(54) 发明名称
汽油机机壳系统

(57) 摘要

本发明涉及汽油机机壳系统。具体而言，本发明提供了一种汽油机外壳(30)，该汽油机外壳(30)至少部分地由第一材料铸造而成，并具有适于支撑内壳(30)的多个支撑区(5)。该外壳(30)至少有一个由第二材料制成的金属嵌件(40)的支撑区(5)，该支撑区(5)具有用于将该金属嵌件(40)保持在外壳(30)的铸件(35)中的扩张部分(42)。第二材料比第一材料具有更高的热强度。支撑区(5)还包括用于限制外壳(30)中的内壳(20)的运动的引导机构。
1. 一种气轮机机壳系统，包括：

外壳 (30)，所述外壳 (30) 具有由第一材料制成的铸件 (35)，和支撑区 (5)；和

被所述外壳包围的内壳 (20)，所述内壳 (20) 用于包封转子 (10)，所述内壳 (20) 包含

与所述支撑区 (5) 接触的接触面 (24)，所述系统其特征在于，所述支撑区 (5) 包包括：

金属镶嵌件 (40)，其由比所述第一材料具有更高热强度的第二材料制成，所述金属镶嵌件 (40) 具有容纳在所述铸件 (35) 中的容纳面 (41)，其中，所述容纳面 (41) 包括，相对于径向向外的方向 (ROD) 而言，轴向和 / 或轴向地扩张的部分 (42)。

与所述接触面 (24) 接触的支撑面 (44)，所述支撑面 (44) 连同所述接触面 (24) 一起设置成保持所述内壳 (20) 与所述铸件 (35) 之间的分隔，和

适于在所述支撑面 (44) 上引导所述接触面 (24) 的引导机构。

2. 根据权利要求 1 所述的机壳系统，其特征在于，所述接触面 (24) 包括接触面凸部 (25)。

3. 根据权利要求 2 所述的机壳系统，其特征在于，所述金属镶嵌件 (40) 包括适于接收

所述接触面凸部 (25) 的槽 (46)，所述槽 (46) 具有设置成为所述支撑面 (44) 的底部 (47)

以及设置成为所述引导机构的两个侧壁 (48)。

4. 根据权利要求 3 所述的机壳系统，其特征在于，所述槽 (46) 沿所述轴向方向而延伸，

使得当所述接触面凸部 (25) 容纳在所述槽 (46) 中时，允许所述接触面凸部 (25) 的轴向运

动。

5. 根据权利要求 3 或 4 所述的机壳系统，其特征在于，所述接触面凸部 (25) 的径向长

度，相对于所述槽 (46) 的径向深度而言，提供了保持所述内壳 (20) 与所述铸件 (35) 之

间的所述分隔的手段。

6. 根据权利要求 1 所述的机壳系统，其特征在于，所述引导机构是径向地向内延伸的

凸部 (45)。

7. 根据权利要求 1 到 4 的其中任何一项所述的机壳系统，其特征在于，所述第一材料

是球墨铸铁。

8. 根据权利要求 1 到 4 的其中任何一项所述的机壳系统，其特征在于，所述第二材料

选自 St460TS 和 St12T 中的一项。
汽轮机机壳系统

技术领域
[0001] 本发明大体上涉及轴流式汽轮机机壳，并且更具体地说，涉及形成汽轮机（或称蒸汽涡轮机）外壳的部分的温度弹性支撑区（temperature resilient support region）。

背景技术
[0002] 典型的高温汽轮机包括外壳和内壳。外売通常由具有相对低的热强度（hot strength）的容易铸造的材料制成，而内壳通常由具有更高的热强度的材料制成，使得其能承受更高的温度。外壳的其中一个作用是通过设置的支撑架，用来提供内壳的轴向、周向和/或径向支撑。由于已知的内壳设计具有宽的范围，支撑架的构造也具有宽的范围，每一个都适合用于特定的内壳构造。但是，在所有情形下，至少一些支撑架提供轴向和/或周向的支撑。
[0003] 在特别靠近汽轮机的入口区处，内壳的支撑接触点可达到优选地用于铸造外壳的低热强度材料的安全工作极限上的温度。而已知的是，通过镶嵌件（inserts）来提供局部热保护，例如在EP 1586394 A1中所述的，这样的镶嵌件具有许多的优点。例如，当承受通常施加到支撑架上的负载时，镶嵌件具有增加的和增加分离的倾向。因此，镶嵌件通常不适合用作支撑架。
[0004] 用来克服外壳的支撑架处的局部受热的问题的典型解决办法是，用具有更高的热强度的材料铸造整个外壳。这通常会导致具有更高的废品率的更复杂的铸造，因此通常增加制成本。

发明内容
[0005] 提供了一种汽轮机机壳系统，其克服了内壳支撑架的局部受热的问题和/或致使镶嵌件不适合用作热的内壳支撑架的镶嵌件设计的问题。
[0006] 根据本发明，提供了一种汽轮机机壳系统，包括：外壳，所述外壳具有由第一材料制成的铸件，和支撑架，和被所述外壳包封的内壳，所述内壳用于包封转子，所述内壳包括与所述支撑架接触的接触面，所述支撑架的特征在于，所述支撑架包括：金属镶嵌件，其由比所述第一材料具有更高热强度的第二材料制成，所述金属镶嵌件具有容纳在所述铸件中的容纳面，其中，所述容纳面包括，相对于径向向外的方向ROD而言，轴向和/或周向扩展的边缘；与所述接触面接触的支撑面，所述支撑面连同所述接触面一起设置成保持所述内壳与所述铸件之间的分隔；和适合于在所述支撑面上引导所述接触面的引导机构。
[0007] 根据本发明的另一实施例，所述接触面包括接触面凸部。
[0008] 根据本发明的另一实施例，所述金属镶嵌件包括适于接收所述接触面凸部的槽，所述槽具有设置成为所述支撑面的底部以及替代成为所述引导机构的两个侧壁。
[0009] 根据本发明的另一实施例，所述槽沿所述轴向方向而延伸，使得当所述接触面凸部容纳在所述槽中时，允许所述接触面凸部的轴向运动。
[0010] 根据本发明的另一实施例，所述接触面凸部的径向长度，相对于所述槽的径向深
度而言，提供了保持所述内壳与所述铸件之间的所述分隔的手段。

[0011] 根据本发明的另一实施例，所述引导机构是径向向内延伸的凸部。

[0012] 根据本发明的另一实施例，所述第一材料是球墨铸铁。

[0013] 根据本发明的另一实施例，所述第二材料选自 St460TS 和 St12T 中的一项。

[0014] 一方面提供了包括外壳的汽轮机机壳系统，该外壳包含（encloses）内壳，内壳本身还包含转子。外壳具有由第一材料制成的铸件，其包括支撑区，而内壳具有与支撑区处于接触的接触面。接触区包括由第一材料具有更高的热强度的第二材料制成的金属嵌件，使得其可比铸件承受更高的温度。金属嵌件包括被容纳在铸件中的容纳面（encased surface）。这个容纳面包括，相对于径向向外，向轴和/或横向地扩展的部分（flaring portion），该扩展部分将金属嵌件固定在铸件中，并防止金属嵌件的“松开”，从而使它承受所施加的包括横向负载的负载。金属嵌件还包括与接触面接触的支撑面，该支撑面通过接触面设置成保持内壳和铸件之间的分隔。这种分隔提供了防止铸件过热的方法。金属嵌件还包括引导机构，使其适于在支撑面上引导接触面，同时允许内壳和外壳的相对运动。这样的相对运动会在机壳的热膨胀或收缩期间发生。

[0015] 金属嵌件的形状确保由它所支撑的内壳施加在它上面的作用力不导致金属嵌件和外壳分离。这样，提供了具有更高热强度的金属嵌件，其解决了局部受热的问题及基体材料与嵌件之间的结合强度的问题，而不需要使具有更高热强度的更贵材料来铸造外壳。

[0016] 从下面结合附图的描述，其中通过附图和示例的方式公开了本发明的实施例。本发明的其它方面和优点将变得显而易见。

附图说明

[0017] 通过示例的方式，在下文中参考附图而更完全地描述了本公开的实施例。其中：

[0018] 图 1 是汽轮机的截面图，显示了包括示例性支撑系统的外壳和内壳；图 1a 和图 1b 是图 1 的部分的展开图；

[0019] 图 2 是图 1 的支撑区的展开图，显示了示例性金属嵌件；

[0020] 图 3 是图 1 的支撑区的展开图，显示了另一个示例性金属嵌件；

[0021] 图 4 是图 1 的支撑区的展开图，显示了还有另一个示例性金属嵌件。

[0022] 零部件清单

<table>
<thead>
<tr>
<th>零部件编号</th>
<th>零部件名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 5a, 5b</td>
<td>支撑区</td>
</tr>
<tr>
<td>10</td>
<td>转子</td>
</tr>
<tr>
<td>20</td>
<td>内壳</td>
</tr>
<tr>
<td>24</td>
<td>接触面</td>
</tr>
<tr>
<td>25</td>
<td>凸部</td>
</tr>
<tr>
<td>30</td>
<td>外壳</td>
</tr>
<tr>
<td>35</td>
<td>铸件</td>
</tr>
<tr>
<td>40</td>
<td>金属嵌件</td>
</tr>
<tr>
<td>41</td>
<td>容纳面</td>
</tr>
<tr>
<td>42</td>
<td>扩张</td>
</tr>
<tr>
<td>44</td>
<td>支撑面</td>
</tr>
<tr>
<td>45</td>
<td>凸部</td>
</tr>
</tbody>
</table>
具体实施方式

[0024] 现在参考附图而描述本公开的优选实施例，其中，类似参考标号用来表示类似元件。在下面的描述中，出于说明的目的，阐明了大量的特定细节，以提供对本公开的完全理解。显然，可以没有这些特定细节来实施本公开。

[0025] 在该公开中，轴向方向被定义为汽轮机的纵向轴线的方向，汽轮机的转子 10 绕该轴向方向而旋转。这条纵向轴线为其它方向性指示提供进一步的参考，例如垂直于该纵向轴线的径向方向，以及与该纵向轴线同心的周向方向。

[0026] 此外，在“容纳”（encase）的一般意义范围内，该公开中的“容纳”用来指具有特定的含义，即，如果第一部件被限制与在第一部件处于接触的第二部件的任何两个表面点之间引出的直线的界限内，那么第一部件被第二部件所容纳。

[0027] 图 1 显示了一个示例性汽轮机的截面图。该汽轮机具有包括铸件 35 的外壳 30。该壳 30 形成外壳体，而内壳 20 还容纳转子 10。在一个示例性实施例中，铸件 35 由因能被铸造而选取的材料如球墨铸铁制成。这种材料的特征在于，其具有相对低的热强度。但是，这使得它适合用于铸造，而不适合承受如在高温汽轮机的一处位置中所发现的高温。

[0028] 铸件 35 包括支撑区 5，该支撑区 5 是用于支撑内壳 20 的机构。该支撑区 5 包括通过表面相互作用而为内壳 20 提供支撑并防止铸件 35 和内壳 20 之间接触的金属镶嵌件 40。通过防止接触，来防止铸件 35 的可能的过热。为了防止在金属镶嵌件 40 接触内壳时发生热损坏，金属镶嵌件 40 由比铸件 35 具有更高的热强度的材料制成。在一个示例性实施例中，这种材料选自 St460TS 和 St12T 的其中一个。

[0029] 金属镶嵌件 40 具有由铸件 35 所容纳的表面，从而限定了容纳面 41。如在图 1a 中和在图 2 到图 4 中所示，容纳面 41 包括，相对于径向向外方向 ROD，轴向和 / 或周向地扩张的部分 42。这种扩张提供了将金属镶嵌件 40 保持在铸件 35 中的手段。

[0030] 图 2 到图 4 显示了具有不同设置的扩张部分的示例性金属镶嵌件 40。例如，图 2 显示了其中扩张部分 42 通过具有沿着其径向延伸的腰部区的容纳面 41 而形成的一个实施例。图 3 显示了其中的扩张部分 42 在位于金属镶嵌件 40 的径向远端处的容纳面上形成轴向和 / 或周向突出部 (projection) 的一个可选的示例性实施例。作为图 3 中所示的实施例的一种变形，图 4 显示了沿着容纳面 41 的径向延伸位于中途的在容纳面 41 上的扩张部分 42，其中，金属镶嵌件 40 具有通常是三角形的形状。这样形状的金属镶嵌件 40 仅仅适合被扩张部分 42 用作支撑区 5。

[0031] 如图 1 到图 1b 中所示，金属镶嵌件 40 包括与内壳 20 的接触面 24 处于接触的支撑面 44。通过这种接触，内壳 20 由外壳 30 支撑。连同接触面 24 一起，支撑面 44 设置成用于保持内壳 20 与外壳 30 的铸件 35 之间的分隔距离。这确保铸件 35 不过热。本文中的“连同”指的是，支撑面 44 的特定构造考虑了接触面 24 的设置，以实现所阐述的目的。由于可能有许多接触面 24 构造和设置，因此任何一种接触面 24 构造都不是普遍适用的。图 1a
和图 1b 中显示了一些可能的设置的示例性实施例。

【0032】图 1a 显示了其中的接触面 24 和支撑面 44 均是基本平面的一个示例性实施例。通过铸件 35 在接面 44 附近从金属镶嵌件 40 沿径向往后缩，就避免了内壳 20 与外壳 35 之间的接触。

【0033】图 1b 显示了一个示例性实施例，其中支撑面 44 是在金属镶嵌件 40 中形成的槽的底部 47。借助于槽 46，支撑面 44 设置成可容纳凸部 25 (boss)。凸部 25 本身设置成是内壳 20 的接触面 24 的部分。接触面凸部 25 的径向长度，相对于槽 46 的径向深度，提供了保持内壳 20 和铸件 35 之间的分隔的手段。图 4 也显示了具有类似的能接收接触面凸部 25 的槽 46 的一个示例性实施例。

【0034】如在各个图中所示，金属镶嵌件 40 的示例性实施例还包括引导机构，其适于在支撑面 44 上引导接触面 24，同时允许内壳 20 相对于外壳 30 的相对运动。由于内壳 20 与外壳 30 之间的特有温差，重要的是引导机构不完全阻止相对运动，否则不同的热膨胀率会在机壳中产生附加的应力。另外，通过限制运动，可保持内壳 20 相对与外壳 30 的一般位置。

【0035】图 1b 和图 4 显示了其中的引导机构是槽 46 的侧壁 48 的示例性实施例，该槽 46 引导接触面凸部 25，如图 1b 中所示，凸部 25 容纳在槽 46 中。在一个示例性实施例中，通过具有轴向延伸的槽 46 而允许受限制的运动。这允许所接收的接触面凸部 25 以受限的方式在槽 46 中沿轴向方向运动。

【0036】图 1a、图 2 和图 3 各显示了其中引导机构为凸部 45 的示例性实施例，该凸部 45 形成金属镶嵌件 40 的径向向内延伸的部分。如图 1a 中所示，参见内壳 20 中形成的棱角边缘，这些示例性实施例的引导机构限制了接触面 24 在支撑面 44 上的其中一个方向性运动矢量。

【0037】这样的示例性引导机构可导致施加附加的横向负载到金属镶嵌件 40 上，并因此导致在金属镶嵌件 40 上施加沿径向向内的矢量负载分量。为了防止或至少减小金属镶嵌件因这些负载的结果而从铸件 35 上脱离的风险，具有引导机构的示例性金属镶嵌件 40 可包括如本文所述并在图中示出的示例性的扩张部分 42。

【0038】虽然本文已显示了本公开，并在认为是最具实践性的示例性实施例中描述了本公开，但是对于本领域技术人员而言，可以理解，本发明可以其它特定的形式来实施。因此，这些已公开的实施例被认为是说明性的并且没有局限性。本发明的范围由所附权利要求而不是前面的描述所表述，所有在所附权利要求的含义和范围中的修改及其等同物均意为包含在其中。