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METHOD AND SYSTEM FOR PROVIDING UNIFIED VEGAS IN A RISK
MANAGEMENT SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention:

The present invention relates to computerized risk management systems. More
particularly, the present invention relates to a method and system for providing
consistent risk measures for financial derivatives when inconsistent mathematical models

are used for their valuation.

Brief Description of Prior Developments:

Financial derivatives are contracts to exchange cash payments or assets
depending on the level of one or more underlying financial variables, such as stock
prices or interest rates. Financial derivatives may be used for both risk-mitigation
purposes, termed hedging, as well as speculation. The ability to take highly leveraged
positions using derivatives creates the potential for catastrophic losses. In addition,
particularly with options, the nonlinearity of their payoffs with respect to the values of
their underlying assets can make their potential behavior difficult to understand. The use
of financial derivatives has therefore simulated the growth of quantitative risk-
management techniques.

The value of many types of derivative contracts, in particular options, depends
essentially on the degree to which the underlying financial variables fluctuate over time.
These contracts are thus valued based on mathematical models of these fluctuations.
These models typically contain one or more parameters, referred to as volatility
parameters, that characterize the magnitude of these fluctuations. In addition, these
models embed crucial assumptions about the dependence of absolute fluctuation levels
on the underlying financial variables. For example, various models make different
assumptidns about how the absolute level of interest-rate fluctuations varies with the
level of the underlying interest rate. One model might assume that the fluctuation level is
independent of interest rates, while another model might assume that the fluctuation level

is proportional to interest rates.
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For hedging, risk management, and other reasons, traders and risk managers need
to understand how the value of a portfolio of assets is effected by changes in
fundamental market variables. For so-called primary assets, such as bonds and equities,
the fundamental market variable can be simply taken to be the asset prices themselves.
However, for financial-derivatives, the fundamental market variables are the underlying
asset prices as well as their volatility parameters.

The most basic tools of risk management at the level of the individual trading
desk are so-called “Greeks”. These are simply the sensitivities, i.e., the partial
(mathematical) derivatives, of the value of an individual instrument or a portfolio with
respect to the parameters of the formula that is used to value them. For example,
standard stock options may be valued using the celebrated Black-Scholes formula, which
gives the value of a stock option in terms of the stock price, the volatility of the stock
price, the interest rate, and the time to expiration of the option. The partial derivatives of
the option value with respect to the stock price and its volatility parameter are termed
“delta” and “vega”, respectively. These and similar Greeks are widely used in the
management of individual option positions. For example, delta gives an immediate
approximation to the change in the value of an option with respect to a small change in
the stock price. Greeks also tell one how to hedge, i.e., add a new position to neutralize
the risk of an existing one. For example, to hedge exposure to a stock price, one needs to
add a hedge position whose delta is the opposite of the delta of the portfolio.

Interest-rate options can be more complex than stock options because, at any
given time, there is a term structure of interest rates. That is, interest rates depend on the
length of time (the term) over which money is borrowed. In addition, there are numerous
different ways in which interest rates are quoted, such are London Interbank Offered
Rates (LIBOR) or swap rates. Many interest-rate options depend only on a single feature
of the term structure of interest rates, such as a particular LIBOR or swap rate.
Accordingly, it is common practice to apply the Black-Scholes formula to the particular
feature of the term structure that is relevant to the interest-rate derivative being priced.
For example, market practitioners value caps and swaptions using log-normal models of
LIBOR and swap rates, respectively. Unfortunately, this practice makes it difficult to

understand the risk exposure of the portfolio as a whole. This is because the Greeks for
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different instruments and models are sensitivities to different parameters and therefore
cannot be sensibly simply added together.

Yet, since the parameters in the models all refer to the same underlying term
structure of interest rates, the Greeks for the various models should be related. In the
case of deltas, it is straightforward to obtain such relationships. For example, there isa
well known formula that expresses swap rates in terms of LIBOR rates. One can then
apply the chain rule from multivariate calculus to express the delta for a swaption as a
linear function of deltas for caps. The coefficients in this relationship are given by the
partial derivatives of the formula that expresses swap rates in terms of LIBOR rates.
However, the situation for vega is more problematic. The problem is that the various
Black-Scholes formulae can be mathematically inconsistent with each other. For
example, the standard Black-Scholes formula for caps implies a model for the evolution
of swap rates that is different from the one implied by the standard Black-Sholes formula
for swaptions. Thus, unlike the case for delta, there isn’t a formula relating the volatility
parameters in the two models that can be differentiated to give the relation between the
vegas. As a result, it has been difficult to reconcile the various vegas to get a unified
picture of volatility risk at the overall portfolio level. The problem is compounded by
exotic derivatives, which are typically valued using so-called short-rate models that are
inconsistent with the various Black-Scholes formulae and thus have their own
idiosyncratic vegas. The result is that practitioners are often faced with “Tower of
Babel” vega reports, in which vegas for the various instrument classes and models are
simply listed without any indication of the overall portfolio volatility position. Hence,
there is a need to provide a system and method for describing the aggregate volatility
exposure of a portfolio having a mixture of financial assets that may be valued using

inconsistent valuation models.

SUMMARY OF THE INVENTION

The present invention provides commensurable “vegas’ across inconsistent
mathematical models that can be meaningfully added together to describe overall
portfolio exposure to volatility risk.

Almost all mathematical models used in practice to value derivatives use a

standard Brownian motion to model the essential randomness of financial variables over
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time. They differ in how the Brownian motion interacts with the financial variable to
produce the observed degree of fluctuation in the financial variable. It turns out that a
given model, say model A, can often be represented as a different model, termed a base
model, by allowing the volatility parameter of the base model to depend on the sample
value of the Brownian motion. We thus obtain a relationship between the “native”
volatility parameter of model A and the volatility parameter of the base model that
depends on the sample value of the driving Brownian motion. Thus, while there may not
be a deterministic relationship between the volatility parameters for model A and the
base model, we can often find a random or stochastic relationship. Mathematically
differentiating this stochastic relationship between the volatility parameters in the two
models allows one to convert the “native” vega for model A into an equivalent vega for
the base model. Therefore, the present invention converts hitherto inconsistent vegas
from the various models in use to vegas for the base model that can be added together to
describe the overall exposure of a financial portfolio to volatility risk. It does so by
applying what amounts to a stochastic change-of-coordinates that depends on the
underlying source of randomness in the model.

According to another aspect of the invention, the resulting overall volatility
exposure of the portfolio is graphically expressed in terms of a vega for a base model.
The choice of a base model will depend on the asset class. For interest-rate instruments,
the Heath, Jarrow, and Morton model (HIM), in which interest-rate volatility is
parameterized as a function of maturity and time, is the preferred base model. For
equities, the so-called Bachelier model, in which equity volatility is parameterized as a

function of time, is preferred.
The base models have two significant features in common:

1. They are comprehensive in the sense that other models are easily expressed in
terms of them. This comprehensiveness is achieved by having volatilify parameters
that can depend on time and, in the case of interest-rates, maturities. Of course,
many of the models of interest will have a representation in the base model with

stochastic volatility parameters.
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2. The base models with deterministic volatility parameters are so-called Gaussian

models. This allows for a technical simplification that makes it much easier to do the

change-of-coordinates calculations.

According to an aspect of the invention, functional Greeks, in particular vegas,
for the various models used in practice are transformed into equivalent functional Greeks
for the base model. (The adjective functional refers to the fact that the Greeks here are
partial derivatives with respect to curve- and surface-valued, i.e., functional parameters.)
The transformation operates by relating the volatility parameters in the various models
by a stochastic change of coordinates. Greeks from inconsistent mathematical models

can thus be expressed in a commensurable manner in terms of functional Greeks for the

base model.

BRIEF DESCRIPTION OF THE FIGURES

Other features of the invention are further apparent from the following
detailed description of presently preferred exemplary embodiments of the invention
taken in conjunction with the accompanying drawings, of which:

Figure 1 is a block diagram representing a computer system in which aspects of
the present invention may be incorporated;

Figure 2 is schematic diagram representing a computer network system wherein
aspects of the invention may be incorporated;

Figure 3 is a diagram of a Full-Deal Enterprise-Wide Risk Management system
wherein aspects of the present invention may be incorporated;

Figure 4 is a diagram of a Deal-proxy Enterprise-Wide Risk Management system
wherein aspects of the present invention may be incorporated,;

Figure 5 is an illustration of the Black-Scholes and Bachelier models for the
evolution of stock prices wherein the resulting stock-price evolution is a function of the
relevant volatility process as well as the driving Brownian motion;

Figure 6 is a graphical illustration of functional vegas for deterministic-volatility
Black-Scholes and Bachelier models;

Figure 7 is a representation of the deterministic-volatility Black-Scholes model as
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a stochastic-volatility Bachelier model;

Figure 8 illustrates the effect of a deterministic perturbation in Bachelier
volatility on a stochastic-volatility Bachelier model simply by applying the deterministic
perturbation to the sample values of the stochastic Bachelier volatility process; and

Figure 9 graphically illustrates functional vegas with respect to Bachelier
volatility for a 5-year European call option. Graph (a) is for an at-the-money option,
while graph (b) is for an out-of-the-money option whose discounted strike is 10% above
the current price wherein the dotted lines are the vega for the Black-Scholes model,
while the solid lines are for the Bachelier model calibrated to agree with Black-Scholes
for at-the-money options;

Figure 10 illustrates the Bachelier-equivalent vega for the deterministic-volatility
Black-Sholes model applied to the deterministic Bachelier perturbation is equla to the
native Black-Sholes vega applied to the stochastic Black-Sholes perturbation;

Figure 11 illustrates the interconversion of vegas with respect to LIBOR and
swap-rate volatilities;

Figure 12 illustrates the EWRM systems of Figure 3 and 4 wherein the detail
analytic conversion to a base model is further illustrated; and

Figure 13 provides examples of functional vega displays.

DETAILED DESCRIPTION OF THE INVENTION

OVERVIEW

While individual trading desks are the front line of risk management, most large
institutions support a centralized enterprise-wide risk management (EWRM) function.
While in part this is because of the need to exercise oversight and their fiduciary
responsibilities, it is also necessary because risk is a portfolio property. On one hand,
there is always the danger that risks can be magnified by different trading desks taking
similar positions. On the other hand, the risk of the institution will generally be less than
the sum of the risks of the trading desks due to diversification effects. It is therefore
necessary for large institutions to gather together the information from their various risk-
taking operations and put together a coherent picture of the risk profile of the institution

as a whole.
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Large financial institutions trade a bewildering variety of financial instruments.
It is not unusual for a large institutions to use dozens of computerized trading systems
cach with its own mathematical model. As a result, the EWRM problem is notoriously
difficult. As a first step, it is desirable in EWRM to describe the sensitivities of the
institution as a whole to changes in foreign-exchange (FX) rates, interest rates, and stock
prices, as well as their respective volatilities. While the individual trading desks produce
such sensitivities, i.e., Greeks, it will generally not be sufficient to just add together the
Greeks reported by the various trading desks. This is because, due to their use of
different models, the reported Greeks will generally reflect sensitivities to different
things. This has been termed the “apples and oranges” problem. The present invention
solves the apples and oranges problem, particularly with respect to the Greek vega.

The present invention provides a financial risk-management system wherein
uniform risk-factor sensitivities can be presented for a portfolio containing a variety of
financial derivative assets. The system operates by converting risk exposures for the
“native” valuation model for each financial asset into equivalent risk exposures for a
base model. By converting the risk exposures for the various models into those for a
common base model, commensurable risk sensitivities can be determined for each
model. The converted sensitivities can then be combined together to present an overall

risk evaluation for the portfolio.

EXEMPLARY OPERATING ENVIRONMENT

Figure 1 provides a block diagram of an exemplary environment in which the

invention may be implemented. Moreover, the invention is described herein in the
context of flow charts and computer-executable instructions that operate on a computer
system such as the system of Figure 1. Generally, computer-executable instructions are
contained in program modules such as programs, objects, data structures and the like that
perform particular tasks. Those skilled in the art will appreciate that the invention may
be practiced with other computer system configurations, including multi-processor
systems, network PCs, minicomputers, mainframe computers and so on. The invention
may also be practiced in distributed computing environments where tasks are performed

by remote processing devices that are linked through a communications network.
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Figure 1 includes a general-purpose computing device in the form of a computer
system 20, including a processing unit 22, and a system memory 24. The system
memory could include read-only memory (ROM) and/or random access memory (RAM)
and contains the program code 10 and data 12 for carrying out the present invention.

The system further comprises a storage device 16, such as a magnetic disk drive, optical
disk drive, or the like. The storage device 16 and its associated computer-readable media
provides a non-volatile storage of computer readable instructions, data structures,
program modules and other data for the computer system 20.

A user may enter commands and information into the computer system 20 by
way of input devices such as a keyboard 26 and pointing device 18. A display device 14

such as a monitor is connected to the computer system 20 to provide visual indications

- for user input and output. In addition to the display device 14, computer system 20 may

also include other peripheral output devices (not shown), such as a printer.

It should be noted that the computer described above can be deployed as part ofa
computer network, and that the present invention pertains to any computer system having
any number of memory or storage units, and any number of applications and processes
occurring across any number of volumes. Thus, the present invention may apply to both
server computers and client computers deployed in a network environment, having
remote or local storage. Figure 2 illustrates an exemplary network environment, with a
server in communication with client computers via a network, in which the present
invention may be employed. As shown, a number of servers 11, 11°, etc., are
interconnected via a communications network 14 (which may be a LAN, WAN, intranet
or the Internet) with a number of client computers 20a, 20b, 20c, etc. In a network
environment in which the communications network 14 is the Internet, for example, the
servers 11 can be Web servers with which the clients 20 communicate via any of a
number of known protocols such as hypertext transfer protocol (HTTP).

Each client computer 20 and server computer 10 may be equipped with various
application program modules 10, other program modules 37 and program data 38, and
with connections or access to various types of storage elements or objects. Thus, each
computer 10 or 20 may have financial information associated therewith, such as stock
prices, interest rates, bond prices and so on. Each computer 20 may contain computer-

executable instructions that model financial assets or risk associated with the assets. For
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example, one system may model financial derivatives based on a Black-Scholes model,
whereas another may model interest rate derivatives based on a Heath-Jarrow-Morton
model, and so on. These computers can then pass their respective data to the server
computers 11 wherein an enterprise-wide risk management (EWRM) system may reside

to determine overall risk across asset classes.

System for Unifying Vegas

Generally speaking, EWRM systems gather information from one or more source

(“front-office”) systems and use this information to construct a partial or complete risk
analysis for a financial institution. There are at least two general architectures for such
systems. For brevity, we term these the full-deal and deal-proxy architectures. In a full-
deal system, such as SunGard’s Panorama system, the source systems pass an essentially
complete description of each deal to the EWRM. For example, for an interest-rate cap,
this description would include the start and end dates for each period that the cap applies
to, the level (termed the strike) of the cap, a precise description of how the payment
amount is to be computed, and so forth. Itis assumed that the EWRM system has the
“intelligence” to value each deal using its native valuation model. In addition, the key
task of the EWRM system is to construct a coherent description of the overall risk of the
institution. In order to do so, it must construct commensurable descriptions of the risk
characteristics of the various deals. As described more fully below, according to an
aspect of the invention, Gaussian Heath-Jarrow-Morton equivalent vegas (GHIMEVs)

are used as a uniform description of interest-rate-volatility exposures.
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In a full-deal EWRM system incorporating the present invention, commensurable
exposure measures, such as GHIMEVs, are computed internally, either directly or by
converting native exposures. Such a deployment is shown in Figure 3. Here, computer
systems 20a, 20b, and 20c gather information representative of a deal and pass that
information to EWRM system 11 wherein analytical software extracts from the deal a
vega of the GHIMEYV form so that vegas for the deals in a portfolio can be added to each
other by program 10d. For example, the data representative of the terms of a swaption
deal are provided to the swaption analytics module 10a from swaption computer 20a.
The swaptions analytics module 10a then computes the GHIMEV. Similarly, data
representative of a cap deal are provided to the cap analytics module 10b, and so on.

In view of the great difficulty in representing the variety of valuation models
found in front-office systems in EWRM systems and the fact that many important
calculations can be based entirely on linear approximations, an alternative system in
which the present invention may be employed is an EWRM system architecture in which
the front-office systems pass linear approximations rather than complete details of each
deal to the EWRM system. We term such an architecture a deal-proxy system. This
results in advantages on the software-engineering side, as the EWRM system no longer
needs to understand all the internal models used by all the front-office systems in order
to perform basic operations such as limit administration, hedging, and risk management.
While the deal-proxy architecture is often used for managing interest-rate exposures,
probably its biggest limitation at present has been the lack of a standard form for
characterizing volatility exposures. An application of the vega methodology of the
present invention is to provide a standard representation of volatility exposures in deal-
proxy systems. Such an architecture is illustrated in Figure 4. Here, the computer
systems 20a, 20b, etc. perform the analytics. The EWRM system 11’ can then directly
add the vegas across the financial instrument classes. The ability to capture volatility
exposures will make the deal-proxy architecture much more attractive for many
applications. Such an architecture is particularly attractive for real-time or near-real-time
applications because of its simplicity and the fact that almost all analyses that are
feasible to run in real time are based on linear approximations.

It should be recognized that one of the most important advantages of basing risk-

management operations on first-order sensitivities such as GHIMEVs is that such
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abstractions can be defined in a financially precise and system-independent manner.
Building EWRM systems is difficult because each of the various front-office systems is
based on different financial abstractions. Each system encodes these financial
abstractions in terms of character strings and numbers, but it is extremely difficult to
reconcile the semantics of these character strings and numbers into a common coherent
framework. GHIMEVSs can serve as a financial lingua franca for expressing market
exposures in a standard way. Having a semantically un-ambigious language for
describing exposures greatly facilitates communication both across functional and
geographic boundaries within an institution and to external parties.

In particular, having a standard for communicating exposures facilitates the
“outsourcing” of risk-management caiculations. In addition to calculation of exposures,
risk-management calculations generally require extensive archives of historical market
data and specialized computational engines. Given the ability to clearly communicate the
exposures, it becomes feasible to have a third party maintain the historical data and
specialized computational engines. For example, the exposures could be transmitted over
the Internet to a specialized provider of risk-management services. Risk calculations
would be performed by the risk-managment-service provider and results returned to the
client back over the Internet.

The GHIMEYV for an interest-rate instrument is a two-dimensional function of
maturity and time. In practical calculations, it will be possible to divide the maturity-time
rectangle into a finite number of subrectangles with the GHIMEYV being constant on each
subrectangle. Thus the GHIMEV can be conveniently represented in a relational
database table with each subrectangle of the GHIMEV corresponding to a row in the
table. For example, the columns of this database might be as follows:

Currency The 3-character SWIFT currency code of the currency for the interest rate.
DiscountCurve A string variable describing the particular interest-rate curve that is
relevant to the instrument being valued, e.g., LIBOR or Treasury.
BeginningMaturityDate A date variable containing the beginning maturity date for the
subrectangle in maturity and time.

EndingMaturityDate A date variable containing the ending maturity date for the

subrectangle in maturity and time.
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BeginningTimeDate A date variable containing the beginning time date for the
subrectangle in maturity and time.

EndingTimeDate A date variable containing the ending time date for the subrectangle in
maturity and time.

Sensitivity A real variable containing the partial derivative of the PV of the instrument
with respect to the local Gaussian HIM volatility for the sub-rectangle.

Hence, a deal-proxy system could pass a data set of the above variables that represents
the GHIMEV for the financial derivative. The EWRMS can then use that information to
aggregate the sensitivities (i.e., vegas) across instrument classes.

Having provided an overview of the system of the present invention, the details
of the implementation, i.e., the functions performed by software, are discussed below.

Vegas are used to indicate sensitivity of a particular financial derivative to
changes in the model’s volatility inputs. As described above, conventional financial
models for financial derivative assets may be inconsistent with each other and thus have
incommensurable vega values. Inconsistencies between the various interest-rate models
arise because various features of the term structure are modeled in a piecemeal way.
Hence, as a first step toward a unified approach to expressing vegas of interest-rate
derivatives, more comprehensive models for the evolution of the term structure as a
whole are needed.

The first step in the methodology of the present invention is to extend the notion
of Greeks. Most of the option-valuation models used in finance are characterized by a
small number of scalar parameters and the Greeks used in mathematical finance are
partial derivatives with respect to these parameters. However, there are classes of more
sophisticated models in which the volatility parameter is allowed to vary continuously
over time, and, in the case of interest-rate models, with maturity as well. Thus these
models, such as the HIM model, have curve- and surface-valued parameters in addition
to scalar parameters.

Part of the analysis is to extend the notion of Greeks to the derivative of a
valuation function with respect to a curve- or surface-valued parameter. The derivative
of a function of a curve- or surface-valued argument is best understood in terms of its
directional derivatives. A curve- or surface-valued argument is formalized by letting the

argument take values in a infinite-dimensional vector space. Let X and Y be vector
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spaces and let v be a function from X to Y. The function v is said to have directional

derivative Dv| , - Ax in the direction Ax at the evaluation point x in X if
. +5Ax) -

Dy|, - Av=lim V(x+5Ax) = ¥(s). (1)
5> S

In words, the directional derivative Dv|, - Ax is the rate that v changes when the

evaluation point x is perturbed in the direction Ax.Ifa function v has directional

derivatives in all directions Ax, then the function from the perturbation Ax in X to

Dv| -Ax inY gives a linear approximation to the function v at x in the sense that

v(x + Ax) = v(x) + Dv

Ax,

In the particular case where v is a real-valued function of a curve-valued parameter o,

Dv| , -Ac often has a representation of the form

Dv|,-Ac = jj—; (HAc(t)dt, )

where dv/do is a real-valued curve termed the functional derivative of v with respect
to o . Intuitively, dv/do(t) describes the sensitivity of v to a localized change in the
curve o at t. As dv/do is simply a real-valued function, it provides a convenient
graphical representation of Dv| o

We will give some simple examples for stock-price models. In the well-known
Black-Scholes model for stock prices, the stock price S(f) is given by the solution
to the stochastic differential equation (SDE)

dS(t) =S (t)o s (1)AW (1), 3)
where W(t) denotes a standard Brownian motion and & 4 (7) is the Black-Scholes

volatility as a function of time. In an alternative model, termed the Bachelier model, the

stock price is given by the solution to the SDE

dS(t) = o, (t)dW (¢), 4
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where o, (¢) is the Bachelier volatility as a function of time. We assume that the
volatility functions are deterministic, i.e., that they have no functional dependence on the
stock-price process. The stock-price processes for these models are illustrated in Figure
5.

Functional vegas for a stock option valued under the Bachelier and Black-Scholes
models are shown in Figure 6. In each case, the value of functional vega at time t is the
rate at which the option price changes with respect to a localized change in the volatility
function at time t. In the example shown in Figure 6, the volatility parameter for the
Bachelier model has been adjusted so that the prices of so-called at-the-money (ATM)
options agree with those obtained from the Black-Scholes model. The fact that the vegas
are so different is a manifestation of the apples-and-oranges problem, i.e., the
incommensurability of vegas that are produced from different underlying financial
models.

The key to the apples and oranges problem for deltas of caps and swaptions was
the function that expressed swap rates in terms of LIBOR rates. This was a simple
deterministic function between finite-dimensional vector spaces which can easily be
differentiated to obtain the relation between the deltas. The key to the apples and
oranges problem for vegas is finding analogous relationships between volatility
processes in the various models. The inconsistency of the various models rules out the
possibility of finding simple deterministic relationships between the parameters of the
various models. The essence of our invention is that, nonetheless, there are relationships
between the volatility parameters in the various models that can be differentiated to
obtain relations between the vegas. In general, these relationships are given by maps
between infinite-dimensional stochastic processes.

We give a simple example for stock-price models. The Black-Scholes and
Bachelier models are inconsistent with each other when their volatility processes are
taken to be deterministic. Indeed, it can be shown that stock prices are log-normally
distributed under the Black-Scholes model, whereas they are normally distributed under
the Bachelier model. However, the deterministic-volatility Black-Scholes model can be

represented as a stochastic-volatility Bachelier model. This is most easily seen by

comparing the SDEs given by equations 3 and 4. All we need to do is take o, equal to
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S 45 (T 55 )T 55 » Where S5 (0 55) denotes the solution to equation 3. This is illustrated n
Figure 7.

Having represented the Black-Scholes model as a stochastic-volatility Bachelier
model, we are now in a position to construct a Bachelier-equivalent vega for options
valued under the Black-Scholes model. To see this, it should be understood that knowing
the Bachelier vega for a given model amounts to knowing the effect of any given
deterministic perturbation in Bachelier volatility on the option price. Even though the
Bachelier volatility is now stochastic, the effect of a given deterministic perturbation in
Bachelier volatility on the option price can still measured by applying it to each of the
sample values of the stochastic Bachelier volatility process, as illustrated in Figure 8.

As an example, in Figure 9 is a plot of Bachelier-equivalent functional vegas for
stock options valued under the Black-Scholes model (shown in dashed lines). For
comparison, Figure 9 also shows the functional vegas for the deterministic-volatility
Bachelier model in which the volatility has been adjusted so that prices for at-the-money
options agree with those from the Black-Scholes model (shown in solid lines). On the
left are vegas for an at-the-money (ATM) option, while on the right are vegas for a so-
called out-of- the-money (OTM) option. The differences in the curves, while small,
reflect the fact that the two models have slightly different “views” on the effects of
volatility perturbations. The vegas are more similar for the at-the-money option, as might
be expected as the volatility parameter in the Bachelier model was adjusted to make its
prices agree with Black-Scholes for at-the-money options.

The above sections describe how to compute a Bachelier-equivalent vega for an
option valued under the Black-Scholes model by representing the Black-Scholes model
as a stochastic-volatility Bachelier model. This next section describes how this
Bachelier-equivalent vega is related to the native Black-Scholes vega by the derivative of
the function that maps the Black-Scholes volatility to the corresponding stochastic
Bachelier volatility.

Roughly speaking, a Black-Scholes model with volatility parameter o has a

Bachelier model representation with volatility parameter

O3 =§BS (O 55 )T s 5
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Going the other way, it can be shown that if a Black-Scholes model has a Bachelier
representation with volatility o, then the Black-Scholes volatility is given by
0 a5 =S5 (05)0, (©6)

where S . (0 ;) denotes the solution to equation 4. Applying the chain rule, using
equation 5, says that the relation between the vegas with respect to Black-Scholes and

Bachelier volatility is given by the formula

DV, -Ac, =DV, Doy

Oy ! AGB

In particular, this equation says that the Bachelier-equivalent vega for the deterministic-
volatility Black-Scholes model applied to the deterministic Bachelier perturbation Ao,

is equal to the native Black-Scholes vega applied to the stochastic Black-Scholes
perturbation Do g/, -Ac,. This interpretation is illustrated in Figure 10, cf. Figure 8.

An important facet behind the invention is that the above reasoning can be given
a rigorous mathematical justification. Equations (5) and (6) exhibit maps between
infinite-dimensional stochastic processes and some care is needed in defining their
derivatives. The standard techniques of calculus extend in a natural way from real
functions of real variables to a class of infinite-dimensional spaces termed normed linear
spaces. However, due to the somewhat “pathological” nature of Brownian motion, the
maps given by equations (5) and (6) cannot be differentiated satisfactorily as maps
between normed linear spaces. An important point is that the maps given by equations
(5) and (6) can be differentiated satisfactorily as maps between more general spaces
termed topological vector spaces. The mathematical derivation are further described in
Kuruc Alvin “Commensurable ' Vegas" for Heterogeneous Volatility Moaels.” Working
paper presentation on April 5, 2000 at the Global Derivatives 00 Conference, which is
hereby incorporated by reference.

With these technical tools in hand, we can now solve the apples-and-oranges
problem for vega. One can use the chain rule to convert between the vegas with respect
to LIBOR- and swap-rate volatilities. This is illustrated in Figure 11. This analysis
allows us to reconcile vegas for two models when one model has a stochastic-volatility

representation in another model. To achieve the goal of reconciling vegas across the
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various models used in practice, the various models used in practice need to be
represented in terms of a single “base model”. In the case of interest-rate models, it is
well known that the commonly used interest-rate models can all be represented in a
general class of models known as Heath-Jarrow-Morton (HIM) models. (In this regard, it
is worth pointing out that the recent work on so-called market models details how the
standard Black’s models for caps and swaptions are represented by stochastic-volatility
HIM models.) In general, the volatility in these HIM representations will be stochastic.
The special case of HIM models in which the volatility is deterministic are termed
Gaussian HIM models. We can compute vegas with respect to deterministic, i.e.,
Gaussian, HIM volatility perturbations even for models that have stochastic-volatility
HIM representation using the approach discussed above. Since all of the commonly used
interest-rate models can be represented as HIM models, we thereby obtain a uniform
description of interest-rate-volatility exposures in terms of Gaussian-HJM-equivalent
vegas (GHIMEVs). GHIMEVs may be used as a standard representation of interest-rate-
volatility exposures. Such a use is shown in Figure 12. In the case of equity models, the
corresponding base model is the Bachelier models. Again, the equity models commonly
used in practice can be represented as stochastic-volatility Bachelier models.

Figure 12 illustrates further detail of the analytical functions of EWRM systems.
In particular, each of the analytic portions converts the native vega for the native
valuation model to an equivalent vega for the selected base model. Here the base model
is the Gaussian HIM model.

We have shown that if one uses the Gaussian HIM model as a base model, then
the vegas with respect to Gaussian-HJM volatility for the standard Black’s models for
caps and swaptions are given by simple closed-form approximations. The details of the
GHJIMEYV calculations for caps and swaptions under the standard models are described
in Kuruc, Alvin: “A Unified Approach to “Greeks” for Interest-Rate Derivatives.”
Working paper presented on November 30, 1999 at the Risk Management 99
Conference, which is hereby incorporated by reference. A key to this result is that the
evolution of interest rates is linear in volatility in the Gaussian HIM model and therefore
the derivative of the interest-rate evolution with respect to Gaussian HIM volatility is

independent of the evaluation point. The implication of this is that the vega calculations
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can be done without explicitly involving the sample paths of the stochastic HIM-
volatility process.

While an important application of the invention is in the area of interest-rate
derivatives, there are also important applications to equity and foreign-exchange (FX)
derivatives. Note that, from the mathematical point of view, equities and FX are
essentially identical. In the case of equity models, computational advantages analogous
to the ones described above for interest-rate models are obtained by using the Bachelier
model as a base model. Details of the Bachelier-equivalent vega calculations for basic
options under the standard Black-Scholes model are described in Kuruc Alvin
“Commensurable **Vegas" for Heterogeneous Volatility Models.” Working paper
presenton on April 5, 2000 at the Global Derivatives 00 Conference.To avoid
duplication, in what follows we will mainly discuss interest-rate models and just mention
equity models when particularly pertinent. However, it should be understood that the
applications that we describe for interest-rate models generally apply to equity and FX
models as well.

In either the full-deal or deal-proxy architecture, it is necessary to compute
GHJIMEVs for each instrument. GHIMEVs are two-dimensional, depending on both
maturity and time. The GHIMEVs are therefore most naturally displayed in terms of a
two-dimensional heat map, in which vega levels are associated with colors. Examples of
such displays are shown in gray scale in Figure 11. For equities, the Bachelier-
equivalent vega is one-dimensional, depending only on time. It can therefore be
conveniently displayed in a standard two-dimensional graph.

The disclosed embodiments desctibe the use of the stochastic change-of-
coordinates technique to represent parameter sensitivities for inconsistent mathematical
models for financial derivatives in a commensurable way. This includes the
implementation of these calculations and the use of the derived representations in trading
(front-office) systems as well as desk-level and EWRM systems implemented either on
site or over a computer network. The invention can be implemented in a variety of
computer systems including, but not limited to, EWRM systems. The invention can be
used to enhance financial instrument valuation engines so that they can directly calculate
commensurable exposure measures or by having the financial instrument valuation

engine pass native exposures to a separate computational engine that calculates the
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commensurable exposure measure. Additionally, the invention could be part of an
Internet-based risk-management-service whereby a client transmits native exposures over
the Internet and the risk-management-service provider calculates the commensurable
exposure measures and provides the results to the client over the Internet.

Having described and illustrated the principles of the present invention with
reference to an illustrated embodiment, it will be recognized that the illustrated
embodiment can be modified in arrangement and detail without departing from such
principles. It should be understood that the programs, processes, or methods described
herein are not related or limited to any particular type of computer apparatus, unless
indicated otherwise. Various types of general purpose or specialized computer apparatus
may be used with or perform operations in accordance with the teachings described
herein. Elements of the illustrated embodiment shown in software may be implemented
in hardware and vice versa.

In view of the many possible embodiments to which the principles of the present
invention may be applied, it should be recognized that the detailed embodiments are
illustrative only and should not be taken as limiting the scope of my invention. Rather,
the invention includes all such embodiments as may come within the scope and spirit of

the following claims and equivalents thereto.
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Claims:

What is claimed is:
1. A method for characterizing the volatility exposure of a portfolio of financial assets,
comprising:

receiving a first volatility exposure characterization for a first financial asset
valued under a first mathematical model;

receiving a second volatility exposure characterization for a second financial
asset valued under a second mathematical model;

converting the first volatility exposure characterization to a volatility exposure
characterization for a base financial model;

converting the second volatility exposure characterization to a volatility exposure
characterization of the base financial model, whereby the first and second volatility
exposure characterizations are commensurable; and

combining the converted first and second volatility exposure characterization into

a volatility exposure characterization of the portfolio.

2. The method according to claim 1 wherein the first asset comprises an interest-rate

derivative.

3. The method according to claim 2 wherein the first asset comprises one of a swaption

and a cap.

4. The method according to claim 1 wherein the base model comprises a Gaussian

Heath-Jarrow-Morton volatility model.

5. The method of claim 1 outputting the volatility exposure characterization of the

portfolio.

6. The method as recited in claim 5 wherein the volatility exposure output comprises a
two-dimensional heat map representation wherein the volatility exposure is indicated

relative to a heat value on the graph.
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7. The method as recited in claim 6 wherein time and maturity of the volatility risk are

represented along axes of the graph.

8. A risk management system for determining the volatility exposure of a portfolio of
financial assets, comprising:

an electronic connection to a network for receiving a first volatility exposure
characterization for a first financial asset valued under a first mathematical model and a
second volatility exposure characterization for a second financial asset valued under a

second mathematical model;

a module for converting the first volatility exposure characterization to a
volatility exposure characterization for a base financial model;

a module for converting the second volatility exposure characterization to a
volatility exposure characterization of the base financial model, whereby the first and
second volatility exposure characterizations are commensurable; and

a module for combining the converted first and second volatility exposure

characterization into a volatility exposure characterization of a portfolio.

9. The risk management system as recited in claim 8 wherein one of the first and second

financial assets comprise an interest-rate derivative.

10. The risk management system as recited in claim 8 wherein one of the first and

second financial assets comprise one of a swaption and a cap.

11. The risk managerment system according to claim 8 wherein the base model

comprises a Gaussian Heath-Jarrow-Morton volatility model.

12. The risk management system as recited in claim 8 further comprising a module for

outputting the volatility exposure characterization of the portfolio.
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13. The risk management system as recited in claim 12 wherein the volatility exposure
output comprises a three dimensional graphic representation wherein the volatility

exposure is indicated by a shade on the graph.

14. The risk management system as recited in claim 13 wherein time and maturity of the

volatility risk are represented along axes of the graph.

15. The risk management system of claim 8 wherein the volatility exposure is a vega

with respect to a Heath-Jarrow-Morton volatility.

16. A method for use in a risk management system, comprising the acts of:

providing a sever computer coupled to a client system by way of a network;

receiving from said client system a first volatility exposure characterization for a
first financial asset valued under a first mathematical model;

converting on the server the first volatility exposure characterization to a
volatility exposure characterization for a base financial model;

receiving from said client system a second volatility exposure characterization for
a second financial asset valued under a second mathematical model;

converting on the server the second volatility exposure characterization to a
volatility exposure characterization of the base financial model, whereby the first and
second volatility exposure characterizations are commensurable; and

combining the first and second volatility exposures characterizations into a

portfolio volatility exposure characterization.

17. The method as recited in claim 16 wherein the portfolio volatility exposure
characterization is expressed in terms of vega with respect to a Guassian Heath-

Jarrow-Morton volatility parameter.

18. The method as recited in claim 17 wherein the vega is used to determine a volatility

hedge for the portfolio.
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19. The method as recited in claim 17 wherein the first and second mathematical models

produce incommensurable vegas.

20. The method as recited in claim 17 wherein the base model is a Guassian Heath-

Jarrow-Morton model.
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