

-
«
- o
® aslt ‘9id
S
m
S JBYIUONWSYD | JSYIUONBIISD
&
wn
-

200" LJHEDND

2051 A 18.1S31vS LOGL A"
siy) = jseywd Yoo jwd = YyeymaNywd

(UODBI0d JaulRILODWSHBION Al ‘Yo ImaNwd ‘oqd) j09lg00) puig —iseTHwd

o861 "Old
361 'Old | | JaYIUOWBIILD

JB¥IUOWAYD

J9YIUOWBIID
200 1dYEOD

2051 18153vS 051

00Q°1dyedND A ﬁ

LOS1 ~—1 A/

siy)

: WBRWd W
(uona|0d aurguodwayBIOl all “TINN '2qd) 1alqoo L puig «-yao ud yopwd W

- _ <
9061t /

siy)
(uoDs|0d ‘seurgiuoQWaNBI0l Ail “1INN '2gd) 103lqoo | puig +yatoywd

Patent Application Publication Mar. 15,2007 Sheet 16 of 54

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 17 of 54

= =4 %

R24

-0

Jauiejuo HWs}|8|O|

-0

3Ifisisiad|

mu aoepauiAianD
peo

O
allisisiad|

mw ajuAuan
umouNun| a%euauIAIBND
umouuny| 3%uejsu|alealDoD

108{qoo LpuIga)i4

o6l 'Ol

US 2007/0061816 A1

I.O .
JaulRUOQWRYB|O]
8|l Jisisiadi
T mu aoepaUIAIaND
s peoq
R
o
3
=
wn
~
S L O
(g\]
w allgisisiad!
- & |
b
epaujluan

nMa umousun| SOBHSIUIASND
=
2
=
2
=
=
&
=
2
=
2
lw mu 90UBjSU[B}BaIDO
E Lo JsuleIeRI00)
m _ _
g 139(qooLpuigalid
A

Patent Application Publication Mar. 15,2007 Sheet 19 of 54 US 2007/0061816 A1

IMoniker::
ComposeWith

Is
pmkRight
special
?

Retum special _— 1602
compose :

Does
caller want generic
compasition

CreateGenericComposite

(this, pmkRight, 1604 | *ppmkComposite = NULL | 1605
ppmComposite)

Y ‘ ' +
Return Retum
| (MK_E_NEEDGENERIC ,

FIG. 16

Y.

Patent Application Publication Mar. 15,2007 Sheet 20 of 54 US 2007/0061816 A1

CCompositeMoniker::
ComposeWith

CreateGenericComposite
(this, pmkRight,
ppmkComposite)

(rewm)

FIG. 17

ppmkComposite

- 1803

L m_pmkLeft

‘m_pmkRight «

- pmkFirst pmkRest
L~ 1801 L~ 1802

FIG. 18

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 21 of 54

061 '9Old

Y061 ~1
(1saxioIIInginyHwd)
a)sodwoywdd
g6L Old
$06 1 9061
1sayjosiding|ivywd >/ -1seyjoisdiPHwd
o 1S pjwd)

e

L0611 —A

aysodwoywdd

061 ~—1 €061 —
1o Inglviwd ﬁ 1sayjOISfHwd
co6lL
G06 L —
. sysodwodywdd

1siwd

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 22 of 54

202 9Ol4

(isugorseng|ivwd)
aysodwonywdd

g0z Ol4

v0c Old

1S1OEILd >/

Isi4oIseing)ivywd

o jsngyoisepiud)

(1sauwd ﬁ 1si14j0IsETINg|IvHwd

e

aysodwoywdd

jsoypjud ﬁ

aysodwoDywdd

Jsulywd

viZ ‘old

US 2007/0061816 A1

1sayoIsIginginiwd 4 1sayiois)igywd Isi4501s8HWwd 4 IS 4i01sEINg|IWHjwid

1sojwd | | Jsifwd

aysodwodywd

Patent Application Publication Mar. 15,2007 Sheet 23 of 54

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 24 of 54

212914

Isa40i1seINgiviwd

(isaOIssAinglyywd) ﬁ

syusodwonywd

gilc 'Old

(1sooisipiud
0 Jsn4jOIsewd)

Isndioisening|vwd

1sayjOIsIAingliydiwd ﬁ

aysodwonywd

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 25 of 54

2z ‘Ol

JONIUOWWIY Jayluowali4 Iayiuopaig Ja5IUONa|I4 Jayiuopa|i4 IHUONBLUNIOAIN
O O O 0]
CIITe IV ETN] SIX'L66) [fenuuy sjoafoid palj aJeys\JanIas)|
ﬂ
oyalp Supiom ayoud Jasn
‘a)ep
JaYlUoWwWa)| JaxuopaIoB N 19%IuoN3)I4 JoNUOWSElY {___ ssep
o _ 0] ©)
awooupsN - yodayiuaung sjoafold SWOH «_| _Bweu Jasn

;Jayluow paonpal

:uononpais Buunp
0} paj23uL0d sjoalqo |

Jayuow jeuiBuo

Patent Application Publication Mar. 15,2007 Sheet 26 of 54 US 2007/0061816 A1

CCompositeMoniker::
Reduce

2301

2302 : '
This— v £
m_fReduced ‘ppmkReduced = this —»Q Retun)
?
N
This— 2303 - m_pmklLeft—Reduce .
m_pmkLeft N (pbc, dwReduceHowFar, L — 2304 -
== ppmkToleft,
NL)?LL &pmkLeftReduced)
%

Return
(error)

This— 2306

m_pmkRight

m_pmkRight— Reduce
{(pbc, dwReduceHowFar, | 2307
NULL, &pmkRightReduced)

OK ||
K_S_REDUCED

TO_SELF
?

Return
(error)

Both

reduced to self
?

Y

: m_fReduced = TRUE |}~ ~2310
pmkCompositeReduced = -

CCompositeMoniker
::Create

(pmkLeftReduced, *ppmkReduced = this |~ 2311
pmkRightReduced) - ‘

L~ 2312 Y

4 Y
mkCompositeReduced
21 tReduged =TRUE T h~2313 C Return)

‘L (MK_S_REDUCED_TO_SELF)
*ppmkReduced = :
pmkCompasiteReduced 23

C Rei’um) I-?IG. 23

Patent Application Publication Mar. 15,2007 Sheet 27 of 54 US 2007/0061816 A1

(CAIiasMoniker::Reduce)

2401
N »
Y
Get network
volume 2402
Y
Get home .
directory 2403

pmkLeft =
| CNetVolumeMonikerCreate(...) [~ 2404

pmkRight = 2405
CFileMoniker::.Create(...)

A .
pmkCompositeReduced =

CompositeMoniker::Create |~ 2406
(pmkLeft, pmkRight)

Y

pmkCompositeReduced —»

m_fReduced = TRUE 2407
"ppmkReduced = L — 2408
pmkCompositeReduced

(feum)

FIG. 24

Patent Application Publication Mar. 15,2007 Sheet 28 of 54 US 2007/0061816 A1

@: ileMoniker::IsEqu@

pmkOtherMoniker
a FileMoniker

Return '
(_S_FALS_E) ‘

his—>m_cAnti

omkOtherMoniker—

Retum
(S_FALSE)

this—sm_szPath

HmkOtherMoniker—s

N Retum
{ (S_FALSE))

Retumn
(- (S_OK))

FIG. 25

Patent Application Publication Mar. 15,2007 Sheet 29 of 54 US 2007/0061816 A1

CCompositeMoniker::
IsEqual

Is
pmkQOtherMoniker
a composite
moniker

N Retum
(S_FALSE)

this—
m_pmklLeft—

IsEqual N Retumn .
pmkOtherMoniker—- (S_FALSE)
m _prr;kLeft) - .

this—
_pmkRight—
. isEqual

(pmkOtherMoniker—

m __pml;Right

Retum
(S_OK)

FIG. 26

Retum
(S_FALSE)

Patent Application Publication Mar. 15,2007 Sheet 30 of 54 US 2007/0061816 A1

CCompositeMoniker:
Hash

this>m_pmkLeft—
Hash(&dwHashLeft) [~ <701

this—>m_pmkRight—
Hash(&dwHashRight) [~ 2702

“pdwHash =
dwHashLeft ~ 2703
dwHashRight

!
(" reum)

FIG. 27

g8¢ ‘9ld

US 2007/0061816 A1

JOYIUONWAYD IYIUONB|I4D
1082~ o $08Z—{ ° aqans\
<
[T o]
[
(=
1 ﬁ
« Ja3IUOWaI4D 1HIVONIUYD ~
3 _ N
=]
) P O
~
S G08C — Jaans\ | zo8zZ — €082
o
v
Yo
—
«®
=
=
2 .
= V8l ‘Ol
=
5 L
= JNILONIUYD 18XIUON WD
(=}
=
2 1NN = o
= ‘
<« Z08Z — 1082 —A
=
e
«
[~™

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 32 of 54

TINN

808Z —

Jo)IUOWBI4D

L0870 —

08¢~

98¢ 9I4

IIUONAUYD

1082~

JOYIUOWIAYD

08¢ —

134IUONB|I4D

J1Qgnsy

908¢

Patent Application Publication Mar. 15,2007 Sheet 33 of 54 US 2007/0061816 A1

CCompasiteMoniker::
inverse

m_pmklLeft—Inverse
(&pmkLeftinverse) -~ 2901

m_pmkRight—Inverse
(&pmkRightinverse) - >2902

CreateGenencComposite

{pmkRightinverse, L — 2903
pmkleftinverse, ppmk)

(Retum)

FIG. 29

Patent Application Publication Mar. 15,2007 Sheet 34 of 54 US 2007/0061816 A1

@K_S_NEEDGEN ERIC

@temMoniker.:lnver%

Y

CreateAntiMoniker L~ 3001
(ppmk)

Y

(Retur)

FIG. 30

CltemMoniker::
ComposedWith

Is
pmkRight an
antimoniker

) L 3102
pmkRight—AnnihilateOne
(ppmkComposite)

3103

Does
caller want generic
composition

C Retum >
CreateGenericComposite

(this, pmkRight, — ~3104
ppmkComposite)

A

(ram)

FIG. 31

Patent Application Publication Mar. 15,2007 Sheet 35 of 54

CAntiMoniker::
AnnihilateOne

NULL [3202

3201
N Y
Y Y
“ppmk =
CAntiMoniker::Createl”™ 3203 *ppmk =
(m_count - 1)
C Retumn >
FIG. 32
CAntiMoniker::
ComposeWith

Is
pmkRight an

AntiMoniker
?

Does
caller want generic
composition

Retum (MK_S _
NEEDGENERIC)

sumCount =
m_count +
pmkRight—m_count

Y

US 2007/0061816 A1

— ~3302

— ~3303

CreateGeneric *ppmkComposite =
3305 —— Composite (this, CAntiMoniker::Create
v pmkRight, (sumCount)
ppmkComposite)
L

C Retum

S

FIG. 33

Patent Application Publication Mar. 15,2007 Sheet 36 of 54 US 2007/0061816 A1

)
£
2
&
(9]
(@]
&
a4 4 m
£
2
<
E
2 .
.9 GEJ
> 2
(>
a) <
/—)
o
& 3
(—> §

FIG. 34

temB .

=

Patent Application Public

CCompositeMonik -r.:
C

Is
pmkQther a
composite
maoniker

ation Mar. 15,2007 Sheet 37 of 54

e
ommonPreﬁxWrttD

pmkFirst—
CommonPrefixWith
(pmkOther,
ppmkPrefix)

3502

pmkFirst—
CommonPrefixWith
(pmkOtherFirst,
&pmkResult)

- 3505

3506

Y

Retum
(MK_S HIM)

)

[pmkAIBUtFirst—
CommonPrefixWith

&pmkResult2)

(pmkOtherAllButFirst,

3507

Retumn
{hresult)

pmkResult—
ComposeWith

ppmkPrefix)

(pmkResult2, FALSE,

C

-~ 3508

!
C

Return
MK_S_HIM

(result)
?

)

3511

Retum

“ppmkPrefix =
pmkOtherFirst

(hresuit))

- 3510

Y

L'ppmkPreﬁx = this }f\'351 2
]

FIG. 35

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 38 of 54 US 2007/0061816 A1

CFileMoniker:
CommonPrefixWith

Is

kOth MonikerCommonPrefi| 002 —_
FF’T M gkr a N »(this, pmkOther, ‘—’C Retum)
leMoniker miePrei)
pmkOther— 3603 cAnti = min

m_cAnti | =this—
m_cAnti
?

(pmkOther—m_cAnti,— 3606
this—»m_cAnti)

A 4
pcfmPrefix=
T 3604 cFileMoniker.:Create ™ 3607

(u u))

Scan
pmkGther—m_szPath
this—»>m_szPath

4

pcfmPrefix—m_cAnti
= cAnti 7 3608

Set result [~ ™ 3605

cAnti ==
this-—>m_cAnti

this—
m_szPath ==
NULL
?

Retum Q Retum Retum
(MK_S_HIM) (S_OK) : (MK_S_ME)

pmkOther—
m_szPath ==
NULL

Patent Application Publication Mar. 15,2007 Sheet 39 of 54 US 2007/0061816 A1
CltemMoniker::
CommonPrefixWith

this equal

to pmkOther
?

Retum
(MK_E_NOPREFIX)

"PpmkPrefix =

‘this
Retum
(MK_S US)

FIG. 37

3702

Patent Application Publication Mar. 15,2007 Sheet 40 of 54 US 2007/0061816 A1

CAntiMoniker::
CommonPrefixWith

3801

Is
pmkOther an

AntiMoniker-
?-

MonikerCommonPrefix
(this, pmkOther, 3802
ppmkPrefix)

(o)

3803

This—
m_count <=
pmkOther—
m_count

Y

*ppmkPrefix = _
pmkOther - 3804

*ppmkPrefix = this -~ >~ 3805

Y

Return \
< (MK_S_HIM))

This—
m_count ==
pmkOther—
m_count

Y

Retum | ' Retumn
(MK_S_ME) (MK_S_US)

FIG. 38

Patent Application Publication Mar. 15,2007 Sheet 41 of 54 US 2007/0061816 A1
@onikerCommonPreﬁxW@
pmkThis—»>CommonPrefixWith] —_ 3902

moniker

(pmkOther, ppmkPrefix)

?

C Retumn

)

Is

pmkOther
a composite
" moniker

ppmkPrefix = NULL

L~ 3904

A

prnkOther— CommonPrefix\With C

Return
(MK_E_NOPREFIX)

)

(pmkThis, ppmkPrefix) 3905

Retum
(MK_S_ME) -

)

Retum
(MS_S_HIM)

)

C .)

FIG. 39

Patent Application Publication Mar. 15,2007 Sheet 42 of 54 US 2007/0061816 A1

4003
Item D

ftem B

v

item A

4002
item D

FIG. 40

AntiMoniker

4001
Item C

Item B

Item A

viv Old

US 2007/0061816 A1

Z108Y:L OV

oLy —
STX 8UNMEBIEPWAIIUOUNSPOTBAD

LOLY

uon.oc33>_£coc>mtoam>uo

Patent Application Publication Mar. 15,2007 Sheet 43 of 54

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 44 of 54

gLy ‘Old

(Z1L.08Y:20p¥)Iexiuonwa) ° (S7X sunmelep\ijyiuounspodan; ovav__cos_m__“_
= ((2108Y" vav_mx_co_zeg_ o{(STX OUNMEIEP)IBNIUONBS o(} = IUWY)SNUONAUY)) ° (o0p-BuUNMAILIUOUASHOdN D) 1aNIUOIN3IlS

13)IUOW3JI40 JRHIUONIUYD
STX8UNM

BOLY — gep,| 07— L= w
< SESTVTE B
JaMIUOWBND . JSYIUONWRND | o oun
ElEp)
Atuoun
B0LY 1 2108420V, 501y —,Z108Y:L0Y.| YO 4 spodan,

1 L

4

4
9oLt 4/ : CoLy /

0] Yiedannesy sinjosqy

Patent Application Publication Mar. 15,2007 Sheet 45 of 54 US 2007/0061816 A1

CComposite::
RelativePathTo

pmkOther a
composite moniker

nCount =0 > 4202

pEnumOther—
Next (&pmk2) [4203

<

pEnumThis
Next (Bpmki) [4204

pmk1! = NULL
&&pmk2! = NULL
?

pmk1 is
equal to
pmk2
?

nCount++ L—~ 4207

FIG. 42A

Patent Application Publication Mar. 15,2007 Sheet 46 of 54 US 2007/0061816 A1
4208
Y
pmk1—Relative-
PathTo (pmk2, 4209
&pmk1inverse)
Y 4215
au ——4211
pmk1—Inverse
(&pmk1inverse) pmk1 =

pmkiinverse

= pmk1inverse

|

FALSE, &pmkThis-
Taillnverse)

N 4213 4212
“‘ppmkRelPath = pEnumOther
pmkQOther Next (&pmk2)

v
Retumn
(MK_S_HiMm)
4216
pmk1! = NULL
2
Get Inverse of
(PEnumThis, 4217
&pmkTemp)
y
y pmkTemp—
N CompaoseWith
pmkThisTaillnverse | — 4220 (pmk1inverse, L~ 4219

FIG. 42B @7

]

Patent Application Publication Mar. 15,2007 Sheet 47 of 54 US 2007/0061816 A1

A

‘ o CdmposeV\flthEﬁum
EI’BIC(BtherTaI! = PR (pmk2, pEnumOther, |~ 4223
~ : &pmkOtherTail)

pmkThisTail-
Inverse 1=
NULL

y 4

pmkThisTaillnverse ,
‘PpmkRelPath = : —ComposeWith
pmkOtherTail }-—~4225 (pmkOtherTail, 4226
FALSE, '
ppmkReiPath)

y

C Retun 3

FIG. 42C

Patent Application Publication Mar. 15,2007 Sheet 48 of 54 US 2007/0061816 A1

(>_,

pEnumThis =~
Next (&pmk1)

[~ T 4227

equal to
pmkOther
?.

h

Getlnverse of 4229 :
(pEnumThis,
ppmkRelPath)

N
pmk1—> 4230
RelativePathTo
(pmkOther, &pmk2)
4231

Y . 4232
*ppmkRelPath = Return
pmkOther

Getlnverse of
(pPEnumThis,
&pmkTemp)

"~ 4233

l

pmkTemp —»
ComposeWith
(pmk2, FALSE,
ppmkRelPath)

4234

FIG. 42D

Patent Application Publication Mar. 15,2007 Sheet 49 of 54

@nikerRelativePathTo}

“ s
pmkSrc a

compositemoniker
?

pmkSrc equal

to first of pmkDest
?

pmkSrc—
RelativePathTo
(pmkFirstOfDest,
&pmkPartialRelPath)

pmkDest

r

Retum
{MK_S_HIM)

'ppmkRelPéth = L4311

pmkSrc—
RelativePathTo
(pmkDest,
ppmkRelPath)

!
(" rem)

*ppmkRelPath =
pmkAlIButFirstOf
Dest

Y
Retumn
: C (NO_ERROR))

- >4308

CreateGeneric-
Composite

pmkAIlIButFirstOfDest,
ppmkRelPathTo) -

(-)

FIG. 43

4302

fCalledFromMethod™>-Y.

US 2007/0061816 A1

/—4303

‘ppmkRelPath =
pmkDest

v

. Retum .
(MS_S_HIM)

-~ ~4305

- 4307

(pmkPartialRelPath, |~ ~4310

Patent Application Publication Mar. 15,2007 Sheet 50 of 54

GCom_positeMoniker.:En@

3

Create
CCompositeMonikerEnum
object

L~ 4401

Y

ppenumMoniker—
m_pcm = this

L~ 4402

4

ppenumMoniker—
m_fForward = fForward

- 4403

ppenumMoniker—
m_pBase = NULL

-~ 4404

ppenumMoniker—
m_pTop = NULL

-~ 4405

A4
ppenumMoniker—
m_pNext =
ppenumMoniker—

-~ 4406

GetNext(this)

r

C Retum)

FIG. 44

US 2007/0061816 A1

Patent Application Publication Mar. 15,2007 Sheet 51 of 54

CCompositeMoniker::
num:.GetNext

pmkRover = pmk |~ 4501

US 2007/0061816 A1

Is

Retum
(NULL)

pmkRover
a composite
moniker

Retum
(pmkRover)

?

This—Push
(pmkRover)

L~ 4504

4 \ 4

pmkRover = pmkRover =
pmkRover— -~ 4506 pmkRover—
m_pmkLeft m_pmkRight

-~ ~4507

l |

FIG. 45

Patent Application Publication Mar. 15,2007 Sheet 52 of 54

CCompositeMoniker
num::Next

count=0 -~ 4601

4602
{count <

celt)&& m_pNext! =~>N
NULL

?

“reelt = m_pNext /-\4503

count++ - 4604

reelt++ L~ 4605

4

m_pNext=Pop() 4606

FIG. 46

pCeitFetched
- I=NULL
?

US 2007/0061816 A1

*pCeltFetched =

count

- ~4608

<

(v)

Patent Application Publication Mar. 15,2007 Sheet 53 of 54

C PointerMonﬂ(en:
Create

pPM =
new pointer moniker

- 4701

A

pPM—m_pUnk L~ 4702

= plUnk
. ‘ -
C Retum)

FIG. 47

US 2007/0061816 A1

CPointerMoniker::
BindToObject

Y
m_pUnk—Query
Interface (iidResult,

| ppvResult)

> 4801

y

(rm)

FIG. 48

Patent Application Publication Mar. 15,2007 Sheet 54 of 54 US 2007/0061816 A1

S 5
Cgr) %
s {
_E !
g =)
O M
(T}
N
(an]
(9)]
{
51
=
| o
2| 5
80 9
el E
a.
(@]

US 2007/0061816 Al

METHOD AND SYSTEM FOR NAMING AND
BINDING OBJECTS

[0001] This application is a continuation-in-part of U.S.
Ser. No. 07/909,983, filed Jul. 6, 1992, now pending.

TECHNICAL FIELD

[0002] This invention relates generally to a computer
method and system for referencing objects and, more spe-
cifically, to a method and system for naming objects and
binding to objects

BACKGROUND OF THE INVENTION

[0003] Current document processing computer systems
allow a user to prepare compound documents. A compound
document is a document that contains information in various
formats. For example, a compound document may contain
data in text format, chart format, numerical format, etc. FIG.
1 is an example of a compound document. In this example,
the compound document 101 is generated as a report for a
certain manufacturing project. The compound document 101
contains scheduling data 102, which is presented in chart
format; budgeting data 103, which is presented in spread-
sheet format; and explanatory data 104, which is presented
in text format. In typical prior systems, a user generates the
scheduling data 102 using a project management computer
program and the budgeting data 103 using a spreadsheet
computer program. After this data has been generated, the
user creates the compound document 101, enters the
explanatory data 104, and incorporates the scheduling data
102 and budgeting data 103 using a word processing com-
puter program.

[0004] FIG. 2 shows a method for incorporating the sched-
uling data, budgeting data, and explanatory data into the
compound document. A user generates scheduling data
using the project management program 201 and then stores
the data in the clipboard 203. The user also generates
budgeting data using the spreadsheet program 204 and then
stores the data in the clipboard 203. The clipboard 203 is an
area of storage (disk or memory) that is typically accessible
by any program and is used to transfer data between pro-
grams. The project management program 201 and the
spreadsheet program 204 typically store the data into the
clipboard in a presentation format. A presentation format is
a format in which the data is easily displayed on an output
device. For example, the presentation format may be a
bitmap that can be displayed with a standard bitmap block
transfer operation (BitBlt). The storing of data into a clip-
board is referred to as “copying” to the clipboard.

[0005] After data has been copied to the clipboard 203, the
user starts up the word processing program 206 to create the
compound document 101. The user enters the explanatory
data 104 and specifies the locations in the compound docu-
ment 101 to which the scheduling data and budgeting data
that are in the clipboard 203 are to be copied. The copying
of data from a clipboard to a document is referred to as
“pasting” from the clipboard. The word processing program
206 then copies the scheduling data 102 and the budgeting
data 103 from the clipboard 203 into the compound docu-
ment 101 at the specified locations. Data that is copied from
the clipboard into a compound document is referred to as
“embedded” data. The word processing program 206 treats
the embedded data as simple bitmaps that it displays with a

Mar. 15, 2007

BitBlt operation when rendering the compound document
101 on an output device. In some prior systems, a clipboard
may only be able to store data for one copy command at a
time. In such a system, the scheduling data can be copied to
the clipboard and then pasted into the compound document.
Then, the budgeting data can be copied to the clipboard and
then pasted into the compound document.

[0006] Since word processors typically process only text
data, users of the word processing program can move or
delete embedded data, but cannot modify embedded data,
unless the data is in text format. Thus, if a user wants to
modify, for example, the budgeting data 103 that is in the
compound document 101, the user must start up the spread-
sheet program 204, load in the budgeting data 103 from a
file, make the modifications, copy the modifications to the
clipboard 203, start up the word processing program 206,
load in the compound document 101, and paste the modified
clipboard data into the compound document 101.

[0007] Some prior systems store links to the data to be
included in the compound document rather than actually
embedding the data. When a word processing program
pastes the data from a clipboard into a compound document,
a link is stored in the compound document. The link points
to the data (typically residing in a file) to be included. These
prior systems typically provide links to data in a format that
the word processing program recognizes or treats as pre-
sentation format. For example, when the word processing
program 206 is directed by a user to paste the scheduling
data and budgeting data into the compound document by
linking, rather than embedding, the names of files in which
the scheduling data and budgeting data reside in presentation
format are inserted into the document. Several compound
documents can contain links to the same data to allow one
copy of the data to be shared by several compound docu-
ments.

[0008] A link is conceptually a path name to the data.
Some prior systems store two-level links. A two-level link
identifies both a file and an area within the file. For example,
the two-level link “\BUDGET.XLS\R2C2:R7C4” identifies
a spreadsheet file “\BUDGET.XLS” and the range of cells
“R2C2:R7C4.” The use of two-level links limits the source
of the links to data that is nested one level within a file. If
a file contains multiple spreadsheets, then a two-level link
could identity the file and a spreadsheet, but could not
identify a range within the spreadsheet. It would be desirable
to have a method and system of supporting links to an
arbitrary level.

[0009] Since the present invention is described below
using object-oriented programming, an overview of well-
known object-oriented programming techniques is provided.
Two common characteristics of object-oriented program-
ming languages are support for data encapsulation and data
type inheritance. Data encapsulation refers to the binding of
functions and data. Inheritance refers to the ability to declare
a data type in terms of other data types.

[0010] In the C++ language, object-oriented techniques
are supported through the use of classes. A class is a
user-defined type. A class declaration describes the data
members and function members of the class. For example,
the following declaration defines data members and a func-
tion member of a class named CIRCLE.

US 2007/0061816 Al

class CIRCLE
{ public:
int X, y;
int radius;
void draw();

Variables x and y specify the center location of a circle and
variable radius specifies the radius of the circle. These
variables are referred to as data members of the class
CIRCLE. The function draw is a user-defined function that
draws the circle of the specified radius at the specified
location. The function draw is referred to as a function
member of class CIRCLE. The data members and function
members of a class are bound together in that the function
operates on an instance of the class. An instance of a class
is also called an object of the class.

[0011] In the syntax of C++, the following statement
declares the objects a and b to be of type class CIRCLE.

[0012] CIRCLE a, b;

This declaration causes the allocation of memory for the
objects a and b. The following statements assign data to the
data members of objects a and b.

[0013] ax=2;
[0014] ay=2;
[0015] a.radius=1;
[0016] b.x=4;
[0017] b.y=5;
[0018] b.radius=2;

The following statements are used to draw the circles
defined by objects a and b.

[0019]
[0020] b.draw();

[0021] A derived class is a class that inherits the charac-
teristics—data members and function members—of its base
classes. For example, the following derived class CIRCLE-
_FILL inherits the characteristics of the base class CIRCLE.

a.draw();

Mar. 15, 2007

class (e.g., CIRCLE_FILL). A class that does not inherit the
characteristics of another class is a primary (root) class (e.g.,
CIRCLE). A class whose characteristics are inherited by
another class is a base class (e.g., CIRCLE is a base class of
CIRCLE_FILL). A derived class may inherit the character-
istics of several classes, that is, a derived class may have
several base classes. This is referred to as multiple inherit-
ance.

[0022] A derived class may specify that a base class is to
be inherited virtually. Virtual inheritance of a base class
means that only one instance of the virtual base class exists
in the derived class. For example, the following is an
example of a derived class with two nonvirtual base classes.

[0023] class CIRCLE 1:CIRCLE{ ...}

[0024] class CIRCLE 2 : CIRCLE { ... };

[0025] class PATTERN : CIRCLE_ 1, CIRCLE_2{...};

In this declaration class PATTERN inherits class CIRCLE
twice nonvirtually through classes CIRCLE 1 and
CIRCLE__ 2. There are two instances of class CIRCLE in
class PATTERN.

[0026] The following is an example of a derived class with
two virtual base classes.

[0027] class CIRCLE 1 : virtual CIRCLE { ... };

[0028] class CIRCLE 2 : virtual CIRCLE { ... };

[0029]

[0030] The derived class PATTERN inherits class
CIRCLE twice virtually through classes CIRCLE 1 and
CIRCLE_ 2. Since the class CIRCLE is virtually inherited
twice, there is only one object of class CIRCLE in the
derived class PATTERN. One skilled in the art would
appreciate virtual inheritance can be very useful when the
class derivation is more complex.

class PATTERN: CIRCLE 1, CIRCLE_2{...};

[0031] A class may also specify whether its function
members are virtual. Declaring that a function member is
virtual means that the function can be overridden by a
function of the same name and type in a derived class. In the
following example, the function draw is declared to be
virtual in classes CIRCLE and CIRCLE_FILL.

class CIRCLE_FILL : CIRCLE
{ public:
int pattern;
void fill();

This declaration specifies that class CIRCLE_FILL includes
all the data and function members that are in class CIRCLE
in addition to those data and function members introduced in
the declaration of class CIRCLE_FILL, that is, data member
pattern and function member fill. In this example, class
CIRCLE_FILL has data members x, y, radius, and pattern
and function members draw and fill. Class CIRCLE_FILL is
said to “inherit” the characteristics of class CIRCLE. A class
that inherits the characteristics of another class is a derived

class CIRCLE
{ public:
int X, y;
int radius;
virtual void draw();

b
class CIRCLE_FILL : CIRCLE
{ public:
int pattern;
virtual void draw();

1

[0032] The C++ language provides a pointer data type. A
pointer holds values that are addresses of objects in memory.
Through a pointer, an object can be referenced. The follow-
ing statement declares variable c_ptr to be a pointer on an

US 2007/0061816 Al

object of type class CIRCLE and sets variable c_ptr to hold
the address of object c.

[0033] CIRCLE *c_ptr;
[0034]

Continuing with the example, the following statement
declares object a to be of type class CIRCLE and object b to
be of type class CIRCLE_FILL.

[0035] CIRCLE a;
[0036] CIRCLE_FILL b;

c_ptr=&c;

The following statement refers to the function draw as

defined in class CIRCLE.
[0037] a.draw(),

Whereas, the following statement refers to the function draw
defined in class CIRCLE_FILL.

[0038] b.draw(),

[0039] Moreover, the following statements type cast
object b to an object of type class CIRCLE and invoke the
function draw that is defined in class CIRCLE_FILL.

CIRCLE *c¢_ ptr;
c_ptr = &b;

c_ptr—>draw(); // CIRCLE__FILL::draw()

Thus, the virtual function that is called is function CIRCLE-
_FILL::.draw.

[0040] FIG. 3 is a block diagram illustrating typical data
structures used to represent an object. An object is composed
of instance data (data members) and member functions,
which implement the behavior of the object. The data
structures used to represent an object comprise instance data
structure 301, virtual function table 302, and the function
members 303, 304, 305. The instance data structure 301
contains a pointer to the virtual function table 302 and
contains data members. The virtual function table 302
contains an entry for each virtual function member defined
for the object. Each entry contains a reference to the code
that implements the corresponding function member. The
layout of this sample object conforms to the model defined
in U.S. patent application Ser. No. 07/682,537, entitled “A
Method for Implementing Virtual Functions and Virtual
Bases in a Compiler for an Object Oriented Programming
Language,” which is hereby incorporated by reference. In
the following, an object will be described as an instance of
a class as defined by the C++ programming language. One
skilled in the art would appreciate that objects can be defined
using other programming languages.

[0041] An advantage of using object-oriented techniques
is that these techniques can be used to facilitate the sharing
of objects. In particular, object-oriented techniques facilitate
the creation of compound documents. A compound docu-
ment (as described above) is a document that contains
objects generated by various computer programs. (Typically,
only the data members of the object and the class type are
stored in a compound document.) For example, a word
processing document that contains a spreadsheet object
generated by a spreadsheet program is a compound docu-

Mar. 15, 2007

ment. A word processing program allows a user to embed a
spreadsheet object (e.g., a cell) within a word processing
document. To allow this embedding, the word processing
program is compiled using the class definition of the object
to be embedded to access function members of the embed-
ded object. Thus, the word processing program would need
to be compiled using the class definition of each class of
objects that can be embedded in a word processing docu-
ment. To embed an object of a new class into a word
processing document, the word processing program would
need to be recompiled with the new class definition. Thus,
only objects of classes selected by the developer of the word
processing program can be embedded. Furthermore, new
classes can only be supported with a new release of the word
processing program.

[0042] To allow objects of an arbitrary class to be embed-
ded into compound documents, interfaces are defined
through which an object can be accessed without the need
for the word processing program to have access to the class
definitions at compile time. An abstract class is a class in
which a virtual function member has no implementation
(pure). An interface is an abstract class with no data mem-
bers and whose virtual functions are all pure.

[0043] The following class definition is an example defi-
nition of an interface. In this example, for simplicity of
explanation, rather than allowing any class of object to be
embedded in its documents, a word processing program
allows spreadsheet objects to be embedded. Any spreadsheet
object that provides this interface can be embedded, regard-
less of how the object is implemented. Moreover, any
spreadsheet object, whether implemented before or after the
word processing program is compiled, can be embedded.

class ISpreadSheet
{ virtual void File() = 0;
virtual void Edit() = 0;
virtual void Formula() = 0;
virtual void Format() = 0;
virtual void GetCell (string RC, cell *pCell) = 0;
virtual void Data() = 0;

The developer of a spreadsheet program would need to
provide an implementation of the interface to allow the
spreadsheet objects to be embedded in a word processing
document. When the word processing program embeds a
spreadsheet object, the program needs access to the code that
implements the interface for the spreadsheet object. To
access the code, each implementation is given a unique class
identifier. For example, a spreadsheet object developed by
Microsoft Corporation may have a class identifier of
“MSSpreadsheet,” while a spreadsheet object developed by
another corporation may have a class identifier of
“LTSSpreadsheet.” A persistent registry in each computer
system is maintained that maps each class identifier to the
code that implements the class. Typically, when a spread-
sheet program is installed on a computer system, the per-
sistent registry is updated to reflect the availability of that
class of spreadsheet objects. So long as a spreadsheet
developer implements each function member defined by the
interface and the persistent registry is maintained, the word
processing program can embed the developer’s spreadsheet
objects into a word processing document.

US 2007/0061816 Al

[0044] Various spreadsheet developers may wish, how-
ever, to implement only certain function members. For
example, a spreadsheet developer may not want to imple-
ment database support, but may want to support all other
function members. To allow a spreadsheet developer to
support only some of the function members, while still
allowing the objects to be embedded, multiple interfaces for
spreadsheet object are defined. For example, the interfaces
IDatabase and IBasic may be defined for a spreadsheet
object as follows.

class IBasic
{ virtual void File() = 0;
virtual void Edit() = 0;
virtual void Formula() = 0;
virtual void Format() = 0;
virtual void GetCell (string RC, cell *pCell) = 0;

class IDatabase
{ virtual void Data() = 0;

)

Each spreadsheet developer would implement the IBasic
interface and, optionally, the IDatabase interface.

[0045] At run time, the word processing program would
need to determine whether a spreadsheet object to be embed-
ded supports the IDatabase interface. To make this determi-
nation, another interface is defined (that every spreadsheet
object implements) with a function member that indicates
which interfaces are implemented for the object. This inter-
face is named [Unknown (and referred to as the unknown
interface or the object management interface) and is defined
as follows.

class IUnknown
{ virtual HRESULT QueryInterface (REFIID iid, void **ppv) = 0;
virtual ULONG AddRef() = 0;
virtual ULONG Release () = 0;

}

[0046] The IUnknown interface defines the function mem-
ber (method) Querylnterface. The method QueryInterface is
passed an interface identifier (e.g., “IDatabase”) in param-
eter iid (of type REFIID) and returns a pointer to the
implementation of the identified interface for the object for
which the method is invoked in parameter ppv. If the object
does not support the interface, then the method returns a
false. (The type HRESULT indicates a predefined status, and
the type ULONG indicates an unsigned long integer.)

CODE TABLE 1

HRESULT XX::QueryInterface(REFIID iid, void **ppv)
{ ret = TRUE;

switch (iid)

{ case IID_ IBasic:
*ppv = *pIBasic;
break;

case IID_ IDatabase:
*ppv = *plDatabase;
break;

Mar. 15, 2007

CODE TABLE 1-continued

case IID_ IUnknown:

ret = FALSE;

}
if (ret == TRUE){AddRef();};
return ret;

}

[0047] Code Table 1 contains C++ pseudocode for a
typical implementation of the method Querylnterface for
class XX, which inherits the class IlUnknown. If the spread-
sheet object supports the IDatabase interface, then the
method Querylnterface includes the appropriate case label
within the switch statement. The variables plbasic and
pIDatabase point to a pointer to the virtual function tables of
the Ibasic and IDatabase interfaces, respectively. The
method Querylnterface invokes the method AddRef
(described below) to increment a reference count for the
object of class XX when a pointer to an interface is returned.

CODE TABLE 2

void XX::AddRef() {refcount++;}
void XX::Release() {if (--refcount==0) delete this;}

[0048] The interface IUnknown also defines the methods
AddRef and Release, which are used to implement reference
counting. Whenever a new reference to an interface is
created, the method AddRef is invoked to increment a
reference count of the object. Whenever a reference is no
longer needed, the method Release is invoked to decrement
the reference count of the object and, when the reference
count goes to zero, to deallocate the object. Code Table 2
contains C++ pseudocode for a typical implementation of
the methods AddRef and Release for class XX, which
inherits the class IUnknown.

[0049] The IDatabase interface and IBasic interface
inherit the IUnknown interface. The following definitions
illustrate the use of the IUnknown interface.

class IDatabase : public IUnknown
{ public:
virtual void Data() = 0;

class IBasic : public IUnknown
{ public:
virtual void File() = 0;
virtual void Edit() = 0;
virtual void Formula() = 0;
virtual void Format() = 0;
virtual void GetCell (string RC, cell *pCell) = 0;

[0050] FIG. 4 is a block diagram illustrating a sample data
structure of a spreadsheet object. The spreadsheet object
comprises object data structure 401, [Basic interface data
structure 403, IDatabase interface data structure 404, the
virtual function tables 402, 405, 406 and methods 407
through 421. The object data structure 401 contains a pointer

US 2007/0061816 Al

to the virtual function table 402 and pointers to the [Basic
and IDatabase interface. Each entry in the virtual function
table 402 contains a pointer to a method of the IUnknown
interface. The IBasic interface data structure 403 contains a
pointer to the virtual function table 405. Each entry in the
virtual function table 405 contains a pointer to a method of
the IBasic interface. The IDatabase interface data structure
404 contains a pointer to the virtual function table 406. Each
entry in the virtual function table 406 contains a pointer to
a method of the IDatabase interface. Since the IBasic and
IDatabase interfaces inherit the IUnknown interface, each
virtual function table 405 and 406 contains a pointer to the
methods Querylnterface, AddRef, and Release. In the fol-
lowing, an object data structure is represented by the shape
422 labeled with the interfaces through which the object
may be accessed.

[0051] The following pseudocode illustrates how a word
processing program determines whether a spreadsheet
object supports the IDatabase interface.

if (pIBasic— > Querylnterface(“IDatabase”, &plDatabase) = = S__OK)
* IDatabase supported

else

* IDatabase not supported

The pointer pIBasic is a pointer to the IBasic interface of the
object. If the object supports the IDatabase interface, the
method Querylnterface sets the pointer pIDatabase to point
to the IDatabase data structure and returns the value S_OK.

[0052] Normally, an object can be instantiated (an instance
of the object created in memory) by a variable declaration or
by the “new” operator. However, both techniques of instan-
tiation need the class definition at compile time. A different
technique is needed to allow a word processing program to
instantiate a spreadsheet object at run time. One technique
provides a global function CreatelnstanceXX, which is
defined in the following.

[0053] static void CreatelnstanceXX (REFIID iid, void
**ppv)=0;
The method CreatelnstanceXX (known as a class factory)

instantiates an object of class XX and returns a pointer ppv
to the interface of the object designated by parameter iid.

SUMMARY OF THE INVENTION

[0054] Tt is an object of the present invention to provide a
method and system for generating links to source data
incorporated within a compound document.

[0055] 1t is another object of the present invention for
binding links to source data.

[0056] 1t is another object of the present invention for
interfacing with these links in a manner that is independent
of the underlying source data.

[0057] Tt is another object of the present invention for
linking to data nested to an arbitrary level within a com-
pound document.

[0058] These and other object, which will become appar-
ent as the invention is more fully described below, are
provided by a method and system for naming and binding

Mar. 15, 2007

data objects. In a preferred embodiment, a link to an object
incorporated is stored as a moniker. A moniker is an iden-
tifier object that encapsulates the information needed to
access the incorporated data and provides methods which
bind to the incorporated data.
BRIEF DESCRIPTION OF THE DRAWINGS

[0059] FIG. 1 is a block diagram of an example of a
compound document.

[0060] FIG. 2 is a block diagram illustrating scheduling
data, budgeting data, and explanatory data.

[0061] FIG. 3 is a block diagram illustrating typical data
structures used to represent an object.

[0062] FIG. 4 is a block diagram illustrating a sample data
structure of a spreadsheet object.

[0063] FIG. 5 is a block diagram showing a sample
compound document.

[0064] FIGS. 6,7, and 8 are block diagrams illustrating the
use of a moniker by a word processing program.

[0065] FIG. 9 is a block diagram of a generic composite
moniker.

[0066] FIGS. 10A, 10B, and 10C are block diagrams
illustrating moniker composition.

[0067] FIG. 11 is a flow diagram of the method Bind-
ToObject of the class CFileMoniker.

[0068] FIG. 12 is a flow diagram of the function FileBind-
ToObject.

[0069] FIG. 13 is a flow diagram of the method Bind-
ToObject of the class CltemMoniker.

[0070] FIG. 14 is a flow diagram of the method Bind-
ToObject of the class CCompositeMoniker.

[0071] FIGS. 15A through 15G are block diagrams illus-
trating the binding to an object identified by a generic
composite moniker.

[0072] FIG. 16 is a flow diagram illustrating the overall
behavior of implementations of the method ComposeWith.

[0073] FIG. 17 is a flow diagram of the method Compose-
With of the class CCompositeMoniker.

[0074] FIGS. 18, 19A, 19B, 19C, 20A, 20B, 20C, 21A,
21B, and 21C are block diagrams illustrating sample generic
composite monikers.

[0075] FIG. 22 is a block diagram illustrating moniker
reduction.

[0076] FIG. 23 is a flow diagram of the method Reduce of
the class CCompositeMoniker.

[0077] FIG. 24 is a flow diagram of the method Reduce of
the sample class CAliasMoniker.

[0078] FIG. 25 is a flow diagram of the method IsEqual of
the class CFileMoniker.

[0079] FIG. 26 is a flow diagram of the method IsEqual of
the class CCompositeMoniker.

[0080] FIG. 27 is a flow diagram of the method Hash of
the class CCompositeMoniker.

[0081] FIGS. 28A, 28B, and 28C are block diagrams
illustrating composition with inverse monikers.

US 2007/0061816 Al

[0082] FIG. 29 is a flow diagram of the method Inverse of
the class CCompositeMoniker.

[0083] FIG. 30 is a flow diagram of the method Inverse of
the class CltemMoniker.

[0084] FIG. 31 is a flow diagram of the method Compose-
With of the class CltemMoniker.

[0085] FIG. 32 is a flow diagram of the method Annihi-
lateOne of the class CAntiMoniker.

[0086] FIG. 33 is flow diagram of the method Compose-
With of the class CAntiMoniker.

[0087] FIG. 34 is a block diagram illustrating a common
prefix of generic composite monikers.

[0088] FIG. 35 is a flow diagram of the method Common-
PrefixWith of the class CCompositeMoniker.

[0089] FIG. 36 is a flow diagram of the method Common-
PrefixWith of the class CFileMoniker.

[0090] FIG. 37 is a flow diagram of the method Common-
PrefixWith of the class CltemMoniker.

[0091] FIG. 38 is a flow diagram of the method Common-
PrefixWith of the class CAntiMoniker.

[0092] FIG. 39 is a flow diagram of the function Moni-
kerCommonPrefix With.

[0093] FIG. 40 is a block diagram illustrating a relative
path to moniker.

[0094] FIGS. 41A and 41B are block diagrams illustrating
a usage of the method RelativePathTo.

[0095] FIGS. 42A, 42B, and 42C comprise a flow diagram
of the method RelativePathTo of the class CComposite-
Moniker.

[0096] FIG. 43 is a flow diagram of the function Moni-
kerRelativePathTo.

[0097] FIG. 44 is a flow diagram of the method Enum of
the class CCompositeMoniker.

[0098] FIG. 45 is a flow diagram of the method GetNext
of the class CCompositeMonikerEnum.

[0099] FIG. 46 is a flow diagram of the method Next of the
class CCompositeMonikerEnum.

[0100] FIG. 47 is a flow diagram of the method Create of
the class CPointerMoniker.

[0101] FIG. 48 is a flow diagram of the method Bind-
ToObject of the class CPointerMoniker.

[0102] FIG. 49 is a block diagram illustrating a pointer
moniker.

DETAILED DESCRIPTION OF THE
INVENTION

[0103] The present invention provides a computer imple-
mented method and system for naming and binding to linked
data. In a preferred embodiment, a compound document that
incorporates linked data stores a persistent data handle,
called a “moniker,” which is a reference to the link source.
A moniker is an identifier object that contains information to
identify the linked data and provides methods through which
a program can bind to the linked data. A binding method

Mar. 15, 2007

returns an instance of an interface through which the linked
data can be accessed. A moniker may link to data that is itself
embedded data within another compound document. For
example, a moniker may link to a range of cells within a
spreadsheet table that is contained in a word processing
document. A moniker may link to data at any level within a
compound document. During execution of the binding
method, several applications may be invoked to locate the
link data. For example, to bind to the range of cells within
a spreadsheet table that is within a word processing docu-
ment, the word processing program may be invoked to
locate the embedded spreadsheet table and the spreadsheet
program may be invoked to bind to the range of cells. The
present invention defines an interface through which a
moniker is accessed. A moniker can identify source data that
is stored persistently or non-persistently.

[0104] In a preferred embodiment, monikers can be com-
posed to form a composite moniker. A composite moniker is
conceptually a path to a source object that is identified by the
concatenation of the monikers. For example, if a moniker
specifying a certain path (e.g., “c:\reports™) is composed
with a moniker specifying a certain file name (e.g.,
“QQ3.doc”) then the result is the complete path name to the
file (e.g., “ci\reports\Q3.doc”). Each composite moniker
comprises a plurality of component monikers. The present
invention provides a method and system for decomposing a
composite moniker. In a preferred embodiment, each moni-
ker provides a method that is used to retrieve each compo-
nent moniker.

[0105] In a preferred embodiment, a moniker provides a
reducing method which returns another moniker that is a
more efficient representation of a moniker to the same source
object. The reducing method may interpret a macro script
that identifies the source object. Alternatively, the reducing
method may evaluate a query request that identifies the
source object.

[0106] In a preferred embodiment, a moniker provides an
equality method and a hash method. The equality method
determines whether two monikers identify the same source
object. The hash method provides a hash value for a moni-
ker. The equality method and hash method are used to
implement hash tables indexed by monikers.

[0107] In a preferred embodiment, a moniker provides an
inverse method that generates another moniker that is the
inverse of the moniker. When a moniker is composed with
its inverse, the result is NULL. The inverse moniker is said
to annihilate the moniker. An inverse moniker may be used,
for example, to remove portions of a path and is analogous
to the “..” functionality of traditional file systems.

[0108] In a preferred embodiment, a moniker provides a
common prefix with method and a relative path to method.
The common prefix with method determines the common
prefix portion of two monikers. For example, if one moniker
identifies the object “c:\reports\(Q3.doc” and another moni-
ker identifies the object “c:\reports\data\Q3.xls” the com-
mon prefix is “c:\reports”. The relative path to method
generates relative path to moniker that when composed with
one moniker results in specified moniker. For example, the
moniker specifying the path that is the inverse of a moniker
identifying object “Q3.doc” composed with a moniker
specifying the path “data\Q3.xls” is a relative path to moni-
ker from the moniker “c:\reports\Q3.doc” to the moniker

US 2007/0061816 Al

“c:\reports\data\Q3.xlIs”. Relative path to monikers are pref-
erably used when identifying objects by relative paths from
another object.

[0109] In a preferred embodiment, the present invention
provides several implementation monikers including a file
moniker, an item moniker, a generic composite moniker, a
pointer moniker, and an anti moniker. Each implementation
is referred to as a moniker class and has a class identifier. A
file moniker provides a moniker that conceptually is a path
name in a file system. An item moniker provides a moniker
that conceptually identifies a portion of an object. A generic
composite moniker provides a mechanism for composing
monikers with arbitrary implementations. For example, a file
moniker can be composed with an item moniker to specify
a portion of a file. A generic composite moniker is preferably
created by the composing method of the file moniker. A
pointer moniker is a moniker that wraps an instantiated
source object in a moniker. A pointer moniker contains a
pointer to the instantiated source object and when a pointer
moniker is bound, it returns the pointer. An anti moniker is
a moniker that is the inverse of other monikers. When a
moniker is composed with an anti moniker, the result is
NULL. If a generic composite moniker is composed with an
anti moniker, the result is a moniker comprising all but the
last component moniker. The anti moniker annihilates the
last component moniker of a generic composite moniker.

[0110] Ina preferred embodiment of the present invention,
an application program that creates a compound document
controls the manipulation of linked or embedded data gen-
erated by another application. In object-oriented parlance,
this data is referred to as an object. (The reference Budd, T.,
“An Introduction to Object-Oriented Programming,” Addi-
son-Wesley Publishing Co., Inc., 1991, provides an intro-
duction to object-oriented concepts and terminology.) An
object that is either linked or embedded into a compound
document is “contained” within the document. Also, a
compound document is referred to as a “container” object
and the objects contained within a compound document are
referred to as “containee” objects. Referring to FIGS. 1 and
2, the scheduling data 102 and budgeting data 103 are
containee objects and the compound document 101 is a
container object. The user can indicate to the word processor
that the user wants to edit a containee object, such as the
budgeting data 103. When the user indicates that the bud-
geting data 103 is to be edited, the word processing program
determines which application should be used to edit the
budgeting data (e.g., the spreadsheet program) and launches
(starts up) that application. The user can then manipulate the
budgeting data using the launched application, and changes
are reflected in the compound document. The same proce-
dure is used whether the budgeting data is stored as an
embedded or linked object.

[0111] FIG. 5 is a block diagram showing a sample com-
pound document. The weekly project report 501 is the same
compound document of FIG. 1. The executive summary
report 503, contains a budgeting chart 505 that is linked to
the weekly project 501. The weekly project 501 contains an
embedded spreadsheet 502. The embedded spreadsheet 502
was created by the spreadsheet program 204 in FIG. 2. The
data for this spreadsheet, the budget for the project, is stored
within the storage the weekly project report 501 because it
is an embedded object. The executive summary document
503 is a compound document which contains native text 504

Mar. 15, 2007

and a contained object, the budget chart 505. The budget
chart 505 is linked to the data contained within in the
spreadsheet 502 which is embedded in the compound docu-
ment 501.

[0112] In a preferred embodiment, application programs
(“applications”) cooperate using object linking and embed-
ding facilities to create and manipulate compound docu-
ments. An application that creates a compound document is
referred to as a client application, and an application that
creates and manipulates containee objects are referred to as
server applications. An application can behave as both a
client server. Referring to FIG. 2, the project management
program 201 and the spreadsheet program 204 are server
applications, and the word processing program 206 is a
client application. A client application is responsible for
selection of the various objects within the container object
and for invoking the proper server application to manipulate
the selected containee object. A server application is respon-
sible for manipulating the contents of the containee objects.

[0113] In a preferred embodiment, applications are pro-
vided with an implementation-independent Application Pro-
gramming Interface (API) that provides the object linking
and embedding functionality. Appendix A contains a
detailed description of a preferred object linking and embed-
ding system. The API is a set of functions that are invoked
by client and server applications. These functions manage,
among other things, the setup and initialization necessary for
client applications to send and receive messages and data to
and from server applications. The API provides functions to
invoke the correct server application to act upon a particular
containee object and to manipulate containee objects.

[0114] In addition, the object linking and embedding API
defines “interfaces™ through which client applications can
communicate with their contained objects. An interface is a
set of methods which abide by certain input, output, and
behavior rules. If a contained object supports a particular
interface, the client application can invoke the methods of
that interface to effect the defined behavior. In a preferred
embodiment, the client application is not allowed direct
access to the object data; it manipulates the object using the
supported interfaces. A client application is bound to a
contained object through a pointer to an interface. The client
application accesses the object by invoking the methods of
the interface. To access the object data, the methods may
send messages to the server application requesting the
specified access. In a preferred embodiment, messages are
sent between clients and servers using interprocess commu-
nications mechanisms provided by the underlying operating
system.

[0115] An example will help illustrate the relationship
between a client process and a server process. Referring
again to FIG. 1, if a user wants to edit the budgeting data 103
of the compound document 101, then the following
sequence of events occurs. First, the user starts up the word
processor program, which is dynamically linked to the
object linking and embedding API. Second, the user opens
the compound document for editing. Third, the user selects
the budgeting data, which is a containee object, and indi-
cates that the selected object is to be edited. Fourth, the
client application invokes a client API routine for perform-
ing an action on an object passing the routine a handle
(which uniquely identifies the selected object) to the object

US 2007/0061816 Al

and an indicator that the action is edit. Fifth, the client API
routine determines that the spreadsheet program provides
the actions for the budgeting data. Sixth, the client API code
starts up the spreadsheet program as a server process, if it is
not already started. Seventh, the word processor application
sends a message to the spreadsheet program that it should
edit the budgeting data. Eighth, the server API code receives
the request to edit and invokes a routine in the spreadsheet
program for editing the data. When editing is complete, the
spreadsheet routine returns to the server API code. The
server API code sends a message to the word processor
application to indicate that editing is complete. The client
API code receives the message and returns from its invo-
cation. Upon return from the invocation, the word processor
application knows that the editing is complete.

[0116] In addition to the client and server API, the object
linking and embedding facilities of the present invention
provide information to client and server applications through
a persistent global “registry.” This registry is a database of
information such as (1) for each type of object, the server
application that implements the object type, (2) the actions
that the each server application provides to client applica-
tions, (3) where the executable files for each server appli-
cation are located, and (4) whether each server application
has an associated object handler. An object handler is a
collection of functions in a dynamic link library. An object
handler can be used to provide certain functions without
launching the server.

[0117] FIGS. 6,7, and 8 are block diagrams illustrating the
use of a moniker by a word processing program. In FIG. 6,
the document “RPT.DOC”601 contains a link 602 to the
chart file 603. The link 602 is a moniker that is persistently
stored in the document 601. The persistent storage of the
moniker includes the class identifier “CLSID_FileMoniker”
and the name of the chart file 603 (“Q3.CHT”). When the
word processing program displays the chart of chart file 603,
it first instantiates a moniker object of type CLSID_FileM-
oniker, requests the moniker to load its persistent data (e.g.,
“Q3.CHT”), and then requests the moniker to bind to the file
indicated by the loaded data. FIG. 7 is a block diagram
illustrating the instantiation of a moniker object. The word
processing program first reads in the class identifier of link
602. To determine how to instantiate an object of that class,
the program accesses the global registry 704. The global
registry includes a mapping from class identifiers to the
location of a class factory to create an instance of that class.
For example, table 704B indicates that the class factory for
the moniker class identified by CLSID_FileMoniker is con-
tained in the dynamic link library named “FileMkr.DLL.”
The program links to the class factory code within the
dynamic link library 706. The program invokes the function
Createlnstance to create an instance of an object of class
CFileMoniker 702 (a file moniker). The program then
requests the [PersistStream interface of the file moniker. The
IPersistStream interface (described in detail in Appendix A)
provides methods through which the internal state (e.g.,
“Q3.CHT”) of a moniker can be saved to persistent storage
and then loaded into memory from the persistent storage.
Using the methods of the IPersistStream interface, the
program loads the moniker internal state persistently stored
in link 602 into the file moniker 702. The program then
requests the IMoniker interface to the file moniker 702. The
pointer to the IMoniker interface is stored in pointer 701.
FIG. 8 is a block diagram illustrating the binding of the file

Mar. 15, 2007

moniker 702 to the chart file 603. When a binding method
of the file moniker 702 is invoked, the method determines
the class identifier for the file identified by the file moniker
by accessing the global registry table 704A. The class
identifier for files with suffix “CHT” is CLSID_Chart. The
program then retrieves the class factory for the class CLSID-
_Chart from the registry table 704B. The program links to
the dynamic link library “CHART.DLL”806. The program
then invokes the Createlnstance method within the dynamic
link library 806, which creates an instance of a chart object
807 and returns a pointer to the IDataObject interface. The
IDataObject interface (described in detail in Appendix A)
provides methods to pass data to and from an object (e.g.,
methods GetData and SetData). Through the chart object
807, the program can access the chart file 603 through the
chart server 808.

[0118] In a preferred embodiment, a moniker is an object
that supports the IMoniker interface of Code Table 3. The
IMoniker interface inherits the IPersistStream interface;
thus, monikers can be saved to and loaded from streams. The
persistent form of a moniker contains the class identifier
(CLSID) of its implementation which is used during the
loading process, and new classes of monikers can be created
transparently to clients.

[0119] The IMoniker interface provides for binding to the
object to which it points, which is supported by the method
BindToObject. This method takes as a parameter the inter-
face identifier by which the caller wishes to talk to the
object, runs whatever algorithm is necessary in order to
locate the object, then returns a pointer of that interface type
to the caller. Each moniker class can store arbitrary data its
persistent representation, and can run arbitrary code at
binding time.

[0120] Ifthere is an identifiable piece of persistent storage
in which the object referenced by the moniker is stored, then
the method BindToStorage can be used to access it. Many
objects have such identifiable storage (e.g., a file), but some,
such as the objects which are the ranges in a spreadsheet do
not.

[0121] In a preferred embodiment, a particular moniker
class is designed to be one step along the path (a component)
to a data source. These components can be composed
together to form a moniker which represents the complete
path to the data source. For example, the moniker stored
inside the chart of FIG. 5 might be a generic composite
moniker formed from three component as illustrated in FIG.
9. This composite is itself a moniker; it is a moniker which
is a sequenced collection of other composite monikers. The
composition is generic in that it has no knowledge of the
component monikers involved other than that they are
monikers.

CODE TABLE 3

class IMoniker : IPersistStream {

virtual HRESULT BindToObject(pbe, pmkToLeft,
iidResult, ppvResult) = 0;

virtual HRESULT BindToStorage(pbe, pmkToLeft,
iid, ppvObj) = 0;

virtual HRESULT Reduce(pbe, dwReduceHowFar,
ppmkToLeft, ppmkReduced) = 0;

virtual HRESULT ComposeWith(pmkRight,

fOnlyIfNotGeneric, ppmkComposite)

US 2007/0061816 Al

CODE TABLE 3-continued

virtual HRESULT Enum(fForward, ppenmMoniker) = 0;

virtual HRESULT IsEqual(pmkOtherMoniker) = 0;

virtual HRESULT Hash(pdwHash) = 0;

virtual HRESULT IsRunning(pbe, pmkToLeft,
pmkNewlyRunning) = 0;

virtual HRESULT GetTimeOfLastChange(pbc,
pmkToLeft, pfiletime) = 0;

virtual HRESULT Inverse(ppmk) = 0;

virtual HRESULT CommonPrefixWith(pmkOther,
ppmkPrefix) = 0;

virtual HRESULT RelativePathTo(pmkOther,
ppmkRelPath);

virtual HRESULT GetDisplayName(pbc, pmkToLeft,
IplpszDisplayName) = 0;

virtual HRESULT ParseDisplayName(pbe, pmkToLeft,
IpszDisplayName, pcchEaten,
ppmkOut) = 0;

virtual HRESULT IsSystemMoniker(pdwMksys);

i

[0122] The example of FIGS. 6, 7, and 8 illustrate the use
of a moniker that identifies a file. The present invention
allows moniker to be combined (composed) to an arbitrary
level. FIGS. 10A, 10B, and 10C illustrate moniker compo-
sition. For example, if the chart file 603 contained multiple
charts, it would be useful to designate a specific chart to be
the source of a link. In one embodiment of the present
invention, a moniker class named “CChartMoniker” could
be implemented by the developer of the chart program. A
chart moniker 1001 would contain a name of a chart file
(“Q3.CHT”) and an indication of a chart within the file
(“CHART?2”). The methods of the class CChartMoniker
would have a behavior similar to that provided by the class
CFileMoniker plus behavior needed to bind to the identified
chart. As described above, the present invention allows two
monikers to be composed to form a third moniker. By
composing monikers, a developer can use an implementa-
tion developed by someone else. For example, the developer
of the chart program could define and implement the class
CChartMoniker to contain only an indication of a chart
within a file. The class CChartMoniker can be developed
assuming that an instance of chart moniker 1003 will be
composed with a file moniker (e.g., file moniker 1002). In a
preferred embodiment, to facilitate the composing of moni-
kers, a moniker of class CCompositeMoniker is defined and
implemented. The class CCompositeMoniker encapsulates
any two monikers into single generic composite moniker.
The generic composite moniker 1004 encapsulates the file
moniker 1002 and the chart moniker 1003. A link to a chart
is stored as a generic composite moniker which encapsulates
a file moniker and a chart moniker. The client of the link
need only know that the moniker supports the IMoniker
interface.

[0123] In the following, each method of the IMoniker
interface is defined. In addition, several implementations of
various methods are described. In particular, implementa-
tions of methods of the classes CFileMoniker, CCompos-
iteMoniker, and CltemMoniker are described. The class
CFileMoniker (a file moniker) is a moniker class that
identifies a path name in a file system. When a file moniker
is bound to, it determines the class of the file by using the
persistent global registry, ensures that the appropriate class
server is running, and then requests the server to open the
file. The class CCompositeMoniker (a generic composite

Mar. 15, 2007

moniker) is a moniker class that identifies a composition of
two monikers (a left and a right moniker). When a generic
composite moniker is bound to, it invokes the binding
method of the right moniker indicating that the left moniker
is composed with the right moniker. The right moniker
performs its binding behavior, which may include invoking
the binding method of the left moniker. The class Cltem-
Moniker (an item moniker) is a moniker class that imple-
ments behavior common to the identification of containee
objects. An item moniker can be used to identify, for
example, a chart contained within a chart file or a range
within a spreadsheet. An item moniker uses the 10leltem-
Container interface (described in detail in Appendix A) to
interact with the container. Code Table 4 contains the class
definitions for a file moniker, a generic composite moniker,
an item moniker, an anti moniker, and a pointer moniker. An
anti moniker and a pointer moniker are described below in
detail. A file moniker contains a string (m_szPath) indicating
a path name and a count of anti monikers (m_cAnti). A
generic composite moniker contains a pointer to the left
moniker (m_pmkLeft) and a pointer to the right moniker
(m_pmkRight) of the generic composite and a flag (m_{Re-
duced) indicating whether the composite is reduced. An item
moniker contains a pointer to a string (m_lpszltem) that
defines the item.

CODE TABLE 4

class CFileMoniker: IMoniker

{ char FAR * m__szPath;
UINT m__cAnti;
class CCompositeMoniker: IMoniker
{ LPMONIKER m_ pmkLeft;
LPMONIKER m_ pmkRight;
BOOL m__fReduced;
}
class CltemMoniker: IMoniker
{ char FAR * m__Ipszltem;
}
class CAntiMoniker: IMoniker
{ ULONG m__count;
class CPointerMoniker: IMoniker
{ LPUNKNOWN m__punk;

IMoniker::BindToObject
HRESULT IMoniker::BindToObject(pbc, pmkToLeft, iidResult,
ppvResult)

[0124] The method BindToObject locates and loads the
object semantically referred to by this moniker according to
the interface specified by iidResult and returns a pointer to
the object through ppvResult. In the following, the term
“this moniker” refers to the moniker for which a method is
invoked. In general, each class of moniker is designed to be
used as one component in a generic composite moniker
which gives the complete path to the referenced object. In a
generic composite, any component moniker has a certain
prefix of the generic composite to its left, and a certain suffix
to its right. If the method BindToObject is invoked on a
component moniker, then the implementation of BindToOb-
ject typically requires certain services of the object indicated
by the prefix to its left. ltem monikers, for example, require
the IOleltemContainer interface of the object to their left.
The Item Moniker implementation of the method Bind-
ToObject (as described below) recursively calls pmkTol eft-
>BindToObject in order to obtain this interface. If the

US 2007/0061816 Al

10

moniker does not need services of the object to its left, yet
one is provided by the caller nevertheless, no error occurs.
Rather, the moniker ignores the object to its left. If the object
indicated by the moniker does not exist, then the error
MK_E_NOOBJECT is returned.

[0125] In general, binding a moniker can be a complicated
process, since it may need to launch servers, open files, etc.
This may involve binding to other objects, and the binding
components of a generic composite to the right of certain
components will require the same other objects. In order to
avoid loading the object, releasing it, then having it loaded
again later, the method BindToObject can use the bind
context passed through the pbc parameter to defer releasing
objects until the binding process overall is complete. The
bind context is described in detail in Appendix A.

[0126] Binding to a moniker a second time typically
returns the same running object as binding the first time,
rather than reloading it again from storage. This function-
ality is supported with a running object table. The running
object table is a lookup table keyed by a moniker whose
values are pointers to the corresponding now-running object.
As objects become running, they register themselves in this
table. Implementations of the method BindToObject uses
this table to determine if the object to which they point is
already running. More precisely, if the passed pmkToLeft
parameter is NULL (and this is not an error; that is, the
moniker does not require something to its left), then the
moniker fully reduces itself, then looks itself up in the
running object table, and returns the pointer to the object
found there. The running object table is described in detail
in Appendix A.

[0127] The following table describes the parameters of the
method BindToObject:

Mar. 15, 2007

object to the left is in the running object table, then the
method continues at step 1103, else the method continues at
step 1105. In step 1103, the method retrieves a pointer to the
object to the left from the running object table. In step 1104,
the method retrieves the requested interface from the object
to the left by invoking the method Querylnterface of the
object to the left and then returns. In step 1105, the method
retrieves the class identifier corresponding to the path
(m_szPath) of this moniker. The class identifier is preferably
retrieved from a persistent global registry that maps file
name suffixes to class identifiers. In step 1106, the method
invokes the function FileBindToObject to bind to the file and
returns the requested interface. The method then returns.

[0129] FIG. 12 is a flow diagram of the function FileBind-
ToObject. This function is passed a class identifier and a
requested interface. This function instantiates an object of
the passed class identifier and returns a pointer to the
requested interface. In step 1201, the function creates an
instance of an object of the passed class identifier and
retrieves the [Unknown interface. In step 1202, the function
retrieves the IPersistFile interface from the instantiated
object. The IPersistFile interface provides methods to load
and save files and is described in detail in Appendix A. In
step 1203, the function initializes binding options, which are
described in detail in Appendix A. In step 1204, the function
invokes the method Load of the IPersistFile interface to load
the data for the created object. In step 1205, the function
retrieves the requested interface from the created object and
returns.

[0130] FIG. 13 is a flow diagram of the method Bind-
ToObject of the class CltemMoniker. In step 1301, if no
moniker to the left of this moniker is specified, then the
method returns an error, else the method continues at 1302.
An item moniker identifies a containee object and requires

Argument Type Description
pbe IBindCtx* the bind context to be used for this binding operation.
pmkToLeft IMoniker* the moniker of the object to the left of this moniker.

iidResult 1D
connect to the object.

the requested interface by which the caller wishes to

ppvResult void** on successful return, a pointer to the instantiated
object is placed here, unless BINDFLAGS__JUSTTESTEXISTENCE
was specified in the binding options, in which case NULL
may be returned instead.

return value HRESULT S_OK, MK_E NOOBIJECT, STG_E_ACCESSDENIED,

MK__E_EXCEEDEDDEADLINE,
MK_E_CONNECTMANUALLY,

MK__E_ INTERMEDIATEINTERFACENOTSUPPORTED.

E__ OUTOFMEMORY, E_ NOINTERFACE

[0128] FIG. 11 is a flow diagram of the method Bind-
ToObject of the class CFileMoniker. This method deter-
mines the class identifier of the file, determines the server for
that file, launches the server (if necessary), and requests the
server to open and bind to the file. In step 1101, if a moniker
to the left of this moniker is specified, then the method
continues at step 1105, else the method continues at step
1102. In steps 1102 through 1104, the method determines
whether the object identified by the moniker to the left is in
the running object table. If the object to the left is in the
running object table, then the requested interface (iidResult)
is retrieved from that object and returned. In step 1102, if the

a moniker to a container object to its left. In step 1302, the
method invokes the method BindToObject of the moniker of
the object to the left. The method requests the 1O0leltem-
Container interface from the object to the left. In step 1303,
the method invokes the method GetObject of the 10leltem-
Container interface and passes the item name (m_lpszltem)
and the requested interface. The method then returns with
the interface retrieved by the method GetObject.

[0131] FIG. 14 is a flow diagram of the method Bind-
ToObject of the class CCompositeMoniker. The method
binds to a generic composite moniker in a right-to-left
manner. Conceptually; a generic composite moniker for-

US 2007/0061816 Al

wards the bind request to its last component moniker
informing the last component moniker of the moniker to its
left in the composite. The last component moniker, if it
needs to, recursively binds to the object to its left. In step
1401, if no moniker to the left of this moniker is specified,
the method continues at step 1402, else the method contin-
ues at step 1405. In step 1402, if this moniker is in the
running object table, then the method continues at step 1403,
else the method continues at step 1405. In step 1403, the
method retrieves a pointer to the object from the running
object table. In step 1404, the method retrieves the requested
interface of the object by invoking the method QuerylInter-
face of the object and returns. In steps 1405 through 1408,
the method invokes the method BindToObject of the last
component moniker of this moniker passing a moniker
comprising the prefix component monikers as the moniker to
the left. In step 1405, if no monikers to the left of this
moniker is specified, then the method continues at step 1406,
else the method continues at step 1407. In step 1406, the
method creates a new left moniker that contains all but the
last component moniker of this moniker. The method then
invokes the method BindToObject of the last component
moniker of this moniker passing it the newly-created left
moniker and the requested interface in step 1408 and returns.
In step 1407, the method composes the moniker to the left
with all but the last component moniker of this moniker by
invoking the method ComposeWith of the moniker to the
left. The method then invokes the method BindToObject of
the last component moniker of this moniker passing it the
newly-created composed moniker and the identifier of the
requested interface in step 1408 and returns.

[0132] FIGS. 15A through 15G are block diagrams illus-
trating the binding to an object identified by a generic
composite moniker. FIG. 15A illustrates the generic com-
posite moniker that is to be bound. The generic composite
moniker comprises components 1501, 1502, and 1503. The
component monikers 1501, 1502, and 1503 represent a
reference to an object identified by
“C:\Q3RPT.DOC\SALESTBL\R2C2:R7C4”. The compo-
nent moniker 1501 is the first component moniker of the
generic composite moniker, and the component moniker
1503 is the last component moniker of the generic composite
moniker. The component monikers 1502 and 1503 are all but
the first component monikers of the generic composite
moniker, and the component monikers 1501 and 1502 are all
but the last component monikers of the generic composite
moniker. These component monikers are composed using
generic composite monikers 1504 and 1505. To bind to the
object identified by the generic composite moniker 1504, the
method BindToObject is invoked indicating that there is no
moniker to the left and indicating the identifier of a
requested interface. Since moniker 1504 is a generic com-
posite moniker, the method represented by the flow diagram
of FIG. 14 is executed. Since there is no moniker to the left
and since for this example the generic composite moniker
1504 is not in the running object table, the method continues
at step 1406. In step 1406, the method creates the generic
composite moniker 1506 that contains all but the last com-
ponent moniker of the generic composite moniker 1504. In
step 1408, the method invokes the method BindToObject of
the last component moniker 1503 passing the generic com-
posite moniker 1506 as the moniker to the left and the
identifier of the requested interface. Since the component
moniker 1503 is an item moniker, the method represented by

Mar. 15, 2007

the flow diagram of FIG. 13 is executed. Since a moniker to
the left is specified, step 1302 is executed. In step 1302, the
method invokes the method BindToObject of the moniker to
the left (generic composite moniker 1506) passing no moni-
ker to the left and requesting the IOleltemContainer inter-
face. Since the generic composite moniker 1506 is a generic
composite moniker, the method represented by the flow
diagram of FIG. 14 is executed. Since no moniker to the left
is specified, the method continues at step 1406. In step 1406,
the method sets the new left moniker to the moniker 1501.
In step 1408, the method invokes the method BindToObject
of the item moniker 1502 passing the new left moniker 1501
and requesting the passed interface, which is the interface to
the IOleltemContainer. Since the item moniker 1502 is an
item moniker, the method represented by the flow diagram
of FIG. 13 is executed. Since there is a moniker to the left
is specified, step 1302 is executed. In step 1302, the method
invokes the method BindToObject of the moniker to the left
(file moniker 1501). Since the file moniker 1501 is a file
moniker, the method represented by the flow diagram of
FIG. 11 is executed. Since no moniker to the left is specified,
the method continues at step 1105. In steps 1105 and 1106,
the method binds to the file object and returns the requested
interface as shown in FIG. 15G. The invocation of the
method BindToObject of the item moniker 1503 eventually
in step 1303 invokes the method GetObject of the IOleltem-
Container interface returned in step 1302 to retrieve the
requested interface.

IMoniker::ComposeWith

RESULT IMoniker::Compose With(pmkRight, fOnlyIfNot-
Generic, ppmkComposite)

[0133] This method ComposeWith returns a new moniker
which is a composite formed with this moniker on the left
and the passed moniker (pmkRight) on the right. There are
two kinds of composite monikers: those composite monikers
that know nothing about their component monikers other
than that they are monikers (a generic composite moniker),
and those composite monikers that know more (a special
composite moniker). For example, a file moniker containing
a relative path may be composed on to the end of another file
moniker. The resulting composite moniker could be a new
file moniker containing the complete path. The new file
moniker is a special composition. A special composition is
useful for monikers that are capable of collapsing a path
within a storage domain to a more efficient representation in
a subsequent reduction.

[0134] Each moniker class may have a set of other kinds
of special monikers that can be composed onto the end of it
in a non-generic way. Each implementation of the method
ComposeWith examines the passed moniker on the right
(pmkRight) to see if it is such a special moniker for the
implementation. If the specified moniker on the right is
special, then the implementation does whatever is appropri-
ate for that special case. If it is not, then the passed flag
fOnlylfNotGeneric controls what occurs. If flag fOnlyIfNot-
Generic is true, then NULL is passed back through param-
eter ppmkComposite and the status MK_E_NEEDGE-
NERIC returned; if fOnlylfNotGeneric is false, then a
generic composite moniker is created using the function
CreateGenericComposite and returned.

[0135] 1If the specified moniker on the right (pmkright)
completely annihilates this moniker, the resulting composite

US 2007/0061816 Al

is empty and the parameter ppmkComposite is set to NULL
and the status S_OK returned.

[0136] Composition of monikers is an associative opera-
tion. That is, if A, B, and C are monikers, then

(AcB)oC
is always equal to
Ac(BcC)

where o represents the composition operation.

[0137] The following table describes the parameters of the
method ComposeWith:

Argument Type Description
pmkRight IMoniker* the moniker to compose onto the
end of the receiver.
fOnlyIfNotGeneric BOOL controls whether a composite
moniker should be returned when
the right moniker is not a
special moniker for this moniker.
ppmkComposite IMoniker* on exit, the resulting composite

moniker. Possibly NULL.

return value HRESULT S_OK, MK_E_NEEDGENERIC

[0138] FIG. 16 is a flow diagram illustrating the overall
behavior of implementations of the method ComposeWith.
In step 1601, if the moniker to the right (pmkRight) is
special, then the method continues at step 1602, else the
method continues at step 1603. In step 1602, the method
performs a composition associated with the special moniker
and returns. In step 1603, if the caller wants a generic
composition when no special composition occurs (fOnly-
IfNotGeneric==FALSE), then the method continues at step
1604, else the method continues at step 1605. In step 1604,
the method creates a generic composite moniker by invoking
the function CreateGenericMoniker and returns. In step
1605, the method returns an indication that composite moni-
ker is NULL and sets the return flag to indicate that no
special or generic composition occurred.

[0139] FIG. 17 is a flow diagram of the method Compose-
With of the class CCompositeMoniker. The method invokes
the function CreateGenericComposite (described below)
and returns.

CODE TABLE 4

CreateGenericComposite (pmkFirst, pmkRest, ppmkComposite)

Casel:
pmkFirst— > ComposeWith (pmkRest, TRUE, ppmkComposite)
if (no composition occurred)
CCompositeMoniker::Create (pmkFirst, pmkRest,
ppmkComposite)
Case2:
pmkFirst— > ComposeWith (pmkFirstOfRest, TRUE, &pmk)
if (no composition occurred)
CCompositeMoniker::Create(pmkFirst, pmkRest,
ppmkComposite)
else
if (pmk! = NULL)
CreateGenericComposte (pmk,
pmkAllButFirstOfRest, ppmkComposite)
else
*ppmkComposite = pmkAllButFirstOfRest

Mar. 15, 2007

CODE TABLE 4-continued

Case3:
pmkLastOfFirst- > ComposeWith(pmkRest, TRUE, &pmbk);
if (no composition occurred)
CCompositeMoniker::Create(pmkFirst, pmkRest,
ppmkComposite)
else
if (pmk! = NULL)
CreateGenericComposite (pmkAllButLastOfFirst,
pmk, ppmkComposite)

else
*ppmkComposite = pmkAllButLastOfFirst
Case4:
pmkLastOfFirst- > ComposeWith (pmkFirstOfRest, TRUE,
&pmk)

if (no composition occurred)
CCompositeMoniker::Create(pmkFirst, pmkRest,
ppmkComposite)
else
if (pmk! = NULL)
CreateGenericComposite
(pmkAllButLastOfFirst, pmk, &pmk2)
CreateGenericComposite (pmk2,
pmkAlIButFirstOfRest, ppmkComposite)
else
CreateGenericComposite
(pmkAllButLastOfFirst,
pmkAlIButFirstOfRest, ppmkComposite)

CreateGenericComposite

HRESULT CreateGenericComposite(pmkFirst, pmkRest,
ppmkComposite)

[0140] The function CreateGenericComposite allocates
and returns a new generic composite moniker. The param-
eters pmkFirst and pmkRest point to the first and trailing
monikers that are to comprise the generic composite moni-
kers, respectively. Either pmkFirst or pmkRest may be a
generic composite moniker, or another kind of moniker. The
following table describes the parameters of the function
CreateGenericComposite:

Argument Type Description

pmkFirst IMoniker* the first moniker in the new composite.

pmkRest IMoniker* the trailing (rest) moniker in the new
composite.

ppmkComposite IMoniker* a pointer to the new composite.

return value HRESULT S_OK, E_ OUTOFMEMORY

[0141] Code Table 4 contains C++ pseudocode for the
function CreateGenericComposite. The function handles
four specific cases. The first case occurs when neither the
first moniker (pmkFirst) nor the rest moniker (pmkRest) are
generic composite monikers. The second case occurs when
the first moniker is not a generic composite moniker, but the
rest moniker is a generic composite moniker. The third case
occurs when the first moniker is a generic composite moni-
ker, but the rest moniker is not a generic composite moniker.
The fourth case occurs when both the first moniker and the
rest moniker are generic composite monikers.

[0142] In the first case, the function CreateGenericCom-
posite invokes the method ComposeWith of the first moniker
passing the rest moniker and specifying that a composition

US 2007/0061816 Al

should occur only if not generic. If the rest moniker is not
a special moniker for the first moniker, then no composition
occurs and the function creates a composite moniker by
invoking the method Create of the class CCompositeMoni-
ker passing the first moniker and the rest moniker. The
method Create of the class CCompositeMoniker creates a
generic composite moniker that points to the specified
monikers and returns a pointer to the created moniker. FIG.
18 illustrates the resulting generic composite moniker 1803
of the first case when the rest moniker 1802 is not a special
moniker of the first moniker 1801. In the second case, the
function CreateGenericComposite invokes the method
ComposeWith of the first moniker passing the first compo-
nent moniker of the rest moniker. If the first component
moniker of the rest moniker is not a special moniker for the
first moniker, then no composition occurs and the method
creates a composite moniker by invoking the method Create
of the class CCompositeMoniker passing the first moniker
and the rest moniker. FIG. 19A illustrates a representative
resulting generic composite moniker 1905 when the first
component moniker 1903 of the rest moniker 1902 is not a
special moniker of the first moniker 1901. If, however, a
composition of the first moniker and the first component of
the rest moniker occurs and a moniker is returned, then the
function recursively calls the function CreateGenericCom-
posite to compose the moniker returned with all but the first
component moniker of the rest moniker. FIG. 19B illustrates
the resulting generic composite moniker 1907 that contains
the composite moniker 1906, which is the composition of
the first moniker and the first component moniker of the rest
moniker, and contains the moniker 1904, which includes all
but the first component moniker of the rest moniker. If the
composition of the first moniker and the first component
moniker of the rest moniker resulted in an annihilation of the
monikers (pmk==NULL), then the function returns a pointer
to a moniker formed by all but the first component moniker
of the rest moniker as illustrated in FIG. 19C. In the third
case, the function CreateGenericComposite invokes the
method ComposeWith of the last component moniker of the
first moniker passing the rest moniker. If the rest moniker is
not a special moniker for the last component moniker of the
first moniker, then no composition occurs and the function
creates a composite moniker by invoking the method Create
of the class CCompositeMoniker passing the first moniker
and the rest moniker as illustrated by the representative
generic composite moniker in FIG. 20A. If, however, a
composition occurs, and a moniker is returned, then the
method recursively invokes the function CreateGeneric-
Composite passing all but the last component moniker of the
first component moniker and the returned moniker as indi-
cated in FIG. 20B. If, however, the composition of the first
moniker with the first component moniker of the rest moni-
ker resulted in an annihilation of the monikers, then the
function returns a moniker comprising all but the last
component moniker of the first moniker as the composite
moniker as illustrated by FIG. 20C. In the fourth case, the
function CreateGenericComposite invokes the method
ComposeWith of the last component moniker of the first
moniker passing the first component moniker of the rest
moniker. If the first component moniker of the rest moniker
is not a special moniker for the last component moniker of
the first moniker, then no composition occurs and the
function invokes the method Create of the class CCompos-
iteMoniker passing the first moniker and the rest moniker

Mar. 15, 2007

resulting in the sample generic composite moniker of FIG.
21A. If, however, a composition does occur without anni-
hilation, then the function recursively invokes the function
CreateGenericComposite passing the composed moniker
and all but the last component moniker of the first moniker.
The function then recursively invokes the function Create-
GenericComposite passing the resulting composite moniker
and all but the first component moniker of the rest moniker
resulting in the representative composite moniker of FIG.
21B. If the composition results in annihilation of the last
component moniker of the first moniker and the first com-
ponent moniker of the rest moniker, then the function
recursively invokes the function CreateGenericComposite
passing all but the last component moniker of the first
moniker and all but the first component moniker of the rest
moniker resulting in the representative generic composite
moniker of FIG. 21C.

IMoniker::Reduce

HRESULT IMoniker::Reduce(pbe,
ppmkTolLeft, ppmkReduced)

[0143] The method Reduce requests a moniker to re-write
itself into another equivalent moniker. This method returns
a new moniker that will bind to the same object, but does so
in a more efficient way. This capability has several uses:

[0144] Tt enables the construction of user-defined mac-
ros or aliases as new kinds of moniker classes. When
reduced, the moniker to which the macro evaluates is
returned.

[0145] Tt enables the construction of a kind of moniker
which tracks data as it moves about. When reduced, the
moniker of the data in its current location is returned.

dwReduceHowFar,

[0146] On certain file systems which support an ID-
based method of accessing files that is independent of
file names, a file moniker could be reduced to a
moniker which contains one of these IDs.

[0147] FIG. 22 shows an example of moniker reduction.
This example illustrates the reduction of a moniker which
names the net income entry for this year’s report in the
“Projects” directory of the current user’s home directory.
(Note that the particular classes of monikers used here are
for illustrative purposes only.) Several monikers in this
example are reduced to something completely different, and
some bind to something during their reduction, but some do
not. For example, to reduce the alias “Home”, the reduction
must access the information that “Home” was an alias for
“Userver\share\fred”. Monikers may reduce to themselves,
when they cannot be rewritten any further. A moniker which
reduces to itself indicates this by returning itself through
parameter ppmkReduced and the returning status code
MK_S_REDUCED_TO_SELF. A moniker which reduces to
nothing returns NULL in parameter ppmkReduced and the
status code S_OK. If a moniker does not reduce to itself,
then this method does not reduce this moniker in-place;
instead, it returns a new moniker.

[0148] The reduction of a moniker which is a composite of
other monikers repeatedly reduces the component monikers
of which it is composed until they all reduce to themselves,
and then returns the composite of the reduced components.
The parameter dwReduceHowFar controls the stopping
point of the reduction process. It controls to what extent the
reduction should be carried out. It has the following values.

US 2007/0061816 Al
[0149] typedef enum tagMKRREDUCE {
[0150] MKRREDUCE_ONE=3<<16,
[0151] MKRREDUCE_TOUSER=2<<16,
[0152] MKRREDUCE_THROUGUSER=1<<16,
[0153] MKRREDUCE_ALL=0
[0154] } MKRREDUCE;

[0155] These values have the following semantics.

Value Description

MKRREDUCE__ONE Perform only one step of reduction
on this moniker. In general, the
caller will have to have specific
knowledge as to the particular
kind of moniker in question in
order to be able to usefully take
advantage of this option.

Reduce this moniker to the first
point where it first is of the

form where it represents something
that the user conceptualizes as
being the identity of a persistent
object. For example, a file name
would qualify, but a macro or an
alias would not. If no such point
exists, then this option should be
treated as MKRREDUCE__ALL.
Reduce this moniker to the point
where any further reduction would
reduce it to a form which the user
does not conceptualize as being
the identity of a persistent

object. Often, this is the same
stage as MKRREDUCE__TOUSER.
Reduce the entire moniker, then,
if needed reduce it again and
again to the point where it

reduces to simply itself.

MKRREDUCE__TOUSER

MKRREDUCE__THROUGUSER

MKRREDUCE__ALL

[0156] The following table describes the parameters of the
method Reduce:

Argument Type Description

The bind context to use in this
operation.

Indicates to what degree this
moniker should be reduced.

On entry, the moniker which is
the prefix of this one in the
composite in which it is found.
On exit, the pointer is either
NULL or non-NULL. Non-NULL
indicates that what was
previously thought of as the
prefix should be disregarded
and the moniker returned
through ppmkToLeft considered
the prefix in its place. NULL
indicates that the prefix

should not be so replaced. Thus,
most monikers will NULL out
this parameter before returning.
On exit, the reduced form of
this moniker. Possibly NULL.

pbe IBindCtx*

dwReduceHowFar DWORD

ppmkToLeft IMoniker**

ppmkReduced IMoniker**

14

Mar. 15, 2007

-continued
Argument Type Description
return value HRESULT S_OK,

MK_S_REDUCED_TO_SELF,
MK_E_EXCEEDEDDEADLINE.

[0157] FIG. 23 is a flow diagram of the method Reduce of
the class CCompositeMoniker. The method reduces each of
the component monikers in a left-to-right manner and cre-
ates a composite of the result. If any of the component
monikers do not reduce to themselves (and thus, the generic
composite moniker overall does not reduce to itself), then
the process of reduction is repeated. In an alternate embodi-
ment, the method tracks component monikers that reduce to
themselves and suppresses their re-reduction. In step 2301,
if this moniker is already reduced as indicated by the data
member m_fReduced, then the method continues at step
2302, else the method continues at step 2303. In step 2302,
the method sets the pointer to the reduced moniker to point
to this moniker and returns indicating that the moniker
reduced to itself. In step 2303, if the left moniker is NULL,
then the method continues at step 2306, else the method
continues at step 2304. In step 2304, the method invokes the
method Reduce of the left moniker passing the moniker to
the left of this moniker and returning a left reduced moniker
(pmkLeftReduced). In step 2305, if no error occurred or the
left moniker reduced to itself, then the method continues at
step 2306, else the method returns an error. If this moniker
has no right moniker (m_pmkRight), then the method con-
tinues at step 2309, else the method continues at step 2307.
In step 2307, the method invokes the method Reduce of the
right moniker passing an indicator of a NULL moniker to the
left and returning a right reduced moniker (pmkRightRe-
duced). In step 2308, if no error occurred or the right
moniker reduced to itself, then the method continues at step
2309, else the method returns an error. In step 2309, if both
the left and right monikers reduced to themselves, then the
method continues at step 2310, else the method continues at
step 2312. In step 2310, the method sets the state of this
moniker to reduced (m_fReduced). In step 2311, the method
sets the pointer to the reduced moniker to point to this
moniker and the method returns with an indication that this
moniker reduced to itself. In step 2312, the method invokes
the method Create of the class CCompositeMoniker passing
the left reduced moniker and the right reduced moniker and
returning the result as a composite reduced moniker (pmk-
CompositeReduced). In step 2313, the method sets the state
of the composite reduced moniker to reduced (m_fRe-
duced). In step 2314, the method sets the pointer to the
reduced moniker to point to the composite reduced moniker
and returns.

[0158] FIG. 24 is a flow diagram of the method Reduce of
the sample class CAliasMoniker. The reduction of an alias
moniker is illustrated in FIG. 22. In step 2401, if the alias
moniker indicates the home directory, then the method
continues at step 2402, else the method tests for other types
of alias indicated by the ellipsis. In step 2402, the method
retrieves the network volume associated with the user. In
step 2403, the method retrieves the home directory for the
user. In step 2404, the method creates a net volume moniker
passing it the name of the network volume. In step 2405, the

US 2007/0061816 Al

method creates a file moniker passing it the name of the
user’s home directory. In step 2406, the method creates a
generic composite moniker passing it the net volume moni-
ker and the file moniker. In step 2407, the method sets the
generic composite moniker to indicate that it is reduced. In
step 2408, the method sets the pointer to the reduced
moniker to the composite moniker (pmkCompositeR-
educed) and returns.

CODE TABLE 5

{ A = CreateMoniker (cFileMoniker,
“c:\reports\expenses\weekly”)
B = CreateMoniker (cFileMoniker,
geteurrentusername)
C = CreateMoniker (cFileMoniker, dayofweek
(getcurrentdate-oneday))
Result = AoBoC

[0159]

CODE TABLE 6

{ A = CreateMoniker (cFileMoniker, “c:\taxes™)
Prompt “Enter year:”, year
B = CreateMoniker (cFileMoniker, year)
C = CreateMoniker (cFileMoniker, “\1040.XLS”)
D = CreateMoniker (cltemMoniker, “R1C1:R10C10”)
Result AocBoCoD

[0160] In a preferred embodiment, a macro moniker
allows for arbitrary moniker creation. A macro moniker
contains a macro script that controls the reduction of a macro
moniker to another moniker. During reduction, the script is
parsed and processed by the method Reduce. One skilled in
the art would appreciate that parsing and processing macro
scripts are well known. The result of the processing is
another moniker that is returned as the reduced moniker. For
example, Code Table 5 contains a script that directs the
macro moniker to reduce to a moniker referencing the
directory “c:\reports\expenses\weekly\user\dayofweek”,
where user is the current user name (e.g., “Smith”) and
dayofweek is the day of week of yesterday (e.g., “Thurs-
day”). The macro moniker with the script of Code Table 5
may reduce to a file moniker with a path name of
“c:\reports\expenses\weekly\smith\thursday”. The macro
moniker may contain a pointer to the reduced moniker. The
method BindToObject of a macro moniker would typically
invoke the method Reduce and then invoke the method
BindToObject of the reduced moniker. Code Table 6 con-
tains a macro script that directs the macro moniker to reduce
to a moniker and in the process prompts the user for a
portion of the path.

CODE TABLE 7

{ SELECT FIRST printer.name
FROM CampusPrinter
WHERE (printerType = = PostScript OR
printerType = = PCL)
AND

Mar. 15, 2007

CODE TABLE 7-continued

printerLocation
INCLUDES “Building 17
ORDER BY printQueueLength

[0161] Ina preferred embodiment, a query moniker allows
for arbitrary reduction to a moniker identified by a query. A
query moniker contains a query that controls the reduction.
The query is evaluated to produce a file moniker that
satisfies the query. For example, Code Table 7 contains a
query (in a structured query language) that may reduce to the
file moniker with path name “\printserver10\printer2”. The
query evaluates to a list of printers that can accommodate
either PostScript or PCL documents and that is in a certain
building. The list is sorted by the length of the print queue,
and the printer with the shortest print queue is selected.

IMoniker::IsEqual
HRESULT IMoniker::IsEqual(pmkOtherMoniker)

[0162] This method determines whether this moniker and
the specified other moniker (pmkOtherMoniker) reference
the same object. This method is used in a preferred imple-
mentation of a running object table. The following table
describes the parameters of the method IsEqual:

Argument Type Description

IMoniker* the other moniker with whom
this moniker is compared.

S_OK, S_FALSE

pmkOtherMoniker

return value HRESULT

[0163] FIG. 25 is a flow diagram of the method IsEqual of
the class CFileMoniker. In step 2501, if the other moniker
(pmkOtherMoniker) is a file moniker, then the method
continues at step 2502, else the monikers are not equal and
the method returns a false. In step 2502, if the count of
anti-monikers for this moniker (m_cAnti) is equal to the
count of anti-monikers for the other moniker, then the
method continues at step 2503, else the monikers are not
equal and the method returns a false. In step 2503, if the path
for this moniker (m_lpszPath) is equal to the path for the
other moniker, then the method returns indicating that the
monikers are equal, else the method returns indicating that
the monikers are not equal.

[0164] FIG. 26 is a flow diagram of the method IsEqual of
the class CCompositeMoniker. In step 2601, if the other
moniker is a composite moniker, then the method continues
at step 2602, the method returns indicating that the monikers
are not equal. In step 2602, if the left moniker of this
moniker (m_pmk[eft) is equal to the left moniker of the
other moniker, then the method continues at step 2603, else
the method returns an indication that the monikers are not
equal. In step 2603, if the right moniker of this moniker
(m_pmkRight) is equal the right moniker of the other
moniker, then the method returns an indication that the
monikers are equal, else the method returns an indication
that the monikers are not equal. In an alternate embodiment
of the method IsEqual, the method checks each component
moniker of this moniker and the other moniker to determine
if the monikers are equal.

US 2007/0061816 Al

IMoniker::Hash
HRESULT IMoniker::Hash(pdwHash)

[0165] This method returns a 32-bit integer associated
with this moniker. This integer is used for maintaining tables
of monikers: the moniker can be hashed to determine a hash
bucket in the table, then compared with the method IsEqual
against all the monikers presently in that hash bucket. Two
monikers that compare as equal have the same hash value.
The following table describes the parameters of the method
Hash:

Argument Type Description

pdwHash DWORD * the place in which to put the returned
hash value.

return value HRESULT S_OK

[0166] FIG. 27 is a flow diagram of the method Hash of
the class CCompositeMoniker. In step 2701, the method
invokes the method Hash of the left moniker. In step 2702,
the method invokes the method hash of the right component
moniker. In step 2703, the method generates the exclusive-or
of the left hash value and the right hash value and returns
that as the hash value of the method. The method Hash of the
class CltemMoniker performs a hash function on the item
name and returns the value.

IMoniker::Inverse
HRESULT IMoniker::Inverse(ppmk)

[0167] The method Inverse returns a moniker that when
composed onto the end of this moniker or one of similar
structure annihilates it; that is, composes to NULL. The
method Inverse is an abstract generalization of the “.”
operation in traditional file systems. For example, a file
moniker that represents the path “a\b\c\d” has as its inverse
a moniker containing the path “.\.\.\.”, since “a\b\c\d”
composed with “.\.\.\..” yields nothing. The inverse of a
moniker does not annihilate just that particular moniker, but
all monikers with a similar structure. Thus, the inverse of a
generic composite moniker is the reverse composite of the
inverse of its component monikers. Certain classes of moni-
kers may have trivial inverses. If a moniker adds one more
component moniker to an existing structure; its inverse is a
moniker that removes the last component of the existing
structure. A moniker that when composed onto the end of a
moniker removes the last component is referred to as anti
moniker. One skilled in the art would appreciate that not all
monikers have inverses. The inverse of an anti moniker, for
example, does not exist. The following table describes the
parameters of the method Inverse.

Argument Type Description

ppmk IMoniker**
return value HRESULT

the place to return the inverse moniker.
S_OK, MK_E_NOINVERSE.

[0168] An anti moniker is a moniker that when composed
onto the end of a generic composite moniker removes the
last component moniker. Composing an anti moniker onto

Mar. 15, 2007

the end of another kind of moniker preferably annihilates the
other moniker. The class CAntiMoniker contains a data
member that is a count of the number of anti monikers
(m_cAnti). Whenever an anti moniker is composed with
another anti moniker, the resulting composition is an anti
moniker with its count equal to the sum of the counts of the
composed anti monikers.

[0169] FIGS. 28A, 28B, and 28C are block diagrams
illustrating composition with inverse monikers. In FIG. 28A,
an item moniker 2801 is composed with anti moniker 2802
which results in annihilation of the monikers. In FIG. 28B,
the generic composite moniker 2803 which comprises com-
ponent moniker 2804 and 2801 is composed with anti
moniker 2802. Since anti moniker 2802 is the inverse of
item moniker 2801, the item moniker 2801 and the anti
moniker 2802 is annihilated. The result of the composition
is file moniker 2805. In FIG. 28C, generic composite moni-
ker 2806 is composed with generic composite moniker 2807
resulting in annihilation of generic composition monikers
2806 and 2807. Generic composite moniker 2806 comprises
file moniker 2804 and item moniker 2801. Generic compos-
ite moniker 2807 comprises anti moniker 2802 and file
moniker 2808. The anti moniker 2802 is the inverse of item
moniker 2801, and file moniker 2808 is the inverse of file
moniker 2804.

[0170] FIG. 29 is a flow diagram of the method Inverse of
the class CCompositeMoniker. In step 2901, the method
invokes the method Inverse of the left moniker of this
moniker to retrieve its inverse moniker. In step 2902, the
method invokes the method Inverse of the right moniker of
this moniker to retrieve its inverse moniker. In step 2903, the
method invokes the function CreateGenericComposite pass-
ing it the right inverse and the left inverse and returns. The
left inverse moniker is composed onto the end of the right
inverse moniker so that during composition the right moni-
ker will compose with the right inverse and the left moniker
will compose with the left inverse moniker resulting in
annihilation.

[0171] FIG. 30 is a flow diagram of the method Inverse of
the class CltemMoniker. Since the inverse of an item moni-
ker is an anti moniker, the method creates an instance of an
anti moniker and returns it.

[0172] FIG. 31 is a flow diagram of the method Compose-
With of the class CltemMoniker. This method illustrates the
annihilation of monikers. In step 3101, if the moniker on the
right to be composed with is an anti moniker, then the
method continues at step 3102, else the method continues at
step 3103. In step 3102, the method invokes the method
AnnihilateOne of the anti moniker and returns the result as
the composite moniker. Consequently, an item moniker that
is composed with an anti moniker with a count greater than
one results in an anti moniker. In step 3103, if the caller
wants a generic composition returned (fOnlylfNotGen-
eric==FALSE), then the method continues at step 3104, else
the method returns an indicator that a generic composite
moniker is needed. In step 3104, the method invokes the
function CreateGenericComposite passing this moniker and
the right moniker and returns with the composite moniker.

[0173] FIG. 32 is a flow diagram of the method Annihi-
lateOne of the class CAntiMoniker. This method annihilates
one of the counts of this moniker. In step 3201, if the count
of the anti moniker is equal to one, then the method

US 2007/0061816 Al

continues at step 3202, else the method continues at step
3203. In step 3202, the method sets the moniker to return to
NULL and returns. In step 3203, the method creates a new
anti moniker and sets its count to the count of this moniker
minus one and returns that newly-created moniker.

[0174] FIG. 33 is flow diagram of the method Compose-
With of the class CAntiMoniker. In step 3301, if the right
moniker (pmkRight) is an anti moniker, then the method
continues at step 3302, else the method continues at step
3304. In step 3302, the method calculates the sum of the
count of this moniker and the count of the right moniker. In
step 3303, the method creates an anti moniker and sets its
count to the sum and returns it as the composite moniker. In
step 3304, if the caller wants a generic composition, then the
method continues at step 3305, else the method returns an
indication that a generic composition is needed. In step
3305, the method invokes a function CreateGenericCom-
posite passing it this moniker and the right moniker and
returns the composite.

IMoniker::CommonPrefix With

HRESULT IMoniker::CommonPrefix With(pmkOther,
ppmkPrefix)

[0175] This method determines the longest common prefix
that this moniker shares with the other moniker (pmkOther).
The following table describes the parameters of the method
CommonPrefixWith.

Argument Type Description

pmkOther IMoniker* the moniker with whom the common
prefix is to be determined.

ppmkPrefix IMoniker* the place to return the common

prefix moniker. NULL is returned
only in the case that the common
prefix does not exist.

MK__S_ ME, indicating that this
moniker is the common prefix.
MK_ S_ HIM, indicating that the
other moniker (pmkOther) is the
common prefix. MK__S_ US,
indicating that the two monikers
are equal. S__OK, indicating that
the common prefix exists but is
neither this moniker nor the
other moniker. MK__ S NOPREFIX
indicating that no common prefix
exists.

return value HRESULT

[0176] FIG. 34 is a block diagram illustrating a common
prefix of generic composite monikers. The generic compos-
ite moniker 3401 and 3402 represent generic composite
monikers for whom a common prefix is to be determined.
Generic composite moniker 3401 includes component item
monikers A, B, C, and D. Generic composite moniker 3402
comprises component item monikers A, B, and D. The
resulting moniker is a generic composite moniker 3403 with
a component moniker for Item A and a component moniker
for Item B. The common prefix of (AcBoCoD) and
(AoBcD) is (AoB).

[0177] FIG. 35 is a flow diagram of the method Common-
PrefixWith of the class CCompositeMoniker. In step 3501,
if the other moniker (pmkOther) is a generic composite
moniker, then the method continues at step 3505, else the

Mar. 15, 2007

method continues at step 3502. In step 3502, the method
invokes the method CommonPrefixWith of the first compo-
nent moniker of this moniker passing the other moniker and
returning the common prefix. In step 3503, if the first
component moniker of this component moniker is a com-
mon prefix with the other moniker, then the method returns
an indication that a common prefix exists but neither this
moniker nor the other moniker is the common prefix, else
the method continues at step 3504. In step 3504, if the
method returns an indication that the first component moni-
ker of this moniker and the other moniker are common
prefixes, then the method returns an indication that the other
moniker is a common prefix of this moniker, else the method
returns with the indication returned in step 3502. In step
3505, the method invokes the method CommonPrefix With
for the first component moniker of this moniker passing the
first component moniker of the other moniker and returning
the result. If the first component moniker of this moniker and
the first component moniker of the other moniker are
common prefixes of each other, then the method continues
at step 3507, else the method continues at step 3509. In step
3507, the method invokes the method CommonPrefix With
for a moniker comprising all but the first component moni-
ker of this moniker and passing it all but the first component
moniker of the other moniker. This recursively invokes the
method CommonPrefixWith to determine the extent of the
common prefix. In step 3508, the method composes the
result of step 3505 and step 3507 and returns. In step 3509,
if the first component moniker of the other moniker is a
prefix of the first component moniker of this moniker, then
the method continues at step 3510, else the method contin-
ues at step 3511. In step 3510, the method indicates that the
prefix is the first component moniker of the other moniker
and returns. In step 3511, if the first component moniker of
this moniker is the prefix of the first component moniker of
the other moniker, then the method continues at step 3512,
else the method returns the result that was returned in step
3505. In step 3511, the method sets the prefix to return to this
moniker and returns.

[0178] FIG. 36 is a flow diagram of the method Common-
PrefixWith of the class CFileMoniker. The method scans the
path names of this moniker and the other moniker to
determine the common prefix. The count of anti monikers is
assumed to precede the path names. In step 3601, if the other
moniker (pmkOther) is a file moniker, then the method
continues at step 3603, else the method continues at step
3602. In step 3602, the method invokes the function Moni-
kerCommonPrefix (described below) and returns. In step
3603, if the count of anti monikers for this moniker
(m_cAanti) is not equal to the count of anti monikers for the
other moniker, then the method continues at step 3606, else
the method continues at step 3604. In step 3604, the method
scans the file path of the other moniker (m_lpszPath) and the
file path of this moniker to determine the common prefix. In
step 3605, the method sets the result and returns. In step
3606, the method determines the minimum of the anti
moniker count of this moniker and the anti moniker count of
the other moniker. In step 3607, the method creates a file
moniker as the prefix moniker to return. In step 3608, the
method sets the count of the anti monikers of the prefix to
the minimum count of anti monikers. In step 3609, if the
minimum count of anti monikers is in this moniker, then the
method continues at step 3611, else the method continues at
step 3610. In step 3610, if the path of the other moniker is

US 2007/0061816 Al

NULL, then the method returns an indication that the other
moniker is a common prefix, else the method returns an
indication that neither moniker is the common prefix. In step
3611, if the path of this moniker is NULL, then the method
returns indicating that this moniker is a common prefix, else
the method returns indicating that neither moniker is the
common prefix.

[0179] FIG. 37 is a flow diagram of the method Common-
PrefixWith of the class CltemMoniker. In step 3701, if this
moniker is equal to the other moniker, then the method
continues at step 3702, else the method returns an indication
that there is no prefix in common. In step 3702, the method
sets the prefix moniker equal to this moniker and returns an
indication that both monikers are common prefixes.

[0180] FIG. 38 is a flow diagram of the method Common-
PrefixWith of the class CAntiMoniker. In step 3801, if the
other moniker is an anti moniker, then the method continues
at step 3803, else the method continues at step 3802. In step
3802, the method invokes the function MonikerCommon-
Prefix and returns. If the count of this moniker is less than
or equal to the count of the other moniker, then the method
continues at step 3805, else the method continues at step
3804. In step 3804, the method sets the prefix moniker to
point to the other moniker and returns an indication that the
other moniker is the common prefix. In step 3805, the
method sets the prefix moniker equal to this moniker. In step
3806, if the count of this moniker is equal to the count of the
other moniker, then the method returns an indication that
both monikers are common prefixes, else the method returns
an indication that this moniker is a common prefix.

MonikerCommonPrefix With

HRESULT MonikerCommonPrefix With(pmkThis,
pmkOther, ppmkPrefix

[0181] This function is invoked by implementations of the
method CommonPrefixWith. This function handles the situ-
ation when the implementation does not recognize the type
of the other moniker. The following table describes the
parameters of the function MonikerCommonPrefix With:

Argument Type Description

pmkThis IMoniker * one moniker for the

computation of the common

prefix.

the other moniker for the
computation of the common

prefix.

pointer to the common

prefix.

S_OK, MK_S_HIM, MK_S_ME,
MK_S_US, MK_S_NOPREFIX

pmkOther IMoniker *

ppmkPrefix IMoniker **

return value HRESULT

[0182] FIG. 39 is a flow diagram of the function Moni-
kerCommonPrefixWith. In step 3901, if this moniker (pmk-
This) is a generic composite moniker, then the method
continues at step 3902, else the method continues at step
3903. In step 3902, the method invokes the method Com-
monPrefixWith of this moniker passing it the other moniker
(pmkOther) and returns. In step 3903, if the other moniker
is a generic composite, then the method continues at step
3905, else the method continues at step 3904. In step 3904,

Mar. 15, 2007

if neither moniker is a generic composite moniker, then the
method sets the prefix to NULL and returns an indication
that there is no prefix in common. In step 3905, the method
invokes the method CommonPrefixWith of the other moni-
ker passing this moniker. In step 3906, if this moniker is the
common prefix, then the method returns with an indication,
else the method continues at step 3907. In step 3907, if the
other Moniker is the common prefix, then the method returns
with an indication, else the method returns with the indica-
tion returned in 3905.

IMoniker::RelativePathTo

HRESULT IMoniker::RelativePathTo(pmkOther, ppmkRel-
Path)

[0183] This method returns as a moniker that when com-
posed onto the end of this moniker or one with a similar
structure yields the other moniker (pmkOther). Implemen-
tations of this method preferably determine the longest
prefix that this moniker and the other moniker have in
common. This separates this moniker and the other into two
parts, say (P,T,,;,) and (P.T_,,..,) respectively, where P is the
common prefix. T, and T_, ., represent the trailing com-
ponents. The relative path result is then T~* ;0T ..., Where
T~! indicates the inverse. Thus, (P, Ty,)o(T™ 10 Tormer)=(P,
Tother)'

Argument Type Description

pmkOther IMoniker* the other moniker to which a relative
path should be taken.

ppmkRelPath IMoniker* May not be NULL. The place at which

the relative path is returned.

MK__S_ HIM, indicating that the only
form of relative path is in fact just

the other moniker (pmkOther). S__OK,
indicating that a non-trivial

relative path exists.

return value HRESULT

[0184] FIG. 40 is a block diagram illustrating a relative
path to moniker. When generic composite moniker 4001 is
composed with relative path to moniker 4002, the result is
generic composite moniker 4003. During composition, the
component moniker Item C of generic composite moniker
4001 and the anti moniker of generic composite moniker
4002 annihilate. The generic composite moniker 4002 is the
relative path to moniker to go from the composite generic
moniker 4001 to 4003. More precisely, the relative path to
moniker is the inverse of the portion that is not the common
prefix of generic composite monikers 4001 and 4003 com-
posed with the portion of generic composite moniker 4003
that is not the common prefix.

[0185] FIGS. 41A and 41B are block diagrams illustrating
a usage of the method RelativePathTo. The document 4101
has a path name of “c:\reports\monthly\june.doc”. The docu-
ment 4101 contains a link to a range within the spreadsheet
document 4102. The spreadsheet document has the path
“c:\reports\monthly\data\june.xIs”. The range is identified
by “R4C7:R8C12”. The document 4101 preferably stores a
moniker indicating the absolute path name of the range and
the relative path name of the range. In this way, when the
document 4101 is moved to a new directory with a similar
structure, the correct range can be retrieved from that
directory structure using the relative path. FIG. 41B illus-

US 2007/0061816 Al

trates a generic composite moniker 4103 describing the
absolute path to the spreadsheet range. The generic com-
posite moniker 4103 includes a file moniker 4104 with the
absolute path name of the spreadsheet file and an item
moniker 4105 which describes the spreadsheet range. The
relative path to moniker is generic composite moniker 4106.
Generic composite moniker 4106 includes file monikers
4107 and 4108, and item moniker 4109. The generic com-
posite moniker 4106 is the relative path to moniker for the
absolute path name of the document 4101. When the moni-
ker for the absolute path name of the document 4101 is
composed with the generic composite moniker 4106, the
result is the proper composite moniker needed to access the
spreadsheet file.

[0186] FIGS. 42A, 42B, and 42C comprise a flow diagram
of the method RelativePathTo of the class CComposite-
Moniker. In step 4201, if the other moniker (pmkOther) is a
generic composite moniker, then the method continues at
step 4202, else the method continues at step 4227. In step
4202 through 4207, the method loops determining the com-
mon prefix of this moniker and the other moniker. In step
4202, the method sets a variable nCount equal to 0. The
variable nCount keeps track of the number of component
monikers in the common prefix. In step 4203, the method
selects the next component moniker of the other moniker,
starting with the first. The enumeration of generic composite
monikers is described below. In step 4204, the method
selects the next component moniker of this moniker, starting
with the first. In step 4205, if a component moniker of the
other moniker and a component moniker of this moniker are
selected, then the method continues at step 4206, else the
method continues at step 4208. In step 4206, if the selected
component monikers are equal, then the method continues at
step 4207, else the method continues at step 4208. In step
4207, the method increments the variable nCount and loops
to step 4203 to select the next component monikers. In step
4208, if the variable nCount equals 0, then this moniker and
the other moniker have no common prefix and the method
continues at step 4209, else the method continues at step
4214. In step 4209, the method invokes the method Rela-
tivePathTo of the first component moniker of this moniker
passing it the first component moniker of the other moniker
and indicating to return the result as the inverse of the first
component of this moniker. In step 4210, if the invocation of
the method RelativePathTo in step 4209 indicates that a
non-trivial relative path exists, then the method continues at
step 4211, else the method continues at step 4213. In step
4211, the method indicates that the first component moniker
of this moniker is equal to the result of step 4209. In step
4212, the method selects the next component moniker of the
other moniker and continues at step 4216. In step 4213, the
method sets the relative path to point to the other moniker
and returns an indication that the relative path is the other
moniker. In step 4214, if not all the component monikers of
the this moniker have been selected, then the method con-
tinues at step 4215, else the method continues at step 4216.
In step 4215, the method determines the inverse of the
selected component moniker of this moniker and continues
at step 4216. In step 4216, if the selected component
moniker of this moniker is not equal to NULL, then the
method continues at step 4217, else the method continues at
step 4221. In step 4217, the method determines the inverse
of the component monikers of this moniker that have not
been selected. In step 4218, if the inverse is not NULL, then

Mar. 15, 2007

the method continues at step 4219, else the method contin-
ues at step 4220. In step 4219, the method invokes the
method ComposeWith of the inverse passing it the inverse
of the last selected component moniker of this moniker to
create an inverse for the tale portion of this moniker and the
method continues at step 4221. In step 4220, the method sets
the inverse of the tale portion of this moniker equal to the
inverse of the last selected component moniker of this
moniker and continues at step 4221. In step 4221, if the
selected component moniker of the other moniker is not
equal to NULL, then the method continues at step 4223, else
the method continues at 4222. In step 4222, the method sets
the tale of the other moniker equal to NULL and continues
at step 4224. In step 4223, the method composes the selected
component moniker of the other moniker with tale of the
other moniker and continues at step 4224. In step 4224, if the
inverse of the tale of this moniker is not equal to NULL, then
the method continues at step 4226, else the method contin-
ues at step 4225. In step 4225, the method sets the relative
path to the tale of the other moniker and returns. In step
4226, the method composes with the inverse of the tale of
this moniker with the tale of the other moniker and returns
that as a relative path. In step 4227, the method selects the
next component moniker of this moniker. In step 4228, if the
selected component moniker of this moniker is equal to the
other moniker, then the method continues at step 4229, else
the method continues at step 4230. In step 4229, the method
gets the inverse of this moniker and returns it as the relative
moniker. In step 4230, the method invokes a method Rela-
tivePathTo of the selected component moniker of this moni-
ker passing it the other moniker. In step 4232, if the method
invoked in step 4230 indicates that the other moniker is the
relative path to moniker, then the method continues at step
4232, else the method continues at step 4233. In step 4232,
the method sets the relative path to moniker to point to the
other moniker and returns. In step 4233, the method gets the
inverse of the tale of this moniker. In step 4234, the method
composes with the inverse of the tale of this moniker with
the relative path to moniker returned in step 4230 and
returns.

MonikerRelativePathTo

HRESULT MonikerRelativePathTo(pmkSrc,
ppmkRelPath, reserved)

pmkDest,

[0187] This function is invoked by implementations of the
method RelativePathTo. This method handles the situation
when the implementation does not recognize the type of the
other moniker.

Argument Type Description

pmkSrc IMoniker * the starting moniker for the computation
of the relative path.

pmkDest IMoniker * the moniker to which a relative path
should be taken.

ppmkRelPath IMoniker ** May not be NULL. The place at which the

moniker of pmkDest relative to pmkSrc is
to be returned.

must be non-zero

S_OK, MK_S_HIM

BOOL
HRESULT

reserved
return value

[0188] FIG. 43 is a flow diagram of the function Moni-
kerRelativePathTo. In step 4301 if the source moniker or the

US 2007/0061816 Al

destination moniker is a generic composite moniker, then the
method continues at step 4304, else the method continues at
step 4302. In step 4302, if the parameter fCalledFrom-
Method is true, then the method continues at step 4303, else
the method continues at step 4305. In step 4303, the method
sets the relative path to the destination moniker and returns
an indication moniker that the destination moniker is the
relative path to. In step 4304, if the source moniker is a
generic composite moniker, then the method continues at
step 4305, else the method continues at step 4306. In step
4305, the method invokes the method RelativePathTo of the
source moniker passing the destination moniker and returns
the relative path from that invocation. In step 4306, if the
source moniker is equal to the first component moniker of
the destination moniker, then the method continues at step
4307, else the method continues at step 4308. In step 4307,
the method sets the relative path to moniker equal to a
moniker comprising all but the first component moniker of
the destination moniker and returns. In step 4308, the
method invokes the method RelativePathTo of the source
moniker passing the first component moniker of the desti-
nation moniker. In step 4309, if no error is returned, then the
method continues at step 4310, else the method continues at
step 4311. In step 4310, the method invokes the function
CreateGenericComposite passing the relative path to moni-
ker returned in step 4308 and a moniker comprising all but
the first component moniker of the destination moniker and
returns. In step 4311, the method sets the relative path to
moniker equal to the destination moniker and returns an
indication that the destination moniker a relative path to
moniker.

IMoniker::Enum
HRESULT IMoniker::Enum(fForward, ppenmMoniker)

[0189] This method returns an interface that permits the
enumeration of the component monikers of which this
moniker is logically a composite. For a generic composite
moniker, this enumerates the components of which the
composite is composed. For other monikers, the semantics
of the components of which it is a composite are implemen-
tation-defined. For example, enumerating the components of
a file moniker returns each portion of the internally stored
path name, even though they are not stored internally as
actual separate monikers. Monikers that have no discernible
internal structure return NULL instead of an enumerator.

[0190] The IEnumMoniker interface is an enumerator that
supports the enumeration of items which are monikers.

interface IEnumMoniker : TUnknown {

virtual HRESULT Next(ULONG celt, IMoniker* rgelt[],
ULONG* peeltFetched) = 0;

virtual HRESULT Skip(ULONG celt) = 0;

virtual HRESULT Reset() = 0:

virtual HRESULT Clone(IEnumMoniker** ppenm) = 0;

i

Mar. 15, 2007

[0191] The following table describes the parameters of the
method Enum:

Argument Type Description

fForward BOOL If true, then the enumeration should
be done in the normal order. If
false, then the order should be the
reverse of the order enumerated by
the normal order.

ppenmMoniker IEnumMoniker** On exit, the returned enumerator.
May be NULL, signifying that there
is nothing to enumerate.

S_OK.

return value HRESULT

[0192]

CODE TABLE 8

class CCompositeMonikerEnum: IEnum
{ CCompositeMoniker FAR * m_ pcm;
BOOL m__fForward;
se m__pBase;
se m__pTop;
LPMONIKER m_ pNext;

[0193] FIG. 44 is a flow diagram of the method Enum of
the class CCompositeMoniker. In step 4401, the method
instantiates an enumerator object of type CCompositeMoni-
kerEnum for this composite object. Code Table 44 illustrates
the data members of a class definition for the enumerator.
The object contains a pointer to the moniker being enumer-
ated (m_pCM), a flag indicating whether the enumeration is
in the forward direction (m_fForward), pointers indicating
the base and the top of a stack (m_pBase, m_pTop), and a
pointer to the next component moniker to be returned
(m_pNext). In steps 4402 through 4406, the method initial-
izes the data members of the instantiated object. In step
4406, the method invokes the method GetNext passing this
moniker and sets data member m_pNext to the result.

[0194] FIG. 45 is a flow diagram of the private method
GetNext of the class CCompositeMonikerEnum. The enu-
meration of a composite moniker is a left-to-right, depth-
first traversal of the tree formed by the composite moniker.
The enumerator maintains a stack to track the traversal of the
tree. In step 4501, the method sets a pointer to a rover
(pmkRover) equal to the passed moniker. The rover pointer
is used to traverse the tree. In step 4502, if the passed
moniker is NULL, then the method returns NULL, else the
method continues at step 4503. In step 4503, if the moniker
pointed to by the rover is a generic composite moniker, then
the method continues at step 4504, else a component moni-
ker is located and the method returns the moniker pointed to
by the rover. In step 4504, the method invokes the method
Push to push the generic composite moniker indicated by the
rover onto the stack. In step 4505, if the enumeration is
being performed in the forward direction, the method con-
tinues at step 4506, else the method continues at step 4507.
In step 4506, the method sets the rover to point to the left
moniker of the moniker pointed to by the rover and loops to
step 4503. In step 4507, the method sets the rover to point
to the right moniker of the moniker pointed to by the rover
and loops to step 4503.

US 2007/0061816 Al

[0195] FIG. 46 is a flow diagram of the method Next of the
class CCompositeMonikerEnum. Each time this method is
invoked it returns the next component moniker of the
composite moniker. The method Next returns an array of
component monikers up to a maximum number specified as
a parameter. In step 4601, the method initializes a count
variable to 0. In step 4602, if the count is less than the
requested count of component monikers and not all the
component monikers have been returned, then the method
continues at step 4603, else the method continues at 4607. In
step 4603, the method stores the next component moniker in
the return array. In steps 4604 and 4605, the method incre-
ments the count and index into the return array. In step 4606,
the method sets the next component moniker to point to the
moniker returned by the method Pop and loops to step 4602.
In step 4607, if a pointer to the count of fetched elements is
not equal to NULL, then the method sets the pointer equal
to the count in step 4608. The method then returns.

[0196] The methods Push and Pop of the class CCompos-
iteMonikerEnum implement a stack. The method Push
pushes the passed generic composite moniker onto a stack.
The method Pop removes a top generic composite moniker
from the stack and invokes the method GetNext passing it
the right moniker if a search is being performed in the
forward direction and a left moniker if the search is being
performed in the reverse direction. The method Pop returns
the component moniker returned by the method GetNext.

Pointer Moniker Class

[0197] In a preferred embodiment, a pointer moniker is a
class of moniker that wraps an existing pointer to an object
in a moniker so that it may participate as a component
moniker in the moniker binding process. A pointer is a
reference into “active space,” that is, memory of a process.
A moniker typically is a reference into “passive space,” that
is, the representation of an object on disk. Pointer monikers
provide a means by which a given use of a moniker can
transparently reference either active or passive space.

[0198] In a preferred embodiment, the method BindToOb-
ject of a pointer moniker invokes the method Querylnterface
of the pointed to object. The method BindToStorage returns
MK_E NOSTORAGE. The method Reduce reduces the
moniker to itself. The method ComposeWith does a generic
composition. The method Enum returns NULL. The method
IsSystemMoniker returns MKSYS_NONE. The method
IsEqual uses the identity test paradigm on pointers after first
checking that the other moniker for the right class. The
method Hash returns a constant. The method GetTim-
eOflLastChange returns MK_E_UNAVAILABLE. The
method Inverse returns an anti moniker. The method Rela-
tivePathTo returns the other moniker. The method GetDis-
playName returns NULL. The method ParseDisplayName
binds to the punk pointer using [ParseDisplayName inter-
face. Pointer monikers do not serialize; that is, the Save of
the [PersistStream interface returns an error.

CreatePointerMoniker
HRESULT CreatePointerMoniker(punk, ppmk)

[0199] This function wraps a pointer in a pointer moniker
so that it can be presented to interfaces that require monikers
for generality, but specific uses of which can usefully deal
with a moniker which cannot be saved to backing store. The

Mar. 15, 2007

following table describes the parameters of the method
CreatePointerMoniker.

Argument Type Description

punk IUnknown* the pointer that we are wrapping up in a
moniker.

ppmk IMoniker** the returned Pointer Moniker.

return value HRESULT S_OK, E_ OUTOFMEMORY

[0200] FIG. 47 is a flow diagram of the method Create of
the class CPointerMoniker. In step 4701, the method instan-
tiates a new pointer moniker. In step 4702, the method sets
a data member (m_Punk) the new pointer moniker to point
to the passed object and returns.

[0201] FIG. 48 is a flow diagram of the method Bind-
ToObject of the class CPointerMoniker. In step 4801, the
method invokes the method QuerylInterface of the pointed to
object passing the identifier of the requested interface. The
method then returns with the requested interface.

[0202] FIG. 49 is a diagram illustrating a pointer moniker.
Object 4901 is wrapped in pointer moniker 4902. Pointer
moniker 4902 contains a pointer to the object 4901.

[0203] Although the present invention has been described
in terms of preferred embodiments, it is not intended that the
invention be limited to these embodiments. Modifications
within the spirit of the invention will be apparent to those
skilled in the art. The scope of the present invention is
defined by the claims which follow.

1.-13. (canceled)

14. A computer-readable medium storing computer-ex-
ecutable instructions for causing a computer programmed
thereby to perform a method of evaluating a moniker object,
the method comprising:

receiving an invocation of a hashing function member of
a first moniker object, the first moniker object including
naming information for source data; and

returning a hash value for the first moniker object.
15. The computer-readable medium of claim 14, wherein
the method further comprises

for each of one or more other moniker objects having the
hash value,

receiving an invocation a comparison function member
of the first moniker object, wherein the invocation
includes passing a reference to the other moniker
object; and

returning an indicator whether the first moniker object
is equal to the other moniker object.
16. The computer-readable medium of claim 15 wherein
a running object table includes an entry for each of the one
or more other moniker objects.
17. The computer-readable medium of claim 15, wherein
the method further comprises:

if none of one or more other moniker objects have the
hash value, returning an indicator that the first moniker
object is equal to none of the one or more other moniker
objects.

US 2007/0061816 Al

18. A computer-readable medium storing computer-ex-
ecutable instructions for causing a computer programmed
thereby to perform a method of providing a client with
access to a resource identified by a server moniker object,
the server moniker object having state information identi-
fying the resource, the method comprising:

under control of a client,

receiving from a server an indication of unmarshalling
code and state information for use by the unmarshal-
ling code, the state information identifying a
resource; and

executing the unmarshalling code to instantiate a client
moniker object as a proxy for the server moniker
object, the client moniker object including the state
information.
19. The computer-readable medium of claim 18 wherein
the method further comprises:

binding to the resource by invoking binding code of the
client moniker object, wherein the binding code uses
the state information to bind to the resource without
accessing a server moniker object.

20. The computer-readable medium of claim 18 wherein
the state information is immutable.

21. A computer-readable medium storing computer-ex-
ecutable instructions for causing a computer programmed
thereby to perform a method of providing a client with
access to a resource identified by a server moniker object,

Mar. 15, 2007

the server moniker object having state information identi-
fying the resource, the method comprising:

receiving an indication of unmarshalling code and state
information for use by the unmarshalling code, the state
information identifying a resource; and

passing the indication of the unmarshalling code and the
state information to the client for use in instantiating a
client moniker object as a proxy for the server moniker
object, the client moniker object including the state
information.

22. The computer-readable medium of claim 21 wherein
the receiving the indication of unmarshalling code com-
prises getting class identifying information for the proxy.

23. The computer-readable medium of claim 21 wherein
the passing comprises passing class identifying information
for the proxy and a marshalling packet to the client.

24. The computer-readable medium of claim 23 wherein
the method further comprises:

creating the marshalling packet; and

buffering in the marshalling packet information used in
instantiating the client moniker object as the proxy for
the server moniker object.
25. The computer-readable medium of claim 21 wherein
the state information is immutable.

