N

= 3

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GOG6F 11/34, 11/30, 9/455 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/25304

21 September 1995 (21.09.95)

(21) International Application Number: PCT/US95/03003

(22) International Filing Date: 14 March 1995 (14.03.95)

(30) Priority Data:

08/212,600 14 March 1994 (14.03.94) Us

(71) Applicant: GREEN HILLS SOFTWARE, INC. [US/US];
11377 West Olympic Boulevard, Los Angeles, CA 90064
(US).

(71)(72) Applicants and Inventors: O’DOWD, Daniel, D.
[US/US]); 116 Via Del Cielo, Santa Barbara, CA 93109
(US). KLEIDERMACHER, David, N. [US/US}; 4377 Via
Esperanza, Santa Barbara, CA 93110 (US).

(74) Agent: LAUGHLIN, James, H., Jr.; Lane and Mittendorf, Suite
#800, 919-18th Street, N.W., Washington, DC 20006 (US).

(81) Designated States: AU, CA, ES, JP, MX, PL, RU, UA,
European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: OPTIMIZING TIME AND TESTING OF HIGHER LEVEL LANGUAGE PROGRAMS

(57) Abstract

A method for time use analysis of a higher level language
program is performed by displaying source code lines (56) in
descending order according to the amount of time spent by the
program to execute machine code (94) into which the source
code lines have been compiled. Source code lines are displayed
(96) arranged in order according to the percentages of the
amounts of time spent in execution during runs of the program.
A digital processing apparatus (10) for performing the analysis
includes a display (15) for showing the source code lines (56)
that require the most time of execution, a selection apparatus
(108) for selecting those source code lines having the greater
opportunity for significant corrective action, and displaying the
various selected source code lines (104) in the order in which
the lines are kept in the program along with the corresponding
time spent by the program to execute machine code.

ooy |

o, Seurse Lines e Time Usn
Tins Uss. Tims Uss Order
!! : » {1)_ Ordoriag Prossss, Dioplsy P
§ M'\-ul.
1y precennm——— .--.]
i | A
' [Ll :
! i
. T |
rlll— 0ae Ordes \ o e " m e mncanpee
Displey Process 1‘-'" ZIZ.
/04

applications under the PCT.

AT
AU

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

GB
GE

GR
HU

IT
Jp
KE
KG
KP

KR
Kz
LI

LK
LU
LV
MC

MG
ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi
Niger

"Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine *

United States of America
Uzbekistan

Viet Nam

g

WO 95/25304 PCT/US95/03003

OPTIMIZING TIME AND TESTING OF HIGHER LEVEL LANGUAGE PROGRAMS
BACKGROUND OF THE INVENTION

1. Yield of the Inventjon:

The present invention relates to the art of software
development for digital computing, and more particularly to the
arte of (1) debugging and optimizing higher level language
progran:, and (2) testing procedures for higher level language
progranms. -

2. Description of the Prior Art:

In the past, after computer programs are created,
programmers must debug the program. Such programs are usually
created out of many procedures and subroutines, each of which is
a series of lines of source code intended to perform some specific
task or function. "Subroutines,” "functions" and “procedures® are
self-contained segments of the program, comprising a group of
source code lines that perform a specific function. Hereinafter
in this specification, the term "source line" may be used from time
to time ag the same as and éynonymous with the term "source code
line* for ease and clarity in understanding and description.

Initially, a computer performs its tasks by "executinq"
machine code. Machine code is a eeries of machine instructions.
Each instruction usually consists of a coded seyuence of binary
bits comprising a series of positivee and negatives, ones and zeros
or similar type of two level information. A digital processing
apparatus responds to such machine inctructions by operating upon
other machine coded data stored in a memory, according to the
prbgram. A set of such machine instructione is loaded into a
central processing unit of the digital processing apparatus, or
computer from a memory called a machine instructione file. The
memory device for both could be a disk, floppy disk, tape, read
only memory (ROM), flash memory or the like. Thus, the central
processing unit of the computer retrieves an initial machine
instruction from the memory and carries out the tasks cpecified by
the instruction. In carrying out or performing the specitied tasks
of the machine instruction, the computcr ic caid to "exaecute" the
machine instruction.

WO 95/25304 PCT/US95/03003
-2 -

A series of machine instructions will not only operate
upon the data in memory in accordance with the program, but will
also instruct the central processing unit as to which machine
instruction to retrieve and execute next. This process of
executing one machine instruction after the next may continue
indefinitely or until a machine instruction is executed that
instructs the central processing unit to stop the execution
process. Some digital processing apparatuses include improvements
to speéd up computer programs by allowing the computer to execute
several machine instructions at once if it can do so, while still
generally appearing to behave as if it is executing one at a time
in sequence. Generally, such improvements do not change the
fundamental sequential nature of the computer’s execution process.

Machine code instructions can be represented in alpha-

numeric expressions for display on display devices.
Typically, moreover, computer manufacturers create a more human
readable version of their machine code, called "assembly code"
having its own "assembly language." The computer translates the
assembly language into machine instructions for execution of the
program. Assembly language makes it a somewhat easier task to
program. However, such assembly languages are usually unique to
that manufacturer’s computers, and to make a program executable on
another computer, the entire program must be re-written in
another’s assembly language.

As a consequence, higher, or "high" level programming
languages have been developed which are designed to run on all
brands of computers. Using such higher level programs, a computer
programmer can express general mathematical formulae and complex
data relationships in a way that is independent of the actual brand
of computer on which the program will be run. The computer
programmer need not Kknow what machine code language instructions
will actually be used to implement his mathematical formulae. 1In
this manner, the programmer can concentrate on the general
specification of the algorithm without having to figure all of the
detailed machine instructions necessary to carry out or execute his
tasks. Among the more popular higher level programming languages
are C, Fortran, Cobol, C++, Ada, Pascal and Lisp.

The indicia used to identify these higher level program-
ming languages bear a resemblance to ordinary, written languages.

SUBSTITUTE SHEET (RULE 26)

f

WO 95/25304 PCT/US95/03003
-3 -

Such indicia is usually written in alpha-numeric symbols, including
various punctuation marks and characters, in a line from left to
right. A single command created by a programmer in such a higher
level language usually comprises a single line, but in any event
is called a "source code line" or, more simply, a "source line."
It is a series of such source lines of code that comprise the
subroutines, functions and procedures that, collectively, will in
turn comprise a complete program. Each of such subroutines,
functions or procedures is itself a self-contained segment of the
program, and each comprises a group of source code lines, source
lines or instructions that performs a specific function or task.
Such source lines are stored in a memory, called a source lines
file. These source lines are stored in the source lines file in
an order which, for purposes of this description, will be called
the source order or, sometimes, the source code order. The alpha-
numeric expressions or indicia representing each of such source
lines can be displayed on a display device, and are usually
presented in a column from top to bottom in the order in which the
source code line or command is to be carried out in the fundamental
sequence of the computer’s run of the program. Generally, this
order is coincidental with the source order.

Displays are usually provided which present the results
of the computer’s operations to the user. The display can take the
form of a permanent medium, such as printed paper where the results
of the computer are printed by a printer, as well as such media as
magnetic implanted or recorded tapes, data disks and like devices
which can be either human readable or understandable or machine
readable. The display can be in the form of a transient medium,
such a video terminal or screen. Video screens can be the usual
cathode ray tube screen as well as liquid crystal displays, virtual
reality displays, holographic displays and so on. Further, such
displays are used not only to present the results of the computer’s
operation, but also to present various information from or through
the computer, such as, for example, the data stored within the
computer’s memory, such as the machine code instructions, source
lines file, diagnostic programs and other information kept in the
computer’s memory or in the memory of peripheral equipment attached
to the computer. Hereinafter in this description, the term
"display" shall be used and is intended to mean all of such display

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003

- 4 -
devices, as well as other media through or on which the results and
other information from or through a computer can be presented to
a user or another machine.

Most such digital processing apparatuses have some way
of inserting codes, data and instructions into the computer. Such
input devices include Kkeyboards and/or some form of pointing
devices. Pointing devices can be a light pen, a graphics tablet,
arrow keys on a keyboard, a track ball or the "mouse" or "clicker"
for positioning a pointer or cursor on the display screen or other
output presentation.

"Interactive display" or "interactive display device" are
terms that are sometimes used to refer to those displays that
combine computer input and output functions. These devices allow
the user to identify a location on the display so that the digital
processing apparatus can then respond to that location identifica-
tion as a command or instruction for further action or operation.
Such a combination could be, for example, a video screen (cathode
ray tube) and a pointing device, such as a "mouse" that moves a
screen visible arrow or like cursor to identify a location among
the indicia showing on the screen. Stylus sensitive liquid crystal

display panels is another example of such an interactive display.

Another combination might be the screen display and a
finger of the user’s hand, where the screen display is sensitive
to the finger’s touch, and responds to that touch as if it were a
command. Heads up displays, virtual reality displays and the like
are additional such interactive displays.

The speed and reliability advantages afforded by higher
level program languages cause most programs to be written in higher
level languages. Many subroutines, functions and procedures can
be very long, often containing hundreds and sometimes thousands of
source lines. Furthermore, since the variations and permutations
of possible functioning of these subroutines and functions is very
large, it is‘impractical for the programmer to put the program
through all possible tests, even assuming that he could know them
all.

Instead, it is general practice to give a new program,
after the programmer has performed rudimentary testing, to a number
of testers who will exercise the program and all of its subroutines

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
-5 =

and functions more thoroughly in a variety of environments,
applications, iterations and combinations. Typically, such testers
identify those tasks and operations which the program cannot
perform in the manner in which the tester has tried. In such
testing, the tester usually identifies only those subroutines or
functions which fail to perform their specific task assigned within
the overall scheme of the program. Such testers normally are
unable to thoroughly test:all possible source code lines, many of
which méy malfunction under the circumstances which call for their
use.

At the end of the testing, lists of these "bugs" are
submitted to the programmer. The programmer can then make correc-
tions to, or debug the program in light of the testers’ feedback,
and re-submit the debugged program to the testers for further
testing. Sometimes, this process is repeated several times until
an acceptably well functioning version of the program is achieved.

Generally, testers are unconcerned with the time that a
subroutine or function takes in the run of the program. Program-
mers, however, have at least two circumstances in which the amount
of time that it takes to execute the program can be important. The
first circumstance is when a malfunction of a subroutine, function
or procedure is identified that results in it accomplishing its
assigned tasks too slowly so that the results of that subroutine,
function or procedure are untimely for fitting into the remaining
part of the program, which may depend on those results for
performing the overall task. A second circumstance occurs when the
subroutine or function performance time is too slow by comparison
with alternative or competing products.

In the first circumstance, the program cannot be released
until the problem is resolved. The subroutine, function or its
component loop must be shortened or optimized, that is re-written.
In the second circumstance, the program may be released; but its
acceptance and use will likely be limited accordingly.

Where a subroutine, function or procedure, and likely the
entire program malfunctions because some part of a subroutine or
function is too slow for its assigned task in the scheme of the
program, the subroutine, function or procedure must be shortened.
Typically, programmers look to alternative subréutines and
functions which are faster for substitution into the program.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 | o PCT/US95/03003
-6 - '

Even after the program has been debugged and the problems
fixed so that the program works correctly, it is often found that
the program does not carry out its tasks at the speed desired. A
user may complain that the program carries out its tasks too
slowly, or that it takes too long to perform some of its tasks.
Programs are sometimes written to take advantage of certain
features of one make of computer. Although the program will run
on most other makes of computers because it is written in a higher
level lénguage, the other makes of computers in many instances will
run that particular program slower than on the make for which it
was originally written. A user having a program that runs too
slowly on his particular computer may desire greater speed in order
that his computer may handle more programs, or handle more tasks.

One solution to this problem of time or speed is to
acquire a new computer on which the program will be run at a
greater speed. This solution, however, can be costly.

In the past, certain performance analysis hardware and
software have been provided that give the amount of time used by
the most often executed machine instructions. The higher level
language programmer, however, usually does not know the machine
instructions into which his source lines are translated. Most
programmers are not helped, therefore, by knowing how much time was
used by any one individual machine instruction.

Further, it has been known to provide hardware and
software that identify those segments of the program, such as
subroutines, functions and procedures that use the most time.
However, as noted, such functions, subroutines and procedures often
consist of hundreds, even thousands of lines of source code. Such
hardware and software do not identify which of these source lines
use the most time when their corresponding machine code instruc-
tions are executed.

It is an object of the present invention to identify
source code lines for which the time of use, or the amount of time
spent to execute the machine code instructions into which the
source lines have been translated, is the most. It is a further
object of the present invention to provide and display the amount
of time spent in the execution of the machine instructions for
their corresponding source code lines. It is another object of the

SUBSTITUTE SHEET (RULE 26

WO 95/25304 PCT/US95/03003
-7 -

present invention to identify the source lines that are used
repeatedly. It is yet another object of the present invention to
provide a method and apparatus which can make these identifications
displayed to the programmer in order according to the amounts of
time so spent. It is yet a further object of the present invention
to provide a method and apparatus which can present these identifi-
cations to the programmer in the source order provided by the
source line file and in the likely order of sequential performance.

| Testing procedures are frequently provided for testing
a program, function or sub-routine. Such testing procedures often
include running a program by or with test input and analyzing the
results. However, many such testing procedures do not test all of
the source code’s lines. Indeed, frequently it is not known
whether all of the source lines are used in a testing procedure.
Therefore, the tester cannot verify whether every source code line
is satisfactory. Worse, a program tester may develop an invalid
belief in the operability of every code line in every application
for which the program was designed.

It is another object of this invention to provide testers
with a procedure for more easily ascertaining the completeness of
a testing procedure, and to provide methods and apparatus for
correcting deficiencies found.

SUMMARY

In brief, in accordance with one aspect of the present
invention, all or part of a program of a higher level language
composed of source code lines is analyzed by initially determining
the amount of time spent by the program during all or a portion of
a run of the program to execute machine instructions into which
each source code line has been compiled. The source code lines for
all or a portion of a program are arranged in the order of de-
scending times spent for their cofrelating machine instructions’
execution. The time spent that correlates with each source code
line is calculated also as a percentage of the total amount of time
spent for running the program or a portion of it. The source code
lines are identified by titles or part of their text in a source
code line list in one column of a display or read out, while an

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 .) PCT/US95/03003
-8 -

indication of the time correlative to each source code line is
listed in an another, nearby column, each correlated time spent
being positioned juxtaposed its corresponding source code line.

From this display or read out, a selection of the source
code line or lines believed to present the greatest opportunity for
optimizing the program is made. For each selected source code
line, indicia identifying the selected line is displayed along with
indicia identifying additional source code lines proximal the
selected source code line in the order of location in the source
line file, or in the operational order of performing or carrying
out the sub-routine. In this sequential order display, the amount
of time spent with respect to each of the displayed source code
lines 1is shown Jjuxtaposed its corresponding source code 1line
indicia. 1In addition, the indicia representative of the machine
code instructions into which each source code 1line has been
compiled can be shown for each source code line, complete with time
spent to execute each of the machine code instructions, if desired.

In an alternative embodiment, those machine instructions
which were not used in a test procedure are first located. The
source line from which the unused machine instruction was translat-
ed is then identified. All such source lines thus identified are
listed. Any one of such listed source lines can be selected for
further scrutiny, and the selected source line is displayed along
with other source lines proximal to the selected source line in the
order as maintained by the source lines file or the order of being
carried out during a run of the program or a portion thereof. The
source code line is displayed at least in part by some or all of
the text of the source line and, further alternatively, along with
machine instructions into which the source code line had been
translated. The machine instructions are expressed in the
displayed in their alpha-numeric form. Appropriate corrective or
supplemental test programs or routines can then be created to
insure that all source code lines are used in an appropriately
modified testing procedure. '

These and other novel aspects of the present invention,
together with other aspects thereof, can be better understood by
the following detailed description of the preferred embodiments,
which are designed to be read in conjunction and together with the
accompanying drawings.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective schematic view of a digital
processing apparatus of the preferred embodiment of the present

invention;

- FIG. 2 is a block, schematic diagram of the method of the
preferred embodiment of the present invention;

FIG. 3 is a display showing one aspect of the preferred
embodiment of the present invention in a time spent order display
for source line to time data;

FIG. 4 is a display showing another aspect of the
preferred embodiment of the present invention in a file order
display for source line to time data;

FIG. 5 is a block, schematic diagram of the method of an
alternative embodiment of the present invention;

FIG. 6 is a display showing one aspect of the alternative
embodiment of the present invention in a source line and machine
instruction to time display;

FIG. 7 is a block, schematic diagram of the method of
another alternative embodiment of the present invention;

FIG. 8 is a display showing one aspect of the alternative
embodiment of FIG. 7 in a time spent order display for source line
to time data;

FIG. 9 is a display showing another aspect of the
alternative embodiment of FIG. 7 in a file order display for source
line and machine instruction to time data; and,

FIG. 10 is a display showing another aspect of the
alternative embodiment of FIG. 7 in a source line and machine

instruction to time display.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A digital processing apparatus 10, or computer has a
central unit 12, reference being had initially to FIG. 1 of the
accompanying drawings. The central unit 12 houses a central
processing unit, disk drive and memory, as will be explained in
greater detail below. A table 14 holds a cathode ray tube (CRT)

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ' PCT/US95/03003
- 10 -

display 16 having a screen 17. The cathode ray tube display 16 is
connected by bus 18 to the components of the central unit 12. A
cursor, or display pointer 20 is displayed on the screen 17, and
is movable over the area of the screen 17 in response to input from
the keyboard 22. The keyboard 22 has keys 23 for human input to
the computer 10. The keyboard 22 is electronically connected to
the central unit by bus or cable 24. The pointer or cursor 20 may
be moved up, down, and in both lateral or side directions by
depreséing the appropriate keys 23, as shown, marked with the arrow
in that direction toward which it is desired to move the pointer
or cursor 20.

Another method and apparatus for moving the pointer or
cursor 20 is by maneuvering the "mouse" 25, having a "clicker" 26.
By moving the mouse 25 in a desired direction on a mouse pad 27 on
the top of the table 14, the pointer or cursor 20 will be moved in
generally a relatively corresponding direction on the screen 17.
The mouse 25 is electronically connected to the keyboard 22 by bus
28, for manual input of signals to be conveyed to the components
of the central unit 12 through bus 24, and on to the cathode ray
tube display 16 through bus 18. Many computers can use both
arrangements.

A source code program 34 is installed in the central unit
12 by inserting a disk having the program on it into the drive port
30 and is downloaded into a source lines file 56, which will be
described in greater detail below. Similarly, the translation or
compiler and profiler program 36 is installed in the central unit
12 by inserting a disk having such information on it into the drive
port 30.

FIG. 2 is a more detailed, but diagrammatic arrangement
of some of the component parts, and sets forth in a block flow
diagram methods of practicing the present invention. The central
unit 12 contains a central processing unit (CPU) 42 which is
interconnected with a disk drive and memory unit 44. A target CPU
46 is the unit that will control the run of the program to be
analyzed. The pointing device 50 comprises the cursor or pointer
20 moved by corresponding movement of the mouse 25 on the table 14.
Some systems operate using a cursor 20 moved by the arrow labeled
keys 23 on the keyboard 22. The pointing device 50 is part of the

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ‘ PCT/US95/03003
- 11 -

interactive display 52, which includes the cathode ray display 16.

Initially, the program in the form of a source code 34
is inserted into the central unit 12 by inserting the disk on which
it is stored into port 30. The source code 34 is transferred to
the source lines file 56 in the disk drive and memory 44. A
compiler program, called a translator is also transferred into the
central unit 12 by inserting it, as by inserting the disk on which
they aré stored into port 30. The compiler or translator draws the
source lines information from the source 1lines file 56, as
indicated by 1line path 58, and translates, in the translation
process 60, the source lines of the source lines file 56 into the
machine instructions necessary to execute the operations called for
by the analyzed program. The machine instructions are stored in
the machine instructions file 64 by the compiler or translation
operation 60, as indicated by the line path 62.

Typically, a computer 10 operates by running a program
which has been installed in it. The program consists of a machine
code or instruction list, which instructs the computer to execute
various tasks, as set forth in the codes. As set forth in FIG. 2,
the program under scrutiny has been established in the target CPU
46 by storing its code in the form of machine instructions in the
instructions memory 70, as indicated by 1line path 68. When
operating, the execution process 72 causes the instructions from
the instructions memory 70 to be accessed, performed or carried
out, as indicated by line path 74.

In the preferred embodiment described here, the central
processing unit 42, disk drive and memory unit 44 and target CPU
46 combination which was used and found suitable is the
Sparcstation IPC, using a SunOS Release 4.1 (GENERIC_SMALL) #1
operating system, available from Sun Microsystems Inc. of Mountain
View, California. 1In this Sparcstation IPC, the target CPU 46 is
part of the central processing unit 42. The program under scrutiny
was a program written in the C language, and was downloaded from
the disk on which it was stored into the source lines file 56 by
placing the disk through the port 30 in the central unit 12. The
analyzed program is given in the C language inn Appendix B,
attached hereto and made and part hereof and incorporated herein
by this reference. The program was then compiled, that is trans-

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 12 -

lated 60 into machine instructions on which the computer 10 can
execute the commands which will run the analyzed progranm. The
translation was accomplished using a C-SPARC compiler, version
1.8.7 available from Green Hills Software Inc. of Santa Barbara,
California. The translation compiler program is inserted into the
central processing unit 42 of the Sparcstation IPC 10 by inserting
the disk having the program on it into the port 30 of the central
unit 12. The translation 60 is accomplished by giving the computer
10 the.command "gece -a -p -g demo.c".

The machine instructions are then stored in the machine
instructions file 64, named here "a.out". Contemporaneously, the
translation process 60 creates a source lines to machine in-
structions address table and stores it in the source lines to
machine instructions mapping file 66 in the memory 44, as indicated
by the line path 67, in the file "a.out". Although the source
lines to machine instructions file 66 in this embodiment was
generated using the C-SPARC compiler described above, any compiler
that provides, for each line of source code, the addresses of the
machine instructions into which the source code line was translated
will operate suitably to provide a satisfactory source lines to
machine instructions file for the practice of this invention. Such
information is often contained in a source code debugger symbol
table prepared for use by a source level debugger program.

The profiler source code program is installed into the
Sparcstation IPC 10 by inserting the disk having the program on it
in the port 30 and compiling it in the central processing unit 42.
The source code program is set forth in the Appendix A, which is
attached hereto and incorporated and made a part of this specifica-
tion by this reference. The profiler source code program is
written in the C language, and is stored in two files, labeled
"merge. c" and "wstuff.c" by giving the instruction or command "gcc
merge.c wstuff.c -ansi -w -1X11". 4

The program under scrutiny is run 72 by giving the
command "a.out". This command copies the machine code instruction
from the machine instruction file 64 into the instruction memory
70 and then carries out the execution process 72. During the
execution 72 of the run of the analyzed program, the central
processing unit 42 is sampled a periodic number of times for
identification of which machine instruction is being executed or

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 13 -

being carried out at the moment of sampling. A sample rate of 100
times per second has been found adequate for a close and accurate
approximation. The sample rate may be chosen from a wide range,
depending on the nature of the program under scrutiny. From this
sampling, an accurate and satisfactorily close approximation of the
amount of time spent by this Sparcstation IPC 10 in executing each
machine instruction used in the program is determined. This
information is stored, as indicted by line path 74 in a machine
instruétions to time use mapping file 78 in the disk drive and
memory unit 44.

From the information kept in the machine instructions to
time use mapping file 78, and from the information kept in the
source lines to machine instructions mapping file 66, a merge
process 82 can be carried out to assemble and establish the amount
of time spent by the data processing apparatus 10 in executing the
machine instructions into which each line of the source code, or
source line has been translated by the compiler or translation
process 60. The amount of time spent, correlating to each source
line, is stored in the source lines to time use mapping table 88
in the central processing unit 42, as indicated by line path 90.

The merge process 82 is commenced by the command "perf
a.out" given to the Sparcstation IPC 10. In this merge process 82,
the machine instructions for each source line are identified from
the source lines to machine instructions mapping file 66. This
information is used in the merge process 82, as indicated by the
line path 84. The approximated amount of time spent executing each
machine instruction in a run 72 of the program 46 is obtained from
the machine instructions to time use mapping file 78, as indicated
by line path 86. From this accumulated information, the merge
process 82 determines a close and accurate approximation of the
time used or time spent correlating to each source line used in the
program. During the merge process 82, the time spent information
is in the source lines to time use mapping table 88, as indicated
by the line path 90, and is passed to the time use ordering process
94 and the source order display process 104 as indicated by the
line paths 92, 111.

In the present embodiment, the actual source lines of the
program to be analyzed are stored in the source lines file 56,
labeled "demo.c" and the machine instructions are stored in the

SUBSTITUTE SHEET (RULE 26}

WO 95/25304 PCT/US95/03003
- 14 -

machine instructions file 64, labeled "a.out". The mapping files
66, 78, 88 have addresses for the corresponding source lines and
machine instructions for access to the source lines and machine in-
structions information, as needed.

A time use ordering process 94 for arranging the source
lines in an order according to the amount of time spent in
executing the machine instructions into which each source line has
been translated, is used to access the information needed for this
procedﬁre from the source lines to time use mapping table 88, as
indicated by the line path 92. This process 94 then prepares a
table having each determined amount of time spent juxtaposed its
corresponding or correlated source line. A time use order display
process 96 takes this arrangement with its source line address
information, as indicated by the line path 98, and combines it with
the actual source line information from the source lines file 56,
as indicated by the line path 100, and prepares as an output a
display for presentation of this information on the screen 17 (FIG.
1) of the display 16, as indicated by the line path 102. 1In this
preparation, indicia representing the source 1line and indicia
representing the time spent are assigned to each of such informa-
tion for presentation on the screen 17. The source line could be
represented, for example, by a file name and the number or
abbreviated name, and/or might be represented by all or a portion
of the text of the source line itself from the source lines file
56. The time spent could be given or expressed in the actual
amount of time spent in absolute terms, such as in seconds,
milliseconds, nanoseconds, clock counts or the like. The amount
of time spent correlating to each source line could also be pre-
sented, very usefully, as a relative proportion of the total amount
of time spent in the program run, and/or with a percentage repre-
sentation.

In FIG. 3, the first result of this merge process 82,
time use ordering process 94, and time use order display process
96 is shown as a representative screen display 116. Screen display
116 shows indicia identifying the time spent in executing the
machine instructions into which each of several of the source lines
had been translated, along with some indicia identifying the corre-
lating source line. '

SUBSHTUTESHEET(RULEZS)

WO 95/25304 PCT/US95/03003
- 15 -

In particular, in FIG. 3 a first column 118 lists the
seven most significant source lines, in terms of determined
correlated amounts of time spent, in the order of descending times
spent for each source line in executing the machine instructions
into which that source line had been translated. The source lines
are identified by their address or "line" numbers and file name,
here "demo.c" plus a line number, for example "75". A second’
column 120 lists the actually determined time spent with each of
the disﬁlayed, correlated source lines of column 118, expressed in
seconds. A third column 121 lists the amount of the determined
time spent for each displayed, correlated source 1line as a
proportion of the total amount of time spent in completing the run
72 of the program under scrutiny. A third column 122 lists the
amount of the determined time spent for each displayed, correlated
source line as a percentage of the total time for the program run
72. Each time amount, proportion of time and percentage of time
is positioned on the display screen 116 juxtaposed to the indicia
118 representing its correlated source line, in a row across the
screen 116. In a fourth column 123 on the screen display 116, at
least a portion of the actual source line text is given in the row
for that source line.

A marker or cursor 124 is shown positioned at one source
line 126, which is identified by the indicia "demo.c 75". The
cursor 124 is positioned by a user by maneuvering the pointing
device 50, shown in FIG. 2, which is a part of the interactive
display 52. In this embodiment, the cursor arrow is moved by
maneuvering the mouse 25 on the mouse pad 27 on the table 14. 1In
some systems, the cursor 124 could be maneuvered by operation of
the up, down and lateral arrow marked keys 23 of the keyboard 22.
The pointing device 50 thus is made to select a pafticular source
line 126 for further scrutiny.

By entering some signal in the line path 106, by a click
on the clicker 26 when the display arrow 20, 124 is positioned
adjacent the file name and address for the source line "demo.c 75"
in column 118, the user selects the source file identified by this
indicia for closer examination, and starts a selection process 108
to commence, as indicated by the line path 106 of FIG. 2. In other
configurations, this selection could be made by the user by

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 16 -

entering some key signal through the keyboard 22 to move the cursor
and enter some commence signal.

The selection process 108 identifies the particular
source line 126 selected by the user using the time spent or time
use table on the screen 116, and through line path 110 provides
this information to a source order display process 104.

The source order display process 104 accesses the source
lines from the source lines file 56 through line path 112, and
arrangés the selected source line 126 along with other source lines
proximal to the selected source line 126 in the order as kept in
the source lines file 56. Usually, this order is the same as the
order in which the data processing apparatus 10 carries out the
tasks specified by the source lines in the analyzed program.

The source order display process 104 also takes informa-
tion from the source lines to time use mapping table 88 to complete
the preparation and arrangement of the information which will be
displayed. The source order display process 104 then prepares the
indicia identifying the source lines in the order as kept in the
source lines file 56 for display on the screen 17 of the display
16, as indicated by the line path 114.

In FIG. 4, the screen display 130 prepared by the source
order display process 104 is shown. Indicia identifying the
selected source line 126 is displayed in the first column 131 along
with indicia identifying the source lines proximal to the selected
source line 126 in the order as kept in the source file 56. The
selected source line can be located from the location or 1line
number "75" in the identifying indicia. In different environments,
the selected source line 126 might also be called to the attention
of the user by the pointer or cursor 138, positioned at the source
line numbered "75" in the screen display 130. Thus, the first
column of the screen display 130 is a list of indicia indicating
the address locations for various source lines, in the order of the
source lines kept by the source lines file 56, for those source
lines having addresses proximal to the selected source line 126.

The second column of screen display 130 comprises a list
of the determined times spent correlating to each of the source
lines displayed, each determined time spent being in a row
juxtaposed its correlated source line. The third column 133 of the

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 | PCT/US95/03003
- 17 -

screen display 130 is a list of the determined times spent,
expressed as a relative proportion of the total time spent
executing the machine instructions correlating to the various
source lines. The percentage for each correlating source line also
is given, in the fourth column 134 juxtaposed to the identifying
location address for the correlating source line. Thus, for
example, the percent for source line identified as "demo.c 75" is
16.621%, as set forth in the fourth column 134 in the screen
display 130 of FIG. 4. The fifth column 136 of the screen display
130 is a presentation of all or a part of the actual text of the
corresponding source lines from the source lines file 56. The text
for each source line displayed is given juxtaposed to the corre-
sponding address location information and various expressions of
the determined times spent set forth in the first through fourth
columns 131, 132, 133, 134.

In operation, a user may identify source lines where the
greatest or best opportunity exists for optimization or improvement
in a computer 10 operation, where the source lines of the analyzed
program 34 have been installed in a source lines file 56, and the
source lines have been compiled or translated into appropriate
machine instructions file 64. Initially, a source lines to machine
instructions mapping file 66 is established in the memory 44 by the
translation process 60. Next, a run or execution 72 is made of the
program having the source lines 56 under scrutiny. A machine
instructions to time use mapping file 78 is created by the sampling
of the computer 10 during an execution process 72.

A merge process 82 takes the information from the source
lines to machine instructions mapping file 66 and from the machine
instructions to time use mapping file 86, and determines an amount
of time spent by the computer 10 in its run 72, that is indicative
of the amount of time spent or used by the computer 10 for
execution of the machine instructions for each source line 88.
This information is stored in the source lines to time use mapping
table 88. Through a time use ordering process 94 and a time use
order display process 96, a screen display 116 is presented on the
display 16 of the interactive display 52. This display 116
identifies the most signifidant source lines as determined by the
amount of time spent by the computer 10. Moreover, the display 116
reports in column 120 and in column 122, close and accurate

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 _ PCT/US95/03003
- 18 =~

approximations of the actual amount of time spent by the computer
10 in executing the machine instructions for each source line set
forth in this most significant source line list 118. This display
116 helps the programmer to identify those source lines where, if
time and speed improvements were made, he would have the most
significant effect on the overall execution 72 of the program under
scrutiny.

Continuing in the operation, the programmer can select
one of the source lines 126 for further and more close scrutiny by
positioning the cursor 124 on the screen 116 at the indicia for
that line. By using a keyboard key, or by clicking or otherwise
singling out this selected source line 126 by using either the
directions keys 23 on the keyboard 22 and entering, or by position-
ing the pointer-cursor 20 with the mouse 25 and using the clicker
26 in the selection process 108, the source order display process
104 takes the selected source line 126, and takes from the source
lines file 56 the source lines proximal to the selected source line
126 as maintained by the source line file 56, and arranges the
selected source line 126 and these proximal source lines in that
order of the source line file 56. Normally, as mentioned herein-
above, this order is coincidental with the time, fundamentally
sequential order of execution of the machine instructions corre-
sponding to the source lines.

This arrangement is presented, as indicated by the line
path 114 to the display 16 and displayed, as representatively shown
for an example in FIG. 4 as screen display 130. As shown, the
indicia identifying the source lines displayed on screen display
130 are given the actual text, or at least a line of the actual
text, in the higher level program language, of each source line.
In addition, for each source line displayed, the amount of time
spent or used by the computer 10 in executing the machine instruc-
tions corresponding or correlating to that source line is also
displayed in a second column 134 in percent of the total time spent
during the program run 72. In a first column 132, an identifying
indicia, in this case the file location address, is displayed
juxtaposed its corresponding source line text.

In the manner set forth, a programmer is able to have
that source line causing the most time consumption, or at least
enough of a time consumption to be interesting. 1If changes are to

SUBSTITUTE SHEET {RULE 26)

WO 95/25304 PCT/US95/03003
- 19 -

be made to any source line to obtain speed advantages, changes to
such lines as identified by the present method will maximize the
effect on the overall run time of the program being scrutinized.
In considering any such modification, the programmer has before him
in screen display 130, not only the source lines where the greatest
opportunity for maximum effect exists, but also the source lines
proximal to those source lines of interest. Thus, the programmer
can quickly observe the location of the source lines of maximal
interest within the overall run of the program. The programmer
will know those source lines just before and just after the source
lines of maximal interest. Additional opportunities may be discov-
ered for optimization of the program by modifying these proximal
source lines in conjunction with the targeted source line.

In FIG. 5, an alternative embodiment of the present
invention is shown in schematic, diagrammatic view where, for ease
and clarity in description the reference numerals are the same as
those for elements shown in FIG. 2 except being numerically one
hundred greater. Thus, a central processing unit 142 and disk
drive and memory unit 144 comprise the basic elements of the
computer 11. A target CPU 146 has a program which is to be
analyzed. A pointing device 150 and display 16 comprise the
interactive display 152.

The same source code 34 and a translation and profiler
program 36 as used in the preferred embodiment described above, are
loaded into the computer 11. The source code 34 is stored in the
memory 144 in the source lines file 156. The translation program,
using the same command instructions as set forth for the preferred
embodiment above, compiles or translates the source lines in a
translation process 160, and loads 162 the resultant machine
instructions into a machine instructions file 164. The source code
program set forth in the Appendix A is again loaded into the
Sparcstation IPC 11, and is put into two files, again using the
same instruction as set forth for the preferred embodiment above.
In addition, consequently, the translation process 160 creates a
source line to machine instruction map and loads 167 it into a
mapping file 166. The analyzed program 34 is run by an execution
process 172, upon the same command instruction as set forth for the
preferred embodiment above, taking 174 machine instructions from
the instruction memory 170, which receives 168 them from the ma-

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ' PCT/US95/03003

- 20 -
chine instructions file 164. A machine instructions to time use
mapping file 178 is created from a sampling of the program during
its run 172.

To this point, this alternative embodiment is similar in
method and structure to the preferred embodiment described above.
However, here a merge process 182 is commenced by a different
command to the program of the Appendix A, namely "perf -asm a.out".
The merge process 182 then takes 184 the information from the
sourcenlines to machine instructions mapping file 166, and takes
186 the information from the machine instructions to time use
mapping file 186 to determine with respect to each source line, the
amount of time spent by the computer 11 in executing the machine
instructions into which each such source line has been translated.

A time use ordering process 194 takes 192 the information
from the source lines to time use mapping table 188 and arranges
the source lines in descending order according to the determined
amount of time spent. A time use order display process 196 takes
198 this arrangement, and takes 200 the source lines information
from the source lines file 156, and prepares a display having
indicia representing source lines, and their corresponding times
spent, from accurate and close approximations of the actual time
spent in seconds, clock counts or the like, or from accurate and
close approximations of the relative proportions of the time spent
correlating to each source line, in relation to the total time

spent running the program, expressed, for example, in percentages.

A pointing device 150 is used to position a cursor or
pointer 20 to select 206 a particular source line, such as the
source line identified by the indicia "demo.c 75" as was selected
in the preferred embodiment described above. A selection process
208 instructs 210 the source order display process 204 to take 212
information from the source lines file 156, and to take 211
information from the merge process 182, in order to prepare a
display that will have for the selected source line and the source
lines proximal to it in the order as kept by the source lines file
156, all or some of the text for the source lines, the location
address of the source lines in the source lines file 156, and the
time spent in executing the machine instructions correlating to
each source line.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 21 -

In this alternative embodiment, the source order display
process 204 accesses information from the machine instructions file
264, as indicated by the line path 218, so as to have, in addition
to the information set forth above, sufficient information to
present in the display the alpha-numeric code text for the machine
instructions which carry out the source line instruction. This
information is assimilated and displayed.

In FIG. 6, a screen display 220 resulting from the
selection of the source line indicia "demo.c 75" is shown. The
information is shown, again, in columns. The first column 222 is
a list of indicia 225 identifying not only the selected source code
"demo.c 75", but also indicia 226 identifying all of the machine
instructions into which source line "demo.c 75" was translated
during the translation process 160. Furthermore, the indicia 224
identifying additional source 1lines, entitled "demo.c 74" and
"demo.c 76" which are proximal to the selected source line "demo.c
75" 225 as kept in the source lines file 156 are listed in the
first column 222. Even cursory scrutiny of the first column 222
reveals that certain of the machine instructions take substantially
more time for execution than others. The machine instruction
indicated by indicia 228, "0x000029ec" takes 0.85 seconds, which
is 2.607% of the time spent by the computer 11 in running the
analyzed program. Other significant machine instructions can be
determined from the screen display 220.

In the second column 230, Jjuxtaposed each machine
instruction indicia displayed is the actual time spent by the
computer in executing that corresponding machine instruction. The
total amount of time for all of the machine instructions for a
given source line is set forth juxtaposed the indicia 224, 225
identifying that source line. Thus, for the source line identified
as "demo.c 75", the amount of time determined is 5.42 seconds.:

The third column 232 lists the amount of time spent in
executing each machine instruction listed in the first column 222,
as a proportion of the total amount of time used or spent for the
execution process or run 172 of the analyzed program. The fourth
column 234 lists the amount of time spent in executing each machine
instruction listed in the first column 222, as a percentage of the
total amount of time spent or used by the computer 11 for the
execution process or run 172 of the analyzed program.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 22 -

The fifth column 236 lists the actual machine instruc-
tions in hexadecimal form.

The sixth column 238 gives the actual text, in assembly
language, for each of the machine instructions listed in the first
column 222, juxtaposed the indicia identifying the corresponding
machine instruction. 1In this fifth column 236 is also given the
actual text, or at least part of the text of the source lines
having identifying indicia displayed, again juxtaposed in the row
for that source line.

In the manner described, the programmer faced with the
task of making an analyzed program run faster, can locate and
identify those machine instructions where, if speed progress or
improvement modifications are made, will result in the most
significant effect on the overall time of the program’s run. For
example, there are available programs that optimize machine
instructions, the use of which having the effect of making the
execution of such a machine instruction faster. Such optimizations
can provide substitutions for many of the machine instructions in
the program in certain circumstances, by the programmer to obtain
the speed and time efficiency desired.

In FIG. 7, another alternative embodiment of the present
invention is shown in block, schematic diagram, where for ease and
clarity in description and understanding, all of the reference
numerals used are those for similar elements and components in FIG.
2 of the drawings, except having a numeric value two hundred
greater. Thus, the computer 13 has a central processing unit 242,
a disk drive and memory 244 and the target CPU 246, which in the
embodiment described here is integral with the central processing
unit 242 as part of the Sparcstation IPC described hereinabove for
the preferred embodiment. A program to be tested is downloaded
into the source lines file 256. That program, written in the C
language, is set forth in Appendix B attached hereto, and incorpo-
rated herein by this reference. The same compiler as described for
the preferred embodiment described above, is downloaded into the
central processing unit 242 to translate in the translation process
260 source lines of the program to be tested. The translation
process 260 takes 258 the source lines from the source lines file
256, and compiles, that is translates the source lines into machine
instructions, and loads 262 them in the machine instructions file

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 23 -

264. The translation process 260 also creates a source lines to
machine instructions map and loads 267 it in the source lines to
machine instructions mapping file 266. The source code program set
forth in Appendix A attached hereto, and incorporated herein and
made a part hereof by this reference, is again loaded into the
Sparcstation IPC and put into two files, in the same manner and
using the same command as described for the preferred embodiment
above. _

The program to be tested is run by an execution process
274 in the target CPU 246, commenced by an execution command "perf
-coverage a.out". The machine instructions are taken 268 from the
machine instructions file 264 into the instruction memory 270, and
the execution process produces and transfers 274 to a machine
instructions to time use mapping file 278 a map of the time taken
by the computer 13 during the testing run 272 of the tested
program, to execute each machine instruction.

A merge process accepts 284 information from the source
lines to machine instructions mapping file 266, and accepts 286
information from the machine instruction to time use mapping file
278, and determines first those source lines for which at least one
machine instruction into which the source line was translated, was
not executed during the test run of the tested program. The merge
process then arranges all such the source lines of the tested
program in the order of ascending times spent by the computer 13
in running the tested program. The results of this tester ordering
process 294 are made available 298 to the tested order display
process 296. The tester order display process accepts 300
information from the source lines file 256 and accepts the
information made available 298 from the tester ordering process,
and prepares the information in the tabular form for presentation
on the screen display in cathode ray tube display 16.

In FIG. 8, a resultant screen display 320 shows the
results of the merge, tester ordering and tester order display
processes 282, 294, 296. In screen display 320, a first column 322
lists those source lines where a machine instruction into which the
source line was translated by the translation process 260, was not
execution during the test run 272 of the tested program. 1In this
first column 322, the identified source lines are listed by indicia
comprising the program name and the source line file number. 1In

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 24 -

the second column 324, the amount of time is set forth, which, of
course, should be zero, as should be the proportion of the time
spent versus the total time of the run 372, given in the third
column 335, and the percentage of the time spent versus the total
time of the run 272 given in the fourth column 326.

In the fourth column 327, at least a portion of the text
of the corresponding source lines identified in the first column’
322 is set forth. All of the relevant information for an identi-
fied source line is displayed in a row across juxtaposed to the
source code identified on that row. As shown in FIG. 8, those
source lines having a machine instruction which was not execution
during the testing run 272, are called to the attention of the user
by an asterisk, "#*" next the source line indicia displayed.

The display of FIG. 8 is a prelude to the more inter-
esting information available from this alternative embodiment. In
operation, the pointer or cursor 20 of the pointing device 250,
reference being had to FIG. 7, is maneuvered adjacent one of the
source line’s indicia, in this case the source line identified by
the indicia "demo.c 45" to select 306 that source line for closer
scrutiny. The mouse clicker 26 is clicked, and the program of
Appendix A will being a selection process 308 which transfers 310
the selection to a source order display process 304 will arrange
that selected source line with additional source lines that are
proximally located before and after the selected source 1line
"demo.c 45" in the order that the source lines are kept by the
source lines file 256. The source order display process 304
accepts 311 source line to time use information from a table
determined during the merge process 282, and accepts 312 source
line text, indicia and other information from the source lines file
256, to prepare 314 and present to the display 16 a tabular
display. '

FIG. 9 is a screen display resulting from the source
order display process 304. In FIG. 9, a screen 330 displays a
first column 332 listing indicia identifying the selected source
line "demo.c 45", and lists it in the order of the source lines
file 256 with indicia identifying other source lines proximally
located and kept by the source lines file 256. The second column
324 lists the time in seconds spent by the computer 13‘in the test
program run executing the machine instructions into which each of

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 25 -

the listed was translated in the translation process 260. The
third column 325 lists the time spent as a proportion of the total
time spent in the tested program run 272. The fourth column 326
lists the times spent as a percentage of the total time spent in
the run of the tested program. Of course, the time spent for the
selected source line has a machine instruction which was not
executed, and‘this fact is called to the attention of the user by
the "*" marking that source line in the screen display 330 of FIG.
9. } '

The fifth column 327 sets forth the text or at least a
portion of the text of the source line corresponding the identify-
ing indicia in the first column 322. This display presents to the
user an identification of those source lines where, during the test
run 272 of the tested program, a machine instruction was not run,
and presents this source line in the fundamentally sequential
context of that source line in the source lines file order.

The screen display is exited by maneuvering the pointer
20 to the exit location 329 on the screen display 320, and clicking
with the clicker 26. The user then has available a presentation
of the relevant source lines correlated machine instructions in
lower level language code format. This presentation is obtained
by giving the command "perf -coverage —asm a.out" to commence the
merge process 282 The merge process 282 transfers 311 information
from the source lines to machine instructions mapping file 266, and
from the machine instructions to time use mapping file 278 to the
source order display process 302. The source order display process
302 accepts 312 information from the source lines file 256 and
machine instruction information from the machine instructions file
264, as indicated by the line path 318, to prepare a presentation
for display 16.

' In FIG. 10, the screen display 340 displays the selected
source line "demo.c 45" having all of the machine instructions into
which the source line "demo.c 45"was translated by the translation
process 260 displayed in tabular form for ready reference and
analysis. In particular, the first column 342 lists the selected
source line identifying indicia, and immediately following this
selected source line’s indicia is listed indicia identifying all
of the machine instructions into which that source line "demo.c 45"
was translated. Further, indicia for other source lines located

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ' PCT/US95/03003
- 26 -

proximal to the selected source line are listed, with at least some
of the machine instructions into which those proximal source lines
were translated in the translation process 260.

In rows juxtaposed the corresponding machine instruction
or source line indicia are columns giving various information about
the corresponding instruction or line. In particular, the second
column 344 lists the amount of time spent in seconds to execute the
machine instructions. The third column 346 lists the amount of
time spent, expressed as a proportion of the total amount of time
spent during the test run 272. The fourth column 348 gives the
amount of time spent as a percentage of the total amount of time
spent by the computer 13 in the test run 272, for the corresponding
instruction. Of course, at least one instruction for the selected
source 1line will be =zero, but the times for the immediately
sequential instructions are also given, allowing the user to put
the selected line and instructions in the context of their expected
use in the program.

The fifth column 350 has two parts. A first part 352 of
the fifth column 350 lists the actual machine instruction, shown
here in hexadecimal form. The second part 354 of the fifth column
350 gives the identified machine instruction in assembly language,
which is useable by many programmers.

As may be appreciated, a method and apparatus is provide
that allows a programmer to analyze a testing program and discover
whether or not the testing program in its normal run actually tests
all of the machine instructions into which the tested program has
been compiled. Any deficiencies can be identified, and displayed
in a format that identifies the most serious skips, and then in a
format that allows the programmer to observe the deficiencies in
the context of the lowest level language and in the fundamentally
sequential context of the instruction in the run of the program.
Any further testing which might be considered useful in light of
the noted deficiencies can be designed with a focus on those
instructions considered most important.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003

- 27 -

The foregoing detailed description of my invention and
of preferred embodiments as to products, compositions and process-
es, is illustrative of specific embodiments only. It is to be
understood, however, that additional embodiments may be perceived
by those skilled in the art. The embodiments described herein,
together with those additional embodiments, are considered to be

within the scope of the present invention.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304

#include "stdio.h"
#include <a.out.h>
#include <stab.h>
#include <sys/exec.h>
#include <malloc.h>

#define OrderedDisplayLinesMax 15

struct monheader {
unsigned lowadr;
unsigned highadr;
unsigned moount_buckets;
} monheader;

struct coventry {
unsigned addr;
unsigned count;
} *covarray;

struct line {
struct line *next;
char *filename;
int linenumber;
unsigned startaddress;
unsignedlength;
float timeuse;
int used;

} *firstline, *lastline;

struct exec exec;

28 -

struct line *OrderedDisplaylines[OrderedDisplayLinesMax]};

int buckets;

short *ticks;
unsigned *coverage;
float TotalTime;

int asmmode;
char **disassembly;
int covermode;

FILE *MachineInstructionsFile;

char *ExecName;

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

O’Dowd et al.
APPENDIX A

WO 95/25304
- 29 -

float range(unsigned low, unsigned length);
unsigned usedrange(unsigned low, unsigned high);
int legaladdress (unsignedaddr);

main(int argc, char **argv)

{
int timeuseorderindex;
int switches;
if (1XInit(NULL)) {
printf(“"Can‘t creat windows/n");
exit(1l);
}

switches = 1;
while (switches && argc > 1)
if (strcmp(argv{l], "-ams") == 0) {
asmmode = 1;
argv++;
argc--;
} else if (strcmp(argvi{l]}, "-coverage") == 0)
covermode = 1;
argv++;
argc—-;
} else
switches = 0;
if (argc > 2) {
printf("Usage: perf [-asm) <filename>\n");
exit(1l);
} else if (argc ==1)
ExecName = a.out";
else
ExecName = argv({1l];
MergeProcess (ExecName) ;
if (covermode)
CoverageOrderingProcess();
else)
TimeUseOrderingProcess();
OrderingDisplayProcess();
SelectionProcess();

} .
int covcomp(struct coventry *covl, struct coventry *cov2)
{
return (int)(covl->addr - cov2->addr);
}
MergeProcess(char *ExecName)
{

FILE *SourcelinestoMachinelInstructionsMappingFile;

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

WO 95/25304 ' PCT/US95/03003

FILE *bmonfile;
char command([1000];
struct nlist nl;
int count;

unsigned addr;

int stringtablesize
char *stringtable;
char *filename
struct line *line;
int bmonsize;

/*Read in Source Lines to Machine Instructions Mapping File */
if (!(SourcelLinestoMachinelnstructionsMappingFile = fopen("mon.out",
"r"))) |
perror (ExecName) ;
exit (1);
}
if (fread(&monheader, sizeof (monheader), 1,
SourceLinestoMachineInstructionsMappingFile) =1) {
printf("mon.out file corrupted\n");
exit(1l);
}
if (fseek(SourcelLinestoMachineInstructionsMappingFile,
monheader.moount_buckets*2*sizeof (int), 1)) {
printF("mon.out file corrupted\n");
exit(1);

}
buckets = (monheader.highadr = monheader.lowadr + 3)/4;

ticks = (short *)malloc(buckets * sizeof(short));
if (fread(ticks, sizeof(short), buckets
SourceLinestoMachineInstructionsMappingFile) {=
buckets) {
printf("mon.out file corrputed\n");
exit(1);
}
/* Read in bmon.out */
coverage = (unsigned *)calloc(buckets, sizeof(int));
if (!(bmonfile = fopen("bmon.out","r")))
printf("No Coverage Data Found\n);
else if (fseek(bmonfile, 0, 2) 1 = 0 |,
(bmonsize = ftell(bmonfile)/sizeof(struct coventry)) < 1)
printf("No Coverage Data Found\n");
else {
(void) fseek(bmonfile, 0, 0);

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 31 -

covarray = (Struct coventry *)calloc(bmonsize, sizeof (struct
coventry));
if (fread(covarray, sizeof(struct coventry), bmonsize, bmonfile) !
= bmonsize)
printf("No Coverage Data Found/n");
else {'
gsort (covarray, bmonsize, sizeof(struct coventry), covcomp); }
}
for (count = 0; count < bmonsize; count++)
if (legaladdress(covarray{count].addr) &&
legaladdress(covarray[count+l].addr))
for (addr = covarray([count].addr; addr < covarray[count+l).addr; add
coverage| (addr-monheader.lowadr+3) /4] =
covarray[count].count { = 0;
if (!(MachinelInstructionsFile = fopen{ExecName, "r"))) ({
perror (ExecName) ;

exit(1);

}

if (fread(&exec, sizeof(struct exec), 1, MachinelnstructionsFile)
L= 1){
printf("Illegal Machine Instructions File: %s\n", ExecName);
exit(1l);

}

if (fseek(MachineInstructionsFile, N_STROFF (exec), O)) {

printf("Illegal Machine Instructions File: %s\n",
ExecName);

exit(1);

}

if (fread(&stringtablesize, sizeof(int), 1,
MachinelnstructionsFile) ! = 1) {
printf("Illegal Machine Instructions File: %s\n", ExecName);
exit(1l);

}

stringtable = malloc(stringtablesize);

if (fseek(MachineInstructionsFile, N_STROFF(exec), 0)) {
printf("Illegal Machine Instructions File: %s\n", ExecName);
exit(1l);

}

if (fread(stringtable, 1, stringtablesize,
MachinelInstructionsFile) { = stringtablesize) {
printf("Illegal Machine Instructions File: %s\n", ExecName);
exit(1l);

}

if (fseek(MachineInstructionsFile, N_SYMOFF(exec), 0)) {
printf("Illegal Machine Instructions File: %s\n", ExecName);
exit(1l);

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003

_32—
if (asmmode)
setupdisassembly();
filename = "";
for (count = 0; count < (exec.a_syms/sizeof(struct nlist)); count++)

fread(&nl, sizeof(struct nlist), 1,
MachineInstructionsFile);
if (nl.n_type == 0x64)
filename = stringtable+nl.n_un.n_strx
else if (Inl.n_un.n_strx && nl.n_type == 0x44) {
. if (!lastline) ‘
firstline = line = (struct line *) malloc(sizeof (struct
line));
else {
if (strcmp(lastline->filename, filename) == 0 &&
nl.n _desc <= lastline->linenumber)
continue;
if (nl.n_value == lastline->startaddress) line =
lastline;
else {
line = (struct line *)malloc(sizeof(struct line));
lastline->next = line;
lastline->length = nl.n_value - lastline
->gtartaddress;
lastline->timeuse = range(lastline
->startaddress, lastline->length);
lastline->used = usedrange(lastline
->startaddress, 4);

}
line->next = (struct line *)NULL;

line->filename = filename;
line->linenumber = nl.n_desc;
line->startaddress = nl.n_value;
line->length = 0;

line~->timeuse = 0;

line->used = 0;

lastline = line;

}
if (lastline)
lastline->used = 1;
for (count = 0; count < buckets; count++)
TotalTime += ((float)ticks[count])/100;
}
legaladdress(unsigned addr)

{

return monheader.lowadr <= addr && addr < monheader.highadr;

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003

- 33 -
o
float range(unsigned low, unsigned length)
{
int offset;
float ret = 0;
for (offset = 0; offset < length; offset += 4)
if (legaladdress(low+offset))
ret += ((float)ticks[(lowtoffset - monheader.lowadr + 3) /
41)/100; '
return ret;
}
unsigned umin(unsigned x, unsigned y)
{
if (x < y)
return x;
else ‘
return y;
}
unsigned usedrange(unsigned low, unsigned length)
{
int offset;
int ret = 1;
for (offset = 0; offset < length; offset += 4)
if (legaladdress(low+offset))
ret = umin(ret, coverage[(low+offset - monheader.lowadr
+3) / 41);
return ret;
}
PrintLine(char ***dispptr, struct line *line, char *chars)
{
**dispptr = malloc(200);
if (!line)
sprintf (* (*dispptr)++, " %108 %-4d 38",
chars);
else '
sprintf (* (*dispptr)++,
"%c%10s %-4d %7.2f %6.5f %$%%6.3f %s",
line->used?’ ':'*’,
line->filename,
line->linenumber, line->timeuse,
line->timeuse/TotalTime,
line->timeuse*100/TotalTime, chars);
}
setupdisassembly ()
{

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 34 -

char command([200]);
char chars(81);
FILE *disfile;
unsigned addr;

sprintf (command, "dis %s > /tmp/dis", ExecName);
if (system(command) >> 8 == 0 && (disfile =
fopen("/tmp/dis"”, "r"))) {
disassembly = (char **)calloc(buckets, sizeof
(char *));
while (fgets(chars, 80, disfile))
if (chars[0]) == ’ ' && charsg([8] == ":') {
if (chars{strlen(chars)-1] == ‘\n’)
chars[strlen(chars)-1] = '\0‘;
chars[8] = '\0’;
sscanf (chars, "%8x", &addr);
if (legaladdress(addr)) {
disassembly [(addr-mon
header.lowadr+3) /4] =

malloc(strlen(chars+l11)+1);
strcpy(disassembly[(addr-monheader.
lowadr+3) /4], chars+ll);

}
fclose(disfile);
}
}

/*Machine dependent machine code disassembler */
Disassemble(unsigned addr, char *chars)

{
unsigned instructions;
char *disg = "";
if (legaladdress(addr))
dis = disassembly{ (addr-monheader.lowadr+3)/4];
sprintf(chars, " gs", dis);
}
PrintAsmLine(char ***dispptr, unsigned addr)
{

unsigned machinecode;
char chars[81];

Disassemble(addr, chars);
**dispptr = malloc(200);
sprintf (* (*dispptr)++,

"$c0x%$08x $7.2f %6.5f $%%6.3f 3s",

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 35 -

usedrange(addr,4)?’ ‘:'*’,
addr, range(addr,4), range(addr,4)/TotalTime,
range(addr,4)*100/TotalTime, chars);
}
FILE *skiptoline(char *SourceLinesFile, int firstnumber)
(.
FILE *file;
char chars[100];

int count;

if (!(file = fopen(SourceLinesFile, "r"))) {
perror (SourcelLinesFile);
return (FILE *)NULL;
}
for (count = 1; count < firstnumber; count++)
if *(feof(file))
return (FILE *)NULL;
else
fgets(chars, 80, file);
return file;
}
getaline(FILE *file, char *chars)
{
static char temp([81];
char *p;
int count = 0;

if (!file |, feof(file) |, !fgets(temp, 80, file))
*temp = ‘\0’;

else if (*temp && chars[strlen(temp)-1} == ‘\n’)

"\0*;

temp([strlen(temp)-1}
p = temp;
while (*p && count < 80)
if (*p == '\t’) {
do {
*chars++ = ' ‘;
count++;
} while (count & 7);
ppt;
} else {
*chars++ = *p++;'
count++;
}
*chars++ = *\0';
}

SourceOrderDisplayProcess(char *SourcelinesFile, int LineNumber)

{
SUBSHTUTE SHEET (RULE 26)

WO 95/25304 . PCT/US95/03003

int numberoflines;
int count;

int firstnumber;
FILE *file;

char chars[80];
struct line *line;
float timeuse;
char *ptr;

char **display;
char' **dispptr;
unsigned offset;
int Lines;

int outputlines=0;

if (asmmode)
Lines = 3;
else
Lines = 20;
display = (char **)calloc(100, sizeof(char *));
dispptr = display;
PrintHeader (&dispptr, "Source Order", "");
if ((firstnumber = LineNumber - Lines / 2) < 1)
firstnumber =1;
file = skiptoline(SourcelinesFile, firstnumber);
for (count = 0; count < Lines; count++) {
getaline(file, chars);
for (line = firstline; line; line=line->next)

if (strcmp(SourcelinesFile, line->filename) == &&
firstnumber+count == line->linenumber)
break;

if (!line) {
if (tfile |, feof(file))
break;
*dispptr = malloc(200);
sprintf (*dispptr++, " %10s %4d %s",
SourcelinesFile, firstnumber+count,
chars);
outputlines++;
} else {
PrintLine(&dispptr, line, chars);
outputlines++;
if (asmmode)
for (offset = 0; offset < line->length; offset+=4) {
PrintAsmline (&dispptr, line
->startaddress+offset);

outputlines++;

SUBSTITUTE SHEET-(RULE 26)

WO 95/25304 PCT/US95/03003

}
close(file);
XMakeWindow(display, outputlines+4, NULL);

}
TimeUseOrderingProcess ()
{
struct line *line;
int count;
it i;
for (line = firstline; line; line = line->next)
if (line->timeuse > 0)
for (count = 0; count < OrderedDisplaylLinesMax;
count++)
if (!OrderedDisplayLines{count] ;|
line->timeuse > OrderedDisplayLines([count]
->timeuse) {
for (i = OrderedDisplayLinesMax-1;
i > count; i--)
OrderedDisplayLines([i] =
OrderedDisplayLines
[i-1);
OrderedDisplayLines[count]) = line;
break;
}
}

PrintHeader (char ***dispptr, char *header, char *exitstring)

{

*(*dispptr)++ = header
* (*dispptr)++ = exitstring;
* (*dispptr)++ = " Filename Line Seconds Portion Percent Text\n";
* (*dispptr)++ = "
}
void SelectLine(int line)
{
if (line == 1)
exit(1);
if (line < 4)
return;
SourceOrderDisplayProcess(OrderedDisplayLines{line-4)
->filename, OrderedDisplayLines{line-4)->linenumber);
} .
OrderingDisplayProcess ()
{

int count;

SUBSTITUTE SHEET {RULE 26)

}

WO 95/25304 ' PCT/US95/03003

- 38 -

char **display
*))i

char **dispptr = display;
FILE *file;

char text([81];

(char **)calloc(OrderedDisplayLinesMax+5, sizeof(char

if (covermode)
PrintHeader (&dispptr, "Test Coverage", "Exit");
else
PrintHeader (&dispptr, "Time Use Order", "Exit");
for (count = 0; count < OrderedDisplayLinesMax; count++)
if (OrderedDisplaylLines[count]) {
file = skiptoline(OrderedDisplayLines
[count]->filename,OrderedDisplayLines
[count)->linenumber) ;
getaline(file, text);
PrintlLine(&dispptr, OrderedDisplayLines[count],
text);
fclose(file);
} else
break;
XMakeWindow(display, count+4, SelectLine);

CoverageOrderingProcess ()

{

}

struct line *line;
int count;

for (line = firstline; line; line = line->next)
if (!line->used)
for (count = 0; count < OrderedDisplayLinesMax;
count++)
if (!OrderedDisplayLines{count]) {
OrderedDisplayLines[count] = line;

break;

SelectionProcess()

{

}

XEventloop();

#include <stdio.h>

#include <X11/X.h>

#include <X11/Xlib.h>
#include <X11/Xutil/h>
#include <Xll1/Xatom.h>
#include <X1l1/cursorfont.h>

SUBSTITUTE SHEET {RULE 26)

WO 95/25304 ' PCT/US95/03003
- 39 -

static Display *display;

static int screen;

static XFontStruct *font_info;
static int font_h, font_ascent;
static Atom xa_wm_protocols;
static Atom wm_del window;

static Cursor arrow_cur;
unsigned long fg_pixel, bg_pixel;
static GC gc;

static struct win_inf {
struct win_inf *next;
Window wid;
void (*func) ();
char **text;
int cnt;

} *winds;

int DebugError () {
exit(1);

static int ghsXSetWMProtocols(display,wind,atomlist,len)
Display *display;

Window wind;

Atom *atomlist;

int len;
{
return(XChangeProperty(display,wind,xa_wm_protocols,
XA ATOm, 32,PropModeReplace, (unsigned char *)
atomlist, len));
}

/* These are entry points to the real world:
XInit (dispname)
XMakeWindow (text,cnt, func)
XEventLoop()

*/

int XInit (dispname) char *dispname; {
unsigned long valuemask = 0;
XGCValues values;

display = XOpenDisplay(dispname);
if (display==NULL) {
fprintf(stderr, "Cannot open display: %s\n",
XDisplayName(dispname));
return 0;

}

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003

- 40 -
screen = DefauitScreen(display);
wm_del window = XInternAtom(display, "WM_DELETE_WINDOW", False);
xa_wm_protocols = XInternAtom(display, "WM_PROTOCOLS", False);

arrow_cur = XCreateFontCursor(display, XC_left_ptr);
BlackPixel (display,screen);
WhitePixel (display,screen);

fg_pixel

bg_pixel

if ((font_info = XLoadQueryFont(display, "courier- bold"))==NULL) {
if ((font_info = XLoadQueryFont(display, "*-courier- bold-r-
" normal--12-12
if ((font_info = XLoadQueryFont(display,
"fixed"))==NULL) {
if ((font_info = XLoadQueryFont(display,
"9x15"))==NULL) {
fprintf(stderr, "Can’t open font\n");

return (0);

}

font_ascent = font_info->ascent;
font_h = font_info->descent + font_ascent;
gc = XCreateGC(display, RootWindow(display,screen) valuemask,
&values);
XSetForeground(display,gc,fg_pixel);
XsetBackground(display,gc,bg_pixel);
XsetFont (display, gc, font_info->fid);
return(1);
}
void XMakeWindow(text,cnt,func) char **text; int cnt, void (*func) ()i {
int i, width, height, tmp;
XSetWindowAttributes wattr;
int mask = 0;
Window wind;

struct win_inf *temp;

for (i=0, width=1, i<ecnt; ++i) {
tmp = XTextWidth(font_info,text[i],strlen(text(i]));
if (tmp>width)
width = tmp;
}
height = cnt*font_h;
if (height==0) height=font_h;

wattr.event mask = PropertyChangeMask StructureNotifyMaskExposure Mask;

mas if (func!=NULL)
wattr.event_mask | = ButtonPressMask ButtonReleaseMask;

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003

41
wattr.cursor = arrow_cur; mask |= CWCursor;
wattr.border pixel = fg_pixel; mask ;=CWBackPixel;
wattr.background pixel = bg_pixel; mask ;=CWBorderPixel;

wind = XCreateWindow(display, RootWindow(display,screen),
0, 0, width, height, 2, CopyFromParent,
InputOutput, CopyFromParent, mask, &wattr);
ghsXSetWMProtocols(display,wind, &wm_del window,1);
XMapWindow(display,wind);

if ((temp = (struct win_inf *) calloc(l,sizeof(struct win_inf
)))==NULL)
fprintf(stderr, "Out of memory\n");
exit(l);

}

temp->wid = wind;

temp->func = func;

temp->text = text;

temp->cnt = cnt;

temp->next = winds;

winds = temp;

void XEventLoop() {
XEvent event;
struct win_inf *item, *prev;

int line, i;

while (winds!=NULL) {
XNextEvent (display, &event) ;
item = winds; prev = NULL;
while (item!=NULL && item->wid!=event.xany.window)} {
prev = item;
item = item->next;
}
if (item==NULL)
continue;
switch (event.type) {
case ButtonPress:
line = event.xbutton.y/font_h;
break;
case ButtonRelease:
if (event.xbutton.y/font_h==line && item
->func!=NULL)
break;
case ClientMessage:
XDestroyWindow(display, item->wid);
case DestroyNotify:
if (prev==NULL)

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

WO 95/25304
- 42 -
winds = item->next;
else
prev->next = item->next;
if (item->func!=NULL ;, winds==NULL)
return;
break;
case Expose:
for (i=0; i<item=->cnt; ++i)
XDrawString(display, item->
wid,gc,0,font_h*i+font_ascent, item-
>text[i],strlen(item-> text[i]));
break;
}
}
}

SUBSTITUTE SHEET (RULE 26)

WO 95/25304

- 43 -

#include <stdio.h>
int counter;
enum sex {female, male};
struct infofmation {
int age;
enum sex sex;
}i
struct list {
struct list *next;
char name(8];
struct information information;
} * list;

struct element {
char name(8]);
int age;
enum sex sex;
} table[] = {

"Steve", 47, male,
"Mary, 28, female,
"pPat", 49, female,
"Ellen", 33, female,
"Bob", 22, male,
"Max", 59, male,
"Marcus", 33, male,
"Richard", 53, male,
"Melanie", 44, female,
*Diane", 22, female,

}i
#define COUNT (sizeof(table) / sizeof(struct element))
demoC ()

{
int count;
static int zero;
for (count = 0; count < COUNT; count++)
add_to_list(table{count].name, table[count].age,
table[count].sex);
while (zero) {
counter++;
printf("count = %d\n", ++count);
}
}
main()
{

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

O’'Dowd et al.
APPENDIX B

WO 95/25304 PCT/US95/03003

44
int zero = 0;
demoC(0);
demoPerformance();
}
demoPerformance ()
{
int i;
for (i = 0; i < 2000000; i++)
increment_counter();
fact(10);
do_loop();
}
static int a[4000};
do_loop()
{
int i;
for (i = 0; i < 4000000; i++)
a[i%1000} = 1;
}
increment_counter()
{
counter++;
}
add_to_list(name, age, sex)
char *name;
enum sex sex;
{
struct list *temp = (struct list *)calloc(l, sizeof(struct 1list));
memcpy (temp-name, name, 8);
temp->information.age = age;
temp->information.sex = sex;
temp->next = list;
list = temp;
}
fact (n)
{
if (n == 1)
return 1;
else v
return n*fact(n-1);
}

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ' PCT/US95/03003
- 45 -

CLAIMS

1. A method for performing analysis of a higher level
language program having at least a plurality of source lines
kept in an order, comprising the step of:

a. determining for each source line approximately
the amount of time spent, during at least a portion of one
. run of said program, to execute machine instructions into
which said source line has been translated.

2. The method of Claim 1 further comprising the step of
determining the proportion of said determined approximate amount
of time spent as a percentage of the amount of time spent in
running said at least a portion of said program.

3. The method of Claim 2 further comprising the step of
displaying source code line indicia identifying at least some of
said source code lines, said indicia for each said source code
line being juxtaposed with a display of said percentage deter-
mined for said source code line.

4. The method of Claim 1 further comprising the step of:
a. determining the proportion of said determined
approximate amount of time spent for each said source
code line, as a relative portion of the amount of time
spent in running said at least a portion of said pro-
gram.

5. The method of Claim 1 further including the step of
selectively replacing machine code instructions in said program
with different machine code instructions selected according to
the amount of time necessary to execute the machine code
instructions.

6. The method of Claim 5 wherein said replacing step
further includes the step of translating at least one selected
source code line into different machine code instructions from
those machine code instructions into which said at least one
selected source code line was translated.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 46 -

7. The method of Claim 1 further comprising the steps of
displaying source code line indicia identifying each of at least
some of said plurality of source code lines; and displaying,
juxtaposed each of said displayed source code line indicia,
indicia representing said approximate amount of time determined

for that corresponding source code line.

8. The method of Claim 7 wherein in said displaying
steps, each source code line indicia comprises at least some of

the text of the corresponding source code line.

9. The method of Claim 7 wherein in said displaying
steps, each source code line indicia comprises at least some of
the text of the machine instructions into which said source code

line has been translated.

10. The method of Claim 7 wherein in said displaying
steps, each source code line indicia is displayed in said kept
order.

11. The method of Claim 10 wherein in said displaying
steps, each source code line indicia comprises at least some of
the text of the machine instructions into which said source code
line has been translated.

12. The method of Claim 7 wherein in said displaying
steps, the indicia representing said determined amount of time

comprises absolute time units.

13. The method of Claim 7 further comprising the step of
determining the proportion of said determined approximate amount
of time spent as a percentage of the amount of time spent in
running said at least a portion of said program, and wherein in
said display step, displaying said percentage juxtaposed its
corresponding source code line indicia.

14. The method of Claim 7 further comprising the step of
determining the proportion of said determined approximate amount
of time spent for each said source code line, as a relative

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 47 -

proportion of the amount of time spent in running said at least
a portion of said program, and wherein in display step, display-
ing indicia representing said proportion juxtaposed its

correlating source code line indicia.

15. The method of claim 7 wherein in said displaying
steps, the indicia representing said determined amount of time
comprises a graphical display having indicia selected from the
group cohsisting of bar graphs, pie charts, line graphs and any
combination thereof.

16. The method of Claim 7 further the step of interacting
with said display to change said display.

17. The method of Claim 1 further comprising the step of
arranging said plurality of source code lines in an order
relative to said determined approximate amounts of time spent.

18. The method of Claim 17 further comprising the steps
of:
a. selecting one of said source code lines; and,
b. displaying selected source code line indicia
identifying said selected one of said source code lines.

19. The method of Claim 18 wherein said displaying step,
displaying said selected source code indicia along with indicia
identifying at least some additional source code lines proximal
said selected one of said source code lines in said kept order.

20. The method of Claim 18 wherein in said displaying
step, displaying as at least part of the source code line
indicia displayed at least some of the text of the corresponding
source code line.

21. The method of Claim 18 wherein in said displaying
step, displaying as at least a part of each source code line
indicia at least some of the text of the machine code into which
said source code line has been translated.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ' PCT/US95/03003
- 48 -

22. The method of Claim 18 further comprising the step of
interacting with said display to change said display.

23. The method of Claim 17 further comprising the steps of
displaying source code line indicia for at least some of said

source code lines in said arranged order.

24. The method of Claim 23 further comprising the steps
of:
a. selecting one of said displayed source code line
indicia; ang,
b. displaying said selected one of said source code

line indicia.

25. The method of Claim 24 further comprising the step of
displaying additional source code line indicia identifying
source code lines proximal in said kept order to the selected
source code line.

26. The method of Claim 24 wherein in said displaying
step, displaying as at least a part of each source code line
indicia at least some of the text of the corresponding source

code lines.

27. The method of Claim 24 wherein in said displaying
step, displaying at least part of each source code line indicia
at least some of the text of the machine instructions into which

said source code line has been translated.

28. The method of Claim 24 further comprising the step of
interacting with said display to change said display.

29. The method of Claim 23 wherein said displaying step
further comprises the step of displaying juxtaposed each of said
source code line indicia, indicia representing said determined
total amounts of time spent.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 49 -

30. The method of Claim 29 wherein said indicia repre-
senting said determined total amounts of time spent comprises

absolute time units.

31. The method of Claim 29 wherein said indicia repre-
senting said determined total amounts of time spent comprises

said determined proportions in percentages.

32. The method of Claim 29 wherein in said displaying
steps, the indicia representing said determined amount of time
comprises a graphical display having indicia selected from the
group consisting of bar graphs, pie charts, line graphs and any
combination thereof.

33. A digital processing apparatus for performing a time

use analysis of a higher level language program having a
plurality of source code lines kept in an order, comprising:

a. means for determining for each source code line

approximately the amount of time spent, during at

least a portion of one run of said program, to execute

machine code instructions into which said source code

line has been translated.

34. The digital processing apparatus of Claim 33 further
comprising proportion determining means connected to said
determining means, for determining the proportion of said
determined amount of time spent as a percentage of the

amount of time spent in running said at least a portion of

said program.

35. The digital processing apparatus of Claim 34 further.
comprising display means connected to said proportion deter-
mining means, for displaying source code line indicia identi--
fying at least some of said source code lines juxtaposed with

each percentage corresponding to said source code line.

36. The digital processing apparatus of Claim 33 further
comprising proportion determining means connected to said
determining means, for determining the proportion of said

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 50 -
determined amount of time spent for each said source code line,

as a relative portion of the amount of time spent in running

said at least a portion of said progranm.

37. The digital processing apparatus of Claim 33 further
comprising replacement means connected to and responsive to said
determining means, for selectively replacing machine code
instructions in said program with different machine code
instructions selected according to the amount of time necessary
to execute the machine code instructions.

38. The digital processing apparatus of Claim 37 wherein
said replacement means includes means for translating at least
one selected source code line into different machine code
instructions from those machine code instructions into which
said selected source code line was translated.

39. The digital processing apparatus of Claim 33 further
comprising:

a. displaying means connected to said determining
means, for displaying source code line indicia identi-
fying each of at least some of said plurality of
source code lines, and for displaying, juxtaposed each
of said displayed source code line indicia, indicia
representing the approximate amount of time determined
for the corresponding source code line.

40. The digital processing apparatus of Claim 39 wherein
in said displaying means, said source code line indicia includes
at least some of the text of the corresponding source code line.

41. The digital processing apparatus of Claim 39 wherein
in said displaying means, said source code line indicia includes
at least some of the text of the machine instructions into which

said source code line has been translated.

42. The digital processing apparatus of Claim 39 wherein
said displaying means comprises means for displaying each source
code line indicia displayed in said kept order.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 51 -

43. The digital processing apparatus of Claim 42 further
comprising means for displaying, juxtaposed each said source
code line indicia displayed, at least some of the text in of the
machine instructions into which its correlating source code line

has been translated.

44. The digifal processing apparatus of Claim 39 wherein
said displaying means comprises means for displaying indicia
representing said determined approximate amounts of time in

- absolute time units.

45. The digital processing apparatus of Claim 39 further
comprising proportion determining means connected to said
determining means, for determining the proportion of said
determined approximate amount of time spent as a percentage of
the amount of time spent in running said at least a portion of
said program, and wherein said display means includes means for
displaying said percentage juxtaposed its corresponding source
code line indicia.

46. The digital processing apparatus of Claim 39 further
comprising proportion determining means connected to said
determining means, for determining the proportion of said
determined amount of time spent for each said source code line,
as a relative proportion of the amount of time spent in running
said at least a portion of said program, and wherein said
display means includes means for displaying indicia representing
said proportion juxtaposed its corresponding source code line
indicia.

47. The digital processing apparatus of Claim 39 wherein
said displaying means comprises means for displaying indicia
representing said determined amounts of time in a graphical
display having indicia selected from the group consisting of bar
graphs, pie charts, line graphs and any combination thereof.

48. The digital processing apparatus of Claim 39 further
comprising means connected to said display means and responsive

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 52 -

to human input, for interacting with said display for changing
said display responsive to said human input.

49. The digital processing apparatus of Claim 33 further
comprising arranging means connected to said determining means,
for arranging said plurality of source code lines in an order

relative to said determined amounts of time spent.

50. The digital processing apparatus of Claim 49 further
comprising:
a. selecting means connected to said arranging means
for selecting one of said source code lines; and,
b. display means connected to and responsive to said
selecting means, for displaying selected source code
line indicia identifying said selected one of said

source code lines.

51. The digital processing means of Claim 50 wherein said
display means includes means connected to said determining
means, for displaying said selected one of said source code line
indicia along with indicia identifying at least some additional
source code lines proximal said selected one of said source code
lines in said kept order.

52. The digital processing apparatus of Claim 50 wherein
said display means includes means for displaying as at least
part of the source code line indicia at least some of the text
of the corresponding source code line.

53. The digital processing apparatus of Claiﬁ 50 wherein
said displaying means further comprises means for displaying
each source code line indicia in the form of at least some of
the text of the machine code into which said source code line
has been translated.

54. The digital processing apparatus of Claim 50 further
comprising means connected to said display means and responsive
to human input, for interacting with said display for changing
said display responsive to said human input.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 53 -

55. The digital processing apparatus of Claim 49 further
comprising display means connected to and responsive to said
arranging means, for displaying source code line indicia
identifying at least some of said source code lines in said
arranged order.

" 56. The digital processing apparatus of Claim 55 further
comprising:
 a. selecting means connected to said display means

for selecting one of said source code line indicia;
and,
b. wherein said display means includes means respon-
sive to said selecting means, for displaying selected
source code line indicia identifying said selected one
of said source code lines.

57. The digital processing means of Claim 56 wherein said
display means includes means connected to said determining
means, for displaying said selected one of said source code line
indicia along with indicia identifying at least some additional
source code lines proximal said selected one of said source code
lines in said kept order.

58. The digital processing apparatus of Claim 56 wherein
said displaying means further comprises means for displaying as
at least part of each source code line indicia at least some of
the text of the corresponding source code lines.

59. The digital processing apparatus of Claim 56 wherein
said displaying means further comprising means for displaying as
at least a part of each source code line indicia, at least some
of the text of the machine instructions into which said source
code line has been translated.

60. The digital processing apparatus of Claim 56 further
comprising means connected to said display means and responsive
to human input, for interacting with said display for changing
said display responsive to said human input.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ‘ | PCT/US95/03003
- 54 -

61. The digital processing apparatus of Claim 55 wherein
said display means comprises means for displaying juxtaposed
each of said source code line indicia, indicia representing said

determined approximate amounts of time spent.

62. The digital processing apparatus of Claim 61 wherein
said display means comprises means for displaying said
determined approximate amounts of time spent in absolute time

units.

63. The digital processing apparatus of Claim 61 wherein
said display means comprises means for displaying said

determined proportions in percentages.

64. The digital processing apparatus of Claim 61 wherein
said displaying means comprises means for displaying said
indicia representing said determined amount of time in a
graphical display having indicia selected from the group
consisting of bar graphs, pie charts, line graphs and any
combination thereof.

65. In a testing procedure for testing a higher level
language program having a plurality of code lines each kept in
an order relative to each other, and each translated into
correlated machine instructions, a method for testing a test
program comprising the steps of:

a. determining, for any of said code lines, if at
least one of said correlated machine code instructions
was not executed in any run of said test program;

b. displaying indicia identifying at least one of
said plurality of said code lines translated into a
machine instruction which was not executed in any run
of said test program;

c. selecting said at least one of said code lines
identified by indicia; and,

d. displaying said selected code line indicia along
with indicia identifying at least one additional code
line proximal said selected code line in said kept
order.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ' PCT/US95/03003
- 55 =

66. The method of Claim 65 wherein in said displaying
step, said indicia displayed includes text of at least some of

said code line.

67. The method of Claim 65 wherein in said displaying
step, further displaying machine instruction indicia identifying
said machine instructions for said at least one code line, which
machine instructions were not executed in any run of said test

program.

68. The method of Claim 65 further comprising the step of
displaying machine code indicia identifying said machine code
instructions for said at least one additional code line having
indicia displayed.

69. The method of Claim 68 further comprising the step of
configuring a test program during a run of which, machine code
instructions into which said selected code line has been
translated will be executed.

70. The method of Claim 65 further comprising the step of
configuring a test program during a run of which, machine
instructions into which said at least one code line has been
translated will be executed.

71. A digital processing apparatus for testing a test
program for a higher level language program having a plurality
of code lines kept in an order, each translated into a plurality
of machine instructions, comprising:

a. determining means for determining at least one of
said machine code instructions was not executed in any
run of said test program;

b. display means connected to said determining
means, for displaying indicia identifying at least

one of said plurality of said code lines translated
into a machine instruction which was not executed in
any run of said test program;

c. selecting means for selecting said at least one
of said code lines identified by indicia; and,

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 56 -
d. wherein said display means further includes means
for displaying said selected code line indicia along
with indicia identifying at least one additional code
lines proximal said selected code line in said kept

order.

72. The digital processing apparatus of Claim 71 wherein
said display means includes means for displaying said indicia in
the form of text of at least some of said code line.

73. The digital processing apparatus of Claim 71 wherein
said display means includes means for displaying machine
instruction indicia identifying said machine instructions for
said at least one code line which said machine instructions were
not executed in any run of said test program.

74. The digital processing apparatus of Claim 70 wherein
said display means includes means for displaying machine code
indicia identifying said machine code instructions for each said

code line identified by displayed indicia.

75. A method for performing time efficiency analysis of at
least one routine of a program represented in a high level
source code language and compiled to a lower level language in
which each of many source code lines correspond to a plurality
of lower level language code lines, comprising the steps of:

a. determining the time of use of each source code
line used in said routine during at least one run of
said routine;

b. displaying source code line identification for at
least some of said source code lines of said

routine and further displaying juxtaposed thereto
respectively corresponding representations of the time
of use of each of said identified source code

lines during said routine.

76. The method of Claim 75 wherein in said displaying
step, the displayed source code line identifications are

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 ' PCT/US95/03003
- 57 -

arranged in order of the corresponding run times of the

corresponding source code lines.

77. The method of Claim 76 which further includes the
steps of:
a. selecting one of said source code line identifi-
cations; and,
b. displaying in normal program order representa-
tions of the selected source code line and

immediately program adjacent source code lines.

78. The method of Claim 77 wherein said step of displaying
normal program order representations further includes the step
of displaying a marker for the representation of the selected
source code line.

79. The method of Claim 77 wherein said step of displaying
normal program order representations further includes the step
of displaying juxtaposed to each displayed source code line
representation a representation of its corresponding run time.

80. The method of Claim 75 wherein said determining step
further includes the step of determining the time of use of each
identified source code line as a percentage of the run time of
said routine.

81. The method of Claim 75 wherein said determining step
includes the steps of:

a. determining for each source code line the corre-
sponding lower level language instructions used in
said routine;
b. determining the time of use of each lower level
language instructions used in said routine; and,
c. merging the data from each of said determining
steps to determine the time of use of each source
code line used in said routine during at least a
portion of said one run of said routine.

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 58 -

82. The method of Claim 75 which further includes the
steps of:

a. determining for at least a selected one of said
source code lines the time of use of each code line of
the corresponding plurality of lower level language
code lines; and,
b. displaying, in a single display, source code line
identifying indicia for the selected source code line
and lower level language code identifying
indicia for each of the corresponding lower level
language code lines, together with corresponding time
of use indicia for each of the displayed lower level
language code lines.

83. The method of Claim 82 wherein in said displaying step
the time of use indicia represent the percentage time of use of
each of said displayed source code lines relative to the execute
time of said routine.

84. The method of Claim 82 wherein in said displaying step
the corresponding time of use indicia represent the percentage
time of use of each of the displayed lower level language code
lines relative to the total run time of the plurality of lower
level language code lines.

85. The method of Claim 82 wherein the lower level lan-
guage is assembly code language and the lower level language
code lines are assembly code lines.

86. The method of Claim 82 wherein the higher level
language is selected from the group consisting of C, C++,

Fortran, Pascal and Ada.

87. The method of Claim 82 wherein said displaying step
said source code line identifying indicia each includes at least
a portion of the text of the corresponding source code line.

88. The method of Claim 82 wherein in said displaying step
the lower level language code line identifying indicia each

SUBSTITUTE SHEET (RULE 26)

WO 95/25304 PCT/US95/03003
- 59 -

includes at least a portion of the text of the corresponding
lower level language code line.

89. A digital processing apparatus for a performing time
efficiency analysis of at least one routine of a program
represented in a higher level source code language and compiled
to a lower level language in which each of many source code
lines correspond to a plurality of lower level language code
lines, éomprising:

a. means for>determining for each source code line
used in said routine the time of use of said plurality
of lower level language code lines into

which said source code line has been compiled during
at least one run of said routine; ‘

b. display means connect to said determining means
for displaying source code line identification for at
least some of said source code lines of said routine
and further for displaying juxtaposed thereto respec-
tively corresponding representations of said deter-
mined time of use for each of said identified source

code lines.

SUBSTITUTE SHEET (RULE 26)

. PCT/US95/03003
4
WO 95/2530. 1 /1 0

LBO

TRANSLATION AMD
3, PROFILER PROGRAMS

SOURCE CoDE_
PROGRAM

SUBSTITUTE SHEET (RULE 26)

WO 95/25304

t+
Disk Device (

P - - -

Execution

Source Lines
Files

]
]
]

2/10

Cen

e

42

tral Processing Unit

R R R T L e L T L L L

PCT/US95/03003

/0

Machine
Instructions
File

Source Lines to
Machine
Instructions
Mapping File

Machine
Instructioas to
Time Use
Mapping File

- omn um e e e -

1

]
L—.—‘_T_..-—-:-:-—
r

Source Lines to
Time Use

Mlp#‘n.& |]

- .- -

r//?—

- e e e o e oe e d

Fig Z

]
1
1
.

90

/ooL

]
1
|
J
]
1
[}
1
]
!
'
]
!
!
]
]
1
1
!
[}
i
1
1
1
1
I
|
1
I
!
1
!
i
1

94 96
vg S
Time Use .
. Time Use Order
Ordening Process Display Process
G s s En W e - - e aenwd
: lez
i Interactive Display Devi
| rremccceca- -y
' 1]
Selection] ! !
Process ke, : (:D :
] .
13| Pointing Display 1 1
. Device
M Y Device 1
1 !
1
p‘L: : L/‘]
l - e am E» G e e - e -
Source Order *
Display Process : (114 52
1
—~/0¢ 1
<

SUBSTITUTE SHEET {(RULE 26)

PCT/US95/03003

WO 95/25304

3/10

XS] JUIIISJ UDTII0G SPUDIDS QUL RRUITTI

£t Ai\..]fw\ \

.o [) .

e

e
S
o

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

WO 95/25304

4/10

AR

R

o)
BB G

W)

Y

lowma, IR
(xss ‘ebe ‘oweux)isTI O3 PPe 000°0 % 00000°0 OO

{ 026°0 % 02600°0 OE
) €2y°Z % E2Y20°0 6L

¥ = [ogoTsTle
(++T :000000¥ > T 0 = T) 0%

‘T JuT
}
()dooT™op 000°0 % 000000
:{opop e 3uT aTIeIS

{ 000°0 % 00000°0 OO
080°0 % 00000°0 00

{{)dooy"op

TR LR

DDODUOODDQDUUUUOUDU

st

RN
)

AT

AR

,G,.w.y...,..q.,..:.

SR e

WO

RIBRAY

W

N

AN

RO

X

ﬁ.fr.u
G

]

SUBSTITUTE SHEET (RULE 26)

WO 95/25304

TN

144
)

144
Disk Device /

/

jl.ﬂ

5/10

142 -
Ceatral Processing Unit

PCT/US95/03003

(PO0 00 G5 G Gk D W e W R S SR PR S R D SR D D W D G e G5 P R Gn R AP e S P P D e e ey

Source Lines

Target System
prmmemea--

Instruction

A

Files

Machine
Instructions
File

Memory

~
-~
~J
S

R e L LI r e s

Execution \ (/7%

Process

Fon om O s e e e o e e ES s S e W Ee e

1
1
[}
4

P

T

Mapping File

Machine
Instructions to
Time Use
Mapping File

- —— T

Source Lines to

)
o
N~

Time Use

Mapping IB
L

@5

SUBSTITUTE SHEET (RULE 26)

104

bemomoocemeawewead

PCT/US95/03003

6/10

WO 95/25304

00%°0bx QT

0Bx grgeLTY

AT

(++T 1000000y > ¥ ?0 = T) 303
A Y

0090°
000°
000°
000°
000°
000°
000°
0o0°
000°
€19’
S49°
SL9°
09y’
£5%°
[~4
oL
s’
g9t"
rS’
o9y*
409’
66E"°
(>
SOL

T2S

Tes*
»99°
"9*
69°
€19°
(159
129°
9L°
189

L0E°
9EL"
160"
L4
080
000
000°
0e9*

iy

s
eRRtER UL EELLLEEEEE]

NARhD
gﬂ\@\ﬂ
224
3984

§

d

a8
s8aasg
8

cacc66==m==a=ﬁ=naoacaeaeeaeoe§
AL XXX R XXX X F P PP rrrYYyy
B Meiw S [--] ¢
SEEEERREE g
=588 g8 3883
A4 loooooccoonccooooscsooooococsocsosesscasccoa Bl
" ~
CHESS

Mttt Y
Vet D
gddta:

53244998

:gae

8
:
43888

ﬁaaééeaaecmeaadacéa::acanaaeoeac:eaeaééeecg

9Z9Z0000%0
829Z0000%0
$Z%20000%0
0Z9Z0000%0
2TeZ0000%0
8TZ0000%0
»IvZ0000%0
0T®20000%0
2gvZ0000%0
80%Z0000%0
¥0°20000%0
00%20000%0
33620000%0
83620000%0
$3620000%0
Nam«.sg.a
39620000%0
89620000%0
$9620000%0
09620000%0
-5P620000%D
£ YPea0000%
7t mma.&agaé
e
AT 7 yogzonoo*n
MN 9 g
09620000%0
99520000%0

\

8ez~

4

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

WO 95/25304

7/10

Ij\‘

242
Processing Unit

oy,

" Interactive Display Devi

L T R T Y Wy e
P am o @ m----

24

Disk Device

Execution

lllllllllllllllllllllllllll

Joe
- s md

bommcacese

/318
LJ/:_

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

WO 95/25304

8/10

gy
AN

\y

e

R Y

i :
T_::z ,_...:;

OO

Jv_ ,w,kf
: 4... 5
S

(LRI

it

3N

SR
i.; f//c .,,,:'

YNGR,

a /...;

A
?.u,.r.m:,/ﬂf.
ARFROIA St
S8 ; R

A
.J.Z.:..
AT
T F,sz

SUBSTITYTE SHEET (RULE 26)

PCT/US95/03003

WO 95/25304

9/10

£ (3unod++

‘L E\PX =
{ +4203UN00D

} (oxaz) oA

abe- [3unod jatqey ‘sumeu* [3unod jaTqe3)asTL 03 PPP
(++3un0s {INNGDY > JUNCD g = 3EN0D) 0¥

((3xeuaTad 3IoNIYS)FOIITS

{0x9z 4T ITIEIS
3unod 3ur ;
()aossp 000°0 % 00000°0 00°0

/ (91qe3)JFOSZIS) INNDD OCTFIPE

e

3x91 3UI0I2d UDTIX0F SPEOIIS

S/

AW ES Y
R Q 7
PEbR

A

g

I
Y

SUBSTITUTE SHEET (RULE 26)

PCT/US95/03003

10/10

WO 95/25304

> RS .ﬂ
A\ & /:. K\
_/ et m W Ny &\ ...f:,. AR P U CEOA URORIS PRI DRV
wali SRS SVAR .I,Z/.r5'/.ltp/.fﬁzr./;.lr.r:r/.l.,rz.f;/.l;r/.r:,»./:fz.r:.z?ir!/i:/.r};{ PRAVTR AN HAVIRAR RV

.:,f

88420000%0~ ; _.“,,,,_
°'§ . ,.{; 3
¥8.20000%0-
08£20000%0«
3£120000%0~ R
8LL20000%0« §
vhhuaaa:xa«

{ 428 3UM0D Sy 2 ow@p »

} (cxez) oy » O°owap

\\J\UNﬂh TR0 GWTII0F SPUCIIS SUT] IWVEITTI

-

OTN"TX0 0TS
{{3unod++ ‘ U\pXx = JUN0D,
agExg+ghx] ‘0ox as
‘{0D28TX0)TY%x TS
00%‘ T%0 ‘0% PPe
gox‘ [aeexg+1bx] BT
™% (00°8T*0)TYX TRAS

oS¢

L}, . _.,1.:.. .—r.f....»» ...
e won T S Mm,».x,v
T

.‘.?,_?; RS w :

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/03003

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 11/34, 11/30, 9/455
US CL :395/575, 500, 550; 364/264.3, 264.4, 551.01

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 395/575, 500, 550; 364/264.3, 264.4, 551.01

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Extra Sheet.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

see figure 3; col. 4, lines 27-31

see figure 5, item 73

col. 3, lines 17-21 and col.6, lines 66-68

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant té claim No.
Y US, A, 5,047,919 (STERLING ET AL.) 10 September 1991, | 1-2, 4, 31

see figures 1-2, 7-8; col. 1, lines 58-61 and col. 2, lines 1-| 33-34, 36,

6; col. 14, lines 15-50; 64, 75-79,

8-11,19-21, 26-
27, 30

15-16,22,
28,32

17-18,
23-25, 29

@ Further doqument.s are listed in the continuation of Box C.

D See patent family annex.

hd Special categories of cited d T later d published after the i 1 filing date or priority
. P e . date and not in conflict with the appiication but cited to understand the
A state of the art which is not considered principle or theory underlying the invention
to be part of pm.n:uhr relevance
"E" carlier document published on or after the international filing date X :mo:og:m?m ot be '-Ehe J.m : d i an i m":‘:
'L document which may throw doubts on pnonty claim(s) or which is when the document is taken alone
cited to blish the publication date of or other -y d ¢ of part . . the claimed inventi + be
ial reason ifi ocument 0 cular c cannol
spee (a0 specified) considered to invoive an mvumvc atep \vhen the document is
"0 ~ document referring to an oral disclosure, use, exhibition or other combined with one or more other such d such i
means being obvious to a person skilled in the art
P document published prior to the intemational filing date but latcr than ~g*" document member of the same patent family
the priority date claimed

Date of the actual completion of the international search

03 MAY 1995

Date of mailing of the international search report

19 JUN 1395

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

uthorized officer &Q‘
IEU-MINH THAI LE ; ‘Gﬂ\w /&\

hone No. (703) 308-6697

Form PCT/ISA/210 (second sheet)(July 1992)»

Télep!

INTERNATIONAL SEARCH REPORT International application No.

PCT/US95/03003

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US, A, 5,021,948 (NAKAYAMA ET AL.) 04 June 1991, see 3, 5-6, 32
figures 1, 3 and 6, items 90, 230, 240; col. 8, lines 1-23, lines
50-60
Y US, A, 5,245,638 (GUSTAFSON) 14 September 1993, see 1-2, 75
abstract
Y US, A, 4,636,948 (GDANIEC ET AL.) 13 January 1987, see 75,-77, 80
figures 2 and 3; col.8, lines 45-59.
Y US, A, 4,495,562 (YAMAIJI ET AL.) 22 January 1985, see 1-2, 6-7,
abstract; figures 16-17. 9,11,21,27

Form PCT/ISA/210 (continuation of second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT International application No.
PCT/US95/03003

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such

an extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4, No required additional search fees were timely paid by the applicant. Consequently, this international search report is |.
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-65 and 75-89

Remark on Protest D The additional search fees were accompanied by the applicant’s protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)x

INTERNATIONAL SEARCH REPORT International application No.
PCT/US95/03003

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

APS, DIALOG
(measure or evaluate or estimate or analyze or monitor) and (run time or time execution)
(simulating or emulating or testing) and (program or instruction code or source code)

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

Group I - Claims 1-64 and 75-89, drawn to time pérforming analyzing of a program in high level source code language,
classified in 364/264.4, 364/551.01, 395/550 having a special technical feature of time monitoring on measuring.

Group II - Claims 65-74, drawn to testing procedure of a higher level language program, classified in 395/500,
364/264.3 having a special technical feature of simulating, emulating, or testing of text program.

Groups I and II are related as subcombinations disclosed as usable in a single combination. The subcombinations as
claimed lack unity of invention under PCT Rule 13.2 since Group I recites a special technical feature of time
monitoring or measuring not recited in the subcombination of Group II. Also, Group II recites a special technical
feature of simulating, emulating, on testing a text program not recited in the subcombination of Group I.

Form PCT/ISA/210 (extra sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

