PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/46660

16 September 1999 (16.09.99)

(21) International Application Number: PCT/US99/05248

(22) International Filing Date: 11 March 1999 (11.03.99)

(30) Priority Data:

09/041,149 12 March 1998 (12.03.98) uUs
09/100,914 19 June 1998 (19.06.98) US
09/239,475 28 January 1999 (28.01.99) (S

(71) Applicant (for all designated States except US): FAIRBANKS
SYSTEMS GROUP [US/US]; 3550 General Atomics Court,
San Diego, CA 92121-1194 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MICKELSEN, Stephen,
Peter [CA/US]; 543 Gardendale Road, Encinitas, CA 92024
(US). BOLT, Thomas, B. [US/US]; 279 Horizon Drive,
Encinitas, CA 92024-4147 (US). MCCLAIN, Fred, W.
[US/US]; 6886 Circo Diegueno, Del Mar, CA 92014 (US).

(74) Agent: ROGITZ, John, L.; Rogitz & Associates, Suite 3120,
750 B Street, San Diego, CA 92101 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DX, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, T™, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: SYSTEM AND METHOD FOR BACKING UP COMPUTER FILES OVER A WIDE AREA COMPUTER NETWORK

DATA CENTER
00— 2~ [TcoMMONUBRARY -~ 20
Slomce (1 18
[CONTROL MOBUEE 1~ 22

16~—] HOEHA |
90 26] I/M
(L MODEN

CD-ROM BACKIP 128 BACKUP CD-ROM
HODULE HODULE
w7 +
USER COMPUTER USER COMPUTER

(57) Abstract

A laptop computer back up logic system (300) copies user selected files or automatically selected files for back up as the laptop
computer (24) is being used. Changed files are backed up and stored in a hold area of the laptop computer (24). When the laptop computer
(24) senses a network connection and the network (14) is idle, the blocks of the changed files are transmitted from the hold area to a remote
facility (12) via the network (14). The backing up process can be triggered within the laptop computer (24) when the screen saver of the

laptop computer (24) is invoked.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
CzZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
T
UA
UG
us
UZ
VN
YU
VA4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/46660 PCT/US99/05248

SYSTEM AND METHOD FOR BACKING UP COMPUTER FILES OVER A
WIDE AREA COMPUTER NETWORK

RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. patent application
serial no. 09/100,914, filed June 19, 1998, from which priority is claimed, which in
turn is a continuation-in-part of U.S. patent application serial no. 09/041,149, filed
March 12, 1998, from which priority is claimed, which in turn is a continuation-in-
part of U.S. patent application serial no. 08/757,134, filed December 3, 1996, now
U.S. Patent No. 5,794,254, from which priority is claimed.

FIELD OF THE INVENTION

The present invention relates generally to computer file back up systems, and

more particularly to automated computer file back up systems.
BACKGROUND

Extraordinarily large amounts of information are stored on electronic media,
such as personal computer hard disk drives and other well-known data storage media.
Increasingly, the information is exclusively stored on such media; no "hard" (.e.,
paper) copies exist for much information. It can readily be appreciated that such so-
called "paperless" information storage systems consume less space and virtually no
natural resources, in contrast to systems that require information to be stored on
paper. Unfortunately, it is not uncommon for electronic data storage media to
"crash", i.e., to become damaged or otherwise lose its information. Such information
loss can be devastating to the information owner and highly costly.

Accordingly, many computer system managers routinely make back up copies

of computer files. Typically, once each day (or at some other specified periodicity)

WO 99/46660 PCT/US99/05248

22-
a system manager will cause the computer system to copy files that are resident on
the hard disk drives of the system onto storage media such as other hard disk drives
or magnetic tape. Should a file or entire hard disk drive in the system be damaged,
lost, or otherwise rendered inaccessible, the back up copy of the file that is stored on,
e.g., the storage tape can be copied back into the system.

Such back up systems suffer from several drawbacks. First, they usually
require user interaction to initiate the back up process, and consequently occupy the
time of a person who must undertake the tedious chore. Further, systems which back
up computer files and store the files in the same premises as the system being backed
up are of little value in the event of a catastrophe such as a fire or flood. This is
because the backed up file copies can be expected to perish along with the files that
are resident in the system, thereby rendering the back up system a failure.

An example of an alternate back up system is disclosed in U.S. Pat. No.
5,479,654, which teaches sending changed portions of computer files via modem to
an off-site electronic storage facility. As taught in the *654 patent, segments of
computer files are checked for changes that have been made since the previous back
up. This check first consists of comparing a so-called "exclusive-OR" ("XOR")
product of the file against an XOR value that was calculated previously for the stored
back up version of the file. If the XORs do not agree, a file change is indicated, and
the changed portion of the file is sent via modem, LAN, WAN, or other network
device to the off-site facility.

On the other hand, if the XORs do agree, a second, more rigorous check is

made to determine whether the segment has been changed since the last back up. The

WO 99/46660 PCT/US99/05248

-3-
second check consists of comparing a cyclic redundancy check (CRC) product of the
segment against a previously recorded CRC value. If the CRCs do not match, a file
change is indicated, and the changed portion of the file is sent via modem, LAN,
WAN, or other network device to the off-site facility. Otherwise, the segment is
assumed to have not been changed since the last back up.

Unfortunately, the system disclosed in the ’654 patent can require two
calculations per check. Each calculation consumes computing time, and as recognized
by the present invention, it is consequently desirable to minimize the number of
calculations undertaken to determine whether a change has been made to a computer
file. As further recognized herein, it is nevertheless desirable to undertake an initial
"quick and dirty" check to reduce the number of computationally rigorous checks that
must be made.

Moreover, as recognized by the present invention it is necessary to manage
the transmission of data to the off-site storage facility, to avoid one user interfering
with the back up operations of another user. Still further, the present invention
recognizes that some files need not initially be backed up at all. And, the present
invention recognizes that file restoration can be provided for in more than one way
to reduce the time required to restore lost files to a computer system.

In addition to the above considerations, the present invention recognizes that
data backup undertaken at predetermined intervals might risk failing to backup data
that is generated and lost between the intervals. Fortunately, the present invention

recognizes that data backup via wide area networks can be undertaken as a user is

WO 99/46660 PCT/US99/05248

-4-
actively using a computer, thereby providing real time and, hence, almost completely
up to date data backup.

Moreover, when data is to be transmitted via wide area networks, the data is
preferably first encrypted for security reasons. The present invention recognizes that
the longer a user employs a single key for encrypting data, the greater the risk that
the key will be broken. For this reason, it is preferably to use more than one key to
encrypt data. In the context of data backup over time, the present invention
understands that the use of more than one key over a period of time unfortunately is
rendered somewhat difficult because it is difficult during subsequent decryption to
associate the correct encryption key with the blocks that were originally encrypted
with the key. As recognized herein, however, it is possible to facilitate the use of
more than one encryption key to thereby reduce the risk of encryption system
compromise. The present invention still further recognizes that in addition, it is
desirable and possible to provide a session-unique key for each transmission session
that cannot be broken unless every bit of data to be transmitted is known a priori.

A further consideration of the present invention is the growing use of laptop
or other portable computers, which many people carry with them to and from work
and as they travel. Frequently, a user of a laptop computer will seek to connect the
laptop computer to a computer network. The network might be a simple home
network having, e.g., a single printer, or the network might be a local area network
(LAN) at a place of business, or wide area network (WAN) having many devices
connected thereto, including printers, server computers, and so on. In any case, the

present invention understands that the user of the laptop computer typically must

WO 99/46660 PCT/US99/05248

-5-
reconfigure the computer each time the laptop is connected to a network, for
example, to reconfigure the laptop computer to print to the particular printer or
communicate with the particular server in the network to which the laptop computer
happens to be connected. The present invention recognizes that requiring a user of
a portable computer to reconfigure the computer each time it is connected to a
network is annoyingly time consuming, and that such reconfiguration need not require
user intervention to accomplish.

With further respect to laptop computers, laptop computers typically are not
connected to a network continuously, or indeed at any regular interval, but usually
are networked only on an ad hoc basis as the user’s schedule permits. The present
invention accordingly recognizes that prescheduled backups over the Internet, for
laptop computers, is less than an optimum solution. Rather, as recognized herein,
the transmission of backed up computer files in a laptop computer must be undertaken
in a sufficiently robust manner to account for the episodic connecting of a laptop
computer to the Internet. It is an object of the present invention to address one or
more of the above issues.

SUMMARY OF THE INVENTION

A computer program product includes a computer program storage device that
is readable by a digital processing system such as a portable laptop computer. Logic
means are on the program storage device, and the logic means include instructions
that can be executed by the digital processing system for performing method steps for
backing at least some blocks in at least one local computer file from at least one

portable computer that can be connected to a computer network. The method steps

WO 99/46660 PCT/US99/05248

-6-
that are performed by the computer program product include receiving at least one
screen saver signal, and in response undertaking at least one of: preparing the blocks
for back up, and transmitting the blocks via the network. Ina preferred embodiment,
the method steps also include generating a user warning when one or more of the
following conditions is present: a predetermined amount of data has been backed up,
and the amount of unprotected data exceeds a predetermined threshold.

In another aspect, a computer program product includes logic for determining
at least blocks of computer files in a portable computer to be backed up. Also, the
program product includes logic to access a file system in the portable computer to
access the blocks to be backed up. Moreover, logic means copy blocks to a hold area
of the portable computer, in response to the means for determining blocks to be
backed up, and logic is provided for determining when the portable computer is
connected to a computer network. As set forth in greater detail below, the present
logic determines when a data path of the network is idle. When the data path is idle,
blocks in the hold area are transmitted to a remote data storage device via the
network.

In the preferred logic, a network interface is invoked when it is determined
that blocks of computer files in the portable computer are to be backed up. A file
change signal can be received to cause blocks to be backed up to the hold area. Also,
a data ready signal can be received to cause the blocks to be transmitted from the
hold area to the network. The computer program product is disclosed in combination

with the portable computer, and in combination with the network.

WO 99/46660 PCT/US99/05248

-7-

In another aspect, a method is disclosed for backing up blocks of computer
files in a portable computer. The method includes receiving a computer idle signal
from the portable computer, and in response to the computer idle signal, backing up
blocks in a file system of the computer in accordance with a backup program.

In another embodiment, a computer program product includes a computer
program storage device that is readable by a digital processing system and a program
means on the program storage device. As intended by the present invention, the
program device is realized in a critical machine component that causes the digital
processing system to perform method steps to back up one or more blocks in at least
one local computer file from at least one portable computer connectable to a computer
network. The method steps performed by the computer program product include
preparing the blocks for back up, and determining whether the portable computer has
been connected to a network. Also, the method steps include, if the portable
computer has been connected to a network, permitting transmission of one or more
of the blocks. Per the present invention, the blocks are interleaved with other data
for transmission thereof.

As described in the above-referenced prior applications, for at least some of
the blocks in a local file to be backed up, two respective characters thereof defining
respective first comparison values are copied, and respective digital signature codes
defining second comparison values are generated. For at least some of the blocks,
a test digital signature code is periodically determined compared to the respective
second comparison value. When the test digital signature code of a block does not

equal the respective second comparison value, it is determined whether the first two

WO 99/46660 PCT/US99/05248

-8-
characters of the block equal one of the first comparison values. In contrast, when
the first two characters equal one of the first comparison values, a block digital
signature code is determined using a test byte; as the first byte of a test block. Then,
it is determined whether the block digital signature code equals one of the second
comparison values, and when the block digital signature code equals one of the
second comparison values, a "resynchronized" signal is returned. Otherwise, when
either the first two characters of the test byte; do not equal one of the first comparison
values, or when the block digital signature code does not equal one of the second
comparison values, "i" is incremented by unity. The computer program product is
disclosed in combination with the portable computer.

If desired, the preferred computer program product can determine a network
configuration based on the presence and type of one or more devices connected to the
network, and then correlate the network configuration to at least one portable
computer setting. The setting is established on the computer in response to the
correlating step.

In yet another aspect, a portable computer back up system for backing up one
or more blocks in one or more files in the portable computer and transmitting the
blocks to a remote computer storage location via a network includes logic means for
determining when the portable computer is connected to the network. The system
further includes logic means for determining whether an availability of the network
is at least equal to a predetermined availability. Moreover, logic means transmit over

the network blocks to be backed up when one or more transmission criteria are

WO 99/46660 PCT/US99/05248

9.
satisfied. These transmission criteria can include the portable computer being
connected to the network.

In still another embodiment, a computer-implemented method for backing up
computer file blocks includes, at a user computer, encrypting at least one block using
one or more encryption keys. The method further includes storing the one or more
encryption keys in a key file, and transmitting the block to a remote data center.
Next, the method contemplates, at a restore time, transmitting the block from the data
center to the user computer, and selecting one of the keys from the key file. The
block is decrypted with the key, and the method then determines whether the
decryption was successful. When the decryption is not successful, another key is
selected from the key list and the data is decrypted, and the above steps repeated until
the decryption is successful.

In another aspect, a method for providing a session key for a transmission
session for transmitting data between a transmitting computer and a receiving
computer includes generating a digital signature unique to the data, and using the
digital signature to encrypt the data.

In another aspect, a method for backing up data in a system including user
computers and at least one data storage facility includes, at a user computer,
determining whether data associated with the user computer is resident in a common
software library associated with the data storage facility. The data is not backed up
when the data is resident in the common software library. Otherwise, the data is
automatically added to the common software library when the data is present in at

least a predetermined number of user computers in the system.

WO 99/46660 PCT/US99/05248

-10-
The details of the present invention, both as to its structure and operation, can
best be understood in reference to the accompanying drawings, in which like

reference numerals refer to like parts, and in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram of the computer file back up system of the

present invention;

Figure 2 is a flow chart of the initialization process;

Figure 3 is a flow chart of the subfile incremental back up process;

Figure 4 is a flow chart of the restore process;

Figure 5 is a flow chart of the process for automatically updating the common
software library;

Figure 6A is a flow chart of the process for encrypting data to be backed up;

Figure 6B is a flow chart of the process for decrypting backed up data
received from the data center;

Figure 7A is a flow chart of the process for transferring data from a user
computer to a data center using the message digest (MD)-5 comparison value of the
data being transferred as an encryption random number;

Figure 7B is a flow chart of the process for validating the data transfer shown
in Figure 7A;

Figure 8 is a flow chart of the process for continuously backing up the
computer files of a user computer while a user is using the computer and the

computer is online with a remote data center via a wide area network;

WO 99/46660 PCT/US99/05248

-11-

Figure 9 is a flow chart of the details of the process for backing up computer
files on a portable computer that might from time to time be connected to a computer
network;

Figure 10 is a flow chart of the process for transmitting the data generated by
the logic in Figure 9;

Figure 11 is a flow chart of the process for automatically reconfiguring a
portable computer when it is connected to a computer network;

Figure 12 is a flow chart of another logical process for backing up files on a
laptop computer;

Figure 13 continues the logic shown in Figure 12; and

Figure 14 is a flow chart showing the steps of a simplified laptop backup
system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring initially to Figure 1, a system is shown, generally designated 10,
which includes a server computer, referred to herein as a data center 12, which is
part of a computer network. In the preferred embodiment, the data center 12 is part
of the computer network 14 referred to as the Internet, and the data center 12 can
communicate with other computers on the network 14 via a modem, LAN, WAN, or
other network device 16.

As shown in Figure 1, the data center 12 includes an electronic data storage
repository 18 with an associated common library 20. Preferably, to permit scaling
of the system 10 to support a large number of users, the data repository 18 has a

multi-terabyte or indeed a petabyte capacity. Preferably, the capacity of the

WO 99/46660 PCT/US99/05248

-12-
repository 18 is over one hundred terabytes, and more preferably is five hundred
terabytes or more. A control module 22 controls the flow of data into and out of the
repository 18 in consonance with the novel logic described below.

Per the present invention, the common library 20 stores the blocks of
computer files that are widely distributed and used by many users and, hence, that
are common to many users. For example, the common library 20 can store copies
of well-known off-the-shelf personal computer operating systems, network browsers,
and so on. The common library 20 can be automatically updated as discussed further
below in reference to Figure 5. As intended by the present invention, the data
storage repository 18 with common library 20 can be physically implemented in a
suitable medium, such as magnetic tape, hard disk arrays, compact disk read-only
memory (CD-ROM), DASD arrays, or even floppy diskettes.

Plural user computers 24, e.g., personal computers or portable laptop or palm
top computers, communicate with the network 14 via respective user modems 26 or
other appropriate network connection in accordance with well-known principles. In
the preferred embodiment, each user computer 24 includes a respective software-
implemented back up module 28 that undertakes the inventive steps of the present
invention. It is to be understood that in another embodiment, the back up modules
28 can be remote from, but accessible to, the user computers 24. Additionally, each
user computer 24 preferably includes a respective CD-ROM drive 30 for purposes to
be made clear shortly. As those skilled in the art will recognize, the user computers
24 can also be associated with respective video monitors, printers, and other output

devices, and keyboards, keypads, mice, and other input devices.

WO 99/46660 PCT/US99/05248

-13-

Figures 2-8 illustrate the structure of the back up module 30 of the present
invention as embodied in computer program software. Those skilled in the art will
appreciate that the Figures illustrate the structures of logic elements, such as computer
program code elements or electronic logic circuits, that function according to this
invention. Manifestly, the invention is practiced in its essential embodiment by a
machine component that renders the logic elements in a form that instructs a digital
processing apparatus (that is, a computer) to perform a sequence of function steps
corresponding to those shown in the Figures.

These instructions may reside on a program storage device including a data
storage medium to establish a computer program product, such as a programmed
computer diskette. Alternatively, such media can also be found in semiconductor
devices, on magnetic tape, on optical disks, on a DASD array, on a conventional hard
disk drive, on electronic read-only memory or on electronic random access memory,
or other appropriate data storage device. In an illustrative embodiment of the
invention, the logic means are computer-executable instructions that are written in
C™* language code.

Referring now to Figure 2, the initialization process can be understood. The
process begins at start state 32 for each user computer 24 and moves to block 34,
wherein a file index counter "j" is set equal to unity. Moving to decision diamond
36, it is determined whether a copy of the j* file, using the so-called "message digest
five" ("MD5") code discussed further below, is already stored in the common library
20. This can be done on a file-by-file basis by comparing the MD5 of each j" file

to the MD5s of the files in the common library 20. For each file that is stored in the

WO 99/46660 PCT/US99/05248

-14-
common library 20, as indicated by a match of a file’s MD5 with one of the MD5s
of the files in the library 20, the process moves to block 38 to flag the file as being
in the common library and, hence, not a candidate for wholesale transfer to the data
center 12.

Alternatively, greater granularity can be achieved by comparing the MD5 of
each block of each j* file to a list of common block MD5s, and flagging only those
blocks having MD5s that match an MDS5 on the common library 20 list of MD5s as
being in the common library and, hence, not candidates for wholesale transfer to the
data center 12. Thus, it is to be understood that in the event that the jt file as it
exists in the user computer 24 has been modified from the common, off-the-shelf
version in the common library 20, the modified portions will be detected and
transferred to the data center 12 during the subfile incremental procedure discussed
below in reference to Figure 3.

In any case, it can now be appreciated that the use of the common library 20
avoids the necessity of transmitting to the data center 12 very large, off-the-shelf
computer files that are resident on many if not most personal computer systems and
that would otherwise require backing up. In other words, the common library 20
reduces the time and cost of making initial copies of the files in the user computers
24,

Additionally, at block 38 a block-by-block comparison value listing is recorded
that has two entries for every block; (wherein "i" is a block index counter) of every
file; flagged as being in the common library 20. The first entry is the first two

characters ("XX;") of the first byte of each block,. In contrast, the second entry is

WO 99/46660 PCT/US99/05248

-15-
a digital signature ("MD5,"), the value of which is uniquely defined by the contents
of the block;. The first entry establishes a first comparison value, and the second
entry establishes a second comparison value.

As mentioned above, in the presently preferred embodiment, the digital
signature used is the 128 bit-long "message digest five" ("MD5") code known in the
cryptology art. As recognized by the present invention, the MDS5 code of a block
changes a great deal with even very small changes of the block. Thus, the digital
signature of the present invention advantageously is more sensitive to changes in a
block than are check sums, cyclic redundancy codes, and so-called "exclusive or"
codes.

From block 38, the logic proceeds to decision diamond 40 to determine
whether the last file in the user computer 24 has been tested. If s0, the initialization
process terminates at state 42. Otherwise, the process moves to block 44 to
increment by one the file index counter "j", and then to loop back to decision
diamond 36.

In contrast, if it is determined at decision diamond 36 that a copy of the i”
block of the j* file is not in the common library 20, the logic proceeds to block 46
to trickle copy each non-resident block; of the file; to the storage repository 18 of the
data center 12. By "trickle copy" is meant that the non-resident blocks of the file are
transmitted to the data center 12 during a predetermined transmission period, also
referred to herein as a "window", until the entire non-resident portions file has been
transmitted, or until the transmission period elapses. Alternatively, as discussed

below in reference to Figure 8, the data to be backed up can be transmitted real time

WO 99/46660 PCT/US99/05248

-16-
as the user inputs data to the user computer 24, provided the user computer 24 is
online with the network 14.

If the transmission period elapses before the non-resident portion of the file
has been transmitted in its entirety, the respective back up module 28 completes the
transmission of the chunk, and then terminates. If the transmission is interrupted
during the transmission period, the module 28 notes the value of the block index
counter "i", such that transmission can be resumed from there during the next
transmission period. Then, at the start of the next transmission period, the back up
module 28 increments the block index counter "i" by unity and commences
transmitting the file; where it previously had left off. As indicated in Figure 2, the
block-by-block listing of XX; and MDS5, is generated at block 46 as described
previously in reference to block 38. From block 46, the logic proceeds to decision
diamond 40 to function as previously described.

Turning now to Figure 3, the subfile incremental back up logic can be seen.
It is to be understood that as intended by the present invention, periodically (e.g., on
a daily basis) the back up module 28 of each user computer 24 will undertake the
process discussed below.

Commencing at decision diamond 48, it is determined whether a user-selected
predetermined back up period has commenced. When it has, the process moves to
block 50 to enter a do loop for each file; that has been designated by the user to be

backed up. Then, the process moves to block 52 to enter a do loop for each block;

of the filej that was selected at block 50.

WO 99/46660 PCT/US99/05248

-17-

Moving to block 54, the back up module 28 computes the digital signature
MD5;ew of the block; under test. Next, the digital signature MDS5;e+ of the block;,
under test is compared, at decision diamond 56, with the digital signature MD5,0d that
is recorded in the listing that was generated in Figure 2, as described above.

It is to be understood that the listing of digital signatures MD5% is an ordered
list from i = 0 to n, wherein n = number of digital signatures in the list. It is to be
further understood that the digital signature MD5ev of the block; under test is first
compared to the i* MD5? in the list, and if it doesn’t match, the digital signature
MD5;rew of the block; under test is next compared to the next MD5°¢ in the ordered
list (i.e., the i + 1 MD5°), and so on, until a match is found, or until the end of
the ordered list has been reached. When a match is found anywhere in the list, the
test at decision diamond 56 is positive, and the process moves to decision diamond
58. Also, when a match is found at the I* position in the list, wherein 1>1i, the
comparison of the MD5;, mv of the i" + 1 block to be tested is first compared to
MD35,, o4, i.e., to the I"+1 element in the ordered list of old digital signatures. If
no match is found, the MD5,, mev of the i + 1 block is then serially tested against
the digital signatures in the list after the I +1 element in the ordered list of old digital
signatures.

Returning to the discussion of the i block, when a digital signature match is
found, indicating that no change was made to the block; under test since the last back
up, the process moves to decision diamond 58. At decision diamond 58, the logic
determines whether the last block of the filej has been tested, and if not, the process

loops back to retrieve the next block; and compute its digital signature as shown and

WO 99/46660 PCT/US99/05248

-18-
described. In other words, if further blocks exist for the file; under test, the index
counter "i" is incremented by one, and the process loops back to block 54.

If, on the other hand, the last block of the file; has been tested, the logic
determines, at decision diamond 60, whether the last file in the user computer 24 has
been tested. If not, the process loops back to retrieve the next file and proceed as
before to test the blocks in the file. Otherwise, the process moves to decision
diamond 62.

At decision diamond 62, it is determined whether the back up period has not
elapsed, i.e., whether the allocated back up window is still open. If the period has
elapsed, the logic loops back to decision diamond 48 to await the commencement of
the next allocated back up period. In contrast, if the back up window is still open,
the logic attempts to establish communication with the data center 12 via the modems
26, 16 (or other network devices, such as LANS, WAN:E, etc.).

At decision diamond 64, it is determined whether the communication
connection was successful. If it wasn’t, the logic moves to block 66 to wait a
predetermined time-out period (preferably five minutes) before looping back to
decision diamond 62 to retry the connection if the window is still open. In any case,
when it is determined that communication has been established between the user
computer 24 and the data center 12 subsequent to testing all files; in the user
computer 12, the logic encrypts and compresses any remaining updated blocks
(described further below) and transmits them to the data center 12, at block 68.

From block 68, the process loops back to decision diamond 48.

WO 99/46660 PCT/US99/05248

-19-

Returning to the negative loop originating at decision diamond 56, when the
digital signature of the block; does not match one of the signatures stored in the listing
for the block, a change to the block; is indicated, and the block; therefore becomes
a candidate for back up. Additionally, the process resynchronizes itself with the
block-by-block comparison value listing discussed above.

Accordingly, after a negative test at decision diamond 56 (i.e., when the logic
essentially returns a "changed block" signal), the logic moves to block 70, wherein
a do loop is entered for the bytes, of the block, "k" is an index counter initially
equal to unity. Moving to decision diamond 72, the logic determines whether the
first two characters ("XX,rv") of the block starting with the byte, under test equal the
first comparison value ("XX°9") that corresponds to the block; in the comparison
value listing. It is to be understood that the comparison value listing parallels the
ordered list of digital signatures MD5%. Consequently, if the first comparison does
not yield a match, similar to the testing at decision diamond 56 the two characters
XX,rew are compared to the next two characters XX°¢ in the ordered list until a match
is found or until the end of the list is reached.

When the end of the list of comparison values is reached without a match, the
logic moves to decision diamond 73 to determine whether the current byte, is the last
byte of the candidate block under test. Stated differently, at decision diamond 73 the
logic determines whether the byte index counter "k" equals about two thousand forty
eight (2048). If it does, the logic moves to block 74 to increment the block index
counter "i" by unity, and then the logic loops proceeds to decision diamond 58. In

this instance, the entire block under test is flagged for copying. If it is determined

WO 99/46660 PCT/US99/05248

-20-
that the byte index counter "k" does not equal one thousand at decision diamond 73,
the logic loops back to increment "k" by unity and test the next byte in the block; at
decision diamond 72.

If, however, it is determined at decision diamond 72 that "XX,rev" equals an
"XX°“" the logic proceeds to decision diamond 75. At decision diamond 75, the
digital signature MDS5 of the block having as its first byte the byte, under test is
determined and compared to the second comparison value, i.e., the digital signature
MD5°¢ that corresponds to the matched characters XX°¢ in the comparison value
listing. As was the case with the test at decision diamond 56, the digital signature
MDS5 being tested is tested against subsequent digital signatures MD5°¢ in the ordered
list, if necessary, to find a match. If no match is found, the logic moves to decision
diamond 73.

If, however, the digital signature MD5 of the block having as its first byte the
byte, under test is determined to be equal to one of the digital signatures MD5%¢ in
the ordered list at decision diamond 75, the logic returns "resynchronized" and moves
to block 76. In other words, a positive test at decision diamond 75 indicates that the
logic has found an old, unchanged block that previously has been backed up, and,
hence, that the logic is resynchronized with the comparison value listing.

At block 76, the changed block(s) (also referred to herein as "transmission
blocks") are moved to a "next chunk" file. Additionally, at block 76 the comparison
value listing is updated to include the first two characters and digital signatures of the
changed block(s), for use as the first and second comparison values, respectively,

during the test of the blocks during the next back up cycle. Moving to decision

WO 99/46660 PCT/US99/05248

21-
diamond 78, it is determined whether the chunk file is full. In the presently preferred
embodiment, the chunk file is full when its size is five megabytes (5 MB).

If the chunk file is not full, the logic returns to decision diamond 58. In
contrast, if the chunk file is full, the process moves to decision diamond 80 to
determine whether the back up period has not elapsed, i.e., whether the allocated
back up window is still open. If the period has elapsed, the logic loops back to
decision diamond 48 to await the commencement of the next allocated back up period.
In contrast, if the back up window is still open, the logic transmits the chunk when
a successful connection has been established with the data center 12, using the
procedure of steps 64 and 66 discussed above. From block 82, the logic returns to
decision diamond 58.

Figure 4 shows the logic by which lost files may be restored to a user
computer 24. It is to be understood that as envisioned herein, backed up file blocks
at the data center 12 are periodically (e.g., weekly, monthly, quarterly, etc.) copied
from the storage repository 18 to CD-ROM disks, and the disks then transported to
the same physical location as the associated user computer 24. Hereinafter, these
CD-ROM disks are referred to as "local back up disks".

At block 84, a directory of blocks in the data center 12 that correspond to the
user computer 24 is downloaded from the data center 12. Next, at block 86 a do loop
is entered for each block; of the lost file(s) as follows. It is determined at decision
diamond 88 whether the requested version of the block of the file (ordinarily the latest
version) is on the local back up disks. If so, the block is preferentially restored from

the local back up disks at block 90. Otherwise, it is restored via the modems 26, 16

WO 99/46660 PCT/US99/05248

22
from the data center 12 at block 92. From block 90 or block 92, the logic loops back
to retrieve the next block;, and continues this process until the entire requested files
have been restored.

Further inventive features of the present invention can be appreciated in
reference to Figures 5-8. With particular regard to Figure 5, the common software
library 20 shown in Figure 1 may be automatically updated by commencing at block
100 in Figure 5. At block 100, the server (i.e., at the data center 12 shown in Figure
1) undertakes, for each digital signature MDS5 code with its attendant block received
for storage, a loop by moving to decision diamond 102, wherein it is determined
whether the digital signature MD35 code under test has been recorded as a candidate
for the library 20. The first time the particular digital signature MD5 code is
received from any user computer, the test at decision diamond 102 is negative, and
the process consequently moves to block 104 to record the digital signature MD5
code on a candidate list. Also, a counter Jyp, for the particular digital signature MD5
code under test is set equal to unity at block 104. Moving from block 104 to block
106, the next received digital signature MD5 code is retrieved and the above process
repeated as indicated by the dashed loop back line in Figure 5.

On the other hand, when the digital signature MD5 code previously has been
received from a user computer, the test at decision diamond 102 is positive, and the
process moves to block 108 to increment the counter Jy;,s that is associated with the
digital signature MD5 code under test by one. It is to be understood that the counter
Jups that is associated with the digital signature MD5 code under test can be

incremented whenever the digital signature MD5 code under test is received from any

WO 99/46660 PCT/US99/05248

-23-
user computer, or only when it received from a user computer that has not previously
sent the digital signature MD5 code under test.

Then, at decision diamond 110 it is determined whether the value of the
counter Jyps that is associated with the digital signature MD5 code under test equals
a predetermined value "k". If not, the process loops back to block 106, but otherwise
the process moves to block 112 to add the digital signature MD5 code under test,
along with its associated block(s), to the common software library 20. The process
then loops back to block 106 to retrieve the next digital signature MD5 code.

Figures 6A and 6B show the present inventive steps for allowing a user to use
multiple encryption keys to transmit data for back up, thereby increasing security.
Commencing at block 114, at a user computer, the digital signature MDS5 code for
each block for which backup has been selected by the steps disclosed above in Figures
2-4 is determined and attached to its respective data block, and then the digital
signature MD5 code with data block is compressed using compression principles
known in the art. Moving to block 116, the data block, but not the MD5 code, is
encrypted with a user-selected key on a user key list. From block 116, the process
ends at state 120, it being understood that further transmission steps as previously
disclosed can be undertaken. Subsequently, when the user computer, for example,
loses the data packet processed by the steps shown in Figure 6A and accordingly
requests and receives a copy of the packet from the data center 12, the user computer
invokes the steps shown in Figure 6B. Commencing at block 124, the user computer
receives the blocks to be restored from the data center and then undertakes the

following steps for each block. At block 126, the computer selects the first

WO 99/46660 PCT/US99/05248

24-
encryption key in the list, and then at block 128 the computer decrypts and
decompresses the block. Moving to decision diamond 130, the user computer
determines whether decompression failed as indicated by, e.g., data overflow. If
decompression failed, the process moves to block 132 to select the next key in the
list, and then loops back to block 128 to again attempt decompression.

If, on the other hand, decompression is determined at decision diamond 130
to have been executed satisfactorily, the process moves to block 136 to further
validate the key under test by stripping the digital signature MD5 code from the
packet and then calculating anew the digital signature MD35 code of the data that is
associated with the decrypted block. In undertaking the process at block 136, the
present invention understands that the digital signature MDS5 code is a 128 bit-long
string that is appended to the data with which it is associated in a known location, and
that consequently the digital signature MD5 code easily can be stripped.

At decision diamond 138 the calculated digital signature MD5 code of the
decrypted data is compared to the decrypted digital signature MD5 code that had been
stripped from the data at block 136. If the two digital signature MD5 codes match
each other at decision diamond 138, the key under test has been validated and the
process returns "correct key" at block 140. Then the process retrieves the next data
portion at block 124. Otherwise, the process loops back to block 132 to retrieve the
next key in the user computer’s key list.

Figure 7A shows a method for providing a unique, session-specific session key
for encryption purposes. Commencing at block 142, the digital signature MD35 code

for the entire set of data to be transmitted is calculated by the computer that is to

WO 99/46660 PCT/US99/05248

-25-
transmit the data. Moving to block 144, the digital signature MD5 code is used as
the encryption key for the data transmission session. In the event that only 56 bits
are required for the key, the two 64 bit halves of the 128 bit-long digital signature
MD5 code are combined using an exclusive-OR (XOR) operation and then 8 bits,
€.g., the last 8 bits, of the resulting 64 bit string are discarded.

From block 144, the present logic follows two branches, denoted in the
Figures as "A" and "B". More specifically, at block 146A the data is encrypted
using the digital signature MDS5 code (or portion thereof) as a random number, and
then at block 148A the data is transmitted to the receiving computer. On the other
hand, at block 146B the portion of the digital signature MDS5 code that is to serve as
the session key (i.e., the portion of the digital signature MD5 code that is used at
block 146A to encrypt the data) is transferred from the transmitting computer to the
receiving computer using conventional private key/public key encryption principles,
or more preferably using Diffie-Helman encryption principles. That is, at block 146B
the digital signature code can be encrypted by the transmitting computer using the
receiving computer’s public key, and then at block 148B the receiving computer can
decrypt the digital signature code using its private key. Then, as shown in Figure
7A, block 150 receives the results of blocks 148A and 148B to decrypt the data using
the digital signature code session key.

Figure 7B additionally shows that the present logic can validate the data
received at block 152 by undertaking the validation steps shown at blocks 152-158.
More particularly, at block 152 the receiving computer calculates the digital signature

code of the data that is associated with the decrypted data from block 150. Next, at

WO 99/46660 PCT/US99/05248

-26-
decision diamond 154 the calculated digital signature code of the decrypted data is
compared to the digital signature code that had been received and decrypted at block
148B. It is to be understood that the in the event that only 56 bits of an XOR’d
digital signature MD35 code are used as the session key, the comparison at decision
diamond 154 can be between the session key and an XOR’d version of the digital
signature MD5 code calculated at block 152.

In any case, if the two digital signature codes match each other at decision
diamond 154, the session key under test has been validated and the process returns
"transmission validated" at block 156. Otherwise, the process returns "transmission
error" at block 158.

Now referring to Figure 8, a method is shown for continuous data backup via
a wide area computer network while a user computer is online with the network and
while a user is using the user computer. Commencing at block 160, upon
determination by a user computer that a changed data block is to be backed up in
accordance with the principles discussed above (with the exception that a backup start
time is not waited for but rather that the process perpetually determines, real-time,
data blocks to be backed up), the process moves to decision diamond 162. At
decision diamond 162, the process determines whether the user computer is online
with the network, e.g., the network 14 shown in Figure 1. If not, the process moves
to block 164 to store the data for transmission thereof when the computer is online.

On the other hand, if, at decision diamond 162, the process determines that
the user computer is online with the network, the present logic moves to decision

diamond 166 to determine whether the central processing unit (CPU) of the user

WO 99/46660 PCT/US99/05248

27-
computer is busy. Specifically, the determination at decision diamond 166 is whether
the CPU is busy with a task that has a higher priority assigned to it than the priority
of the backup task shown in Figure 8. If the CPU is not occupied with another task
of higher priority than the present data backup task, the process moves to block 168
to transmit the block until the entire block has been transmitted, or until the computer
becomes reoccupied with a task of higher priority than backup. It is to be understood
that when transmission of a block is interrupted by a higher priority task, the user
computer undertakes the higher priority task, and when finished returns to the present
data backup task to complete transmission of the data block. The logic then moves
to block 169 to determine further blocks for transmission, and to transmit the blocks
virtually real-time as the user uses the computer for other tasks.

The loop between block 170 and decision diamond 166, and the "busy" loop
at block 168, illustrate the principles of the above discussion. When the CPU is busy
at decision diamond 166 with, e.g., the requirement to execute an input event such
as a key stroke, the logic can proceed to block 170 to wait a predetermined period
At, and then retry the determination at decision diamond 166. It will be appreciated
that the length of At is very short, on the order of milliseconds or microseconds.
Alternatively, the logic can essentially define "At" to be "whenever the CPU is idle",
and when the CPU is idle, proceed to block 168 to transmit data.

For example, during the test at decision diamond 166, the CPU might receive
a data input via a key stroke by the user of the computer, and if so, the process idles
at block 170 until the key stroke is completed, before transmitting data at block 168.

Thus, in one embodiment the present process transmits backup data between CPU

WO 99/46660 PCT/US99/05248

28-
tasks that support a user’s needs, e.g., between key strokes, with the data that is
changed by the key strokes being determined as backup data and transmitted offsite
via the Internet for storage virtually real time as the data is being created by the user
of the computer.

Figures 9 and 10 illustrate the principles discussed above in a preferred
configuration when, e.g., a user computer 24 is a laptop or palm top computer that
hosts the present logic. As disclosed below, in a portable computer environment, the
present invention copies file blocks when the host portable computer is not connected
to a network, and when the present invention senses a network connection, the copied
blocks are transmitted via the network to a storage facility.

Commencing at block 180, when the host portable computer is energized, the
logic determines whether all files on the user’s computer are to be considered for
back up, or whether only a user-defined set of files is to be considered. If the user
has defined a set of files (by, e.g., directory) for back up, using, for example, file
inclusion/exclusion lists with wildcards, this set is received at block 182. From block
182, or from decision diamond 180 if no user-defined set is received and all files (or
a default set of files) are to be candidates for back up, the logic moves to block 184
to prepare the blocks in, e.g., chunks as described above, for back up preferably in
accordance with the logic set forth in Figure 3 above. As mentioned above, the back
up process is undertaken in the "background", transparently to the user as the user
employs the host computer for other tasks such as, e.g., word processing or

presentation slide generation.

WO 99/46660 PCT/US99/05248

229

Decision diamond 186 represents that the logic of the present invention
monitors for whether a predetermined storage space limit has been reached on the
host portable computer. As recognized by the present invention, a portable computer
such as a laptop computer that is energized but disconnected from a network might
encounter storage space limitations due to the generation of duplicate blocks for back
up, and the step at decision diamond 186 is to ensure that the back up process set
forth herein, which is intended to be a "background"” process, does not fill up the
user’s storage. In the preferred network embodiment, no more than 5% of the host
computer’s storage capacity is used for back up storage. Alternatively, the user can
define the predetermined storage space limit. If a storage space limit has been
reached, the logic moves to block 188 to suspend the back up process until, e.g.,
subsequent transmission of the blocks to be backed up followed by deletion of the
back up copies on the host computer frees additional storage space.

From block 188 or decision diamond 186 when the test there is negative the
logic moves to decision diamond 190. As represented by decision diamond 190, the
present logic monitors whether the host portable computer has been connected to a
network. When no network connection is sensed, the logic moves to block 192 to
continue back up processing as described above (storage space permitting), and then
logically loops back to decision diamond 186.

In contrast, when the logic senses a network connection, it determines whether
the host portable computer is actively transmitting data, as represented at decision
diamond 194. If so, the present logic suspends back up processing at block 196 so

as not to interfere with the transmission, and then logically loops back to decision

WO 99/46660 PCT/US99/05248

-30-
diamond 194 to await the end of the transmission. When the host portable computer
is not transmitting, the logic returns to block 192.

It is to be understood that while the logic flow shown in Figure 9 represents
the principles of the present invention for disclosure purposes, the actual logic code
might be event-driven, i.e., it might continuously monitor for the conditions
represented at decision diamonds 186, 190, and 194. Likewise, the logic shown in
flow format in Figures 10 and 11 can be implemented as event-driven code.

Now referring to Figure 10, the logic for transmitting the blocks to be backed
up that are generated by the logic shown in Figure 9 is shown. Commencing at block
198, the transmission logic commences when a network connection is sensed. In the
preferred embodiment, priority is given to transmitting back up blocks when the
blocks are available and the network bandwidth permits, with the back up processing
shown in Figure 9 being undertaken while the host computer is connected to a
network either when no blocks are ready for transmission or when network usage
precludes transmission.

Moving to decision diamond 200, the logic determines whether a block of data
is ready for transmission, and if so, the logic moves to block 202 to interleave the
block with, e.g., the associated meta data or with other data to be transmitted. The
purpose of this is to allow for the use of all forward progress made during a back up
session up to the last file processed in its entirety, thus taking advantage of work
completed up to the point that a transmission might be aborted. In this regard, the

process can be considered an "inchworm" data transmission, in that the transmission

WO 99/46660 PCT/US99/05248

-31-
stream can be severed (by, e.g., an unintended abort) at an arbitrary point and still
maintain a viable entity.

From block 200 the process moves to block 202 to define the "last block" to
have the identification of the last actually interleaved block. Then, the process moves
to decision diamond 206.

Decision diamond 206 represents the logic determining whether adequate
network availability exists for back up data transmission. In one embodiment, the
network availability must be less than a predetermined setpoint, e.g., 70% of full
availability, for the logic to transmit the back up data, and if it is, the logic moves
to block 208 to transmit the data. Otherwise, the logic moves to block 210 to wait
until the network availability is below the predetermined setpoint, restarting the
process with the resynchronizing logic shown above in Figure 3.

In one preferred embodiment, when the network is a local area network
(LAN), the decision at step 206 is undertaken by using operating system performance
counters. For example, when the operating system is a Microsoft operating system,
the number of dynamic keys in the performance registry can be used to determine the
number of transmission packets sent per unit time, and this ratio indicates how busy
the network is (and, hence, network availability). Or, when the network is a wide
area network (such as the Internet), the round trip time from when the host computer
transmits a packet and when it receives back an acknowledgement from the recipient
that the packet has been received is used as an indication of network availability, with

a lower time indicating higher availability. When the host computer is connected to

WO 99/46660 PCT/US99/05248

-32-
a LAN that in turn is connected to a WAN, either one or both of the network
availabilities can be used in the determination at decision diamond 206.

Figure 11 shows that apart from the back up logic discussed above, the present
invention advantageously provides for automatically configuring a portable computer
for a network to which the portable computer is connected. More specifically, the
present invention automatically reconfigures the host portable computer for the
particular printer(s), server(s), internet connection(s), and storage resource(s) of the
network to which the host computer happens to be connected, so that the user does
not have to undertake such time-consuming reconfigurations manually, each time the
host portable computer is connected to a network.

Commencing at block 202, the invention compiles (automatically or based on
a one-time user manual input) a list of network identifications, along with a list of
devices in each network. For example, a first network might be established by the
user’s workplace LAN that includes a workplace printer of a particular designation,
a workplace server of a particular designation, a workplace internet connection of a
particular designation, and a workplace storage resource of a particular designation.
Also, a second network might be established by the user’s home LAN that includes
a home printer of a particular designation, a home server of a particular designation,
a home internet connection of a particular designation, and a home storage resource
of a particular designation.

As intended by the present invention, a "network configuration” refers to what
devices of what type are on the network, i.e., what printers, etc. are connected to the

network. For each network configuration, a set of host computer settings is stored

WO 99/46660 PCT/US99/05248

-33-
or implied. In other words, for each network configuration, a set of host computer
settings is correlated to enable the host computer to, e. g., print to the network
printer, etc. At block 212, the network configurations are stored.

Moving to block 214, the invention senses when the host portable computer
is connected to a network. At block 216, the invention detects what devices are
connected to the network. Proceeding to decision diamond 218, the logic compares
the devices actually connected to the network to the stored network configurations.
When a match is found within, e.g., 90% (that is, 9 of 10 devices on the network are
found in a single entry in the network configuration table), the logic moves to block
220 to reconfigure the host portable computer in accordance with the network settings
that are correlated to the matched network configuration. If the sensed network
configuration does not match any of the stored network configurations, the process
ends from decision diamond 218 by establishing a set of default settings in the host
portable computer.

Now considering Figures 12 and 13, another embodiment of the logic for
backing up blocks of computer files on the computer 24 (Figure 1) when the
computer 24 is a laptop computer is shown, generally designated as system 300. The
system 300 includes a sequence of logical instructions that can be executed by the
computer 24, with the sequence beginning at block 302, wherein the operating system
of the computer is started.

Moving to decision diamond 304, it is determined whether the computer is
properly configured for back up, i.e., whether the present logic as embodied in

software has been properly installed in the computer 24. If it is, the process

WO 99/46660 PCT/US99/05248

-34-
continues to decision diamond 306 to determine whether any files have been selected,
i.e., designated, as backup candidates, either by the user or automatically. By
"backup candidates” is meant that some or all of the files in the portable computer
can be selected for consideration by the above-described backup algorithm, while
making it possible to omit some (less important) files from consideration for backup
and thereby speed processing.

If no files have been selected, the process moves from decision diamond 306
to block 308 to run a user interface which permits the user to select some or all of
the files in the computer to be candidates for backup. Or, some or all of the files in
the computer can be automatically selected at block 308 to be candidates for backup.
For example, it could be automatically determined at block 308 to consider all files
in the computer to be candidates for backup, with the exception of temporary Internet
files.

When it is determined at decision diamond 306 that at least some files have
been selected as candidates for backup, the process moves to block 310 to start a
network interface, as set forth more fully below in reference to Figure 13. Moving
then to block 312, once the network interface is started, the file system of the
computer is "hooked". By "hooked" is meant that the present logic is inserted into
the native file system code of the computer 24. In this way, the present logic is
activated whenever any user accesses the file system, such that modifications to
blocks in the file system can be detected for use as set forth above in reference to

Figures 2 and 3.

WO 99/46660 PCT/US99/05248

-35-

At decision diamond 314, it is determined whether the file system was
successfully hooked by the system 300, i.e., whether the file system hooks are
correctly and safely in place. If so, the logic proceeds to state 316, wherein the
system 300 enters a wait state for one of two computer system signals. First, a file
change signal can be received at block 318, in which case the logic flows to block
320 to process new file data in accordance with the above-disclosed backup algorithm
(e.g., the algorithm shown in Figures 2 and 3). Blocks that have been so processed
as backup blocks in accordance with principles above are copied into an internal data
storage area, referred to herein as a "hold" area, within the portable computer. From
block 320, the logic loops back to wait state 316.

If, on the other hand, a computer shutdown signal is received at block 322,
or it is determined at decision diamond 314 that the file system "hook" was not
successful, or it is determined at decision diamond 304 that the computer is not
properly configured, the logic moves to block 324. At block 324, file system hooks
are closed. Moving to block 326, an exit signal is sent to the network interface logic
shown in Figure 13, and then at block 328 an "exit" message is displayed on the
monitor of the computer. The process then exits to the operating system of the
computer at block 330.

Now referring to Figure 13, the network interface logic can be seen.
Commencing at start state 332, the logic moves to decision diamond 334 to determine
whether, at the computer 24, network software is present. If it is, the logic moves
to a first wait state 336 to await one of two system signals. If an exit signal is

received at block 338 from the logic shown in Figure 12, the process moves to block

WO 99/46660 PCT/US99/05248

-36-

340 to end any existing network and to return to the logic of Figure 12. In contrast,
if a signal indicating that network communication has started is received at block 342,
the logic proceeds to a second wait state 344.

The logic awaits one of three system signals in the second wait state 334. An
exit signal can be received at block 346, in which case the logic moves to block 340
to function as described above. Or, a signal indicating that the network has stopped
can be received at block 348, in which case the logic loops back to the first wait state
336. Still further, a signal indicating that the network is idle can be received at block
350, in which case the logic proceeds to a third wait state 352. By "network idle"
is meant that a data path in the network is idle, preferably the data path from the
computer 24 to the network or less preferably some other a data path within the
network, as measured in accordance with principles discussed above with respect to
Figure 10.

The logic awaits one of four system signals in the third wait state 352. An
exit signal can be received at block 354, in which case the logic moves to block 340
to function as described above. Or, a signal indicating that the network has stopped
can be received at block 356, in which case the logic loops back to the first wait state
336. Still further, a signal indicating that the network is active can be received at
block 358, in which case the logic loops back to the second wait state 344, to await
a network idle signal.

As shown in Figure 13, a signal indicating that data is ready in the hold area
can be received at block 360. When such a signal is received prior to the other three

signals that can be received while in the third wait state 352 (i.e., while the "network

WO 99/46660 PCT/US99/05248

-37-
idle" signal remains present or in force), the data is transmitted to an off-site data
storage facility via the network. The logic remains at block 360 as long as the data
ready signal is present and none of the other three signals of the third wait state 352
are received.

Now referring to Figure 14, a "Spartan" version of the logic for invoking the
backup of laptop computer files can be seen. Commencing at block 362, an idle
signal is received from, e.g., the operating system of the portable computer whose
files are to be backed up. For example, the commencement of a screen saver
program can establish the idle signal received at block 362.

When, in the above example, the screen saver comes on, the logic would
accordingly move to block 364, to copy file blocks for backup purposes in accordance
with the algorithm shown in Figures 2 and 3. Additionally, two tests can be
undertaken by the logic shown in Figure 14. First, at decision diamond 366, it can
be determined whether the amount of unprotected data in the laptop computer is
greater than a predetermined amount of data. By "unprotected" is meant blocks of
data that have been selected as candidates for backup either by the user or
automatically, and which have changed since the blocks were last backed up (or
which have not yet been backed up at all). Also, at decision diamond 368 it is
determined whether the amount of data in the hold area (i.e., the amount of data
backed up but not yet transmitted) exceeds a predetermined amount. The
predetermined amount can be based on, e.g., a network capacity. When either of the
tests at decision diamonds 366, 368 are positive, the logic can present a warning on

the monitor of the portable computer at block 370, suggesting, as an example, that

WO 99/46660 PCT/US99/05248

-38-
an immediate network connection be established to transmit the blocks in the hold
area.

While the particular SYSTEM AND METHOD FOR BACKING UP
COMPUTER FILES OVER A WIDE AREA COMPUTER NETWORK as herein
shown and described in detail is fully capable of attaining the above-described objects
of the invention, it is to be understood that it is the presently preferred embodiment
of the present invention and is thus representative of the subject matter which is
broadly contemplated by the present invention, that the scope of the present invention
fully encompasses other embodiments which may become obvious to those skilled in
the art, and that the scope of the present invention is accordingly to be limited by
nothing other than the appended claims, in which reference to an element in the
singular is not intended to mean "one and only one" unless explicitly so stated, but

rather "one or more".

WO 99/46660 PCT/US99/05248

-39.
WHAT IS CLAIMED IS:

1. A computer program product comprising:
a computer program storage device readable by a digital processing system;
and
logic means on the program storage device and including instructions
executable by the digital processing system for performing method steps for backing
at least some blocks in at least one local computer file from at least one portable
computer connectable to a computer network, the method steps performed by the
computer program product comprising:
receiving at least one screen saver signal; and
in response to the screen saver signal, undertaking at least one of:

preparing the blocks for back up, and transmitting the blocks via the network.

2. The computer program product of Claim 1, wherein the method steps
further comprise generating a user warning when one or more of the following
conditions is present: a predetermined amount of data has been backed up, and the

amount of unprotected data exceeds a predetermined threshold.

3. The computer program product of Claim 1, wherein the method steps

further comprise:

for at least some of the blocks in a local file to be backed up, copying

two respective characters thereof defining respective first comparison values

WO 99/46660 PCT/US99/05248

-40-
and generating respective digital signature codes defining second comparison
values;

for at least some of the blocks, periodically determining a test digital
signature code and comparing it to the respective second comparison value;
and

when the test digital signature code of a block does not equal the
respective second comparison value, determining whether the first two

characters of the block equal one of the first comparison values.

4, The computer program product of Claim 3, wherein the method steps
further comprise:

when the first two characters equal one of the first comparison values,
determining a block digital signature code using a test byte; as the first byte
of a test block;

determining whether the block digital signature code equals one of the
second comparison values;

when the block digital signature code equals one of the second
comparison values, returning "resynchronized"; otherwise

when either the first two characters of the test byte; do not equal one
of the first comparison values, or when the block digital signature code does
not equal one of the second comparison values, setting i = i+1 and repeating

select steps.

WO 99/46660 PCT/US99/05248

41-
5. The computer program product of Claim 1, in combination with the
portable computer.
6. A computer program product, comprising:

logic means for accessing a file system in the portable computer to
access blocks to be backed up;

logic means for copying blocks to a hold area of the portable
computer;

logic means for determining when the portable computer is connected
to a computer network;

logic means for determining when a data path of the network is idle;
and

logic means for transmitting blocks in the hold area to a remote data

storage device via the network when the path is idle.

7. The computer program product of Claim 6, further comprising:

logic means for determining at least blocks of computer files in a
portable computer to be backed up; and

logic means for invoking a network interface in response to the logic

means for determining blocks of computer files to be backed up.

WO 99/46660 PCT/US99/05248

-42-
8. The computer program product of Claim 6, further comprising logic
means for determining when the logic means for accessing has successfully accessed

the file system.

9. The computer program product of Claim 6, further comprising logic
means for receiving a file change signal to cause the logic means for backing up the

blocks to back up blocks to the hold area.

10. The computer program product of Claim 6, further comprising logic

means for receiving a network communication started signal.

11. The computer program product of Claim 6, further comprising logic
means for receiving a data ready signal to cause the logic means for transmitting

blocks to transmit blocks from the hold area to the network.

12. The computer program product of Claim 6, in combination with the

portable computer.

13. The computer program product of Claim 6, in combination with the

network.

14. A method for backing up blocks of computer files in a portable

computer, comprising:

WO 99/46660 PCT/US99/05248

-43-
receiving a computer idle signal from the portable computer;
in response to the computer idle signal, backing up blocks in a file

system of the computer in accordance with a backup program.

15. The method of Claim 14, wherein the computer idle signal is

established by a screen saver start signal.

16. The method of Claim 15, further comprising generating a user warning
when one or more of the following conditions is present: a predetermined amount of

data has been backed up, and the amount of unprotected data exceeds a predetermined

threshold.

17. The method of Claim 14, wherein the backup program undertakes
method steps comprising:
for at least some of the blocks in a local file to be backed up, copying
two respective characters thereof defining respective first comparison values
and generating respective digital signature codes defining second comparison
values;
for at least some of the blocks, periodically determining a test digital

signature code and comparing it to the respective second comparison value;

and

WO 99/46660 PCT/US99/05248

-44-
when the test digital signature code of a block does not equal the
respective second comparison value, determining whether the first two

characters of the block equal one of the first comparison values.

18. The method of Claim 17, wherein the backup program further
undertakes method steps comprising:

when the first two characters equal one of the first comparison values,
determining a block digital signature code using a test byte; as the first byte
of a test block;

determining whether the block digital signature code equals one of the
second comparison values;

when the block digital signature code equals one of the second
comparison values, returning "resynchronized"; otherwise

when either the first two characters of the test byte; do not equal one
of the first comparison values, or when the block digital signature code does
not equal one of the second comparison values, setting i = i+1 and repeating

select steps.

19. A method for backing up blocks of files in a laptop computer,
comprising:
determining blocks to be backed up;

determining when the laptop computer is connected to a computer

network;

WO 99/46660 PCT/US99/05248

-45-
determining when a data path of the network is idle; and
transmitting the blocks determined to be backed up to a remote data

storage device via the network when the path is idle.

20. The method of Claim 19, further comprising invoking a network

interface.

21. The method of Claim 19, further comprising receiving a file change

signal to cause blocks to be copied to a hold area in the laptop computer.

22. The computer program product of Claim 21, further comprising
receiving a data ready signal to cause blocks in the hold area to be transmitted from

the hold area to the network.

23. A system for configuring a portable computer for a network to which
the portable computer is connected, comprising:

logic means for determining at least one other device on the network
to determine a network configuration;

logic means for comparing the network configuration to one or more
predetermined configurations; and

logic means for configuring the portable computer for the network
when the network configuration matches at least one of the predetermined

configurations.

WO 99/46660 PCT/US99/05248

-46-

24. The system of Claim 23, wherein sets of predetermined portable
computer settings are correlated with respective predetermined configurations, and the
means for configuring establishes at least one of the sets in the portable computer

when the network configuration matches the respective predetermined configuration.

25. Aportable computer back up system for backing up one or more blocks
in one or more files in the portable computer and transmitting the blocks to a remote
computer storage location via a network, comprising:

logic means for determining when the portable computer is connected
to the network;

logic means for determining whether an availability of the network is
at least equal to a predetermined availability;

logic means for transmitting over the network blocks to be backed up
when one or more transmission criteria are satisfied, the transmission criteria
including:

the means for determining determines that the portable

computer is connected to the network.

26. The system of Claim 25, wherein the transmission criteria further
include:
the means for determining determines that the availability of the

network is less than the predetermined availability.

WO 99/46660 PCT/US99/05248

-47-
27. The system of Claim 26, wherein the blocks are transmitted by

interleaving the blocks with meta data.

28. A computer program product comprising:
a computer program storage device readable by a digital processing system;
and
logic means on the program storage device and including instructions
executable by the digital processing system for performing method steps for backing
up one or more blocks in at least one local computer file from at least one portable
computer connectable to a computer network, the method steps performed by the
computer program product comprising:
preparing the blocks for back up;
determining whether the portable computer has been connected to a
network;
if the portable computer has been connected to a network, permitting
transmission of one or more of the blocks: and

interleaving the blocks with other data for transmission thereof.

29. The computer program product of Claim 28, wherein the method steps
further comprise:
suspending backing up blocks when a predetermined computer storage

space limit of the portable computer is reached.

WO 99/46660 PCT/US99/05248

-48-

30. The computer program product of Claim 28, wherein the method steps
further comprise:

if the portable computer has been connected to a network and is

transmitting data to the network, suspending the preparing step, and otherwise

executing the preparing step until all blocks designated for back up have been

prepared for back up.

32. The computer program product of Claim 28, wherein the method steps
further comprise:

transmitting the block only if the portable computer has been connected

to the network and an availability of the network is less than a threshold

availability.

33. The computer program product of Claim 28, wherein the method steps
further comprise:
for at least some of the blocks in a local file to be backed up, copying
two respective characters thereof defining respective first comparison values
and generating respective digital signature codes defining second comparison
values;
for at least some of the blocks, periodically determining a test digital

signature code and comparing it to the respective second comparison value;

and

WO 99/46660 PCT/US99/05248

-49-
when the test digital signature code of a block does not equal the
respective second comparison value, determining whether the first two

characters of the block equal one of the first comparison values.

34. The computer program product of Claim 33, wherein the method steps
further comprise:

when the first two characters equal one of the first comparison values,
determining a block digital signature code using a test byte; as the first byte
of a test block;

determining whether the block digital signature code equals one of the
second comparison values;

when the block digital signature code equals one of the second
comparison values, returning "resynchronized"; otherwise

when either the first two characters of the test byte; do not equal one
of the first comparison values, or when the block digital signature code does
not equal one of the second comparison values, setting i = i+1 and repeating

select steps.

35. A computer program product comprising:

a computer program storage device readable by a digital processing system;
and

logic means on the program storage device and including instructions

executable by the digital processing system for performing method steps for backing

WO 99/46660 PCT/US99/05248

-50-
up at least some blocks in at least one local computer file from at least one user
computer in a computer network, the method steps performed by the computer
program product comprising:

(a) transmitting the local file to a data center remote from the user
computer to render a remote version, the data center being accessible via the
computer network, the data center having an electronic storage capacity of at
least one hundred terabytes, the local file being transmitted only when the data

center does not have an exact copy of the local file.

36. The computer program product of Claim 35, wherein the method steps
further comprise:

(b) for each of the blocks in the local file, copying two respective
characters thereof defining respective first comparison values and generating
respective digital signature codes defining second comparison values;

(©) for each block, periodically determining a test digital signature
code and comparing it to the respective second comparison value; and

(«)) designating a block of the local file as a transmission block to
be transmitted to the data center to thereby update the remote version when
the test digital signature code of the block does not equal the second
comparison value of the block;

(e) when the test digital signature code of a block does not equal

the respective second comparison value, determining whether the first two

WO 99/46660 PCT/US99/05248

-51-
characters of a block, starting with a test byte, of the block, equal one of the
first comparison values, wherein i = a natural number;

(f) when the first two characters equal one of the first comparison
values, determining a block digital signature code using the test byte; as the
first byte of a test block;

(8) determining whether the block digital signature code equals one
of the second comparison values;

(h) when the block digital signature code equals one of the second
comparison values, returning "resynchronized"; otherwise

(1) when either the first two characters do not equal one of the first
comparison values, or when the block digital signature code does not equal

one of the second comparison values, setting i = i+1 and repeating steps (e)-

().

37. The computer program product of Claim 35, wherein the method steps
further comprise:
gathering transmission blocks in a transfer chunk; and
when the size of the transfer chunk equals a predetermined size,
transmitting the transfer chunk to the data center, wherein transfer chunks are

transmitted to the data center only during a predetermined period.

38. The computer program product of Claim 35, wherein the method steps

further comprise:

WO 99/46660 PCT/US99/05248

-52.
for each local file block, determining whether a duplicate of the local

file block is stored in a common file block library at the data center; and
undertaking step (a) only when a duplicate of the local file block is not

stored in a common file block library.

39. The computer program product of Claim 35, wherein the method steps

further comprise:
periodically copying remote versions at the data center onto a portable
data storage medium; and
restoring local files by copying remote versions from the portable data
storage medium when the remote versions stored on the portable data storage
medium are at least as current as the remote versions stored at the data center,
and otherwise restoring local files by copying remote versions from the data

center.

40. A system for backing up files in user computers, comprising:

a data center including a common library of computer data;

a plurality of user computers remote from the data center and in
communication with the data center;

common library logic means for determining which if any of data
blocks of the user computers are common computer file blocks by virtue of

being contained in the common library, computer file blocks that are

WO 99/46660 PCT/US99/05248

-53-
determined not to be common computer file blocks being non-common file
blocks; and

common library addition means for adding to the common library a
non-common file block when the non-common file block appears at least a

predetermined number of times in the user computers.

41. The system of Claim 40, further comprising:

initialization logic means associated with each user computer for
causing file blocks except common file blocks to be transmitted to the data
center;

subfile incremental back up logic means associated with each user
computer for determining changed blocks that have been changed since a
predetermined back up time and generating changed block signals in response
thereto,

chunk transmission logic means responsive to the subfile incremental
logic means for sending only changed blocks to the data center in chunks
having a predetermined size;

synchronizing logic means responsive to the changed block signals for
synchronizing the subfile incremental logic means; and

logic means for generating a listing of the blocks of the files stored at
the data center and, associated with each block, the first two characters of the
block and a digital signature of the block, the subfile incremental logic means

using the listing to undertake the determining function.

WO 99/46660 PCT/US99/05248

-54-
42. The system of Claim 40, wherein a non-common file block is added

to the common library when the non-common file block appears in at least a

predetermined number of user computers.

43. A computer-implemented method for backing up computer file blocks,

comprising the steps of:

(a) at a user computer, encrypting at least one block using one or
more encryption keys;

(b) transmitting at least the block to a remote data center;

©) at a restore time, transmitting at least the block from the data
center to the user computer;

(d) selecting one of the keys from the key file;

(e) decrypting at least the block with the key;

® determining whether the decryption was successful; and

(g) when the decryption is not successful, selecting another key
from the key list and decrypting the block, and repeating steps (f) and (g) until

the decryption is successful.

44. The method of Claim 43, wherein the block defines a block digital

signature, and the block is encrypted and decrypted to render a decrypted block, and

the determining step includes:

determining the digital signature for the decrypted block;

WO 99/46660 PCT/US99/05248

-55-

comparing the digital signature for the decrypted block to the block
digital signature; and

determining that the decryption was successful when the digital

signature for the decrypted block equals the block digital signature.

45. The method of Claim 44, wherein the block is compressed prior to
encryption, and wherein the method further includes the steps of:
decompressing the block; and
determining that the key is not an appropriate decryption key when the

decompressing step is not successful.

46. A method for providing a session key for a transmission session for
transmitting data between a transmitting computer and a receiving computer,
comprising the steps of:

generating a data digital signature based on the data; and

using the data digital signature to encrypt the data.

47. The method of Claim 46, wherein the data digital signature is generated
by the transmitting computer, and the method further comprises the steps of:
encrypting the data digital signature using a public key of the receiving
computer; and

transmitting the data digital signature to the receiving computer.

WO 99/46660 PCT/US99/05248

-56-
48. The method of Claim 47, further comprising the steps of:
decrypting the data to render decrypted data;
determining the digital signature of the decrypted data; and
comparing the digital signature of the decrypted data to the data digital

signature to determine whether the data was transmitted satisfactorily.

WO 99/46660

1710

PCT/US99/05248

DATA CENTER Fig. 1
10—~ 2~ [TCOMMONUBRARY-+ 20
StonagE 18
CONTROL MODULE | 22
16 ——] MODEM
l [1
0 26 | P
\ \J™ MODEN HODEM
CD-ROM BACKUP 1 18 BACKUP CD-ROM
HODULE HODULE
n 4
USER COMPUTER USER COMPUTER
3
3
START
=1 FOR EACH Fig. 2
COMPUTER
3
BLOCK i , (%
OFFILE INCOMMON YES o | FLAG " FILE N LIBRARY
LIBRARY (COPY MDSi, XXi)
?
5, N 0 4
N(] . _.]
TRICKLE COPY EACH @ =)+
NON-RESIDENT BLOCK i
0 STORAGE (ALSO ESTABLISHES By,
posi0L0 O

SUBSTITUTE SHEET (RULE 26)

WO 99/46660 PCT/US99/05248

2/10
i Fig. 3
68 TIME
\ —><_ TOSTART
7
TRANSHIT ANY £
REMAINING UPDATES "
(ENCRYPTED)
FOR EACH
o YES FILEj, DO
66 No 59
FOR EACH
WAIT FOR BLOCK j, DO
TIME-00T
PERIOD 1ES B
N0 |
Dot COMPUTE W0 NEW
0 ? (BLOCK)
0 YES
ND
@ v | P
N0 IS MOVE BLOCK(S)
T0 NEXT CHUNK/
UPDATE LISTING

YES YES
LAST I;lI]CK
o8 ' 14

oo S\M
STIL 0

£ V.

TRANSMIT BLOCK(S)
WHEN SUCCESS.
GONNECT AS IN

STEPS 64, 66

NO
YES
LAST BYTE
!
£

SUBSTITUTE SHEET (RULE 26)

WO 99/46660

PCT/US99/05248

3/10

84
4 Fig. 4
DOWNLOAD BLOCK

DIRECTORY FROM
DATA CENTER FOR
HILE(S) TO BE
RESTORED

FOR EACH
BLOCK i, DO

8 91

REQUESTED
VERSION ON CD-ROM
!

RESTORE FROM
DATA CENTER

RESTORE FROM
CD-ROM

SUBSTITUTE SHEET (RULE 26)

WO 99/46660 PCT/US99/05248

4/10

100

102

MD5
MMS[ES ‘ﬁ:’;&ﬂuﬁc" . ANHIEI?EPEDFERRAE " RECORD MDS IN CANDIDATE
PART OF C.S.L.. DO 1P LIST: SET J(MD5)= 1

JMD)=)JMDS) +1 § | NEKTMDS ...

ADD MD3 W/ASSOC.
BLOCK(S) T0 C.5.L.

Fig. 5
1
AT USER COMPUTER, 120
ATTACH MD5 FOR EACH
BLOCK TO ThE o Fig. 6A
RESPECTIVE BLOCK:
COMPRESS
RECEIVE BLOCKS 128
10 BE RESTORED FOR FIRST DECOMPRESS
FROM SERVER KEY. D0 BLOCK
(ENCRYBTED): FOR '
EACH BLOCK, DO
1% 190
AL
NEXT KEY DECOMPRESS ?
NO
- 13

BEURN B MD5 MATCH?

"CORRECT KEY"

DETERMINE MD5 OF
DECRYPTED BLOCK

SUBSTITUTE SHEET (RULE 26)

WO 99/46660 PCT/US99/05248

5/10
141 14 /1468 1488
DETERMINE MD3 USE MD3 TRANSFER MD3 AT RECEIVER,
FOR ENTIRE SET AS SESSION KEY DECRYPT MD3
OF DATATO BE ENCRYPTION USING PUBLIC USING PRIVATE
TRANSFERRED KEY KEY OF RECEIVER KEY

TRANSMIT

ENCRYPT DATA AT RECEIVER,

USING MD5 A ENCRYPTED DECRYPT OATA
Fig 7A RANDOM # DATA USING MD5
1064 1481 0
15)
15,
RETURN DETERMINE
Fig. 7B | “manswission DErggg IPTFED
VALIDATED"
DATA
RETURN
“TRANSMISSION
160 | ERRIR"

UPON DETER-
MINATION OF
BLOCK TO BE SENT

168

166
BLAST BLOCK

UNTIL DONE
OR UNTIL
CPU BUSY

CPU
BUSY (E.G., KEY
STROKE) ?

STORE DATA
FOR TRANSMITION
WHEN ONLINE

WAIT AT 169

SUBSTITUTE SHEET (RULE 26)

WO 99/46660 PCT/US99/05248

6/10

180

USER-
DEFINED BACKUP
SETS)?

Fig. 9 182

RECEIVE USER-
DEFINED SETS

184~

PREPARE BLOCKS/
CHUNKS FOR BACKUP Je—-
(FIG.3)

188 \

SUSPEND BACKUP
UNTIL TRANSMISSION
FREES DISK SPACE

DISK
SPACE LIMIT?

CONTINUE
BACKUP
PROCESSING

CONNECTION
SENSED?

194

ACTIVELY
TRANSMITING ?

SUSPEND BACKUP
PROCESSING IN
FAVOR OF
TRANSMISSION

SUBSTITUTE SHEET (RULE 26)

WO 99/46660

7/10

198

SENSE
NETWORK
CONNECTION

Fig. 10

200

BLOCK OF
DATA READY?

INTERLEAVE BLOCK
WITH META DATA

SET "LAST BLOCK"
= 1D OFLAST
INTERLEAVED BLOCK

208

TRANSMIT
DATA TO BE
BACKED UP

NETWORK
AVAILABILITY < SET
POINT?

0

WAIT UNTIL NETWORK

AVAILABILITY < SETPOINT; J
RESTART W/SYNCHRONIZING
OF HG. 3

PCT/US99/05248

Fig. 11

12
[

COMPILE NETWORK
1.0.'S (CONFIGURATIONS)

SENSE NETWORK

CONNECTION

DETECT
NETWORK
DEVICES

118

CURRENT
NETWORK MATCH
STORED NETWORK ?

END

10

RECONFIGURE
COMPUTER PER

STORED SETTINGS

SUBSTITUTE SHEET (RULE 26)

WO 99/46660

330

[
EXITTO0.5.

DISPLAY EXIT
MESSAGE

SIGNAL EXIT TO
NETWORK INTERFACE

CLOSE FILE
SYSTEM HOOKS

SHUTDOWN
SIGNAL

8/10

302

OPERATING
SYSTEM
START

PROPERLY
GONFIGURED ?

PCT/US99/05248

Fig. 12

300

.

308

[

START NETWORK
INTERFACE (FIG. 13)

WHEN INTERFACE
STARTED, HOOK
FILE SYSTEM

| RUN USER INTERFACE

T0 SELECT FILES,
OR AUTO SELECT

L300

WAIT FOR SYSTEM SIGNAL

PROCESS NEW
HILE DATA INTO
HOLD AREA

SUBSTITUTE SHEET (RULE 26)

PCT/US99/05248

WO 99/46660
9/10
39
Fig. 13
3
NETWORK
PRESENT?
N B
) WAIT FOR SYSTEM SIGNAL — 3%
— | BT StenAL "NETWORK Al
COMMUNICATION
STARTED SIGHAL"
L NI
\ WA FOR STSTEM SIGNAL —
f—— EXIT SIGNAL "NETWORK ~348
| STOPPED >
wo| SIENAL"
\ V e , T
END NETWORK NETWORKILE" | g
INTERFACE s [

(RETURN TO FIG. 12)

"DATA READY"
SIGNAL-TRANSMIT
FROM HOLD AREA

| EXIT SIGNAL "NETWORK
| ACTIVE"

SIGNAL

SUBSTITUTE SHEET (RULE 26)

"NETWORK
STOPPED"
SIGNAL

WO 99/46660 PCT/US99/05248

10/10
%
RECEIVE IDLE Fig. 14
SIGNAL EG.
SCREEN SAVER "ON"
T\

INVOKE BACK UP

LOGIC OF FIG. 2, 3

368 - 366
AMOUNT OF DATA 1ES 1ES UNPROTECTED
BAméEY% PEmes DATA > PRED. AMOUNT

. ?

|

PRESENT WARNING SUGGESTING
IMMEDIATE NETWORK
CONNECTION BE ESTABLISHED

30

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

