(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 103479586 B

(45) 授权公告日 2017.03.01

(21) 申请号 201310363158.0

(22) 申请日 2009.05.14

(65) 同一申请的已公布的文献号
申请公布号 CN 103479586 A

(43) 申请公布日 2014.01.01

(30) 优先权数据
61/053,609 2008.05.15 US
61/201,145 2008.12.05 US
61/157,875 2009.03.05 US

(62) 分案原申请数据
200980127929.8 2009.05.14

(73) 专利权人 细胞基因公司
地址 美国新泽西州

(72) 发明人 杰弗里·B·埃特尔 梅·拉伊
杰伊·托马斯·巴克斯特伦

(74) 专利代理机构 北京安信万达知识产权代理有限公司 11262
代理人 张瑜 张淑敏

(51) Int.Cl.
A61K 9/20(2006.01)
A61K 9/48(2006.01)
A61K 31/706(2006.01)
A61K 47/34(2006.01)
A61P 7/00(2006.01)
A61P 35/02(2006.01)
A61P 15/08(2006.01)
A61P 35/00(2006.01)
A61P 1/18(2006.01)
A61P 1/00(2006.01)

(56) 对比文件
CN 102099018 B,2016.01.13
审查员 卢坤

(54) 发明名称
胞苷类似物的口服制剂和其使用方法

(57) 摘要
本发明提供口服给予的含有胞苷类似物的
药物组合物，其中所述组合物基本在胃中释放胞
苷类似物。本发明还提供使用本发明提供的口服
制剂治疗疾病和紊乱的方法。
1. 一种用于口服给予的含有治疗有效量的5-氮杂胞苷的药物组合物，其中所述组合物是立即释放组合物。
2. 如权利要求1所述的组合物，还含有选自甘露醇、微晶纤维素、交联聚维酮和硬脂酸镁的赋形剂。
3. 如权利要求1所述的组合物，还含有渗透促进剂。
4. 如权利要求3所述的组合物，其中所述渗透促进剂是d-α-生育酚聚乙二醇1000琥珀酸酯。
5. 如权利要求4所述的组合物，其中d-α-生育酚聚乙二醇1000琥珀酸酯在组合物中占所述组合物总重量的2重量%。
6. 如权利要求1所述的组合物，其不含胞苷脱氨酶抑制剂。
7. 如权利要求1所述的组合物，其不含四氢尿苷。
8. 如权利要求1所述的组合物，其与额外治疗剂联合施用。
9. 如权利要求1所述的组合物，其中5-氮杂胞苷的量为至少40mg。
10. 如权利要求1所述的组合物，其中5-氮杂胞苷的量为至少300mg。
11. 如权利要求1所述的组合物，其中5-氮杂胞苷的量为至少360mg。
12. 如权利要求1所述的组合物，其中5-氮杂胞苷的量为至少400mg。
13. 如权利要求1所述的组合物，其中5-氮杂胞苷的量为至少480mg。
14. 如权利要求1所述的组合物，其在口服给予至个体后实现曲线下面积值为至少200ng·hr/mL。
15. 如权利要求1所述的组合物，其在口服给予至个体后实现曲线下面积值为至少400ng·hr/mL。
16. 如权利要求1所述的组合物，其在口服给予至个体后实现最大血浆浓度为至少100ng/mL。
17. 如权利要求1所述的组合物，其在口服给予至个体后实现最大血浆浓度为至少200ng/mL。
18. 如权利要求1所述的组合物，其在口服给予至个体后实现达到最大血浆浓度的时间小于180分钟。
19. 如权利要求1所述的组合物，其在口服给予至个体后实现达到最大血浆浓度的时间小于90分钟。
20. 如权利要求1所述的组合物，其在口服给予至个体后实现达到最大血浆浓度的时间小于60分钟。
21. 如权利要求1所述的组合物，其中所述组合物是非肠溶包衣的，该非肠溶包衣是糖包衣、膜包衣或压缩包衣。
22. 如权利要求1所述的组合物，其中所述组合物是非肠溶包衣的，该非肠溶包衣是糖包衣、膜包衣或压缩包衣。
23. 如权利要求1所述的组合物，其中所述非肠溶包衣是二氧化硅、二氧化钛、二氧化锆或二氧化硅等多种非肠溶包衣。
24. 5-氮杂胞苷在制备用于治疗患有与异常细胞增殖相关的疾病的个体的药物组合物中的用途，其中所述组合物是制备为用于口服给予，且其中所述组合物是立即释放组合物。
25. 如权利要求1所述的组合物，其在口服给予至个体后实现曲线下面积值为至少200ng·hr/mL。
权利要求书

26. 如权利要求24所述的用途，其中所述组合物被制备为与额外治疗剂共同给予。

27. 如权利要求24所述的用途，其中所述组合物还含有渗透促进剂。

28. 如权利要求27所述的用途，其中所述渗透促进剂是d-a-生育酚醇乙二醇1000琥珀酸酯。

29. 如权利要求28所述的用途，其中d-a-生育酚醇乙二醇1000琥珀酸酯在组合物中占所述组合物总重量的2重量%。

30. 如权利要求24所述的用途，其中所述组合物被制备为不与胞苷脱氨酶抑制剂共同给予。

31. 如权利要求24所述的用途，其中所述组合物是单一单位剂型。

32. 如权利要求24所述的用途，其中所述组合物还含有选自甘露醇、微晶纤维素、交联聚维酮和硬脂酸镁的赋形剂。

33. 如权利要求24所述的用途，其中5-氟甲酰胺的量为至少40mg。

34. 如权利要求24所述的用途，其中5-氟甲酰胺的量为至少300mg。

35. 如权利要求24所述的用途，其中5-氟甲酰胺的量为至少360mg。

36. 如权利要求24所述的用途，其中5-氟甲酰胺的量为至少400mg。

37. 如权利要求24所述的用途，其中5-氟甲酰胺的量为至少480mg。

38. 如权利要求24所述的用途，其中5-氟甲酰胺的量为40mg、60mg、80mg、100mg、120mg、140mg、160mg、180mg、200mg、220mg、240mg、260mg、280mg、300mg、320mg、340mg、360mg、380mg、400mg、420mg、440mg、460mg或480mg。

39. 如权利要求24所述的用途，其中所述组合物被制备为在口服给予所述个体后实现曲线下面积值为至少200ng-hr/ml。

40. 如权利要求24所述的用途，其中所述组合物被制备为在口服给予所述个体后实现曲线下面积值为至少400ng-hr/ml。

41. 如权利要求24所述的用途，其中所述组合物被制备为在口服给予所述个体后实现最大血浆浓度为至少100ng/ml。

42. 如权利要求24所述的用途，其中所述组合物被制备为在口服给予所述个体后实现最大血浆浓度为至少200ng/ml。

43. 如权利要求24所述的用途，其中所述组合物被制备为在口服给予所述个体后实现达到最大血浆浓度的时间小于180分钟。

44. 如权利要求24所述的用途，其中所述组合物被制备为在口服给予所述个体后实现达到最大血浆浓度的时间小于90分钟。

45. 如权利要求24所述的用途，其中所述组合物是非肠溶包衣的，该非肠溶包衣是糖包衣、膜包衣或压缩包衣。

46. 如权利要求45所述的用途，其中该膜包衣是纤维素醚聚合物。

47. 如权利要求46所述的用途，其中该纤维素醚聚合物是羟丙基甲基纤维素、羟丙基纤维素或甲基纤维素。

48. 一种含有治疗有效量的5-氟甲酰胺的药物组合物，其中所述组合物用于治疗与异常细胞增殖相关的疾病或紊乱，其中所述组合物制备成用于口服给予，且其中所述组合物
是立即释放组合物。

49. 如权利要求48所述的药物组合物，其中5-氮杂胞苷的量为40mg。
50. 如权利要求48所述的药物组合物，其中5-氮杂胞苷的量为300mg。
51. 如权利要求48所述的药物组合物，其中5-氮杂胞苷的量为360mg。
52. 如权利要求48所述的药物组合物，其中5-氮杂胞苷的量为400mg。
53. 如权利要求48所述的药物组合物，其中5-氮杂胞苷的量为480mg。
54. 如权利要求48所述的药物组合物，其中所述组合物制备成在口服给予后实现曲线下面积值为至少200ng·hr/mL。
55. 如权利要求48所述的药物组合物，其中所述组合物制备成在口服给予后实现曲线下面积值为至少400ng·hr/mL。
56. 如权利要求48所述的药物组合物，其中所述组合物制备成在口服给予后实现最大血浆浓度为至少100ng/mL。
57. 如权利要求48所述的药物组合物，其中所述组合物制备成在口服给予后实现最大血浆浓度为至少200ng/mL。
58. 如权利要求48所述的药物组合物，其中所述组合物制备成在给予后实现达到最大血浆浓度的时间小于60分钟。
59. 如权利要求48所述的药物组合物，其中所述组合物制备成在给予后实现达到最大血浆浓度的时间小于90分钟。
60. 如权利要求48～59中任一项所述的药物组合物，其中所述组合物制备成用于与额外治疗剂联合口服给予。
61. 如权利要求48～59中任一项所述的药物组合物，其中所述疾病或紊乱是骨髓增生异常综合征或急性骨髓性白血病。
62. 如权利要求48～59中任一项所述的药物组合物，其中所述组合物是单一单位剂型。
63. 如权利要求48～59中任一项所述的药物组合物，其中所述组合物还含有选自甘露醇、微晶纤维素、交联聚维酮和硬脂酸镁的赋形剂。
64. 如权利要求48所述的组合物，其中所述组合物是非肠溶包衣的，该非肠溶包衣是糖包衣、膜包衣或压缩包衣。
65. 如权利要求64所述的组合物，其中该膜包衣是纤维素醚聚合物。
66. 如权利要求65所述的组合物，其中该纤维素醚聚合物是羟丙基甲基纤维素、羟丙基纤维素或甲基纤维素。
胞苷类似物的口服制剂和其使用方法

【0001】本申请是申请日为2009年05月14日，申请号为200980127929.8，名称为“胞苷类似物的口服制剂和其使用方法”的发明专利的分案。

【0002】I.相关申请的交叉引用

【0003】本申请要求2008年5月15日提交的美国临时专利申请号61/053,609、2008年12月5日提交的美国临时专利申请号61/201,145和2009年3月5日提交的美国临时专利申请号61/157,875的优先权，在此通过引用将其全部内容并入本文。

II.技术领域

【0004】本发明提供了用于在个体中口服给予的含有胞苷类似物或其盐、溶剂化物、水合物、前体和/或衍生物的药物制剂。本发明还提供了制造所述制剂的方法和使用所述制剂来治疗疾病和紊乱，包括癌症，与异常细胞增殖相关的紊乱，血液紊乱和免疫紊乱的方法。

III.背景技术

【0005】癌症是全球主要的公共健康问题，仅在美国2005年就预计有大约570,000癌症相关的死亡。参见，例如，Jemal等人，CA Cancer J.Clin.55(1)；10-30 (2005)。许多类型的癌症已在医学文献中记载。例子包括血液癌、脑癌、肺癌(例如，非小细胞肺癌和小细胞肺癌)、结肠癌、乳腺癌、前列腺癌、卵巢癌、脑癌和肠癌。随着一般人口老化和随着癌症新形式的发展，癌症的发病率持续攀升，持续需要存在治疗癌症个体的有效治疗方法。

【0006】骨髓增生异常综合征(MDS)指多种造血干细胞紊乱。MDS影响大约40,000-50,000美国人和75,000-85,000欧洲个体。由于产生无效的血细胞，MDS的特征在于细胞骨髓形态和成熟受损(骨髓异常形成)、外周血细胞减少和发展成急性白血病的可变风险。参见，例如，The Merck Manual 953(第17版，1999)；List等人，J.Clin.Oncol.18:1424 (1990)。

【0007】由于在一个或多个造血系中存在发育不良变化，包括在骨髓、红血球和巨核细胞系列中的发育不良变化，因此MDS被归类在一起。这些变化在这三个谱系的一个或多个中导致血细胞减少。患MDS的患者可能会发展与贫血病、嗜中性白血球减少症(感染)和/或血小板减少症(出血)相关的并发症。约10%～30%的患MDS者可能会发展急性白血病。在MDS的早期阶段，血细胞减少的主要原因是增加的程序性细胞死亡(凋亡)。随着疾病进展并转化成白血病，白血病细胞的增殖抑制了健康的骨髓。在具有无痛疾病表现和其他侵略性表现的一些病例中，该疾病过程不同于转化为白血病急性形式的极短临床过程。多数高危MDS人群最终经历骨髓衰竭。在发展成AML之前，高达50%的MDS患者死于并发症，如感染或出血。

【0008】考虑患者的过往病史来定义原发性和次发性MDS与化疗、放射治疗或接触有毒物质的专业治疗相关的以往治疗是描绘从原发性MDS到次发性MDS(sMDS)的因素。在细胞遗传学分析上，两者之间的区别是异常核型的复杂性，染色体畸变是典型的原发性MDS，而多种变化更为频繁地在次发性紊乱中看到。一些药物可能有具体的目标，如羟基脲针对17p，拓扑异构体酶抑制剂针对11q23和21q22。MDS的恶性细胞的遗传变化主要导致遗传物质的损失，包括可能的肿瘤抑制基因。

[0010] 核苷类似物临床上已用于治疗病毒感染和癌症。大多数核苷类似物被分为抗代谢物, 在其进入细胞后, 核苷类似物接着磷酸化成核苷 5’-单磷酸酯、二磷酸酯和三磷酸酯。[0011] 5-氮杂胞苷 (National Service Center 为 NSC-102816; CAS 登记号为 320-67-2), 也称作阿扎胞苷 (azacitidine), AZA 或 1-β-D-呋喃核糖基-1,3,5-三嗪-2(1H)-酮。目前市场上作为药品 VIDAZA® 出售, 5-氮杂胞苷是核苷类似物, 更具体而言是胞苷类似物。5-氮杂胞苷是其相关的天然核苷, 即胞苷的拮抗剂。5-氮杂胞苷和 5-氮杂-2’-脱氧胞苷 (也称作地西他滨, 脱氧胞苷的类似物) 也是脱氧胞苷的拮抗剂, 这些胞苷类似物与其相关的天然核苷之间的结构差异是在胞嘧啶环的位置处存在代替碳的氮。5-氮杂胞苷可被定义为具有分子式 C_{9}H_{12}N_{4}O_{5}, 分子量为 244.21 克 / 摩尔, 并具有以下结构:

![5-氮杂胞苷结构式]

[0012] 5-氮杂胞苷。

[0013] 这类胞苷类似物的其他成员包括例如: 1-β-D-阿拉伯呋喃糖基胞嘧啶 (阿糖胞苷或 ara-C)、5-氮杂-2’-脱氧胞苷 (地西他滨或 5-氮杂-CdR)、伪胞苷 (psiCR)、5-氟-2’-脱氧胞苷 (FdCR)、2’-脱氧-2’、2’-脱氧胞苷 (吉西他滨)、5-氮杂-2’-脱氧-2’、2’-脱氧胞苷、5-氮杂-2’-脱氧-2’-氟胞苷、1-β-D-呋喃核糖基-2(1H)-嘧啶酶 (Zebularine)、2’、3’-二脱氧-5-氟-3’-硫杂胞苷 (Emtriva)、2’-环胞苷 (安西他滨)、1-β-D-阿拉伯呋喃糖基-5-氮杂胞嘧啶 (法扎拉滨或 ara-AC)、6-氮杂胞苷 (6-氮杂-AC)、5,6-二氢-5-氮杂胞苷 (dH-氮杂-AR)、N^{3}-戊氧基氨酸-5’-脱氧-5-氟胞苷 (卡培他滨)、N^{3}-十八烷基-阿糖胞苷, 和 反义酸阿糖胞苷。

[0014] 在其结合到复制中的 DNA 中后, 5-氮杂胞苷或 5-氮杂-2’-脱氧胞苷与 DNA 甲基转移酶形成共价复合物。DNA 甲基转移酶负责从头 DNA 甲基化并在复制中的 DNA 的女儿 DNA 链中复制建立的甲基化模式。通过 5-氮杂胞苷或 5-氮杂-2’-脱氧胞苷抑制 DNA 甲基转移酶会导致 DNA 低甲基化, 从而通过重新表达具有正常细胞周期调控、分化和死亡的基因恢复形态发育不良、不成熟造血细胞和癌细胞的正常功能。这些胞苷类似物的细胞毒性作用导致不再响应正常细胞生长调控机制的快速分裂细胞, 包括癌细胞死亡。5-氮杂胞苷, 与 5-氮杂-2’-脱氧胞苷不同, 还结合到 RNA。氮杂胞苷的细胞毒性作用可能是因为多种机制, 包括 DNA、

[0016] 5-氮杂胞苷和其他胞苷类似物被批准皮下(SC)或静脉(IV)给予以治疗各种增生紊乱。例如，通过消除SC给予可能出现的注射部位反应和/或通过允许改善患者依从性，胞苷类似物的口服给药对于患者和医生将更为理想的和方便的。然而，由于化学不稳定性、酶不稳定性和/或差渗透性，已经证明胞苷类似物很困难口服输送。例如，胞苷类似物被认为在胃的酸性环境中是酸活性和不稳定的。之前试图开发胞苷类似物的口服制剂要求药芯有肠溶衣，以防止活性药物成分(API)在胃中发生体外不能接受的水解(这是可理解的和可接受的)，从而使得药物优先在胃肠道下部的区域中吸收，如小肠的空肠中吸收。参见，例如，Sands等人，美国专利公告2004/0162263(申请号10/698,983)。此外，本领域中普遍接受的观点是水会导致的胞苷类似物在配制过程中不利的水解降解，随后影响到API在剂型中的稳定性。因此，应用到用于胞苷类似物的预期口服输送的药芯的包衣之前仅限于有机溶剂型体系，以尽量减少API暴露于水中。

[0017] 极为需要胞苷类似物的口服制剂和剂型，例如，5-氮杂胞苷，以潜在地获得尤其是更有利的剂量或给药期间；改善药代动力学、药效学或安全性；评估长期或维持性治疗的益处；发展最大化生物活性的改进治疗方案；用胞苷类似物治疗新疾病或紊乱；和/或获得其他潜在的有利益处。

[0018] IV. 发明概述

[0019] 本发明提供了含有胞苷类似物的药物组合物，其中所述组合物经口服给予基本在胃中释放API。本发明还提供了制造所述组合物的方法，和使用所述组合物治疗疾病和紊乱，其中包括癌症、异常细胞增殖相关的紊乱和血液紊乱的方法。

[0020] 在某些实施方案中，所述胞苷类似物是5-氮杂胞苷。在其他实施方案中，所述胞苷类似物是5-氮杂-2'-脱氧胞苷(地西他滨或5-氮杂-CdR)。在其他实施方案中，所述胞苷类似物例如是：1-β-D-阿拉伯呋喃糖基胞嘧啶(阿糖胞苷或ara-C)、胞苷苷(PSI 1CR)、5-氮-2'-脱氧胞苷(FdCdr)、2'-脱氧-2'、2'-二氮胞苷(吉西他滨)、5-氮杂-2'-脱氧-2'、2'-二氮胞苷、5-氮杂-2'-脱氧-2'-氮胞苷、1-β-D-呋喃核糖基-2(1H)-嘧啶酮(Zebularine)、2'，3'-二脱氧-5-氮-3'-硫杂胞苷(Emtriva)、2'-环胞苷(安西他滨)、1-β-D-阿拉伯呋喃糖基-5-氮杂胞嘧啶(法布拉拉或ara-AC)。5-氮杂胞苷(5-氮杂-CR)、5,6-二氮-5-氮杂胞苷(5-氮杂-CR)、5,6-二氮-5-氮杂胞苷(5-氮杂-CR)、N1-十八烷基-阿糖胞苷、反油酸
阿糖胞苷、或它们的衍生物或相关的类似物。

[0021] 本文的某些实施方案提供了含有胞苷类似物的单一单剂型的组合物。本文的某些实施方案提供了非肠溶性的组合物。本文的某些实施方案提供了含有胞苷类似物的片剂组合物。本文的某些实施方案提供了含有胞苷类似物的胶囊组合物。所述胶囊可以是例如硬明胶胶囊或软明胶胶囊；特定的实施方案提供了羟丙基甲基纤维素（HPMC）胶囊。在某些实施方案中，所述单一单剂型任选还含有一种或多种赋形剂。在某些实施方案中，所述片剂任选地还含有一种或多种赋形剂。在其他实施方案中，所述胶囊任选地还含有一种或多种赋形剂。在某些实施方案中，所述组合物是经口服给予立即释放API的片剂。在其他实施方案中，所述组合物是经口服给予立即释放API的胶囊。在其他实施方案中，所述组合物是基本在胃中控释API的片剂。在某些实施方案中，所述组合物是经口服给予立即释放API的胶囊。在其他实施方案中，所述组合物是基本在胃中控释API的胶囊。

[0022] 本文的某些实施方案提供了制造用于口服输送的胞苷类似物制剂的方法。还提供了含有包装材料、胞苷类似物的口服制剂和标签的制品，所述标签表明所述制剂用于治疗某些疾病或紊乱，包括例如癌症、与异常细胞增殖相关的紊乱、血液紊乱或免疫紊乱。

[0023] 本文的某些实施方案提供了使用本发明提供的制剂治疗疾病或紊乱，其中包括例如癌症、与异常细胞增殖相关的紊乱、血液紊乱或免疫紊乱的方法。在某些实施方案中，所述胞苷类似物的制剂口服给予至有此需要的个体以治疗癌症或血液紊乱，例如MDS、AML、ALL、CML、NHL、白血病或淋巴瘤；或实体瘤，例如肉瘤、黑色素瘤、癌、结肠癌、乳腺癌、卵巢癌、胃肠系统癌、肾癌、肺癌（例如，非小细胞肺癌和小细胞肺癌）、睾丸癌、前列腺癌、胰腺癌或骨癌。在某些实施方案中，所述胞苷类似物的制剂口服给予至有此需要的个体以治疗免疫紊乱。在某些实施方案中，本文发明提供的口服制剂与一种或多种治疗剂共同给予以在有此需要的个体中提供了协同治疗作用。在某些实施方案中，本文发明提供的口服制剂与一种或多种治疗剂共同给予以在有此需要的个体中提供复敏作用。所述共同给予试剂可以是本文所述的癌症治疗剂。在某些实施方案中，所述共同给予试剂可以例如通过口服或注射给予。

[0024] 在某些实施方案中，本发明提供了含有5-氮杂胞苷的片剂以及制造和使用所述片剂以治疗癌症、与异常细胞增殖相关的紊乱或血液紊乱的方法。在某些实施方案中，所述片剂任选地还含有一种或多种赋形剂，例如助流剂、稀释剂、润滑剂、着色剂、崩解剂、制粒剂、粘结剂、聚合物和/或包衣剂。用于制备本文发明提供的某些制剂的成分的例子记载在例如Etter等人，美国专利申请公开号2008/0057086（申请号11/849,958）中，在此通过引用将其全部内容并入本文。

[0025] 本文的具体实施方案尤其提供了含有治疗有效量的5-氮杂胞苷的药物组合物，其中所述组合物在口服给予至个体后基本在胃中释放5-氮杂胞苷。其他实施方案提供了前述组合物，其是：立即释放组合物；没有肠溶衣（即，非肠溶衣）；是片剂；是胶囊；还含有选自本文公开的任何赋形剂的赋形剂；还含有渗透促进剂；还含有d-α-生育酚聚乙二醇1000琥珀酸酯；在制剂中还含有占所述制剂总重量约2重量%的渗透促进剂；基本不含胞苷脱氨酶抑制剂；基本不含四氢尿苷；含有至少约40mg量的5-氮杂胞苷；含有至少约100mg量的5-氮杂胞苷；在口服给予至个体后曲线下面积值为至少约
200ng·hr/ml;在口服给予至个体后曲线下面积值为至少约400ng·hr/ml;在口服给予至个体后最大血浆浓度为至少约100ng/ml;在口服给予至个体后最大血浆浓度为至少约200ng/ml;在口服给予至个体后达到最大血浆浓度的时间小于约90分钟;和/或在口服给予至个体后达到最大血浆浓度的时间小于约60分钟。

[0026] 本文的具体实施方案提供了一种用于口服给予的含有治疗有效量的5-氯杂环己烯的药物组合物，其基本在胃中释放5-氯杂环己烯并在口服给予后实现曲线下面积值为至少约200ng·hr/ml。

[0027] 本文的具体实施方案提供了一种用于口服给予的含有治疗有效量的5-氯杂环己烯的药物组合物，其基本在胃中释放5-氯杂环己烯并在口服给予后实现曲线下面积值为至少约400ng·hr/ml。

[0028] 本文的具体实施方案提供了一种用于口服给予的含有治疗有效量的5-氯杂环己烯的药物组合物，其基本在胃中释放5-氯杂环己烯并在口服给予后实现最大血浆浓度为至少约100ng/ml。

[0029] 本文的具体实施方案提供了一种用于口服给予的含有治疗有效量的5-氯杂环己烯的药物组合物，其基本在胃中释放5-氯杂环己烯并在口服给予后实现最大血浆浓度为至少约200ng/ml。

[0030] 本文的具体实施方案提供了一种用于口服给予的含有治疗有效量的5-氯杂环己烯的药物组合物，其基本在胃中释放5-氯杂环己烯并在口服给予后实现达到最大血浆浓度的时间例如小于约6小时、小于约5小时、小于约4小时、小于约3小时、小于约2.5小时、小于约2小时、小于约1.5小时、小于约1小时、小于约45分钟或小于约30分钟。在具体实施方案中，食物的存在可能影响(例如，延长)总暴露和/或达到最大血浆浓度的时间。

[0031] 本文的具体实施方案提供了一种用于口服给予的含有治疗有效量的5-氯杂环己烯的药物组合物，其基本在胃中释放5-氯杂环己烯并在口服给予后实现达到最大血浆浓度的时间小于约60分钟。

[0032] 本文的具体实施方案提供了前述组合物作为单一单位剂型，片剂或胶囊中的任一种。

[0033] 本文的具体实施方案尤其提供了治疗患有与异常细胞增殖相关的疾病的个体的方法，包括口服给予个体含有治疗有效量的5-氯杂环己烯的药物组合物，其中所述组合物在口服给予至个体后基本在胃中释放5-氯杂环己烯。本文的其他实施方案提供了前述方法，其中所述疾病是骨髓增生异常综合征;所述疾病是急性骨髓性白血病;所述方法还包含共同给予有此需要的个体选自本文公开的任何额外治疗剂的额外治疗剂;所述组合物是立即释放组合物;所述组合物没有肠溶衣;所述组合物还含有渗透促进剂;所述组合物还含有渗透促进剂d-α-生育酚聚乙二醇1000琥珀酸酯;所述组合物在制剂中还含有占所述制剂总重量约2重量%的d-α-生育酚聚乙二醇1000琥珀酸酯;所述方法还包括不与药物类似物一起共同给予药物脱酶抑制剂;所述组合物是单一单位剂型;所述组合物是片剂;所述组合物是胶囊;所述组合物还含有选自本文公开的任何赋形剂的赋形剂;5-氯杂环己烯的量为至少约40mg;5-氯杂环己烯的量为至少约400mg;5-氯杂环己烯的量为至少约1000mg;所述方法在口服给予至个体后实现曲线下面积值为至少约200ng·hr/ml;所述方法在口服给予至个体后实现曲线下面积值为至少约400ng·hr/ml;所述方法在口服给予至个体后实现最大血浆浓度
为至少约100ng/mL;所述方法在口服给予至个体后实现最大血浆浓度为至少约200ng/mL;所述方法在口服给予至个体后实现达到最大血浆浓度的时间小于约90分钟;和/或所述方法在口服给予至个体后实现达到最大血浆浓度的时间小于约60分钟。

【0034】本书的具体实施方案尤其提供了含有治疗有效量的5-氮杂胞苷的药物组合物，其中所述组合物用于治疗与异常细胞增殖相关的疾病或紊乱，所述组合物制备成用于口服给予，和其中所述组合物制备成用于基本在胃中释5-氮杂胞苷。本书的其他实施方案提供了前述组合物，其中5-氮杂胞苷的量约40mg、约400ng或约1000mg;制备成在口服给予后实现曲线下面积值为至少约200ng·hr/mL或约400ng·hr/mL;制备成在口服给予后实现最大血浆浓度为至少约100ng/mL或200ng/mL;制备成在给予后达到最大血浆浓度的时间小于约60分钟或90分钟;制备成立即释放组合物的形式;制备成用于与选自本文公开的任何额外治疗剂的额外治疗剂联合口服给予;用于治疗骨髓增生异常综合征或急性骨髓性白血病;还含有透皮剂或含有透皮剂α-生育酚聚乙二醇1000琥珀酸酯;是片剂或胶囊;和/或还含有选自本文公开的任何赋形剂的赋形剂。

【0035】本书的具体实施方案尤其提供了5-氮杂胞苷用于制备用来治疗与异常细胞增殖相关的药物组合物的用途，其中所述组合物制备成用于口服给予，和其中所述组合物制备成用于基本在胃中释5-氮杂胞苷。本书的其他实施方案提供了前述用途，其中;所述疾病是骨髓增生异常综合征或急性骨髓性白血病;5-氮杂胞苷的量选自本文公开的任何量;和/或所述组合物制备成用于立即释放。其他实施方案尤其提供了通过给予本发明提供的药物组合物治疗患有本发明提供的疾病或紊乱的个体的方法，其中所述治疗导致个体的存活率改善。

V.附图说明

【0036】图1显示了可被用来制造用于口服给药的含有氮杂胞苷的具体剂型的方法和步骤;在具体实施方案中，一个或多个步骤可以任选地省略。

【0037】图2显示了在多种递增研究(n=18)中75mg/m²SC给药氮杂胞苷后第1天和第7天的人PK分布。X-轴显示了时间;Y-轴显示了氮杂胞苷血浆浓度(平均±SD)。

【0038】图3显示了在多种递增研究中SC(75mg/m²)和PO(240mg、300mg和360mg)给药氮杂胞苷后的人PK分布。在各剂型下比较氮杂胞苷血浆PK分布。X-轴显示了时间;Y-轴显示了氮杂胞苷血浆浓度(平均±SD)。

【0039】图4显示了在多种递增研究中收集的个体患者(个体02008, 80岁, 男性, RAEB-1)的PD数据。患者被给予氮杂胞苷剂制#3, 240mg。将血小板(K/µL), Hgb(g/dL), ANC(K/µL)和相对BM细胞(%)相对于研究过程中的采样日期绘图。

【0040】图5显示了在多种递增研究中收集的个体患者(个体02007, 76岁, 男性, CMML)的PD数据。患者被给予氮杂胞苷剂制#3, 240mg。将血小板(K/µL), Hgb(g/dL), ANC(K/µL)和相对BM细胞(%)相对于研究过程中的采样日期绘图。

【0041】图6显示了在多种递增研究中收集的个体患者(个体02004, 61岁, 男性, MDS, MDACC)的PD数据。患者被给予氮杂胞苷剂制1, 120mg。将血小板(K/µL), Hgb(g/dL), ANC(K/µL)和相对BM细胞(%)相对于研究过程中的采样日期绘图。

【0042】图7显示了快速氮杂临床评估(RACE)研究CL008的研究设计。绘制在治疗周期内不...
同天给予的剂量。剂量可以在第±1天给予，只要剂量之间有至少48小时。
[0043] 图8显示了在RACE临床研究中SC(124mg, 75mg/m²)和PO(180mg, 360mg, 1, 200mg, 制剂4)给予氮杂胞苷后来自个体患者(个体106003, N=1)的氮杂胞苷PK分布。绘制SC和PO剂量的AUC(0-∞)值。
[0044] 图9显示了在RACE临床研究中SC(124mg, 75mg/m²)和PO(180mg, 360mg, 1, 200mg, 制剂6)给予氮杂胞苷后来自个体患者(个体106004, N=1)的氮杂胞苷PK分布。绘制SC和PO剂量的AUC(0-∞)值。
[0045] 图10显示了在临床研究中SC和口服给药氮杂胞苷后人PK分布(线性刻度)。
[0046] 图11显示了在临床研究中SC和口服给药氮杂胞苷后人PK分布(半对数刻度)。
[0047] 图12显示了在临床研究(CLO05和CLO08)中用制剂#3, #4和#6以不同剂量水平SC给药氮杂胞苷和口服给药氮杂胞苷后人AUC值。
[0048] 图13显示了在临床研究中用制剂#3, #4和#6以不同剂量水平SC给药氮杂胞苷和口服给药氮杂胞苷后患者中的人Cmax值。
[0049] 图14显示了用制剂#3, #4和#6以不同剂量水平口服给药氮杂胞苷后人中的相对口服生物利用度。
[0050] 图15显示了用制剂#3, #4和#6以不同剂量水平口服给药氮杂胞苷后人中相对于SC给予的暴露百分比。
[0051] 图16显示了用制剂#3和#6和180mg(n=6)口服给药氮杂胞苷后人血浆浓度对时间的分布(线性刻度)。
[0052] 图17显示了用制剂#3和#6和360mg(n=6)口服给药氮杂胞苷后人血浆浓度(ng/ml)对时间(hr)的线性刻度分布。
[0053] 图18显示了个体(ind)和平均氮杂胞苷ACU(0-inf)(ng*hr/ml)对氮杂胞苷剂量(mg)的值的图示，使用制剂#3和#6的计算的线性回归线。
[0054] 图19显示了在用制剂#3或#6给药后氮杂胞苷相对口服生物利用度%(平均±SD)对氮杂胞苷剂量(mg)的比较。
[0055] 图20显示了在口服给予制剂#3或#6后与SC剂量相比的氮杂胞苷暴露(平均±SD)对氮杂胞苷剂量(mg)的比较。

1. 详细说明

除非另有规定，本文使用的所有技术和科学术语具有本领域技术人员普遍理解的相同含义。本文参照的所有出版物和专利均通过引用将其全部内容并入本文。

A. 定义

在说明书和权利要求书中，除非另有明确规定，“一种”和“所述”包括复数和单数形式。

术语“约”或“大约”是指由本领域技术人员确定的对于特定值可接受的误差，其部分取决于如何测量或确定该值。在某些实施方案中，术语“约”或“大约”指在1、2、3或4个标准偏差之内。在某些实施方案中，术语“约”或“大约”指在给定值或范围的30%、25%、20%、15%、10%、9%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%或0.05%之内。

当在本文中使用时，除非另有说明，术语“治疗”指根除或缓解疾病或紊乱，或与疾病或紊乱相关的一种或多种症状。在某些实施方案中，该术语指使因为给予患有这种疾病
或紊乱的个体一种或多种预防剂或治疗剂而造成的疾病或紊乱的扩散或恶化最小化。在一些实施方式中，该术语指在特定疾病的症状发作之后给予本发明提供的化合物或剂型，同时给予或不给予其他额外的活性成分。

[0062] 当本文中使用时，除非另有说明，术语“预防”指预防疾病或紊乱或其一种或多种症状的发作、复发或扩散。在某些实施方式中，该术语指在症状发作之前用本发明提供的化合物或剂型给药或治疗，特别是给予具有本发明提供的疾病或紊乱风险的患者，同时给予或不给予其他额外的活性化合物。该术语包括抑制或减少特定疾病的症状。具有家族疾病历史的患者尤其是某些实施方案中的预防方案的候选者。此外，具有复发症状历史的患者也是预防的潜在候选者。在这方面，术语“预防”可以与术语“预防性治疗”交换使用。

[0063] 当本文中使用时，除非另外说明，术语“控制”指预防或减慢疾病或紊乱或其一种或多种症状的发展、扩散或恶化。通常，个体由预防剂和/或治疗剂带来的有益效果不能导致治愈疾病或紊乱。在这方面，术语“控制”包括治疗已患有特定疾病的患者，以试图预防或最小化疾病的复发。

[0064] 当本文使用时，给予特定药物组合物所导致的特定症状的缓解是指由于组合物给予所导致的或与其相关的任何减轻，无论长期或临时的，持久或短暂的。

[0065] 当本文中使用时，除非另有说明，化合物的“治疗有效量”和“有效期”是在疾病或紊乱的治疗或控制中足以提供了治疗益处，或足以延迟或最小化与疾病或紊乱相关的一种或多种症状的量。化合物的“治疗有效量”和“有效期”指单独或与一种或多种其他试剂联合施用的治疗剂的量，其在疾病或紊乱的治疗或控制中提供治疗益处。术语“治疗有效量”和“有效期”可以包括改进整个治疗、降低或避免疾病或紊乱的症状或病因的量，或增强另一种治疗剂的治疗功效的量。

[0066] 当本文中使用时，除非另有说明，化合物的“预防有效量”是足以防止疾病或紊乱或防止其复发的量。化合物的预防有效量指单独或与一种或多种其他试剂联合施用的治疗剂的量，其在疾病的预防中提供了预防益处。术语“预防有效量”可以包括改进整个预防或增强另一种预防剂的预防功效的量。

[0067] 当本文使用时，“肿瘤”是指由新生细胞的生长和增殖，无论是良性或恶性的，并且指所有的癌前细胞和癌细胞及组织。当本文使用时，“新生的”是指脱管或不受管制的细胞生长的任何形式，无论是良性或恶性的，从而造成异常组织生长。因此，“新生细胞”包括具有脱管或不受管制的细胞生长的恶性和良性细胞。

[0068] 术语“癌症”是指或描述特征在于不受管制的细胞生长的哺乳动物中的生理病症。癌症的例子包括但不限于血液传播癌（例如，淋巴癌，白血病）和实体瘤。

[0069] 当本文使用时，术语“组合物”、“制剂”和“剂型”涵盖含有指定成分（如果有显示，则以指定量）的组合物以及直接或间接地源自指定量的指定成分组合而获得的任何产品。术语“药物的”或“药物可接受的”是指组合物、制剂或剂型中任何稀释剂、赋形剂或载体与其他成分相容并且对受体没有害。除非另有说明，术语“组合物”、“制剂”和“剂型”在本文中可互换使用。

[0070] 针对本发明提供的组合物、制剂或剂型使用的术语“立即释放”是指组合物、制剂或剂型不包含用来在口服给药之后在胃之外在空间和/或时间上延迟一些或全部API从该组合物、制剂或剂型中释放的组分（如缓释剂）。在某些实施方案中，立即释放组合物、制剂
或剂型在口服给予后基本在胃中释放API。在具体实施方案中，立即释放结合物、制剂或剂型不是延迟释放的。在具体实施方案中，立即释放结合物、制剂或剂型不包含肠溶衣。

【0071】当在本文使用时，术语“非肠溶衣”是指不包含用于在胃之外（例如，在肠道内）释放活性成分的包衣的药物组合物、制剂或剂型。在某些实施方案中，非肠溶衣组合物、制剂或剂型被设计成在胃中释放活性成分。

【0072】针对本发明提供的组合物、制剂或剂型使用的术语“基本在胃中”是指至少约99%、至少约95%、至少约90%、至少约85%、至少约80%、至少约75%、至少约70%、至少约65%、至少约60%、至少约55%、至少约50%、至少约45%、至少约40%、至少约35%、至少约30%、至少约25%、至少约20%、至少约15%或至少约10%的包衣类似物在胃中释放。当在本文使用时术语“在胃中释放”和相关术语是指包衣类似物可用于吸收或经胃壁细胞传输，然后可用于人体的过程。

【0073】术语“个体”被定义成包括动物，如哺乳动物，包括但不限于灵长类动物（例如，人）、牛、绵羊、山羊、马、狗，猫、兔、大鼠和小鼠等。在具体实施方案中，个体是人。

【0074】术语“共同给予”和“联合”包括在没有具体时限的情况下同时或顺序给予两种或更种治疗剂。在一个实施方案中，治疗剂同时存在于细胞内或个体体内，或者同时发挥生物治疗效果。在一个实施方案中，各治疗剂在同一组合物或单位剂型中。在其他实施方案中，各治疗剂在不同的组合物或单位剂型中。在某些实施方案中，在给予第二治疗剂之前（例如，5分钟、15分钟、30分钟、45分钟、1小时、2小时、4小时、6小时、12小时、24小时、48小时、72小时、96小时、1周、2周、3周、4周、5周、6周、8周或12周），同时或之后（例如，5分钟、15分钟、30分钟、45分钟、1小时、2小时、4小时、6小时、12小时、24小时、48小时、72小时、96小时、1周、2周、3周、4周、5周、6周、8周或12周后）给予第一种治疗剂。

【0075】术语“同位素组成”是指给定原子位置存在的每一种同位素的量，“天然同位素组成”是指对于给定原子位置的天然发生的同位素组成或丰度。含有天然同位素组成的原子位置也可被称为“非富集的”。除非另有指定，化合物的原子位置代表该原子的任何稳定的同位素。例如，除非另有说明，当位置被具体指定为“Ⅰ”或“Ⅱ”时，该位置被理解成以其天然同位素组成含有氢。

【0076】术语“同位素富集的”是指具有除了原子的天然同位素组成之外的同位素组成的原子位置。“同位素富集的”也可以指含有至少一个具有除了原子的天然同位素组成之外的同位素组成的原子位置的化合物。当在本文使用时，“同位素异数体”是同位素富集的化合物。

【0077】术语“同位素富集”是指在分子中在给定原子位置处代替原子的天然同位素组成的具体同位素的结合量百分比。例如，在给定位置氧富集1%是指在给定样本中1%的分子在指定位置含有氘。由于氘的天然分布为约0.0156%，因此在使用非富集原料合成的化合物中的任何位置氧富集为约0.0156%。

【0078】术语“同位素富集因子”是指指定同位素的同位素组成和天然同位素组成之间的比例。

【0079】关于本发明提供的化合物，当某个特定原子位置被指定具有氘或“D”时，应被理解成，在该位置氘的丰度基本上等于氘的天然丰度约0.015%。被指定具有氘的位置通常具有最低同位素富集因子，在特定实施方案中，在指定氧位置为至少1000（15%氘结合）、至少2000（30%氘结合）、至少3000（45%氘结合）、至少3500（52.5%氘结合）、至少4000（60%氘结合）
合）、至少4500（67.5%核结合）、至少5000（75%核结合）、至少5500（82.5%核结合）、至少6000（90%核结合）、至少6333.3（95%核结合）、至少6466.7（97%核结合）、至少6600（99%核结合）或至少6633.3（99.5%核结合）。

【0080】可以使用本领域技术人员已知的常规分析方法测定本发明提供的化合物的同位素富集和同位素富集因子，包括质谱、核磁共振谱和结晶谱。

【0081】B.胞苷类似物

【0082】1.综述

【0083】本发明提供了经口服给予基本在胃中释放API的含有胞苷类似物的剂型、药物制剂和组合物。在某些实施方案中，胞苷类似物是5-氟胞苷。在某些实施方案中，胞苷类似物是5-氮杂-2′-脱氧胞苷（地西他滨或5-氮杂-CDR）。在某些实施方案中，胞苷类似物是例如：1-β-D-阿拉伯吡喃糖基胞嘧啶（阿糖胞苷或ara-C）；5-氟-2′-脱氧胞苷（FCDR）；2′-脱氧-2′-二氟胞苷（吉西他滨）；5-氮杂-2′-脱氧-2′，2′-氟胞苷；5-氮杂-2′-脱氧-2′-氟胞苷；1-β-D-脱氧核糖基-2(1H)-嘧啶酶（Zebularine）；2′，3′-二脱氧-5-氟-3′-硫杂胞苷（Emtriva）；2′-环胞苷（安西他滨）；1-β-D-阿巴西拉吡喃糖基-5-氮杂胞嘧啶（法拉拉滨或ara-AC）；5-氮杂胞苷（6-氮杂-CDR）；5-二氢-5-氮杂胞苷（dH-氮杂-CDR）；N4-戊氧基-5-氮杂胞苷（卡培他滨）；N4-十八烷基-阿糖胞苷；反义酸阿糖胞苷，或含有胞苷类似物和脂酸的共轭化合物（例如，氮杂胞苷-脂酸共轭物），包括但不限于CP-4200（Clavis Pharma ASA）或WO 2009/042767中公开的化合物，如氮杂-C-5′-岩芹炔酸酯或氮杂-C-5′-Petroselaidic acid酯）。

【0085】在某些实施方案中，本发明提供的胞苷类似物包括结构与胞苷或脱氧胞苷相关并且功能上模拟和/或拮抗胞苷或脱氧胞苷的作用的任何化合物。本文的某些实施方案提供了本发明提供的胞苷类似物的盐，共晶体，溶剂化物（例如，水合物），复合物，前药，前体，代谢物和/或其他衍生物。例如，特定的实施方案提供了5-氮杂胞苷的盐，共晶体，溶剂化物（例如，水合物），复合物，前体，代谢物和/或其他衍生物。本文的某些实施方案提供了本发明提供的胞苷类似物的盐，共晶体，溶剂化物（例如，水合物）或复合物的胞苷类似物。例如，特定的实施方案提供了非离子化，非溶剂化物（例如，无水），非复合形式的5-氮杂胞苷。本文的某些实施方案提供了本发明提供的两种或多种胞苷类似物的混合物。

【0086】本发明提供的胞苷类似物可以使用文献中记载或参照的合成方法和过程制备。例
如，美国专利号7,038,038和其参考文献中教导了合成5-氮杂胞苷的特定方法，在此通过引用将其并入本文。5-氮杂胞苷也可以从Celgene Corporation, Warren, NJ.得到。本发明提供的其他胞苷类似物可以使用本领域技术人员之前公开的合成过程制备。

在某些实施方案中，例示性胞苷类似物具有以下结构：

氨杂胞苷

地西他滨

脱糖胞苷(Ara-C)

伪胞苷(psi ICR)

吉西他滨

Zebularine

FCdR

Emtriva

6-氨杂胞苷

5-6-二氮-5-氨杂胞苷

2. 同位素富集的胞苷类似物

本文的特定实施方案提供了同位素富集的胞苷类似物，其前药，其合成中间体和其代谢物。例如，本文的实施例方案提供了同位素富集的5-氨杂胞苷。

尽管不限于任何特定理论，但是可以使用药物的同位素富集，例如以：(1)减少或消除不希望的代谢物；(2)提高母体药物的半衰期；(3)达到预期效果所需的给药次数；(4)减少达到预期效果所需的剂量；(5)提高活性代谢物的形成，如果有形成；和/或(6)减少有害代谢物在组织中的产生和/或产生更有效的药物和/或更安全的药物用于联合治疗，无论联合治疗是否是有意的。

原子用其同位素的一种置换往往导致化学反应的反应速率发生变化。这种现象被

DKIE的大小可以表示为C-H键断裂的给定反应和用氘代替氢的同样反应的速率之比。DKIE可以从约1（没有同位素效应）变化到非常大的数值，如50以上，这意味着当用氘代替氢时，反应可以变慢50倍以上。尽管不像于特定理论，但是高DKIE值可能部分是由于被称作隧道现象，其是不确定性原理的结果。隧道现象由于氢原子的小质量，且并为涉及质子的过渡态有时会在缺乏所需活化能的情况下形成，所以发生隧道。由于氘具有比氢更大的质量，因此在统计上它发生这种现象的概率要低得多。

氚（"T"）是氢的放射性同位素，用在研究、聚变反应堆、中子发生器和放射性药品。氚是在原子核中具有3个中子的氢原子，原子量接近3。它以非常低的浓度出现在天然环境中，最常见的是T₂O。氚衰变慢（半衰期=12.3年）并发出无法穿透人体皮肤外层的低能量β粒子。内部暴露是与这种同位素相关的主要危害，但它必须在大量摄入时才构成重大健康风险。与氚相比，在到达危害水平之前必须消耗更少的氚。用氚（""')代替氢产生比氘更强的结合，从而得到数倍的氘同位素效应。

同样，对其他元素用同位素替代，包括但不限于对碳用¹³C或¹⁴C取代，对硫用³²S、³⁴S或³⁶S取代，对氮用¹⁵N取代，和对氧用¹⁸O或¹⁷O取代均可能会导致类似的动力学同位素效应。

动物的身体表达各种酶，以从它的循环系统中消除外来物质，如治疗药。酶的例子包括细胞色素P450酶（"CYP"）、酯酶、蛋白酶、还原酶、脱氢酶和单胺氧化酶，其与这些外来物质反应并将其转化为更极性的中间体或代谢物以通过肾脏排泄。药物化合物的某些常见代谢反应涉及碳-氢（C-H）键氧化成碳-氧（C-O）或碳-硫（C-S）或碳-碳（C-C）π键。由此产生的代谢物在生理条件下是稳定的或不稳定的，且可以具有相对于母体化合物很大程度上不同的药代动力学、药效学以及急性和毒性特征。对于许多药物而言，这种氧化是迅速的。因此，这些药物通常需要每天多次或高剂量给予。

与具有天然同位素组成的类似化合物相比，在本发明提供的化合物的某些位置处的同位素富集可能会产生影响本发明提供的化合物的的药代动力学、药效学和/或毒性特征的可检测的KIE。在一个实施方案中，在代谢过程中C-H键断裂的位置进行氘富集。

本文的某些实施方案提供了氘富集的5-氯杂胞苷类似物，其中5-氯杂胞苷分子中的一个或多个氢用氘同位素富集。在某些实施方案中，本发明提供了式（I）的化合物：

![化合物](image)

其中一个或多个Y原子（即Y₁、Y₂、Y₃、Y₄、Y₅和Y₆）是用氘同位素富集的氢，其余的
Y原子是非富集的氢原子。在特定实施方案中，一个、二个、三个、四个、五个、六个或七个所示的Y原子用氘同位素富集的，其余的Y原子是非富集的氢。

[0103] 在某些实施方案中，化合物(1)的核糖部分上的一或多个Y原子是氘富集的。特定例子包括但不限于以下化合物，其中标记“D”表示氘富集的原子位置，即，包含给定化合物的样品在指定位氧具有高于氘的天然丰度的氘富集；

![化合物图](image)

[0104] 在某些实施方案中，化合物(1)的5-氨基胞嘧啶部分上的Y原子是氘富集的。特定例子包括以下化合物，其中标记“D”表示氘富集的原子位置，即，包含给定化合物的样品在指定位氧具有高于氘的天然丰度的氘富集；

![化合物图](image)

[0105] 在某些实施方案中，化合物(1)的核糖部分上的一或多个Y原子和5-氨基胞嘧啶部分上的Y原子是氘富集的。特定例子包括但不限于以下化合物，其中标记“D”表示氘富集的原子位置，即，包含给定化合物的样品在指定位氧具有高于氘的天然丰度的氘富集；
[0109] 应该理解，在生理条件下一个或多个氮可以与氢交换。

[0110] 本文的某些实施方案提供了5-氮杂胞苷的碳-13富集的类似物，其中5-氮杂胞苷分子中的一个或多个碳用碳-13同位素富集。在某些实施方案中，本发明提供了式(II)的化合物：

![化合物II](image)

[0111] (II)

[0112] 其中1, 2, 3, 4, 5, 6, 7或8中的一个或多个是用碳-13同位素富集的碳原子。1, 2, 3, 4, 5, 6, 7或8中的其余的原子是非富集的碳原子。在特定实施方案中，一个、二个、三个、四个、五个、六个、七个或八个碳原子（即，原子1, 2, 3, 4, 5, 6, 7和8）是用碳-13同位素富集的，其余的碳原子是非富集的。

[0113] 在某些实施方案中，化合物(II)的核糖部分上的一个或多个碳原子是用碳-13富集的。特定例子包括但不限于以下化合物，其中星号（“*”）表示碳-13富集的原子位置，即，
包含给定化合物的样品在指定位住具有高于碳-13的天然丰度的碳-13富集：

[0114] 在某些实施方案中，化合物(11)的5-氮杂胞嘧啶部分上的一个或多个碳原子是用碳-13富集的。特定例子包括但不限于以下化合物，其中星号（“*”）表示碳-13富集的原子位置。即，包含给定化合物的样品在指定位置具有高于碳-13的天然丰度的碳-13富集：

[0115] 在某些实施方案中，化合物(11)的核糖部分上的一个或多个碳原子和5-氮杂胞嘧
啶部分上的一个或多个碳原子是用碳-13富集的，即，本文包含核糖部分的碳-13富集和氮杂胞嘧啶部分的碳-13富集的任何组合。

[0118] 在某些实施方案中，一个或多个氮是用氘富集的和一个或多个碳是用碳-13富集的，即，本文包含5-氮杂胞苷的氘富集和碳-13富集的任何组合。

[0119] 3. 合成同位素富集的胞苷类似物

[0120] 本文所述的化合物可以使用本领域技术人员已知的任何方法合成。例如，使用本领域技术人员已知的标准有机合成化学技术合成本文所述的具体化合物。在一些实施方案中，使用合成5-氮杂胞苷的已知程序，其中试剂、原料、前体或中间体中的一种或多种用一个或多个同位素富集的试剂、原料、前体或中间体中的一种或多种代替，包括但不限于一种或多种氘-富集的试剂、原料、前体或中间体，和/或一种或多种碳-13-富集的试剂、原料、前体或中间体。同位素富集的试剂、原料、前体或中间体是市售的或者可以反应通过本领域技术人员已知的常规化学反应制备。在一些实施方案中，合成路线基于美国专利号7,038,038中的路线，在此通过引用将其全部内容并入本文。

[0121] 在某些实施方案中，合适的同位素富集的原料，如氘-富集的核糖、氘-富集的5-氮杂胞嘧啶、碳-13-富集的核糖和/或碳-13-富集的5-氮杂胞嘧啶，可以用作一般方案中的原料来制备相应的氘和/或碳-13富集的5-氮杂胞苷（参见，方案1）。根据美国专利号7,038,038中的程序，用六甲基二硅烷烷（HMDS）处理5-氮杂胞嘧啶，而生成硅烷化的5-氮杂胞嘧啶，根据Brown等人，Biochemical Preparations，1955,4,70-76中记载的程序，通过使D-核糖与醋酸钠在醋酸酐中反应，来制备四乙酰基-D-核糖。在TMS-三氯甲磺酸酯的存在下使硅烷化的5-氮杂胞嘧啶与四乙酰基-D-核糖偶联，并用甲醇钠在甲醇中处理得到的受保护的5-氮杂胞苷，生成5-氮杂胞苷。参见，美国专利号7,038,038。

[0122] 方案1
【0124】在一些实施方案中，5-溴杂胞苷的核糖部分中的一个或多个氢用氘富集。这种5-溴杂胞苷类似物可以根据方案1从市售或根据文献程序制备的适合氘-富集的核糖来制备。氘-富集的核糖原料的具体例子包括但不限于表1中列出的以下化合物，它们可以转化为相应的氘-富集的5-溴杂胞苷类似物。

【0125】表1

<table>
<thead>
<tr>
<th>原料</th>
<th>结构</th>
<th>来源/参考</th>
<th>5-溴杂胞苷产品</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-核糖-1-D</td>
<td></td>
<td>Cambridge Isotope Lab.</td>
<td>I-1</td>
</tr>
<tr>
<td>D-核糖-2-D</td>
<td></td>
<td>Cambridge Isotope Lab.</td>
<td>I-2</td>
</tr>
<tr>
<td>D-核糖-3-D</td>
<td></td>
<td>Omicron Biochemicals, Inc.</td>
<td>I-3</td>
</tr>
<tr>
<td>D-核糖-4-D</td>
<td></td>
<td>Omicron Biochemicals, Inc.</td>
<td>I-4</td>
</tr>
</tbody>
</table>

方案2

新化合物

制备5-氮杂胞嘧啶的可选条件为：

在其他实施方式中，5-氮杂胞苷的5-氮杂胞嘧啶环上的氢位置和核糖部分中的一一个或多个氢位置均用氘富集。这种5-氮杂胞苷类似物例如可以根据方案1，通过用氘代5-氮杂胞嘧啶偶联合适的氘代核糖原料来制备。例如，化合物I-9、I-10、I-11、I-12、I-13和I-14可以从表1中列出的相应的氘代核糖原料和根据方案2制备的氘代5-氮杂胞嘧啶来制备。

在一些实施方式中，5-氮杂胞苷的核糖部分中的一个或多个碳原子用碳-13富集。这种5-氮杂胞苷类似物可以根据方案1从市售或根据文献程序制备的适合碳-13富集的核糖来制备。碳-13-富集的核糖原料的具体例子包括但不限于表2中列出的以下化合物，它们可以转化为相应的碳-13-富集的5-氮杂胞苷类似物。（星号“*”表示碳-13富集的原子位置）
<table>
<thead>
<tr>
<th>原料</th>
<th>结构</th>
<th>来源/参考</th>
<th>5-氮杂胞苷产品</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-核糖-1(^{13})C</td>
<td></td>
<td>Sigma Aldrich</td>
<td>II-1</td>
</tr>
<tr>
<td>D-核糖-2(^{13})C</td>
<td></td>
<td>Sigma Aldrich</td>
<td>II-2</td>
</tr>
<tr>
<td>D-核糖-3(^{13})C</td>
<td></td>
<td>Omicron Biochemicals, Inc.</td>
<td>II-3</td>
</tr>
<tr>
<td>D-核糖-4(^{13})C</td>
<td></td>
<td>Omicron Biochemicals, Inc.</td>
<td>II-4</td>
</tr>
<tr>
<td>D-核糖-5(^{13})C</td>
<td></td>
<td>Cambridge Isotope Lab.</td>
<td>II-5</td>
</tr>
<tr>
<td>D-核糖-1,2(^{13})C(2)</td>
<td></td>
<td>Sigma Aldrich</td>
<td>II-6</td>
</tr>
<tr>
<td>D-核糖-1,3(^{13})C(2)</td>
<td></td>
<td>Omicron Biochemicals, Inc.</td>
<td>II-7</td>
</tr>
<tr>
<td>D-核糖-1,5(^{13})C(2)</td>
<td></td>
<td>Omicron Biochemicals, Inc.</td>
<td>II-8</td>
</tr>
<tr>
<td>D-核糖-2,5(^{13})C(2)</td>
<td></td>
<td>Omicron Biochemicals, Inc.</td>
<td>II-9</td>
</tr>
</tbody>
</table>

[0140] 方案3

[0141] 在其他实施方案中，5-氮杂胞苷的5-氮杂胞嘧啶环上的一个或多个碳位置和核糖部分中的一个或多个碳位置用碳-13富集。这种5-氮杂胞苷类似物例如可以根据方案1，通过用适合的碳-13富集的5-氮杂胞嘧啶偶联适合的碳-13富集的核糖原料来制备。例如，化合物可以从表2中列出的碳-13富集的核糖原料和根据方案3制备的碳-13富集的5-氮杂胞嘧啶来制备。

[0142] 上述路线和方法可以修改以提供了具有氪富集和碳-13富集的5-氮杂胞苷的同位素异数体。

[0144] C.药物制剂
【0145】1. 综述

【0146】本文的实施方式包括含有一种或多种胞苷类似物（例如，5-氮杂胞苷）和任选的渗透促进剂的药物制剂和组合物，其中所述制剂和组合物制备成用于口服给予。在特定实施方案中，所述制剂和组合物制备成用于基本在胃中释放胞苷类似物。在具体实施方案中，胞苷类似物，例如5-氮杂胞苷，以及药物制剂和组合物用于治疗与异常细胞增殖相关的疾病和紊乱，其中所述胞苷类似物、制剂和组合物制备成用于口服给予，优选用于基本在胃中释放胞苷类似物。特定实施方案涉及一种或多种胞苷类似物（例如，5-氮杂胞苷）用来制备用于治疗本发明提供的特定医疗适应症的药物制剂和组合物的用途。本发明提供的含有胞苷类似物的药物制剂和组合物用于在有此需要的个体中口服输送胞苷类似物。口服输送剂型包括但不限于片剂、胶囊、囊包、溶液、悬浮液和糖浆，还可以包括可被封装或不封装的颗粒、珠子、粉末或小球。这种剂型也可称为含有胞苷类似物的“药芯”。

【0147】本文的特定实施方案提供了固体口服剂型片剂或胶囊。在某些实施方案中，所述制剂是含有胞苷类似物的片剂。在某些实施方案中，所述制剂是含有胞苷类似物的胶囊。在某些实施方案中，本发明提供的片剂或胶囊任选地包括一种或多种赋形剂，例如助流剂、稀释剂、润滑剂、着色剂、崩解剂、制粒剂、粘结剂、聚合物和包衣剂。在某些实施方案中，所述制剂是立即释放片剂。在某些实施方案中，所述制剂是释放API的控释片剂，例如基本在胃中释放。在某些实施方案中，所述制剂是硬胶囊。在某些实施方案中，所述制剂是软胶囊。在某些实施方案中，所述胶囊是羟丙基甲基纤维素（HPMC）胶囊。在某些实施方案中，所述制剂是立即释放胶囊。在某些实施方案中，所述制剂是释放API的立即释放或控释胶囊，例如基本在胃中释放。在某些实施方案中，所述制剂是在给予后基本在胃中溶解的快速崩解片剂。在某些实施方案中，本文的实施方案包括胞苷类似物（例如，5-氮杂胞苷）用来制备用于治疗与异常细胞增殖相关的疾病的药物组合物的用途，其中所述组合物制备成用于口服给予。

【0148】2. 本发明提供的某些剂型的性能

【0149】在某些实施方案中，含有胞苷类似物（例如，5-氮杂胞苷）的制剂经口服给予立即释放API。在特定实施方案中，含有胞苷类似物（例如，5-氮杂胞苷）的制剂含有治疗或预防有效量的胞苷类似物（以及任选地一种或多种赋形剂），并且经口服给予立即释放API。

【0150】在某些实施方案中，含有胞苷类似物（例如，5-氮杂胞苷）的制剂经口服给予后基本在胃中释放API。在某些实施方案中，含有胞苷类似物（例如，5-氮杂胞苷）的制剂含有治疗或预防有效量的胞苷类似物和能够基本在胃中释放胞苷类似物的药物释药控制成分。在某些实施方案中，基质（例如，聚合物基质）可以用在制剂中以控制胞苷类似物的释放。在某些实施方案中，包衣剂或壳体可以用在制剂中以控制胞苷类似物基本在胃中的释放。在某些实施方案中，含有胞苷类似物（例如，5-氮杂胞苷）的制剂经口服给予后基本在胃中释放API。在某些实施方案中，所述制剂经口服给予后立即释放胞苷类似物。在某些实施方案中，所述制剂任选地还含有药物释药控制成分，其中所述药物释药控制成分被调节成基本在胃中释放胞苷类似物。在特定实施方案中，所述药物释药控制成分被调节成基本在胃中立即释放胞苷类似物。在特定实施方案中，所述药物释药控制成分被调节成基本在胃中持续释放胞苷类似物。在某些实施方案中，含有胞苷类似物（例如，5-氮杂胞苷）的制剂基本在胃中释放API，然后经口服给予后在肠道中释放剩余部分。

25
说明 书

[0152] 熟练医生能够评估药物在个体的胃肠道中何处释放的方法是本领域中已知的，其中包括例如闪烁扫描研究，在模拟胃肠道相关部分中的流体的生物相关介质中的测试。

[0153] 本文的特定实施方案提供了含有胞苷类似物（例如，5-氟胞苷）的药物制剂（例如，立即释放口服制剂和/或基本在胃中释放API的制剂），其与相同胞苷类似物的SC剂量相比在口服服用所述制剂的个体中实现特征暴露。特定的实施方案提供了与SC剂量相比实现以下暴露的口服制剂：至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%或约100%。

[0154] 在某些实施方案中，含有胞苷类似物（例如，5-氟胞苷）的制剂（例如，立即释放口服制剂和/或基本在胃中释放API的制剂）经口服给予后使得制剂中一定百分比的胞苷类似物被全身生物利用。在某些实施方案中，口服给予该制剂后，制剂中的胞苷类似物基本在胃中吸收，并通过全身暴露为身体利用。在特定实施方案中，本发明提供的含有胞苷类似物的制剂的口服生物利用度例如占制剂在胞苷类似物总量的大于约1%、大于约5%、大于约10%、大于约15%、大于约20%、大于约25%、大于约30%、大于约35%、大于约40%、大于约45%、大于约50%、大于约55%、大于约60%、大于约65%、大于约70%、大于约75%、大于约80%、大于约85%、大于约90%、大于约95%或约100%。

[0155] 熟练的医生可以评估个体中药物制剂的口服生物利用度的方法是本领域中已知的。这种方法包括例如比较某些剂量相关参数，例如但不限于最大血浆浓度（"Cmax"）、达到最大血浆浓度的时间（"Tmax"）或曲面积（"AUC"）测定。

[0156] 本文的特定实施方案提供了含有胞苷类似物（例如，5-氟胞苷）的药物制剂（例如，立即释放口服制剂和/或基本在胃中释放API的制剂），其在口服服用该制剂的个体（例如，人）中实现特定AUC值（例如，AUC(0-t)或AUC(0-∞)）。特定的实施方案提供了实现如下AUC值的口服制剂：至少约25ng-hr/ml、至少约50ng-hr/ml、至少约75ng-hr/ml、至少约100ng-hr/ml、至少约150ng-hr/ml、至少约200ng-hr/ml、至少约250ng-hr/ml、至少约300ng-hr/ml、至少约350ng-hr/ml、至少约400ng-hr/ml、至少约450ng-hr/ml、至少约500ng-hr/ml、至少约550ng-hr/ml、至少约600ng-hr/ml、至少约650ng-hr/ml、至少约700ng-hr/ml、至少约750ng-hr/ml、至少约800ng-hr/ml、至少约850ng-hr/ml、至少约900ng-hr/ml、至少约950ng-hr/ml、至少约1000ng-hr/ml、至少约1050ng-hr/ml、至少约1100ng-hr/ml、至少约1200ng-hr/ml、至少约1300ng-hr/ml、至少约1400ng-hr/ml、至少约1500ng-hr/ml、至少约1600ng-hr/ml、至少约1700ng-hr/ml、至少约1800ng-hr/ml、至少约1900ng-hr/ml、至少约2000ng-hr/ml、至少约2250ng-hr/ml或至少约2500ng-hr/ml。在特定实施方案中，从在给药后于动物或人的志愿者的血液样品获得的时间-浓度药代动力学分布获得AUC测定。

[0157] 本文的特定实施方案提供了含有胞苷类似物（例如，5-氟胞苷）的药物制剂（例如，立即释放口服制剂和/或基本在胃中释放API的制剂），其在口服服用该制剂的个体中实现特定最大血浆浓度（"Cmax"）。特定的实施方案提供了实现以下胞苷类似物的Cmax的口服制剂：至少约25ng/ml、至少约50ng/ml、至少约75ng/ml、至少约100ng/ml、至少约150ng/ml、至少约200ng/ml、至少约250ng/ml、至少约300ng/ml、至少约350ng/ml、至少约400ng/ml、至少约450ng/ml、至少约500ng/ml、至少约550ng/ml、至少约600ng/ml、至少约650ng/ml、至少约700ng/ml、至少约750ng/ml、至少约800ng/ml、至少约850ng/ml、至少约900ng/ml、至少约
950ng/mL、至少约1000ng/mL、至少约1100ng/mL、至少约1200ng/mL、至少约1300ng/mL、至少约1400ng/mL、至少约1500ng/mL、至少约1600ng/mL、至少约1700ng/mL、至少约1800ng/mL、至少约1900ng/mL、至少约2000ng/mL、至少约2250ng/mL或至少约2500ng/mL。

【0158】本文的特定实施方案提供了含有胞苷类似物（例如，5-氯杂胞苷）的药物制剂（例如，立即释放口服剂型和/或基本在胃中释放API的制剂），其在口服服用该制剂的个体中实现特定达到最大血浆浓度的时间（"T_{max}"）。特定的实施方案提供了实现以下胞苷类似物的T_{max}的口服制剂：小于约10分钟，小于约15分钟，小于约20分钟，小于约25分钟，小于约30分钟、小于约35分钟，小于约40分钟，小于约45分钟，小于约50分钟，小于约55分钟，小于约60分钟，小于约65分钟，小于约70分钟，小于约75分钟，小于约80分钟，小于约85分钟，小于约90分钟，小于约95分钟，小于约100分钟，小于约105分钟，小于约110分钟，小于约115分钟，小于约120分钟，小于约130分钟，小于约140分钟，小于约150分钟，小于约160分钟，小于约170分钟，小于约180分钟，小于约190分钟，小于约200分钟，小于约210分钟，小于约220分钟，小于约230分钟或小于约240分钟。在特定实施方案中，从口服服用所述制剂时的时间计算T_{max}值。

【0159】本文的特定实施方案提供了含有胞苷类似物的口服剂型，其中所述口服剂型具有肠溶衣。特定的实施方案提供了带孔的渗透性或部分渗透性（例如，“渗透的”）肠溶衣。在特定实施方案中，渗透性或部分渗透性肠溶衣片剂基本在胃中以立即释放方式释放5-氯杂胞苷。

【0160】3. 本发明提供的某些剂型的设计

【0161】本发明提供了该设计成使某些胞苷类似物（例如，5-氯杂胞苷）在口服给予后的吸收和/或有效送达最大化的剂型，例如，用于基本在胃中释放。因此，本发明的某些实施方案提供了使用药物赋形剂的胞苷类似物（例如，5-氯杂胞苷）的固体口服剂型，其被设计成在口服给予后立即释放API，例如基本在胃中释放，特定的立即释放制剂包括特定量的胞苷类似物和任选地一种或多种赋形剂。在某些实施方案中，所述制剂可以是立即释放片剂或立即释放胶囊（例如，HPMC胶囊）。

【0162】本发明提供了制造本发明提供的含有本发明提供的胞苷类似物的制剂（例如，立即释放口服剂型和/或基本在胃中释放API的制剂）的方法。在特定实施方案中，本发明提供的制剂可以使得例如记载在有关教科书中的药物制剂领域的技术人员已知的常规方法来制备。参见，例如，REMINGTON: THE SCIENCE AND PRACTICE OF PHARMACY,第20版，Lippincott Williams&Wilkins,(2000); ANSEL等人, PHARMACEUTICAL DOSAGE FORMS AND DRUG DELIVER SYSTEMS,第7版,Lippincott Williams&Wilkins,(1999); GIBSON, PHARMACEUTICAL PREFORMULATION AND FORMULATION, CRC Press(2001)。

【0163】在特定实施方案中，本发明提供的制剂（例如，立即释放口服剂型，基本在胃中释放的剂型或基本在口中溶解的快速崩解剂型）含有特定量的胞苷类似物（例如，5-氯杂胞苷）。在特定实施方案中，胞苷类似物在制剂中的特定量为例如约10mg、约20mg、约40mg、约60mg、约80mg、约100mg、约120mg、约140mg、约160mg、约180mg、约200mg、约220mg、约240mg、约260mg、约280mg、约300mg、约320mg、约340mg、约360mg、约380mg、约400mg、约420mg、约440mg、约460mg、约480mg、约500mg、约600mg、约700mg、约800mg、约900mg、约1000mg、约1100mg、约1200mg、约1300mg、约1400mg、约1500mg、约1600mg、约1700mg、约1800mg、约
1900mg,约2000mg,约2100mg,约2200mg,约2300mg,约2400mg,约2500mg,约3000mg,约4000mg或约5000mg。在特定实施方案中，胞苷类似物在制剂中的特定量为约至少10mg、
至少约20mg、至少约40mg、至少约60mg、至少约80mg、至少约100mg、至少约120mg、至少约140mg、至少约160mg、至少约180mg、至少约200mg、至少约220mg、至少约240mg、至少约
260mg、至少约280mg、至少约300mg、至少约320mg、至少约340mg、至少约360mg、至少约380mg、至少约400mg、至少约420mg、至少约440mg、至少约460mg、至少约480mg、至少约
500mg、至少约600mg、至少约700mg、至少约800mg、至少约900mg、至少约1000mg、至少约
1100mg、至少约1200mg、至少约1300mg、至少约1400mg、至少约1500mg、至少约1600mg、至少约
1700mg、至少约1800mg、至少约1900mg、至少约2000mg、至少约2100mg、至少约2200mg、至少约
2300mg、至少约2400mg、至少约2500mg、至少约3000mg、至少约4000mg或至少约5000mg。

【0164】在某些实施方案中，所述制剂是片剂，其中使用标准的本领域已知的片剂加工工
序和设备制造该片剂。在某些实施方案中，形成片剂的方法是直接压制只含有胞苷类似物
或含有胞苷类似物和一种或多种赋形剂（例如，载体、添加剂、聚合物等）的粉末、晶体和/或
颗粒组合物。在某些实施方案中，作为直接压制的替代，可以使用湿法制粒或干法制粒过程
来制备片剂。在某些实施方案中，片剂被压模，而不是压缩，用潮湿的或其他易处理的材料
起始。在某些实施方案中，压模和制粒技术均使用。

【0165】在某些实施方案中，所述制剂是胶囊，其中使用标准的本领域已知的胶囊加工工
序和设备制造所述胶囊。在某些实施方案中，可以制备软明胶胶囊，其中胶囊包含胞苷类似
物和植物油或非水、水互溶材料（例如，聚乙二醇等）的混合物。在某些实施方案中，可以制
备硬明胶胶囊，其含有胞苷类似物的颗粒以及固体粉末载体，例如乳糖、蔗糖、山梨醇、甘露
醇、马铃薯淀粉、玉米淀粉、支链淀粉、纤维素衍生物或明胶。在某些实施方案中，可以从含
有明胶和少量增塑剂如甘油的胶囊组合物制备硬明胶胶囊壳。在某些实施方案中，作为明
胶的替代，胶囊壳可以由碳水化合物材料形成。在某些实施方案中，胶囊组合物在需要时还
可以含有聚合物、色素、调味料和遮光剂。在某些实施方案中，胶囊含有HPMC。

【0166】在某些实施方案中，用水性溶剂制备胞苷类似物（例如，5-氟尿胞苷）的制剂，而
不会导致胞苷类似物明显水解降解。在特定实施方案中，胞苷类似物（例如，5-氟尿胞苷）的
制剂是含有包衣的片剂，该包衣使用水性溶剂涂布到药芯上而不会导致该制剂中的胞苷类
似物明显水解降解。在某些实施方案中，水用作溶剂来对药芯进行包衣。在某些实施方案
中，胞苷类似物的口服剂型是含有膜包衣的片剂，该膜包衣使用水性溶剂涂布到药芯上。此
在特定实施方案中，水用作溶剂来进行膜包衣。在特定实施方案中，含有胞苷类似物的片剂使
用水性溶剂进行膜包衣，而不会造成药物组合物的降解。在特定实施方案中，水用作膜包衣
溶剂，而不会造成药物组合物的降解。在某些实施方案中，含有5-氟尿胞苷和水性膜包衣的
口服剂型经口服输送进行立即药物释放。在某些实施方案中，含有5-氟尿胞苷和水性膜包
衣的口服剂型经口服给予约上部胃肠道（例如，胃部）进行受控的药物释放。在特定实施方
案中，具有水性膜包衣的片剂含有5-氟尿胞苷作为API。

【0167】在某些实施方案中，本发明提供了一种用于口服给予胞苷类似物的控释药物制
剂，其基本在胃中释放胞苷类似物，包含：a)特定量的胞苷类似物；b)控制胞苷类似物基本
在上部胃肠道（例如，胃部）中释放的药物释放控制成分；和c)任选地一种或多种赋形剂。在
某些实施方案中，含有胞苷类似物的口服剂型被制备成包含药芯的控释片剂或胶囊，该药
芯含有药物组合物和任选赋形剂。任选地、“封层”或“壳”被使用。在某些实施方案中，本发明提供的含有本发明提供的胞苷类似物的制剂是控释片剂或胶囊，其含有治疗有效量的胞苷类似物，控制经口服给予基本在胃中释放胞苷类似物的药物释放控制成分和任选地一种或多种赋形剂。

[0169] 在某些实施方案中，药物释放控制成分可以包含包裹的药物芯的壳，其中该壳例如允许胞苷类似物从芯中扩散，并在暴露于胃液溶后膨胀至可在接受滞留的尺寸以促进制剂在胃中滞留，从而从所述芯释放胞苷类似物。在某些实施方案中，可以通过首先压缩胞苷类似物和一种或多种赋形剂的混合物而形成芯，然后在芯上压缩另一种粉状混合物而形成壳或者用由适合材料制成的胶囊壳包封芯来制备这种制剂。这种制剂的例子是本领域中已知的。参见，例如，Berner等人，美国专利公开号2003/0104062（申请号10/213,823），在此通过引用将其全部内容并入本文。

[0170] 本文的某些实施方案提供了含有胞苷类似物的口服剂型，其中所述剂型在常规肠溶衣中含有孔。在特定实施方案中，胞苷类似物的口服剂型是含有带孔的渗透性或部分渗透性（例如，"渗漏的"）肠溶衣的片剂。在特定实施方案中，渗透性或部分渗透性肠溶衣的片剂控制胞苷类似物从片剂主要释放到上部胃肠道（例如，胃部）中。在特定实施方案中，渗透性或部分渗透性肠溶衣的片剂包含5-氯代胞苷。在特定实施方案中，胞苷类似物的其余部分随后在胃部之外释放（例如，在肠道内）。

[0171] 在某些实施方案中，本发明提供的药物制剂是一种含有胞苷类似物的压缩片剂。除了胞苷类似物之外，所述片剂任选地包含一种或多种赋形剂，包括（a）稀释剂或填料，其可以以必需量添加到制剂中以制备所需大小的片剂；（b）粘结剂或粘合剂，其可以促进制剂的颗粒粘合，从而能够制粒并保持最终片剂的完整性；（c）崩解剂，在给予后其可促进片剂破碎成更小的粒子以改善药物的利用；（d）抗粘剂、助流剂或润滑剂，其可增强片剂材料流向片剂模具中的流动性，尽量减少冲模和模具的磨损，防止填充材料粘到冲模和模具，并生产具有光泽的片剂；和（e）多种助剂，如着色剂和调味剂。在压缩后，本发明提供的片剂可以用本文所述的各种材料涂布。

[0172] 在某些实施方案中，本发明提供的药物制剂是胞苷类似物的多次压缩片剂。通过使填充材料进行多次的压缩制备多次压缩片剂。所得得到的可以是多层的片剂或在片剂内的片剂，内部片剂是含有胞苷类似物和任选地一种或多种赋形剂的芯，外部是壳，其中所述壳包括一种或多种赋形剂，并可以含有胞苷类似物或不含有。可以通过使一部份填充材料在模具中初步压实，然后加入额外的填充材料压实，再压缩，以形成两层或三层的片剂（这取决于各自填充的量）来制备分层的片剂。每层可以含有由于化学或物理不相容的原因而彼此分开的不同治疗剂，或者用于分级药物释放的相同治疗剂，或者仅使多层片剂产生独特
外观。填充的每一部分可以不同地着色，以制备不同外观的片剂。在制备具有压缩片剂内无芯的片剂中，特殊机械可用于将预制片剂精确地放置在模具中，以随后压缩周围的填充材料。

在某些实施方案中，胞苷类似物的压缩片剂可以用着色或无色的糖层包衣。该包衣可以是水溶性的，并在口服摄取后迅速溶解。该糖衣可以用于保护封闭的药物免受环境损害并对不良的味道或气味提供屏蔽。糖衣也可以增强压缩片剂的外观并允许印刷识别制造商的信息。在某些实施方案中，糖衣片剂可以比原来的无衣片剂大和重50％。片剂包糖衣可分为以下任选的步骤：(1) 防水和密封 (如需要)；(2) 再次包衣；(3) 使光滑并最终成圆；(4) 整理和着色 (如需要)；(5) 印刷 (如需要)；和 (6) 抛光。

在某些实施方案中，胞苷类似物的压缩片剂可以是膜包衣的。膜包衣的片剂可以是用等能够在片剂上形成皮肤状膜的聚合物的薄层包衣的压缩片剂。膜通常是有色的并具有更耐用、不太大和包衣费时少的优点。通过其组成，包衣可被设计成在胃肠道内所需位置使片剂破裂和暴露。在压片剂上放置塑料类材料的薄膜身包衣的膜包衣过程可以产生与原来的压缩片剂具有基本相同的重量、形状和大小的包衣片剂。膜包衣可被着色以使片剂具有吸引力和特色。膜包衣溶液可以是非水性的或水性的。在特定实施方案中，非水性溶液可以任选地含有一种或多种以下类型的材料作为片剂提供了所需的包衣：(1) 在常规包衣条件下能够产生光滑的可再现薄膜并适用于各种片剂形状的成膜剂，例如，纤维素酯酸酯苯二甲酸酯；(2) 对膜提供了水溶解性或渗透性以确保体液渗透和药物的利用度的合金物质，例如，聚乙烯醇；(3) 产生包衣的柔韧性和弹性并因而提供了耐用性的增塑剂，例如，蓖麻油；(4) 在涂布过程中增强膜的铺展性的表面活性剂，例如，聚氧乙烯脱水山梨糖醇衍生物，(5) 使包衣片剂的外观具有吸引力和特色的遮光剂和着色剂，例如，作为遮光剂的二氧化钛、以及作为着色剂的FD&C或D&C染料；(6) 增强个体对片剂的接受性的甜味剂、香精或芳香剂，例如，作为甜味剂的糖精和作为香精和芳香剂的香兰素；(7) 为片剂提供了光泽而无需单独抛光操作的光亮剂，例如，蜂蜡；和(8) 在允许快速蒸发以允许有效而快速操作的同时，允许其他成分在片剂上铺开的挥发性溶剂，例如，醇-丙酮混合物。在某些实施方案中，水性膜包衣剂可以含有下列中的一种或多种：(1) 成膜聚合物，例如，纤维素醚聚合物如羟丙基甲基纤维素、羟丙基纤维素和甲基纤维素；(2) 增塑剂，例如，甘油、丙二醇、聚乙二醇、邻苯二甲酸二乙酯和琥珀酸二丁酯；(3) 着色剂和遮光剂，例如，FD&C或D&C色淀和氧化铁颜料；或(4) 载体，例如，水。

在某些实施方案中，胞苷类似物的压缩片剂可被压缩包衣。颗粒或粉末形式的包衣材料可以利用特定片剂压力压在药物的片剂芯上。

在某些实施方案中，药物制剂是胞苷类似物的明胶包衣的片剂。明胶包衣的片剂是一种允许包衣产品小于用同等量粉末填充的胶囊的胶囊状压缩片剂。明胶包衣有利于吞噬，并且与未封装的胶囊相比，明胶包衣的片剂可以更为防拆封。

在某些实施方案中，药物制剂可以是胞苷类似物的舌下片剂。舌下片剂用于在舌头下面溶解而通过口腔黏膜吸收。舌下片剂可以及时溶解并提供了药物的迅速释放。

在某些实施方案中，药物制剂是胞苷类似物的即刻释放片剂。在某些实施方案中，立即释放片剂被设计成例如在没有任何特殊的速率控制特征（如特殊包衣或其他技术）下崩解和释放API。在某些实施方案中，所述制剂是快速崩解片剂，例如，在给予后基本在口中
溶解。在某些实施方案中，药物剂型是胞苷类似物的持续释放片剂。在某些实施方案中，持续释放片剂被设计成例如在时间长时并且基本在胃中释放API。

【0179】在某些实施方案中，压缩片剂可以利用湿法制粒制备。湿法制粒是生产压缩片剂的广泛采用的方法。并且在特定实施方案中，需要一个或者多个以下步骤：(1)称重和混合各成分；(2)制备微湿的物质；(3)筛选潮湿的物质成为小球或颗粒；(4)干燥颗粒；(5)通过干筛选用颗粒分级；(6)加入润滑剂并混合；和(7)通过压缩制片。

【0180】在某些实施方案中，压缩的片剂可以利用干法制粒制备。通过干法制粒方法，将粉末混合物压实成大块，随后破碎成颗粒。但这个方法中，活性成分或稀释剂具有凝集性。在称量和混合各成分后，粉末混合物可插入或压缩到大的平片剂或小球中。然后使用或用磨机使插入物破裂，并通过所需孔的筛子进行尺寸分级。以通常的方式加入润滑剂，并通过压制制备片剂。可选择地，代替插入，粉末压实机可用于通过在高压箱之间加压粉末而增加粉末的密度。然后，将压缩的物质破碎，分级大小，并润滑，通过以通常的方式压缩制备片剂。压缩片剂中使用的粘结剂包括甲基纤维素或羟甲基纤维素，并能产生良好的片剂硬度和脆性。

【0181】在某些实施方案中，压缩片剂可以利用直接压缩制备。有些颗粒化学品具有流动性并凝集性，能够使它们在片剂机中直接压缩，而无需湿法或干法制粒。对于不具备这种品质的化学品，可以使用特殊的药物赋形剂赋予用于直接压缩片剂生产所需的品质。具体的制片赋形剂包括例如填充，如微晶纤维素、微晶纤维素、聚乙烯醇和磷酸二钙；崩解剂，如直接压缩淀粉、羟甲基纤维素、交联羧甲基纤维素纤维和交联聚乙烯吡咯烷酮；润滑剂，如硬脂酸镁和滑石粉；和助流剂，如气相二氧化硅。

【0182】在某些实施方案中，本发明提供的片剂可以通过模制制备。模制片剂所用的基材一般是细粉状乳糖的混合物，含有或不含有部分粉末状蔗糖。在准备填充过程中，药物通过几何稀释与基材均匀混合。粉末混合物可以用仅足够湿润该粉末的水和醇的混合物湿润，从而使混合物可以被压缩。水对一部分乳糖/蔗糖基材的溶剂作用影响干燥后的粉末混合物的滞留。醇加速了干燥过程。

【0183】在某些实施方案中，本发明提供的药物剂型含有胞苷类似物和任选的一种或多种赋形剂，以形成“药芯”。任选的赋形剂包括例如本领域中已知的例如稀释剂(膨化剂)、润滑剂、崩解剂、填料、稳定剂、表面活性剂、防腐剂、着色剂、调味剂、粘结剂、赋形剂载体、助流剂、渗透增强赋形剂、增塑剂等。本领域技术人员认为，有些物质在药物组合物中具有多种用途。例如，有些物质是帮助压缩后片剂保持在一起的粘结剂，但也是一旦到达目标输送位点后帮助片剂破碎的崩解剂。制剂科学家基于确定本领域中可用的标准程序和参考文献的经验和考虑可以容易地确定赋形剂的选择和用量。

【0184】在某些实施方案中，本发明提供的剂型含有由一种或多种粘结剂，粘结剂可以用于例如为片剂赋予凝集性，因而确保片剂在压缩后仍然完好无损。适合的粘结剂包括但不限于淀粉(包括预糊化淀粉和玉米淀粉)、明胶、糖类(包括蔗糖、葡萄糖、葡萄糖和乳糖)、聚乙二醇、丙二醇、酯、天然和合成胶类例如阿拉伯树胶海藻酸钠、聚乙烯醇醇溶液酯、纤维素木聚糖(包括羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素、羧甲基纤维素等)、vogum、卡波姆(例如，carbopol)、钠、鞣精、瓜尔豆胶、氯化植物油、硅酸铝
镁、麦芽糊精、聚甲基丙烯酸酯、聚维酮（例如，KOLLIDON、PLASDONE）、微晶纤维素等。粘结剂还包括例如阿拉伯树胶、琼脂、藻酸、cubemors、卡拉胶、纤维素醋酸酯、苯二甲酸酯、长角、壳聚糖、果糖的核黄素、聚维酮、dextrate、糊精、右旋糖、乙基纤维素、明胶、山梨酸甘油酯、瓜尔豆胶、羟乙基纤维素、羟乙基甲基纤维素、羟丙基纤维素、羟丙基淀粉、羟丙基甲基纤维素、葡粉、乳糖、硅酸铝镁、麦芽糊精、麦芽糖、甲基纤维素、钯洛沙姆、聚卡波非、聚右旋糖、聚环氧乙烷、聚丙烯酸酯、甲基纤维素、海藻酸钠、羧甲基纤维素钠、淀粉、预糊化淀粉、硬脂酸、蔗糖和玉米蛋白。如果适宜，相对于药剂，粘结剂的重量可以占药剂的约3%w/w；药剂的约4%w/w；药剂的约6%w/w；药剂的约8%w/w；药剂的约10%w/w；药剂的约12%w/w；药剂的约14%w/w；药剂的约16%w/w；药剂的约18%w/w；药剂的约20%w/w；药剂的约22%w/w；药剂的约24%w/w；药剂的约26%w/w；药剂的约28%w/w；药剂的约30%w/w；药剂的约32%w/w；药剂的约34%w/w；药剂的约36%w/w；药剂的约38%w/w；药剂的约40%w/w；药剂的约42%w/w；药剂的约44%w/w；药剂的约46%w/w；药剂的约48%w/w；药剂的约50%w/w；药剂的约52%w/w；药剂的约54%w/w；药剂的约56%w/w；药剂的约58%w/w；药剂的约60%w/w；药剂的约62%w/w；药剂的约64%w/w；药剂的约66%w/w；药剂的约68%w/w；药剂的约70%w/w；药剂的约72%w/w；药剂的约74%w/w；药剂的约76%w/w；药剂的约78%w/w；药剂的约80%w/w；药剂的约82%w/w；药剂的约84%w/w；药剂的约86%w/w；药剂的约88%w/w；药剂的约90%w/w；药剂的约92%w/w；药剂的约94%w/w；药剂的约96%w/w；药剂的约98%w/w以上。在某些实施方案中，特定粘结剂的适宜量由本领域技术人员确定。

[0185] 在某些实施方案中，本发明提供的制剂含有至少一种或多种稀释剂。稀释剂可以用于例如增加体积，从而最终提供适当尺寸的片剂。合适的稀释剂包括磷酸二钙、硫酸钙、乳糖、纤维素、高岭土、甘露醇、氯化钠、干淀粉、微晶纤维素（例如，AVICEL）、超细纤维素、预糊化淀粉、碳酸钙、硫酸钙、糊精、dextrate、糊精、右旋糖、二元磷酸钙水合物、三元磷酸钙、高岭土、碳酸镁、氧化镁、麦芽糊精、甘露醇、聚甲基丙烯酸酯（例如，EUDRAGIT）、氯化钾、氯化钠、山梨醇和滑石粉等。稀释剂还包括例如海藻酸钠、碳酸钙、磷酸钙、硫酸钙、纤维素醋酸酯、可压缩糖、果糖的核黄素、dextrate、糊精、右旋糖、赤藓糖醇、乙基纤维素、果糖、富马酸、棕榈酸硬脂酸甘油酯、异麦芽、高岭土、lacitol、乳糖、甘露醇、碳酸镁、氧化镁、麦芽糊精、麦芽糖、中链甘油三酸酯、微晶纤维素、微晶纤维素、微晶纤维素、粉状纤维素、聚右旋糖、聚丙烯酸酯、二甲基硅油、海藻酸钠、氯化钠、山梨醇、淀粉、预糊化淀粉、蔗糖、磷酸三钙、软化剂、滑石粉、黄芪胶、海藻酸和木糖醇。可以计算稀释剂的用量以取得片剂或胶囊的所需体积。在某些实施方案中，稀释剂的用量占药剂重量的约5%以上、10%以上、15%以上、20%以上、22%以上、24%以上、26%以上、28%以上、30%以上、32%以上、34%以上、36%以上、38%以上、40%以上、42%以上、44%以上、46%以上、48%以上、50%以上、52%以上、54%以上、56%以上、58%以上、60%以上、62%以上、64%以上、68%以上、70%以上、约72%以上、74%以上、76%以上、78%以上、80%以上、85%以上、约90%以上或约95%以上；约10%~约90%/w；约20%~约80%/w；约30%~约70%/w；约40%~约60%/w。在某些实施方案中，由本领域技术人员确定稀释剂的适宜量。

[0186] 在某些实施方案中，本发明提供的制剂含有至少一种或多种润滑剂。润滑剂可以用于例如方便片剂生产；合适的润滑剂的例子包括例如植物油（如花生油、棉籽油、芝麻油、橄榄油、玉米油和可可豆油）、甘油、硬脂酸镁、硬脂酸钙和硬脂酸。在某些实施方案中，硬脂酸，如果适宜，占含药物量的不超过大约2重量%。润滑剂的其他例子包括例如硬脂酸钙、单硬脂
酸甘油酯、山萮酸甘油酯、棕榈酸酯硬脂酸甘油酯、十二烷基硫酸钠镁、硬脂酸镁、肉豆蔻酸、棕榈酸、泊洛沙姆、聚乙二醇、苯甲酸钾、苯甲酸钠、氯化钠、十二烷基硫酸钠、硬脂基富马酸钠、硬脂酸、滑石粉和硬脂酸锌。在特定实施方案中，润滑剂是硬脂酸锌。在某些实施方案中，润滑剂相对于药芯的量占药芯的约0.2%/w，药芯的约0.4%/w，药芯的约0.6%/w，药芯的约0.8%/w，药芯的约1.0%/w，药芯的约1.2%/w，药芯的约1.4%/w，药芯的约1.6%/w，药芯的约1.8%/w，药芯的约2.0%/w，药芯的约2.2%/w，药芯的约2.4%/w，药芯的约2.6%/w，药芯的约2.8%/w，药芯的约3.0%/w，药芯的约3.5%/w，药芯的约4.0%/w，药芯的约4.5%/w，药芯的约5.0%/w，药芯的约6.0%/w，药芯的约7.0%/w，药芯的约8.0%/w，药芯的约10%/w，药芯的约12%/w，药芯的约14%/w，药芯的约16%/w，药芯的约18%/w，药芯的约20%/w，药芯的约25%/w，药芯的约30%/w，药芯的约35%/w，药芯的约40%/w，药芯的约0.2%～约10%/w，药芯的约0.5%～约5%/w，药芯的约1%～约3%/w。在某些实施方案中，由本领域技术人员确定特定润滑剂的适宜量。

[0187] 在某些实施方案中，本发明提供的制剂含有一种或多种崩解剂。崩解剂可以用于例如促进片剂的崩解，例如可以是淀粉、粘土、纤维素、褐藻酸、树脂或交联聚合物。崩解剂还包括例如膨胀酸、羧甲基纤维素钠、羧甲基纤维素钠（例如AC-DI-SOL、PRIMELLOSE）、胶体二氧化硅、交联羧甲基纤维素钠、交联聚乙烯（例如KOLLIDON、POLYPLASDONE）等。崩解剂还包括例如海藻酸钠、壳聚糖、多库酯钠、羧丙基纤维素和聚维酮。在某些实施方案中，崩解剂相对于药芯的量占药芯的约1%/w，药芯的约2%/w，药芯的约3%/w，药芯的约4%/w，药芯的约5%/w，药芯的约6%/w，药芯的约7%/w，药芯的约8%/w，药芯的约9%/w，药芯的约10%/w，药芯的约12%/w，药芯的约14%/w，药芯的约16%/w，药芯的约18%/w，药芯的约20%/w，药芯的约22%/w，药芯的约24%/w，药芯的约26%/w，药芯的约28%/w，药芯的约30%/w，药芯的约32%/w，大于药芯的约32%/w，药芯的约1%～约10%/w，药芯的约2%～约8%/w，药芯的约3%～约7%/w，或药芯的约4%～约6%/w。在某些实施方案中，由本领域技术人员确定特定崩解剂的适宜量。

[0188] 在某些实施方案中，本发明提供的制剂含有一种或多种稳定剂。稳定剂（也称为吸收促进剂）可以用于例如抑制或延缓药物分解反应，例如氧化反应。稳定剂包括例如d-α-生育酚聚乙二醇1000琥珀酸酯（维生素ETPGS）、阿拉伯树胶、白蛋白、褐藻酸、硬脂酸铝、海藻酸钠、抗坏血酸、抗坏血酸棕榈酸酯、羟丙基-丁基甲基纤维素、海藻酸钠、硬脂酸钙、羧甲基纤维素钠、卡拉胶、长角胶、胶体二氧化硅、环糊精、二乙醇胺、乙二胺四乙酸盐、乙基纤维素、乙二醇琥珀酸酯硬脂酸酯、单硬脂酸甘油酯、瓜尔胶、羟丙基纤维素、羟丙甲纤维素、转化糖、卵磷脂、硅酸铝镁、单乙醇胺、果胶、泊洛沙姆、聚乙烯醇、海藻酸钠、波拉克丁、聚维酮、没食子酸丙酯、丙二醇、丙二醇海藻酸钠、精制糖、醋酸钠、海藻酸钠、硼酸钠、羧甲基纤维素钠、硬脂酸富马酸钠、山梨醇、硬脂酸、磺基丁基-β-环糊精、海藻糖、白蜡、黄原胶、木糖醇、黄蜡和醋酸酯。在某些实施方案中，稳定剂相对于药芯的量占药芯的约1%/w，药芯的约2%/w，药芯的约3%/w，药芯的约4%/w，药芯的约5%/w，药芯的约6%/w，药芯的约7%/w，药芯的约8%/w，药芯的约9%/w，药芯的约10%/w，药芯的约12%/w，药芯的约14%/w，药芯的约16%/w，药芯的约18%/w，药芯的约20%/w，药芯的约22%/w，药芯的约24%/w，药芯的约26%/w，药芯的约28%/w，药芯的约30%/w，药芯的约32%/w，药芯的约1%～约
10%w/w，药芯的约2%～约8%w/w，药芯的约3%～约7%w/w或药芯的约4%～约6%w/w。在某些实施方案中，由本领域技术人员确定特定稳定剂的适宜量。

【0189】在某些实施方案中，本发明提供的制剂含有一种或多种助流剂。助流剂可以用于例如提高粉状组合物或颗粒的热稳定性和提高给药的准确度。可以充当助流剂的赋型剂包括例如胶体二氧化硅、三硅酸镁、羟丙基纤维素、淀粉、二元硫酸钙、硅酸钙、粉状纤维素、胶体二氧化硅、硅酸镁、硅酸钙、二氧化硅、淀粉、三元硫酸钙和滑石粉。在某些实施方案中，助流剂相对于药芯的存在量占小于药芯的约1%w/w，药芯的约1%w/w，药芯的约2%w/w，药芯的约3%w/w，药芯的约4%w/w，药芯的约5%w/w，药芯的约6%w/w，药芯的约7%w/w，药芯的约8%w/w，药芯的约9%w/w，药芯的约10%w/w，药芯的约12%w/w，药芯的约14%w/w，药芯的约16%w/w，药芯的约18%w/w，药芯的约20%w/w，药芯的约22%w/w，药芯的约24%w/w，药芯的约26%w/w，药芯的约28%w/w，药芯的约30%w/w，药芯的约32%w/w，药芯的约3%～约7%w/w，药芯的约4%～约6%w/w。在某些实施方案中，由本领域技术人员确定特定助流剂的适宜量。

【0190】在某些实施方案中，本发明提供的制剂含有一种或多种渗透促进剂（也称作例如渗透性促进剂）。在某些实施方案中，渗透促进剂提高了胞脂类似物通过胃肠壁（例如，胃部）的摄取。在某些实施方案中，渗透促进剂改变进入血流的胞脂类似物的速率和/或量。在特定实施方案中，d-α-生育酚聚乙二醇-1000琥珀酸酯（维生素E TPGS）用作渗透促进剂。在特定实施方案中，使用一种或多种其他适合的渗透促进剂，例如本领域中已知的任何渗透促进剂。适合的渗透促进剂的具体例子包括例如下列那些：

<table>
<thead>
<tr>
<th>产品名称</th>
<th>化学名称</th>
<th>供应商的例子</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluronic F 127</td>
<td>沃洛沙姆 F 127</td>
<td>Sigma</td>
</tr>
<tr>
<td>Lutrol F 68</td>
<td>沃洛沙姆 188</td>
<td>BASF</td>
</tr>
<tr>
<td>Carbopol 934-P</td>
<td>卡波姆 934-P</td>
<td>Spectrum Chemical</td>
</tr>
<tr>
<td>吐温 80</td>
<td>泛山梨酸酯 80</td>
<td>Sigma</td>
</tr>
<tr>
<td>莫立糖</td>
<td>低分子量莫立糖</td>
<td>Aldrich</td>
</tr>
<tr>
<td>酯酸/Na cap</td>
<td>酯酸钠</td>
<td>Sigma</td>
</tr>
<tr>
<td>月桂酸/Na laur</td>
<td>十二酸钠</td>
<td>Sigma</td>
</tr>
<tr>
<td>EDTA 二钠</td>
<td>乙二胺四乙酸二钠二水合物</td>
<td>Sigma</td>
</tr>
<tr>
<td>丙二醇</td>
<td>1,2-丙二醇</td>
<td>Sigma</td>
</tr>
<tr>
<td>CM 纤维素</td>
<td>蔗甲基纤维素</td>
<td>Sigma</td>
</tr>
<tr>
<td>Labrasol</td>
<td>硝酸钠酯聚乙二醇甘油酯</td>
<td>Gattefosse</td>
</tr>
<tr>
<td>N,N-二甲基乙酰胺</td>
<td>(最低 99%)</td>
<td>Sigma</td>
</tr>
<tr>
<td>维生素 E TPGS</td>
<td>d-α-生育酚聚乙二醇-1000琥珀酸酯</td>
<td>Eastman</td>
</tr>
<tr>
<td>Solutol HS 15</td>
<td>聚乙二醇 660 12-羟基硬脂酸酯</td>
<td>BASF</td>
</tr>
<tr>
<td>Labrafial M 1944 CS (2)</td>
<td>油基聚乙二醇甘油酯</td>
<td>Gattefosse</td>
</tr>
</tbody>
</table>

【0192】其他潜在的渗透促进剂包括例如醇类、二甲亚砜、单油酸甘油酯、四氢呋喃聚乙二醇醚、肉豆蔻酸异丙酯、棕榈酸异丙酯、羊毛脂、亚油酸、肉豆蔻酸、油酸、油醇、棕榈酸、聚氧
乙烯烷基醚、2-吡咯烷酮、十二烷基硫酸钠和麝香草酚。

【0193】 在某些实施方案中，相对于制剂的总重量，渗透促进剂在制剂中的存在量按重量计为约0.1%、约0.2%、约0.3%、约0.4%、约0.5%、约0.6%、约0.7%、约0.8%、约0.9%、约1%、约1.1%、约1.2%、约1.3%、约1.4%、约1.5%、约1.6%、约1.7%、约1.8%、约1.9%、约2%、约2.1%、约2.2%、约2.3%、约2.4%、约2.5%、约2.6%、约2.7%、约2.8%、约2.9%、约3%、约3.1%、约3.2%、约3.3%、约3.4%、约3.5%、约3.6%、约3.7%、约3.8%、约3.9%、约4%、约4.1%、约4.2%、约4.3%、约4.4%、约4.5%、约4.6%、约4.7%、约4.8%、约4.9%、约5%、约5.1%、约5.2%、约5.3%、约5.4%、约5.5%、约5.6%、约5.7%、约5.8%、约5.9%、约6%、约6.1%、约6.2%、约6.3%、约6.4%、约6.5%、约6.6%、约6.7%、约6.8%、约6.9%、约7%、约7.1%、约7.2%、约7.3%、约7.4%、约7.5%、约7.6%、约7.7%、约7.8%、约7.9%、约8%、约8.1%、约8.2%、约8.3%、约8.4%、约8.5%、约8.6%、约8.7%、约8.8%、约8.9%、约9%、约9.1%、约9.2%、约9.3%、约9.4%、约9.5%、约9.6%、约9.7%、约9.8%、约9.9%、约10%、大于约10%、大于约12%、大于约14%、大于约16%、大于约18%、大于约20%、大于约25%、大于约30%、大于约35%、大于约40%、大于约45%或大于约50%。在某些实施方案中，由本领域技术人员根据本发明提供的渗透促进剂的适宜量。

【0194】 尽管不希望局限于任何特定的理论，但是本发明提供的渗透促进剂可以通过尤其促进（例如，增加速度或程度）胞苷类似物输送通过胃肠壁来进行作用。一般地，通过胃肠壁的运动通过例如以下动作发生：被动扩散，如药物以仅由浓度梯度驱动的方式穿过膜的运动；载体介导的扩散，如药物经由嵌合在细胞膜中的专门输送系统穿过细胞膜的运动；细胞旁扩散，如药物通过在两个细胞之间行动但不通过该两个细胞而穿过膜运动；和跨细胞扩散，如药物穿过细胞的运动。此外，存在许多能够通过泵出进入到细胞中的药物来预防药物在细胞内积累的细胞蛋白。这些有时被称为外排泵。一个这样的外排泵是涉及p-糖蛋白的外排泵，它存在于体内的许多不同组织中（例如，肠、胎盘膜、血脑屏障）。渗透促进剂可以通过尤其是促进上述过程中的任何过程来发挥作用（例如，通过增加膜的流动性、开放细胞之间的紧密连接，和/或抑制外排等）。

【0195】 在某些实施方案中，本发明提供的含有胞苷类似物（例如，5-氟尿嘧苷）的组合物基本没有胞苷脱氨酶抑制剂（例如，不包含胞苷脱氨酶抑制剂）。在某些实施方案中，本发明提供的组合物基本没有（例如，不包含）胞苷脱氨酶抑制剂四氢尿苷（THU）。本文的某些实施方案提供了含有治疗有效量的胞苷类似物（例如，5-氟尿嘧苷）的药物组合物，其中所述组合物在口服给予至个体后基本在胃中释放胞苷类似物，和其中所述组合物基本没有（例如，不包含）胞苷脱氨酶抑制剂（例如，THU）。本文的某些实施方案提供了含有治疗有效量的胞苷类似物（例如，5-氟尿嘧苷）的药物组合物，其中所述组合物在口服给予至个体后基本在胃中释放胞苷类似物，和其中所述组合物基本没有（例如，不包含）胞苷脱氨酶抑制剂（例如，THU），和其中所述组合物实现本发明提供的特定生物参数（例如，本发明提供的特定C_{max}值、T_{max}值和/或AUC值）。在特定实施方案中，本发明提供的基本没有胞苷脱氨酶抑制剂（例如，THU）的组合物包含例如小于200mg、小于150mg、小于100mg、小于50mg、小于25mg、小于10mg、小于5mg、小于1mg或小于0.1mg的胞苷脱氨酶抑制剂。

【0196】 4. 额外治疗剂

【0197】 在特定实施方案中，本发明提供的胞苷类似物口服制剂还含有一种、二种、三种或更多种其他药理活性物质（也称为“额外治疗剂”、“第二种活性成分”等）。在特定实施方案
中，本发明提供的口服制剂含有治疗有效量的额外治疗剂。在特定实施方案中，使用共配制活性药物成分的方法，包括本文公开的方法和本领域中已知的方法将胞苷类似物（例如，氯胺油苷）和额外治疗剂在同一剂型中共同配制在一起。在其他实施方案中，胞苷类似物和额外治疗剂在单独剂型中共同给予。相信，某些组合在治疗特定疾病或紊乱中协同工作，包括例如癌症和与不希望的血管生成或异常细胞增殖相关的或以不希望的血管生成或异常细胞增殖为特点的某些疾病和病症。本发明提供的胞苷类似物口服剂型也用于缓解与某些第二种活性成分相关的不利影响，并且一些第二种活性成分可用于缓解与本发明提供的胞苷类似物口服剂型相关的不利影响。在某些实施方案中，本发明提供的口服制剂与一种或多种治疗剂共同给予在有在有这些需要的个体中提供复敏作用。额外治疗剂可以是如大分子（例如，蛋白或小分子（例如，合成的无机、有机金属或有机分子）。

[0198] 本文公开的组合物和方法中使用的特定额外治疗剂的例子包括但不限于例如细胞毒性剂、抗代谢物、叶酸拮抗剂、HDAC抑制剂（例如，entinostat，也称SNDX-275或MS-275；或伏立诺他，也称作辛二酸氯胺油苷酯异吕氢酸（SAHA）或N-羟基-N’-苯基-辛烷二酸酰胺）、DNA修复酶、DNA交联酶、DNA烷基化酶、DNA裂解酶、拓扑异构酶抑制剂、CDK抑制剂、JAK抑制剂、抗血管生成剂、Bcr-Abl抑制剂、HER2受体抑制剂、EGFR抑制剂、VEGFR抑制剂、PDGFR抑制剂、IGF抑制剂、IGF抑制剂、c-药盒抑制剂、Ras通路抑制剂、PDK抑制剂、多目标激酶抑制剂、mTOR抑制剂、抗雌激素、抗雄激素、芳香酶抑制剂、生长抑素类似物、ER调节剂、抗血管蛋白、长春花生物碱、紫杉烷类、HSP抑制剂、蛋白激酶抑制剂、抗增殖剂、COX-2抑制剂、抗肿瘤转移剂、免疫抑制剂、生物药剂如抗体和激素疗法。在特定实施方案中，各给予的治疗剂是免疫调节性化合物，例如，沙利度胺、雷利度胺或ponalidomide。共同给予剂例如可通过口服或注射给予。

[0199] 额外治疗剂的其他例子包括但不限于造血生长因子、细胞因子、抗瘤粒、粒细胞集落刺激因子（G-CSF）、粒细胞巨噬细胞集落刺激因子（GM-CSF）、促红细胞生成素（EPO）、白细胞介素（IL）、干扰素（IFN）、oblimersen、马法兰、拓扑替康、己酮可可碱、泰索帝、依立替康、环丙沙星、多柔比星、长春新碱、达卡巴嗪、Ara-C、长春瑞滨、强的松、环磷酰胺、硼替佐米、三氧化二砷。这些额外治疗剂特别用在本文公开的方法和组合物中，包括但不限于涉及治疗多发性骨髓瘤的方法和组合物。

[0200] 额外治疗剂的其他例子包括但不限于抗体（例如，利妥昔单抗、抗-CD33）、造血生长因子、细胞因子、抗癌粒、抗病毒、COX-2抑制剂、免疫调节剂、免疫抑制剂、皮质类固醇或它们的药理活性突变体或衍生物。参见，例如，S.Nand等人，Leukemia and Lymphoma, 2008, 49(11):2141-47（描述了给予羟基脲、氯胺油苷和低剂量吉妥单抗的组合至患有AML和高危MDS的老年患者的第二阶段研究，得出的结论是这种组合在治疗这组患者中的AML和高危MDS似乎是安全和有效的方案）。这些额外治疗剂特别用在本文公开的方法和组合物中，包括但不限于涉及治疗本文公开的疾病和紊乱的方法和组合物。

[0201] 大分子活性成分的例子包括但不限于造血生长因子、细胞因子、单克隆和多克隆抗体。类型的大分子活性成分是生物分子，如天然或人造的蛋白。特别有用的蛋白包括在体外或体内刺激造血前体细胞和免疫活性性细胞存活和/或增殖的蛋白。其他的蛋白在体外或体内刺激细胞的定向红系祖细胞的分裂和分化。特定蛋白包括但不限于：白介素，如IL-2（包括重组IL-2（“rIL2”）和全丝雀痘(canaripox)IL-2)、IL-10、IL-12和IL-18；干扰
素，如干扰素α-2a，干扰素α-2b，干扰素α-n1，干扰素α-n3，干扰素β-1a和干扰素γ-1b；G-CSF和GM-CSF；和EPO。

【0202】可用在本发明提供的方法和组合物中的特定蛋白包括但不限于：非格司亭，在美国以商品名Neupogen®（Amgen, Thousand Oaks, CA）出售；沙格司亭，在美国以商品名Leukine®（Immunex, Seattle, WA）出售；和重组EPO，在美国以商品名Epogen®（Amgen, Thousand Oaks, CA）出售。

【0203】G-CSF的重组和突变形式可以根据美国专利号5,391,485,5,393,870,和5,229,496的记载制备；在将通过引用将其全文并入本文。G-CSF的重组和突变形式可以根据美国专利号4,810,643,4,999,291,5,528,823和5,580,755的记载制备；在此通过引用将其全文并入本文。

【0205】可以与本文公开的口服制剂组合使用的抗体包括单克隆和多克隆抗体。抗体的例子包括但不限于曲妥珠单抗（Herceptin®）、利妥昔单抗（Rituxan®）、贝伐单抗（Avastin™）、帕妥珠单抗（Omnitarg™）、托西莫单抗（Bexxar®）、依达洛单抗（Panorex®）和G250。本文公开的口服制剂还可以包含抗-TNF-α抗体、与其组合或与其组合使用。

【0207】在一个实施方案中，额外治疗剂（例如，大分子化合物或小分子化合物）减少、消除或防止与给予（例如，口服给予）本发明提供的胞苷类似物相关的不利影响。取决于特定胞苷类似物和治疗的疾病或紊乱，本领域中已知的与特定胞苷类似物相关的不利影响可以包括但不限于贫血病、嗜中性白血球减少症、发热性嗜中性白血球减少症、血小板减少症、肝脏毒性（例如，包括但不限于先前存在的肝功能损害患者中的肝脏毒性）、升高的血清肌酐、肾功能衰竭、肾小管损害、中毒、低血糖、肝昏迷、恶心、呕吐、消化不良、腹痛、发热、白细胞减少症、腹泻、便秘、瘙痒、寒战、虚弱、肺炎、焦虑、失眠、嗜睡和体重减少。

【0208】象一些大分子一样，相信许多小分子化合物当与本文公开的胞苷类似物口服制剂一起给予时（例如，之前、之后或同时）能够提供协同效应。小分子第二种活性成分的例子包括但不限于抗癌剂、抗生素、免疫抑制剂和甾体化合物。

【0209】抗癌剂的例子包括但不限于：阿西维辛；阿柔比星；盐酸阿考达唑；阿克罗宁；阿多来新；阿地白介素；六甲胺醛；安波霉素；醋酸阿美酮；安吖啶；阿那曲唑；安曲霉素；天门冬酰胺酶；曲林菌素；阿扎胞苷；阿扎替普；阿佐霉素；巴马司他；苯佐替普；比卡鲁胺；盐酸
比生群;二甲磺胺双合法德;比折来新;硫酸博来霉素;布喹那钠;溴匹立明;白消安;放线菌
素;卡普替酮;卡醋甲;卡贝替肽;卡铂;卡莫斯汀;盐酸卡柔比星;卡折来新;地西芬戈;塞
米昔布(COX-2抑制剂);苯丁酸氮芥;西罗霉素;顺铂;克拉屈滨;甲磺酸丙 UInt;环磷酰
胺;阿糖胞苷;达卡巴嗪;放线菌素;盐酸柔红霉素;地西他滨;右奥马铂;地扎匹尼;甲磺
酸地扎匹尼;地咜醇;多西他赛;多柔比星;盐酸多柔比星;屈洛昔芬;柠檬酸屈洛昔芬;丙酸苯
他雄酮;偶氮霉素;依达曲沙;盐酸依氟鸟氨酸;依沙芦星;恩洛铂;恩普西酯;依匹哌啶;盐
酸表柔比星;厄布洛唑;盐酸依达比星;伊美司汀;磷酸钠依美司汀;依他唑啶;依他泊苷;磷
酸依他泊苷;酰苯乙啶胺;盐酸法络维;法拉拉滨;芬甲基胺;氟尿苷;磷酸氟达拉滨;氟尿嘧
啶;氟西他滨;氟嘌呤;福司曲星钠;吉西他滨;盐酸吉西他滨;轻基腺;盐酸依达比星;环
环磷酰胺;伊莫福新;异丙铂;依立替康;盐酸依立替康;醋酸兰瑞肽;来曲唑;醋酸亮丙瑞林;
盐酸利阿唑;洛美曲索钠;洛莫司汀;盐酸洛索氨酸;马索罗酚;美登素;盐酸氮芥;醋酸甲地
孕酮;醋酸甲烯雌醇;苯丙酸氮芥;美非司汀;甲氧嘌呤;甲氨蝶呤;甲氨蝶呤;metotrexine;美
妥替喷;米丁度胺;mitocarcin;丝裂红素;米托甘林;丝裂马赛克;丝裂霉素;米托司培;米
托坦;盐酸米托胺醌;麦考酚酸;诺考达唑;诺加霉素;奥沙利铂;奥昔菲特;紫杉醇;培门冬
酶;佩里霉素;奈莫司汀;磷酸派来霉素;培磷酰胺;哌泊溴烷;哌泊舒凡;盐酸吡洛氮芥;普
卡霉素;普洛美泉;唑非替钠;紫杉醇;波利莫司汀;盐酸丙卡巴肼;嘌呤霉素;盐酸嘌呤霉素;
吡喃呋喃菌素;利波腺苷;沙芬戈;盐酸沙芬戈;司莫司汀;辛曲泰;磷乙酰天冬氨酸钠;
(Sparfosate sodium);司帕霉素;盐酸锗胺酸;螺泊莫司汀;螺泊;链状菌素;链佐星;磷氮苯
脲;他利霉素;昔加兰钠;tegocalan Sodium);多西他赛;昔加氟;盐酸普洛氮芥;普莫泊
芬;普尼泊苷;普罗匹隆;睾内酯;硫咪嘌呤;硫鸟嘌呤;塞替派;噻唑呋喃;替拉扎明;柠檬酸
托瑞米芬;醋酸曲托龙;磷酸曲西立滨;三甲曲沙;葡酸酯酸三甲曲沙;曲普瑞林;盐酸妥布
氯唑;乌拉莫司汀;乌瑞替派;伐昔乎;维替泊芬;硫酸长春碱;硫酸长春新碱;长春地辛;硫
酸长春地辛;硫酸长春氮定;硫酸长春氮定;硫酸长春利定;伏铂唑;折尼泊;净司他丁;及盐酸佐柔比星。
立那托: 送 astronomical 呼吸8; 自然 astronomical 呼吸A衍生物; curacin A; 曲 日三酮; 环 platam; cypermethor; 阿糖胞苷 octofosfate; 细胞溶解因子; cytostatin; 达当单抗; 地索他滨; 脱氢膜海酪素 B; 地洛瑞林; 地塞米松; 右异环磷酸酰胺; 右佐敦; 右维拉帕米; 地叶酸; 代扣宁 B; didox; 二乙基去甲精胺; 二氢-5-氮杂胞胞; 二氢紫杉醇, 9-; dioxamycin; 二苯基螺莫司汀; 多西他赛; 十二烷醇/多拉司琼; 去氧氟尿苷; 多柔比星; 屈普昔芬; 屈大麻酚; duocarmycin SA; 依布硒; 依考莫莫司汀; 依热地福新; 依决洛单抗; 依氟鸟氨酸; 银胆烯; 乙烯普氮; 表柔比星; 依立他滨; 依诺莫司汀类似物; 依那非激因子; 依那非激抗剂; 依他硒; 依托泊苷磷酸盐; 依西美坦; 法布唑; 法拉拉滨; 芬维 A 胺; 富戈司亭; 富非他滨; flavopiridol; 氟卓斯汀; fluasterone; 氟达拉滨; 盐酸氟代柔红霉素; 福新麦克; 福美斯坦; 福美司汀; 福莫司汀; 德卟啉乳; 硝酸镓; 加洛他滨; 加尼瑞克; 白明胶酶抑制剂; 吉西他滨; 谢质甘肽抑制剂; hepsulfam; hergulin; 六甲拌二乙酰胺; 金丝桃素; 伊班膦酸; 伊达比星; 艾多昔芬; 伊决洛司汀; 伊莫司他; imatinib; (例如, Gleevic®); 尼唑莫特; 免疫刺激肽; 类胰岛素生长因子-1 受体抑制剂; 干扰素激活剂; 干扰素; 尼自介; 参硫肽; 磷酸多柔比星; 药石, 4-; 伊罗普拉; 伊索拉定; isobengazole; isohomohalicodrin B; 伊他司琼; jasplakinolide; kahalalide F; 层状素-3 醋酸基的; 兰瑞肽; leinamycin; 来格司亭; 硫酸阿糖多糖; leptolstatin; 来曲唑; 白血病抑制因子; 白细胞干扰素; 亮丙瑞林; 钝激酶; 黄体酮; 亮丙瑞林; 左旋咪唑; 利阿索; 线性多肽类似物; 脂类性二糖肽; 脂类性肽化合物; lissoclinamide 7; 洛铂; 脯酰磷脂; 洛美曲酸; 氟尼达明; 洛索他滨; 洛索他滨; 勒托普康; 德卟啉; lysofylline; 溶解肽; 美他索; mannostatin A; 马立司他; 马索雷肽; maspisin; 基因溶解因子抑制剂; 基质金属蛋白酶抑制剂; 美诺立尔; 麦尔巴隆; 美普瑞林; 甲硫氨基酸; 甲氧氮磺胺; MIF 抑制剂; 米非司酮; 米昔福辛; 米立司丁; 米托胍; 二溴卫矛醇; 丝裂霉素类似物; 木托莫胺; mitotxin 纤维原细胞生长因子-1 皂草素 (saporin); 米托薰; 莫法洛汀; 莫拉司亭; Erbitux, 人毛细胞腺癌; 单磷酸酯胆碱 A+ 乳酸分支杆菌细胞壁 sk; 莫哌达醇; 氮芥抗癌剂; 印度洋海绵 B; 分枝杆菌细胞壁提取物; myriaporone; N-乙酰基地那林; N-替代苯甲酸; 楠法瑞林; magnestip; 纳洛酮; 非他辛; napavin; naphterpin; 那司亭; 奈达铂; 奈美柔比星; 奈立膦酸; 里奴内酰胺; nismycin; 氮氧化物调节剂; 磷基氧氧化物; nitrullin; oblimersen (Genasense®); 0- 姜基鸟嘌呤; 奥曲肽; okicenone; 密克背酸; 奥纳司酮; 恩丹西酮; 恩丹西酮; oracin; 口服细胞因子诱导剂; 奥沙利铂; 奥沙雷隆; 奥沙利铂; oxaunomycin; 紫杉醇; 紫杉醇类似物; 紫杉醇衍生物; palauamine; 棕榈酰肝素酶; 帕米膦酸; 麦罗三醇; 帕诺米芬; 帕替霉素; parabactin; 帕折替丁; 培门冬酶; 培得星 (peldesine); 菌糖磷酸磺酸钠; 喷司丁丁; pentrozole; 全氟溴烷; 培磷酰胺; 芥子醇; phenazinomycin; 乙酸芳酯; 磷酸酶抑制剂; 溶菌酶; 盐酸匹鲁卡品; 炔雌激素; 甾体类; placetin A; placetin B; 血浆酶原激活剂抑制剂; 合成铂; 基他化合物; 合成铂-3 胺; 吐非胺钠; 吐非毒素; 强的松; 丙基二-吲哚酮; 前列腺素 J2; 蛋白解体抑制剂; 蛋白 A 基免疫调节剂; 蛋白激酶 C 抑制剂; 蛋白激酶 C 抑制剂; 微藻; 蛋白激酶 A 磷酸酶抑制剂; 嘧啶核苷磷酸酶抑制剂; 红紫; 叫噪交呼; 吩喃羟乙酯血色素聚氧化乙烯共聚物; raf 拮抗剂; 雷替曲塞; 雷莫司琼; ras 法尼基蛋白转移酶抑制剂; ras 抑制剂; ras-GAP 抑制剂; 去甲基替昔普汀; 依替膦酸钠肟 Re 186; 根毒素; 核酶; RII 视黄酸脂; rohitukine; 罗莫肽; 罗唑美克;
rubiginone B1; ruboxyl; 沙芬戈; saintosin; SarCNU; sarcophytol A; 沙格司亭; Sdi 1 模拟药; 司莫司汀; 老化衍生的抑制剂; 正义寡核苷酸; 信号转导抑制剂; 西佐嘛; 索布佐生; 硼卡钠; 苯基乙酸钠; solverol1; 生长调节素结合蛋白; 索纳明; 斯帕福斯酸; spicamycin D; 螺多司汀; splenopentin; 天然物质海绵素 I; 角鲨胺; stipamide; 基质溶酶体抑制剂; sulfinosine; 超活性血管活性的肠肽拮抗剂; suradista; 苏拉明; 入血吲哚三醇; 他莫司汀; 它莫西芬甲磺化物; 牛磺多司汀; 他扎拉汀; 双可加兰钠; 他氟溴; tellurapyrylium; 端粒酶抑制剂; 替莫泊芬; 替尼泊苷; 四氯他烷氧化物; tetrazomine; thaliblastine; thiocoraline; 血小板生成素; 血小板生成素模拟物; 胸腺法新; 促胸腺生成素受体激动剂; 胸腺曲南; 甲状腺刺激性激素; 初乙基卟啉锡; 替拉诺明; 二茂铁氧化物; topsentin; 托瑞米芬; 替乐抑制剂; 维 A 酸; 三乙酰基尿苷; 曲西立滨; 三甲曲沙; 曲普瑞林; 托烷司琼; 妥罗雄醇; 酪氨酸激酶抑制剂; tyrophostins; UBC 抑制剂; 乌苯美司; 尿生殖窦内的生长抑制性因子; 尿激酶受体拮抗剂; 伐普肽; variolin B; 维拉尼索; veramine; verdins; 维普泊芬; 长春瑞滨; vinxaltine; vitaxin; 伏氯唑; 扎诺特隆; 折尼啡; 亚苄维; 及净司他丁酯。

[0211] 具体额外治疗剂包括但不限于 oblimersen (Genasense®), remicade, 多西他奇, 塞来昔布、美法仑、地塞米松 (Decadron®), 伐他唑仑化物、吉西他滨、顺铂、替莫唑胺、依托泊苷、环磷酰胺、temodar, 卡铂、丙卡巴肼、卡莫司汀、他莫昔芬、拓普替康、氨甲喋呤、Arisa®、紫杉醇、多西他赛、氟尿嘧啶、亚叶酸、依立替康、希罗达、CPT-11、干扰素 α、聚乙二醇化干扰素 α (例如, PEG INTRON®-A)、卡培他滨、顺铂、替派替、氟达拉滨、卡铂、脂质体柔红霉素、阿糖胞苷、多西紫杉醇、紫杉醇, 长春碱, IL-2, GM-CSF, 达卡巴嗪, 长春瑞滨, 噻来磷酸、palmitronate, biaxin, 白消安、强的松、双磷酸酶、氧化砷、长春新碱、多柔比星 (Doxil®), 紫杉醇、更昔洛韦、阿霉素、雌莫司汀磷酸钠 (Emcyt®), 舒林酸和依托泊苷。

[0212] D. 使用方法

[0213] 如上所述的, 本文的某些实施方案提供了细胞类似物的口服制剂, 其用于涉及例如允许不同药量和/或给药时间; 提供可选的药代动力学特征、药效学特征和/或安全特征; 允许长期和/或维持性治疗评价; 提供最大化去甲基化和/或基因重新表达的治疗方案; 提供延长连续去甲基化的治疗方案; 提供细胞类似物的新适应症; 和/或提供其他潜在有益处的方法中。

[0214] 本发明提供了通过口服给予含有细胞类似物 (例如, 5-氟尿嘧啶) 的药物制剂来治疗表现为异常细胞增殖的病理生理病症的方法, 例如癌症, 包括血液紊乱和实体瘤。其中所述制剂基本在胃中释放细胞类似物。本文的其他实施方案提供了治疗免疫紊乱的方法。在特定实施方案中, 本发明提供的方法涉及口服给予立即释放细胞类似物的制剂。在某些实施方案中, 细胞类似物和一种或多种治疗剂共同给予至个体以产生协同治疗作用。共同给予剂可以是通过口服或注射给予的癌症治疗剂。

[0215] 在某些实施方案中, 本发明提供的治疗与异常细胞增殖相关的紊乱的方法包括口服给予含有治疗有效量的细胞类似物的制剂。本文公开了涉及本发明提供的方法的特定治疗适应症。在某些实施方案中, 药物制剂中细胞类似物的治疗有效量是本文公开的量。在某些实施方案中, 药物制剂中细胞类似物的精确治疗有效量随着例如个体的年龄、体重、疾病和/或病症变化。
在特定实施方案中，与异常细胞增殖相关的紊乱包括但不限于MDS、AML、ALL、CML、白血病、慢性淋巴细胞白血病（CLL）、淋巴瘤（包括非何杰金氏淋巴瘤（NHL）和何杰金氏淋巴瘤）、多发性骨髓瘤（MM）、肉瘤、黑色素瘤、癌、腺癌、骨癌、乳腺癌、结肠直肠癌、卵巢癌、肺癌（例如，非小细胞肺癌和小细胞肺癌）、睾丸癌、肾癌、胰腺癌、骨癌、胃癌、头部和颈部癌症以及前列腺癌。在特定实施方案中，与异常细胞增殖相关的紊乱是MDS。在特定实施方案中，与异常细胞增殖相关的紊乱是AML。

在某些实施方案中，本发明提供的治疗异常细胞增殖紊乱的方法包括使用1V、SC和口服给予方法中的至少两种给予胞苷类似物。例如，本文的特定实施方案提供了通过SC或IV给予胞苷类似物（例如，5-氟尿嘧啶）的初始治疗循环，然后是胞苷类似物的口服给予治疗循环。在某些实施方案中，治疗循环包括在多天（例如，1、2、3、4、5、6、7、8、9、10、11、12、13、14或大于14天）给予至有此需要的个体多个剂量，任选地随后是治疗给药停止期（例如，1、2、3、4、5、6、7、8、9、10、11、12、13、14或大于14天）。本文的特定实施方案提供了一种治疗方案，包括SC和/或IV给予1、2、3、4或5个初始治疗循环，然后口服给予后续循环。例如，本文的特定实施方案提供了一种治疗方案，包括SC给予第1个循环，然后口服给予后续循环。

在说明书中提供了本发明提供的方法的适宜剂量范围和量。例如，在某些实施方案中，SC剂量为约75mg/m²。在某些实施方案中，口服剂量为约60mg、约80mg、约120mg、约180mg、约240mg、约300mg、约360mg、约480mg或大于约480mg。在某些实施方案中，计算口服剂量以实现80%、100%或120%的SC AUC。

在某些实施方案中，治疗异常细胞增殖的紊乱的方法包括作为单次或多次日剂量口服给予含有胞苷类似物（例如，5-氟尿嘧啶）的剂量。在特定实施方案中，含有胞苷类似物的制剂量口服给予给一次/天、两次/天、三次/天、四次/天或超过四次/天。例如，在某些实施方案中，含有胞苷类似物的制剂量口服给予治疗循环给予，该治疗循环包括给一次/天、两次/天、三次/天、四次/天、五次/天、六次/天、七次/天、八次/天、九次/天、十次/天、给予约200mg、约300mg、约400mg、约500mg、约600mg、约700mg、约800mg、约900mg或约1000mg的胞苷类似物，持续7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30天。在某些实施方案中，治疗方法包括低剂量给予。在某些实施方案中，含有胞苷类似物的制剂量口服给予，该治疗循环包括给二次/天、三次/天、四次/天、五次/天、六次/天、七次/天、八次/天、九次/天、十次/天、给予约300mg的胞苷类似物，持续7天。在某些实施方案中，含有胞苷类似物的制剂量口服给予，该治疗循环包括给二次/天、三次/天、四次/天、五次/天、六次/天、七次/天、八次/天、九次/天、十次/天、给予约300mg的胞苷类似物，持续14天。在某些实施方案中，含有胞苷类似物的制剂量口服给予，该治疗循环包括给二次/天、三次/天、四次/天、五次/天、六次/天、七次/天、八次/天、九次/天、十次/天、给予约300mg的胞苷类似物，持续14天。在某些实施方案中，含有胞苷类似物的制剂量口服给予，该治疗循环包括给二次/天、三次/天、四次/天、五次/天、六次/天、七次/天、八次/天、九次/天、十次/天、给予约300mg的胞苷类似物，持续12个月。在某些实施方案中，本文的方法包括给予本发明提供的特定口服制剂量，以例如克服与IV或SC给予胞苷类似物有关的限制。例如，IV或SC给予可能限制较长时间定期输送胞苷类似物的能力，从而潜在地限制胞苷类似物的最大功效。由于遵守长期IV或SC给药方案的严格性困难，因此长时间SC或IV暴露胞苷类似物可能会使个体（例如，患有多种血细胞减少的个体）终止该方案。参见，例如，Lyons, R.M.等，Hematologic Response to Three Alternative Dosing Schedules of Azacitidine in Patients With Myelodysplastic

[0220] 本文的某些实施方案提供了包括给予本发明提供的胞苷类似物的口服制剂的方法,包括在比1P或SC给予更长的时间内以更低剂量输送胞苷类似物（例如,氯杂胞苷）。在特定实施方案中,所述方法包括通过给予本发明提供的口服制剂控制剂量相关的血细胞减少（包括例如与氯杂胞苷相关的剂量相关的血细胞减少）。在某些实施方案中,本发明提供的方法包括给予本发明提供的口服制剂,以实现比包含相同胞苷类似物的1P或SC给药更安全的属性。

[0222] 本文的实施方案提供了通过口服给予本发明提供的药物组合物治疗患有本发明提供的疾病或紊乱的个体的方法,其中所述治疗导致个体的存活改善。在某些实施方案中,与一个或多个常规护理方案相比测量改善的存活。本文的实施方案提供了通过口服给予本发明提供的药物组合物治疗患有本发明提供的疾病或紊乱的个体的方法,其中所述治疗提供了改进的有效性。在特定实施方案中,根据美国国家药物管理局(FDA)的推荐,使用癌症临床试验的一个或多个终点测量改进的有效性。例如, FDA提供了癌症药物和生物治疗核准用临床试验终点业务指南（http://www.fda.gov/CBER/gdlns/c lintrialend.htm）。FDA终点包括但不限于总存活,基于肿瘤评估的终点,如(i)无病存活(ii)客观响应率,(iii)改善和无改善存活的时间和(iv)时间一治疗失败。涉及症状终点的终点可以包括具体症状终点,如(i)癌症症状进展的时间和(ii)综合症状终点。从血液或体液检测的生物标志物也可用于确定疾病的控制。

[0223] 在某些实施方案中,治疗异常细胞增殖的紊乱的方法包括与食物一起口服给予胞苷类似物的制剂。在某些实施方案中,治疗异常细胞增殖的紊乱的方法包括不与食物一起口服给予胞苷类似物的制剂。在某些实施方案中,药理参数（例如,Cmax,Tmax）取决于个体的进食状态。在某些实施方案中,胞苷类似物的制剂舌下含服。

[0224] 在某些实施方案中,胞苷类似物（例如,5-氯脱胞苷）没有与胞苷脱氨酶抑制剂共同给予。在某些实施方案中,本发明提供的含有胞苷类似物的口服制剂没有与THU共同给予。本文的某些实施方案提供了治疗本发明提供的疾病或紊乱（例如,与异常细胞增殖相关的疾病）的方法,包括口服给予基本在胃中释放的本发明提供的胞苷类似物（例如,5-氯脱
胞苷），其中所述方法实现本发明提供的特定生物参数（例如，本发明提供的特定 Cmax 值、Tmax 值和 / 或 AUC 值），和其中所述方法包括不与胞苷类似物一起共同给予胞苷脱氨酶抑制剂。本文的某些实施方案提供了治疗本发明提供的疾病或紊乱（例如，与异常细胞增殖相关的疾病）的方法，包括口服给予基本在胃中释放的本发明提供的胞苷类似物（例如，5-氟尿胞苷），其中所述方法通过不与胞苷类似物一起共同给予胞苷脱氨酶抑制剂而避免了与给予胞苷脱氨酶抑制剂（例如，THU）相关的不利影响。在特定实施方案中，胞苷脱氨酶抑制剂（例如，THU）与胞苷类似物共同给予，其量例如小于约 500mg/d、小于约 200mg/d、小于约 150mg/d、小于约 100mg/d、小于约 50mg/d、小于约 25mg/d、小于约 10mg/d、小于约 5mg/d、小于约 1mg/d 或小于约 0.1mg/d。

[0225] 在某些实施方案中，本发明提供的方法包括通过给予含有胞苷类似物口服剂型至有此需要的个体治疗本发明提供的紊乱，包括血液紊乱，在特定实施方案中，本发明提供的含有 5-氟尿胞苷的口服剂型用于治疗患有血液紊乱的个体。血液紊乱包括例如可以导致血细胞中发育不良化和血液恶性肿瘤如白血病的血细胞异常生长。血液紊乱的例子包括但不限于急性髓细胞性白血病（AML）、急性早幼粒细胞白血病（APML）、急性淋巴细胞白血病（ALL）、慢性粒细胞白血病（CML）、慢性淋巴细胞白血病（CLL）、骨髓增生异常综合征（MDS）和镰刀型细胞贫血病。可以使用本发明提供的方法治疗的其他紊乱包括例如多发性骨髓瘤（MM）和何杰金氏淋巴瘤（NHL）。

[0226] 在某些实施方案中，本发明提供的方法包括通过给予含有胞苷类似物的口服剂型至有此需要的个体治疗 AML。AML 是成年人中发生的最常见类型的急性白血病。几种遗传基因紊乱和免疫缺失状态都与 AML 的风险增加相关。这些包括具有 DNA 稳定性缺陷的紊乱，从而导致随机染色体断裂，如布卢姆综合征、范可尼贫血症、Li-Fraumeni kindreds、共济失调毛细血管扩张和 X-连锁无丙种球蛋白血症。

[0227] 在某些实施方案中，本发明提供的方法包括通过给予含有胞苷类似物的口服剂型至有此需要的个体治疗 APL。APL 代表 AML 的不同子群。这种亚型的特点是早幼粒细胞含有 15;17 染色体易位。这种易位导致产生由视黄酸受体和序列 PML 组成的融合转录。

[0228] 在某些实施方案中，本发明提供的方法包括通过给予含有胞苷类似物的口服剂型至有此需要的个体治疗 ALL。ALL 是具有由各种亚型显示的临床特征的混合型疾病。在 ALL 中已经证实了细胞遗传学异常复发。最常见的细胞遗传学异常是 9;22 易位。得到的费城染色体显示个体的预后不良。

[0229] 在某些实施方案中，本发明提供的方法包括通过给予含有胞苷类似物的口服剂型至有此需要的个体治疗 CML。CML 是多能干细胞的克隆性骨髓增生异常，CML 的特点是涉及染色体 9 和 22 易位的具体染色体异常，从而产生费城染色体。电离辐射与 CML 的发展相关。

[0230] 在某些实施方案中，本发明提供的方法包括通过给予含有胞苷类似物的口服剂型至有此需要的个体治疗 MDS。在某些实施方案中，MDS 包括以下骨髓增生异常综合征亚型中的一个或多个：难治性贫血病、具有环状核幼细胞的难治性贫血病（伴随有嗜中性白血球减少症或血小板减少症或需要输血）、具有过量细胞的难治性贫血病、转化中具有过量细胞的难治性贫血病和慢性单核细胞性白血病。在某些实施方案中，MDS 是高危的 MDS。在某些实施方案中，本发明提供的方法包括给予含有胞苷类似物的口服剂型至有此需要的个体以提高患有 MDS 的个体的存活（例如，延长寿命）。

[0234] 本文的某些实施方案提供了将胞苷类似物输送到个体的方法，包括给予有此需要的个体含有胞苷类似物的口服制剂。在特定实施方案中，口服制剂包含(1)治疗有效量的胞苷类似物；和(2)在个体摄入含有胞苷类似物的口服制剂后能够基本在胃中释放胞苷类似物的任选的药物释放控制成分。本文的某些实施方案提供了一种在个体中增强胞苷类似物的口服生物利用度的方法。本文的某些实施方案提供了一种提高胞苷类似物的口服生物利用度的方法，包括口服给予本发明提供的药物组合物。在本发明提供的某些方法中，本发明提供的药物组合物口服给予至个体，接触个体身体的生物流体，并在上胃肠道中吸收，例如，基本在胃中吸收。

[0235] 本文的某些实施方案提供了一种通过给予本发明提供的含有胞苷类似物（例如，5-氯杂胞苷）的口服制剂而获得本发明提供的特定暴露值的方法。本文的某些实施方案提供了一种通过给予本发明提供的含有胞苷类似物（例如，5-氯杂胞苷）的口服制剂获得本发明提供的特定口服生物利用度值的方法。本文的某些实施方案提供了一种通过给予本发明提供的含有胞苷类似物（例如，5-氯杂胞苷）的口服制剂获得本发明提供的特定AUC值的方法。本文的某些实施方案提供了一种通过给予本发明提供的含有胞苷类似物（例如，5-氯杂胞苷）的口服制剂获得本发明提供的特定Cmax值的方法。本文的某些实施方案提供了一种通过给予本发明提供的含有胞苷类似物（例如，5-氯杂胞苷）的口服制剂获得本发明提供的特定Tmax值的方法。

[0236] 本文的某些实施方案提供了通过给予本发明提供的含有胞苷类似物（例如，5-氯杂胞苷）的口服制剂治疗与不希望或不受控制的细胞增殖有关的病症的方法。所述病症包括例如良性肿瘤、各种类型的癌症如原发性肿瘤和转移性肿瘤、血液紊乱（例如白血病、骨髓增生异常综合征和镰刀型细胞贫血症）、再狭窄（例如冠状动脉、颈动脉和脑病变）、内皮
细胞的异常刺激（动脉硬化）、由于手术对身体组织的危害、异常伤口愈合、异常血管生成、产生组织纤维化的疾病、重复运动紊乱、未高度血管化的组织紊乱以及与器官移植相关的增殖反应。

【0237】在某些实施方案中，良性肿瘤中的细胞保持其分化特点，且不以不受控制的方式分化。良性肿瘤可以是局部的和/或非转移性的。可以使用本发明提供的方法、组合物和制剂治疗的良性肿瘤具体类型包括例如血管瘤、肝细胞瘤、海绵状血管瘤、局灶性结节性增生、听神经瘤、神经纤维瘤、胆管腺瘤、胆管腺癌、纤维瘤、脂肪瘤、平滑肌瘤、间皮瘤、畸胎瘤、卵巢癌、结节性再生性增生、trachoma和化脓性肉芽肿。

【0238】在某些实施方案中，恶性肿瘤中的细胞变成未分化的，且对人体生长控制信号产生应答，和/或以不受控制的方式繁殖。恶性肿瘤可以是扩散性的，并能够蔓延到远距离（转移化）。恶性肿瘤可分为两大类，原发性和次发性的。原发性肿瘤直接起源于发现它们的组织。继发性肿瘤或转移性肿瘤是源于其他部位但现在已经蔓延到远处器官的肿瘤。转移的一般途径是直接生长进入相邻结构，通过血管或淋巴系统传播，并沿着组织面和身体空间（腹腔液、脑脊液等）扩展。

【0240】在某些实施方案中，可以使用本发明提供的方法、组合物和制剂治疗的原发性或次发性癌症或恶性肿瘤的具体类型包括例如白血病、乳腺癌、皮肤癌、骨癌、前列腺癌、肝癌、肺癌（例如，非小细胞肺癌和小细胞肺癌）、脑癌、胆囊癌、胰腺癌、直肠癌、副甲状腺癌、甲状腺癌、肾上腺癌、神经组织癌、头颈癌、结肠癌、胃癌、支气管癌、肾癌、基底细胞癌、溃疡和乳头状鳞状癌、转移性皮肤癌、骨肉瘤、尤因氏肉瘤、网状细胞肉瘤、骨髓瘤、巨大细胞癌、胆结石、胰岛细胞癌、原发性脑癌、急性和慢性淋巴细胞和粒细胞癌、毛细胞
说明书

瘤、腺瘤、增生病、髓样癌、嗜铬细胞瘤、粘膜神经瘤、肠节细胞神经瘤、增生性角膜神经瘤、marchanoid habitus肿瘤、Wilms肿瘤、精原细胞瘤、卵巢肿瘤、平滑肌瘤、宫颈细胞病变和原位肿瘤、神经母细胞瘤、视网膜母细胞瘤、髓样细胞瘤、软组织肉瘤、恶性类癌、局部皮肤损伤、囊样肉芽肿、横纹肌肉瘤、卡波西氏肉瘤、骨和其他肉瘤、恶性高钙血症、肾细胞癌、真性红细胞增多症、腺癌、神经母细胞瘤multiforma、白血病、淋巴癌、恶性黑色素瘤、表皮样癌以及其他癌和肉瘤。

【0241】本文的特定实施方案提供了使用本发明提供的方法、组合物和制剂治疗由于例如在各种外科手术，包括例如关节手术、肠道手术和瘢痕中对组织造成的损害所导致的异常细胞增殖。可以使用本发明提供的方法、组合物和制剂治疗的与器官移植相关的增殖反应，包括导致潜在的器官排斥或相关并发症的增殖反应。具体而言，这些增殖反应可以在心脏、肺（例如，非小细胞肺癌和小细胞肺癌）、肝脏、肾脏和其他身体器官或器官系统的移植过程中发生。

【0242】在某些实施方案中，在本发明提供的制剂或其给予方法或本示例所述的治疗方法中胞苷类似物的量是本发明提供的具体剂量。在某些实施方案中，口服氯化胞苷剂量，其给予方法或至少一个病症包括但不限于MDS和AML的治疗方法例如可以在以下范围变化：约50mg/m³天～约2,000mg/m³天，约100mg/m³天～约1,000mg/m³天，约100mg/m³天～约500mg/m³天或约120mg/m³天～约250mg/m³天。在某些实施方案中，特定剂量例如是约120mg/m³天，约140mg/m³天，约150mg/m³天，约180mg/m³天，约200mg/m³天，约220mg/m³天，约240mg/m³天，约250mg/m³天，约260mg/m³天，约280mg/m³天，约300mg/m³天，约320mg/m³天，约350mg/m³天，约380mg/m³天，约400mg/m³天，约450mg/m³天或约500mg/m³天。

【0243】在某些实施方案中，适当的生物标志物可用于确定或预测含有胞苷类似物的药物组合物对疾病状态的作用，并对给药方案提供指导。例如，本文的特定实施方案提供了一种通过评估患者的核酸甲基化状态来确定诊断患有MDS的患者是否具有从含有胞苷类似物的药物组合物治疗中获得更大益处的增概率。在特定实施方案中，胞苷类似物是氯化胞苷。在特定实施方案中，核酸是DNA或RNA。在特定实施方案中，增益处是总存活益处。在特定实施方案中，在一个或多个基因例如与MDS或AML相关的基因中检查甲基化状态。具体实施方案包括确定基线DNA甲基化水平是否影响用氯化胞苷治疗的MDS（例如，高危MDS）患者的整体存活的方法。具体实施方案提供了确定基因启动子甲基化水平是否影响MDS（例如，高危MDS）患者的整体存活的方法。

【0244】例如，本文的具体实施方案提供了评估基因甲基化对MDS（例如，高危MDS）患者长期存活影响的方法。在特定实施方案中，这种评估用来预测MDS（例如，高危MDS）患者的整体存活，例如，在用本发明提供的含有胞苷类似物的药物组合物治疗后评估。在特定实施方案中，这种评估用于作治疗决定。在具体实施方案中，这种治疗决定包括规划和调整患者的治疗，例如，给予胞苷类似物的给药剂量方案、量和/或持续时间。

【0245】某些实施方案提供了使用甲基化水平分析，例如特定基因中的甲基化水平分析来识别诊断患有MDS且具有从胞苷类似物治疗中获得整体存活益处的增概率的个体患者的方法。在具体实施方案中，核酸甲基化的较低水平与氯化胞苷治疗后获得改善的整体存活的增概率相关。在特定实施方案中，治疗后如用本发明提供的含有胞苷类似物的药物组
合成治疗后获得改善的整体存活的增大概率为至少5%、至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少至少100%、至少125%、至少150%、至少175%、至少200%、至少250%、至少300%、至少400%或至少500%更大概率在治疗后获得改善的整体存活。在特定实施方案中，治疗后获得改善的整体存活的更大概率是与诊断患者MDS患者的特定比较人群中人群的平均概率相比的更大概率。在具体实施方案中，比较人群是指本文所述的特定血癌增生异常亚型分类的患者组。在一个实施方案中，比较人群由高危MDS患者构成。在特定实施方案中，比较人群由特定的IPSS细胞遗传学亚组构成。

[0247] 在某些实施方案中，进行统计分析，以评估特定甲基化水平对使用特定的含有胞苷类似物的药物组合物治疗的潜在益处的影响。在某些实施方案中，评估甲基化对整体存活的影响，例如，使用Cox成比例危害模型和Kaplan-Meier(KM)方法来评估。

[0248] 在某些实施方案中，在患者中检查与MDS和/或AML相关的任何基因的甲基化状态。特定基因包括但不限于CKDN2B (p15)、SOCS1、CDH1 (E-cadherin)、PTP3和CTNNA1 (a-catenin)。适用于本发明所公开的方法中的与MDS和/或AML相关的特定基因是本领域中已知的。

[0249] 1.包括共同给予一种或多种额外治疗剂与本文公开的口服制剂的方法

[0250] 本文的某些实施方案提供了治疗本文公开的疾病或紊乱（例如，涉及异常细胞增殖的疾病或紊乱）的方法，其中所述方法包括共同给予本文公开的口服制剂（例如，含有5-氮杂胞苷的口服制剂）与一种或多种额外治疗剂（例如，癌症治疗剂）以产生协同治疗作用。可用在本文公开的方法中的特定共同给予治疗剂在说明书中已经公开。在特定实施方案中，额外治疗剂以治疗有效量共同给予。在特定实施方案中，额外治疗剂在其共同给予的胞苷类似物型的不同剂型中共同给予。在特定实施方案中，额外治疗剂在一个剂型（例如，单一单元剂型）中连同共同给予的胞苷类似物共同给予。在这种情况下，胞苷类似物（例如，氮杂胞苷）和额外治疗剂可以使用共同配制活性药物成分的方法在同一剂型中共同配制，
该方法包括本文公开的方法和本领域中已知的方法。

VII.实施例

[0252] A.实施例1

[0253] 如下所述，使用直接压片压缩，然后任选地密封膜包衣和/或肠溶膜包衣制造5-氮杂胞苷片剂。表3列出了每种片剂制剂中使用的赋形剂。表4使用重量说明了片剂的配方组成。表5使用百分比说明了片剂的配方组成。

[0254] 在没有密封包衣步骤下制造制剂1，其可以得到含有“渗漏的”肠溶衣的肠溶包衣。滑石粉只用在制剂1的肠溶衣悬浮液中。

[0255] 除了制剂1之外，用载有20%5-氮杂胞苷药的常见共混物来制造所有片剂。将维生素E TPGS（d-α-生育酚聚乙二醇1000琥珀酸酯）加到某些制剂中以提高5-氮杂胞苷的吸收。维生素E TPGS未用在制剂6中。

[0256] 使用图1所示过程制造各片剂，除了制剂1（其没有经过密封包衣步骤）。制剤3和6没有经过肠溶膜包衣步骤，并且制剂6不含维生素E TPGS。该方法通常如下所述。

[0257] 将甘露醇、硅化的微晶纤维素、交联聚维酮、硬脂酸镁和氮杂胞苷单独筛分，以确保打散任何结块。将维生素E TPGS在不锈钢容器中融化，然后向其中加入一部分硅化的微晶纤维素（在制剂6中未进行）。将维生素ETPGS硅化的微晶纤维素混合物冷却，然后筛分。在V型搅拌机中混合氮杂胞苷、维生素E TPGS-硅化的微晶纤维素混合物、其余硅化的微晶纤维素、甘露醇和交联聚维酮。将硬脂酸镁加到V型搅拌机中，进行额外混合。使用标准凹模将得到的共混物压缩成片剂。

[0258] 将羟丙基纤维素分散在乙醇中。将该羟丙基纤维素制备用于喷涂片剂芯以制备密封的包衣片剂。

[0259] 将EUDRAGIT和柠檬酸三乙酯分散到异丙醇-丙酮混合溶剂体系中。将该EUDRAGIT-柠檬酸三乙酯制备用于喷涂密封的包衣片剂。

[0260] 表3:氮杂胞苷片剂的成分
成分	功能	质量标准
氨杂胞苷 | API | 内部
甘露醇 | 稀释剂 | USP
硅化的微晶纤维素 | 粘结剂 | NF
d-α-生育酚聚乙二醇1000琥珀酸酯(维生素E TPGS) | 渗透促进剂 | NF
聚乙烯醇 | 胶体 | NF
硬脂酸镁 | 润滑剂 | NF
羟丙基纤维素 | 密封层包衣 | NF
乙醇 | 包衣溶剂 | USP

甲基丙烯酸共聚物(Eudragit S100, Eudragit LIDO-55或Eudragit L100) | 肠溶膜包衣 | NF
柠檬酸三乙酯 | 增塑剂 | NF
滑石粉 | 抗结剂 | USP
异丙醇 | 包衣溶剂 | USP
丙酮 | 包衣溶剂 | NF

[a]在加工过程中去除(作为膜包衣聚合物的溶剂。

表4:氨杂胞苷片剂的配方组成(重量)
<table>
<thead>
<tr>
<th>成分</th>
<th>配方#1 膜包衣 (pH 7.0)</th>
<th>配方#2 膜包衣 (pH > 7.0)</th>
<th>配方#3 立即释放 w/维生素E</th>
<th>配方#4 膜包衣 (pH 5.0)</th>
<th>配方#5 膜包衣 (pH > 5.5)</th>
<th>配方#6 立即释放 w/o 维生素E</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨杂胞苷<sup>a</sup></td>
<td>20.0</td>
<td>20.0</td>
<td>60.0</td>
<td>60.0</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>甘露醇, USP</td>
<td>59.7</td>
<td>43.2</td>
<td>129.6</td>
<td>129.6</td>
<td>129.6</td>
<td>135.6</td>
</tr>
<tr>
<td>硅化的微晶纤维素, NF</td>
<td>13.9</td>
<td>30.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>交联聚维酮, NF</td>
<td>2.8</td>
<td>3.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>硬脂酸镁, NF</td>
<td>1.6</td>
<td>1.8</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>维生素 E TPGS, NF</td>
<td>2.0</td>
<td>2.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>0</td>
</tr>
<tr>
<td>芯片总计</td>
<td>100.0</td>
<td>100.0</td>
<td>300.0</td>
<td>300.0</td>
<td>300.0</td>
<td>300.0</td>
</tr>
<tr>
<td>纯丙基纤维素, NF</td>
<td>N/A</td>
<td>4.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>乙醇<sup>b</sup></td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>密封包衣片总计</td>
<td>N/A</td>
<td>104.0</td>
<td>312.0</td>
<td>312.0</td>
<td>312.0</td>
<td>312.0</td>
</tr>
<tr>
<td>Eudragit S-100</td>
<td>3.7-5.9</td>
<td>7.0-8.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Eudragit L 100-55</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>21.8 - 25.0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Eudragit L 100</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>28.1 - 31.2</td>
<td>N/A</td>
</tr>
<tr>
<td>柠檬酸三乙酯</td>
<td>0.3 - 0.5</td>
<td>1.0 - 2.0</td>
<td>N/A</td>
<td>3.0 - 6.0</td>
<td>3.0 - 6.0</td>
<td>N/A</td>
</tr>
<tr>
<td>石灰粉</td>
<td>1.0 - 1.6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>异丙醇<sup>b</sup></td>
<td>-</td>
<td>-</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>N/A</td>
</tr>
<tr>
<td>丙酮<sup>b</sup></td>
<td>-</td>
<td>-</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>N/A</td>
</tr>
<tr>
<td>总理论重量</td>
<td>106.5</td>
<td>113.0</td>
<td>312.0</td>
<td>335.4</td>
<td>341.64</td>
<td>312.0</td>
</tr>
</tbody>
</table>

^a 假设100%纯度。
^b 在加工过程中去除。
表格

<table>
<thead>
<tr>
<th>成分</th>
<th>配方#1</th>
<th>配方#2</th>
<th>配方#3</th>
<th>配方#4</th>
<th>配方#5</th>
<th>配方#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>浸泡的包衣 (pH > 7.0)</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>肠溶包衣 (pH 7.0)</td>
<td>43.2</td>
<td>43.2</td>
<td>43.2</td>
<td>43.2</td>
<td>43.2</td>
<td>45.2</td>
</tr>
<tr>
<td>硅化微晶纤维素, NF</td>
<td>13.9</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>双联聚维酮, NF</td>
<td>2.8</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>硬酯酸镁, NF</td>
<td>1.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>维生素 E TPGS, NF</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>芯片总计</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>乙酸</td>
<td>N/A</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>封闭包衣片总计</td>
<td>104.0</td>
<td>104.0</td>
<td>104.0</td>
<td>104.0</td>
<td>104.0</td>
<td>104.0</td>
</tr>
<tr>
<td>Eudragit S-100</td>
<td>3.7 - 5.9</td>
<td>7.0 - 8.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Eudragit L 100-55</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>7.0 - 8.0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Eudragit L 100</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>9.0 - 10.0</td>
<td>N/A</td>
</tr>
<tr>
<td>柠檬酸三乙酯</td>
<td>0.3 - 0.5</td>
<td>1.0 - 2.0</td>
<td>N/A</td>
<td>1.0 - 2.0</td>
<td>1.0 - 2.0</td>
<td>N/A</td>
</tr>
<tr>
<td>滑石粉</td>
<td>1.0 - 1.6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>丙酮</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>丙酮</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

注
- a 假设100%纯度。
- b 在加工过程中去除。
- c 实施例2
- d 进行研究评估水性膜包衣对氮杂胞苷水解降解的影响。使用水基溶剂配制氮杂胞苷片剂进行膜包衣，没有影响降解水平。如表6所示，在水性膜包衣后没有观察到显著水平的氮杂胞苷降解产物。

表6 水性膜包衣对氮杂胞苷的影响

<table>
<thead>
<tr>
<th>测试</th>
<th>未包衣芯片</th>
<th>包衣芯片</th>
</tr>
</thead>
<tbody>
<tr>
<td>分析(标签声明%)</td>
<td>平均=103.1</td>
<td>平均=99.6</td>
</tr>
<tr>
<td>相关物质(面积%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-甲酰基胞基核糖基脲</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>胞基核糖基脲</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>未指定</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>总计</td>
<td>0.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>

水分含量(%w/w)

| 平均 | 2.5 | 2.2 |
[0277] ND=未检测;NMT=不超过
[0278] C.实施例3
[0279] 如实施例1所述，制备表7和本说明书其他地方描述的以下6种制剂，并用在以下实施例中描述的临床研究中：
[0280] 表7. 临床研究中使用的氯化琥珀的制剂

<table>
<thead>
<tr>
<th>制剂序号</th>
<th>制剂中的氯化琥珀</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>20 mg</td>
<td>“渗漏的”肠溶包衣片</td>
</tr>
<tr>
<td>#2</td>
<td>20 mg</td>
<td>肠溶包衣片，芯密封</td>
</tr>
<tr>
<td>#3</td>
<td>60 mg</td>
<td>密封包衣的立即释放片，含有维生素E</td>
</tr>
<tr>
<td>#4</td>
<td>60 mg</td>
<td>肠溶膜包衣片，在pH>5.5下靶向溶出</td>
</tr>
<tr>
<td>#5</td>
<td>60 mg</td>
<td>E 肠溶膜包衣片，在pH>6.0下靶向溶出</td>
</tr>
<tr>
<td>#6</td>
<td>60 mg</td>
<td>密封包衣的立即释放片，不含维生素E</td>
</tr>
</tbody>
</table>

[0281] D.实施例4
[0282] 在多剂量递增研究中(MTD研究;CL005)中，选择MDS或AML患者(选择标准:ECOG PS 0-2, 充足的器官功能, 年龄≥18岁)。患者给予氯化琥珀的多次28天循环，研究具有3+3的设计。在循环1中，所有患者皮下给予氯化琥珀，75mg/m²×7天。在后续循环(对于每个循环在第1-7天的给药)中，患者口服给予表8列出剂量的氯化琥珀。在循环1和2的第1和7天，和循环4,5和7的第7天收集PK数据。在每个循环中收集PD数据，对于每个治疗循环收集血液响应和/或改善率，以确定生物活性剂量(BAD)。到目前为止，对7个分组的患者(3个个体/分组)进行了研究，没有患者显示出剂量限制性毒性(DLT)。每个分组所用的口服剂量和制剂列在表8中。
[0284] 表8. 口服氯化琥珀剂量和制剂
[0285]

<table>
<thead>
<tr>
<th>分组</th>
<th>240 mg</th>
<th>制剂#3 (60 mg 片剂)</th>
<th>02006 - M, 61, AML 03001 - F, 70, MDS RAEB-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>分组 5</td>
<td>300 mg</td>
<td>制剂#3 (60 mg 片剂)</td>
<td>04005 - M, 68, MDS RCMD 02011 - M, 92, MDS RAEB-1 02012 - M, 62, MDS RCMD</td>
</tr>
<tr>
<td>分组 6</td>
<td>360 mg</td>
<td>制剂#3 (60 mg 片剂)</td>
<td>02013 - F, 66, MDS RAEB-1 03002 - M, 65, MDS RAEB-1 01001 - F, 63, MDS RCMD</td>
</tr>
<tr>
<td>分组 5</td>
<td>480 mg</td>
<td>制剂#3 (60 mg)</td>
<td>01002 - M, 70, MDS RARS 01003 - F, 75, MDS RCMD</td>
</tr>
</tbody>
</table>

进行循环2

在75mg/m²SC给予氮杂胞苷后，循环1的PK分布示于图2。在75mg/m²SC给予后，从氮杂胞苷血浆浓度计算的药代动力学参数列于表9。

表9. 在75mg/m² SC给予后循环1的PK参数

<table>
<thead>
<tr>
<th></th>
<th>AUC(0-t)</th>
<th>AUC(0-inf)</th>
<th>Cmax</th>
<th>Tmax</th>
<th>Lambda_z</th>
<th>t1/2</th>
<th>Cloral</th>
<th>Vdoral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ng/h·mL)</td>
<td>(ng/h·mL)</td>
<td>(ng/mL)</td>
<td>(hr)</td>
<td>(1/hr)</td>
<td>(hr)</td>
<td>(L/hr)</td>
<td>(L)</td>
</tr>
<tr>
<td>平均</td>
<td>1135</td>
<td>1170</td>
<td>741</td>
<td>0.49</td>
<td>0.58</td>
<td>1.53</td>
<td>143</td>
<td>318</td>
</tr>
<tr>
<td>SD</td>
<td>514</td>
<td>533</td>
<td>293</td>
<td>0.27</td>
<td>0.29</td>
<td>0.80</td>
<td>53</td>
<td>223</td>
</tr>
<tr>
<td>最小</td>
<td>505</td>
<td>538</td>
<td>224</td>
<td>0.23</td>
<td>0.22</td>
<td>0.61</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>第1天</td>
<td>591</td>
<td>1030</td>
<td>674</td>
<td>0.50</td>
<td>0.56</td>
<td>1.24</td>
<td>156</td>
<td>265</td>
</tr>
<tr>
<td>平均</td>
<td>2821</td>
<td>2950</td>
<td>1310</td>
<td>1.08</td>
<td>1.14</td>
<td>3.15</td>
<td>253</td>
<td>788</td>
</tr>
<tr>
<td>最大</td>
<td>45</td>
<td>48</td>
<td>39</td>
<td>54</td>
<td>49</td>
<td>52</td>
<td>37</td>
<td>70</td>
</tr>
<tr>
<td>CV%</td>
<td>1135</td>
<td>1210</td>
<td>697</td>
<td>0.51</td>
<td>0.62</td>
<td>1.73</td>
<td>133</td>
<td>368</td>
</tr>
<tr>
<td>SD</td>
<td>477</td>
<td>463</td>
<td>252</td>
<td>0.17</td>
<td>0.39</td>
<td>1.28</td>
<td>43</td>
<td>376</td>
</tr>
<tr>
<td>最小</td>
<td>510</td>
<td>668</td>
<td>254</td>
<td>0.25</td>
<td>0.16</td>
<td>0.47</td>
<td>48</td>
<td>98</td>
</tr>
<tr>
<td>第7天</td>
<td>1020</td>
<td>1116</td>
<td>716</td>
<td>0.50</td>
<td>0.55</td>
<td>1.26</td>
<td>148</td>
<td>162</td>
</tr>
<tr>
<td>平均</td>
<td>2718</td>
<td>2783</td>
<td>1050</td>
<td>1.00</td>
<td>1.49</td>
<td>4.30</td>
<td>223</td>
<td>1383</td>
</tr>
<tr>
<td>最大</td>
<td>42</td>
<td>38</td>
<td>36</td>
<td>34</td>
<td>62</td>
<td>74</td>
<td>33</td>
<td>102</td>
</tr>
</tbody>
</table>

比较SC(75mg/m²)和各种PD给予后的血浆PK分布，分布于图3。在接触氮杂胞苷时口服剂量的增加并不会导致剂量成比例增加。

获得来自血液(PBL)和骨髓(BM)样品的循环1和2中的甲基化PD数据。从来自分组4(制剂#3, 口服剂量240mg)的个体患者收集的PD数据示于图4和图5。

用氮杂胞苷的SC循环，然后初始口服剂量120mg氮杂胞苷(制剂#1)治疗分组2的个体序号02004(61岁, 男, MDS, MDACC)。在循环2-6中，患者接受剂量#1中的口服剂量120mg×7天的氮杂胞苷，然后在循环1-12中，接收口服剂量180mg×7天的氮杂胞苷。在该患者中，75mg/m² SC给予氮杂胞苷后，AUC值为1000ng·hr/mL。在180mg口服给予氮杂胞苷后，AUC值为330ng·hr/mL，对于SC剂量观察到大约33%的暴露(口服生物利用度=30%)。

患者02004的PD响应数据示于图6。在研究过程中，以血小板(K/uL)、Hgb(g/dL)、ANC(K/uL)和相对BM母细胞(%)的采样日期绘图。患者表现出形态完全应答(CR)。

对于患者02004，血小板和第1天的Hgb(筛选时10.8g/dL，在第1天11.1g/dL)、血小板(筛选和第1天时均为140K/uL)、ANC(筛选时1.46K/uL,在第1天1.12K/uL)和BM母细胞(2%)
值高于正常值或接近正常值。该患者进入研究之前没有输注（RBC或PLT），在研究过程中至
今也没有输注（RBC或PLC）。根据IWG 2006标准，该患者获得完全应答（CR）（从第45-74天满
足所有CR标准，持续28个连续天）。根据IWG AML标准，该患者获得形态学完全应答。然而，关
于IWG 2000 CR标准的ANC条件，该患者不符合完全应答标准（56个连续天的时间要求缺少3
天）。

[0296] 对于患者02007，如图5所示，在用75mg/m²氟尿嘧啶持续7天皮下给予治疗的第1循
环中发展出4级血小板减少症和中度中性白血球减少症。在第14天和第21天之间出现血细胞
减少发作，这与通过SC注射给予75mg/m²氟尿嘧啶7天存在的安全性时间点一致。相比之下，
在循环2开始的口服氟尿嘧啶没有导致3级或4级血细胞减少，但仍产生高于基线水平的
血小板增加。该数据支持此前结论，本发明提供的某些口服剂型允许在较长时间内以更
低剂量输送氟尿嘧啶，并且本发明提供的某些口服剂型改变了胞苷类似物的安全性。

[0297] 在MTD研究中对某些患者的IWG标准分析示于下表10。数据表明，尤其是，在给予配
制成分在胃中释放的氟尿嘧啶后患者得到改善。

[0298] 表10. MTD研究；IWG标准的分析

<table>
<thead>
<tr>
<th>患者编号</th>
<th>IWG 分析</th>
</tr>
</thead>
</table>
| 02004 | ·在基线相当健康：hgb (在循环1的第1天为11.1 g/dL); PLT (在
循环1的第1天为140 K/μL); ANC (在循环1的第1天为1.12
K/μL); BM 干细胞(2%)值在基线高于正常值或接近正常值
·CR，根据IWG 2006 (第 45-98 天)
·形态学CR，根据IWG AML标准(诊断是MDS) |
| 02007 | ·HI-P 主要改善，根据IWG 2000 (第 35-202 天) |
| | ·形态学CR，根据修订的IWG AML标准，在第 43-188 天和其他
天(ANC=1.89 K/μL，但正常BL=2.99 和 1.68；PLT=314 K/μL；
BM=2，但正常 BL=3) (诊断是CMML) |
| 02008 | ·HI-P 主要改善，根据IWG 2000 (第 34-110 天) |
| 02009 | ·骨髓 CR (第 7-111+天)，根据IWG 2006 |
| 02011 | ·骨髓 CR (第 7-177+天)，根据IWG 2006 |
| | ·形态学CR，根据修订的IWG AML标准，在第 21 天(ANC=1.18
K/μL; PLT=119 K/μL，但正常 BL=162 & 194；BM=3) (诊断是
MDS) |

[0300]

含有氟尿嘧啶的立即释放口服剂型证实了患者中的生物利用度。至今的观察表
明，用口服氟尿嘧啶剂型治疗的患者具有有益的临床活性。使用上述剂量和方案至今没有
观察到安全问题。

[0301] E. 实施例5

[0303] 进行口服氟尿嘧啶临床研究，也称作快速氟尿嘧啶评估（RACE）研究（CL008）；研究
设计的概念示于图7。在该研究中评估几种口服剂型。“3+7”分组的患者是研究对象，即三个
患者最初根据制剂测试，并且分组可能增加到十个患者。各分组平行研究。定期收集PK数据，如表11所示。

表11.RACE研究-PK研究设计；PK循环1.第1、3、5、15、17和19天，和循环2，第7天

<table>
<thead>
<tr>
<th>治疗天</th>
<th>剂量</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKT：阶段(循环1)</td>
<td></td>
</tr>
<tr>
<td>第1天</td>
<td>75 mg/m² SC</td>
</tr>
<tr>
<td>第3+1天*</td>
<td>180 mg口服</td>
</tr>
<tr>
<td>第5+1天*</td>
<td>360 mg口服</td>
</tr>
<tr>
<td>第15+1天*</td>
<td>75 mg/m² SC</td>
</tr>
<tr>
<td>第17+1天*</td>
<td>相对于75 mg/m² SC剂量到1,200 mg的最大剂量，计算获得的口服剂量实现大约80%的暴露。</td>
</tr>
<tr>
<td>第19+1天*</td>
<td>相对于75 mg/m² SC剂量到1,200 mg的最大剂量，计算获得的口服剂量实现大约120%的暴露。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>治疗阶段[循环2-7]</th>
<th>相对于75 mg/m² SC剂量到1,200 mg的最大剂量，计算获得的口服剂量实现大约100%的暴露。</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1-7天</td>
<td></td>
</tr>
</tbody>
</table>

*在剂量间至少48小时给予剂量±1天

制剂#4的结果：接受制剂4(即，在上胃肠道区释放的肠溶膜包衣片剂)的一个个体的血浆PK分布于图8。AUC(0-∞)(ng·hr/mL)的值如下：SC给予75mg/m²(124mg)=2390(第1天)和2440(第15天)；口服给予180mg=234；口服给予360mg=197；和口服给予1200mg=66.5(第17天)和297(第19天)。口服给予的Tmax达到2.5小时～3.0小时。在180、360和1200mg口服剂量后没有观察到接触的线性增加(AUC0-∞)。相对口服生物利用度为0.8～6.7%。

制剂#6的结果：接受制剂6(即，密封包衣的立即释放片剂，没有维生素E)的一个个体的血浆PK分布于图9。AUC(0-∞)(ng·hr/mL)的值如下：SC给予75mg/m²(120mg)=1720(第1天)和1640(第15天)；口服给予180mg=231；口服给予360mg=280；和口服给予1200mg=543(第17天)和467(第19天)。口服给予的Tmax达到0.5小时～1.0小时。在180、360和1200mg口服剂量后观察到接触的线性增加(AUC0-∞)，尽管这种增加不与剂量成比例。在1200mg口服剂量后，AUC为SC给药后AUC的约30%（即，分别约500和约1,700）。

这项研究的数据表明，氨杂胞苷在含有氨杂胞苷的立即释放制剂口服给予后被吸收。相对于SC给予氨杂胞苷，立即释放氨杂胞苷制剂提供了比肠溶包衣氨杂胞苷制剂更为优良的暴露百分比（例如，约30%）。数据支持口服氨杂胞苷的每日单次或多次给药。

F.实施例6

基于涉及不同氨杂胞苷制剂和剂量的临床研究数据，比较不同制剂与不同例如它们生成的PK特征、AUC值、Cmax值、相对口服生物利用度值和暴露值进行绘图。比较中涉及的口服制剂包括制剂#3(“F3”)，制剂#4(“F4”)，和制剂#6(“F6”)，这些口服制剂在本文中已有说明（例如，在实施例1和3中）。

比较制剂No.3、4和6

图10比较了SC给予和口服给予氨杂胞苷(75mg/m²; n=18)后的PK特征（使用线性刻
度）。对于制剂3、总共360mg氨氯地平被口服给予（n=6）；对于制剂4、总共360mg氨氯地平被口服给予（n=3）；对于制剂6、总共360mg氨氯地平被口服给予（n=5）。图示展示了与肠溶包衣制剂#4相比制剂3和#6的立即释放特性。图11提供了相同数据，并以半对数刻度绘制。

[0314] 用氨氯地平SC（75mg/m^{2}）给予和用制剂#3、#4或#6（"F3"、"F4"、和"F6"；本文中已有说明）口服给予患者，每个患者给予总共180mg、240mg、300mg、360mg、540mg、600mg、720mg、900mg、1080mg或1200mg氨氯地平。结果表明，在口服给予氨氯地平被吸收。如上所述，测量并相对于SC比较特定值，包括AUC值、C_{max}值、相对口服生物利用度值和暴露值（口服）。

[0315] 图12显示了在氨氯地平给予后的AUC值（ng•hr/mL；平均±SD）。图13显示在氨氯地平给予后的C_{max}值（ng/mL；平均±SD）。对于制剂#4（肠溶包衣），在180mg～1200mg的剂量范围内，剂量增加没有转化为暴露增加，吸收较差。对于制剂#3（立即释放片剂，含有维生素E），在180mg～1200mg的剂量范围内，剂量增加转化为暴露增加。对于制剂#6（立即释放片剂，没有维生素E），在180mg～1200mg的剂量范围内，剂量增加转化为暴露增加。立即释放剂#3和#6的T_{max}相似；对于制剂#3，平均T_{max}为1.1小时（范围0.5, 2.5小时）；对于制剂#6，平均T_{max}为1.0小时（范围0.5, 3.0小时）。

[0316] 图14显示了在不同氨氯地平剂量水平下用制剂#3、#4和#6口服给药后的相对口服生物利用度（%；平均±SD）。在剂量水平小于或等于360mg氨氯地平下，制剂#4（肠溶包衣的）的平均相对口服生物利用度小于4%。在剂量水平小于或等于360mg氨氯地平下，制剂#3（立即释放，含有维生素E）的平均相对口服生物利用度为11%～21%。在剂量水平小于或等于360mg氨氯地平下，制剂#6（立即释放，没有维生素E）的平均相对口服生物利用度为11%～14%。

[0317] 图15显示了在不同氨氯地平剂量水平下用制剂#3、#4和#6口服给药后的暴露（%，与SC相比；平均±SD）。在剂量水平小于或等于360mg氨氯地平下，制剂#4（肠溶包衣的）的平均暴露小于8%。在剂量水平小于或等于360mg氨氯地平下，制剂#3（立即释放，含有维生素E）的平均暴露为18%～37%。在剂量水平小于或等于360mg氨氯地平下，制剂#6（立即释放，没有维生素E）的平均暴露为20%～31%，与肠溶包衣的制剂#4相比，立即释放剂#3和#6提供了比SC更优异的暴露（约30%，总剂量360mg）。

[0318] 制剂No.3和6的比较

[0319] 图16显示了在剂量水平180mg（n=6）下制剂#3和#6的氨氯地平血浆浓度（ng/ml）相对于时间（hr）的线性刻度分布。图17显示了在剂量水平360mg（n=6）下制剂#3和#6的氨氯地平血浆浓度（ng/ml）相对于时间（hr）的线性刻度分布。

[0320] 图18显示了使用线性回归分析制剂#3和#6的个别（"inf"）和平均氨氯地平AUC（0-inf）（ng•hr/ml）相对于氨氯地平剂量（mg）的图示。F3和F6的线性回归方程也显示在图中。使用这些方程，对于选定剂量，计算预期的AUC（0-inf）（ng•hr/ml）。计算值示于表12。

[0321] 表12。制剂#3和#6的计算的预期的AUC（0-inf）
说明 书

<table>
<thead>
<tr>
<th>氨杂胞苷剂量 (mg)</th>
<th>制剂 #6</th>
<th>制剂 #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>263</td>
<td>338</td>
</tr>
<tr>
<td>360</td>
<td>296</td>
<td>363</td>
</tr>
<tr>
<td>480</td>
<td>328</td>
<td>388</td>
</tr>
<tr>
<td>600</td>
<td>361</td>
<td>413</td>
</tr>
<tr>
<td>720</td>
<td>393</td>
<td>438</td>
</tr>
<tr>
<td>1200</td>
<td>523</td>
<td>538</td>
</tr>
</tbody>
</table>

\[
F6 \text{ 线性回归方程:} y = 0.2706x + 198.19 \\
F3 \text{ 线性回归方程:} y = 0.2079x + 288.07
\]

[0323] 图19显示在用制剂#3或#6给药后氨杂胞苷百分比相对口服生物利用度(平均±SD)相对于氨杂胞苷剂量(mg)的比较。氨杂胞苷口服剂量包括180mg、240mg、300mg、360mg、480mg、600mg、720mg、900mg、1020mg、1080mg、1140mg和1200mg。在剂量大于或等于1020mg下,制剂#6的平均相对口服生物利用度为9%~14%,制剂#3的平均相对口服生物利用度为10%~21%。

[0324] 图20显示在用制剂#3或#6口服给予后与SC氨杂胞苷给药(平均±SD)相比的氨杂胞苷百分比口服暴露相对于氨杂胞苷剂量(mg)的比较。氨杂胞苷口服剂量包括180mg、240mg、300mg、360mg、480mg、600mg、720mg、900mg、1020mg、1080mg、1140mg和1200mg。在n≥1的剂量下,与SC相比,制剂#6和#3的平均暴露相似。

[0325] G. 实施例7

[0326] DNA甲基化用作生物标志物,以在本文所述的临床研究中监测用氨杂胞苷治疗的患者的应答。使用Infinium Assay(从Illumina, Inc., San Diego, California市售得到)进行分析。Infinium Assay与BeadChips组合允许在人类基因组中进行大规模查询。例如,Infinium甲基化27 BeadChips能够询问27,578个CpG位点,覆盖超过14,000个基因。DNA甲基化分析方案包括以下步骤：(1) 重亚硫酸盐转化；(2) DNA扩增；(3) DNA分裂；(4) DNA沉淀；(5) DNA与BeadChips杂交；(6) 在BeadChips上扩展和染色；和(7) BeadChips的成像。

[0327] 用甲基化分析通过测得重亚硫酸盐转化的DNA的类型检测各个CpG位点的甲基化状态。转化得到甲基化受保护的C,而未甲基化的C转化成T。用一对珠子的探针通过杂交,然后用标记的核苷酸进行单碱基延伸后检测T或C的存在。对多达12个样品进行平行实验。收集血液和骨髓样品,并平行分析DNA甲基化。

[0328] H. 实施例8

[0329] 进行研究以检测是否基线DNA和/或RNA甲基化水平影响整体存活(OS)以及基因启动子甲基化水平和治疗(例如,氨杂胞苷或常规护理方案(“CCR”))之间的相互作用。使用定量实时甲基化特异性PCR(qMSP),在作为临床研究对象的患者的预处理骨髓抽吸物中,对之前在MDS或AML中评估的5个基因测定甲基化:CDKN2B(p15)、SOCS1、CDH1(E-cadherin)、TP73和CTNNAl(a-catenin)。使用Cox成比例危险模型和Kaplan-Meier(KM)方法,分析甲基化对OS的影响。

[0330] 测定足以分析这5个基因数量的具有核酸的患者(例如,对于氨杂胞苷和CCR)。
特定百分比的患者中检测CDKN2B、SOS1、CDH1、TP73和CTNNA1的甲基化。测定治疗分支之间的甲基化水平差异。对于在这5个基因处的甲基化呈阳性和阴性的患者，测定胞苷类似物（例如，氯胺胞苷）治疗的OS获益。确定是甲基化的存在是否与CCR组中OS改善相关（良好结果的预后指标）。将任何影响的存在和幅度与胞苷类似物亚组相比较，这可能意味着DNA和/或RNA甲基化与治疗之间的相互作用。

【0331】在这5个基因的任一个中存在甲基化的患者中，用胞苷类似物（例如，氯胺胞苷）治疗分析OS改善，并针对甲基化测定死亡HR。特定基因的甲基化频率允许检测甲基化水平对OS和治疗效果的影响。例如，对于特定基因，与不存在甲基化相比较，低水平的甲基化可能与得益于胞苷类似物治疗的最OS和最大OS相关。可以在每个IPSS细胞遗传子组中评估甲基化水平对OS的影响（好、中和差）。例如，在死亡危险最大的“差”危险组中，甲基化对OS的影响可能最强。

【0332】这些数据和分析可能表明，例如，低水平甲基化的患者可能会从含有胞苷类似物的药物组合物（例如，氯胺胞苷）的治疗中获得更大益处。分子生物标志物在MDS中可能是重要的，例如，作为疾病预后和对治疗反应的预测指标。

【0333】1.实施例9

【0334】进行临床研究以评估含有胞苷类似物（如5-氯胺胞苷）的口服制剂治疗肺癌患者的能力，例如，非小细胞肺癌（NSCLC）。这些研究包括例如评估终止或反转NSCLC患者中特定NSCLC细胞类型生长的能力。在某些临床研究中，在给予口服制制剂之前，用特定NSCLC细胞类型测试患者，例如，A549，H1975，H522，H23，H460和H1299。在某些临床研究中，具有已知或者被认为优先从胞苷类似物（例如，5-氯胺胞苷）给予中获得益处的细胞类型的患者被选作研究对象。在某些临床研究中，具有NSCLC的患者被选作研究对象，而没有分析特定NSCLC细胞类型。在某些临床研究中，具有任何类型的NSCLC细胞的患者是使用本发明提供的口服制剂治疗的候选人。

【0335】在某些临床研究中，来自三种主要NSCLC组中任一组的患者被选作研究对象，即，（1）具有可手术可切除肿瘤的患者；（2）具有局部或区域性晚期肺癌的患者；或（3）在诊断时具有远端转移癌的患者。在某些临床研究中，患者可能正在接受额外的NSCLC治疗，包括例如手术、化疗或放疗。

【0336】在某些临床研究中，被给予含有胞苷类似物（例如，5-氯胺胞苷）的口服制剂的患者也被给予一种或多种额外治疗剂，该额外治疗剂的例子在本文有公开。额外治疗剂可以与胞苷类似物在同一口服制制剂中给予，或可以与含有胞苷类似物的口服制剂联合共同给予（例如，经由PO，SC或IV给予）。使用本领域中已知的方法确定用于特定患者的额外治疗剂的适宜量和给药方案。

【0337】基因甲基化与NSCLC肿瘤复发之间的关联性是本领域中已知的。参见，例如，M.V.Brock等人，N.Engl.J.Med.，2008，358（11）：1118-28。因此，在本发明提供的某些临床研究中，在被选作研究对象之前筛选患者和/或在试验过程中监测DNA或RNA甲基化水平，以显示对含有胞苷类似物（例如，5-氯胺胞苷）的口服制剂治疗的潜在响应。在某些临床研究中，高水平DNA甲基化（例如，CpG岛甲基化）和/或肿瘤抑制基因的转录沉默可能性增加的患者可被给予已知或被认为可防止或反转高甲基化（例如，通过降低一种或多种DNA甲基转移酶的活性）的胞苷类似物（例如，5-氯胺胞苷）。在这种研究中，患者也可被共同给予已知或

[0338] 在临床研究中给予的口服制剂中的胞苷类似物（例如，5-氟尿嘧啶）量例如取决于患者的个体特征，包括，尤其是，患者的NSCLC阶段和进展、患者的年龄和体重、患者的在先治疗方法和领域中已知的其他变量。在某些临床研究中，在规定时间内，例如，约1周、约1.5周、约2周、约2.5周、约3周、约3.5周、约1月、约1.5月、约2月或更长时间，潜在的开始剂量例如为每天约60mg、约120mg、约180mg、约210mg、约300mg、约360mg、约420mg、约480mg、约540mg、约600mg、约720mg、约780mg、约840mg、约900mg、约960mg、约1020mg或大于约1020mg的胞苷类似物（例如，5-氟尿嘧啶）。其他潜在的开始剂量和时间如本文所述。根据需要重复循环，例如，在一个或多个小时内循环。在一定数量的循环后，剂量可以增加，以提高有利作用，只要这种增加不会造成不良的毒性作用。如本文所述，患者可被治疗最小数量的循环。完全或部分应答可能要求额外的治疗循环。治疗可以持续，只要患者持续得到益处。

[0339] J.实施例10

[0340] 进行临床研究以评估含有胞苷类似物的口服制剂治疗卵巢癌患者的能力（例如，停药或反转卵巢癌患者中癌细胞生长的能力）。特定卵巢癌包括但不限于卵巢上皮癌、卵巢生殖细胞癌和卵巢低恶性潜在肿瘤。在某些临床研究中，在给予口服制剂之前，筛选患者存在的特定类型的卵巢癌。在某些临床研究中，具有已知或者被认为是优先从胞苷类似物（例如，5-氟尿嘧啶）给予中获得益处的卵巢癌类型的患者被选作研究对象。在某些临床研究中，卵巢癌患者被选作研究对象，没有筛选特定卵巢癌类型。在某些临床研究中，具有任何类型的卵巢癌的患者是使用本发明提供的口服制剂治疗的候选人。在某些临床研究中，患者可能正在接受额外的卵巢癌治疗，例如，手术、化疗或放疗。

[0341] 在某些临床研究中，给予含有胞苷类似物（例如，5-氟尿嘧啶）的口服制剂的患者也被给予一种或多种额外治疗剂，该额外治疗剂的例子在本文中有公开（例如，卡铂）。额外治疗剂可以与胞苷类似物在同一口服制剂中给予，或可以与含有胞苷类似物的口服制剂联合共同给予（例如，经由PO、SC或IV给予）。使用本领域中已知的方法确定用于特定患者的额外治疗剂的适宜量和给药方案。

【0343】在临床研究中给予的口服制剂中的胞苷类似物(例如,5-氮杂胞苷)量例如取决于患者的个体特征,包括,尤其是,患者卵巢癌的类型、阶段和进展、患者的年龄和体重、患者的在先治疗方案和本领域中已知的其他变量。在某些临床研究中,在规定时间内,例如,约1周、约1.5周、约2周、约2.5周、约3周、约3.5周、约1月、约1.5月、约2月或更长时间内,潜在的开始剂量例如为每天约60mg、约120mg、约180mg、约240mg、约300mg、约360mg、约420mg、约480mg、约540mg、约600mg、约660mg、约720mg、约780mg、约840mg、约900mg、约960mg、约1020mg,或大于约1020mg的胞苷类似物(例如,5-氮杂胞苷)。其他潜在的开始剂量和时间如本文所公开。如本文所述,可以根据需要重复循环,例如,在一个或几个月内循环。在一定数量的循环后,剂量可以增加,以提高有用作用,只要这种增加不会造成不适当的毒性作用。如本文所述,患者可被治疗最小数量的循环。完全或部分应答可能要求额外的治疗循环。治疗可以持续,只要患者持续得到益处。

【0344】K.实施例11

【0345】进行临床研究以评估含有胞苷类似物(例如,5-氮杂胞苷)的口服制剂治疗胰腺癌患者的能力(例如,停止或反转胰腺癌患者中癌细胞生长的能力)。在某些临床研究中,在作为研究对象之前,给予口服制剂之前,筛选患者存在的特定类型的胰腺癌。胰腺癌的细胞分类是本领域中已知的,包括例如导管上皮细胞癌、腺泡细胞癌、乳头状黏液癌、印戒癌、腺鳞癌、未分化癌、粘液癌、巨大细胞癌、混合型(导管内分泌或腺泡内分泌)、小细胞癌、囊腺癌(浆液性和粘液型)、未分化的癌、胰岛细胞癌、乳头状囊性肿瘤(Frantsz肿瘤)、与囊肿和黏液性肿瘤或导管内乳头状黏液性肿瘤相关的侵袭性腺癌、发育不良的粘液性囊肿性肿瘤、发育不良的导管内乳头状黏液性肿瘤和假乳头实性瘤。在某些临床研究中,作为研究对象之前，在给予口服制剂之前,筛选患者胰腺癌的特定阶段(例如,胰腺中肿瘤的大小,癌症是否已扩散,以及若扩散,扩散到身体的哪些部分)。在某些临床研究中,被认为除优先从胞苷类似物(例如,5-氮杂胞苷)给予中获得益处的胰腺癌患者作为研究对象。在某些临床研究中,胰腺癌患者被选作研究对象,没有筛选特定胰腺癌类型。在某些临床研究中,具有任何类型的胰腺癌的患者是使用本发明提供的口服制剂治疗的候选人。在某些临床研究中,患者可能正在接受额外的胰腺癌治疗,包括例如手术、化疗或放疗。

【0346】在某些临床研究中,给予含有胞苷类似物(例如,5-氮杂胞苷)的口服制剂的患者也被给予一种或多种额外治疗剂,其例子在本文中有公开(例如,吉西他滨)。额外治疗剂可以与胞苷类似物在同一口服制剂中给予,或可以与含有胞苷类似物的口服制剂联合共同给予(例如,经由PO、SC或IV给予)。使用本领域中已知的方法确定用于特定患者的额外治疗剂的适宜量和给药方案。

【0347】在本发明提供的某些临床研究中,在被选作研究对象之前筛选患者和/或在试验过程中监测DNA或RNA甲基化水平,以显示对含有胞苷类似物(例如,5-氮杂胞苷)的口服制剂治疗的潜在响应。在某些临床研究中,高水平DNA甲基化(例如,CpG岛甲基化)和/或肿瘤抑制基因的转录沉默可能性增加的患者可被给予已知或被认为可防止或反转高甲基化(例如,通过降低一种或多种DNA甲基转移酶的活性)的胞苷类似物(例如,5-氮杂胞苷)。在这种

[0348] 在临床研究中给予的口服制剂中的胞苷类似物（例如，5’-氯脱氧胞苷）量例如取决于患者的个体特征，包括，尤其是，患者腹膜癌的类型、阶段和进展，患者的年龄和体重，患者的在先治疗方案和本领域中已知的其他变量。在某些临床研究中，在规定时间内，例如，约1周、约1.5周、约2周、约2.5周、约3周、约3.5周、约4周、约1.5月、约2月或更长时间内，潜在的开始剂量例如为每天约60mg、约120mg、约180mg、约240mg、约300mg、约360mg、约420mg、约480mg、约540mg、约600mg、约660mg、约720mg、约780mg、约840mg、约900mg、约960mg、约1020mg，或大于约1020mg 的胞苷类似物（例如，5’-氯脱氧胞苷）。其他潜在的开始剂量和时间在本文有公开。如本文所述，可以根据需要重复循环，例如，一个或多个内循环。在一定数量的循环后，剂量可以增加，以提高有利作用，只要这种增加不会造成不良的毒性作用。如本文所述，患者可被治疗最小数量的循环。完全或部分应答可能要求额外的治疗循环。治疗可以持续，只要患者持续得到益处。

[0349] L. 实施例12

[0350] 进行临床研究以评估含有胞苷类似物（如5’-氯脱氧胞苷）的口服制剂治疗结肠直肠癌患者的能力（包括例如停止或反转结肠直肠癌患者中癌细胞生长期的能力）。在某些临床研究中，在作为研究对象之前，在给予口服制剂之前，筛选患者存在的特异类型的结肠直肠癌。结肠癌的组织类型是本领域中已知的包括例如腺癌、粘液(胶质)腺癌，印戒腺癌、硬癌肿瘤和神经内分泌肿瘤。结肠和直肠肿瘤的世界卫生组织分类包括（1）上皮肿瘤，其包括：腺癌（例如，管状、绒毛状、绒毛和锯齿）；与慢性炎性疾病相关的上皮内瘤（发育不良）（例如，低级别上皮内瘤和高级上皮内瘤）；癌（例如，癌性、粘液腺癌、印戒细胞癌、小细胞癌、腺鳞癌、鳞癌和未分化癌）癌（高度分化的神经内分泌肿瘤）（例如，肠嗜铬（EC）细胞、血清素产生肿瘤）和L型细胞、胰高血糖素样肽和肽YY (PYY) 产生肿瘤等）；和混合癌、腺癌和（2）非上皮肿瘤，包括：脂肪瘤、平滑肌瘤、胃肠道间质肿瘤、平滑肌肉瘤、血管肉瘤、卡波西氏肉瘤、黑色素瘤等以及恶性淋巴瘤（例如，粘膜相关的淋巴组织型的边缘区B细胞淋巴瘤、套细胞淋巴瘤、弥漫性大B细胞淋巴瘤和Burkitt淋巴瘤和Burkitt样/非典型Burkitt淋巴瘤）。在某些临床研究中，在作为研究对象之前，在给予口服制剂之前，筛选患者结肠直肠癌的特定阶段（例如，结肠或直肠中肿瘤的大小，癌症是否已扩散，以及若扩散，扩散到身体的哪些部分）。在某些临床研究中，被认为优先从胞苷类似物（例如，5’-氯脱氧胞苷）给予中获得益处的结肠直肠癌患者被作为研究对象。在某些临床研究中，结肠直肠癌患者被作研究对象，没有筛选特定结肠直肠癌类型。在某些临床研究中，具有任何类型的结肠直肠癌的患者是使用本发明提供的口服制剂治疗的候选人。在某些临床研究中，患者目前正接受额外的结肠直肠癌治疗，包括例如手术、化疗或放疗。

[0351] 在某些临床研究中，被给予含有胞苷类似物（例如，5’-氯脱氧胞苷）的口服制剂的患者也被给予一种或多种额外治疗剂，其例子在本文中有公开。额外治疗剂可以与胞苷类似
物在同一口服制剂中给予，或可以与含有胞苷类似物的口服制剂联合共同给予（例如，经由PO, SC或IV给予）。使用本领域中已知的方法确定用于特定患者的额外治疗剂的适宜量和给药方案。

【0353】在临床研究中给予的口服制剂中的胞苷类似物（例如，5-氟尿胞苷）量例如取决于患者的个体特征，包括，尤其是，患者结肠直肠癌的类型、阶段和进展、患者的年龄和体重、患者的在先治疗方案和本领域中已知的其他变量。在某些临床研究中，在规定时间内，例如，约1周、约1.5周、约2周、约2.5周、约3周、约3.5周、约1月、约1.5月、约2月或更长时间内，潜在的开始剂量例如为每天约60mg、约120mg、约180mg、约240mg、约300mg、约360mg、约420mg、约480mg、约540mg、约600mg、约660mg、约720mg、约780mg、约840mg、约900mg、约960mg、约1020mg、或大于约1020mg的胞苷类似物（例如，5-氟尿胞苷）。其他潜在的开始剂量和时间在本文中有公开。在一定数量的循环后，剂量可以增加，以提高有利作用，只要这种增加不会造成不良的毒性作用。如本文所述，患者可被治疗最小数量的循环。完全或部分应答可能要求额外的治疗循环。治疗可以持续，只要患者持续得到益处。

【0354】已经结合某些实施方案和实施例描述了本发明公开的内容；然而，除非另有说明，本发明的保护范围不应该不适当地限制于这些具体实施方案和实施例。
在 V 型搅拌机中混合：
氯化胆碱
维生素 E TPGS-硅化的微晶纤维素
硅化的微晶纤维素
甘露醇
交联聚维酮

将硬脂酸镁加到 V 型搅拌机中并混合

压制片芯

将羟丙基纤维素分散在乙醇中

在包衣锅中密封包衣片剂至目标重量

将 Eudragit 和柠檬酸三乙酯分散到异丙醇-丙酮中

在包衣锅中肠溶包衣片剂至目标重量

包装最终片剂并做标签

图1
图2
图3
细胞计数对时间图

患者情况：个体=02008，性别=男性，年龄=80，人种=白人，诊断=MDS

从第一次给药开始的天数

注：P=血小板输注，R=RBC 输注。垂直线代表治疗循环开始。1k/uL=1k/cmm。
图4B

患者情况：个体=02008，性别=男性，年龄=80，人种=白人，诊断=MDS

细胞计数对时间图

图示：P=血小板输注，R=RBC输注。虚线表示治疗循环开始。1k/uL=1k/cm³。
从第一次给药开始的天数

注：P=血小板，R=RBC

图5A
细胞计数对时间图

患者情况：个体=02007，性别=男性，年龄=75，人种=白人，诊断=未获知

从第一次给药开始的天数

注：P=血小板输入，R=RBC 输入。垂直线代表治疗循环开始。1k/uL=1k/cmm。
细胞计数对时间图

患者情况：个体=02004，性别=男性，年龄=60，人种=白人，诊断=MDS

从第一次给药开始的天数

注：P=血小板输入，R=RBC 输入。垂直线代表治疗循环开始。1k/uL=1k/cm³。
患者情况：个体=02004，性别=男性，年龄=60，人种=白人，诊断=MDS

注：P=血小板检测，R=RBC检测。垂直线代表治疗循环开始。1k/uL=1/k/cm³

图6B
图7
图9
图10

氨杂胞苷血浆浓度(ng/mL)
氯杂胞苷血浆浓度(ng/mL)

图11
氯美芬 AUC (ng*hr/mL)
氯杂胞苷 C_{max} (ng*hr/mL)

图13
图14

相对口服生物利用度 (ng*hr/mL)
相对于SC的暴露(口服)(%)

图15
氨杂胞苷血浆浓度 (ng/mL)

图16
氨奈普芬血浆浓度(ng/mL)

图17
图18

药物 AUC_{0-inf} (ng*hr/mL)

y = 0.2706x + 198.19
R^2 = 0.4138

y = 0.2079x + 288.07
R^2 = 0.078

F6 = ind
F6 = mean
F3 = ind
F3 = mean
氨杂胞苷相对口服生物利用度(%)
氨杂胞苷口服相对于 SC 的暴露(%)