(12) 发明专利申请

(10) 申请公布号 CN 103436000 A
(43) 申请公布日 2013.12.11

(21) 申请号 201310352149.1
(22) 申请日 2013.08.14

(71) 申请人 吴江市英力达塑料包装有限公司
地址 215200 江苏省苏州市吴江区松陵镇高新村（体育路旁）

(72) 发明人 倪迪

(74) 专利代理机构 南京经纬专利商标代理有限公司 32200
代理人 李纪昌

(51) Int. Cl.
C08L 71/12 (2006.01)
C08L 77/00 (2006.01)
C08K 13/04 (2006.01)
C08K 7/10 (2006.01)
C08K 7/06 (2006.01)
C08K 3/04 (2006.01)

(54) 发明名称
一种导热增强 PPO/PA 合金及其制备方法

(57) 摘要
本发明涉及一种导热增强 PPO/PA 合金及其制备方法。该合金包括以下含量百分比的原料：偶联剂 60％～90％、尼龙 50％～80％、碳化硅 2％～4％、碳纤维 6％～8％、硅微粉 12％～16％、纳米氧化铝 2％～5％、焦磷酸三聚氰胺 10％～20％、抗氧剂 0．5％～1％、润滑剂 5％～10％、增韧剂 1％～3％、马来酸酐接枝乙烯－1％辛烯共聚物 1％～3％。本发明制备工艺简单，制得的产品机械性能好，稳定性高，且具有良好的阻燃性能和导热性能，该合金能够代替部分金属原材料生产零件和外壳，大大降低了生产成本，提高了生产厂家的竞争力。
1. 一种导热增强 PPO/PA 合金，其特征在于包括按照重量份数计的如下原料：聚苯醚 60~90 份、尼龙 50~80 份、碳化硅晶须 2~4 份、碳纤维 6~8 份、硅微粉 12~16 份、纳米氧化铝 2~5 份、焦磷酸三聚氰胺 10~20 份、抗氧化剂 0.5~1 份、润滑剂 TAF0.5~1 份、增韧剂 7~11 份、马来酸酐接枝乙烯 -1~1 辛烯共聚物 1~3 份。

2. 根据权利要求 1 所述的导热增强 PPO/PA 合金，其特征在于所述的抗氧化剂为抗氧化剂 245。

3. 根据权利要求 1 所述的导热增强 PPO/PA 合金，其特征在于所述的增韧剂为丁腈橡胶。

4. 基于权利要求 1 所述的导热增强 PPO/PA 合金的制备方法，其特征在于包括如下步骤：

(1) 将尼龙和聚苯醚在 80~90℃下干燥 6~8 小时；
(2) 将干燥后的尼龙和聚苯醚加入到高速混合机中，并向混合机中加入碳化硅晶须、碳纤维、硅微粉、纳米氧化铝、焦磷酸三聚氰胺、抗氧化剂、润滑剂 TAF、增韧剂和马来酸酐接枝乙烯 -1~1 辛烯共聚物，混合均匀，得到混合物料；
(3) 将步骤 (2) 得到的混合物料投入到双螺杆挤出机中，熔融挤出，造粒，得到导热增强 PPO/PA 合金。
一种导热增强PPO/PA合金及其制备方法

技术领域
【0001】本发明属于高分子材料技术领域，具体涉及一种导热增强PPO/PA合金及其制备方法。

背景技术
【0002】聚苯醚是一类耐高温的热塑性树脂，化学式简称PPO，是由2,6-二取代苯酚经氧化偶联聚合而成的热塑性树脂，具有优良的综合性能，最大的特点是在长期负荷下，具有优良的尺寸稳定性和突出的电绝缘性，使用温度范围广，可在-127～121℃范围内长期使用。同时，聚苯醚具有优良的耐水和耐蒸汽性能，其制品的拉伸强度、抗冲强度和抗蠕变性优良。此外，还有较好的耐磨性和电性能，广泛用于医疗、电子、机械等领域。但是，其流动性差，不耐溶剂。如何弥补这些缺点是目前广大研发学者的研究热点之一。

尼龙属于结晶材料，流动性好，耐溶剂，但是它易吸水，尺寸稳定性差。PPO/PA合金可以综合PPO和PA的优点，弥补不足，综合性能优良。目前大多数增强PPO和PA采用玻璃纤维进行增强，强度提升空间不够，而且大部分PPO/PA合金不具有导热的性能。因此如何克服现有技术的不足是目前高分子技术领域亟需解决的问题。

发明内容
【0003】本发明的目的是为了解决现有技术的不足，提供一种导热增强PPO/PA合金及其制备方法，本发明产品机械性能好、稳定性高，且具有良好的导热性能。
【0004】本发明采用的技术方案如下：
一种导热增强PPO/PA合金，包括按照重量份份数计的如下原料：聚苯醚60~90份、尼龙50~80份、碳化硅晶须2~4份、碳纤维6~8份、硅微粉12~16份、纳米氧化铝2~5份、焦磷酸三聚氰胺10~20份、抗氧剂0.5~1份、润滑剂TAF0.5~1份、增韧剂7~11份、马来酸酐接枝乙烯-1~辛烯共聚物1~3份。
【0005】进一步优选地是所述的抗氧剂为抗氧剂245。
【0006】进一步优选地是所述的增韧剂为丁腈橡胶。
【0007】本发明还提供一种导热增强PPO/PA合金的制备方法，包括如下步骤：
（1）将尼龙和聚苯醚在80~90℃下干燥6~8小时；
（2）将干燥后的尼龙和聚苯醚加入到高速混合机中，并向混合机中加入碳化硅晶须、碳纤维、硅微粉、纳米氧化铝、焦磷酸三聚氰胺、抗氧剂、润滑剂TAF、增韧剂和马来酸酐接枝乙烯-1~辛烯共聚物，混合均匀，得到混合物料；
（3）将步骤（2）得到的混合物料投入到双螺杆挤出机中，熔融挤出，造成，得到导热增强PPO/PA合金。
【0008】本发明与现有技术相比，其有益效果为：（1）本发明产品中机械性能好、稳定性高，原料中使用碳化硅晶须和碳纤维来合金进行增强，同时以焦磷酸三聚氰胺为阻燃剂，使得本发明产品具有良好的阻燃性能；（2）以硅微粉和纳米氧化铝以及碳纤维为导热填料，
大大增强了合金的导热性能；(3) 本发明制备工艺简单，制得的合金能够代替部分金属原材料生产零件和外壳，大大降低了生产成本，提高了生产厂家的竞争力。

具体实施例

[0009] 一种导热增强 PPO/PA 合金，包括按重量份数计的如下原料：聚苯醚 60～90 份、尼龙 50～80 份、氧化硅微粉 2～4 份、碳纤维 6～8 份、硅微粉 12～16 份、纳米氧化铝 2～5 份、焦磷酸三聚氰胺 10～20 份、抗氧剂 0.5～1 份、润滑剂 TAF 0.5～1 份、增韧剂 7～11 份、马来酸酐接枝乙烯 1～3 份。

[0010] 该导热增强 PPO/PA 合金的制备方法，包括如下步骤：

(1) 将尼龙和聚苯醚在 80～90°C 下干燥 6～8 小时；

(2) 将干燥后的尼龙和聚苯醚加入到高速混合机中，并向混合机中加入氧化硅微粉、碳纤维、硅微粉、纳米氧化铝、焦磷酸三聚氰胺、抗氧剂、润滑剂 TAF、增韧剂和马来酸酐接枝乙烯 1～3 份、辛烯共聚物 1～3 份，混合均匀，得到混合物料；

(3) 将步骤(2)得到的混合物料投入到双螺杆挤出机中，熔融挤出，造粒，得到导热增强 PPO/PA 合金。

[0011] 下面结合实施例对本发明作进一步的详细描述。

[0012] 实施例 1

一种导热增强 PPO/PA 合金，包括按重量份数计的如下原料：聚苯醚 600 份、尼龙 50 份、氧化硅微粉 2 份、碳纤维 6 份、硅微粉 12 份、纳米氧化铝 2 份、焦磷酸三聚氰胺 10 份、抗氧剂 245 份、丁腈橡胶 7 份、马来酸酐接枝乙烯 1～3 份、辛烯共聚物 1 份。

[0013] 本实施例产品的制备方法，包括如下步骤：

(1) 将尼龙和聚苯醚在 90°C 下干燥 6 小时；

(2) 将干燥后的尼龙和聚苯醚加入到高速混合机中，并向混合机中加入氧化硅微粉、碳纤维、硅微粉、纳米氧化铝、焦磷酸三聚氰胺、抗氧剂、润滑剂 TAF、丁腈橡胶和马来酸酐接枝乙烯 1～3 份、辛烯共聚物，混合均匀，得到混合物料；

(3) 将步骤(2)得到的混合物料投入到双螺杆挤出机中，熔融挤出，造粒，得到导热增强 PPO/PA 合金。

[0014] 实施例 2

一种导热增强 PPO/PA 合金，包括按重量份数计的如下原料：聚苯醚 90 份、尼龙 80 份、氧化硅微粉 4 份、碳纤维 8 份、硅微粉 16 份、纳米氧化铝 5 份、焦磷酸三聚氰胺 20 份、抗氧剂 245 份、润滑剂 TAF 1 份、丁腈橡胶 11 份、马来酸酐接枝乙烯 1～3 份、辛烯共聚物 3 份。

[0015] 本实施例产品的制备方法，包括如下步骤：

(1) 将尼龙和聚苯醚在 80°C 下干燥 8 小时；

(2) 将干燥后的尼龙和聚苯醚加入到高速混合机中，并向混合机中加入氧化硅微粉、碳纤维、硅微粉、纳米氧化铝、焦磷酸三聚氰胺、抗氧剂 245、润滑剂 TAF、丁腈橡胶和马来酸酐接枝乙烯 1～3 份、辛烯共聚物，混合均匀，得到混合物料；

(3) 将步骤(2)得到的混合物料投入到双螺杆挤出机中，熔融挤出，造粒，得到导热增强 PPO/PA 合金。

[0016] 实施例 3
一种导热增强 PPO/PA 合金，包括按照重量份数计的如下原料：聚苯醚 75 份、尼龙 66 份、碳化硅晶须 3 份、碳纤维 7 份、硅微粉 15 份、纳米氧化铝 4 份、焦磷酸三聚氰胺 17 份、抗氧剂 2450.8 份、润滑剂 TAF0.6 份、丁腈橡胶 9 份、马来酸酐接枝乙烯-1-辛烯共聚物 2 份。

[0017] 本实施例产品的制备方法，包括如下步骤：

(1) 将尼龙和聚苯醚在 85℃下干燥 7 小时；

(2) 将干燥后的尼龙和聚苯醚加入到高速混合机中，并向混合机中加入碳化硅晶须、碳纤维、硅微粉、纳米氧化铝、焦磷酸三聚氰胺、抗氧剂 2450、润滑剂 TAF、丁腈橡胶和马来酸酐接枝乙烯-1-辛烯共聚物，混合均匀，得到混合物料；

(3) 将步骤(2)得到的混合物料投入到双螺杆挤出机中，熔融挤出，造粒，得到导热增强 PPO/PA 合金。

[0018] 性能检测

对本发明实施例 1~3 产品的性能进行测试，测试结果见表 1。

<table>
<thead>
<tr>
<th>性能</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>热变形温度（1.8MPa），℃</td>
<td>212</td>
<td>218</td>
<td>219</td>
</tr>
<tr>
<td>悬臂梁冲击强度（有缺口），kJ/m²</td>
<td>28</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>弯曲强度，MPa</td>
<td>150</td>
<td>155</td>
<td>163</td>
</tr>
<tr>
<td>弯曲模量，GPa</td>
<td>4.52</td>
<td>4.61</td>
<td>4.77</td>
</tr>
<tr>
<td>拉伸强度，MPa</td>
<td>110</td>
<td>115</td>
<td>118</td>
</tr>
<tr>
<td>导热系数，W/(m·K)⁻¹</td>
<td>57.65</td>
<td>58.82</td>
<td>60.32</td>
</tr>
<tr>
<td>阻燃级别（2.0mm）</td>
<td>V0</td>
<td>V0</td>
<td>V0</td>
</tr>
</tbody>
</table>