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MANUFACTURING SUPPORT SYSTEM AND METHOD

The application relates to supporting manufacturing of an object such as a gear.
BACKGROUND

A manufacturing system for manufacturing an object may be configured by an operator
based on his/her experiences. The configuration of the manufacturing system may
include, for example, selection of necessary hardware such as machining devices
and/or tools, operation conditions for such hardware, and/or generation of control

programs of such hardware.

Artificial intelligence (Al) have been used for supporting manufacturing and/or
machining an object. For example, JP 2017-33138A and JP 2017-62695A disclose a
machining device that comprises: a motion evaluation unit configured to evaluate a
motion of the machining device and to output evaluation data; and a machine learning
device configured to learn a travel amount of an axis of the machining device. The
machine learning device disclosed in JP 2017-33138A is configured to learn
adjustment of the travel amount of the axis of the machining device based on adjusted
travel among of the axis, physical amount data of the machining device and reward
data calculated based on the physical amount data and the evaluation data. The
machine learning device disclosed in JP 2017-62695A is configured to learn
determination of the travel amount of the axis of the machining device based on
determined travel amount of the axis, status data of the ’machining device and a reward

calculated based on the status data.

Further, for example, JP 2017-30152A discloses an injection molding system

CONFIRMATION COPY
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comprising: a state observation section for observing, when injection molding is
performed, physical amounts relating to the performing injection molding; a physical-
amount data storage section for storing the physical-amount data; a reward-conditions
setting section for setting reward conditions for machine learning; a reward calculation
section for calculating a reward based on the physical-amount data and the reward
conditions; an operating-conditions adjustment learning section for performing
machine learning for adjusting operating conditions based on the reward calculated by
the reward calculation section, the operating-conditions adjustment, and the physical-
amount data; a learning-result storage section for storing a learning result of the
machine leaming by the operating-conditions adjustment learning section; and an
operating-conditions adjustment-amount output section for determining and outputting
an operating condition to be adjusted and an adjustment amount based on the machine

learning by the operating-conditions adjustment learning section.

In some circumstances, it is desirable to facilitate selection of hardware necessary for
manufacturing an object so as to improve overall efficiency of the manufacturing

process.
SUMMARY

According to an aspect, a manufacturing support system is provided. The
manufacturing support system may comprise the following:

an obtaining unit configured to obtain object data (such as object shape data,
particularly 3D object data) of an object to be manufactured;

an artificial intelligence, Al, engine configured to receive the object data as an
input and to determine a hardware configuration of a manufacturing system for
manufacturing the object with reference to information relating to available hardware
for the manufacturing system; and

an output unit configured to output the determined hardware configuration.

In some circumstances, the manufacturing support system according to various

aspects of the present disclosure may contribute to efficient determination of a
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hardware configuration of a manufacturing system, leading to improvement of overall

efficiency of manufacturing process for manufacturing an object to be manufactured.

In some examples, the Al engine may be further configured to determine
manufacturing process steps to be carried out by the manufacturing system for
manufacturing the object, and the output unit may be further configured to output the

determined manufacturing process steps.

Further, the Al engine may be further configured to determine a value or a value range
for a parameter relating to each of one or more steps included in the manufacturing
process steps, and the output unit may be further configured to output the determined

value or value range.

In some examples, the information relating to available hardware for the manufacturing
system may include information indicating, for at least part of possible manufacturing
process steps, at least one hardware element that is available and that is required to
perform the manufacturing process step,
wherein the Al engine may comprise:
a machine learning device that is configured to:
receive the object data as an input;
perform computation using the received object data; and
output information indicating at least one set of manufacturing
process steps for manufacturing the object based on the computation; and
a hardware information processing unit that is configured to determine
the hardware configuration of the manufacturing system by identifying, with reference
to the information relating to available hardware, at least one hardware element
required to perform each of one or more steps included in said at least one set of

manufacturing process steps for manufacturing the object.

In these examples, manufacturing process steps for manufacturing an object may be
determined by an Al while a hardware configuration for the manufacturing system may

be determined with reference to information relating to available hardware that may be,
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for example, stored beforehand in a database. Thus, in some circumstances, when
any change to the available hardware has been made, the information stored in the
database relating to the available hardware may be updated and the determination of
the hardware configuration can be performed without re-training the Al with regards to
the change to the available hardware. This may contribute to improved efficiency in
determining the hardware configuration, thereby improving overall efficiency of the

manufacturing process.

Regarding the above-stated examples where the Al engine may comprise the machine
learning device and the hardware information processing unit, the machine learning
device may comprise a neural network configured to perform the computation using
the received object data, wherein the neural network has been trained using training
data including object data of one or more objects and information indicating sets of
manufacturing process steps for manufacturing the one or more objects. Training of

the neural network may be performed according to deep learning technique.

Regarding the aspect and various examples as stated above, the information relating
to available hardware may include information indicating an operation schedule for
available hardware elements,

wherein the Al engine may be configured to determine more than one hardware
configuration,

wherein the manufacturing support system may further comprise:

a selection unit configured to select one of said more than one hardware
configuration based on a required delivery time for the object and the operation
schedule, and

wherein the output unit may be configured to output the selected one of said

more than one hardware configuration.

Further, the Al engine may be further configured to determine priorities among said
more than one hardware configuration, and the selection unit may be configured to
select one of said more than one hardware configuration further based on the priorities

among said more than one hardware configuration.



10

15

20

WO 2019/043425 PCT/IB2017/001062

Regarding the aspect and various examples as stated above, the manufacturing
support system may further comprise: a control information generation unit configured
to generate control information for controlling the manufacturing system with the

determined hardware configuration based on the object data and/or the determined

hardware configuration.

According to another aspect, a computer-implemented method is 'provided for
supporting manufacturing. The method may comprise the following:

obtaining object data (such as object shape data, particularly 3D object data) of
an object to be manufactured;

receiving, by an artificial intelligence, Al, engine, the object data as an input;

determining, by the Al engine, a hardware configuration of a manufacturing
system for manufacturing the object with reference to information relating to available
hardware for the manufacturing system; and

outputting the determined hardware configuration.

In some examples, the method according to the above aspect may further comprise:
determining, by the Al engine, manufacturing process steps to be carried out by
the manufacturing system for manufacturing the object; and '
outputting the determined manufacturing process steps.

Further, the method according to the above aspect and examples may further
comprise:

determining, by the Al engine, a value or a value range for a parameter relating
to each of one or more steps included in the manufacturing process steps; and

outputting the determined value or value range

Regarding the method according to the above-stated examples, the information
relating to available hardware for the manufacturing system may include information
indicating, for at least part of possible manufacturing process steps, at least one

hardware element that is available and that is required to perform the manufacturing
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process step,
wherein said determining of the manufacturing process steps may be performed
by a machine learning device comprised in the Al engine, said determining of the
manufacturing process steps may comprise:
receiving the object data as an input;
performing computation using the received object data; and
outputting information indicating at least one set of manufacturing
process steps for manufacturing the object based on the computation, and
wherein said determining of the hardware configuration of the manufacturing
system may be performed by identifying, with reference to the information relating to
available hardware, at least one hardware element required to perform each of one or
more steps included in the at least one set of manufacturing process steps for

manufacturing the object.

Further, the machine learning device may comprise a neural network configured to
perform the computation using the received object data,
wherein the method may further comprise:
training the neural network using training data including object data of
one or more objects and information indicating sets of manufacturing process steps for
manufacturing the one or more objects, and
wherein said training of the neural network may be performed according to

deep learning technique.

Regarding the method according to the aspect and various examples as stated above,
the information relating to available hardware may include information indicating an
operation schedule for available hardware elements,

wherein more than one hardware configuration may be determined by the Al
engine,

wherein the method may further comprise:

selecting one of said more than one hardware configuration based on a

required delivery time for the object and the operation schedule, and

wherein the selected one of said more than one hardware configuration may be
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output as the determined hardware configuration.

Further, the Al engine may further determine priorities among said more than one
hardware configuration, and said selecting one of said more than one hardware
configuration may be further based on the priorities among said more than one

hardware configuration.

Moreover, the method according to the aspect and various examples as stated above
may further comprise: generating control information for controlling the manufacturing
system with the determined hardware configuration based on the object data and/or

the determined hardware configuration.

Further, the method according to the aspect and various examples as stated above
may further comprise:

obtaining information relating to a material, processing and/or a size of the
object to be manufactured,

wherein the Al engine may further receive the information rélating to the material,
the processing and/or the size of the object to be manufactured, and

wherein the Al engine may determine the hardware configuration of the
manufacturing system further using the information relating to the material, the

processing and/or the size of the object to be manufactured.

According to yet another aspect, a computer program is provided. The computer
program product may comprise computer-readable instructions that, when loaded and
run on a computer, cause the computer to perform the steps of the method according
to any one of the method according to the aspect and various examples as stated

above.

According to yet another aspect, a device is provided for training an Al configured to:
(i) receive object data of an object to be manufactured; (ii) perform computation using
the received object data; and (iii) output information indicating at least one set of

manufacturing process steps for manufacturing the object based on the computation.
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The device may comprise:
an Al training unit configured to train the Al using training data including object
data of one or more objects and information indicating sets of manufacturing process

steps for manufacturing the one or more objects.

According to yet another aspect, a computer-implemented method is provided for
training an Al configured to: (i) receive object data of an object to be manufactured; (ii)
perform computation using the received object data; and (iii) output information
indicating at least one set of manufacturing process steps for manufacturing the object
based on the computation. The method may comprise:

training the Al using training data including object data of one or more objects
and information indicating sets of manufacturing process steps for manufacturing the

one or more objects.

The subject matter described in the application can be implemented as a method or as
a system, possibly in the form of one or more computer program products. The subject
matter described in the application can be implemented in a data signal or on a
machine readable medium, where the medium is embodied in one or more information
carriers, such as a CD-ROM, a DVD-ROM, a semiconductor memory, or a hard disk.
Such computer program products may cause a data processing apparatus to perform

one or more operations described in the application.

In addition, subject matter described in the application can also be implemented as a
system including a processor, and a memory coupled to the processor. The memory
may encode one or more programs to cause the processor to perform one or more of
the methods described in the application. Further subject matter described in the

application can be implemented using various machines.
BRIEF DESCRIPTION OF THE DRAWINGS

Details of one or more implementations are set forth in the exemplary drawings and
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description below. Other features will be apparent from the description, the drawings,
and from the claims. It should be understood, however, that even though embodiments
are separately described, single features of different embodiments may be combined

to further embodiments.

Fig. 1 shows a functional block diagram of an example of a manufacturing support

system according to an exemplary embodiment.

Fig. 2 shows an example of data stored in a hardware information database (DB).

Fig. 3 shows further example of data stored in the hardware information DB.

Fig. 4A shows an exemplary configuration of a neural network which may be trained

using a deep learning technique.

Fig. 4B shows how a hidden layer of the neural network shown in Fig. 4A can be

trained in some examples.

Fig. 5 shows a schematic diagram illustrating an exemplary input layer and an

exemplary convolutional layer of a convolutional neural network (CNN).

Fig. 6 shows a schematic diagram illustrating an exemplary max pooling operation.

Fig. 7 shows an exemplary configuration of a CNN.

Fig. 8 shows a flowchart of exemplary processing for training an Al of a machine

learning device.

Fig. 9 shows a flowchart of exemplary processing performed by the manufacturing

support system.

Fig. 10 shows a flowchart of exemplary processing performed by an Al engine.
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Fig. 11 shows a flowchart of exemplary processing performed for generating a control

program of a manufacturing system.

Fig. 12 shows an example of output data of the manufacturing support system

according to another exemplary embodiment.

Fig. 13 shows an exemplary hardware configuration of a computer that may be used

to implement the manufacfuring support system.
DETAILED DESCRIPTION OF EMBODIMENTS

In the following text, a detailed description of examples will be given with reference to
the drawings. It should be understood that various modifications to the examples may
be made. In particular, elements of one example may be combined and used in other

examples to form new examples.

Exemplary embodiments and various examples described herein relate to supporting
manufacturing of an object by obtaining object data of the object to be manufactured
and determining a hardware configuration of a manufacturing system for
manufacturing the object, using artificial intelligence (Al), from the obtained object data
with reference to information relating to available hardware for the manufacturing

system.

Functional Configurations of the Manufacturing Support System

Fig. 1 shows a functional block diagram of an example of a manufacturing support

system according to an exemplary embodiment.
As shown in Fig. 1, the manufacturing support system may comprise a obtaining unit

10, an Al engine 20, a hardware information DB 30, a neural network DB 35, a selection

unit 40, a control information generation unit 50 and/or an output unit 60.

10
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The obtaining unit 10 may be configured to obtain object data (such as object shape
data, particularly 3D object data) of an object to be manufactured. The object to be
manufactured may be any object that can be manufactured by, -for example, machining,
molding, casting, heat treatment and/or surface finishing. In the following,
embodiments and examples will be described with respect to a case where the object
to be manufactured is a gear. A gear may be manufactured by a machining process
including, for example, steps of cutting, drilling, hobbing, chamfering and/or shaving. It
should be noted, however, that a person skilled in the art readily understands that
various embodiments and examples describéd herein may be applicable for
manufacturing objects other than gears by a manufacturing process including steps

other than machining steps.

The object data may be, for example, image data of an object, such as a gear, to be
manufactured. The image data may include a 2D image array of pixels, each of the
pixels including at least one value. For instance, a pixel in grey scale image data may
include one value indicating an intensity of the pixel. A pixel in color image data may
include multiple values, for example three values, that indicate coordinates in a color
space such as RGB color space. The image data may be generated by an imaging
device such as a camera that comprises, e.g., a CCD (charge-coupled device) sensor,

and is configured to capture one or more images of a scene.

Anothef example of the object data may be a combination of 2D image data and
corresponding depth map data of an object, such as a gear, to be manufactured. The
2D image data may be generated by an imaging device such as a camera, as
mentioned above with respect to the object data being image data. The corresponding
depth map data may include a value for each pixel in the 2D image data, the value
indicating a distance of a surface of an object in the 2D image at the corresponding
pixel from a viewpoint. The depth map can be generated using known 3D
reconstruction techniques, e.g., a multi-view stereo method in which depth information
is reconstructed by identifying a same point in at least two images of a scene, captured

from different viewpoints.

11
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In a specific example of the object data being a combination of 2D image data and
corresponding depth map data, the object data may be RGB-D (RGB and depth) data.
RGB-D data may be captured by RGB-D sensors such as Microsoft Kinect and ASUS

Xtion Pro Live, which comprise an optical camera and structured-light depth sensors.

Another specific example of the object data may be 2D image data with a structured
light projections, where structured light is projected onto an object to be manufactured
or a model of that object under a predetermined illumination angle. The structure of the
iluminated parts of the object in a 2D image taken under a predetermined imaging
angle (relative to the illumination angle) represents the (3D) shape of the illuminated

object.

Yet another example of the object data may be a 3D model of an object, such as a
gear, to be manufactured. The 3D model may include mathematical representation of
any surface of the object in three dimensions. For instance, the 3D model may include
representation of a physical body of the object using a collection of points in 3D space,
connected by various geometric entities such as triangles, lines, curved surfaces, etc.
In a specific example, the object data may be 3D CAD (computer aided design) model.
The 3D model may be generated using known software for 3D modelling such as
AutoCAD, Blender, FreeCAD, etc. Further, in some examples, the 3D model may be

generated by a known 3D scanner.

The type of the object data may be chosen according to which type of input data the

Al engine 20 requires.

The obtaining unit 10 may obtain the object data from a computer (not shown) or a

storage device (not shown) connected to the obtaining unit 10.
Alternatively, the obtaining unit 10 may be configured to generate the object data. For

example, in case the object data is image data of an object, the obtaining unit 10 may

be implemented by an imaging device such as a camera. Further, for example, in case

12
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the object data is a 3D model of an object, the obtaining unit 10 may be implemented
by a known 3D scanner or by a computer on which known software for 3D modelling
is installed. Further, for example, in case the object data is a combination of 2D image
data and corresponding depth map data, the obtaining unit 10 may comprise RGB-D
sensors configured to capture RGB-D data of the object to be manufactured. In other
examples, the obtaining unit 10 may comprise an imaging device such as a camera to
capture one or more images of the object and a system configured to obtain depth map

data according to, e.g. a multi-view stereo method, as mentioned above.

In any case, the obtaining unit 10 may be further configured to process the object data

to be suitable as an input to the Al engine 20, if necessary.

The Al engine 20 may be configured to'receive, from the obtaining unit 10, the object
data as an input. The Al engine 20 may be further configured to determine a hardware
configuration of a manufacturing system (not shown) for manufacturing the object with
reference to information relating to available hardware for the manufacturing system.
As shown in Fig. 1, the Al engine 20 may comprise a machine learning device 200, an

Al training unit 210 and/or a hardware information processing unit 212.

The machine learning device 200 may comprise a receiving unit 202, an Al
computation unit 204 and an output unit 206. The receiving unit 202 may be configured
to receive the object data as an input. In some examples, the receiving unit 202 may
be further configured to receive information that can be used in computation performed
by the Al computation unit 204. For instance, the receiving unit 202 may further receive
information relating to a material, processing and/or a size of the object to be
manufactured. The information relating to a material of the object to be manufactured
may indicate, for example, a name of the material and/or characteristics of the material
such as color, stiffness, relative density, heat resistance, etc. The information relating
‘to processing of the object to be manufactured may indicate, for example, how a
surface of the object is machined and/or treated, how the material is processed (e.g.
sintering, soldering, welding etc.), how elements of the object are assembled, etc. The

information relating to a size of the object may indicate, for example, an overall length,

13
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width, thickness, height, and/or diameter of at least a part of the object. The further
information relating to a material, processing and/or a size of the object to be
manufactured may be input by a user via an input device (not shown) or may be
obtained from a computer (not shown) and/or a storage device (not shown) connected
to the Al engine 20.

The Al computation unit 204 may be configured to perform computation of an Al. In
other words, the Al computation unit 204 may be understood as a unit implementing
an Al. Specifically, in the examples described herein, the Al computation unit 204 may
be configured to perform computation using the received object data. In case the
receiving unit 202 receives further information relating to a material, processing and/or
a size of the object to be manufactured, the Al computation unit 204 may be configured
to perform computation using not only the received object data but also the further
information relating to a material, processing and/or a size of the object. The
computation performed by the Al computation unit 204 may be based on a known
machine learning technique, for example, a technique involving neural networks.
Detailed examples of the Al computation unit 204 will be described later herein. Based
on the computation performed by the Al computation unit 204, at least one set of
manufacturing process steps for manufacturing the object may be determined.

The output unit 206 may be configured to output information indicating at least one set
of manufacturing process steps for manufacturing the object, based on the
computation performed by the Al computation unit 204. For instance, in case the object
to be manufactured is a spur gear, a set of manufacturing process steps output by the
output unit 206 may include a cutting step, a drilling step, a hobbing step, a chamfering

step and a shaving step.

In some examples, the output unit 206 may be further configured to output information
indicating value(s) and/or value range(s) of one or more parameters relating to each
of one or more steps included in the set of manufacturing process, based on the
computation performed by the Al computation unit 204. For example, regarding a

cutting step, a value range of the depth of the cut may be output as a parameter value

14
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range. Further, for example, regarding a drilling step, value ranges of the depth and

the diameter of the hole may be output as parameter value ranges.

It is noted that, depending on the type of the object to be manufactured (e.g., the type
of the gear such as a spur gear, helical gear, internal gear etc.), appropriate set of
manufacturing process steps and/or the value(s) and/or value range(s) of one or more
parameters relating to one or more of the steps may vary. This variation of the
manufacturing process steps may result in variation of the hardware configuration
necessary for carrying out the set of manufacturing process steps by the manufacturing

system.

The Al training unit 210 may be configured to train the Al implemented by the Al
computation unit 204 of the machine learning device 200. For example, the Al training
unit 210 may be configured to train the Al implemented by the Al computation unit 204
for determining at least one set of manufacturing process steps to manufacture the
object. Further, for example, the Al training unit 210 may be configured to train the Al
implemented by the Al computation unit 204 for determining, in addition to the at least
one set of manufacturing process steps, value(s) and/or value range(s) of one or more
parameters relating to each of one or more steps included in the set of manufacturing

process.

In some examples, the Al training unit 210 may be configured to obtain a data structure
of a neural network from the neural network DB 35 and train the neural network for

determining at least one set of manufacturing process steps to manufacture the object.

The neural network DB 35 may be a database storing data structures of neural
networks with various configurations. For example, the neural network DB 35 may
store the data structures of neural networks having an input layer with various numbers
of nodes, one or more hidden layers with various numbers of nodes, an output layer
with various numbers of nodes and various weighted connections between nodes.
Further, for example, the neural network DB 35 may store the data structures of the

neural networks such as an autoencoder and a convolutional neural network (CNN) as

15
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will be explained later with reference to Figs. 4A to 7. The neural networks stored in

the neural network DB 35 may not have been trained for any specific purpose.

In some examples, the Al training unit 210 may be included in a device other than the

manufacturing support system and does not need to be included in the Al engine 200.

The hardware information processing unit 212 may be configured to determine the
hardware configuration of the manufacturing system by identifying, with reference to
the hardware information DB 30, at least one hardware element required to perform
each of one or more steps that are included in the at least one set of manufacturing

process steps for manufacturing the object.

The hardware information DB 30 may store information concerning hardware elements
that are available for the manufacturing system. For example, the hardware information
DB 30 may store information indicating, for at least part of possible manufacturing
process steps, a hardware element or a combination of hardware elements that is
available and that is required to perform the manufacturing process step. The available
hardware elements may be, for example, hardware elements that are present in a
factory in which the manufacturing system is installed. The hardware elements for the
manufacturing system may include, but are not limited to, machining devices such as
NC (numerical control) lathes, hobbing machines, chamfering machines, shaving
machines, drilling machines, milling machines, electrical discharge machines (EDM)
as well as tools used in the machining devices, e.g. cutting tools, drilling tools, hobs,

chamfering cutters, shaving cutters, jigs etc.

Fig. 2 shows an example of information that may be stored in the hardware information
DB 30. As shown in Fig. 2, the hardware information DB 30 may comprise a table
including information on available machines and on available tools for each machine.
In the table shown in Fig. 2, each row of the table corresponds to a machine and
includes the type of the machine, model / ID (identification information) of the machine
as well as type and model / ID of tools that may be used in the machine. For example,

according to the table shown in Fig. 2, a cUtting tool of model / ID "KA012” and a drill

16



WO 2019/043425 PCT/IB2017/001062

of model / ID “DA123” can be used in an NC lathe of model / ID “A001”.

Fig. 3 shows a further example of information that may be stored in the hardware
information DB 30. More specifically, Fig. 3 shows an example of information indicating,
- for at least part of possible manufacturing process steps, at least one hardware
element that is available and that is required to perform the manufacturing process
step. In the exemplary table shown in Fig. 3, the first column indicates possible
manufacturing steps and the second column indicates possible parameter sets
corresponding to the manufacturing steps. In the exemplary table of Fig. 3, the
parameter sets are indicated by identification information of specific sets of parameters.
The hardware information DB 30 may store specific value(s) and/or value range(s) of
parameters includéd in the parameter set identified by each identification information
as shown in the exemplary table of Fig. 3. Further, the third column of the exemplary
table shown in Fig. 3 indicates combinations of a machine and a tool necessary for
performing respective manufacturing steps with the parameter sets. For example,
according to the table shown in Fig. 3, the cutting step with the parameter set “CUP1”

requires a combination of the machine “A001” and the tool “KA012”".

The hardware information DB 30 may further store an operation schedule for available
hardware elements. The operation schedule may indicate which hardware element is
currently ready for use and/or will be ready for use at which point of time. Alternatively
or additionally, the operation schedule may indicate which hardware element is
currently in use and/or will be in use in which time period and/or which hardware
element is currently under maintenance work and/or will be under maintenance work
in which time period. The operation schedule may further indicate which hardware

element is or will be ready for use until which point of time.

Referring again to Fig. 1, the hardware information processing unit 212 may determine
hardware configuration of the manufacturing system by identifying, with reference to
an information table stored in the hardware information DB 30 such as the one shown
in Fig. 3, a combination of hardware elements required to perform each of one or more

steps included in the at least one set of manufacturing process steps for manufacturing
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the object, output by the machine learning device 200. For example, suppose that the
hardware configuration information DB 30 stores the exemplary table shown in Fig. 3
and that the machine learning device 200 has output a set of manufacturing process
steps including a cutting step with a parameter set “CUP1", a drilling step with a
parameter set “DRPM”, a hobbing step with a parameter set “HOP1" and a chamfering
step with a parameter set “CHP1". In this example, the hardware information
processing unit 212 may identify a machine-tool combination of “A001 - KA012” for the
cutting step, “A001 - DA123” for the drilling step, “B001 - HB011” for the hobbing step
and “C001 - MA103" for the chamfering step. The determined hardware configuration
may include these machine-tool combinations “A001 - KA012”, “A001 - DA123”, “B001
- HB011” and “C001 - MA103” identified for the manufacturing process steps.

In some examples, the Al engine 20 may determine more than one hardware
configuration for manufacturing the object. For instance, the machine learning device
200 may determine more than one set of manufacturing process steps for
manufacturing the object. In such a case, the hardware information processing unit
212 may determine more than one hardware configuration, each corresponding to one

of said more than one set of manufacturing process steps.

Further, in the examples where the Al engine 20 determines more than one hardware
configuration, the Al engine 20 may further determine priorities of the more than one
hardware configuration. In other words, the Al engine 20 may determine which one of
the more than one hardware configuration is more preferable and/or recommendable

than the others.

In case the Al engine 20 determines more than one hardware configuration for
manufacturing the object, the selection unit 40 may be configured to select one of said
more than one hardware configuration based on a required delivery time for the object
and the operation schedule for available hardware elements. When the Al engine 20
further determines the priorities of the more than one hardware configuration, the
selection made by the selection unit 40 may further be based on the priorities of the

more than one hardware configuration. The required delivery time may be input by a
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user using an input device (not shown) or obtained from a computer (not shown) or a
storage device (not shown) connected to the selection unit 40. The operation schedule
may be obtained from the hardware information DB 30. The selection unit 40 may
provide the selected hardware configuration to the control information generation unit
50 and/or to the output unit 60.

It is noted that the selection unit 40 is an optional unit for the manufacturing support
system. For example, in case the Al engine 20 is configured to determine only one
hardware configuration for the manufacturing system, the manufacturing support

system is not required to comprise the selection unit 40.

The control information generation unit 50 may be configured to generate control
information for controlling the manufacturing system with the determined hardware
configuration, based on the object data and/or the determined hardware configuration.
The control information may include, for example, values of control parameters for
controlling operation of the manufacturing system with the determined hardware
configuration. The control parameters may represent operation conditions of the
hardware elements included in the selected hardware configuration. Alternatively or
additionally, the control information may include a control program for the hardware
elements included in the selected hardware configuration. The control information

generation unit 50 may provide the generated control information to the output unit 60.

The control information generation unit 50 is also an optional unit for the manufacturing

support system.

The output unit 60 may be configured to output the selected hardware configuration
provided by the selection unit 40 and/or the generated control program provided by the
control information generation unit 50. In case the manufacturing support system does
not include the selection unit 40, the output unit 60 may be configured to receive from
the Al engine 20 a hardware configuration determined by the Al engine 20 and to

output the received hardware configuration.
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According to the exemplary manufacturing support system as described above with
reference to Fig. 1, at least one set of manufacturing process steps may be determined
by the machine learning device 200 using the Al computation unit 204 and a hardware
configuration is determined by the hardware information processing unit 212, based
on the at least one set of manufacturing process steps with reference to the information
stored in the hardware information DB 30 concerning one or more hardware elements
required for performing each of one or more steps included in the at least one set of
manufacturing process steps (see e.g. the exemplary table shown in Fig. 3).
Accordingly, when any change is made to the available hardware elements, the
hardware information DB 30 may be updated to reflect the change and then the
hardware configuration determined by the Al engine 20 may also reflect the change.
In such a case, no re-training of the Al implemented by the Al computation unit 204
with regards to the change to the available hardware may be necessary since the Al
computation unit 204 does not necessarily require the information stored in the
hardware information DB 30. This may contribute to improved efficiency in determining
the hardware configuration, leading to improvement of overall efficiency of the

manufacturing process.

Examples of the Al Used in the Manufacturing Support System

The following provides detailed examples of the Al computation unit 204.

a) Autoencoder

In some examples, the Al computation unit 204 may comprise a neural network having
a configuration as shown in Fig. 4A and the neural network may be trained using a

known deep learning technique involving an autoencoder.

A neural network to be trained by a known deep learning technique may comprise more
than three layers in total, including an input layer (e.g., layer LO in Fig. 4A), two or more
hidden layers (e.g., layers L1, L2 in Fig. 4A) and an output layer (e.g., layer L3 in Fig.

4A). Although Fig. 4A shows four layers, the neural network for deep learning may
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have more than four layers, e.g. more than two hidden layers. Further, each layer in
the neural network for deep learning may have more number or less number of nodes
than that shown in Fig. 4A.

The input layer of the neural network shown in Fig. 4A may include nodes that receive
values included in or derivable from the object data obtained by the obtaining unit 10.
For instance, in case the object data is image data of the object to be manufactured,
the input layer may include nodes corresponding to pixels included in the image data.
In other words, each node in the input layer may be configured to receive an intensity
value of one of the pixels included in the image data. For color image data, multiple
nodes in the input layer may correspond to multiple intensity values (e.g., intensity
values for red, green and blue channels) of a single pixel of the image data.

In case the object data is a combination of 2D image data and corresponding depth
map data of an object to be manufactured, the input layer may include input nodes
corresponding to pixels of the 2D image data as well as input nodes corresponding to

pixels of the depth map data.

Further, in case the object data is a 3D model of an object to be manufactured, the 3D
model may be represented using volumetric representation, e.g. voxelization, so that
the object data includes values that are readily input to input nodes of the input layer
of the neural network as shown in Fig. 4A. A volumetric representation of a 3D model
may reside in voxels in a 3D space (e.g. a cube with N x N x N voxels (N =2, 3, 4, ...))
and each voxel may take a value between 0 and 1, 0 indicating the voxel to be empty,
while 1 indicating the voxel to be occupied by the 3D model. The input layer of the
neural network may include input nodes corresponding to voxels in such a 3D space.
In the examples where the object data is a 3D model of an object, the obtaining unit
10 may be further configured to generate a volumetric representation of the 3D model

and provide the volumetric representation to the Al engine 20.

Regardless of the type of the object data, the input layer may further include one or

more nodes corresponding to information relating to a material, processing and/or a
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size of the object to be manufactured, in the examples where such information is
received by the Al engine 20. For example, different values may be assigned to
different names of materials and an input node corresponding to the name of the
material may receive the value assigned to the name of the material of the object.
Alternatively or additionally, an input node may correspond to a characteristic of the
material, e.g., color, stiffness, relative density, heat resistance, etc., and receive a
value indicating the characteristic, for example. Further, in case one or more input
nodes corresponding to processing of the object is provided in the input layer, the one
or more input nodes may receive one or more values indicating the type of processing
(e.g., sintering, soldering, welding etc.) and/or how elements of the object are
assembled etc., for example. Further, in case an input node corresponding to a size of
the object is provided in the input layer, the additional node may receive a value

indicating the size of the object.

When training the neural network as shown in Fig. 4A, weights of connections to each
hidden layer of the neural network may be adjusted so as to build an autoencoder that

‘learns a representation (e.g., encoding) for a set of data. For example, in order to train

the hidden layer L2 shown in Fig. 4A, an autoencoder having a neural network shown
in Fig. 4B may be constructed and trained. Referring to Fig. 4B, the layer L1 may be
considered as an input layer connected to the hidden layer L2 and an output layer
having the same number of nodes as the input layer L1 may be provided. It is noted
that the layers L1 and L2 in Fig. 4B correspond to the layers L1 and L2 in Fig. 4A. The
autoencoder shown in Fig. 4B may be trained using the input data to the input layer as
the supervisory signal. In other words, the weights of the connections to the hidden
layer L2 may be adjusted so fhat the output layer outputs the same data as the input
data. Performing such training may result in the hidden layer of the autoencoder to
represent compressed information of the input data, in other words, represent
characteristics or features of the input data. The training of an autoencoder as shown
in Fig. 4B may be iterated for each of the hidden layers of the neural network as shown
in Fig. 4A.

Several techniques may be applied for improving robustness of an autoencoder. For
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example, partially corrupted input (e.g., input with added nois'e) may be used while
training the autoencoder to recover the original undistorted input. Further, for example,
sparsity may be imposed on the hidden layer (e.g., providing more nodes in the hidden
layer than in the input layer) during training and the autoencoder may be trained so
that only a specified percentage of nodes in the hidden layer are active. For further

example, one or more nodes in the hidden layer may be made inactive during training.

The output layer of the neural network shown in Fig. 4A may include output nodes
corresponding to possible sets of manufacturing process steps for manufacturing the
object to be manufactured. For example, each output node may be configured to output
a value representing the likelihood that the corresponding set of manufacturing process
steps is appropriate for manufacturing the object. Accordingly, the output unit 206 of
the machine learning device may output information indicating the set of manufacturing
process steps corresponding to an output node with the highest value of likelihood. In
some examples, the output unit 206 of the machine learning device may identify a
specified (predetermined or predeterminable) number of output nodes which have the
highest values of likelihood among all the output nodes and output information
indicating the specified number of sets of manufacturing process steps corresponding
to the identified output nodes. The output unit 206 may further output priorities of the
specified number of sets of manufacturing process steps, based on the values of
likelihood output by the identified output nodes. For example, the output unit 206 may
output information i_ndicating higher priority (in other words, preference and/or higher
level of recommendation) for a set of manufacturing process steps corresponding to

the identified output node with a higher value of output.

In the examples where the output unit 206 is further configured to output information
indicating value(s) and/or value range(s) of one or more parameters relating to each
‘of one or more steps included in the set, each possible set of manufacturing process
steps corresponding to an output node may include or be associated with such value(s)

and/or value range(s).

b) Convolutional Neural Network (CNN)
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In some examples, the Al computation unit 204 may comprise a convolutional neural
network (CNN) that is known as a neural network suitable for image recognition.
Exemplary applications of a CNN to the Al computation unit 204 of the manufacturing

support system will be described below with reference to Figs. 5to 7.

Fig. 5 shows a schematic diagram illustrating an exemplary input layer and an
exemplary convolutional layer of a CNN. in the CNN shown in Fig. 5, an input image
having W x W (W =1, 2, 3, ... ) pixels for K (K =1, 2, 3, ... ) channels (e.g., three
channels corresponding to Red, Green and Blue) can be input to the input layer. In this
example, the input image may be an image of an object, such as a gear, to be
manufactured (e.g. the object data obtained by the obtaining unit 10). An intensity value
of a pixel for a channel can be considered as an input value to an input node of the
input layer. In other words, the input layer may include W x W x K input nodes, each

of which corresponding to an intensity value of a channel of a pixel.

Each node of the convolutional layer of the CNN shown in Fig. 5 may correspond to a
filter having asize of F xF (F =1, 2, 3, ... ; F < W), applied to a part of the input image.
As shown in Fig. 4, M (M =1, 2, 3, ... ) filters may be applied to the same part of the
input image over the K channels. An output of each node in the convolutional layer

may be represented as follows by equation (1):
y=f(Z25% Twx; + b) (1)

where xi may represent an input value to an input node (e.g., an intensity value of a
pixel for a channel within the region covered by the corresponding filter); wi may
represent an adjustable weight for a connection between the node in the convolutional v
layer and the input node corresponding to xi; and b may represent a bias parameter.

The activation function f may be a rectified linear unit, f(x) = max(x, 0).

In some examples, each of the M filters may be applied to the whole area of the input

image by sliding the filter with a stride of S pixel(s) in both width and height directions
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shown in Fig. 5. For each location of the M filters on the input image, M nodes
corresponding to the M filters may be present in the convolutional layer. In case of S =
1, the number of outputs of the convolutional layer may be W x W x M. The outputs of
the convolutional layer may be considered as M images (corresponding to M filters)
with a size of W x W.

The outputs of the convolutional layer may be subject to down-sampling by a max
pooling operation. The max pooling operation may select the maximum value among
a plurality of input values. The max pooling operation may be applied to each of the M
images with é size of W x W, output from the convolutional layer as stated above.

Fig. 6 shows a schematic diagram illustrating an exemplary max pooling operation. In
the exemplary max pooling operation as shown in Fig. 6, filters having a size of 2 x 2
may be applied to an input image (to the max pooling operation) with a stride of two
pixels. This may result in an output image including pixels each of which has the
maximum intensity value among the pixels of the input image within the corresponding
filter. Each filter used in the max pooling operation may be considered as a node of a

pooling layer comprised in a CNN.

The outputs of the pooling layer may be input to another convolutional layer.
Alternatively, the outputs of the pooling layer may be input to a neural network called
fully connected neural network, where each node of the fully connected neural network
is connected to all the outputs (e.g. nodes) of the pooling layer. The outputs of the fully
connected neural network may be connected either to another fully connected neural

network or an output layer.

The output layer may include one or more nodes corresponding to one or more desired
output parameters of the CNN. For example, in the exemplary embodiments, the
output layer may include a piurality of output nodes, each of which corresponding to a
possible set of manufacturing process steps for manufacturing the object, similar to the
examples of output nodes of the neural network trained using an autoencoder shown

in Fig. 4A as stated above. Further, as stated above in the examples using an
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autoencoder, each possible set of manufacturing process steps corresponding to an
output node may include or be associated with value(s) and/or value range(s) of one
or more parameters relating to each of one or more steps ihcluded in the set. Each
output node may comprise a softmax function as the activation function. When the
output layer includes two or more nodes, the CNN may be considered as solving a
classification problem to classify the object in the input image into one of a specified

(predetermined or predeterminable) number of groups.

Fig. 7 shows an exemplary configuration of a CNN. The CNN as shown in Fig. 7
includes an input layer, a convolutional layer 1, a pooling layer 1, a convolutional layer
2, a pooling layer 2, a fully connected layer and an output layer. The convolutional
layers 1, 2 and the pooling layers 1, 2 may have the configurations as explained above
with reference to Figs. 5 and 6. As also mentioned above, a CNN may include more
pairs of a convolutional layer and a pooling layer. Further, a CNN may include a
sequence of convolutional layers without having a pooling layer in between the
adjacent convolutional layers, as long as the last convolutional layer of the sequence
is connected to a pooling layer. Further, a CNN may include more than one fully

connected layers right before the output layer.

In the examples where the Al computation unit 204 receives, in addition to the object
data, information relating to a material, processing and/or a size of the object to be
manufactured, one of the fully connected layers in the CNN comprised in the Al
computation unit 204 may include one or more additional nodes configured to receive
value(s) indicating such information. For example, different values may be assigned to
different names of materials and an additional node corresponding to the'name of the
material may receive the value assigned to the name of the material of the object.
Alternatively or additionally, an additional node may correspond to a characteristic of
the material, e.g., color, stiffness, relative density, heat resistance, etc., and receive a
value indicating the characteristic, for example. Further, one or more of additional
nodes in one of the fully connected layers in the CNN may correspond to the type of
processing (e.g., sintering, soldering, welding etc.) and/or how elements of the object

are assembled etc., for example. Further, in case an additional node corresponding to

26



10

15

20

WO 2019/043425 PCT/IB2017/001062

a size of the object is provided in one of the fully connected layers in the CNN, the

additional node may receive a value indicating the size of the object.

Further details of known CNN techniques which may be applied in connection with the
present disclosure may be found in, for example, Okatani, “Deep Learning and Image
Recognition, - Basics and Current Trends -” (in the Japanese language), Operations
research as a management science research, 60(4), p. 198-204, The Operations
Research Society of Japan, April 01, 2015, and Anonymus, “Convolutional neural
network”, Wikipedia (URL.:
https://en.wikipedia.org/wiki/Convolutional_neural_network).

Although the above explanations on the CNN relate to the case where the object data
is image data of an object to be manufactured, the CNN may be employed also in the
examples where the object data is a 3D model or a combination of 2D image data and

corresponding depth map data.

In case the object data is a 3D model, the 3D model may be represented using
volumetric representation as mentioned above with respect to the neural network
trained using an autoencoder (see Figs. 4A and 4B). The input layer of the CNN may
include input nodes corresponding to the voxels of the 3D space in which the 3D model
is arranged. As stated above, each voxel may have a value between 0 and 1, 0
indicating the voxel to be empty, while 1 indicating the voxel to be occupied by the 3D

model.

In case the object data is a combination of 2D image data and corresponding depth
map data, the input layer of the CNN (see e.g., Fig. 5) may have a channel
corresponding to the depth map data in addition to the channel(s) corresponding to the
2D image data.

Processing for Supporting Manufacturing

a) Training of an Al
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Fig. 8 shows a flowchart of exemplary processing performed for training an Al
implemented by the Al computation unit 204 of the machine learning device 200. The
processing shown in Fig. 8 may be performed by the Al training unit 210 as shown in
Fig. 1. The processing shown in Fig. 8 may start, for example, in response to an

instruction from a user to start training the Al computation unit 204.

In step S10 of Fig. 8, training data may be prepared for training the Al computation unit
204. For example, the Al training unit 210 may obtain object data of an object and
information indicating a set of manufacturing process steps for manufacturing the
object. The Al training unit 210 may then generate an element of training data set, the
element including a combination of the obtained object data and the information
indicating the set of manufacturing process steps for manufacturing the object. The Al
training unit 210 may generate a specified number of such elements of the training

data set.

When preparing the training data in step S10 of Fig. 8, the object data may be obtained
from a computer (not shown) or a storage device (not shown) connected to the Al
training unit 210. Alternatively, the Al training unit 210 may be configured to generate
the object data, in a manner similar to the obtaining unit 10 as described above with
reference to Fig. 1. The information indicating a set of manufacturing process steps
may be, for example, identification information indicating the set of manufacturing
process steps. Different sets of manufacturing process steps may be defined for

different objects and may be assigned respective identification information.

In some specific examples, the Al training unit 210 may receive images of a particular
kind of gear(s) (as exemplary object data), and information indicating a set of
manufacturing process steps for manufacturing that kind of gear(s) (e.g., the process
steps including cutting, drilling, hobbing, tooth chamfering and shaving). In these
specific examples, each element of the training data set may be a combination of an
image of a gear of the particular kind and the information indicating the set of

manufacturing process steps for manufacturing the particular kind of gear.
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In step S12 of Fig. 8, the Al implemented by the Al computation unit 204 may be trained
using the training data generated in step S10. For example, the Al training unit 210
may retrieve data structure of an autoencoder (see e.g., Figs. 4A and 4B) or a CNN
(see e.g., Figs. 5 to 7) from the neural network DB 80 and traing the autoencoder or
the CNN as the Al computation unit 204, by adjusting the weights of the autoencoder
or of the convolutional layer(s) and the fully connected layer(s) of the CNN, as
described above with reference to Figs. 4A to 7. For adjusting the weights, the object
data in the training data set may be used as inputs to the autoencoder or the CNN and
the corresponding information indicating the set of manufacturing process steps may
be used as supervisory signals, for example. In case of the specific examples as
mentioned above with respect to step S10, where each element of the generated
training data set includes an image of a gear of the particular kind and the information
indicating the set of manufacturing process steps for manufacturing the particular kind
of gear, the images of the gear(s) may be input ‘to the autoencoder or the CNN and the
weights may be adjusted using, as supervisory signals, the information indicating the
set of manufacturing process steps for manufacturing that particular kind of gear. By
the training step S12, the Al of the Al computation unit 204 may be trained to output
information indicating one or more sets of manufacturing process steps for

manufacturing an object data represented by object data that is received as an input.

After step S12, the Al training unit 210 may determine whether or not the training is
sufficient in step S14 of Fig. 8. In some examples, the Al training unit 210 may use, for
the determination of step S14, test data including combinations of object data and
information indicating a set of manufacturing process steps. The test data set may be
prepared in a manner analogous to that for preparing the training data set in step S10.
In some examples, the Al training unit 210 may use a part of the training data prepared
in step S10 for training the Al computation unit 204 in step S12 and the remaining part
of the training data prepared in step S10 as the test data for determining whether the
training is sufficient in step S14. In the examples of using the test data in step S14, the
Al training unit 210 may input the object data in the test data to the Al computation unit

204 and compare the outputs from the Al computation unit 204 for the object data with
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the known set of manufacturing process steps to manufacture the object represented
by the object data. The Al training unit 210 may, for example, determine that the
training is sufficient if a ratio of the number of correct outputs from the Al computation
unit 204 over the total number of instances of the object data in the test data exceeds
a predetermined threshold. Alternatively, for example, the Al training unit 210 may
determine that the training is sufficient if the number of correct outputs from the Al
computation unit 204 exceeds a predetermined threshold. When it is determined that
the training is not sufficient (NO in step S14), the processing may return to step S12.
When it is determined that the training is sufficient (YES in step S14), the processing
may proceed to step S16.

In step S16, the Al training unit 210 may determine whether or not there is (are) further
subject(s) to be learnt by the Al computation unit 204. For example, in case the Al
computation unit 204 is desired to determine sets of manufacturing process steps for
more than one kinds of objects and training relating to at least one of said more than
one kind of objects has not yet been generated in step S10, the Al training unit 210
may determine that there is (are) further subject(s) to be learnt by the Al computation
unit 204. When it is determined that there is (are) further subject(s) to be learnt (YES
in step S16), the processing may return to step S10. Otherwise (NO in step S16), the

processing shown in Fig. 8 may end.
b) Processing using the Trained Al

Fig. 9 shows a flowchart of exemplary processing performed by the manufacturing
support system. The processing shown in Fig. 9 may start, for example, in response to

an instruction from a user to start the processing shown in Fig. 9.

In step S20, the obtaining unit 10 may obtain object data of an object to be
manufactured. In some examples, the obtaining unit 10 may obtain the object data
from a computer or a storage device connected to the obtaining unit 10. In other
examples, the obtaining unit 10 may generate the object data. In case the object data

is image data, the obtaining unit 10 may generate the object data by capturing an
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image of the object using an imaging device such as a camera. In case the object data
is a 3D model, the obtaining unit 10 may generate the object data by scanning the
object by a known 3D scanner or with a known software for 3D modelling. In case the
object data is a combination of 2D image data and corresponding depth map data, the
obtaining unit 10 may generate the object data by capturing the object by RGB-D

sensors, for example.

If necessary, in step S20, the obtaining unit 10 may further process the object data to
be suitable as an input to the Al engine 20. For example, in case the object data is a
3D model and the Al computation unit 204 of the Al engine 20 comprises an
autoencoder or a CNN as described above with reference to Figs. 4A to 7, the obtaining

unit 10 may generate a volumetric representation of the 3D model.

The object data (with or without further processing) may be provided to the Al engine
20.

In step S25, the Al engine 20 may receive information relating to a material, processing
and/or a size of the object to be manufactured. The information relating to the material
and/or the size of the object may be received from a user via an input device, for
example. Alternatively or additionally, the information relating to the material and/or the
size of the object may be received from a computer or a storage device connected to
the Al engine 20.

In step S30, the Al engine 20 determines a plurality of hardware configurations for a

manufacturing system for manufacturing the object.

Fig. 10 shows an example of detailed processing of step S30 of Fig. 9. When step S30
of Fig. 9 is started, the processing shown in Fig. 10 may start. |

In step S300 of Fig. 10, the receiving unit 202 of the machine learning device 200

comprised in the Al engine 20 may receive input data. The input data may include the

object data obtained in step S20 of Fig. 9 and the information relating to the material
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and/or size of the object received in step S25 of Fig. 9.

In step S302 of Fig. 10, the Al computation unit 204 may perform computaﬁon using
the input data received by the recéiving unit 202 at step S300. For example, when an
autoencoder (see e.g., Figs. 4A and 4B) or a CNN (see e.g., Figs. 5 to 7) is employed
as the Al computation unit 204, the Al computation unit 204 may perform computation
by inputting the received input data to the autoencoder or the CNN and obtain an output

from the aufoencoder or the CNN.

In step S304, the output unit 206 may output, to the hardware information processing
unit 212, information indicating a plurality of sets of manufacturing process steps based
on the computation performed in step S302. For example, in case the Al computation
unit 204 comprises a neural network (e.g., an autoencoder or a CNN) with output nodes
each of which corresponds to a possible set of manufacturing process steps, the output
unit 206 may identify a specified number of output nodes which have the highest values
of likelihood that the corresponding sets of . manufacturing process steps are
appropriate for manufacturing the object. The output unit 206 may then output
information indicating the specified number of sets of manufacturing process steps
corresponding to the identified output nodes. In some examples, the output unit 206
may further output, in step S304, information indicating priorities (e.g., preferences
and/or levels of recommendation) among the specified number of sets of
manufacturing process steps, based on the values of likelihood output by the identified
output nodes.

In step S306, the hardware information processing unit 212 determines a hardware
configuration for each set of manufacturing process steps. For example, the hardware
information processing unit 212 may access the hardware information DB 30 (see e.qg.,
the table shown in Fig. 3) to identify a hardware element or a combination of hardware
elements required for performing each of one or more manufacturing process steps

included in the set of manufacturing process steps.

After step S306, the processing shown in Fig. 10 may end. The processing of the
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manufacturing support system may then proceed to step S40 of Fig. 9.

Referring again to Fig. 9, after determination of hardware configurations by the Al
engine 20 in step S30, the selection unit 40 may estimate a delivery date of the object
for one of the determined hardware configurations based on an operation schedule of
available hardware elements in step S40. The operation schedule may be obtained
from the hardware information DB 30. For example, the selection unit 40 may first
consider a hardware configuration with the highest priority determined by the Al engine
20 and check the operation schedule in the hardware information DB 30 to determine
whether (or when) each hardware element included in the hardware configuration is
(or will be) ready for use. Based on whether or when each hardware element is or will
be ready for use and on the set of manufacturing process steps corresponding to the
hardware configuration, the selection unit 40 may estimate a delivery date of the object

for the hardware configuration.

In step S50, a determination may be made as to whether the estimated delivery date
meets a required delivery date. The required delivery date may be obtained from a
user via an input device or from a computer or a storage device connected to the

selection unit 40.

If the estimated delivery date meets the required delivery date (YES in step S50), said
one of the hardware configurations may be selected by the selection unit 40 in step
S70. After step S70, the output unit 60 may output the selected hardware configuration

in step S75 and the processing shown in Fig. 9 may end.

If the estimated delivery date does not meet the required delivery date (NO in step
S50), the processing proceeds to step S60 and the selection unit 40 determines
whether or not any hardware configuration that has not yet been processed by the
selection unit 40. If there is an unprocessed hardware configuration (YES in step S60),
the processing may return to step S40. In step S40, the delivery date of the object for
a determined hardware configuration with the next highest priority may be estimated,

for example.
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If there is no unprocessed hardware configuration (NO in step S60), the output unit 60
may output a warning message in step S80. The warning message may indicate, for
example, that none of the hardware configurations determined by the Al engine 20 can
meet the required delivery date. Alternatively or in addition, the warning message may
indicate the estimated delivery dates determined for all the determined hardware

configurations.
The processing in Fig. 9 may end after step S80.
¢) Processing using the Determined Hardware Configuration

In some examples, the manufacturing support system may generate a control program
for the determined hardware configuration by the controf information generation unit
50.

Fig. 11 shows a flowchart of exemplary processing performed by the control
information generation unit 50. The control information generation unit 50 may start the
processing of Fig. 11 when the selection unit 40 has selected a hardware configuration,
for example. Alternatively, for example, the control information generation unit 50 may
start the processing of Fig. 11 when a user has instructed via an input device to start

the processing of Fig. 11.

In step S90, the control information generation unit 50 .may receive a hardware
configuration. For example, the control information generation unit 50 may receive,
from the selection unit 40, a hardware configuration selected by the selection unit 40.
In case the Al engine 20 is configured to determine only one hardware configuration,
the control information generation unit 50 may receive the determined hardware

configuration from the Al engine 20.

In step S92, the control information generation unit 50 may generate one or more tool

paths for one or more combinations of a machine and a tool in the hardware
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configuration, if necessary‘. For example, in case such a combination of a machine and
a tool that the tool may move along a path (e.g., a milling machine and a milling cutter)
is included in the hardware configuration, the control information generation unit 50
may generate a tool path for that combination. In case, for example, such a
combination of a machine and a tool that the tool does not move along a path is
included in the hardware configuration, no tool path may be necessary to be generated

for that combination in step S92.

The tool path may be generated, for example, using a 3D model of the object to be
manufactured. In the examples where the object data is a 3D model of the object, the
control information generation unit 50 may receive the object data being the 3D model
from the obtaining unit 10 in order for generating the tool path(s). In the examples
where the object data is not a 3D model of the object (e.g., image data or RGB-D data
of the object), the control information generation unit 50 may receive a 3D model of the
object generated by a device (not shown) connected to the control information
generation unit 50. Alternatively, the control information generation unit 50 may
generate a 3D model of the object from the object data and any additional information
(e.g., information concerning the shape and/or size of the object) necessary to
generate a 3D model of the object. The additional information may, for example, be
obtained from the user via an input device and/or from a computer (not shown) or

storage device (not shown) connected to the control information generation unit 50.

In step S94, the control information generation unit 50 may set machining conditions
of each machine based on the tool and/or the tool path. The machining conditions may
include values of control parameters required for operating the machine. The control
parameters may include, but are not limited to, speed and/or acceleration of tool
movement, rotation frequency of the tool and/or the workpiece, orientation of the tool
and/or the workpiece, etc. For example, in case the machine is an NC lathe, the
machining conditions may include a cutting speed (e.g., rotational speed of a
workpiece), a feed speed of the cutting tool and/or a cutting depth. The machining
conditions may be determined using known techniques depending on the type of the

machine. The known techniques for determining the machining conditions may employ
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machine learning techniques, for example, as disclosed by JP 2017-62695A and JP
2017-30152A.

In step S96, the control information generation unit 50 may generate a contro! program
of each machine based on the machining conditions and/or the tool path. The control
program may include machine-readable instructions that enable the machine to
operate under the machining conditions and, if applicable, to move the tool along the
tool path. For a specific example, in case the machine is an NC lathe and the machining
conditions include a cutting speed, a feed speed of the cutting tool and a cutting depth,
the machine-readable instructions of the generated control program may be
instructions that a controller of the NC lathe can read and that instruct the controlier of
the NC lathe to output control signals for the NC lathe to operate with the cutting speed,
the feed speed of the cutting tool and the cutting depth as included in the machining

conditions.

In step S98, the control information generation unit 50 may provide the control program

to the output unit 60. The control program may be output by the output unit 60.

After step S98, the processing shown in Fig. 11 may end.

The processing shown in Fig. 11 is a mere example of the processing that may be
performed by the contro! information generation unit 50. For instance, in some other
examples, step S96 of generating a control program may be skipped and the
machining conditions may be output instead of a control program.

Variations

It should be appreciated by those skilled in the art that the exemplary embodiments
and their variations as described above with reference to Figs. 1 to 11 are merely

exemplary and other embodiments and variations may exist.

For example, in the exemplary embodiments and examples described above, the Al
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computation unit 204 of the machine learning device determines at least one set of
manufacturing process steps for manufacturing the object and the hardware
information processing unit 212 determines a hardware configuration of the
manufacturing system with reference to an information table stored in the hardware

information DB 30, such as the one shown in Fig. 3.

In another exemplary embodiment and examples, the Al computation unit 204 of the
machine learning device 200 may determine not only at least one set of manufacturing
process steps but also the hardware configuration of the manufacturing system. In
such an exemplary embodiment and examples, the Al engine 200 does not need to

comprise the hardware information processing unit 212.

In the exemplary embodiment and examples where the Al computation unit 204
determines the hardware configuration as well as the manufacturing process steps,
the Al computation unit 204 may be trained to output a hardware configuration and the
manufacturing process steps based on a computation using the object data as an input.
The object data may be analogous to that used in the exemplary embodiments and
examples described above with reference to Figs. 1 to 11. Further, similarly to the
exemplary embodiments and examples described above with reference to Figs. 1 to
11, the Al computation unit 204 may further use information relating to a material,
processing and/or a size of the object as a part of the input. Further, the Al computation
unit 204 may comprise a neural network, for example, an autoencoder (see Figs. 4A
and 4B) or a CNN (see Figs. 5 to 7).

Fig. 12 shows an example of an output in the exemplary embodiment and examples
where the Al computation unit 204 determines the hardware configuration as well as
the manufacturing process steps. As shown in Fig. 12, the output may include
manufacturing process steps for manufacturing the object (e.g. a gear) as well as a
combination of a machine, a tool and machining conditions required for each
manufacturing process steps. When training the Al computation unit 204, a specified
number of possible outputs directed to different sets of manufacturing process steps

and corresponding hardware configurations may be generated, for example.
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Identification information may be assigned to each possible output and output nodes
corresponding to the possible outputs may be provided in a neural network comprised
in the Al computation unit 204. An element of the training data set for training the Al
computation unit 204 may be a combination of the identification number of a possible
output and object data of an object to be manufactured. The processing of training the
Al computation unit 204 may be performed according to the flowchart shown in Fig. 8,

for example.

The processing performed by the manufacturing system in the exemplary embodiment
and examples where the Al computation unit 204 determines the hardware
configuration as well as the manufacturing process steps may follow the flowchart
shown in Fig. 9. When determining the hardware configurations in step S30, however,
the computation performed by the Al computation unit 204 using the input data (e.g.,
object data and optionally information relating to a material, processing and/or size of
the object) may already determine the hardware configurations along with the sets of
manufacturing process steps, without referring to the hardware information DB 30 for

an information table such as the one shown in Fig. 3.

In yet another exemplary embodiment and examples, the Al computation unit 204 of
the machine learning device 200 may determine a hardware configuration of the
manufacturing system for manufacturing the object, without identifying the
manufacturing process steps. In such an exemplary embodiment and examples, an
output from the manufacturing support system may include only one or more hardware
configurations, e.g. list of machine(s) and/or tool(s) necessary for manufacturing the
object. In this case, the Al computation unit 204 may be trained using object data of
one or more objects and possible outputs, each of which including a hardware

configuration.

Further, although the exemplary embodiments and various examples above are
described in relation to manufacturing process steps involving machining a workpiece,
the exemplary embodiments and various examples above may be applied analogously

to manufacturing process steps involving processing other than machining, for
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example, molding, casting, heat treatment and/or surface finishing. For instance, the
table shown in Fig. 3 and/or an exemplary output shown in Fig. 12 may include a
quench hardening step that may be performed, e.g. after a shaving step, for
manufacturing a gear. The machining conditions for a quench hardening step may
include, for example, a temperature control table etc. Further, for example, the
manufacturing process steps may relate to steps for forming a die or mold by
machining and to steps for forming the object to be manufactured by casting or molding

using the die or mold.

Hardware for Implementing the Manufacturing Support System

The various examples of the Al engine 20 and of the units included in the
manufacturing support system as described above may be implemented using a

computer.

Fig. 13 shows an exemplary hardware configuration of a computer that may be used
to implement the exemplary Al engine 20 and/or any one of the units included in the
manufacturing support system. The computer shown in Fig. 13 includes a processing
unit 70, a system memory 72, a network interface 74, a hard disk drive (HDD) interface
76, an external disk drive interface 78 and input/output (I/O) interfaces 80. These
components of the computer are coupled to each other via a system bus 82. The
processing unit 70 may perform arithmetic, logic and/or control operations by
accessing the system memory 72. The processing unit 70 may implement the
processors of the exemplary Al engine and/or any one of the units included in the
manufacturing support system described above. The system memory 72 may store
information and/or instructions for use in combination with the processing unit 70. The
system memory 72 may include volatile and non-volatile memory, such as a random
access memory (RAM) 720 and a read only memory (ROM) 722. A basic input/output
system (BIOS) containing the basic routines that helps to transfer information between
elements within the_computer, such as during start-up, may be stored in the ROM 722.
The system bus 82 may be any of several types of bus structures including a memory

bus or memory controller, a peripheral bus, and a local bus using any of a variety of

39



10

15

20

25

30

WO 2019/043425 _ PCT/IB2017/001062

bus architectures.

The computer may include a network interface 74 for communicating with other
computers and/or devices via a network.

Further, the computer may include a hard disk drive (HDD) 84 for reading from and
writing to a hard disk (not shown), and an external disk drive 86 for reading from or
writing to a removable disk (not shown). The removable disk may be a magnetic disk
for a magnetic disk drive or an optical disk such as a CD ROM for an optical disk drive.
The HDD 84 and the external disk drive 86 are connected to the system bus 82 by a
HDD interface 76 and an external disk drive interface 78, respectively. The drives and
their associated computer-readable media provide non-volatile storage of computer-
readable instructions, data structures, program modules and other data for the general
purpose computer. The data structures may include relevant data for the
implementation of the method for encrypting and/or decrypting a document, as
described herein. The relevant data may be organized in a database, for example a

relational or object database.

Although the exemplary environment described herein employs a hard disk (not
shown) and an external disk (not shown), it should be appreciated by those skilled in
the art that other types of computer readable media which can store data that is
accessible by a computer, such as magnetic cassettes, flash memory cards, digital
video disks, random access memories, read only memories, and the like, may also be

used in the exemplary operating environment.

A number of program modules may be stored on the hard disk, external disk, ROM
722 or RAM 720, including an operating system (not shown), one or more application
programs 7202, other program modules (not shown), and program data 7204. The

application programs may include at least a part of the functionality as described above.

The computer may also include an imaging device 90 such as a camera, an input

device 92 such as mouse and/or keyboard and a display device 94 such as liquid
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crystal display. The imaging device 90, the input device 92 and the display device 94

may be connected to the system bus 82 via I/O interfaces 80a to 80c.

In addition or as an alternative to an implementation using a computer as shown in Fig.
13, a part or all of the functionality of the exemplary embodiments described herein
may be implemented as one or more hardware circuits. Examples of such hardware
circuits may include but are not limited to: Large Scale Integration (LSI), Reduced
Instruction Set Circuits (RISC), Application Specific Integrated Circuit (ASIC) and Field
Programmable Gate Array (FPGA).
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Claims

1. A manufacturing support system comprising:

an obtaining unit (10) configured to obtain object data of an object to be
manufactured;

an artificial intelligence, Al, engine (20) configured to receive the object data
as an input and to determine a hardware configuration of a manufacturing system for
manufacturing the object with reference to information relating to available hardware
for the manufacturing system; and

an output unit (60) configured to output the determined hardware

configuration.

2. The manufacturing support system according to claim 1, wherein the Al

engine (20) is further configured to determine manufacturing process steps to be

carried out by the manufacturing system for manufacturing the object, and
wherein the output unit (60) is further configured to output the determined

manufacturing process steps.

3. The manufacturing support system according to claim 2, wherein the Al
engine (20) is further configured to determine a value or a value range for a
parameter relating to each of one or more steps included in the manufacturing
process steps, and _

wherein the output unit (60) is further configured to output the determined

value or value range.
4. The manufacturing support system according to claim 2 or 3, wherein the

information relating to available hardware for the manufacturing system includes

information indicating, for at least part of possible manufacturing process steps, at
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least one hardware element that is available and that is required to perform the
manufacturing process step,
wherein the Al engine (20) comprises:
a machine learning device (200) that is configured to:
receive the object data as an input;
perform computation using the received object data; and
output information indicating at least one set of manufacturing
process steps for manufacturing the object based on the computation; and
a hardware information processing unit (212) that is configured to
determine the hardware configuration of the manufacturing system by identifying,
with reference to the information relating to available hardware, at least one
hardware element required to perform each of one or more steps included in said at

least one set of manufacturing process steps for manufacturing the object.

5. The manufacturing support system according to claim 4, wherein the machine
learning device (200) comprises a neural network configured to perform the
computation using the received object data,

wherein the neural network has been trained using training data including
object data of one or more objects and information indicating sets of manufacturing
process steps for manufacturing the one or more objects, and

wherein training of the neural network may be performed according to deep

learning technique.

6. The manufacturing support system according to any one of the preceding
claims, wherein the information reiating to available hardware includes information
indicating an operation schedule for available hardware elements,

wherein the Al engine (20) is configured to determine more than one hardware
configuration,

wherein the manufacturing support system further comprises:

a selection unit (40) configured to select one of said more than one

hardware configuration based on a required delivery time for the object and the

operation schedule, and
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wherein the output unit (60) is configured to output the selected one of said

more than one hardware configuration.

7. The manufacturing support system according to claim 6, wherein the Al
engine (20) is further configured to determine priorities among said more than one
hardware configuration, and

wherein the selection unit (40) is configured to select one of said more than
one hardware configuration further based on the priorities among said more than one

hardware configuration.

8. The manufacturing support system according to any one of the preceding
claims, further comprising:

a control information generation unit (50) configured to generate control
information for controlling the manufacturing system with the determined hardware

configuration based on the object data and/or the determined hardware configuration.

9. The manufacturing support system according to any one of the preceding
claims, wherein the obtaining unit (10) is further configured to obtain information
relating to a material, processing and/or a size of the object to be manufactured, and
wherein the Al engine (20) is further configured to:

receive, as a part of the input, the information relating to the material,
the processing and/or the size of the object to be manufactured; and

determine the hardware configuration further using the information
relating to the material, the processing and/or the size of the object to be

manufactured.

10. A computer-implemented method for supporting manufacturing, the method
comprising:

obtaining object data of an object to be manufactured;

receiving, by an artificial intelligence, Al, engine (20), the object data as an
input;

determining, by the Al engine (20), a hardware configuration of a
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manufacturing system for manufacturing the object with reference to information
relating to available hardware for the manufacturing system; and

outputting the determined hardware configuration.

11.  The method according to claim 10, further comprising:
determining, by the Al engine (20), manufacturing process steps to be carried
out by the manufacturing system for manufacturing the object; and
outputting the determined manufacturing process steps.

12.  The method according to claim 11, further comprising:

determining, by the Al engine (20), a value or a value range for a parameter
relating to each of one or more steps included in the manufacturing process steps;
and

outputting the determined value or value range.

13.  The method according to claim 11 or 12, wherein the information relating to
available hardware for the manufacturing system includes information indicating, for
at least part of possible manufacturing process steps, at least one hardware element
that is available and that is required to perform the manufacturing process step,
wherein said determining of the manufacturing process steps is performed by
a machine learning device (200) comprised in the Al engine (20), said determining of
the manufacturing process steps comprises:
receiving the object data as an input;
performing computation using the received object data; and
outputting information indicating at least one set of manufacturing
process steps for manufacturing the object based on the computation, and
wherein said determining of the hardware configuration of the manufacturing
system is performed by identifying, with reference to the information relating to
available hardware, at least one hardware element required to perform each of one
or more steps included in the at least one set of manufacturing process steps for

manufacturing the object.
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14.  The method according to claim 13, wherein the machine learning device (200)
comprises a neural network configured to perform the computation using the
received object data,

wherein the method further comprises:

training the neural network using training data including object data of

one or more objects and information indicating sets of manufacturing process steps
for manufacturing the one or more objects, and

wherein said training of the neural network may be performed according to

deep learning technique.

15.  The method according to any one of claims 10 to 14, wherein the information
relating to available hardware includes information indicating an operation schedule
for available hardware elements,

wherein more than one hardware configuration is determined by the Al engine
(20),

wherein the method further comprises:

selecting one of said more than one hardware configuration based on a

required delivery time for the object and the operation schedule, and

wherein the selected one of said more than one hardware configuration is

output as the determined hardware configuration.

16.  The method according to claim 15, wherein the Al engine (20) further

determines priorities among said more than one hardware configuration, and
wherein said selecting one of said more than one hardware configuration is

further based on the priorities among said more than one hardware configuration.

17.  The method according to any one of claims 10 to 16, further comprising:
generating control information for controlling the manufacturing system with the
determined hardware configuration based on the object data and/or the determined

hardware configuration.

18.  The method according to any one of claims 10 to 17, further comprising:
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obtaining information relating to a material, processing and/or a size of the
object to be manufactured,

wherein the Al engine (20) further receives the information relating to the
material, the processing and/or the size of the object to be manufactured, and

wherein the Al engine (20) determines the hardware configuration of the
manufacturing system further using the information relating to the material, the

processing and/or the size of the object to be manufactured.

19. A computer program product comprising computer-readable instructions that,
when loaded and run on a computer, cause the computer to perform the steps of the

method according to any one of claims 10 to 18.

20. A device for training an Al configured to: (i) receive object data of an object to
be manufactured; (ii) perform computation using the received object data; and (iii)
output information indicating at least one set of manufacturing process steps for
manufacturing the object based on the computation, the device comprising:

an Al training unit (210) configured to train the Al using training data including
object data of one or more objects and information indicating sets of manufacturing

process steps for manufacturing the one or more objects.

21. A computer-implemented method for training an Al configured to: (i) receive
object data of an object to be manufactured; (ii) perform computation using the
received object data; and (iii) output information indicating at least one set of
manufacturing process steps for manufacturing the object based on the computation,
the method comprising:

training the Al using training data including object data of one or more objects
and information indicating sets of manufacturing process steps for manufacturing the

one or more objects.
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