

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2013256054 B2

(54) Title
Determining a future portion of a currently presented media program

(51) International Patent Classification(s)
G06Q 50/30 (2012.01)

(21) Application No: **2013256054** (22) Date of Filing: **2013.05.04**

(87) WIPO No: **WO13/166474**

(30) Priority Data

(31) Number **13/482,867** (32) Date **2012.05.29** (33) Country **US**
2775700 **2012.05.04** **CA**

(43) Publication Date: **2013.11.07**
(44) Accepted Journal Date: **2019.01.31**

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Conrad, Michael J.;Hulten, Geoffrey J.;Krum, Kyle J.;Mendhro, Umaimah A.;Remington, Darren B.

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2007/0271580 A1
US 2007/0150916 A1
US 2010/0070987 A1
US 2003/0093784 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 November 2013 (07.11.2013)

(10) International Publication Number
WO 2013/166474 A3

(51) International Patent Classification:
G06Q 50/30 (2012.01)

(21) International Application Number:
PCT/US2013/039591

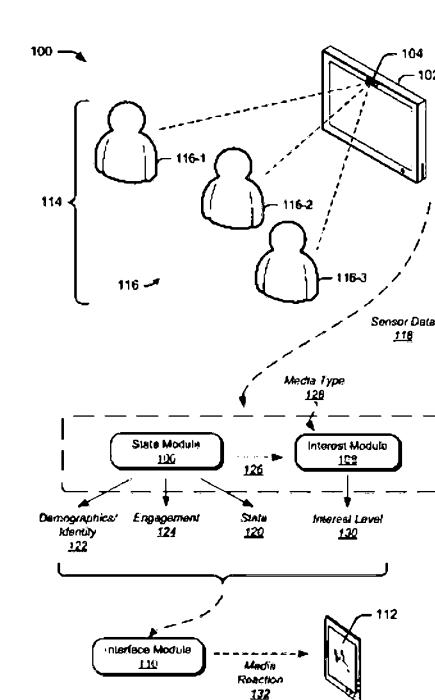
(22) International Filing Date:
4 May 2013 (04.05.2013)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
2775700 4 May 2012 (04.05.2012) CA
13/482,867 29 May 2012 (29.05.2012) US

(71) Applicant: **MICROSOFT CORPORATION** [US/US];
One Microsoft Way, Redmond, Washington 98052-6399 (US).


(72) Inventors: **CONRAD, Michael, J.**; c/o Microsoft Corporation, LCA - International Patents, One Microsoft Way, Redmond, Washington 98052-6399 (US). **HULTEN, Geoffrey, J.**; c/o Microsoft Corporation, LCA - Interna-

tional Patents, One Microsoft Way, Redmond, Washington 98052-6399 (US). **KRUM, Kyle, J.**; c/o Microsoft Corporation, LCA - International Patents, One Microsoft Way, Redmond, Washington 98052-6399 (US). **MENDHRO, Unnaimah, A.**; c/o Microsoft Corporation, LCA - International Patents, One Microsoft Way, Redmond, Washington 98052-6399 (US). **REMINGTON, Darren, B.**; c/o Microsoft Corporation, LCA - International Patents, One Microsoft Way, Redmond, Washington 98052-6399 (US).

(81) Designated States *(unless otherwise indicated, for every kind of national protection available)*: AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, IU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: DETERMINING A FUTURE PORTION OF A CURRENTLY PRESENTED MEDIA PROGRAM

(57) Abstract: This document describes techniques and apparatuses for determining a future portion of a currently presented media program. The techniques and apparatuses can receive current media reactions of one or many people to a currently presented media program and determine later portions to present in the media program based on the media reactions. In some embodiments, for example, a program can be presented live, reactions can be received during the live presentation, and the program altered on-the-fly and in real time based on those reactions. Further, the alterations can be general or tailored to a group or a particular person.

Fig. 1

**DETERMINING A FUTURE PORTION OF A
CURRENTLY PRESENTED MEDIA PROGRAM
BACKGROUND**

[0001] Currently, advertisers and media providers often test advertisements and other media programs prior to generally releasing the program. For example, a media provider may show small audiences a situation comedy after which the audience provides feedback through survey results or hand-tracked information logs. These surveys and logs, however, are often imprecise. The audience may not remember a funny joke at the third minute of a twenty-four-minute program, for example. And, even if the results include some precision, the size of the audience is typically small, which may not reliably indicate how the program will be received when generally released.

[0002] Media providers may also test programs through invasive biometric testing of an audience during presentation of the program in a controlled environment. This testing can be more precise, but the audience size is often much smaller than even survey and log testing. And, even this testing can be highly inaccurate due in part to the controlled environment in which the testing occurs—a person is less likely to laugh when in a sound room strapped to electrical testing devices than when relaxing in his or her home.

[0003] Furthermore, in either of these cases, the time-delay in altering a program can be substantial. It may take days or weeks to record a new program or alter a current program, and even when this is complete, the altered program may again be tested, further delaying release of the program.

SUMMARY

[0004] This document describes techniques and apparatuses for determining a future portion of a currently presented media program. The techniques and apparatuses can receive current media reactions of one or many people to a currently presented media program and determine later portions to present in the media program based on the media reactions. In some embodiments, for example, a program can be presented live, reactions can be received during the live presentation, and the program altered on-the-fly and in real time based on those

reactions. Further, the alterations can be general or tailored to a group or a particular person.

[0005] This summary is provided to introduce simplified concepts for determining a future portion of a currently presented media program, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.

[0005a] In one broad form an aspect of the present invention seeks to provide a method implemented by a computing device comprising: receiving, by the computing device and during a presentation of a first portion of a media program, a media reaction to the first portion of the media program, the media reaction determined based on sensor data passively sensed during the first portion of the media program; determining, by the computing device and based on the media reaction to the first portion of the media program being congruent with a context for the first portion of the media program, an engaged state of a user during the first portion of the media program; determining, by the computing device, based on a reaction history of the user, and responsive to determining the user to be in the engaged state during the first portion of the media program, a future advertisement, the future advertisement: occurring during a later portion of the media program; during a same presentation of the media program; and selected from a set of advertisements based on a similarity to the first portion of the media program; and causing, by the computing device, the future advertisement to be presented during the later portion of the media program and during the same presentation of the media program.

[0005b] In one embodiment the media program includes a previously-scheduled advertisement and causing the future advertisement is effective to replace the previously-scheduled advertisement with the future advertisement.

[0005c] In one embodiment receiving the media reaction is from a media presentation device on which the media program is presented and causing the future advertisement to be presented is performed by the computing device through a communications network.

[0005d] In one embodiment determining the future advertisement is further based on: a media reaction of another user; demographic information; or information about the media program.

[0005e] In one embodiment the method further comprises receiving another media reaction, the other media reaction determined based on other sensor data sensed during the first portion of the media program and associated with a different user than the user associated with the first-mentioned media reaction, the different user physically local to the user, and wherein determining the future advertisement is further based on the other media reaction.

[0005f] In one embodiment the media reaction is received from an entity local to a media presentation device on which the media program is presented and the set of advertisements is previously stored local to the media presentation device and associated with a time-range in the media program at which to present the future advertisement.

[0005g] In one embodiment the first portion of the media program is an advertisement and determining the future advertisement determines the future advertisement based on the future advertisement determined to be more likely to be successful than one or more other previously prepared advertisements of the set of advertisements.

[0005h] In one embodiment the context for the media reaction includes a time of day in which the first portion of the media program is presented or a type of media being presented during the portion.

[0005i] In one embodiment the method further comprises: determining, based on the engaged state of the user during the first portion of the media program, a future portion of the media program, the future portion of the media program occurring during a second portion of the media program and during the same presentation of the media program; and causing the future portion of the media program to be presented during the second portion of the media program and during the same presentation of the media program.

[0005j] In another broad form an aspect of the present invention seeks to provide apparatus comprising: one or more computer processors; and one or more

computer-readable storage media having instructions stored thereon that, responsive to execution by the one or more computer processors, perform operations comprising: receiving, during a presentation of a first portion of a media program, a media reaction to the first portion of the media program, the media reaction determined based on sensor data passively sensed during the first portion of the media program; determining, based on the media reaction to the first portion of the media program being congruent with a context for the first portion of the media program, an engaged state of a user during the first portion of the media program; determining, based on a reaction history of the user and responsive to the user being in the engaged state during the first portion of the media program, a future advertisement, the future advertisement: to occur during a later portion of the media program; during a same presentation of the media program; and selected from a set of advertisements based on a similarity to the first portion of the media program; and causing the future advertisement to be presented during the later portion of the media program and during the same presentation of the media program.

[0005k] In one embodiment the media program includes a previously-scheduled advertisement and causing the future advertisement is effective to replace the previously-scheduled advertisement with the future advertisement.

20 [0005l] In one embodiment receiving the media reaction is received from a media presentation device on which the media program is presented and causing the future advertisement of the media program to be presented is performed by the apparatus, the apparatus remote from the media presentation device.

[0005m] In one embodiment determining the future advertisement is further based on: 25 a media reaction of another user; demographic information; or information about the media program.

[0005n] In one embodiment the apparatus further comprises receiving another media reaction, the other media reaction determined based on other sensor data sensed during the first portion of the media program and associated with a different user 30 than a user associated with the first-mentioned media reaction, the different user

physically local to the user, and wherein determining the future advertisement is further based on the other media reaction.

[0005o] In one embodiment the apparatus further comprises presenting, by the apparatus, the media program and receiving, from the user and by the apparatus, the media reaction, and wherein determining the future advertisement determines the future advertisement from the set of advertisements previously stored on the one or more computer-readable storage media, the set of advertisements associated with a time-range in the media program at which to present the future advertisement.

[0005p] In one embodiment the first portion of the media program is an advertisement and determining the future advertisement determines the future advertisement based on the future advertisement determined to be more likely to be successful than one or more other previously prepared advertisements of the set of advertisements.

[0005q] In one embodiment the operations further comprise: determining, based on the engaged state of the user during the first portion of the media program, a second portion of the media program, the future portion of the media program occurring during a second portion of the media program and during the same presentation of the media program; and causing the future portion of the media program to be presented during the second portion of the media program and during the same presentation of the media program.

[0005r] In another broad form an aspect of the present invention seeks to provide a method implemented by a computing device comprising: receiving, by the computing device and during a presentation of a first portion of a media program, a media reaction to the first portion of the media program, the media reaction determined based on sensor data passively sensed during the first portion of the media program; determining, by the computing device and based on the media reaction to the first portion of the media program being incongruent with a context for the first portion of the media program, a disengaged state of a user during the first portion of the media program; determining, by the computing device, based on a reaction history of the user, and responsive to determining the user to be in the disengaged state during the first portion of the media program, a future

advertisement, the future advertisement: occurring during a later portion of the media program; during a same presentation of the media program; and selected from a set of advertisements based on a dissimilarity to the first portion of the media program; and causing, by the computing device, the future advertisement to be presented during the later portion of the media program and during the same presentation of the media program.

[0005s] In one embodiment the context for the media reaction includes a time of day in which the first portion of the media program is presented or a type of media being presented during the portion.

[0005t] In one embodiment the method further comprises: determining, based on the disengaged state of the user during the first portion of the media program, a future portion of the media program, the future portion of the media program occurring during a second portion of the media program and during the same presentation of the media program; and causing the future portion of the media program to be presented during the second portion of the media program and during the same presentation of the media program.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments of techniques and apparatuses for determining a future portion of a currently presented media program are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:

Fig. 1 illustrates an example environment in which techniques for determining a future portion of a currently presented media program can be implemented, as well as other techniques.

Fig. 2 is an illustration of an example computing device that is local to the audience of Fig. 1.

Fig. 3 is an illustration of an example remote computing device that is remote to the audience of Fig. 1.

Fig. 4 illustrates example methods for determining media reactions based on passive sensor data.

Fig. 5 illustrates a time-based graph of media reactions, the media

reactions being interest levels for one user and for forty time periods during presentation of a media program.

Fig. 6 illustrates example methods for building a reaction history.

Fig. 7 illustrates example methods for presenting an advertisement based on a current media reaction, including by determining which advertisement of multiple potential advertisements to present.

Fig. 8 illustrates current media reactions to a media program over a portion of the program as the program is being presented.

Fig. 9 illustrates example methods for presenting an advertisement based on a current media reaction, including based on bids from advertisers.

Fig. 10 illustrates the advertisement module of Figs. 2 and 3 passing information through the communications network of Fig. 3 to multiple
5 advertisers.

Fig. 11 illustrates methods for presenting an advertisement based on a current media reaction, including immediately following a scene in which the current media reaction was made.

Fig. 12 illustrates methods for determining a future portion of a currently presented media program, including based on a current media reaction of a user determined based on sensor data passively sensed during the presentation of the media program to the user.
10

Fig. 13 illustrates the remote device of Fig. 3 in which demographics, a portion of a reaction history, a current media reaction, and information about the media program is received from the computing device of Figs. 2 and/or 3.
15

Fig. 14 illustrates methods for determining a future portion of a currently presented media program, including when the future portion is a response to an explicitly requested media reaction.

Fig. 15 illustrates methods for determining a future portion of a currently presented media program, including based on multiple users' media reactions.
20

Fig. 16 illustrates an example device in which techniques for determining a future portion of a currently presented media program, as well as other techniques, can be implemented.
25

DETAILED DESCRIPTION

Overview

[0007] This document describes techniques and apparatuses for determining a future portion of a currently presented media program. These techniques and apparatuses enable alterations to, or determinations of, portions of a media program during the presentation of that program.
30

[0008] Consider, for example, a situational comedy program being presented to many thousands of viewers. Assume that the media provider of this situational comedy prepared, in advance, multiple portions to present at certain points in the situational comedy—three different scenes at minute nineteen and four different 5 ending scenes at the end of the program. The techniques may determine, based on media reactions during the presentation, which of the three scenes to present at minute nineteen and which of the four different scenes to present at the end. Which scenes are presented may be based on many media reactions to a prior scene, such as from thousands of viewers, or based on a person's or demographic group's 10 reactions. By so doing, the techniques may alter the program for everyone or tailor the program to a group or a particular person. Thus, the techniques may present a scene having physical comedy to men aged 18-34 at minute nineteen based on that group's reaction to a prior scene having physical comedy, present a scene showing character development to women aged 35-44 based on that group's reaction to a prior 15 scene about the character, and show all audiences one of the four possible endings based on various reactions from all groups currently watching the program.

[0009] This is but one example of how techniques and/or apparatuses for determining a future portion of a currently presented media program can be performed. Techniques and/or apparatuses are referred to herein separately or in 20 conjunction as the "techniques" as permitted by the context. This document now turns to an example environment in which the techniques can be embodied and then various example methods that can, but are not required to, work in conjunction with the techniques. Some of these various methods include methods for sensing reactions to media, building a reaction history for a user, and presenting 25 advertisements based on current reactions. After these various methods, this document turns to example methods for determining a future portion of a currently presented media program.

Example Environment

[0010] Fig. 1 is an illustration of an example environment 100 for receiving sensor 30 data and determining media reactions based on this sensor data. These media reactions can be used to determine a future portion of a currently presented media

program, as well as other uses. The techniques may use these media reactions alone or in combination with other information, such as demographics, reaction histories, and information about the media program or portion thereof.

5 [0011] Environment 100 includes a media presentation device 102, an audience-sensing device 104, a state module 106, an interest module 108, an interface module 110, and a user interface 112.

10 [0012] Media presentation device 102 presents a media program to an audience 114 having one or more users 116. A media program can include, alone or in combination, a television show, a movie, a music video, a video clip, an advertisement, a blog, a photograph, a web page, an e-book, an e-magazine, a computer game, a song, a tweet, or other audio and/or video media. Audience 114 can include one or more users 116 that are in locations enabling consumption of a media program presented by media presentation device 102 and measurement by audience-sensing device 104, whether separately or within one audience 114. In 15 audience 114 three users are shown: user 116-1, user 116-2, and user 116-3.

[0013] Audience-sensing device 104 is capable of sensing audience 114 and providing sensor data for audience 114 to state module 106 and/or interest module 108 (sensor data 118 shown provided via an arrow). The data sensed can be sensed passively, actively, and/or responsive to an explicit request.

20 [0014] Passively sensed data is passive by not requiring active participation of users in the measurement of those users. Actively sensed data includes data recorded by users in an audience, such as with handwritten logs, and data sensed from users through biometric sensors worn by users in the audience. Sensor data sensed responsive to an explicit request can be sensed actively or passively. One example 25 is an advertisement that requests, during the advertisement, that a user raises his or her hand if he or she would like a coupon for a free sample of a product to be sent to the user by mail. In such a case, the user is expressing a reaction of raising a hand, though this can be passively sensed by not requiring the user to actively participate in the measurement of the reaction. The techniques sense this raised 30 hand in various manners as set forth below.

[0015] Sensor data can include data sensed using emitted light or other signals sent by audience-sensing device 104, such as with an infrared sensor bouncing emitted infrared light off of users or the audience space (e.g., a couch, walls, etc.) and sensing the light that returns. Examples of sensor data measuring a user and ways 5 in which it can be measured are provided in greater detail below.

[0016] Audience-sensing device 104 may or may not process sensor data prior to providing it to state module 106 and/or interest module 108. Thus, sensor data may be or include raw data or processed data, such as: RGB (Red, Green, Blue) frames; infrared data frames; depth data; heart rate; respiration rate; a user's head 10 orientation or movement (e.g., coordinates in three dimensions, x, y, z, and three angles, pitch, tilt, and yaw); facial (e.g., eyes, nose, and mouth) orientation, movement, or occlusion; skeleton's orientation, movement, or occlusion; audio, which may include information indicating orientation sufficient to determine from which user the audio originated or directly indicating which user, or what words 15 were said, if any; thermal readings sufficient to determine or indicating presence and locations of one of users 116; and distance from the audience-sensing device 104 or media presentation device 102. In some cases audience-sensing device 104 includes infrared sensors (webcams, Kinect cameras), stereo microphones or directed audio microphones, and a thermal reader (in addition to infrared sensors), 20 though other sensing apparatuses may also or instead be used.

[0017] State module 106 receives sensor data and determines, based on the sensor data, states 120 of users 116 in audience 114 (shown at arrow). States include, for example: sad, talking, disgusted, afraid, smiling, scowling, placid, surprised, angry, laughing, screaming, clapping, waving, cheering, looking away, looking toward, 25 leaning away, leaning toward, asleep, or departed, to name just a few.

[0018] The talking state can be a general state indicating that a user is talking, though it may also include subcategories based on the content of the speech, such as talking about the media program (related talking) or talking that is unrelated to the media program (unrelated talking). State module 106 can determine which 30 talking category through speech recognition.

[0019] State module 106 may also or instead determine, based on sensor data, a number of users, a user's identity and/or demographic data (shown at 122), or engagement (shown at 124) during presentation. Identity indicates a unique identity for one of users 116 in audience 114, such as *Susan Brown*. Demographic data 5 classifies one of users 116, such as *5 feet, 4 inches tall, young child*, and *male or female*. Engagement indicates whether a user is likely to be paying attention to the media program, such as based on that user's presence or head orientation. Engagement, in some cases, can be determined by state module 106 with lower-resolution or less-processed sensor data compared to that used to determine states.

10 Even so, engagement can be useful in measuring an audience, whether on its own or to determine a user's interest using interest module 108.

[0020] Interest module 108 determines, based on sensor data 118 and/or a user's engagement or state (shown with engagement/state 126 at arrow) and information about the media program (shown at media type 128 at arrow), that user's interest 15 level 130 (shown at arrow) in the media program. Interest module 108 may determine, for example, that multiple laughing states for a media program intended to be a serious drama indicate a low level of interest and conversely, that for a media program intended to be a comedy, that multiple laughing states indicate a high level of interest.

20 [0021] As illustrated in Fig. 1, state module 106 and/or interest module 108 provide demographics/identity 122 as well as one or more of the following media reactions: engagement 124, state 120, or interest level 130, all shown at arrows in Fig. 1. Based on one or more of these media reactions, state module 106 and/or interest module 108 may also provide another type of media reaction, that of overall media 25 reactions to a media program, such as a rating (e.g., thumbs up or three stars). In some cases, however, media reactions are received and overall media reactions are determined instead by interface module 110.

[0022] State module 106 and interest module 108 can be local to audience 114, and thus media presentation device 102 and audience-sensing device 104, though this is 30 not required. An example embodiment where state module 106 and interest module 108 are local to audience 114 is shown in Fig. 2. In some cases, however, state

module 106 and/or interest module 108 are remote from audience 114, which is illustrated in Fig. 3.

[0023] Interface module 110 receives media reactions and demographics/identity information, and determines or receives some indication as to which media 5 program or portion thereof that the reactions pertain. Interface module 110 presents, or causes to be presented, a media reaction 132 to a media program through user interface 112, though this is not required. This media reaction can be any of the above-mentioned reactions, some of which are presented in a time-based graph, through an avatar showing the reaction, or a video or audio of the user 10 recorded during the reaction, one or more of which is effective to how a user's reaction over the course of the associated media program.

[0024] Interface module 110 can be local to audience 114, such as in cases where one user is viewing his or her own media reactions or those of a family member. In many cases, however, interface module 110 receives media reactions from a remote 15 source.

[0025] Note that sensor data 118 may include a context in which a user is reacting to media or a current context for a user for which ratings or recommendations for media are requested. Thus, audience-sensing device 104 may sense that a second person is in the room or is otherwise in physical proximity to the first person, which 20 can be context for the first person. Contexts may also be determined in other manners described in Fig. 2 below.

[0026] Fig. 2 is an illustration of an example computing device 202 that is local to audience 114. Computing device 202 includes or has access to media presentation device 102, audience-sensing device 104, one or more processors 204, and 25 computer-readable storage media (“CRM”) 206.

[0027] CRM 206 includes an operating system 208, state module 106, interest module 108, media program(s) 210, each of which may include or have associated program information 212 and portions 214, interface module 110, user interface 112, history module 216, reaction history 218, advertisement module 220, which 30 may include multiple advertisements 222, and portion module 224.

[0028] Each of media programs 210 may have, include, or be associated with program information 212 and portions 214. Program information 212 can indicate the name, title, episode, author or artist, type of program, and other information, including relating to various portions within each media program 210. Thus, 5 program information 212 may indicate that one of media programs 210 is a music video, includes a chorus portion that is repeated four times, includes a four verse portions, includes portions based on each visual presentation during the song, such as the artist singing, the backup singers dancing, the name of the music video, the artist, the year produced, resolution and formatting data, and so forth.

10 [0029] Portions 214 of one of media programs 210 make up the program or potentially may be used to make up the program. These portions may represent particular time-ranges in the media program, though they may instead be located in the program based on a prior portion ending (even if the time at which that portion ending is not necessarily set in advance). Example portions may be 15-second-long 15 pieces, a song being played in a radio-like program, or a scene of a movie. These portions 214 may be arranged and/or set in a particular order, in which case one or more of portions 214 can be replaced by portion module 224 responsive to media reactions. These portions 214 may instead be prepared in advance but without a pre-set order. Thus, a media program, such as a 30-second advertisement, may have 20 a previously-set first ten-second portion but have five alternative second portions of ten seconds, and fifteen alternative third portions of ten seconds, for example. In such a case, which portion is played from eleven to twenty seconds can be based on a media reaction of a person to the first ten-second portion. Then, based on one or both of the user's (or many users') reactions to the first portion and the second, the 25 third portion playing from twenty-one to thirty seconds is determined.

[0030] Portion module 224, as noted in part above, receives a current media reaction or reactions of a user, a group of users, or many users to a portion of one of media programs 210. These media reactions may include one or more of engagements 124, states 120, and interest levels 130. With these media reactions, 30 portion module 224 may determine a future portion of the currently presented media program to present. Note that this determination may be performed in real-

time during the presentation of the media program, even effective to determine future portions of short advertisements based on current reactions to earlier portions of that same presentation of the advertisement. These future portions may be previously stored locally or remotely. The future portion to be presented may be
5 received from the local store or received from a remote source, such as contemporaneously by streaming later portions of a currently presented media program from a remote source. As shown in Figs. 2 and 3, media program 210, portions 214, and portion module 224 may be local or remote from computing device 202 and thus the user or users having the media reactions (e.g., user 116-1 of
10 audience 114 of Fig. 1).

[0031] History module 216 includes or has access to reaction history 218. History module 216 may build and update reaction history 218 based on ongoing reactions by the user (or others as noted below) to media programs. In some cases history module 216 determines various contexts for a user, though this may instead be
15 determined and received from other entities. Thus, in some cases history module 216 determines a time, a locale, weather at the locale, and so forth, during the user's reaction to a media program or request for ratings or recommendations for a media program. History module 216 may determine ratings and/or recommendations for media based on a current context for a user and reaction
20 history 218. Reaction history 218, as noted elsewhere herein, may be used along with media reactions to determine future portions of a media program to present.

[0032] Advertisement module 220 receives a current media reaction of a user, such as one or more of engagements 124, states 120, or interest levels 130. With this current media reaction, advertisement module 220 may determine an advertisement
25 of multiple advertisements 222 to present to the user. Advertisement module 220 may also or instead provide the current media reaction to advertisers, receive bids from advertisers for a right to present an advertisement, and then cause an advertisement to be presented to the user. This advertisement may be previously stored as one of advertisements 222 or received contemporaneously, such as by
30 streaming the advertisement from a remote source responsive to the accompanying bid being a highest bid or another pricing structure indicating that the advertisement

should be presented. Note that in either of these cases, advertisement module 220 may be local or remote from computing device 202 and thus the user (e.g., user 116-1 of audience 114 of Fig. 1).

[0033] Note that in this illustrated example, entities including media presentation device 102, audience-sensing device 104, state module 106, interest module 108, interface module 110, history module 216, advertisement module 220, and portion module 224 are included within a single computing device, such as a desktop computer having a display, forward-facing camera, microphones, audio output, and the like. Each of these entities, however, may be separate from or integral with each other in one or multiple computing devices or otherwise. As will be described in part below, media presentation device 102 can be integral with audience-sensing device 104 but be separate from state module 106, interest module 108, interface module 110, history module 216, advertisement module 220, or portion module 224. Further, each of these modules may operate on separate devices or be combined in one device.

[0034] As shown in Fig. 2, computing device(s) 202 can each be one or a combination of various devices, here illustrated with six examples: a laptop computer 202-1, a tablet computer 202-2, a smart phone 202-3, a set-top box 202-4, a desktop 202-5, and a gaming system 202-6, though other computing devices and systems, such as televisions with computing capabilities, netbooks, and cellular phones, may also be used. Note that three of these computing devices 202 include media presentation device 102 and audience-sensing device 104 (laptop computer 202-1, tablet computer 202-2, smart phone 202-3). One device excludes but is in communication with media presentation device 102 and audience-sensing device 104 (desktop 202-5). Two others exclude media presentation device 102 and may or may not include audience-sensing device 104, such as in cases where audience-sensing device 104 is included within media presentation device 102 (set-top box 202-4 and gaming system 202-6).

[0035] Fig. 3 is an illustration of an example remote computing device 302 that is remote to audience 114. Fig. 3 also illustrates a communications network 304 through which remote computing device 302 communicates with audience-sensing

device 104 (not shown, but embodied within, or in communication with, computing device 202), interface module 110, history module 216 (including or excluding reaction history 218), advertisement module 220 (including or excluding advertisements 222), and portion module 224, assuming that these entities are in 5 computing device 202 as illustrated in Fig. 2. Communication network 304 may be the Internet, a local-area network, a wide-area network, a wireless network, a USB hub, a computer bus, another mobile communications network, or a combination of these.

[0036] Remote computing device 302 includes one or more processors 306 and 10 remote computer-readable storage media (“remote CRM”) 308. Remote CRM 308 includes state module 106, interest module 108, media program(s) 210, each of which may include or have associated program information 212 and/or portions 214, history module 216, reaction history 218, advertisement module 220, advertisements 222, and portion module 224.

15 [0037] Note that in this illustrated example, media presentation device 102 and audience-sensing device 104 are physically separate from state module 106 and interest module 108, with the first two local to an audience viewing a media program and the second two operating remotely. Thus, sensor data is passed from audience-sensing device 104 to one or both of state module 106 or interest module 20 108, which can be communicated locally (Fig. 2) or remotely (Fig. 3). Further, after determination by state module 106 and/or interest module 108, various media reactions and other information can be communicated to the same or other computing devices 202 for receipt by interface module 110, history module 216, advertisement module 220, and/or portion module 224. Thus, in some cases a first 25 of computing devices 202 may measure sensor data, communicate that sensor data to remote device 302, after which remote device 302 communicates media reactions to another of computing devices 202, all through network 304.

[0038] These and other capabilities, as well as ways in which entities of Figs. 1-3 act and interact, are set forth in greater detail below. These entities may be further 30 divided, combined, and so on. The environment 100 of Fig. 1 and the detailed

illustrations of Figs. 2 and 3 illustrate some of many possible environments capable of employing the described techniques.

Example Methods

Determining Media Reactions based on Passive Sensor Data

5 [0039] Fig. 4 depicts methods 400 determines media reactions based on passive sensor data. These and other methods described herein are shown as sets of blocks that specify operations performed but are not necessarily limited to the order shown for performing the operations by the respective blocks. In portions of the following discussion reference may be made to environment 100 of Fig. 1 and entities 10 detailed in Figs. 2-3, reference to which is made for example only. The techniques are not limited to performance by one entity or multiple entities operating on one device.

15 [0040] Block 402 senses or receives sensor data for an audience or user, the sensor data passively sensed during presentation of a media program to the audience or user. This sensor data may include a context of the audience or user or a context may be received separately.

20 [0041] Consider, for example, a case where an audience includes three users 116, users 116-1, 116-2, and 116-3 all of Fig. 1. Assume that media presentation device 102 is an LCD display having speakers and through which the media program is rendered and that the display is in communication with set-top box 202-4 of Fig. 2. Here audience-sensing device 104 is a forward-facing high-resolution infrared sensor, a red-green-blue sensor, and two microphones capable of sensing sound and location (e.g., a directional array) that is integral with set-top box 202-4 or media presentation device 102. Assume also that the media program 210 being presented 25 is a PG-rated animated movie named *Incredible Family*, which is streamed from a remote source and through set-top box 202-4. Set-top box 202-4 presents *Incredible Family* with six advertisements, spaced one at the beginning of the movie, three in a three-ad block, and two in a two-ad block.

[0042] Sensor data is received for all three users 116 in audience 114; for this example consider first user 116-1. Assume here that, over the course of *Incredible Family*, that audience-sensing device 104 measures, and then provides at block 402, the following at various times for user 116-1:

5 Time 1, head orientation 3 degrees, no or low-amplitude audio.
 Time 2, head orientation 24 degrees, no audio.
 Time 3, skeletal movement (arms), high-amplitude audio.
 Time 4, skeletal movement (arms and body), high-amplitude audio.
 Time 5, head movement, facial-feature change (20%), moderate-
10 amplitude audio.
 Time 6, detailed facial orientation data, no audio.
 Time 7, skeletal orientation (missing), no audio.
 Time 8, facial orientation, respiration rate.

[0043] Block 404 determines, based on the sensor data, a state of the user during the media program. In some cases block 404 determines a probability for the state or multiple probabilities for multiple states, respectively. For example, block 404 may determine a state likely to be correct but with less than full certainty (e.g., 40% chance that the user is laughing). Block 404 may also or instead determine that multiple states are possible based on the sensor data, such as a sad or placid state, and probabilities for each (e.g., sad state 65%, placid state 35%).

[0044] Block 404 may also or instead determine demographics, identity, and/or engagement. Further, methods 400 may skip block 404 and proceed directly to block 406, as described later below.

[0045] In the ongoing example, state module 106 receives the above-listed sensor data and determines the following corresponding states for user 116-1:

30 Time 1: Looking toward.
 Time 2: Looking away.
 Time 3: Clapping.
 Time 4: Cheering.
 Time 5: Laughing.
 Time 6: Smiling.

Time 7: Departed.

Time 8: Asleep.

[0046] At Time 1 state module 106 determines, based on the sensor data indicating a 3-degree deviation of user 116-1's head from looking directly at the LCD display 5 and a rule indicating that the looking toward state applies for deviations of less than 20 degrees (by way of example only), that user 116-1's state is looking toward the media program. Similarly, at Time 2, state module 106 determines user 116-1 to be looking away due to the deviation being greater than 20 degrees.

[0047] At Time 3, state module 106 determines, based on sensor data indicating that 10 user 116-1 has skeletal movement in his arms and audio that is high amplitude that user 116-1 is clapping. State module 106 may differentiate between clapping and other states, such as cheering, based on the type of arm movement (not indicated above for brevity). Similarly, at Time 4, state module 106 determines that user 116-1 is cheering due to arm movement and high-amplitude audio attributable to user 15 116-1.

[0048] At Time 5, state module 106 determines, based on sensor data indicating that user 116-1 has head movement, facial-feature changes of 20%, and moderate-amplitude audio, that user 116-1 is laughing. Various sensor data can be used to differentiate different states, such as screaming, based on the audio being moderate-20 amplitude rather than high-amplitude and the facial-feature changes, such as an opening of the mouth and a rising of both eyebrows.

[0049] For Time 6, audience-sensing device 104 processes raw sensor data to provide processed sensor data, and in this case facial recognition processing to provide detailed facial orientation data. In conjunction with no audio, state module 25 106 determines that the detailed facial orientation data (here upturned lip corners, amount of eyelids covering eyes) that user 116-1 is smiling.

[0050] At Time 7, state module 106 determines, based on sensor data indicating that user 116-1 has skeletal movement moving away from the audience-sensing device 104, that user 116-1 is departed. The sensor data may indicate this directly as well, 30 such as in cases where audience-sensing device 104 does not sense user 116-1's

presence, either through no skeletal or head readings or a thermal signature no longer being received.

[0051] At Time 8, state module 106 determines, based on sensor data indicating that user 116-1's facial orientation has not changed over a certain period (e.g., the user's eyes have not blinked) and a steady, slow respiration rate that user 116-1 is asleep.

[0052] These eight sensor readings are simplified examples for purpose of explanation. Sensor data may include extensive data as noted elsewhere herein. Further, sensor data may be received measuring an audience every fraction of a second, thereby providing detailed data for tens, hundreds, and thousands of 10 periods during presentation of a media program and from which states or other media reactions may be determined.

[0053] Returning to methods 400, block 404 may determine demographics, identity, and engagement in addition to a user's state. State module 106 may determine or receive sensor data from which to determine demographics and identity or receive, 15 from audience-sensing device 104, the demographics or identity. Continuing the ongoing example, the sensor data for user 116-1 may indicate that user 116-1 is *John Brown*, that user 116-2 is *Lydia Brown*, and that user 116-3 is *Susan Brown*. Or sensor data may indicate that user 116-1 is *six feet, four inches* tall and *male* (based on skeletal orientation), for example. The sensor data may be received with 20 or include information indicating portions of the sensor data attributable separately to each user in the audience. In this present example, however, assume that audience-sensing device 104 provides three sets of sensor data, with each set indicating the identity of the user along with the sensor data.

[0054] Also at block 404, the techniques may determine an engagement of an 25 audience or user in the audience. As noted, this determination can be less refined than that of states of a user, but nonetheless is useful. Assume for the above example, that sensor data is received for user 116-2 (*Lydia Brown*), and that this sensor data includes only head and skeletal orientation:

Time 1, head orientation 0 degrees, skeletal orientation upper torso
30 forward of lower torso.

Time 2, head orientation 2 degrees, skeletal orientation upper torso forward of lower torso.

Time 3, head orientation 5 degrees, skeletal orientation upper torso approximately even with lower torso.

5 Time 4, head orientation 2 degrees, skeletal orientation upper torso back from lower torso.

Time 5, head orientation 16 degrees, skeletal orientation upper torso back from lower torso.

10 Time 6, head orientation 37 degrees, skeletal orientation upper torso back from lower torso.

Time 7, head orientation 5 degrees, skeletal orientation upper torso forward of lower torso.

Time 8, head orientation 1 degree, skeletal orientation upper torso forward of lower torso.

15 [0055] State module 106 receives this sensor data and determines the following corresponding engagement for *Lydia Brown*:

Time 1: Engagement High.

Time 2: Engagement High.

Time 3: Engagement Medium-High.

20 Time 4: Engagement Medium.

Time 5: Engagement Medium-Low.

Time 6: Engagement Low.

Time 7: Engagement High.

Time 8: Engagement High.

25 [0056] At Times 1, 2, 7, and 8, state module 106 determines, based on the sensor data indicating a 5-degree-or-less deviation of user 116-2's head from looking directly at the LCD display and skeletal orientation of upper torso forward of lower torso (indicating that *Lydia* is leaning forward to the media presentation) that *Lydia* is highly engaged in *Incredible Family* at these times.

30

[0057] At Time 3, state module 106 determines that *Lydia*'s engagement level has fallen due to *Lydia* no longer leaning forward. At Time 4, state module 106 determines that *Lydia*'s engagement has fallen further to medium based on *Lydia* leaning back, even though she is still looking almost directly at *Incredible Family*.

5 [0058] At Times 5 and 6, state module 106 determines *Lydia* is less engaged, falling to Medium-Low and then Low engagement based on *Lydia* still leaning back and looking slightly away (16 degrees) and then significantly away (37 degrees), respectively. Note that at Time 7 *Lydia* quickly returns to a High engagement, which media creators are likely interested in, as it indicates content found to be
10 exciting or otherwise captivating.

15 [0059] Methods 400 may proceed directly from block 402 to block 406, or from block 404 to block 406 or block 408. If proceeding to block 406 from block 404, the techniques determine an interest level based on the type of media being presented and the user's engagement or state. If proceeding to block 406 from block 402, the techniques determine an interest level based on the type of media being presented and the user's sensor data, without necessarily first or independently determining the user's engagement or state.

20 [0060] Continuing the above examples for users 116-1 and 116-2, assume that block 406 receives states determined by state module 106 at block 404 for user 116-1 (*John Brown*). Based on the states for *John Brown* and information about the media program, interest module 108 determines an interest level, either overall or over time, for *Incredible Family*. Assume here that *Incredible Family* is both an adventure and a comedy program, with portions of the movie marked as having one of these media types. While simplified, assume that Times 1 and 2 are marked as
25 comedy, Times 3 and 4 are marked as adventure, Times 5 and 6 are marked as comedy, and that Times 7 and 8 are marked as adventure. Revisiting the states determined by state module 106, consider the following again:

Time 1: Looking toward.

Time 2: Looking away.

30 Time 3: Clapping.

Time 4: Cheering.

Time 5: Laughing.

Time 6: Smiling.

Time 7: Departed.

Time 8: Asleep.

5 [0061] Based on these states, state module 106 determines for Time 1 that *John Brown* has a medium-low interest in the content at Time 1 – if this were of an adventure or drama type, state module 106 may determine *John Brown* to instead be highly interested. Here, however, due to the content being comedy and thus intended to elicit laughter or a similar state, interest module 108 determines that

10 10 *John Brown* has a medium-low interest at Time 1. Similarly, for Time 2, interest module 108 determines that *John Brown* has a low interest at Time 2 because his state is not only not laughing or smiling but is looking away.

[0062] At Times 3 and 4, interest module 108 determines, based on the adventure type for these times and states of clapping and cheering, that *John Brown* has a high

15 15 interest level. At time 6, based on the comedy type and *John Brown* smiling, that he has a medium interest at this time.

[0063] At Times 7 and 8, interest module 108 determines that *John Brown* has a very low interest. Here the media type is adventure, though in this case interest module 108 would determine *John Brown*'s interest level to be very low for most

20 20 types of content.

[0064] As can be readily seen, advertisers, media providers, and media creators can benefit from knowing a user's engagement or interest level. Here assume that the interest level is provided over time for *Incredible Family*, along with demographic information about *John Brown*. With this information from numerous

25 25 demographically similar users, a media creator may learn that male adults are interested in some of the adventure content but that most of the comedy portions are not interesting, at least for this demographic group.

[0065] Consider, by way of a more-detailed example, Fig. 5, which illustrates a time-based graph 500 having interest levels 502 for forty time periods 504 over a

30 30 portion of a media program. Here assume that the media program is a movie that includes other media programs—advertisements—at time periods 18 to 30. Interest

module 108 determines, as shown, that the user begins with a medium interest level, and then bounces between medium and medium-high, high, and very high interest levels to time period 18. During the first advertisement, which covers time periods 18 to 22, interest module 108 determines that the user has a medium low 5 interest level. For time periods 23 to 28, however, interest module 108 determines that the user has a very low interest level (because he is looking away and talking or left the room, for example). For the last advertisement, which covers time period 28 to 32, however, interest module 108 determines that the user has a medium interest level for time periods 29 to 32—most of the advertisement.

10 [0066] This can be valuable information—the user stayed for the first advertisement, left for the middle advertisement and the beginning of the last advertisement, and returned, with medium interest, for most of the last advertisement. Contrast this resolution and accuracy of interest with some conventional approaches, which likely would provide no information about how 15 many of the people that watched the movie actually watched the advertisements, which ones, and with what amount of interest. If this example is a common trend with the viewing public, prices for advertisements in the middle of a block would go down, and other advertisement prices would be adjusted as well. Or, advertisers and media providers might learn to play shorter advertisement blocks having only 20 two advertisements, for example. Interest levels 502 also provide valuable information about portions of the movie itself, such as through the very high interest level at time period 7 (e.g., a particularly captivating scene of a movie) and the waning interest at time periods 35-38.

[0067] Note that, in some cases, engagement levels, while useful, may be less 25 useful or accurate than states and interest levels. For example, state module 106 may determine, for just engagement levels, that a user is not engaged if the user's face is occluded (blocked) and thus not looking at the media program. If the user's face is blocked by that user's hands (skeletal orientation) and audio indicates high-volume audio, state module 106, when determining states, may determine the user 30 to be screaming. A screaming state indicates, in conjunction with the content being

horror or suspense, an interest level that is very high. This is but one example of where an interest level can be markedly different from that of an engagement level.

[0068] As noted above, methods 400 may proceed directly from block 402 to block

406. In such a case, interest module 108, either alone or in conjunction with state

5 module 106, determines an interest level based on the type of media (including multiple media types for different portions of a media program) and the sensor data.

By way of example, interest module 108 may determine that for sensor data for *John Brown* at Time 4, which indicates skeletal movement (arms and body), and high-amplitude audio, and a comedy, athletics, conflict-based talk show, adventure-

10 based video game, tweet, or horror types, that *John Brown* has a high interest level

at Time 4. Conversely, interest module 108 may determine that for the same sensor

data at Time 4 for a drama, melodrama, or classical music, that *John Brown* has a low interest level at Time 4. This can be performed based on the sensor data without first determining an engagement level or state, though this may also be

15 performed.

[0069] Block 408, either after block 404 or 406, provides the demographics, identity, engagement, state, and/or interest level. State module 106 or interest module 108 may provide this information to various entities, such as interface module 110, history module 216, advertisement module 220, and/or portion module

20 224, as well as others.

[0070] Providing this information to an advertiser after presentation of an advertisement in which a media reaction is determined can be effective to enable the advertiser to measure a value of their advertisements shown during a media program. Providing this information to a media creator can be effective to enable

25 the media creator to assess a potential value of a similar media program or portion

thereof. For example, a media creator, prior to releasing the media program to the general public, may determine portions of the media program that are not well received, and thus alter the media program to improve it.

[0071] Providing this information to a rating entity can be effective to enable the

30 rating entity to automatically rate the media program for the user. Still other entities, such as a media controller, may use the information to improve media

control and presentation. A local controller may pause the media program responsive to all of the users in the audience departing the room, for example.

[0072] Providing media reactions to history module 216 can be effective to enable history module 216 to build and update reaction history 218. History module 216

5 may build reaction history 218 based on a context or contexts in which each set of media reactions to a media program are received, or the media reactions may, in whole or in part, factor in a context into the media reactions. Thus, a context for a media reaction where the user is watching a television show on a Wednesday night after work may be altered to reflect that the user may be tired from work.

10 [0073] As noted herein, the techniques can determine numerous states for a user over the course of most media programs, even for 15-second advertisements or video snippets. In such a case block 404 is repeated, such as at one-second periods.

[0074] Furthermore, state module 106 may determine not only multiple states for a user over time, but also various different states at a particular time. A user may be

15 both laughing and looking away, for example, both of which are states that may be determined and provided or used to determine the user's interest level.

[0075] Further still, either or both of state module 106 and interest module 108 may determine engagement, states, and/or interest levels based on historical data in addition to sensor data or media type. In one case a user's historical sensor data is

20 used to normalize the user's engagement, states, or interest levels (e.g., dynamically for a current media reaction). If, for example, *Susan Brown* is viewing a media program and sensor data for her is received, the techniques may normalize or otherwise learn how best to determine engagement, states, and interest levels for her based on her historical sensor data.

25 If *Susan Brown*'s historical sensor data indicates that she is not a particularly expressive or vocal user, the techniques may adjust for this history. Thus, lower-amplitude audio may be sufficient to determine that *Susan Brown* laughed compared to higher-amplitude audio generally used to determine that a user laughed.

[0076] In another case, historical engagement, states, or interest levels of the user 30 for which sensor data is received are compared with historical engagement, states, or interest levels for other people. Thus, a lower interest level may be determined

for *Lydia Brown* based on data indicating that she exhibits a high interest for almost every media program she watches compared to other people's interest levels (either generally or for the same media program). In either of these cases the techniques learn over time, and thereby can normalize engagement, states, and/or interest 5 levels.

Methods for Building a Reaction History

[0077] As noted above, the techniques may determine a user's engagement, state, and/or interest level for various media programs. Further, these techniques may do so using passive or active sensor data. With these media reactions, the techniques 10 may build a reaction history for a user. This reaction history can be used in various manners as set forth elsewhere herein.

[0078] Fig. 6 depicts methods 600 for building a reaction history based on a user's reactions to media programs. Block 602 receives sets of reactions of a user, the sets of reactions sensed during presentation of multiple respective media programs, and 15 information about the respective media programs. An example set of reactions to a media program is illustrated in Fig. 5, those shown being a measure of interest level over the time in which the program was presented to the user.

[0079] The information about the respective media programs can include, for example, the name of the media (e.g., *The Office, Episode 104*) and its type (e.g., a 20 song, a television show, or an advertisement) as well as other information set forth herein.

[0080] In addition to the media reactions and their respective media programs, block 602 may receive a context for the user during which the media program was presented as noted above.

25 [0081] Further still, block 602 may receive media reactions from other users with which to build the reaction history. Thus, history module 216 may determine, based on the user's media reactions (either in part or after building an initial or preliminary reaction history for the user) other users having similar reactions to those of the user. History module 216 may determine other persons that have 30 similar reactions to those of the user and use those other persons' reactions to

programs that the user has not yet seen or heard to refine a reaction history for the user.

[0082] Block 604 builds a reaction history for the user based on sets of reactions for the user and information about the respective media programs. As noted, block 604 5 may also build the user's reaction history using other persons' reaction histories, contexts, and so forth. This reaction history can be used elsewhere herein to determine programs likely to be enjoyed by the user, advertisements likely to be effective when shown to the user, and for other purposes noted herein.

Methods for Presenting Advertisements Based on a Current Media Reaction

10 [0083] As noted above, the techniques may determine a user's current media reaction, such as an engagement, state, and/or interest level. The following methods address how a current media reaction can be used to determine an advertisement to present.

15 [0084] Fig. 7 depicts methods 700 for presenting an advertisement based on a current media reaction, including by determining which advertisement of multiple potential advertisements to present.

20 [0085] Block 702 receives a current media reaction of a user to a media program, the media program currently presented to the user. The current media reaction can be of various kinds and in various media, such as a laugh to a scene of a comedy, a cheer to a sports play of a live sporting game, dancing to a song or music video, being distracted during a drama, intently watching a commercial for a movie, or talking to another person in the room also watching a news program, to name just a few. The media program is one that is currently being presented to a user, such as user 116-1 of Fig. 1, rather than an historic media reaction, though a reaction 25 history or other current media reactions made earlier during the same media program may be used in addition to a newest, current media reaction.

30 [0086] By way of example, consider Fig. 8, which illustrates current media reactions to a comedy program (*The Office, Episode 104*) over a portion of the program as the program is being presented, shown at time-based state graph 800. Here 23 media reactions 802 are shown, the media reactions being states received by advertisement module 220 from state module 106 and for a user named *Amelia*

Pond. For visual brevity, time-based state graph 800 shows only four states, laughing (shown with “”), smiling (shown with “”), interested (shown with “”), and departed (shown with “X”).

[0087] Block 704 determines, based on the current media reaction to the media program, a determined advertisement of multiple potential advertisements. Block 704 may determine which advertisement to show and when based on the current media reaction as well as other information, such as a reaction history for the user (e.g., reaction history 218 of Fig. 2 for *Amelia Pond*), a context for the current media reaction (e.g., *Amelia Pond*’s location is sunny or she just got home from school), demographics of the user (e.g., *Amelia Pond* is a 16-year-old female that speaks English and lives in Seattle, Washington, USA), the type of media program (e.g., a comedy), or a media reaction of another user also in the audience (e.g., *Amelia Pond*’s brother *Calvin Pond* reacted in a certain way). Block 704 may determine which advertisement to show immediately following the current media reaction, such as to a last scene shown in the program before an advertisement is shown, though instead block 704 may also use current media reactions that are not immediately before the advertisement or use multiple current media reactions, such as the last six media reactions, and so forth.

[0088] Continuing the ongoing embodiment, assume that the current media reaction is reaction 804 of Fig. 8 in which *Amelia Pond* is laughing at a current scene of the show *The Office*. Assume also that at the end of the scene, which ends in 15 seconds, a first ad block 806 begins. This first ad block 806 is one-minute long and is scheduled to include two 30-second advertisements, one for ad no. 1 808 and another for ad no. 2 810.

[0089] Assume also for this case that a first advertiser has previously purchased the right to ad no. 1 808 and for this spot has previously provided three different potential advertisements one of which will be played based on the current media reaction. Thus, advertisement module 220 first ascertains that there are three potential advertisements in advertisements 222 both of Fig. 2 or 3, and which is appropriate. Here the advertiser was aware, in advance, that the program was *The Office* and that it is *Episode 104*. Assume that this program is being watched for the

first time, and thus other media reactions of other users have not been recorded for the whole program. Based on information about the program generally, however, one advertisement is indicated as appropriate to play if the current media reaction is laughing or smiling, one if the reaction departed, and another is for all other states.

5 Assume that the advertiser is a large car manufacturer, and that the first advertisement (for laughing or smiling) is for a fun, quick sports car, that the second, because it will play if the user has departed the room, is repetitive and audio-focused, stating the virtues of the manufacturer (*e.g.*, Desoto cars are fast, Desoto cars are fun, Desoto cars are a good value) in the hopes that the user is
10 within hearing distance of the advertisement, and the third is for a popular and sensible family car.

[0090] Note that this is a relatively simple case using a current media reaction and based in part on the type or general information about the program. An advertiser may instead provide 20 advertisements for many current media reactions as well as
15 demographics about a user and a user's reaction history. Thus, advertisement module 220 may determine that five of the 20 advertisements are potentially appropriate based on the user being a male between 34 and 50 years of age and thus excluding various cars sold by the manufacturer that are generally not good sellers for men of this age group. Advertisement module 220 may also determine that two
20 of the five are more appropriate based on the user's reaction history indicating that he has positively reacted to fishing shows and auto-racing shows and therefore showing trucks and sport utility vehicles. Finally, advertisement module 220 may determine which of these two to present based on the user's current media reaction indicating that the user was highly engaged with the program and thus showing an
25 advertisement for trucks that goes into detail about the trucks in the assumption that the user is paying sufficient attention to appreciate those details rather than a less-detailed, more-stylistic advertisement.

[0091] Block 706 causes the determined advertisement to be presented during a current presentation period in which the media program is presented or
30 immediately after completing presentation of the media program. Block 706 may cause the determined advertisement to be presented by presenting the advertisement

or by indicating to a presentation entity, such as media presentation device 102 of Fig. 2, that the determined advertisement should be presented. The current presentation period is an amount of time sufficient to present the media program but may also include an amount of time sufficient to present a previously 5 determined number of advertisements or amount of time to present advertisements.

[0092] Concluding the ongoing embodiment concerning *Amelia Pond*, consider again Fig. 8. Here advertisement module 220 caused media presentation device 102 of Fig. 2 to present the first advertisement for a fun, quick sports car based on *Amelia*'s current media reaction being a laugh.

10 [0093] Advertisement module 220 may base its determination on media reactions other than a most-recent media reaction, whether these reactions are current to the media program or the current presentation period for the media program or for other programs, such as those on which a user's reaction history is based. Current media reactions may also be those that are received for reactions during the current 15 presentation period but not for the program. Thus, a user's reaction to a prior advertisement shown in advertisement blocks within the current presentation period may also be used to determine which advertisement to present.

20 [0094] Methods 700 may be repeated, and thus ad no. 2 810 may be selected at least in part based on the "interested state" shown at advertisement reaction 812. Thus, methods 700 can be repeated for various advertisements and current reactions during the current presentation period, whether the reactions are to a program or an advertisement.

25 [0095] Other advertisement reactions are also shown, a second advertisement reaction 814, a third advertisement reaction 816 for ad no. 3 818 of second ad block 820, and a fourth advertisement reaction 822 for ad no. 4 824. Note that the third advertisement determined to be presented by advertisement module 220 is based in part on a departed state 826 and that the third advertisement determined to be presented is based on the user laughing at the third advertisement. These are but a few of the many examples in which current media reactions can be used by the 30 techniques to determine an advertisement to present.

[0096] Optionally, the techniques can determine pricing for an advertisement based on a current media reaction to a media program. Thus, an advertisement may cost less if the user is currently departed or more if the user is currently laughing or otherwise engaged. The techniques, then, are capable of setting prices for 5 advertisements based on media reactions, including independent of an advertiser's bid to present an advertisement. In such a case the techniques may present advertisements based on which advertiser agrees or has agreed to the price, as opposed to a highest bid structure, or some combination of bids and determined pricing. One example of a combination of bids and determined pricing is an 10 opening price set by the techniques based on media reactions, and then bids from advertisers bidding based on the opening price.

[0097] Also optionally, the techniques may enable users to explicitly interact with an advertisement. An advertisement may include an explicit request for a requested media reaction to facilitate an offer, for example. Thus, the detailed truck 15 advertisement may include text or audio asking a user to raise his or her hand for a detailed sales brochure to be sent to the user's email or home address, or an advertisement for a delivery pizza chain of stores may ask a user to cheer for $\frac{1}{2}$ off a home delivery pizza for delivery during a currently-playing football game. If the user raises his or her hand, the techniques pass this state to the associated 20 advertiser, which may then send back a phone number to display within the advertisement for the user's local store along with a code for $\frac{1}{2}$ off the pizza.

[0098] Fig. 9 depicts methods 900 for presenting an advertisement based on a current media reaction, including based on bids from advertisers.

[0099] Block 902 provides to advertisers a current media reaction of a user to a 25 media program currently presented to the user. Block 902 may provide the current media reaction as received or determined in various manners described above, such as with state module 106, interest module 108, and/or advertisement module 220. Block 902 may also provide other information, such as a reaction history or portions thereof for the user, demographic information about the user, a context in 30 which the user is presented the media program, or information about the media program.

[00100] Consider, for example, Fig. 10, which illustrates advertisement module 220 providing, through communication network 304, demographics 1002, a portion of reaction history 1004, a current media reaction 1006, and information about the media program 1008 to advertisers 1010 (shown including first, second, and third 5 advertisers 1010-1, 1010-2, and 1010-3, respectively).

[00101] Assume here that demographics 1002 indicate that the user is a 33-year-old female that is married with one child. Assume also that the portion of reaction history 1004 indicates the user's identity, namely *Melody Pond*, and her preference for science fiction programs, the Olympic Games, and prior positive reactions to 10 advertisements for movie trailers, shoe sales, and triathlons. Here assume that current media reaction 1006 indicates disappointment (a sad state) and that information about media program 1008 indicates that the program is a swim meet in which the last section at which the current media reaction was a sad state showed Michael Phelps placing second in an international swim meet to Australian 15 swimmer Ian Thorp.

[00102] Block 904 receives bids from the advertisers, the bids for a right to present a respective advertisement to the user and during a current presentation period in which the media program is presented. This right may be to present an advertisement immediately, such as right after the scene or section for the current 20 media reaction completes and prior to another advertisement being shown. This right may instead be for a later portion of the current presentation period, such as a second advertisement after the scene or an advertisement in a block five minutes later, for example.

[00103] Consider the above example where the user has a sad state just prior to an 25 advertisement being shown. Some advertisers will not be as interested in presenting advertisements to a user having this state, and so bid lower for the right to show their advertisement, while others consider their advertisements more effective to persons having a sad state. Further, the advertisers likely take into account, and assign value, based also on the user's demographics, reaction history, and which 30 program they are watching. An advertiser selling life insurance or investment plans is more likely to bid high for a right to show directly after a sad state and for a

person that has young children, for example, than an advertiser selling carpet-cleaning products.

[00104] For this example assume that all three advertisers 1010 bid on the right to show advertisements and include, with each bid, information sufficient for 5 advertisement module 220 to cause the advertisement to be presented, such as with an indicator for an advertisement of advertisements 222 or a universal resource locator at which to retrieve the advertisement.

[00105] Block 906 causes one of the advertisements associated with one of the bids to be presented to the user during the current presentation period in which the 10 media program is presented. Block 906 may select to show the advertisement responsive to determining which bid is highest, though a highest bid is not necessarily required. Concluding the example, advertisement module 220 causes the advertisement associated with the highest bid to be presented to the user.

[00106] In addition to the manners set forth above, the techniques may provide a 15 number of additional users present during the presentation of the media program, including in some cases their current media reaction and so forth, thereby likely increasing the size of the bids.

[00107] Further, advertisement module 220 may receive a media reaction to the advertisement shown and, based on the reaction, reduce or increase the cost for the 20 advertisement relative to the bid made for that advertisement.

[00108] Methods 900 may be repeated, in whole or in part, for later advertisements, including based on current media reactions to prior advertisements, similarly to as described in examples of methods 700.

[00109] Fig. 11 depicts methods 1100 for presenting an advertisement based on a 25 current media reaction, including immediately following a scene in which the current media reaction was made.

[00110] Block 1102 determines, based on a current media reaction to a scene of a media program being presented to a user, a type of the media program, and a reaction history associated with the user, a determined advertisement of multiple 30 potential advertisements. Manners in which this may be performed are set forth above. Note that an advertiser may place a bid or prepay based on their

advertisement being presented after a certain type of reaction, such as five cents for each ad placement directly after a laughing reaction. Furthermore, if ads are not placed for each user but instead are placed generally or by groups (e.g., to people within a certain geographic area), the bids or prepay may instead be weighted based
5 on percentages of positive reactions and so forth.

[00111] Block 1104 causes the determined advertisement to be presented immediately after completing presentation of the scene of the media program.

Methods for Determining a Future Portion of a Currently Presented Media Program

10 [00112] As noted above, the techniques may determine a user's current media reaction, such as an engagement, state, and/or interest level. The following methods address how a current media reaction can be used to determine a future portion to present during the currently presented media program.

[00113] Fig. 12 depicts methods 1200 for determining a future portion of a currently
15 presented media program, including based on a current media reaction of a user determined based on sensor data passively sensed during the presentation of the media program to the user.

[00114] Block 1202 receives, during presentation of a media program to a user, a current media reaction of the user to a portion of the media program, the media
20 reaction determined based on sensor data passively sensed during the presentation.

[00115] As noted in detail elsewhere herein, the current media reaction can be of various kinds and responsive to various media, such as a laugh to a scene of a comedy, a cheer to a sports play of a live sporting game, dancing to a song or music video, being distracted during a drama, intently watching a commercial for a movie, or talking to another person in the room also watching a news program, to name just a few. The media program is one that is currently being presented to a user, such as user 116-1 of Fig. 1, rather than a media program previously presented, and thus the reaction being an historic media reaction. A reaction history based on historic media reactions may be used in conjunction with a current media reaction, however, to determine future portions. Also, other current media reactions
30

made earlier during the same media program may be used also or instead of a most-current media reaction.

[00116] A media reaction is current by being received during a current presentation of the media program but does not have to be received immediately or 5 instantaneously, or even be a most-current media reaction to the media program. Thus, a current media reaction to a fourth portion of a media program may be received during a sixth portion and used to determine a fifteenth portion to present in the media program.

[00117] By way of example consider Fig. 13 which illustrates remote device 302, on 10 which portion module 224 is embodied, receiving demographics 1302, a portion of a reaction history 1304, a current media reaction 1306, and information about the media program 1308 from computing device 202 of Fig. 2. Portion module 224 receives this data through communication network 304 and, in response, causes computing device 202 to present a particular, future portion of the media program to 15 the user associated with this data.

[00118] Also by way of example, consider Fig. 8, which illustrates current media reactions to a comedy program (*The Office, Episode 104*) over a portion of the program as the program is being presented, shown at time-based state graph 800. While 23 media reactions 802 are shown for 23 portions in Fig. 8, for this example 20 consider media reactions 828, 830, and 832, which represent smiling states at the 14th, 15th, and 16th portions. Here assume that these are three current media reactions (with media reaction 832 being the most current), and that the 17th through 23rd portions have not yet been presented. Assume also that demographics 1302 indicate that the person watching *The Office* is a 23-year old female, that the 25 portion of reaction history 1304 indicates that the person usually dislikes comedies but likes science fiction movies and dramas, that the current media reactions 1306 includes the three smiling states noted above, and the information about the media program 1308 indicates that the program is *The Office, Episode 104*, and that the current media reactions are to the 14th, 15th, and 16th portions.

[00119] Block 1204 determines, based on the media reaction and the portion, a future portion of the media program for presentation to the user, the future portion of the media program occurring later in the media program than the portion. In making this determination, portion module 224 may receive sufficient information or may 5 use that information to gain additional information. Thus, assume that the information about the media program 1308 indicates the three portions, and that portion module 224 determines that these portions address a scene that develops the *Pam* character in the show but is not otherwise a joke or intended to be comedic. Based on the person's reaction (smiling) and the subject matter of these portions 10 (character development of *Pam*) portion module 224 may decide between various possible scenes to show at the end of the program, for example. Portion module 224 may base this determination on other information as well, as noted in Fig. 13. Thus, portion module 224 may determine that a 23-year old female that dislikes comedies generally but that smiles throughout a scene about *Pam* will enjoy another 15 character-development scene more than a scene having physical humor where a character named *Dwight* falls off of a paper truck. Here portions 214 include two possible future portions to show at the end of *The Office* here at the 23rd portion, one about the character falling off the truck and one about *Pam*.

[00120] Block 1206 causes the future portion of the media program to be presented 20 to the user during the current presentation of the media program. Portion module 224 may act locally or remotely and may indicate or provide the portion to present. Thus, portion module 224 may cause the presentation of the future portion through passing a content portion or indication 1310 through communication network 304 to computing device 202. Portion module 224, if receiving an indication, may 25 select from various previously-stored portions stored local to (or accessible by) computing device 202 and based on the indication.

[00121] Concluding the ongoing example, assume that remote device 302 of Fig. 13 is streaming the media program through set-top box 202-4 and thus, at the 23rd portion, streams the scene about *Pam* rather than the scene about *Dwight*.
30 [00122] While the above example for methods 1200 concerns a single user, media reactions of other users may also be used, including other persons physically local

to the user (*e.g.*, in a same room watching with the 23-year-old female user). Further still, media reactions of other users not watching with the user, such as other members of a same demographic group (*e.g.*, women aged 18-34) or an audience generally (*e.g.*, everyone watching for which media reactions are received 5 during a first showing in the Eastern Standard Time block of the United States and Canada) may be used.

[00123] Note that the media reactions of this user and other users can be received and used in real-time to determine future portions of a currently presented media program. Thus, a program may be tailored to people on-the-fly and in real time, 10 thereby improving the quality of the program. In this example the media program is tailored based on previously prepared portions, though this is not required. A live program may be altered in real time as well, such as a live, late-night comedy show selecting to perform a skit based on good reactions of a prior skit presented earlier in the program.

15 [00124] Fig. 14 depicts methods 1400 for determining a future portion of a currently presented media program, including when the future portion is a response to an explicitly requested media reaction.

[00125] Block 1402 presents or causes presentation of, during a media program, an explicit request for a requested media reaction, the explicit request being part of the 20 media program and indicating a response to the requested media reaction, the requested media reaction being a physical change to a user. The media reaction can be one or more of those described, such as raising a hand, cheering, smiling, and so forth.

[00126] Further, an explicit request can be presented as part of and within the media 25 program. Thus, an advertisement may have built into a portion of the advertisement text or narrator asking the user to raise his hand to arrange a test drive of an automobile; or a reality-show, whether live or recorded, may include the host asking the audience to cheer or boo for a character to decide which character remains on the show; or a suspense movie may have a character in the movie ask a 30 user whether they should run, hide, or fight the bad guy.

[00127] Alternatively, the explicit request can be presented but not as part or within the media program, such as with a pop-up window superimposed over the media program.

5 [00128] The response itself can be similar to as noted above for advertisements, such as an offer for a coupon or information about a product or service and the like, whether in an advertisement or a non-advertisement media program.

10 [00129] The response may also or instead include presenting different portions of media later in the program. A reality show may explicitly request media reactions to present more about a character or situation, such as “Please wave one hand if you want to see more about Ginger’s adventures helping the homeless, please wave both hands if you want to see more about Bart’s trip to the bike shop, or please cheer if you want to see more about Susie’s fight with Ginger about Bart.” In this example, the response has three parts (or can be considered three responses), one response or sub-response for each media reaction, here Ginger’s Adventure, Bart’s 15 Trip, or Susie’s Fight.

20 [00130] Block 1404 receives the requested media reaction sensed during presentation and commensurate the explicit request, the requested media reaction determined based on sensor data passively sensed during the presentation and commensurate with the presentation of the explicit request. The techniques may receive the requested media reaction from another entity or determine the media reaction based 25 on sensor data, passive or otherwise. In one embodiment, block 1404 is performed by state module 106. State module 106 determines, based on sensor data passively sensed during the media program, at or immediately after presenting the explicit request, and measuring the physical change to the user, the requested media reaction.

30 [00131] Block 1406, responsive to receiving the requested media reaction, performs the response. Optionally or additionally, methods 1400 may, prior to performing the potential response at block 1406, determine at block 1408 that other users’ requested media reactions are also received and base the potential response on these other users’ requested media reactions.

[00132] In such a case, portion module 224 may, prior to performing the response, determine that other requested media reactions of other users during other presentations of the media program are also received. Thus, portion module 224 may base the response on other users' media reactions, such as presenting Susie's

5 Fight based on the user and other user's media reaction requesting this portion to be shown. The other users' media reaction may be for all users, users of a same demographic group, the user's friends (whether in the room watching with the user or not), or the user's family (e.g., those in the room also responding to the explicit request).

10 [00133] Also optionally or additionally, methods 1400 may proceed to block 1410. Block 1410 requests another requested media reaction for another response to be performed for other users associated with the user. This can be presented as a follow-up explicit request, such as a request that a user raise his or her hand to send a coupon also to the user's friends.

15 [00134] The request may involve both a user and his or her friends watching remotely. Thus, a user may select to watch Susie's Fight but, after making the media reaction, portion module 224 presents a second request asking if the user wants to instead watch what the user's friend *Lydia* previously or concurrently requested to watch, namely Ginger's Adventure, or what a majority of her friends

20 requested to watch, such as five or the user's eight friends having selected to watch more about Bart's Trip.

[00135] Block 1412, responsive to receiving the second requested media reaction, causes the response to also be presented to the other users. Portion module 224 may do so directly when operating remotely or may communicate with a remote entity

25 to cause that entity to have the response presented to the other users. Concluding the present example, assume that the user selects to watch what *Lydia*—her best friend—selected to watch, namely Ginger's Adventure so that she and *Lydia* can discuss it at school tomorrow. Note that the user also knows that most of her other friends picked to watch Bart's Trip, and thus she will know to ask them whether

30 they liked it. The user may, if her friends said Bart's Trip was fantastic, re-watch the program and select to instead watch Bart's Trip.

[00136] Fig. 15 depicts methods 1500 for determining a future portion of a currently presented media program, including based on multiple users' media reactions.

[00137] Block 1502 receives, from multiple media presentation devices, at a remote entity, and during presentation of a media program to multiple users through the 5 multiple media presentation devices, media reactions of the users, the media reactions based on sensor data passively sensed at the multiple media presentation devices and during a portion of the media program. The media program may be presented live, concurrently, or disjointed to the multiple users. As shown in Fig. 13, current media reaction 1306 may be received alone or with other information as 10 noted above, such as demographics 1302, portion of reaction history 1304, and information about media program 1308, though in this case from multiple computing devices 202.

[00138] Block 1504 determines, based on the media reactions and the portion, a future portion of the media program for presentation to the users, the future portion 15 of the media program occurring later in the media program than the portion. As shown in Fig. 13, this media program can be remotely stored, such as media program 210 of Figs. 3 and 13, or local, such as shown in Fig. 2. Also as noted herein, other information may also be used in the determination.

[00139] The media program can be one of the many noted above, such as an 20 advertisement. In such a case, portions module 224 and/or advertisement module 220 may determine the future portion based on it being more likely to be successful than one or more other previously prepared portions of a set of selectable portions (e.g., portions 214 of Fig. 13). Thus, a group of users showing a poor reaction to a 25 first portion listing details about a realty company may be used to determine to present a third portion that is simpler or more stylish rather than continue detailing the realty company. Numerous other examples are set forth above.

[00140] Block 1506 causes the future portion of the media program to be presented to the users at the multiple media presentation devices and during the presentation 30 of the media program. Block 1506 may do so in the various manners detailed above, such as in real time and streamed from remote device 302 to multiple users through multiple computing devices 202.

[00141] In some embodiments, media reactions of multiple users can be used to determine ways in which to create future programs or which previously-prepared future programs to present. Consider a case where a media provider has ten timeslots for an adventure television series. Assume that the first three programs

5 may have some internal portions that can be altered based on the techniques but that for the next seven timeslots (*e.g.*, weeks in a season) there are 11 episodes prepared. Television seasons are often structured such that a full season is prepared in advance, thereby making large in-season changes difficult to perform. A media provider may, at the time the season's episodes are prepared, be able to prepare

10 additional whole programs. Thus, the media provider may determine, based on media reactions from multiple users over the first three episodes and to multiple portions of those episodes, that a particular character is very interesting to the audience. By so doing, episodes focusing on that character may be shown instead of others.

15 [00142] Also or additionally, some previously prepared episodes may have multiple sets of scenes that can be presented, and so the episode may be tailored to the audience (generally or to various groups) based on these media reactions. In this way media reactions can be used to determine future portions of a media program, even when the changes are not in real time.

20 [00143] The preceding discussion describes methods relating to determining a future portion of a currently presented media program, as well as other methods and techniques. Aspects of these methods may be implemented in hardware (*e.g.*, fixed logic circuitry), firmware, software, manual processing, or any combination thereof. A software implementation represents program code that performs

25 specified tasks when executed by a computer processor. The example methods may be described in the general context of computer-executable instructions, which can include software, applications, routines, programs, objects, components, data structures, procedures, modules, functions, and the like. The program code can be stored in one or more computer-readable memory devices, both local and/or remote

30 to a computer processor. The methods may also be practiced in a distributed computing mode by multiple computing devices. Further, the features described

herein are platform-independent and can be implemented on a variety of computing platforms having a variety of processors.

[00144] These techniques may be embodied on one or more of the entities shown in Figs. 1-3, 10, 13, and 16 (device 1600 is described below), which may be further divided, combined, and so on. Thus, these figures illustrate some of many possible systems or apparatuses capable of employing the described techniques. The entities of these figures generally represent software, firmware, hardware, whole devices or networks, or a combination thereof. In the case of a software implementation, for instance, the entities (e.g., state module 106, interest module 108, interface module 110, history module 216, advertisement module 220, and portion module 224) represent program code that performs specified tasks when executed on a processor (e.g., processor(s) 204 and/or 306). The program code can be stored in one or more computer-readable memory devices, such as CRM 206 and/or remote CRM 308 or computer-readable storage media 1614 of Fig. 16.

15 **Example Device**

[00145] Fig. 16 illustrates various components of example device 1600 that can be implemented as any type of client, server, and/or computing device as described with reference to the previous Figs. 1-15 to implement techniques for determining a future portion of a currently presented media program. In embodiments, device 20 1600 can be implemented as one or a combination of a wired and/or wireless device, as a form of television mobile computing device (e.g., television set-top box, digital video recorder (DVR), etc.), consumer device, computer device, server device, portable computer device, user device, communication device, video processing and/or rendering device, appliance device, gaming device, electronic 25 device, System-on-Chip (SoC), and/or as another type of device or portion thereof. Device 1600 may also be associated with a user (e.g., a person) and/or an entity that operates the device such that a device describes logical devices that include users, software, firmware, and/or a combination of devices.

[00146] Device 1600 includes communication devices 1602 that enable wired and/or 30 wireless communication of device data 1604 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). Device data

1604 or other device content can include configuration settings of the device, media content stored on the device (e.g., media programs 210), and/or information associated with a user of the device. Media content stored on device 1600 can include any type of audio, video, and/or image data. Device 1600 includes one or

5 more data inputs 1606 via which any type of data, media content, and/or inputs can be received, such as human utterances, user-selectable inputs, messages, music, television media content, media reactions, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.

10 [00147] Device 1600 also includes communication interfaces 1608, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. Communication interfaces 1608 provide a connection and/or communication links between device 1600 and a communication network by

15 which other electronic, computing, and communication devices communicate data with device 1600.

[00148] Device 1600 includes one or more processors 1610 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of device 1600 and to enable

20 techniques for determining a future portion of a currently presented media program and other methods described herein. Alternatively or in addition, device 1600 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 1612. Although not shown, device 1600 can

25 include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.

30 [00149] Device 1600 also includes computer-readable storage media 1614, such as one or more memory devices that enable persistent and/or non-transitory data

storage (*i.e.*, in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (*e.g.*, any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 1600 can also include a mass storage device 1616.

[00150] Computer-readable storage media 1614 provides data storage mechanisms to store device data 1604, as well as various device applications 1618 and any other types of information and/or data related to operational aspects of device 1600. For example, an operating system 1620 can be maintained as a computer application with computer-readable storage media 1614 and executed on processors 1610. Device applications 1618 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on.

[00151] Device applications 1618 also include any system components, engines, or modules to implement techniques for determining a future portion of a currently presented media program. In this example, device applications 1618 can include state module 106, interest module 108, interface module 110, history module 216, advertisement module 220, and/or portion module 224.

Conclusion

[00152] Although embodiments of techniques and apparatuses for determining a future portion of a currently presented media program have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations for determining a future portion of a currently presented media program.

[00153] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

[00154] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

CLAIMS

What is claimed is:

1. A method implemented by a computing device comprising:
 - receiving, by the computing device from a first remote media presentation device through a communications network and during a presentation of a first portion of a media program, a first media reaction to the first portion of the media program, the first media reaction determined based on sensor data passively sensed during the first portion of the media program;
 - determining, by the computing device and based on the first media reaction to the first portion of the media program being congruent with a context for the first portion of the media program, an engaged state of a first user during the first portion of the media program;
 - determining, by the computing device, based on a reaction history of the first user, and responsive to determining the first user to be in the engaged state during the first portion of the media program, a future portion of the media program, the future portion of the media program:
 - occurring during a later portion of the media program;
 - during a same presentation of the media program; and
 - selected from a set of portions of the media program based on a similarity to the first portion of the media program; and
 - causing, by the computing device through the communications network, the future portion of the media program to be presented during the later portion of the media program and during the same presentation of the media program;

wherein determining the future portion of the media program is further based on: a second media reaction of a second user received by the computing device from a second remote media presentation device through the communications network and during a presentation of the first portion of the media program.

2. A method as described in claim 1, wherein the media program includes a previously-scheduled portion of the media program and causing the

future portion of the media program is effective to replace the previously-scheduled portion of the media program with the future portion of the media program.

3. A method as described in any one of claims 1 to 2, wherein determining the future portion of the media program is further based on:
5 demographic information; or information about the media program.

4. A method as described in any one of claims 1 to 3, further comprising receiving a third media reaction, the third media reaction determined based on other sensor data sensed during the first portion of the media program and associated with a third user different than the first user associated with the first media reaction,
10 the third user physically local to the first user, and wherein determining the future portion of the media program is further based on the third media reaction.

5. A method as described in any one of claims 1 to 4, wherein the first media reaction is received from an entity local to the first remote media presentation device on which the media program is presented and the set of portions of the media program is previously stored local to the first remote media presentation device and associated with a time-range in the media program at which to present the future portion of the media program.
15

6. A method as described in any one of claims 1 to 5, wherein determining the future portion of the media program determines the future portion of the media program based on the future portion of the media program determined to be more likely to be successful than one or more other previously prepared portions of the media program of the set of portions of the media program.
20

7. A method as described in any one of claims 1 to 6, wherein the context for the first media reaction includes a time of day in which the first portion of the media program is presented or a type of media being presented during the portion.
25

8. A method as described in any one of claims 1 to 7, wherein the method further comprises:

30 determining, based on the engaged state of the first user during the first portion of the media program, a future portion of the media program, the future

portion of the media program occurring during a second portion of the media program and during the same presentation of the media program; and

causing the future portion of the media program to be presented during the second portion of the media program and during the same presentation of the media program.

9. An apparatus comprising:

one or more computer processors; and

one or more computer-readable storage media having instructions stored thereon that, responsive to execution by the one or more computer processors, perform operations comprising:

receiving, from a first remote media presentation device through a communications network and during a presentation of a first portion of a media program, a first media reaction to the first portion of the media program, the first media reaction determined based on sensor data passively sensed during the first portion of the media program;

determining, based on the first media reaction to the first portion of the media program being congruent with a context for the first portion of the media program, an engaged state of a first user during the first portion of the media program;

determining, based on a reaction history of the first user and responsive to the first user being in the engaged state during the first portion of the media program, a future portion of the media program, the future portion of the media program:

to occur during a later portion of the media program;

during a same presentation of the media program; and

selected from a set of portions of the media program based on a similarity to the first portion of the media program; and

causing, through the communications network, the future portion of the media program to be presented during the later portion of the media program and during the same presentation of the media program;

wherein determining the future portion of the media program is further based on: a second media reaction of a second user received from a second remote media presentation device through the communications network and during a presentation of the first portion of the media program.

5 10. An apparatus as described in claim 9, wherein the media program includes a previously-scheduled portion of the media program and causing the future portion of the media program is effective to replace the previously-scheduled portion of the media program with the future portion of the media program.

10 11. An apparatus as described in claim 9 or 10, wherein determining the future portion of the media program is further based on: demographic information; or information about the media program.

15 12. An apparatus as described in any one of claims 9 to 11, further comprising receiving a third media reaction, the third media reaction determined based on other sensor data sensed during the first portion of the media program and associated with a third user different than the first user associated with the first media reaction, the third user physically local to the first user, and wherein determining the future portion of the media program is further based on the third media reaction.

20 13. An apparatus as described in any one of claims 9 to 12, wherein determining the future portion of the media program determines the future portion of the media program from the set of portions of the media program previously stored on the one or more computer-readable storage media, the set of portions of the media program associated with a time-range in the media program at which to present the future portion of the media program.

25 14. An apparatus as described in any one of claims 9 to 13, wherein determining the future portion of the media program determines the future portion of the media program based on the future portion of the media program determined to be more likely to be successful than one or more other previously prepared portions of the media program of the set of portions of the media program.

15. An apparatus as described in any one of claims 9 to 14, wherein the operations further comprise:

determining, based on the engaged state of the first user during the first portion of the media program, a second portion of the media program, the future portion of the

5 media program occurring during a second portion of the media program and during the same presentation of the media program; and

causing the future portion of the media program to be presented during the second portion of the media program and during the same presentation of the media program.

10 16. A method implemented by a computing device comprising:

receiving, by the computing device from a first remote media presentation device through a communications network and during a presentation of a first portion of a media program, a first media reaction to the first portion of the media program, the first media reaction determined based on sensor data passively sensed

15 during the first portion of the media program;

determining, by the computing device and based on the first media reaction to the first portion of the media program being incongruent with a context for the first portion of the media program, a disengaged state of a first user during the first portion of the media program;

20 determining, by the computing device, based on a reaction history of the first user, and responsive to determining the first user to be in the disengaged state during the first portion of the media program, a future portion of the media program, the future portion of the media program:

occurring during a later portion of the media program;

25 during a same presentation of the media program; and

selected from a set of portions of the media program based on a dissimilarity to the first portion of the media program; and

causing, by the computing device through the communications network, the future portion of the media program to be presented during the later portion of the

30 media program and during the same presentation of the media program;

wherein determining the future portion of the media program is further based on: a second media reaction of a second user received by the computing device from a second remote media presentation device through the communications network and during a presentation of the first portion of the media program.

17. A method as described in claim 16, wherein the context for the first media reaction includes a time of day in which the first portion of the media program is presented or a type of media being presented during the portion.

18. A method as described in claim 16 or claim 17, wherein the method further comprises:

determining, based on the disengaged state of the first user during the first portion of the media program, a future portion of the media program, the future portion of the media program occurring during a second portion of the media program and during the same presentation of the media program; and

15 causing the future portion of the media program to be presented during the second portion of the media program and during the same presentation of the media program.

1/16

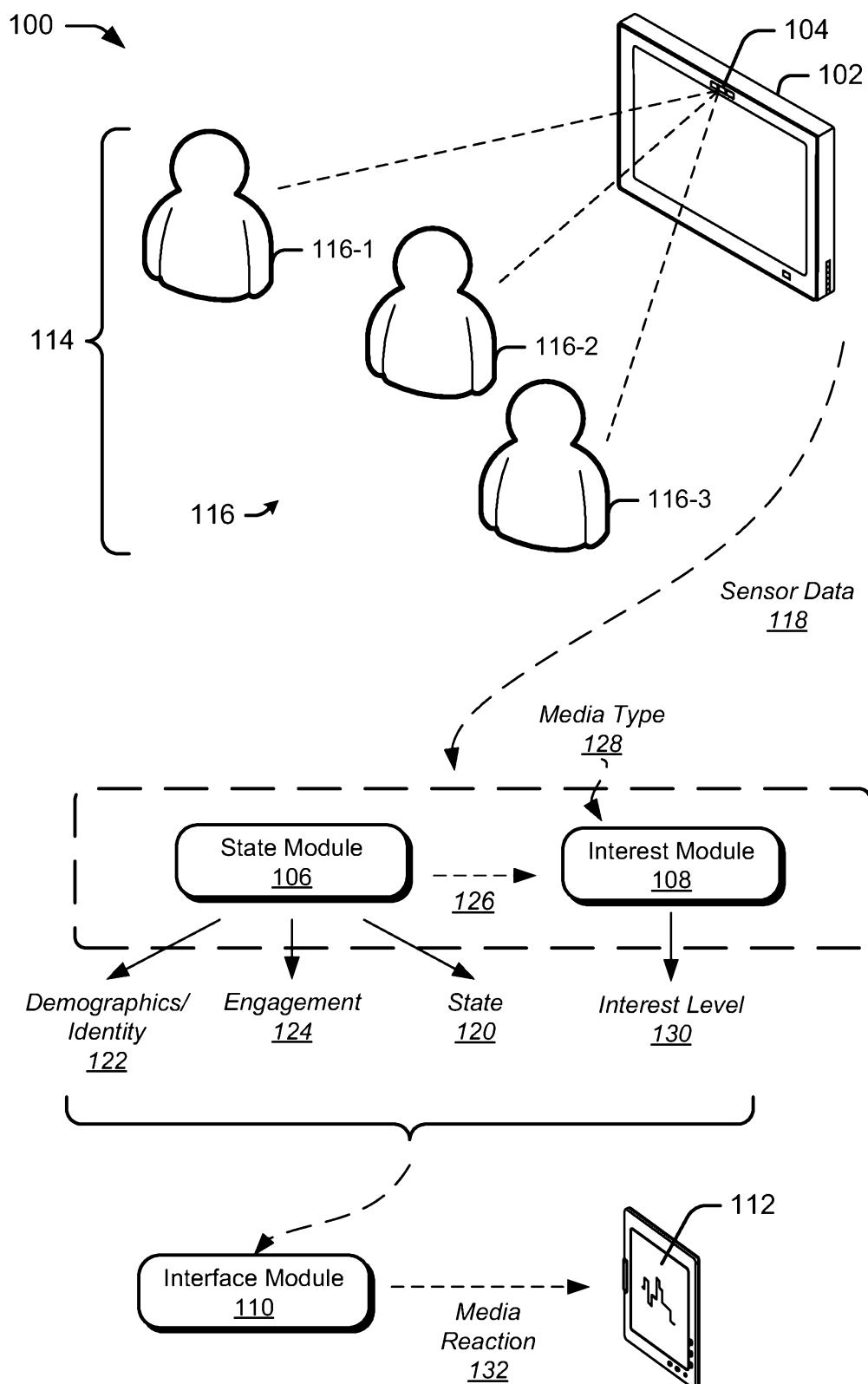
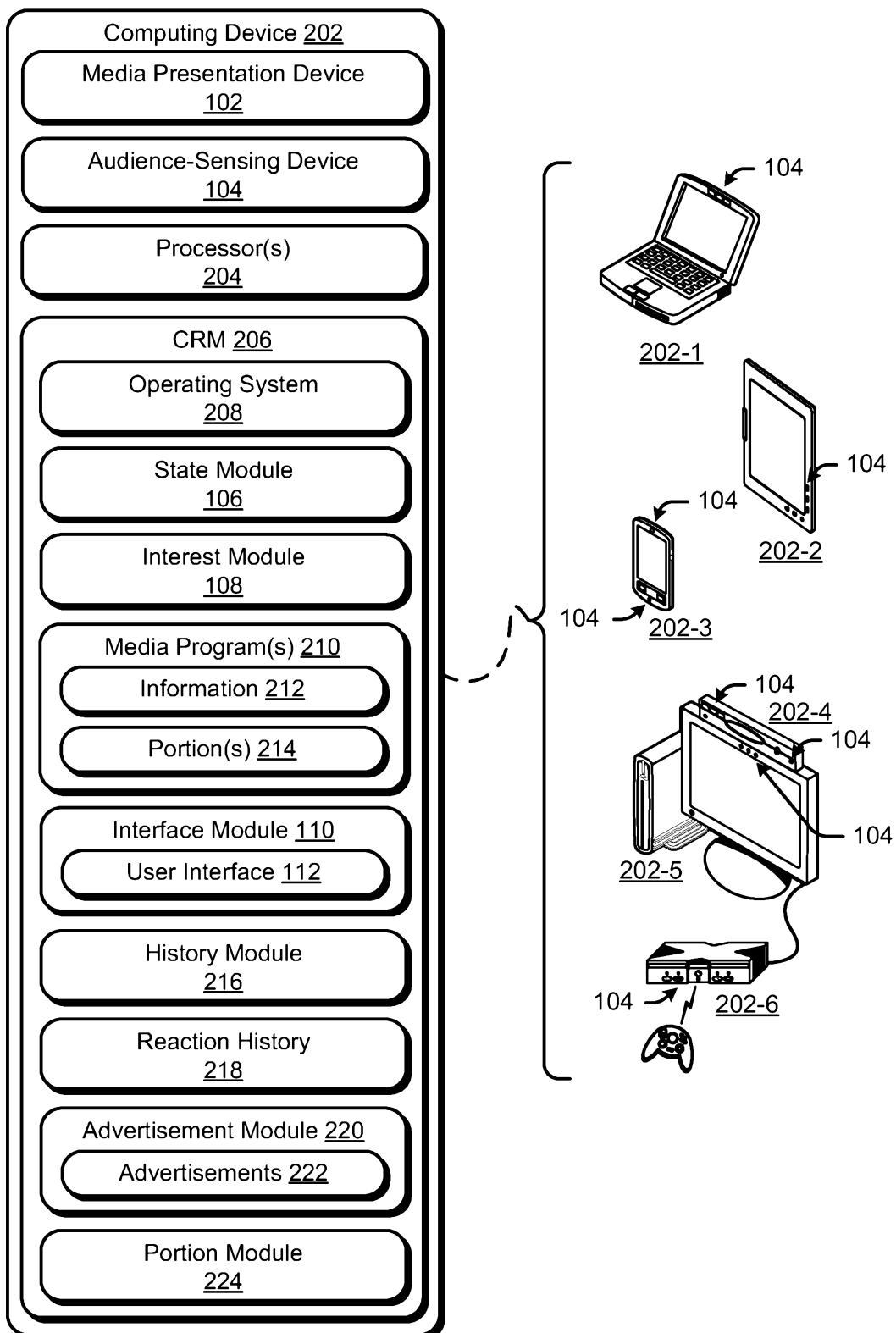
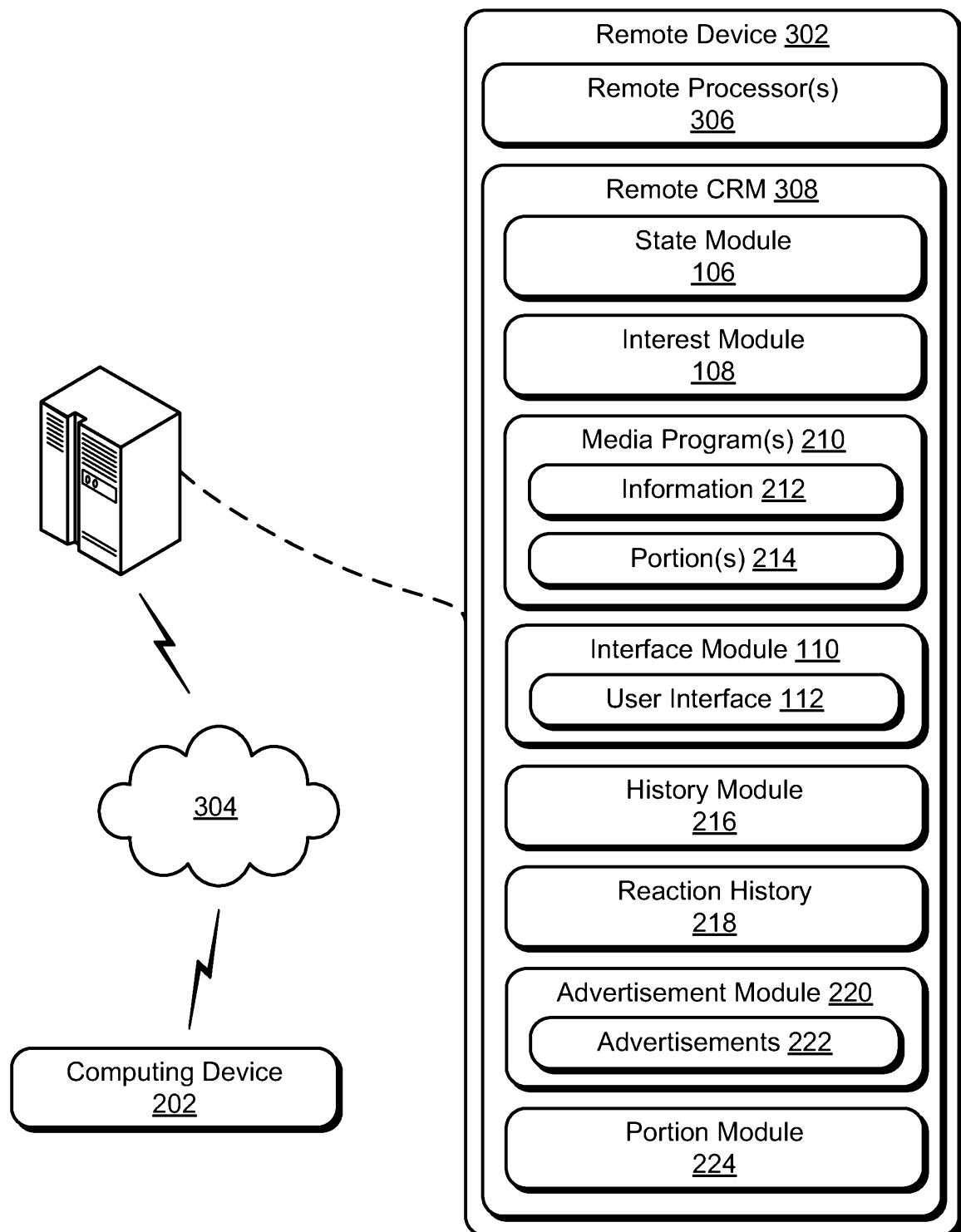




Fig. 1

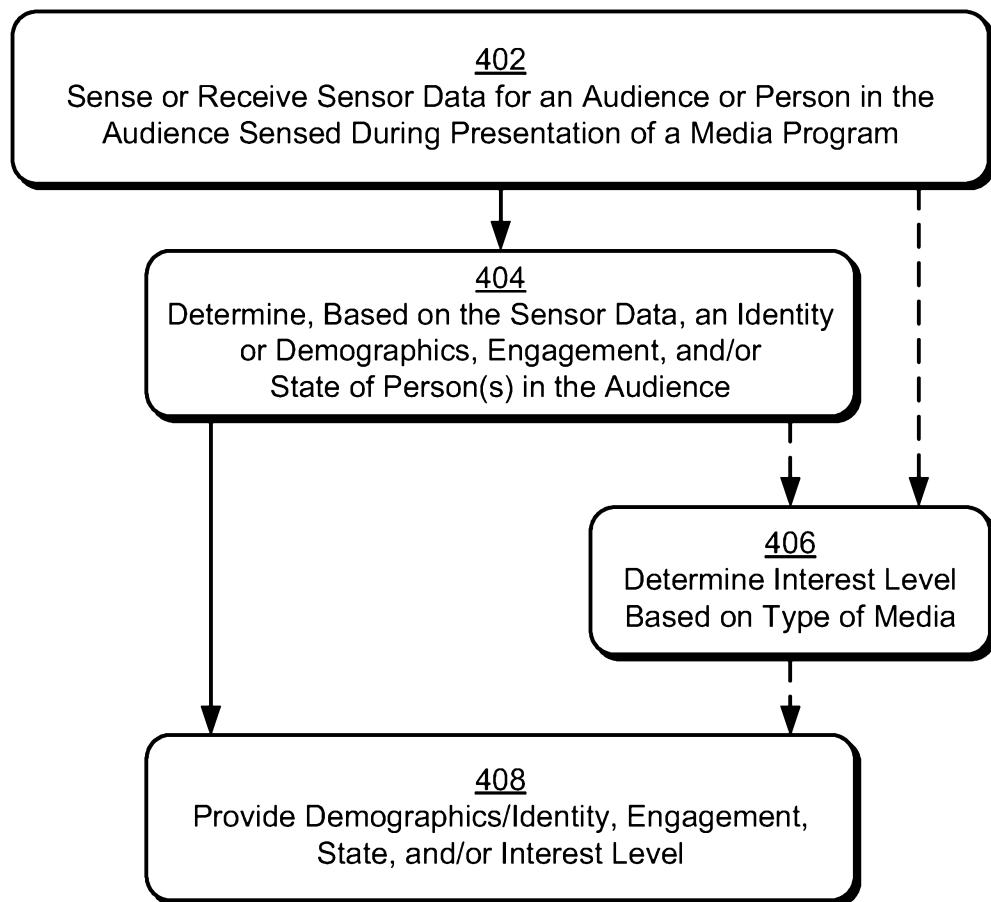

Fig. 2

Fig. 3

4/16

400 ↘

Fig. 4

5/16

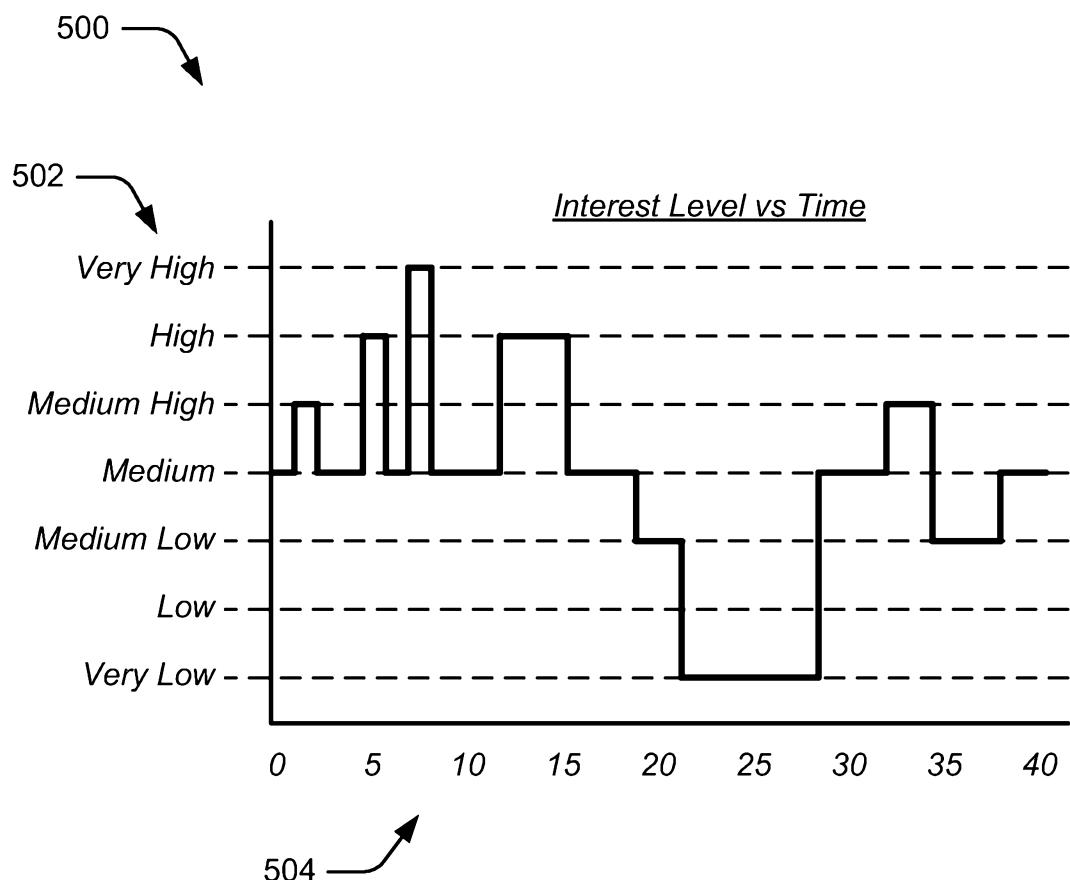
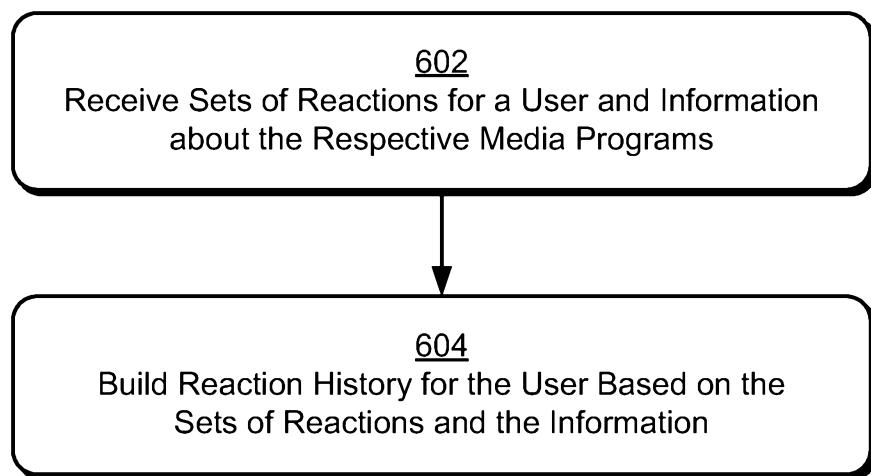
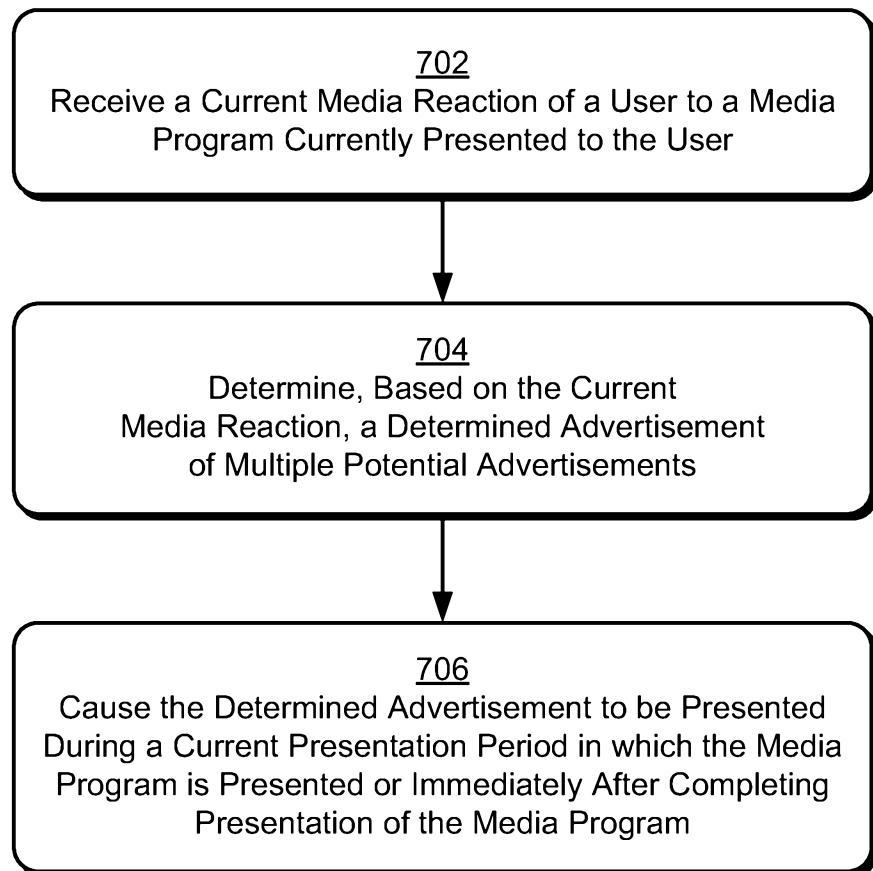



Fig. 5


6/16

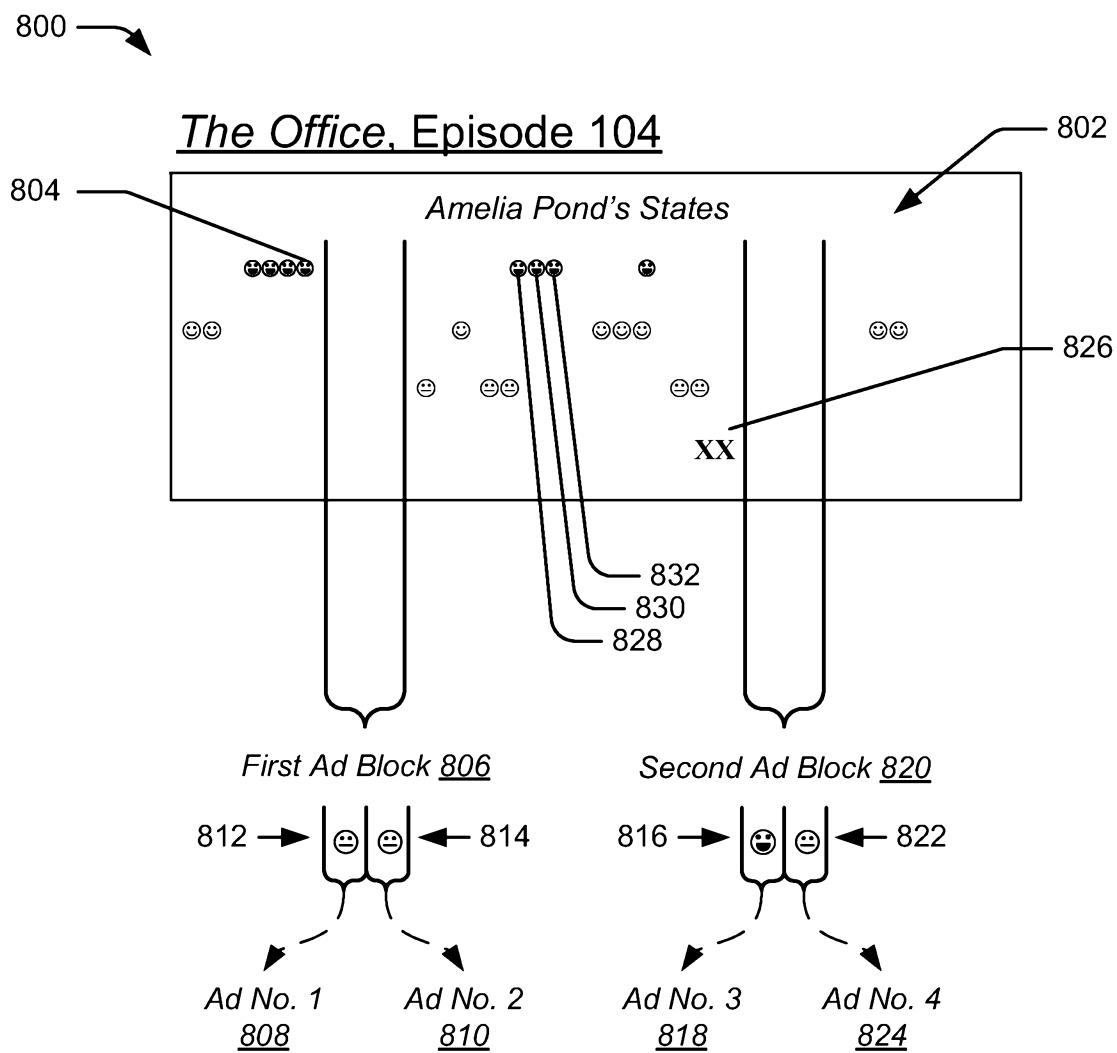
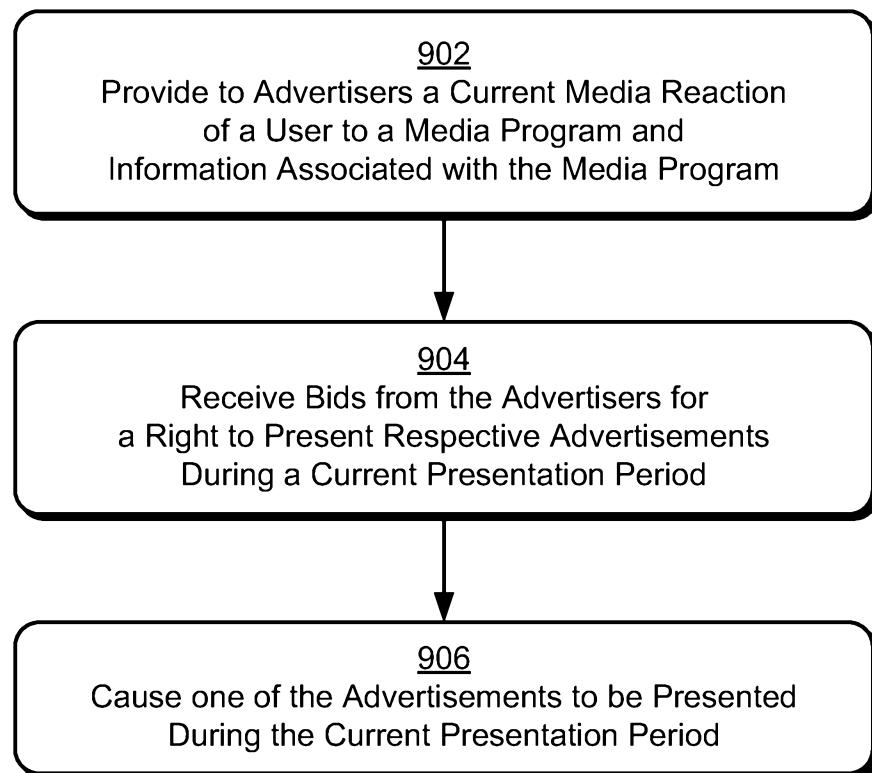
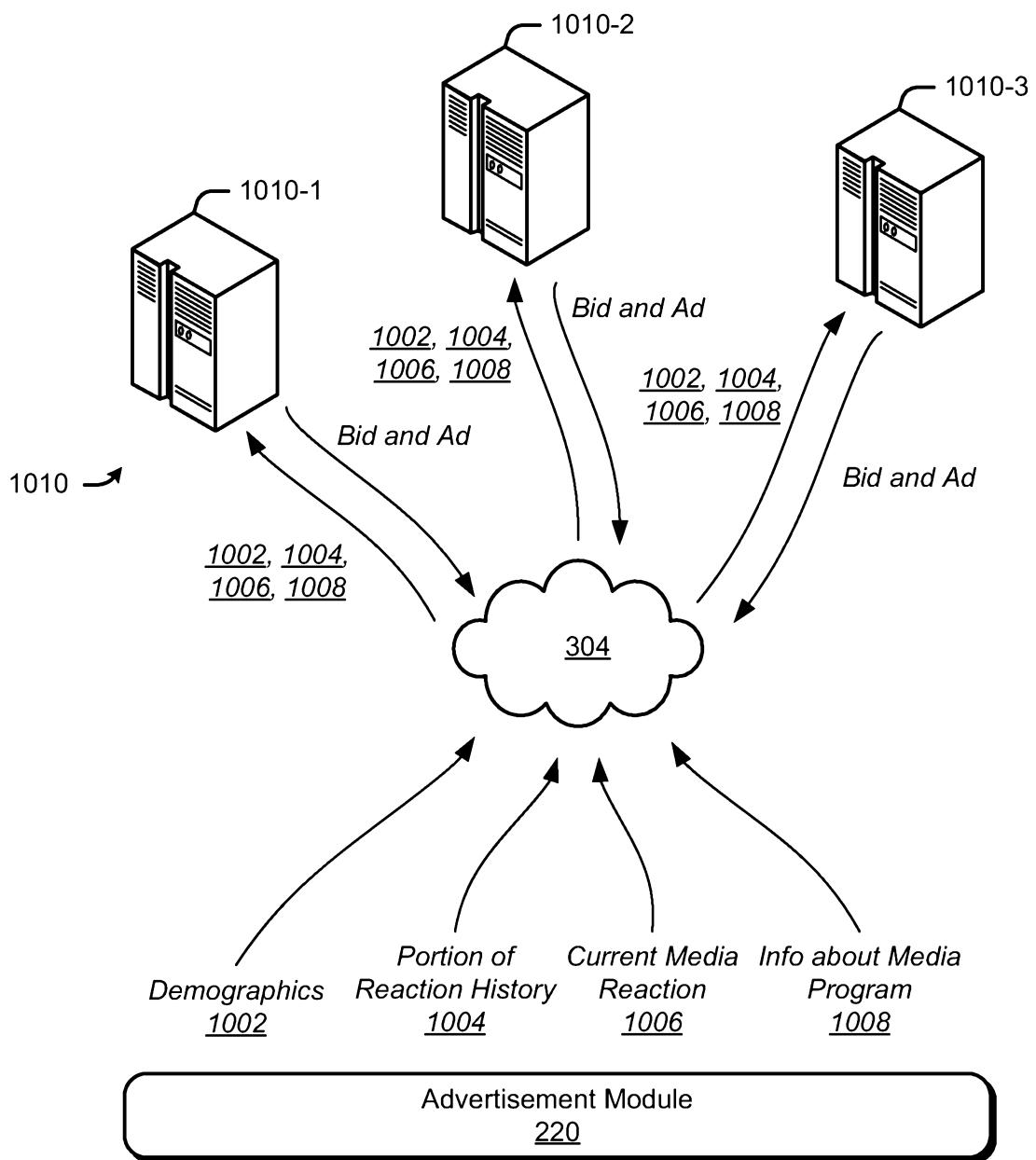

600 →

Fig. 6

7/16

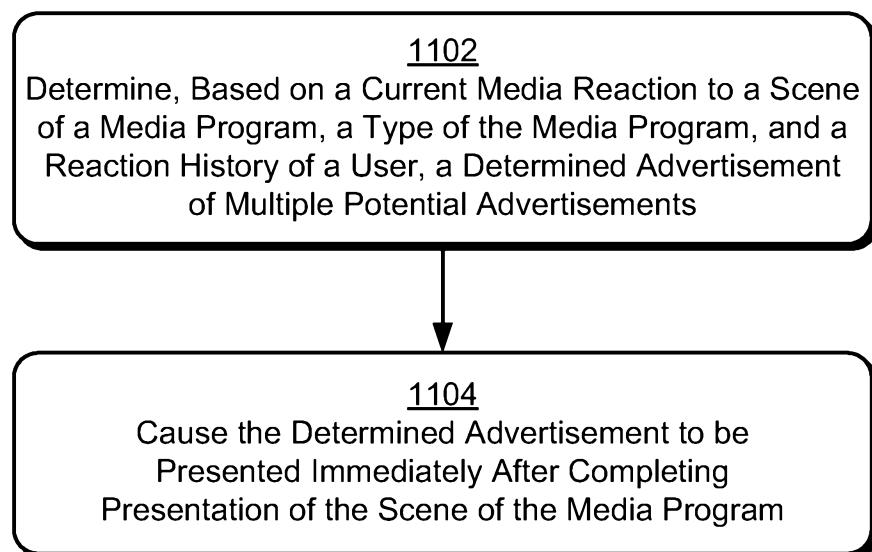
700 →


Fig. 7

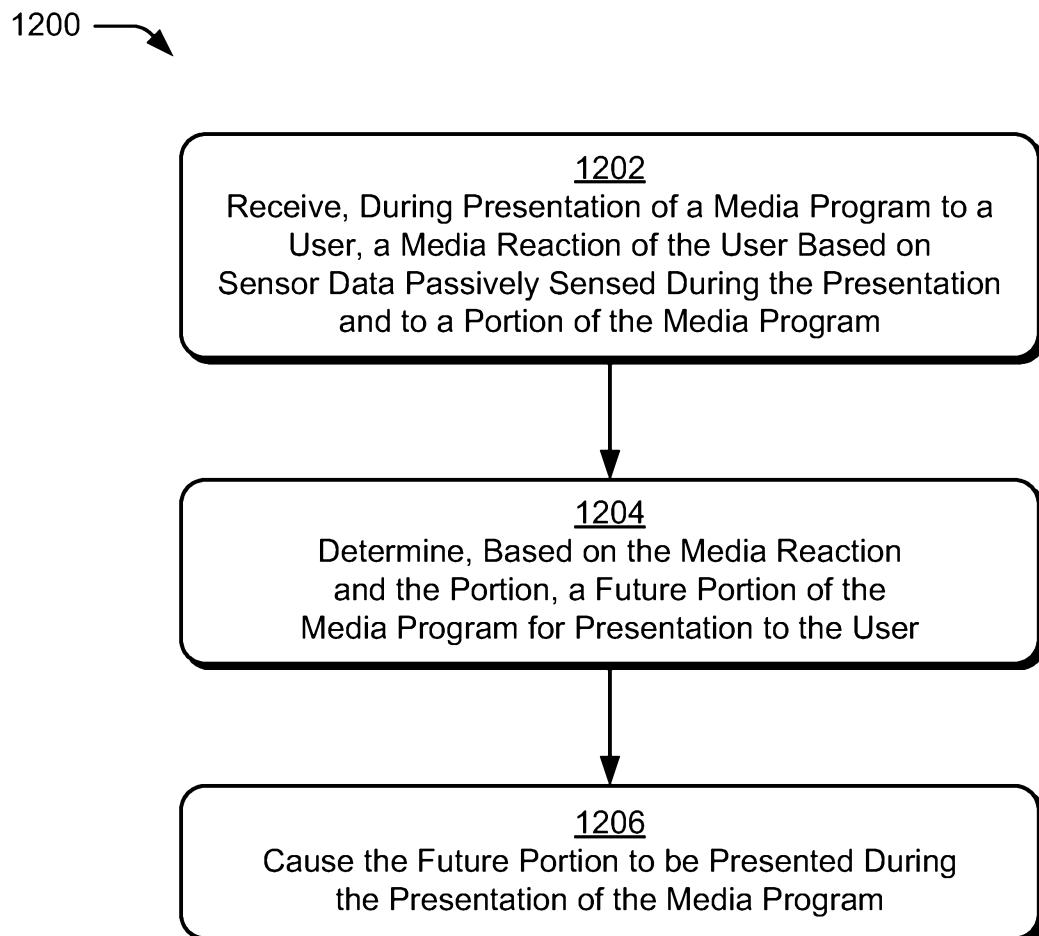

Fig. 8

9/16

900 →


Fig. 9

10/16


Fig. 10

11/16

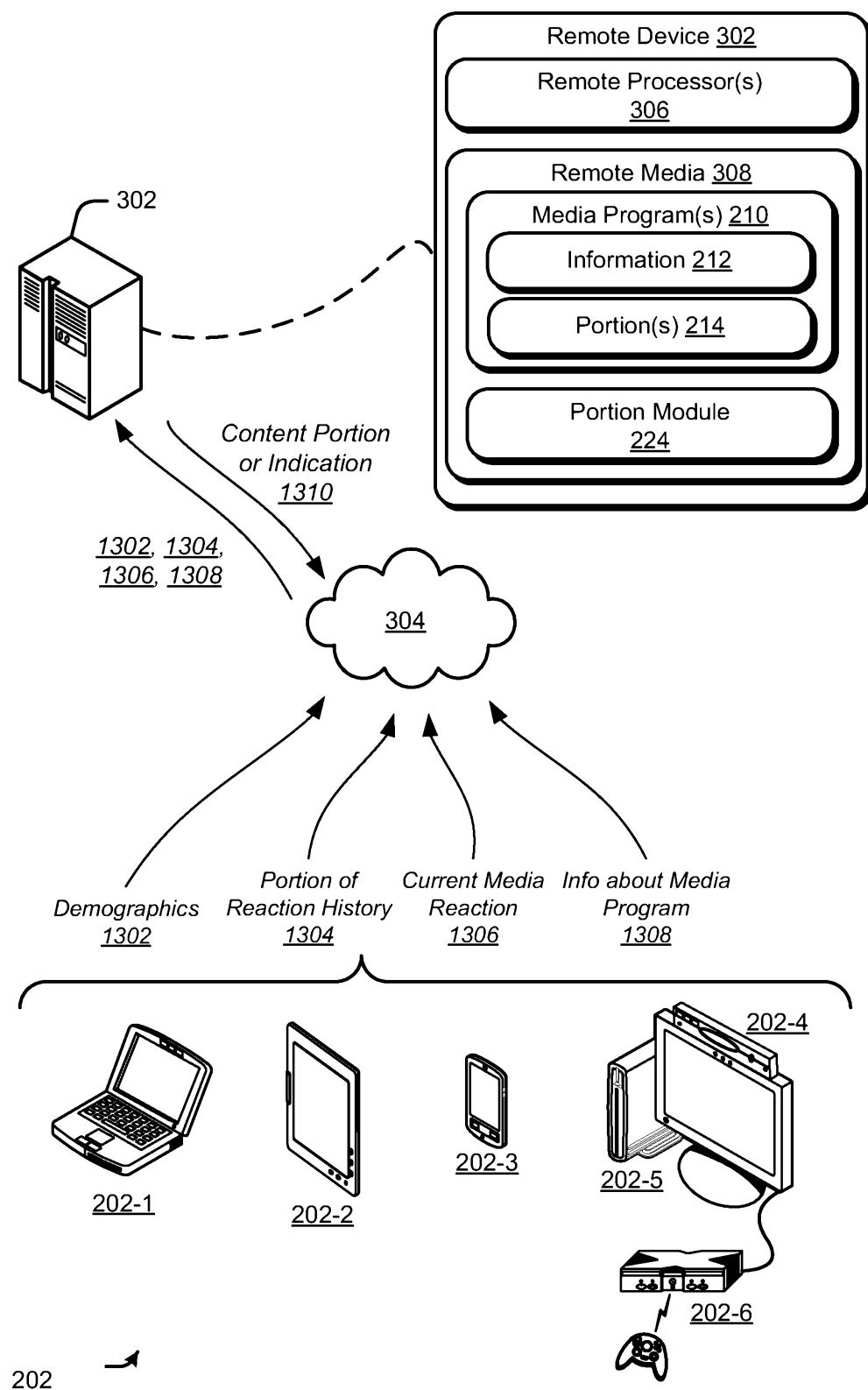
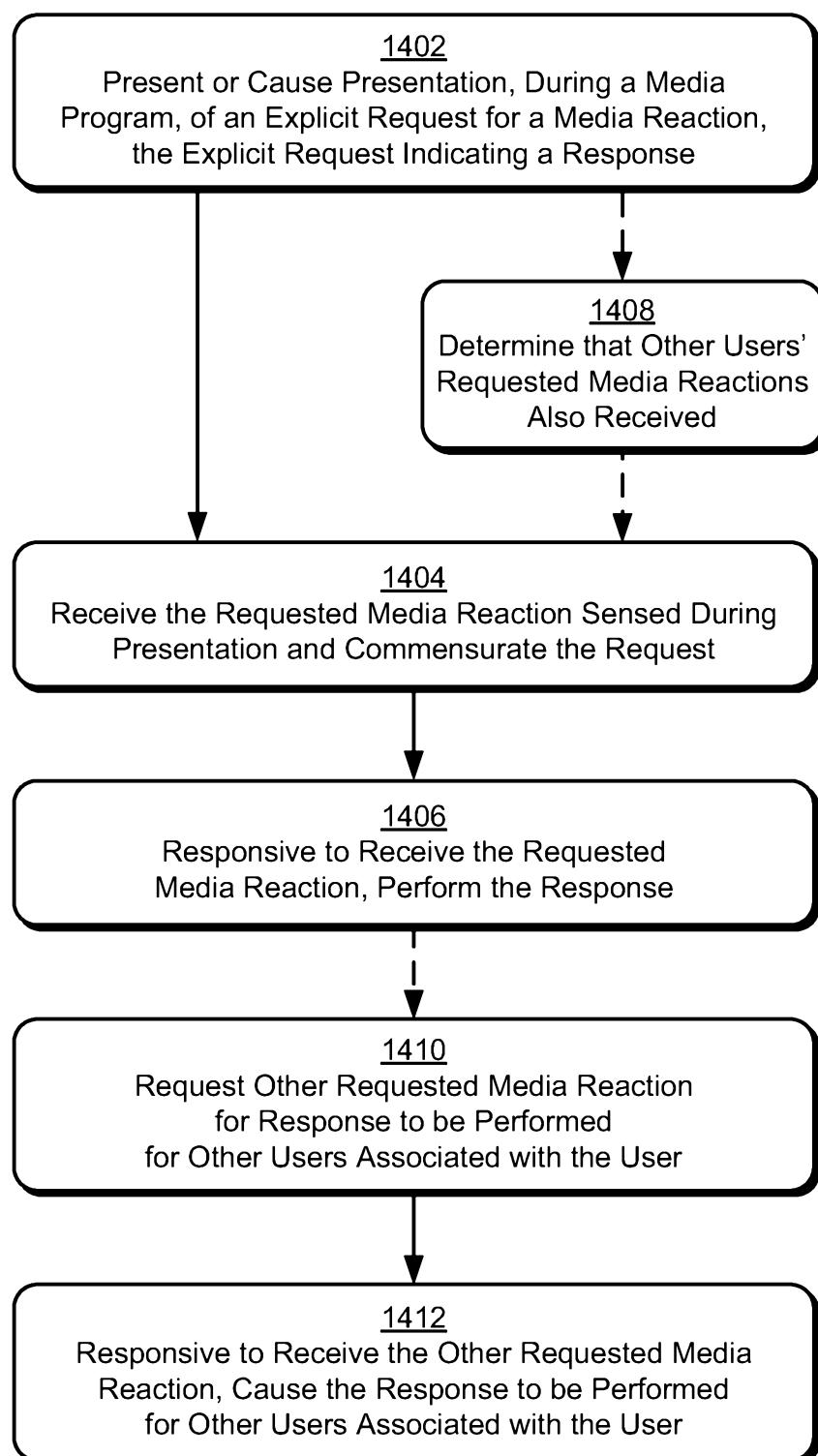
1100 →

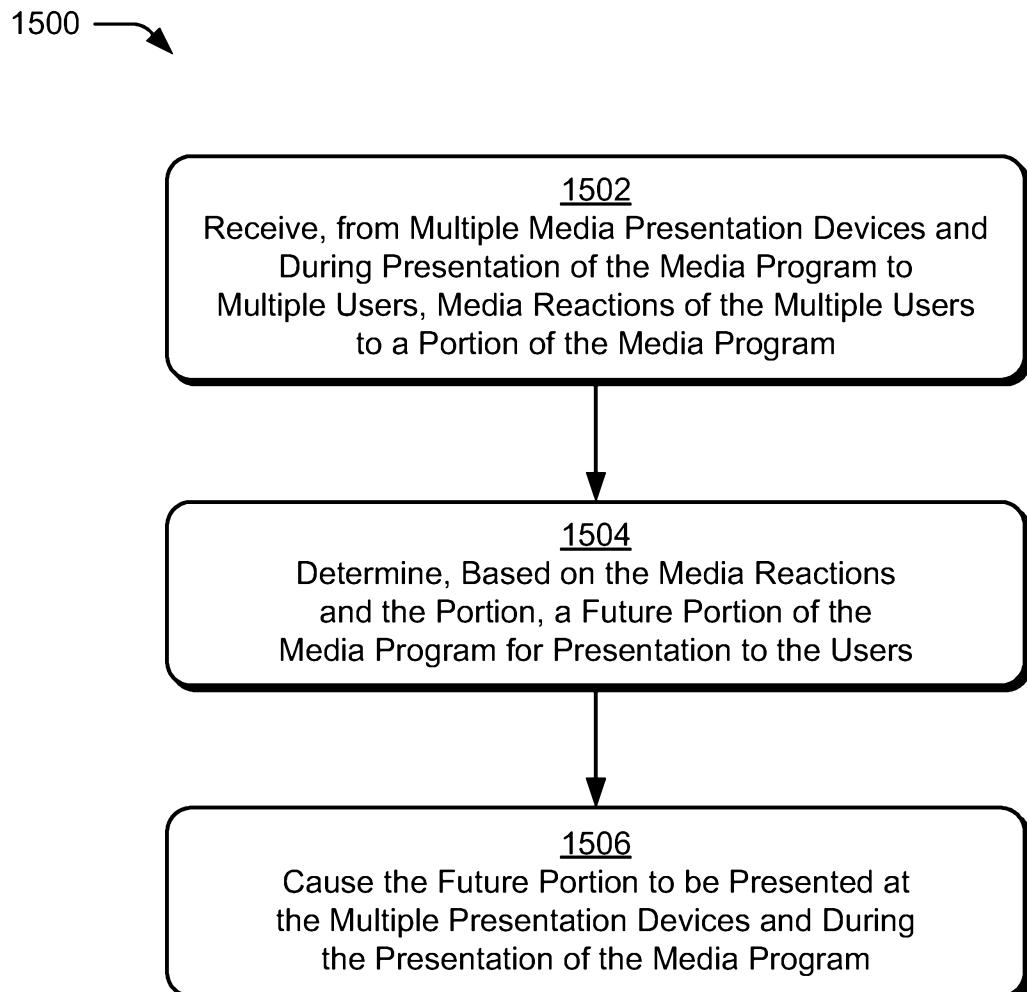
Fig. 11

12/16

Fig. 12

13/16


Fig. 13

14/16

1400

Fig. 14

15/16

Fig. 15

16/16

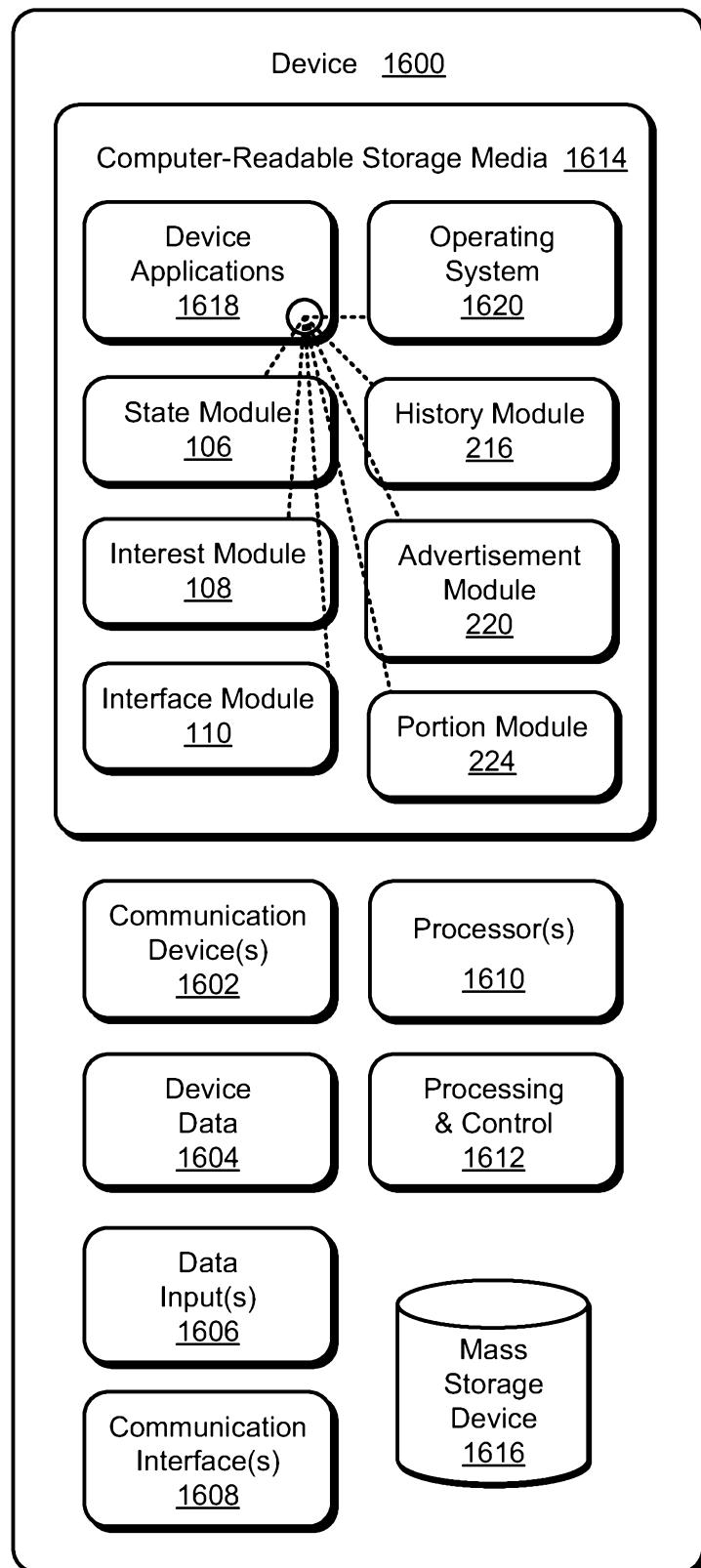


Fig. 16