<table>
<thead>
<tr>
<th>(51) International Patent Classification</th>
<th>A61K 31/11, 31/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(21) International Application Number:</td>
<td>PCT/US95/06383</td>
</tr>
<tr>
<td>(22) International Filing Date:</td>
<td>15 May 1995 (15.05.95)</td>
</tr>
<tr>
<td>(30) Priority Data:</td>
<td>08/243,114 16 May 1994 (16.05.94) US</td>
</tr>
<tr>
<td>(60) Parent Application or Grant</td>
<td>08/243,114 (CIP)</td>
</tr>
<tr>
<td></td>
<td>Filed on 16 May 1994 (16.05.94)</td>
</tr>
<tr>
<td>(72) Inventor:</td>
<td>BJORNSSON, Thorir, D. [US/US]; 738 Cornerstone Lane, Bryn Mawr, PA 19010-2086 (US).</td>
</tr>
<tr>
<td>(54) Title:</td>
<td>METHOD AND USE OF AGENTS TO INHIBIT PROTEIN POLYMERIZATION AND METHODS OF IDENTIFYING THESE AGENTS</td>
</tr>
</tbody>
</table>

(57) Abstract

A method of inhibiting polymerization of target proteins by administration of compounds capable of inhibiting aggregation and subsequent transglutaminase-induced cross-linking of adjacent peptides of the target proteins is provided. These compounds are useful as antithrombotic agents and in the treatment of Alzheimer's disease. A method of screening and identifying compounds capable of inhibiting aggregation and subsequent transglutaminase-induced crosslinking of amyloid β peptide is also provided.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GE</td>
<td>Georgia</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LV</td>
<td>Latvia</td>
<td>TC</td>
<td>Togo</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHOD AND USE OF AGENTS TO INHIBIT PROTEIN
POLYMERIZATION AND METHODS OF IDENTIFYING THESE AGENTS

Introduction
This invention was made in the course of research supported by the National Institutes of Health. The U.S. Government may have certain rights in the invention.

Background of the Invention
Protein aggregation and the formation of proteinaceous clots or plaques in the body have been implicated in several disease states. Perhaps the most studied proteinaceous polymer is the fibrin clot. Fibrinogen is an inactive protein normally present in the plasma. Thrombin and certain coagulation factors cause fibrinogen to be activated and become fibrin. Fibrin is the substance of blood clots. It is a fibrous protein that forms a polymeric mesh-work over an injured area. The fibrin aggregates become cross-linked by Factor XIII, which is a member of the class of enzymes called transglutaminase. Plasmin, a proteolytic enzyme, gradually dissolves away the clot as tissue repair is taking place. While fibrinogen is an important component in hemostasis, the uncontrolled or abnormal formation of these proteinaceous clots can lead to serious thrombotic and embolic problems, and even death from heart attack or stroke.

Aspirin therapy has been associated with significant clinical antithrombotic effects in certain arterial thromboembolic disorders. It is generally thought that the antithrombotic effect of aspirin is due to O-acetylation by aspirin of active site serine in the platelet enzyme cyclooxygenase. However, aspirin has also been reported to have fibrinolytic and hypoprothrombinemic effects. Several possible mechanisms underlying the enhanced fibrinolysis resulting from aspirin administration have been suggested. Studies designed to investigate these mechanisms were performed by Bjornsson T.D., et al. and reported in J. Pharmacol. and Exp. Therap. 1989, 250(1):154. In experiments with14C acetyl-labeled aspirin and fibrinogen, it was found that fibrinogen is acetylated by aspirin to form e-N-acetyl-lysine on both D and
2

E domains of the molecule and on the α, β, and γ chains of the molecule. The relationship of this finding to the fibrinolytic effects of aspirin was not understood, however, it was suggested that altered binding resulting from the acetylation or a decrease in the number of Factor XIII-induced cross-links between adjacent fibrin molecules could be responsible. The use of aspirin as an antithrombotic agent is associated with significant gastrointestinal side effects including gastric erosion and occult blood loss.

Amyloid β-peptide is another protein which has been shown to aggregate or polymerize in the body. Deposition in brain tissue of amyloid β-peptide to form neuritic plaques represents an important component of the pathogenesis of Alzheimer's disease. These deposits have been shown to consist in part of insoluble aggregates of the amyloid β-peptide.

It has now been found that polymerization of target proteins such as fibrinogen or amyloid β-peptide is inhibited by contacting the target proteins with a compound capable of inhibiting aggregation and subsequent transglutaminase-induced cross-linking of adjacent peptides of the target proteins. This inhibition of polymerization of target proteins such as fibrinogen and amyloid β-peptide results in the formation of smaller polymers which are less stable. This method and the provided compounds are useful in any situation in which protein aggregation is problematic, i.e., the prevention of blood clotting. These compounds can be used as effective antithrombotic agents or drugs in the treatment of Alzheimer's disease.

Summary of the Invention

An object of the present invention is to provide a method of inhibiting polymerization of target proteins which comprises contacting target proteins with an effective amount of a compound capable of inhibiting aggregation and subsequent transglutaminase-induced cross-linking of adjacent peptides of the target proteins.

Another object of the present invention is to provide uses for these compounds including use as antithrombotic drugs, drugs in the treatment of Alzheimer's disease, and other diseases caused by amyloidosis or protein polymerization.

Another object of the present invention is to provide a method of screening and identifying compounds capable of inhibiting aggregation and subsequent transglutaminase-induced crosslinking of adjacent peptides.

Brief Description of the Figures

Figure 1 is a bar graph showing the percent inhibition of transglutaminase-induced cross-linking of amyloid β-peptide following preincubation with compounds
1 through 8 and compounds S1 through S3 for 6 hours. Aspirin (ASA) was also
preincubated for comparison.

Figure 2 is a bar graph showing the thrombin times following incubation with
compounds 1 through 8 for 10 minutes and 6 hours and compounds S1 through S3
for 10 minutes and 1.5 hours. Aspirin (ASA) was also incubated for comparison.

Detailed Description of the Invention

Transglutaminase-induced cross-linking forms cross-links between lysyl and
 glutamyl residues on adjacent peptides. More specifically, transglutaminases catalyze
Ca$^{2+}$-dependent acyl transfer reactions between γ-carboxamide groups of peptide-
bound glutamine residues, which serve as acyl donors, and various primary amines,
resulting in new γ-amides of glutamic acid and ammonia. The most common acyl
acceptor substrates involve ε-amino groups of peptide-bound lysyl residues and the
primary amino groups of polyamines. The involvement of lysyl residues results in the
formation of ε-(\γ-glutamine)lysine cross-links, which are found in a variety of tissues.

An example of such cross-links is the Factor XIII-induced cross-link formation of
fibrin clots in the blood. Transglutaminases are present in various tissues, cells, and
fluids, including endothelial and glial cells, hepatocytes, and blood.

It has now been found that inhibition of transglutaminase-induced cross-
linking inhibits polymerization of many proteins. Inhibition of this cross-linking can
be achieved by acetylation of lysyl residues of adjacent peptides which form these
cross-links. Inhibition of the cross-linking ultimately results in inhibition of
polymerization, formation of smaller polymers and, in the case of fibrin clots, more
readily digestable polymers. In the present invention, a method is provided for
inhibiting polymerization of target proteins which comprises contacting target proteins
with an effective amount of a compound capable of inhibiting transglutaminase-
duced cross linking of adjacent peptides of the target proteins. Methods are also
provided in the present invention for screening and identifying compounds capable of
inhibiting transglutaminase-induced cross linking of adjacent peptides. For the
purposes of this invention the term "target protein" refers to any protein which can
undergo aggregation and subsequent transglutaminase-induced cross-linking
polymerization. Examples of target proteins include, but are not limited to, fibrinogen
and amyloid β-peptide. In experiments wherein synthetic amyloid β-peptide (Aβ_{1-40})
was incubated with transglutaminase, synthetic Aβ_{1-40} formed dimers (A$_2$), tetramers
(A$_4$), pentamers (A$_5$) and hexamers (A$_6$). Inhibition of transglutaminase-induced
cross-linking of target proteins by acetylation of the adjacent peptides of the target
proteins, results in decreased transglutaminase-induced cross-linking. The term
"effective amount" refers to a concentration of a compound which results in a
measurable interference with the aggregation and subsequent cross-linking of adjacent peptides of target proteins. Such concentrations can be easily determined by one of skill in the art in accordance with the teachings of the present invention. In the case of fibrinogen, inhibition of aggregation and polymerization results in the prolongation of thrombin time and then in the formation of fibrin clots that are less cross-linked by the circulating transglutaminase Factor XIII and are more readily lysed by the proteolytic enzyme plasmin. Such treatment allows for the formation of physiological stable clots, e.g., for normal clot formation, while making abnormal clots easier to lyse. This treatment provides a safer antithrombotic agent with less risk of bleeding. In addition, the compounds provided in this disclosure do not have the adverse side effects associated with other antithrombotic agents such as aspirin. In the case of amyloid β-peptide, a peptide that forms neuritic plaques on the brains of patients with Alzheimer's disease, inhibition of transglutaminase-induced cross-linking results in smaller polymers and reduced plaque formation.

It has now been found that compounds containing at least one acetyl group, when placed in contact with target proteins, significantly altering the polymerization and function of the target proteins. Examples of compounds containing at least one acetyl groups which can be used in the present invention include, but are not limited to, a variety of simple benzoic acid derivatives having at least one acetyl group, simple sugars, sugar acids, and amino sugars and their derivatives, having at least one acetyl group and amino acid derivatives having at least one acetyl group. Simple benzoic acids are exemplified by compounds of Formula (I):

![Chemical Structure](image)

wherein

R is selected from a group consisting of H, OH and OCOCH₃. Simple sugars, sugar acids, and amino sugars and their derivatives are exemplified by compounds of Formula (II):
wherein

R is selected from a group consisting of OH and OCOCH₃;
R₁ is selected from a group consisting of COOH and CH₂OCOCH₃;
R₂ and R₃ are selected from a group consisting of H, OH and OCOCH₃; and
R₄ is selected from a group consisting of OH, OCOCH₃, NH₂ and NHCOCH₃, with
the proviso that R₂ and R₃ are different and one of R₂ or R₃ is H. Amino acid
derivatives having at least one acetyl group are exemplified by compounds of Formula
(III):

\[
\text{H}_2\text{N} \quad \text{CH} \quad (\text{CH}_2)_m \quad \text{COOH}
\]

\[
\text{(HCOR)}_n
\]

\[
\text{OR}
\]

(III), and

Formula (IV):

\[
\text{H}_2\text{N} \quad \text{CH} \quad (\text{CH}_2)_m \quad \text{COOH}
\]

\[
\text{(HCOR)}_n
\]

\[
\text{R}
\]

\[
\text{R}
\]

\[
\text{R}
\]

\[
\text{R}
\]

(IV),

wherein

m is a number from 0 to 10;
n is a number from 0 to 10; and
R is selected from a group consisting of H, OH or OCOCH₃.

Compounds or agents containing at least one acetyl group can be used in any
application where formation of proteinaceous clots is problematic, i.e. for prevention
of blood clotting. In addition the compounds can be used therapeutically to inhibit
polymerization of target proteins such as fibrinogen and amyloid β-peptide. For
example, compounds in the present invention can be used as antithrombotic agents or
as drugs in the treatment of Alzheimer's disease. A pharmaceutical composition
useful in the present invention comprises a compound capable of inhibiting
aggregation and subsequent transglutaminase-induced cross-linking and an
appropriate carrier, diluent, or excipient. Such pharmaceutical carriers, diluents, or
excipients may be either solid or liquid. Such pharmaceutical compositions may be
parenterally, rectally, topically, transdermally or orally administered, preferably orally.
Pharmaceutical forms include, but are not limited to, tablets, capsules and lozenges, or
syrups, suspensions, and emulsions.

A composition in the form of a tablet can be prepared using any suitable
pharmaceutical carrier routinely used for solid formulation. Examples of such carriers
include, but are not limited to, magnesium stearate, starch, lactose, sucrose and
cellulose. A composition in the form of a capsule can be prepared using routine
encapsulation procedures. For example, pellets, granules or powder containing a
compound capable of inhibiting aggregation and subsequent transglutaminase-induced
cross-linking can be prepared using standard carriers and then filled into a hard gelatin
capsule. Alternatively, a dispersion or suspension can be prepared using a suitable
pharmaceutical carrier and the dispersion or suspension is then filled into a soft
gelatin capsule. Suitable pharmaceutical carriers include, but are not limited to, gums,
celluloses, silicates and oils.

A liquid formulation will generally consist of a suspension or solution of the
compound in a suitable liquid carrier. Suitable liquid carriers include, but are not
limited to, ethanol, glycerin, non-aqueous solvents such as polyethylene glycol, oils,
or water with a suspending agent, preservatives, flavorings, or coloring agents or any
suitable combination thereof.

A composition for parenteral administration can be formulated as solution or a
suspension. Said solution or suspension will generally consist of a compound capable
of inhibiting aggregation and subsequent transglutaminase-induced cross-linking in a
sterile aqueous carrier or parenterally acceptable oil. Examples of parenterally
acceptable oils include, but are not limited to, polyethylene glycol, polyvinyl
pyrrolidone, lecithin, arachis oils and sesame oils. Alternatively, the solution can be
lyophilized and then reconstituted with a suitable solvent just prior to administration.

The pharmaceutical preparations are made following convention techniques of
a pharmaceutical chemist and involve mixing, granulating, and compressing, when
necessary for tablet forms, or mixing, filling and dissolving the ingredients, as
appropriate, to give the desired oral, parenteral, rectal, transdermal, or topical
products.
Preferably the composition is in unit dose form. Doses can be easily ascertained by one of skill in the art in accordance with a patient's age, weight and other determined parameters.

These compounds and others were identified as capable of inhibiting transglutaminase-induced cross-linking of peptides with the screening method of the present invention. The present invention provides a method by which to quantitate pharmacologic inhibition of transglutaminase-induced cross-linking of amyloid β peptide. In this method, potential inhibitors of the transglutaminase-induced cross-linking of amyloid β peptide are co-incubated with synthetic 40-amino acid human amyloid β peptide (Aβ1-40) and guinea pig liver transglutaminase. After the incubation, a mixture of sodium dodecyl sulfate (SDS), urea, glycerol and β-mercaptoethanol is added to each sample and incubated for several hours. The samples are then boiled and loaded onto individual lanes of an SDS polyacrylamide gel, separated, stained with Coomassie blue and the resultant protein bands quantitated. The percent inhibition of transglutaminase-induced cross-linking is determined by correcting for the amount of non-cross-linked Aβ1-40 in control samples incubated without any test compounds. Initially, the densitometric values for the nonpolymerized monomer (A1), and for the cross-linked dimer (A2), and the polymers, tetramer (A4), pentamer (A5), and hexamer (A6), were normalized to fractions of unity assigned to the sum of the readings for the individualized bands. Subsequently, the percent inhibition was derived using the normalized values for the control and treated samples; the latter are identified by an asterisk. Percent inhibition is determined by:

\[
\text{Percent Inhibition (\%)} = \left[1 - \frac{A_n}{A_n^*}\right] \times 100
\]

where \(A_n\) and \(A_n^*\) are the sums of normalized polymer bands (dimer, tetramer, pentamer, hexamer or any higher detectable polymers) in treated and nontreated samples, respectively. Concentration versus percent inhibition curves after pharmacologic inhibition of transglutaminase-induced cross-linking of amyloid β peptide can then be constructed. This method has the advantage that potential variation in the total amounts of amyloid polymers added to each lane on the gel do not affect the analysis, since the distribution of individual band intensities within each lane is normalized to unity. This allows the subtraction of the amount of the nonpolymerized amyloid β peptide in a control sample from that in a treated sample. This method provides a meaningful comparison of the inhibitory potential across different pharmacologic inhibitors of transglutaminase-induced amyloid β peptide.
cross-linking. A number of compounds containing at least one acetyl group were screened using the method of the present invention. In addition, a number of compounds including known transglutaminase inhibitors such as dansylcadaverine and spermine, and agents reported to have some therapeutic activity in Alzheimer's disease or compounds related to such agents such as the non-steroidal anti-inflammatory drugs indomethacin, diflunisal, and meclofenamic acid, the monamine oxidase inhibitors tranylcypromine and phenelzine, the iron chelating agent deferoxamine, and the acetylcholinesterase inhibitor tacrine were shown to inhibit transglutaminase-induced β peptide cross-linking with this method.

To further illustrate the present invention, the following nonlimiting examples are provided:

EXAMPLES

Example 1: Transglutaminase concentration dependency

Synthetic Aβ$_{1-40}$ (0.33 mg/ml) was incubated at 22°C with guinea pig liver transglutaminase (0, 2.5, 5.0, 25, 50, and 250 µg/ml) in 50 mM Tris-HCl, pH 7.4, containing 25 mM CaCl$_2$ and 15 mM dithiothreitol. All concentrations are expressed as final concentrations in a total volume of 75 µl. Sample were incubated for 4 hours. After incubation, a 75 µl mixture of sodium dodecyl sulfate (SDS 4%), urea (2 M), and mercaptoethanol (5%) was added to the sample, mixed and incubated at 37°C for 10 hours. Following this second incubation, the samples were boiled and aliquots (40 µl) were loaded on individual lanes on 10% SDS polyacrylamide gels with 2.5% SDS stacking gels, separated, stained with Coomassie blue, and quantitated using a laser scanning densitometer. Similar polymerization was observed at 2.5 mM, 5 mM and 25 mM CaCl$_2$. To investigate pH-dependence, the effects of three different pHs (pH 6.4, 7.4 and 8.4) during the incubation with transglutaminase were evaluated in separate experiments; Aβ polymer formation at pH 8.4 was similar to that at pH 7.4, however, at pH 6.4 polymer formation was decreased. To investigate Ca$^{2+}$-dependence, edetate disodium (EDTA) was added in equal molar ratio with Ca$^{2+}$, and Zn$^{2+}$ was added in various concentrations to generate different molar ratios with Ca$^{2+}$. Both EDTA and Zn$^{2+}$ initiated polymer formation in the presence of Ca$^{2+}$. Maximal polymer formation was observed with 50 µg/ml transglutaminase.

Example 2: Time course experiments

Synthetic Aβ$_{1-40}$ (0.33 mg/ml) was incubated at 22°C with guinea pig liver transglutaminase (50 µg/ml) in 50 mM Tris-HCl, pH 7.4, containing 25 mM CaCl$_2$ and 15 mM dithiothreitol. Incubation times were varied from 5 minutes to 24 hours.
Polymer formation was determined as described in Example 1. Maximum polymer formation was observed after 50 µg/ml transglutaminase and after 4 hours incubation.

Example 3: Human Factor XIII incubations

In separate experiments, transglutaminase was replaced by human Factor XIII (50 and 250 µg/ml) which had been pretreated with bovine thrombin (10 NIH U/ml) in the presence of CaCl₂ (5 mM) at 37°C for 1 hour. Incubation with activated Factor XIII only resulted in limited A₂ formation.

Example 4: Effects of compounds on amyloid β-peptide as measured by percent inhibition of transglutaminase-induced cross-linking

Compounds 1 through 8 and S1 through S3 (shown in Table 1 following) were dissolved in 0.15 M NaCl, 0.01 M sodium citrate, pH 7.4, to produce standard solutions of 50 mM and were incubated with synthetic amyloid β-peptide (0.33 mg/ml) in final concentration of 2.5, 5.0 and 10 mM at 22°C for 6 hours. The amyloid β-peptide containing samples were then incubated at 22°C with guinea pig liver transglutaminase (50 µg/ml) in 50 mM Tris-HCl, pH 7.4, containing 25 mM CaCl₂ and 15 mM dithiothreitol, in a total volume of 75 µl. A number of different pharmacologic agents known to either inhibit transglutaminase or have some therapeutic activity in Alzheimer’s disease or compounds related to such agents were also co-incubated with these reactants under the same conditions. These were the transglutaminase inhibitors dansylcadaverine (0.0001 to 2 mM) and spermine (1 and 10 mM), the non-steroidal anti-inflammatory agents indomethacin (0.25 to 4 mM), diflunisal (1 and 10 mM), meclofenamic acid (0.5 to 5 mM), and salicylic acid (1 and 10 mM), the monamine oxidase inhibitors tranylcypromine (0.25 to 10 mM) and phenelzine (1 and 10 mM), the iron chelating agent deferoxamine (1 to 10 mM), and the acetylcholinesterase inhibitor tacrine (1 to 20 mM). After the incubation, a 75 µl mixture of sodium dodecyl sulfate (SDS; 4%), urea (2M), and mercaptoethanol (5%) was added, mixed and incubated at 37°C for 10 hours. After boiling, 40 µl aliquots were loaded onto SDS polyacrylamide gels as described in Example 1 and polymer formation was determined.

In the untreated samples, in addition to the monomer band, there were cross-linked polymer bands of the amyloid β-peptide (dimers, tetramers, pentamers, hexamers or any higher detectable polymers). Percent inhibition was computed using the expression:

\[
\text{Percent Inhibition (\%) } = \left[1 - \left(\frac{A_n}{A_n^*}\right)\right] \times 100
\]
where A_n and A_n^* are the sums of normalized polymer bands (dimers, tetramers, pentamers, hexamers or any higher detectable polymers) in treated and nontreated samples, respectively.

Figure 1 shows the percent inhibition of transglutaminase-induced cross-linking of amyloid β-peptide following preincubation with compounds 1 through 8 and S1 through S3. All compounds had inhibiting effects on transglutaminase-induced cross-linking of the β-peptide, with the exception of compound 5. The four most potent compounds were 2, 6, 7 and 8. Of the known pharmacologic agents tested, the most potent were the standard transglutaminase inhibitor dansylcadaverine, with an IC$_{50}$ of 40.9 μM, and monamine oxidase inhibitor tranylcypromine, with an IC$_{50}$ of 100.8 μM. Other agents were found to have considerable inhibitory activity, with approximate 50% inhibition between 1 and 10 mM, i.e., indomethacin, meclofenamic acid, diflunisal, phenelzine, spermine and deferoxamine. The acetylcholinesterase inhibitor tacrine had an IC$_{50}$ of 67.31 mM. Salicylic acid was ineffective in this assay.

Example 5: Effects of compounds containing at least one acetyl group on fibrinogen as measured by thrombin time

The compounds in Table 1 following were dissolved as described in Example 4. They were then added to a human fibrinogen solution (1.5 mg/ml in 0.15 M NaCl, 0.01 M sodium citrate, pH 7.4) to yield a final concentration of 5 mM. The samples containing compounds 1 through 8 were incubated at 37°C for 10 minutes and 6 hours. The samples containing compounds S1 through S3 were incubated at 37°C for 10 minutes and 1.5 hours. After incubation thrombin times were determined. The thrombin time determinations were performed using standard methods, involving mixing, and then incubating 100 μl of the fibrinogen solution (with the different compounds) and 100 μl of imidazole-buffered saline (0.15 NaCl, 0.045 M imidazole, pH 7.4) at 37°C for 5 minutes. After incubation 100 μl of bovine thrombin solution (10 NIH units in 0.15 NaCl, 0.01 M sodium citrate, pH 7.4) was added to initiate the coagulation process. The thrombin time was measured with a fibrometer coagulation timer. Each compound in Table 1 was tested in duplicate and the results averaged.

Figure 2 shows the thrombin times for compounds 1 through 8 and compounds S1 through S3. Compounds S1 through S3 all caused thrombin times >200 seconds following a 6 hour incubation. Following a 1.5 hour incubation compounds S2 and S3 caused thrombin times >200, however, compound S1 caused thrombin time of 92.8 sec. The six most potent compounds were compounds 1, 2, 6 and 7 and compounds
S2 and S3. All compounds caused some prolongation in thrombin times after only 10 minute incubations.

Table 1: Compounds of Examples 4 and 5

<table>
<thead>
<tr>
<th>Compound Number</th>
<th>Chemical Structure</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpd. 1</td>
<td></td>
<td>3,4-diacetoxybenzoic acid</td>
</tr>
<tr>
<td>Cpd. 2</td>
<td></td>
<td>2,4-diacetoxybenzoic acid</td>
</tr>
<tr>
<td>Cpd. 3</td>
<td></td>
<td>2,5-diacetoxybenzoic acid</td>
</tr>
<tr>
<td>Cpd. 4</td>
<td></td>
<td>meta-acetoxybenzoic acid</td>
</tr>
<tr>
<td>Cpd. 5</td>
<td></td>
<td>para-acetoxybenzoic acid</td>
</tr>
<tr>
<td>Cpd. 6</td>
<td></td>
<td>3,5-diacetoxybenzoic acid</td>
</tr>
<tr>
<td>Cpd. 7</td>
<td></td>
<td>2,3-diacetoxybenzoic acid</td>
</tr>
</tbody>
</table>
Cpd. 8
2,6-diacetoxybenzoic acid

Cpd. S1
ortho-acetyl-thiosalicylic acid

Cpd. S2
meta-acetyl-thiosalicylic acid

Cpd. S3
para-acetyl-thiosalicylic acid
What is claimed is:

1. A method of inhibiting polymerization of target proteins comprising contacting target proteins with an effective amount of a compound capable of inhibiting aggregation and subsequent transglutaminase-induced cross-linking of adjacent peptides of the target proteins.

2. The method of claim 1 wherein the compound contains at least one acetyl group.

3. The method of claim 2 wherein the compound is selected from a group consisting of Formula (I):

 (I).

 wherein

 R is selected from a group consisting of H, OH and OCOCH₃,

 Formula (II):

 (II).

 wherein

 R is selected from a group consisting of OH and OCOCH₃;

 R₁ is selected from a group consisting of COOH and CH₂OCOCH₃;

 R₂ and R₃ are selected from a group consisting of H, OH and OCOCH₃; and

 R₄ is selected from a group consisting of OH, OCOCH₃, NH₂ and NHCOCH₃, with the proviso that R₂ and R₃ are different and one of R₂ or R₃ is H;
Formula (III):

\[
\text{H}_2\text{N} \quad \text{CH} \quad (\text{CH}_2)_m \quad \text{COOH}
\]

\[(\text{HCOR})_n \]

OR

(III), and

Formula (IV):

\[
\text{H}_2\text{N} \quad \text{CH} \quad (\text{CH}_2)_m \quad \text{COOH}
\]

\[(\text{HCOR})_n \]

\[
\begin{array}{cccc}
R & R & R & R \\
\end{array}
\]

(IV),

wherein
m is a number from 0 to 10;
n is a number from 0 to 10; and
R is selected from a group consisting of H, OH or OCOCH$_3$.

4. The use of compounds containing at least one acetyl group as antithrombotic agents.

5. The use of compounds containing at least one acetyl group in the treatment of Alzheimer's disease.

6. A method of screening and identifying compounds capable of inhibiting aggregation and subsequent transglutaminase-induced crosslinking of amyloid β peptide comprising:

(a) incubating a compound with Aβ$_{1-40}$ and a transglutaminase;
(b) separating any amyloid β polymers formed during the incubation by gel electrophoresis;
(c) quantifying protein bands on the gel; and
(d) determining percent inhibition of transglutaminase-induced cross-linking of amyloid β peptide.
Inhibition of Cross-Linking (%)

ASA and Analogs

Fig. 1
A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :A61K 31/11, 31/60.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
DIALOG:
TERMS SEARCHED: FORMULAE OF CLAIM 3 AND ALZHEIMER'S AND POLYMERIZATION AND PROTEINS.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 5,192,753 (McGEER ET AL) 09 March 1993, SEE ENTIRE DOCUMENT.</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
24 AUGUST 1995

Date of mailing of the international search report
13 SEP 1995

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorize officer: Theodor J. Criares
Telephone No. (703) 305-1235