US 20040107304A1

a2 Patent Application Publication o) Pub. No.: US 2004/0107304 A1l

a9 United States

Grun

43) Pub. Date: Jun. 3, 2004

(549) METHODS AND SYSTEMS FOR EFFICIENT
CONNECTION OF I/O DEVICES TO A
CHANNEL-BASED SWITCHED FABRIC

(76) Inventor: Paul Grun, Tigard, OR (US)

Correspondence Address:

BLAKELY SOKOLOFF TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD, SEVENTH
FLOOR

LOS ANGELES, CA 90025 (US)

@D
(22

Appl. No.: 10/448,504

Filed: May 29, 2003
Related U.S. Application Data

(63) Continuation of application No. 09/605,360, filed on

Jun. 29, 2000, now Pat. No. 6,629,166.

Publication Classification

(1) Int.CL7 .. GOGF 3/00
(52) US.ClL oo 710/36

7

In one embodiment, a system is provided. The system of this
embodiment may include at least one I/O controller, at least
one initiating unit connected to a channel-based switched
fabric, at least one channel adapter, and a physical interface
between the at least one I/O controller and the at least one
channel adapter. The at least one channel adapter may allow
connection of the at least one I/O controller to the channel-
based switched fabric. The at least one channel adapter may
support transferring of messages and/or data between the at
least one I/O controller and the at least one initiating unit.
The physical interface may allow transfer of command
primitives that communicate information between the at
least one 1/O controller and the at least one channel adapter
via the physical interface. Many modifications are possible.

ABSTRACT

BUS-BASED COMPUTER

1]
1 1 !
1 |
! PROCESSORI™ 3 HosT BUS :
1 |
: ’ :
1 |
1 |
1 1
1 |
1 i
1 t
1 |
! MAIN O AND MEMORY | 3 :
1| MEMORY CONTROLLER !
1 |

|
E | 5 !
| ™ 1
| /0 BRIDGE) :
| |
| | OBUS D :
! 1
i H
1 i
) 1
1 1
: » ' LAN !
: /0 CONTROLLER /O CONTROLLER NG !
1 |
! c o c :
' 6 7 8 '
1 |
1 |
1 1
} |
) [}

Patent Application Publication Jun. 3,2004 Sheet 1 of 13 US 2004/0107304 A1

:
i | :
: PROCESSOR ™, | oer s !
] |

[}
i ’ :
| :
’ :
i |
! MAIN /O AND MEMORY | 3 I
! MEMORY CONTROLLER !
] }

[}
| | 5 !
I e |
| /O BRIDGE) |
1
] }
i joBUs i
! !
: i
] i
i |
] : ' LAN |
: /0 CONTROLLER /O CONTROLLER NG |
] I
: 0 3 |
: 6 8 :
: !
; BUS-BASED COMPUTER i
l F]

10

FIG. 1

US 2004/0107304 A1

Jun. 3,2004 Sheet 2 of 13

Patent Application Publication

m Y3 Ldvay
0 1] T3NNVHO
13941

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

llllllllllllllllllllllllllllllll

d31dvav)
T13NNVHD .rmo_._\

0¢

1\ . J
- —— 4+ —8l—— m m
: e A
H3ITI0YLNOD Off ' "
139¥V1 0l m m B
: o\ 1
o " N J
(S)1394v1 : \p
m " SYOLVILINI
: m N

llllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllll

—~_ C}

B e i T T g g g N

US 2004/0107304 A1

Jun. 3,2004 Sheet 3 of 13

Patent Application Publication

. ~
€ Ol4d " LINN O e
74 VoL JOIAN3S
N . V1¥Q ANV
pu m San 39YSSIN
<z naamounooon KN [F] [E] P
NOILO3INNOD m _
ROMLINYO Rt B
LOINNOOHILNI % Q rd ~
Tv¥3HdINAd O/l m SON 2 >
| &z veamounooon X)) [E] = = SYNIT
: m & > TYOISAHd
T AN I = Ol ON
74 S
& >
-/
/
| —> —— 0¢
> SIAN
\\X\v
30IA43S _ .
INFNIOVNYI
LINN \- /

Patent Application Publication Jun. 3,2004 Sheet 4 of 13 US 2004/0107304 A1

POWER ON INITIALIZATION ”
- POWER ON DIAGNOSTICS ~_
- INITIALIZE TCA
DEVICE DISCOVERY
- TCA DISCOVERS ATTACHED I/0 RESOURCES ,\/36
- TCA NAMES EACH I/0 RESOURCE
QUERY 38
- QUERY EACH I/0 RESOURCE'S CHARACTERISTICS N
- CAPABILITIES
- UNIQUE INFORMATION
CONNECTION/BINDING 40
- ESTABLISH CHANNELS
- CREATE SERVICE CONNECTIONS
- BIND I/0 CONTROLLER TO SERVICE CONNECTION
- TSI QUEUE DEPTH
- ERROR RECOVERY POLICY EXCHANGE
FUNCTIONAL OPERATIONS 42
- RECEIVE MESSAGES FROM INITIATOR
- SEND MESSAGES TO INITIATOR
- GET DATA FROM INITIATOR'S MEMORY
- PUT DATA TO INITIATOR'S MEMORY

FIG. 4

Patent Application Publication Jun. 3,2004 Sheet 5 of 13 US 2004/0107304 A1

INITIATING CLIENT TARGET CLIENT

/O SERVICE REQUEST

DATA TRANSFER
/O COMPLETIQ

FIG. 5

US 2004/0107304 A1

Jun. 3,2004 Sheet 6 of 13

Patent Application Publication

- 9 'Ol

4 senbar IN3S OSW:ISL 0
ananp bsy .
punoqing A /
Jajuiod 5
sapuod > wcwwmﬂﬁ
\
asuodsar e
Jayng Bsw = AN3S OSW:ISL
Jaynq bsw S0INIBS
Jaynqg Bsw | / abessa yOL
1oung oo -1senbar AOY 9SIISL
|00d Jayng /
/ Jajuiod 6
_wm___wﬁw_zwwﬂw%__z (Biod |e4— M cﬂmom%c__c
oneno Bsiy < 9)BOIPUI'ADY ;
punoqu 9]edIpu'ADY OSW:ISL

- _/

US 2004/0107304 A1

Jun. 3,2004 Sheet 7 of 13

Patent Application Publication

L Old

V2.

JOVSS3N
1S3N03d 30IAY3S O/l
@NNOANI S3SS300Yd

4317041INOD O/l

Lt

S1S3N03d
J0IAH3S O/l
ANNOENI ONIAIZO3Y
404 S¥344ng
S1S0d "4310HINOD
O/l ‘01" 3S HOV3 ¥04

asuodsal' AOY OSI

]
QI NOILO3NNOD
3OIAY3S 3HL
d04 FOVSSIN ANNOANI
~ NV S3AI303d SAW

ﬁ

&
1S3N03IHAJY 9OSW
HOV3 ¥04 ¥0LdI¥3S3d

JAI3034 vV S1SOd SAN
[

43TTO0HINOD
of

1sanbalr ADY 9SW

3OIAY3S V1VQ
ANV
JOVSSIN

~ (¢

US 2004/0107304 A1

Jun. 3,2004 Sheet 8 of 13

Patent Application Publication

8 'OId

2.

4344N9 OSW
JHL S310A03H ANV
1S3N0D3d F0INH3S
O/ 3IH1 S3HILIY
HITI0HLNOD O/l

4

14OdSNVYL 04 SANW
Ol ¥31NIOd ¥344N8 V
$3SS300¥d '3OVSSIAN
ANNOo8LNo
NV S31V340
J3TT0HINOD Ol

asuodsarAdy OSW

]
4311041INOD O/l
Ol ¥344N8 SNYNL3Y
YIISNVHL IDVSSIN
§3131dWOJ SAW

ﬁ

3N3ND

AN3S 3HL OL NOILYY3dO
NV S1S0d SAW

'1S3N0IY'ANIS OSI

HOV3 304
]

43T1041LNOD
ofl

Jsenbar ADY OSI

J0IAY3S V1vd
aNV
JOVSSIN

~— 0¢

US 2004/0107304 A1

Jun. 3,2004 Sheet 9 of 13

Patent Application Publication

6 'Old

V2.

153N03Y 30IAY3S
O/l HL S3131dNOD
H3TI0ULINCD Ol

<

Q34H34SNVEL 39 O1

V.1vd ONILN3SIHd3N

103rg0 YWa S1S0d
d3T10HLINOD O/l

asuodsal'ADY OSI

_
d3TI0HINOD
O/ 01 SNLVLS
SNYNLIY ‘NOILVY3dO
H34SNVHL V1VQ
S3131dW0OD SAW

*

JAILINIbG LNdY.1vd
N39OV1vQa HOV3 ¥O4
NOILV43d0 YINQY
NV S1SOd SAW

d3TT0HINOD
o/l

1s8nbar ADY OSIN

4OIAY3S V1Vd
ANV
JOVSSIN

~— 0t

US 2004/0107304 A1

Jun. 3,2004 Sheet 10 of 13

Patent Application Publication

0l 'Old a3v4
v 0 'AQY34"LON
AQV3Y
/ / 19]|0Ju02
O/l yoes
onsoubelp 1s9) SHEW SN
-J|as swiopad)
13]|013U02 Q| i
1 19j01JU0D
I O/l yoes
— sazifeniut
ai o0l ISl SN
ST s
Aq spuodsal ii
18]j013U02 Q|
ﬂ 130U O]
yoea
¢l sBuid SN
sal o0l
$.9||0JJu0d 10 8|g®} Spjing
sajelownua |« pUE J3||0Aju0d
4IHS 0/l yoes
saweu SN
Y3TI0HULNOD AJIAY3S
on dIHS Hzmé.m_%%zs\,_

8¢

US 2004/0107304 A1

Jun. 3,2004 Sheet 11 of 13

Patent Application Publication

L1 Old

u

[

13]|104)u0) O/l
10} 9|1j0.d

suIal SN

(u)AideyayoidBiS

1817 49]1043U09
suInjal SN

A

(uegayyoidBig

Aidaxsiialonuon Bis

Bj0id un
sunjal SN

A

JooisIg|jonuog big

(0)Adayeiyoi4BIS

(SWn)
Vol

A

&l

(0heosy0idbig

vg —

Jobeuepy
301n0saYy O]

Patent Application Publication Jun. 3,2004 Sheet 12 of 13 US 2004/0107304 A1

SERVICE
CHANNELS CONNECTION
}\ /
P
10 > AND DAL -/ 10

DRIVER | SEavioe ———>|cONTROLLER

5 | >3 51| UCO UMS [
I?\;IEA?I\CI)AUGRECRE \ &l &1} SigQP

e . UNIT CONTROL IO Unit
Initiating Client CONNECTION
(UCC)

FIG. 12

US 2004/0107304 A1

Jun. 3,2004 Sheet 13 of 13

Patent Application Publication

€L "Old

msm_so
asuodsay puag Bsp
4

anany) jsanbay puag Bs|y

S ~d¢

'NOILVH3dO SIHL ONI¥NG

Juas jou - (u)asuodsargN3IsS OSW:ISL

vO1 A9 d4193130

(1 isenbar NIS OSINISL| | youy3 T1avHIA0DTENN

(2)isenbargNIS OSW:ISL s

lrej=snjeis - (z)asuodsairgN3IS OSWISL

poob=sniels - (|)asuodsaigNIS OSI:ISL

/

(uhsanbar ANIS OSWIISL [«

SIHL Y04 G3AOW3Y SI

/ / &l

\ M
(491j013u02 O/} 0})

ISNOJS3YH ON ‘SNHL
Aﬂ S
¢ saAlwnd asuodsal eo__oémoo O/l woly) 09
ISL punoginQ S8AiwLd [S] punoqu

US 2004/0107304 Al

METHODS AND SYSTEMS FOR EFFICIENT
CONNECTION OF I/O DEVICES TO A
CHANNEL-BASED SWITCHED FABRIC

BACKGROUND
[0001] 1. Field

[0002] This invention relates to I/O device interface
mechanisms, and more specifically to I/O device interface
mechanisms that interface I/O devices to channel-based
switched fabrics.

[0003] 2. Background

[0004] A cluster may include one or more hosts connected
together by an interconnection fabric. In traditional clusters,
hosts have locally attached I/O controllers connected to local
I/0 buses. FIG. 1 illustrates a typical bus-based computer
10, which includes a processor 1 connected to a host (or
processor) bus 2 and an I/O and memory controller (or
chipset) 3. A local I/O bus 4 may be considered local to
computer 10 because, among other factors, it is physically
located within the same cabinet as the processor 1 (or within
very close proximity to processor 1). Local I/O bus 4 is
connected to an I/O bridge 5. Several I/O devices are
attached to local I/O bus 4, including I/O controllers 6 and
7 and a Local Area Network (LAN) Network Interface Card
(NIC) 8. The I/O controllers 6 and 7 may be connected to
one or more I/O devices, such as storage devices, hard disk
drives, or the like. I/O bus 4 is a traditional 1I/O bus, such as
a Peripheral Component Interconnect (PCI bus), a Industry
Standard Architecture (ISA) bus, or Extended ISA (EISA)
bus, etc. A traditional I/O bus provides attachment points to
which I/O controllers can be attached.

[0005] A bus-based computer, such as that shown in FIG.
1, has a number disadvantages and drawbacks. All of the I/O
controllers on the I/O bus share the same power and clock
domain and share a common address space. Due to the
physical and electrical load limitations, only a relatively
small number of I/O controllers may be attached to an I/O
bus, and must be physically located within the same cabinet
as the processor (or within very close proximity). Thus, the
entire I/O bus is physically attached to a single computer
system. Also, in traditional clusters, I/O controllers are not
directly connected to the network or cluster, but are provided
only as part of another host. Thus, the I/O controllers on the
I/O bus of a computer system are directly visible (or
detectable) and addressable only by that computer system or
host, but are not directly visible or addressable to any other
host in the cluster.

[0006] For example, I/O controllers 6 and 7 are visible
only to computer 10, and are not visible or directly addres-
sable to any other host which may be connected to LAN 11.
To allow another host computer on LAN 11 (not shown) to
access I/0 controllers 6 and 7 of host 10, the other host on
LAN 11 must communicate through processor 1 and the
operating system of host computer 10 (rather than directly to
I/O controllers 6 and 7).

[0007] Therefore, bus-based computer systems provide a
very inflexible arrangement for I/O resources. As a result,
there is a need for a technique that provides a much more
flexible arrangement for I/O devices for computer systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is further described in the
detailed description which follows in reference to the noted

Jun. 3, 2004

plurality of drawings by way of non-limiting examples of
the present invention in which like reference numerals
represent similar parts throughout the several views of the
drawings and wherein:

[0009]

[0010] FIG. 2 is an example system showing a single host
and a single I/O unit according to an example embodiment
of the present invention;

[0011] FIG. 3 shows a block diagram of an example I/O
unit according to an example embodiment of the present
invention;

[0012] FIG. 4 shows a block diagram of an overview of
example activities performed by a target service interface
according to an example embodiment of the present inven-
tion;

[0013] FIG. 5 shows an example I/O transaction model
according to an example embodiment of the present inven-
tion;

[0014] FIG. 6 shows an illustration of how target service
interface primitives may be used according to an example
embodiment of the present invention;

[0015] FIG. 7 shows a block diagram of an example
process of receiving an inbound message according to an
example embodiment of the present invention;

[0016] FIG. 8 shows a block diagram of sending an
outbound message according to an example embodiment of
the present invention;

[0017] FIG. 9 shows an example block diagram of data
transfer according to an example embodiment of the present
invention;

[0018] FIG. 10 shows a block diagram of example target
service interface primitive sequences for initializing I/O
controllers according to an example embodiment of the
present invention;

[0019] FIG. 11 shows a block diagram of example over-
view of the unit discovery process according to an example
embodiment of the present invention;

[0020] FIG. 12 shows an example data flow diagram of
the unit control connection channels and service connection
according to an example embodiment of the present inven-
tion; and

[0021] FIG. 13 shows an example message send request
queue and an example message send respond queue of an
example target channel adapter according to an example
embodiment of the present invention.

FIG. 1 illustrates an example bus-based computer;

DETAILED DESCRIPTION

[0022] The particulars shown herein are by way of
example and for purposes of illustrative discussion of
example embodiments of the present invention. The descrip-
tion taken with the drawings make it apparent to those
skilled in the art how several example forms of the present
invention may be embodied in practice.

[0023] Further, arrangements may be shown in block
diagram form in order to avoid obscuring the invention, and
also in view of the fact that specifics with respect to
implementation of such block diagram arrangements is

US 2004/0107304 Al

highly dependent upon the platform within which the
present invention is to be implemented, i.e., specifics should
be well within purview of one skilled in the art. Where
specific details (e.g., circuits, flowcharts) are set forth in
order to describe example embodiments of the invention, it
should be apparent to one skilled in the art that the invention
can be practiced without these specific details. Finally, it
should be apparent that any combination of hard-wired
circuitry and software instructions can be used to implement
embodiments of the present invention, i.e., the present
invention is not limited to any specific combination of
hardware circuitry and software instructions.

[0024] Although example embodiments of the present
invention will be described using an example system block
diagram in an example personal computer (PC) environ-
ment, practice of the invention is not limited thereto, i.e., the
invention may be able to be practiced with other types of
systems, and in other types of environments (e.g., servers).

[0025] Reference in the specification to Aone embodi-
ment@ or Aan embodiment@ means that a particular fea-
ture, structure, or characteristic described in connection with
the embodiment is included in at least one embodiment of
the invention. The appearances of the phrase Ain one
embodiment@ in various places in the specification are not
necessarily all referring to the same embodiment.

[0026] The present invention is directed to a method for
interfacing at least one Input/Output (I/O) controller to a
channel-based switched fabric that includes: providing at
least one channel adapter where the at least one channel
adapter allows connection of the at least one I/O controller
to a channel-based switched fabric and the at least one
channel adapter supports transferring of messages and/or
data between the at least one I/O controller and at least one
initiating unit connected to the channel-based switched
fabric; providing a physical interface between the at least
one I/O controller and the at least one channel adapter; and
defining a set of command primitives where the command
primitives communicate information between the at least
one I/O controller and the at least one channel adapter via
the physical interface.

[0027] The transferring of messages from one of the at
least one initiating unit to one of the at least one I/O
controller may include: allocating at least one buffer to
receive inbound messages where the allocation may be
performed by the one of the at least one I/O controller;
passing control of the at least one buffer from the one of the
at least one I/O controller to the channel adapter; receiving
an inbound message where the inbound message may be
received by the channel adapter from the one of the at least
one initiating unit; storing the inbound message in one of the
at least one buffer; and passing control of the one of the at
least one buffer from the channel adapter to the one of the
at least one 1/0 controller.

[0028] The transferring of messages from one of the at
least one I/O controller to one of the at least one initiating
unit may include: constructing a message in at least one
buffer where the constructing may be performed by the one
of the at least one I/O controller; passing control of the at
least one buffer from the one of the at least one I/O controller
to the channel adapter; transferring the message to the one
of the at least one initiating unit by the channel adapter; and
passing control of the at least one buffer from the channel
adapter to the one of the at least one I/O controller.

Jun. 3, 2004

[0029] The transferring of data may include: passing con-
trol of at least one block of memory in one of the at least one
initiating unit to one of the at least one I/O controller;
transferring the data between the one of the at least one
initiating unit and the one of the at least one I/O controller
where the data may be transferred from the at least one block
of memory or to the at least one block of memory; and
passing control of the at least one block of memory from the
one of the at least one I/O controller to the one of the at least
one initiating unit. The transferring of data may include:
passing control of at least one block of memory in one of the
at least one I/O controller to one of the at least one initiating
unit; transferring the data between the one of the at least one
initiating unit and the one of the at least one I/O controller
where the data may be transferred from the at least one block
of memory or to the at least one block of memory; and
passing control of the at least one block of memory from the
one of the at least one initiating unit to the one of the at least
one I/O controller.

[0030] The transferring of data may include: loading the
data in at least one buffer in one of the at least one initiating
unit; sending the data from the buffer to one of the at least
one I/O controller; and receiving the sent data at the one of
the at least one I/O controller. The transferring of data may
include: loading the data in at least one buffer in one of the
at least one I/O controller; sending the data from the buffer
to one of the at least one initiating unit; and receiving the
sent data at the one of the at least one initiating unit. The
channel adapter may be a part of an I/O unit. The at least one
I/O controller may be a part of an I/O unit.

[0031] The present invention may include providing a unit
management service (UMS) where the UMS may be a part
of the channel adapter. The UMS may manage initialization
operations, discovery operations, and/or connection con-
figuration operations related to the at least one I/O controller,
the channel adapter, and/or the I/O unit. The present inven-
tion may include providing a message and data service
(MDS) where the MDS may be a part of the channel adapter.
The MDS may perform the transferring of messages and/or
data between the at least one I/O controller and the at least
one initiating unit.

[0032] The physical interface may be adaptable to the at
least one I/O controller. The command primitives may be
adaptable to the at least one I/O controller and the transfer-
ring of at least one of messages and data. The at least one I/O
controller, the physical interface, and/or the at least one
channel adapter may detect errors that occur during the
communicating of information between the at least one I/O
controller and the at least one channel adapter. The at least
one channel adapter may detect errors that occur during the
transferring of messages and/or data between the at least one
I/O controller and the at least one initiating unit. The at least
one channel adapter may report errors detected to the at least
one I/O controller.

[0033] The present invention may also be directed to a
method for interfacing at least one Input/Output (I/O) con-
troller to an adapter where the at least one I/O controller may
be part of an I/O unit. The adapter may provide an interface
for the I/O unit to a channel-based switched fabric that
includes: executing initialization operations related to the at
least one I/O controller and the adapter; executing discovery
operations related to the at least one I/O controller and the

US 2004/0107304 Al

adapter; establishing a connection configuration between at
least one initiating unit and the I/O unit; sending an I/O
service request from the at least one initiating unit to the I/O
unit; transferring messages and/or data between the at least
one initiating unit and the at least one I/O controller; and
sending an I/O completion message from the at least one I/O
unit to the at least one initiating unit after completion of the
transferring. The first sending, transferring, and second
sending may occur across a channel-based switched fabric.

[0034] The I/O service request may include: an I/O con-
troller identification for one of the at least one 1/O controller;
an initiating unit identification for one of the at least one
initiating unit; and at least one pointer to at least one buffer
in the one of the at least one initiating unit where the at least
one pointer may be used by the one of the at least one I/O
controller to identify where to transfer data to or transfer
data from the at least one buffer.

[0035] The present invention may further be directed to a
method for interfacing at least one Input/Output (I/O) con-
troller to an adapter where the at least one I/O controller and
the adapter are part of an I/O unit. The adapter provides an
interface for the at least one I/O controller to a channel-
based switched fabric and includes: providing a physical
interface between the at least one I/O controller and the
adapter where the physical interface is adaptable to the at
least one I/O controller; defining a set of command primi-
tives where the command primitives communicate com-
mands between the at least one I/O controller and the adapter
and the command primitives are transferred between the at
least one I/O controller and the adapter via the physical
interface; providing a unit management service (UMS)
where the UMS is a part of the adapter and the UMS
manages initialization operations, discovery operations, and/
or connection configuration operations related to the at least
one I/O controller, the adapter, and/or the I/O unit; and
providing a message and data service (MDS) where the
MDS is a part of the adapter and the MDS supports
transferring of messages and/or data between the at least one
I/0O controller and at least one initiating unit connected to a
channel-based switched fabric.

[0036] The initialization operations may include: initial-
izing the physical interface between each at least one I/O
controller and the adapter; naming each at least one I/O
controller; and/or initializing each at least one I/O controller.
The discovery operations may include: retrieving a unit
profile for the I/O unit where the unit profile information
may be retrieved by the adapter and sent to at least one I/O
resource manager and each at least one I/O resource man-
ager may be part of the at least one initiating unit; retrieving
a controller list for the I/O unit where the controller list may
be retrieved by the adapter and sent to the at least one I/O
resource manager; and/or retrieving an I/O controller profile
for each at least one I/O controller where each I/O controller
profile may be retrieved by the adapter and sent to the at least
one I/O resource manager.

[0037] The connection configuration may be established
by: establishing a unit control connection between the 1/0
unit and an I/O resource manager where the I/O resource
manager may be part of the at least one initiating unit; and/or
creating service connections between at least one driver of
the at least one initiating unit and the at least one I/O
controller. The unit control connection may be destroyed

Jun. 3, 2004

upon completion of the creating service connections. The
service connections may include channels in the channel-
based switched fabric where the channels handle the trans-
ferring of messages and/or data between the at least one
initiating unit and the at least one I/O controller. The service
connections may be used for the transferring of messages
only. The service connections may be used for the transfer-
ring of data only. The destroying may be initiated by the I/O
resource manager. The destroying may be initiated by the
I/O unit. The destroying may be initiated when the at least
one I/O controller decides to abandon use of the service
connections. The destroying may be initiated when the I/O
adapter detects errors on the service connection.

[0038] The creating may include: determining a message
queue size of a message queue in the I/O unit where the
message queue may be capable of buffering messages trans-
ferable between one of the at least one I/O controller and one
of the at least one initiating unit; determining a data queue
size of a data queue in the I/O unit where the data queue may
be capable of buffering data transferable between the one of
the at least one I/O controller and the one of the at least one
initiating unit; and sending the message queue size, the data
queue size, and/or an initiating unit identification for the one
of the at least one initiating unit to the one of the at least one
1/O controller.

[0039] The present invention includes a system for inter-
facing at least one Input/Output (I/O) controller to a chan-
nel-based switched fabric that includes: at least one I/O
controller; at least one initiating unit connected to a channel-
based switched fabric; at least one channel adapter, the at
least one channel adapter allowing connection of the at least
one 1/O controller to a channel-based switched fabric where
the at least one channel adapter supports transferring of
messages and/or data between the at least one I/O controller
and the at least one initiating unit; and a physical interface
between the at least one I/O controller and the at least one
channel adapter where the physical interface allows trans-
ferring of command primitives that communicate informa-
tion between the at least one I/O controller and the at least
one channel adapter via the physical interface.

[0040] The channel adapter may be part of an I/O unit. The
channel adapter may include a unit management service
(UMS) where the UMS manages initialization operations,
discovery operations, and/or connection configuration
operations related to at least one of the at least one I/O
controller and the adapter. The channel adapter may include
a message and data service (MDS) where the MDS performs
the transferring of messages and/or data between the at least
one I/O controller and at least one initiating unit.

[0041] The present invention also includes an Input/Out-
put (I/O) unit that includes: at least one I/O controller; at
least one channel adapter where the at least one channel
adapter allows connection of the at least one I/O controller
to a channel-based switched fabric and the at least one
channel adapter supports transferring of messages and/or
data between the at least one I/O controller and at least one
initiating unit connected to a channel-based switched fabric;
and a physical interface between the at least one I/O con-
troller and the at least one channel adapter where the
physical interface allows transfer of command primitives
that communicate information between the at least one I/O
controller and the at least one channel adapter via the

US 2004/0107304 Al

physical interface. The channel adapter may include a unit
management service (UMS) where the UMS manages ini-
tialization operations, discovery operations, and/or connec-
tion configuration operations related to at least one of the at
least one I/O controller and the adapter. The channel adapter
may include a message and data service (MDS) where the
MDS performs the transferring of messages and/or data
between the at least one I/O controller and at least one
initiating unit.

[0042] The present invention relates to an interface
between a channel adapter and a I/O device which allows the
I/O device easy access to the services provided by the
channel adapter. The channel adapter may be part of an I/O
unit that interfaces to one or more host devices via a
channel-based switched fabric. The host device may include
one or more devices or applications that serve as initiators of
data or message transfers between the host device and the
I/O unit. The I/O unit receives requests from the initiators
via the channel adapter and passes these along to one or
more I/O controllers that control I/O devices attached to the
I/0O unit. The I/O controllers, also known as targets, use the
channel adapter (target channel adapter or TCA) to enable
the transfers to the initiators in the host unit. The present
invention relates to the interface between I/O controllers and
a target channel adapter.

[0043] FIG. 2 shows an example system according to the
present invention of a single host and a single I/O unit. As
shown in FIG. 2, a host unit 12 may be connected to an I/O
unit 14 via a channel-based switched fabric 16. The host unit
12 communicates with I/O unit 14 using a host channel
adapter 18. The host channel adapter 18 may communicate
with the I/O unit 14 across the switched fabric by connecting
to a target channel adapter (TCA) 22. Host channel adapter
18 interfaces to one or more initiators 20. These initiators
may be processing units or software applications. The ini-
tiator may be any other mechanism for initiating message or
data transfers between the host and one or more 1/O units,
and still be within the spirit and scope of the present
invention. Target channel adapter 22 interfaces with one or
more 1/0 controllers 24 in the I/O unit 14. I/O controllers 24
control one or more I/O or peripheral devices external to the
I/O unit. Target channel adapter 22 interfaces with I/O
controllers 24 by a target service interface (TSI) 26. The
target service interface 26 defines primitives or commands
that allow communication of messages and data between I/O
controllers and initiators in the host.

[0044] Therefore, an initiator may be a process that gen-
erates requests for I/O services from an I/O unit. The I/O
controller may also be connected to a network whereby an
initiator may request services, via the I/O unit, to transfer or
receive data across a network attached to an I/O controller.
The I/O controller may be connected to any type of network
(e.g., LAN, WAN, WLAN) and still be within the spirit and
scope of the present invention. The I/O devices, networks, or
peripheral devices attached to each I/O controller are not
shown in FIG. 2. The initiators initiate requests for I/O
services from the I/O units, however, are not aware of the
details of how the messages and/or data are being trans-
ported. A target service interface according to the present
invention defines how messages and data are transferred
between an 1/O controller and an initiator.

[0045] FIG. 3 shows a block diagram of an example I/O
unit according to the present invention. I/O unit 14 may

Jun. 3, 2004

include a target channel adapter 22 (TCA), one or more I/O
controllers 24, as well as unit management services (UMS)
28, and message and data services (MDS) 30. The unit
management service 28 and message and data service 30
may include devices and/or applications that aid in the
transfer of messages and data between an I/O controller 24
and an initiator 20. Message and data service 30 (MDS) may
provide basic messaging and data transfer services to I/O
controller 24. Unit management service 28 (UMS) may
support the I/O unit as a whole by managing a variety of
discovery, configuration, and connection management
details needed to make an I/O unit operate. Unit manage-
ment service 28 and message and data service 30 are each
connected to all I/O controllers 24 that are part of I/O unit
14. Unit management service 28 and message and data
service 30 may also be interconnected. Target channel
adapter 22 interfaces with the channel-based switch fabric
via port hardware 32. This port hardware 32 may consist of
any of many well known ways and devices of interfacing to
a channel-based switch fabric. An initiator 20 uses the
services of the channel-based switch fabric to send a request
for I/O services to an I/O controller 24. The I/O controller
24, in turn, uses the services of the channel-based switched
fabric to fulfill that request and to notify the initiator 20 that
the request has been completed. For example, an initiator
may request that an I/O controller transmit or receive
network packets, such as Ethernet packets, for storage and
retrieval from/to a storage media such as a disk or tape drive.

[0046] A target channel adapter may be described as
logical since it may be physically partitioned into a number
of discrete units to satisfy a given application. The target
channel adapter 22 may be managed by unit management
service 28 as a single logical entity. A target service interface
according to the present invention defines an interface
between a target channel adapter 22 and one or more /O
controllers 24. This definition represents a standard way for
an I/O controller 24 to access the message and data services
provided by a target channel adapter 22. A target service
interface according to the present invention defines a set of
primitive commands that may be transported across a physi-
cal interconnect. Each such primitive may have a prescribed
effect and produces a predictable result. The physical inter-
connect may be any physical means of implementing the
interface and still be within the spirit and scope of the
present invention. For purposes of illustrating the present
invention, a physical interconnection between a target chan-
nel adapter 22 and its attached one or more I/O controllers
24 is defined as a layer called a service hardware interface
(SHIF). The SHIF physical interface abstracts the details of
the physical connection between a TCA 22 and I/O control-
lers 24. This abstraction allows construction of different
types of I/O units, all of which are compatible with a target
service interface according to the present invention, but
which may implement different physical topologies.

[0047] Although physical implementation of the service
hardware interface may vary, to support a target service
interface according to the present invention, it is desirable
that the service hardware interface have certain features. A
non-exhaustive listing includes: providing a register level
mechanism for use by the unit management service in
assigning a name (e.g., IOC_ID) to each I/O controller;
providing a mechanism for mapping the IOC_IDs to specific
physical I/O controllers; providing a mechanism for alerting
a unit management service to changes in the power state for

US 2004/0107304 Al

the I/O controller; providing a mechanism to alert a unit
management service of the arrival or departure of an I/O
controller; supporting a register level interface that may
include, but is not limited to, an I/O controller count register,
interface controller register, interface status register, and/or
interface IOC_ID read/write register; providing the capabil-
ity of mapping logical addresses to physical addresses for
functional operations; capability of mapping remotely sup-
plied memory references to the I/O controllers memory
address base; the capability to detect and report errors that
prevent it from accessing the I/O controllers local memory
address space; and supporting the transport of target service
interface primitives, for example equating a service connec-
tion ID (SC_ID) to a specific I/O controller, and to a memory
location within that I/O controller.

[0048] FIG. 4 shows a block diagram of an overview of
example activities performed by a target service interface
according to the present invention. These activities describe
activities that may transpire between a target channel inter-
face and an I/O controller. Some of these activities are
performed independent of an initiator request, however, the
majority are performed in response to a request received
over a channel-based switched fabric from an initiator. As
shown in FIG. 4, activities that may be performed using a
target service interface according to the present invention
include: power on initialization 34, device discovery 36,
query 38, connection/binding 40, and/or functional opera-
tions 42.

[0049] Power on initialization activities 34 may include:
power on diagnostics and initialization of the target channel
adapter. Device discovery activities 36 may include the
target channel adapter discovery and identifying of any
attached I/O resources, and naming any discovered 1/O
resource by giving it an ID or other name. The I/O control-
ler=s name or ID may be used to identify which I/O
controller is to receive the request from an initiator. The
name or ID assigned to an I/O controller may or may not
relate to a physical address of the I/O controller. An I/O
controller=s identification (IOC_ID) may be arbitrarily
assigned and remain constant as long as that particular I/0
controller is powered up and active. However, should the I/O
controller be powered down and then later returned to
service, the target channel adapter may assign a new ID to
the I/O controller, or it may reassign the same ID. The target
channel adapter may also discover the total number of I/O
controllers that may be attached to this target channel
adapter. This information may be provided to the initiators.

[0050] The query activity 38 may include the ability of a
target channel adapter to provide the initiators with a mecha-
nism to receive detailed information about I/O resources
provided by the I/O controllers and supported by the I/O
unit. This may allow allocations of an I/O unit=s resources
to various initiators connected to the channel-based switched
fabric, and provide enough details to ensure connections
may be established to the I/O controllers. The target channel
adapter may use target service interface primitives to extract
this information and provide it to the one or more initiators.

[0051] The connection/binding activities 40 refer to pro-
cesses of creating channels, binding the channels into ser-
vice connections, and binding the I/O controllers to the
service connections. At the conclusion of this activity there
exists a service connection between an initiator on one end

Jun. 3, 2004

and an I/O controller on the other end. The number of
channels that may comprise a service connection may not be
visible or known to the initiator or the I/O controller.
Further, the channels that may comprise a service connec-
tion may be used in different ways which may be defined at
the time the connection is established.

[0052] Functional operations activities 42 describe the
way that initiators and I/O controllers may use the services
of a target channel adapter to transfer messages and data.
These messages and data generally relate to providing I/O
services, (e.g., request to transfer blocks of data to or from
a storage device, transfer of storage data, control network
traffic, and the actual network traffic itself). Although two
terms may be used by a target service interface to describe
the transfer of information, e.g., messages and data, these
terms do not describe the content of the information being
moved. For example, an I/O unit dedicated to networking
may use a message for the transport of packets of network
traffic data.

[0053] Transport of messages and/or data between initia-
tors and I/O controllers will generally use a message-based
system. In a message passing information transfer system,
there are many protocols or models that may be followed.
For example, an initiator that requests an I/O controller to
move data from or to the initiator=s memory, may give the
I/O controller control of the initiator=s memory space. The
I/O controller would then manage the transfer by either
pushing data in or pulling data out of the initiator=s memory.
At the conclusion of the data transfer, the I/O controller
would pass control of the memory back to the initiator.
Further, a second model may include the I/O controller
passing control of its memory to an initiator. In this example,
the initiator then would push or pull data from or to the I/O
controller=s memory, and at the conclusion of the transfer,
pass control of the memory back to the I/O controller.
Another model may include message passing where neither
an initiator nor an I/O controller gives control of its memory
space to the other. In this example an initiator may define a
block of data that requires transfer and then push the data to
the I/O controller. Or an I/O controller may define a block
data in its memory and push that data to an initiator. In this
example, neither initiator or an I/O controller has exposed its
internal memory to the other.

[0054] Functional Operation

[0055] An initiator may be a processor application, such as
an I/O driver, running on a host or server. In order to supply
I/0O services, an I/O controller may need a method to send
and receive messages to and from an initiator and a method
to transfer data into and out of an initiator=s memory. A
target service interface according to the present invention
provides an interface by which an I/O controller may access
the message and data services provided by a target channel
adapter. A target service interface according to the present
invention may include: a set of service connections which
may be used to transfer messages and data between an I/O
controller and an associated initiator, primitives which are
commands that may control the traffic traversing the service
connection, and a set of semantics describing the usage and
maintenance of the target service interface. There may be
many types of primitives or commands used to support a
target service interface according to the present invention.
These primitives may be specific to the I/O controllers that

US 2004/0107304 Al

are attached to an I/O unit, or specific to the types of
information transfer between an initiator and an I/O con-
troller. Therefore, a target service interface according to the
present invention may include primitives which support I/O
controller initialization and configuration, the transferring of
message and data traffic, and utility primitives (e.g., diag-
nostic and/or customized primitives based on the I/O con-
troller). Initiators and I/O controllers may be considered to
be Aclients@ of a switched fabric. A target channel adapter
is merely part of the conduit for conducting messages and
data between the two clients. A target service interface
according to the present invention implements an interface
exposed to an I/O controller which allows a controller to
access the services of a channel-based switched fabric
subsystem for transporting messages and data. An I/O con-
troller may use a target channel adapter=s data transfer
service by creating an object which identifies a data object
to be transferred including its location and length, the
identity of the initiator expressed in terms of the service
connection ID, and addressing information representing the
destination in the initiator=s memory space. The data object
is passed by an I/O controller to the message and data
service as parameters to a target service interface primitive.
Once the message and data service has completed the
requested data transfer it returns a target service interface
primitive to the I/O controller thus completing the data
transfer operation.

[0056] A service connection is an abstraction presented to
the I/O controller by a target channel adapter for the purpose
of moving messages and data between an I/O controller and
an initiator. In order to conduct the transfer of messages and
data across a channel-based switch fabric, a target channel
adapter may create a collection of one or more channels
which are presented collectively to the I/O controller as a
service connection, and which may be referred to by both the
target channel adapter and the I/O controller by a service
connection ID, i.e., (SC_ID). A target channel adapter mes-
sage and data service may determine how to transport
messages and data across a channel-based switch fabric
based on the number of channels comprising the service
connection and/or whether the information being trans-
ported is a message or data. Generally, an I/O controller may
use a message primitive or a data primitive to define the type
of traffic to be transported. However, as noted previously,
data may be transferred using message primitives and mes-
sages transferred via data primitives and still be within the
spirit and scope of the present invention. A service connec-
tion may include one or more channels. A number of
channels and usage of those channels may be determined at
connection establishment time. If a service connection
includes only a single channel, that channel may be used to
transfer both message and data traffic. However, if on the
other hand the service connection comprises several chan-
nels, then zero or one of those channels may be dedicated to
transferring message traffic while the balance of the chan-
nels may be dedicated to data traffic. If a service connection
contains multiple channels dedicated to data transfer, the
message data service may determine how the data is trans-
ferred across the various channels.

[0057] FIG. 5 shows an example I/O transaction model
according to the present invention. An initiator (initiating
client) may initially send an I/O service request message to
an I/O controller (target client). An I/O controller may then
transfer data between the initiator and the I/O controller.

Jun. 3, 2004

Upon completion of the transfer, the I/O controller may then
send a message to the initiator notifying the initiator that the
information transfer has been completed. Specifically, this
may include an I/O service request transferring from the
initiator a set of pointers to a pool of buffers owned by the
initiator. Thus, transferring control of the buffers to the I/O
controller. The I/O controller may then use these pointers to
transfer data to or from the pool of buffers. An I/O comple-
tion message from the I/O controller to the initiator may then
pass control of these buffers back to the initiator. The
pointers may be considered tokens representing buffer own-
ership. This illustrates only one of many possible transaction
models. Other transaction models may be used and still be
within the spirit and scope of the present invention.

[0058] Prior to receiving a message, such as an I/O service
request from an initiator, an I/O controller may allocate
buffers to receive those inbound messages. Having allocated
one or more message buffers, an I/O controller may then
pass pointers to those buffers and thus control of the buffers
to a message and data service using a target service interface
primitive. Each primitive may pass control of one or more
buffers. When an inbound message is received the message
data service may select a first pointer from the list and use
it to fill the message buffer. Once a complete message has
been received, a message and data service may then pass the
pointer back to an I/O controller via a target service interface
primitive.

[0059] In order to send a message, an I/O controller may
first construct the message in a message buffer. Having
created the message, an I/O controller may then pass a
pointer, and the control of the buffer, to the message and data
service via a target service interface primitive. On receiving
this primitive, a message and data service may queue an
operation in order to transfer the message across the chan-
nel-based switch fabric. Once the transfer completes, the
message and data service may then return control of the
buffer to the I/O controller for reuse by returning a target
service interface primitive thereby completing transfer of the
message. Therefore, pointers to message buffers may be
passed back and forth between I/O controllers and a message
and data service using target service interface primitive
messages.

[0060] FIG. 6 shows an illustration of how target service
interface primitives may be used for this purpose. A service
connection represents a pipe to a particular initiator. There-
fore, each service connection between an I/0 controller and
an initiator is specific to those particular devices. An initiator
may be an [/O driver located on the same host or an I/O
driver located on different host. When message buffers are
passed back and forth between an I/O controller and a
memory data service, they are associated with a certain
service connection via a service connection ID field (SC_ID)
giving the I/O controller and the message data service a
convenient method to associate messages with a specific
initiator. When an inbound message arrives on a particular
channel including the service connection, the message data
service associates the inbound message with a given service
connection and uses the next empty message buffer queued
on that service connection to receive it. When message
transfer is complete, the message data service returns the full
buffer to the I/O controller registered to that service con-
nection. The commands shown between the message and
data service 30 and the I/O controller 24 are example target

US 2004/0107304 Al

service interface primitives (discussed in more detail later)
that facilitate the buffer control passing. Each message
primitive may contain a buffer ID field and a service
connection ID field. The buffer ID field may contain suffi-
cient information to enable a target channel adapter to
accurately reference the buffer but does not necessarily
contain a physical buffer address. The creation of a physical
buffer address, if one exists, and facilities for physical
movement of the message data are left to the physical
implementation of a target service interface according to the
present invention.

[0061] FIG. 7 shows a block diagram of an example
process of receiving an inbound service request from an
initiator according to the present invention. I/O controller 24
allocates buffers for each initiator that may send a message
to the I/O controller. An I/O controller 24 sends a primitive
(MSG_RCV.request) to the message and data service 30
which supplies the message and data service with pointers to
these buffers. When a message is received from an initiator
by the message and data service, the message and data
service transfers this message to the buffer contained in the
I/0O controller. The message and data service may then notify
the I/O controller that a message has been received. The I/O
controller may then process the inbound I/O service request
from the initiator.

[0062] FIG. 8 shows a block diagram of an example
process of sending an outbound message to an initiator
according to the present invention. An I/O controller creates
an outbound message in a buffer located in the I/O control-
ler, and passes a pointer to this buffer to the message and
data service. The message and data service then sets up for
sending the message across the channel-based switched
fabric, and takes the data from the buffer in the I/O control-
ler. Upon completion of the transfer, the message and data
service returns control of the buffer to the I/O controller. The
I/0O controller then recycles the message buffer for later use.

[0063] FIG. 9 shows a block diagram of an example data
transfer according to the present invention. An I/O control-
ler, after having received a request from an initiator, posts an
object representing data to be transferred with the message
and data service. The message and data service then sets up
for transfer of information across the channel-based switch
fabric. The message and data service upon completion of the
data transfer returns status to the I/O controller that data has
been transferred. The I/O controller then notifies the initiator
that the data transfer has been completed. The number of I/O
service requests that an initiator may have outstanding at any
particular time may be a function of the number of devices
supported by the I/O controller, the depth of a command
queue supported by the I/O controller itself, the depth of a
command queue located on the initiators themselves, and/or
the number of initiators supported by an I/O controller.

[0064] Management Functions

[0065] As noted previously, one of the activities that a
target service interface according to the present invention
performs are management functions. These may include
power on and discovery of an I/O unit, querying of the
capabilities of the I/O unit, diagnostic support, and/or con-
nection management. Power on and discovery activities are
actions that may occur between the target channel adapter
and an I/O controller when the I/O unit or one of its
components undergoes a power state change. A power state

Jun. 3, 2004

change may include, for example, a transition from the
powered off to the powered on state, a reset of one of the
elements of the I/O unit, and/or activities related to failing
over channels from one port or switched fabric to another
port or switched fabric.

[0066] Query is the method by which various initiating
initiators discover the I/O resources contained in an I/O unit
such that these resources may be assigned to appropriate I/O
drivers of the initiators. Creation and management of con-
nections refers to the process of configuring an I/O control-
ler and the target channel adapter to create connections
between an initiator and an I/O controller. This also includes
maintenance of those connections and their eventual
destruction. A service hardware interface (SHIF) may be
responsible for notifying unit management service of
changes in the state of the I/O controllers. The unit man-
agement service once notified then notifies the appropriate
system agents of any change of state for an I/O controller.
The service hardware interface also may correlate an I/O
controller ID to a specific physical location and assign a
physical memory space on the I/O controller. The I/O
controller ID may be used by a unit management service to
direct target service interface primitives to the appropriate
physical I/O controller.

[0067] FIG. 10 shows a block diagram of example target
service interface primitive sequences for initializing I/O
controllers. A unit management service 28 names each I/O
controller 24 and builds a table of I/O controller IDs. This
occurs after the service hardware interface has identified
how many I/O controllers are attached to the I/O unit. The
unit management service 28 assigns an 1/O controller ID
(I0C_ID) to each I/O controller 24, which confirms its
readiness to move to the next step in the initialization
sequence by returning its I/O controller ID. A unit manage-
ment service 28 may then direct each I/O controller 24 to
initialize which causes each I/O controller to perform vari-
ous activities, for example, self test diagnostics. After
completion of these activities, the I/O controller 24 notifies
unit management service 28 that this has been completed,
and the unit management service 28 may mark each I/O
controller 24 as ready to perform I/O services, not ready to
perform I/O services, or failed.

[0068] Unit discovery activities relate to initiators becom-
ing aware of information related to a functioning I/O unit.
During unit discovery an I/O unit may return information
about the I/O unit as a whole as well as specific information
about each of the I/O resources (I/O controllers) contained
within the I/O unit. This information may be used by various
I/O resource managers, that reside on the host units, to
assign the resources to I/O drivers (initiators). A unit man-
agement service may use a target service interface to gather
information about each attached I/O controller. This infor-
mation is then returned to a requesting host unit. This
information may be returned using a signaling connection
path between an I/O resource manager on a host unit and a
unit management service on the I/O unit.

[0069] FIG. 11 shows a block diagram of example unit
discovery process according to the present invention. An I/O
resource manager 54 may send a primitive to a target
channel adapter (TCA) 22 of an I/O unit requesting the unit
profile of the I/O unit. The target channel adapter 22 (i.e.,
unit management service portion thereof) may then return

US 2004/0107304 Al

the unit profile for the I/O unit. An I/O resource manager 54
may then request a list of controllers attached to the I/O unit.
The unit management service 28 once receiving this primi-
tive may then supply a controller list which defines the IDs
of all I/O controllers attached to the I/O unit. An I/O resource
manager 54 may also request profile information for each
I/0O controller attached to an I/O unit. The unit management
service upon receipt of this request may then return profile
information for each I/O controller attached to the I/O unit
to the I/O resource manager. Most of the information col-
lected during I/O unit discovery may be provided by the unit
management service 28 without querying the attached I/O
controllers. However, if needed, a target channel adapter
may request specific information from a specific I/O con-
troller as a part of the unit discovery process. For example,
if a target channel adapter supports dynamic allocation of
channels to service connections to support higher bandwidth
data traffic, the target channel adapter may choose to query
the I/O controller for its bandwidth requirements before the
unit management service generates and returns the unit
profile. One piece of information that may be of value to a
host unit, and which is returned by unit management service
during discovery, may be the total number of I/O controllers
which a target channel adapter is capable of supporting.
Regarding unit profile information sent to an I/O resource
manager of a host unit, this may include a variety of
information about an I/O controller, for example, informa-
tion related to: the protocol supported by an I/O controller,
the maximum size of messages that an I/O controller may
receive from the host, the maximum size of messages that an
I/O controller may send to the host, the number of service
connections an I/O controller may support, the number of
service connections currently in use, the amount of band-
width per service connection desired by an I/O controller,
the maximum number of initiators supported by an I/O
controller, the I/O controller ID, or other information impor-
tant or necessary for host unit to know.

[0070] A connection configuration according to a target
service interface according to the present invention may
consist of a unit control connection between an I/O resource
manager and an I/O unit=s unit management service, and/or
service connections between initiators and the I/O control-
lers. Generally, a unit control connection may be used to
formulate service connections. Once service connections
have been formulated and established, the unit control
connection may be dropped. This allows other I/O resource
managers connected through the switched fabric to access
the I/O unit=s unit management service.

[0071] An I/O resource manager 54 may use a signaling
connection to request establishment of a unit control con-
nection. A signaling connection between an I/O resource
manager on a host unit and a unit management service on an
I/O unit may use its own set of command primitives for
communication. Examples of these are shown above the
arrows between the I/O resource manager 54 and the unit
management service of the TCA 22. The unit control con-
nection may be used for configuring connections between an
initiator and an I/O controller. The unit control connection
may also serve as a convenient mechanism for resolving
conflicts between various requesting initiators all of whom
may be competing for the I/O unit=s resources. Conflicts are
easily resolved by allowing only one I/O resource manager
at a time to request I/O unit resources. Once an I/O resource
manager has completed its business with the unit manage-

Jun. 3, 2004

ment service, it destroys its unit control connection, thus
freeing the connection for use by another I/O resource
manager. Another way to control conflicts may be that an I/O
resource manager may only be allowed to keep a unit control
connection open for a specific period of time before the
connection is automatically destroyed. Establishment of a
unit control connection precedes establishing service con-
nections and does not generate any activity on a target
service interface.

[0072] Service connections may be created after receipt of
an I/O resource manager=s request for the creation of service
connections between one of its initiators (e.g., I/O drivers)
and an I/O controller. After receipt of this request, two
separate activities may occur simultaneously during the
creation of the service connection. First, channels may be
created in the channel-based switch fabric that connect a
target channel adapter to the host unit. Second, these chan-
nels are associated together into a service connection
between an I/O controller and the message data service
binding the I/O controller to it. At the time the service
connection is created the behavior of the connection in the
presence of errors and the configuration and use of the
channels comprising the service connection may be defined.
For example, a service connection may be defined as having
the capability of transferring both message and data traffic,
or may be defined as a connection that carries data only.
Therefore, a channel configuration may be defined, for
example, as one channel capable of supporting messages
and data reads and writes, or may be defined as consisting
of two or more channels, where one channel may be
dedicated to transferring messages with the balance of the
channels supporting data transfers. Further, a service con-
nection may be defined as a data only service connection
whereby any attempts to transfer message traffic may result
in an error being generated and the service connection
destroyed. A service connection may be destroyed by the I/O
resource manager or the I/O unit itself. An I/O unit may
decide to destroy the service connection if: 1.) the I/O
controller decides to abandon use of the service connection,
or 2.) the target channel adapter has detected errors on the
service connection that render it unreliable.

[0073] FIG. 12 shows a data flow diagram of an example
unit control connection, channels, and service connection.
As noted previously, the unit control connection may be
established first, where an I/O resource manager requests
establishing service connections. Channels are then created
in the channel-based switch fabric between a message and
data service in an I/O unit and an initiator in the host unit.
Concurrently, service connections may be created between
the message and data service of this I/O unit and an I/O
controller. Once service connections have been created, the
unit control connection may be destroyed. The service
connections may be destroyed as also noted previously, if
errors are detected in the channels of the service connection
or if it is desired by the host unit.

[0074] Example Syntax

[0075] The following describes an example syntax of
command primitives that may be used in a target service
interface between a TCA and its associated I/O resources
(e.g., I/O controllers) according to the present invention.
These target service interface (TSI) primitives may be used
by a TCA to initialize and configure I/O resources, and by

US 2004/0107304 Al

I/O resources to exchange messages and data with hosts
connected to a channel-based switched fabric. The following
only shows some example command primitives that may
define a syntax of information exchanged between an I/O
controller and a TCA. The delivery method and/or imple-
mentation may be by any method or structure and still be
within the spirit and scope of the present invention. The
following example primitives identify information
exchanged across the interface, its purpose, and the effect of
the primitive. The first group of message primitives describe
example configuration operations and the second set
describe example functional operations. Other primitives
may be defined that facilitate communication between a
TCA and its associated 1/O resources and still be within the
spirit and scope of the present invention.

[0076] Controller Initialization Primitives
[0077] TSLIDENTIFY.indicate

[0078] Function: Used by the UMS to assign a name
(handle) to each attached I/O controller.

[0079] Semantics: TSLIDENTIFY.indicate(IOC_ID)

[0080] Parameters: IOC_ID is the name passed to the I/O
Controller to be used to identify the controller in further TSI
operations.

[0081] When Generated: this is a simple and concise way
to both synchronize activities between the UMS and the I/O
controllers at power on initialization time and to gather a list
of each controller=s GUID. May be used at several different
times such as: (1) at power on/initialization time, (2) in
response to a request from a host for a ControllerList (the
controller list may contain a list of the GUIDs for each
powered on I/O controller), and/or (3) whenever UMS
becomes aware of a new 1/O controller.

[0082] Effect of receipt: Assigns a handle (IOC_ID) to
each attached I/O controller. Causes the I/O controller to
reply with a confirmation message, and to return its GUID.

[0083] TSLIDENTIFY.confirm

[0084] Function: Acknowledgment returned by the I/O
controller to the UMS confirming IOC_ID.

[0085] Semantics:
GUID)

TSLIDENTIFY.confirm(IOC_ID,

[0086] Parameters: IOC_ID may be returned unchanged
from the TSEIDENTIFY.indicate primitive. It may be used
to correlate this response to the TSLIDENTIFY.indicate.
GUID represents the I/O controller=s Globally Unique Iden-
tifier.

[0087] When Generated: Generated by an I/O controller in
response to a TSLIDENTIFY.indicate primitive. If the I/O
controller is powered on, it may respond to this primitive
unless it is in a fatally failed condition.

[0088] Effect of receipt: Confirms that the I/O controller
has received its IOC_ID. Upon receiving the TSIIDENTI-
FY.confirm primitive, the UMS updates its table of attached
I/O controllers.

Jun. 3, 2004

[0089] TSLINITIALIZE.indicate

[0090] Function: Generated by the UMS to initialize the
1/O controller.

[0091] Semantics: TSEINITIALIZE.indicate(IOC_ID)

[0092] Parameters: IOC_ID specifies the controller that is
the target of this primitive.

[0093] When Generated: When the I/O Unit powers on or
is reset, and as necessary to reset the I/O controller(s). This
primitive may also be generated by the UMS in an attempt
to recover an I/O controller resource that has previously
indicated TSLCONTROLLER_FAILED.

[0094] Effect of receipt: The I/O controller resets its TSI
interface. Following self-test diagnostics, the I/O controller
generates the TSE:INITIALIZE.confirm primitive.

[0095] TSLINITIALIZE.confirm

[0096] Function: Indication from the I/O controller to the
UMS that the initialization process has been completed and
the I/O controller is ready to proceed with the configuration
process. Generated in response to TSLINITIALIZE.indicate
primitive.

[0097] Semantics: TSI:1 NITIALIZE.confirm(I0OC_ID)

[0098] Parameters: IOC_ID identifies the controller which
generated this primitive.

[0099] When Generated: Only following receipt of a TSI-
:{INITIALIZE.indicate primitive.

[0100] Effect of receipt: The I/O controller notifies the
UMS that its reset sequence is complete, and it is ready to
exchange environmental information.

[0101] Controller Configuration Primitives

[0102] Each of the example primitives below may be
targeted at a specific I/O controller. The controller being
targeted is identified by its IOC_ID.

[0103] TSL.ENVIRONMENT.request

[0104] Function: Generated by the UMS to request infor-
mation from the I/O controller on the specific operating
environment that may be required by the controller and the
MDS, such as the number of initiators supported, and the
data bandwidth that may be required for each initiator.
[0105] Semantics: TSLENVIRONMENT.request(I-
OC_ID)

[0106] Parameters: IOC_ID parameter specifies the con-
troller that is the target of this primitive.

[0107] When Generated: The UMS sends this request at
connection establishment time, in order to determine the
characteristics of the service connection being created.

[0108] Effect of receipt: The I/O controller returns infor-
mation about its preferred operating environment.

[0109] TSLENVIRONMENT.response

[0110] Function: Generated by the target in response to a
TSLENVIRONMENT.request primitive to con-figure the
UMS with the I/O controller=s operating requirements.
[0111] Semantics: TSI.EENVIRONMENT.response
(I0C_ID, NumberOflnitiators, BwPerInitiator, Connection-
Type, ResponseProtocol)

[0112] Parameters: IOC_ID identifies the controller which
generated this primitive. NumberOflnitiators is the number
of independent initiators supportable by this I/O controller.

US 2004/0107304 Al

BwPerlnitiatorvariable provides an indication to the TCA of
the I/O controller=s bandwidth requirements for a given
service connection. For TCAs which support multiple data
channels per service connection, this variable may be used
by the TCA to calculate the number of data channels to
allocate for the service connection. ConnectionType indi-
cates whether the I/O controller supports combined, com-
pound, or data-only connections. A combined connection
may be a service connection comprised of a single channel
providing both message and data services. A compound
connection may be comprised of two or more channels of
which one may be dedicated to a message service with the
balance being devoted to data service. ResponseProtocol
indicates whether the I/O controller expects an Ordered
Response Protocol (i.e., EXPLAIN) or Unordered Response
Protocol (i.e., EXPLAIN).

[0113] When Generated: The I/O controller generates this
primitive as a result of the TSLENVIRONMENT. request
primitive.

[0114] Effect of receipt: The I/O controller supplies the
UMS with the information needed to support the I/O con-
troller.

[0115] TSL:CONTROLLER_STATUS request

[0116] Function: Used by UMS to request the controller=s
current status. Possible responses are READY,
NOT_READY, FAILED or FATAL_FAILED. The control-
ler may be required to respond to this request within a
specific time period, thus giving the UMS a positive indi-
cation of the controller=s condition. If the controller is
powered on, it is required to respond with at least a
NOT_READY indication.

[0117] Semantics: TS:CONTROLLER_STATUS .reques-
(I0C_ID)

[0118] Parameters: IOC_ID specifies the controller that is
the target of this primitive.

[0119] When Generated: The UMS issues this command
immediately prior to issuing a connection request in order to
ascertain the condition of the controller. It may also issue
this command at any time to validate that the controller is
still in a ready condition.

[0120] Effect of receipt: Causes the I/O controller to
respond with a TSI:CONTROLLER_STATUS response
message, possibly within a specific time period. This com-
mand may not modify the internal condition of the I/O
controller in any way.

[0121] TSI:OP_STATUS.indicate

[0122] Function: Generated by the I/O controller either
asynchronously to inform the UMS of a change in the
controller=s operational status, or in response to a TSI: CON-
TROLLER_STATUS.request primitive. Indicates the con-
troller=s current condition (READY, NOT_READY,
FAILED, FATAL_FAILED).

[0123] Semantics: TSI:OP_STATUS.indicate (IOC_ID,
TargetStatus)

[0124] Parameters: IOC_ID identifies the controller which
generated this primitive. Target status identifies the I/O
controller=s current state. READY indicates that the I/O
controller is functioning normally and can accept and

Jun. 3, 2004

respond to any TSI primitives. NOT_READY means that
the I/O controller, although present, can respond only to a
TSL:CONTROLLER_STATUS primitive. The
NOT_READY state is transient, meaning that it is expected
that the controller will naturally progress to the READY
state without further intervention. Any existing service con-
nections to the I/O controller are closed. FAILED means that
the I/O controller, although present can respond only to
TSL:CONTROLLER_STATUS primitives.

[0125] When Generated: The I/O controller generates this
primitive whenever its status changes, or in response to a
TSL:CONTROLLER_STATUS .request.

[0126] Effect of receipt: If the UMS receives a
NOT_READY status from the I/O controller during the
process of establishing a service connection, may will return
a status message (e.g., I/O controller not operational) to the
initiating client requesting the connection. If the UMS
receives an asynchronous OP_STATUS indicating FAILED
or FATAL_FAILED, the UMS may terminate all service
connections to the I/O controller and may attempt to close
the underlying channels. For a FAILED status, the UMS
may attempt to recover the I/O controller by issuing a
TSLINITIALIZE primitive.

[0127] TSI:POR_RESET.indicate

[0128] Function: Generated by the UMS to inform the I/O
controllers that the TCA is undergoing a power on reset. The
power on reset could be issued because the TCA=s power
system is powering up, or because a power down condition
is imminent.

[0129] Semantics: TSI:POR_RESET.indicate(I0OC_ID)

[0130] Parameters: IOC_ID parameter specifies the con-
troller that is the target of this primitive.

[0131] When Generated: This reset may be generated
when the UMS receives a power on indication from its
associated power supply. Depending on the physical imple-
mentation of the TSI interface, the UMS may or may not be
capable of generating this indication to all of its attached
controllers. For example, if the physical interconnect is a
shared bus structure that requires enumeration of the
attached controllers, then the UMS may not be capable of
signaling POR_RESET on initial power on. The UMS may
use the POR_RESET indication to notify any attached 1/0
controllers if it receives a power on reset signal from its
attached power supply indicating that power for the TCA is
being withdrawn.

[0132] Effect of Receipt: The I/O controller is warned to
close all service connections to the TCA. Depending on the
controller=s failover strategy, it may also choose to suspend,
terminate or re-assign all I/O operations pending for I/O
service requests received from that TCA.

[0133] TSL:QUERY.request

[0134] Function: Generated by the UMS to retrieve con-
troller profile information

[0135] Semantics: TSI:QUERY.request (I0C_ID)

[0136] Parameters: IOC_ID parameter specifies the con-
troller that is the target of this primitive.

[0137] When Generated: The UMS generates this primi-
tive when it receives a Sig_ProfileGet(Controller-Profile)
request from an I/O resource manager.

US 2004/0107304 Al

[0138] Effect of receipt: The addressed I/O controller
generates a TSI:QUERY.response.

[0139] TSI:QUERY.response

[0140] Function: Generated by the target to supply its
profile information

[0141] Semantics: TSI:QUERY.response (IOC_ID, Buff-
erld)

[0142] Parameters: IOC_ID identifies the controller which
generated this primitive. BufferID points to a buffer located
in the I/O controller=s memory space which contains the
information needed by the TCA to build a SIG_ProfileReply
message (signaling connection primitives).

[0143] When Generated: The I/O controller generates this
primitive as a result of receiving the TSI:QUERY.request
primitive.

[0144] Effect of receipt: The I/O controller passes a
pointer to the UMS which identifies the location of a buffer
containing the query information. The UMS then builds the
appropriate SIG_ProfileReply message header and pulls the
query information from the buffer supplied by the I/O
controller. The TCA may not interpret or use any of this
information. It may be intended solely to provide sufficient
information to an I/O resource manager such that the I/O
controller resource can be assigned to a given I/O driver. The
buffer pointed to by Bufferld may contain the following
fields: Vendorld (8 bytes), Productld (8 bytes), Product Ver-
sion (4 bytes), IoClass (1 byte), IoSubClass (1 byte), Pro-
tocol (1 byte), ProtocolVersion (1 byte), RequestSize(2
bytes), ReplySize (2 bytes), Service-Connections (2 bytes),
ScInUse (2 bytes), DataRate (2 bytes), InitiatorsSupported
(2 bytes),Connec-tionAttributes (16 bytes), rsvd (4 bytes),
GuiD (16 bytes), IdString (80 bytes).

[0145] TSIL:BIND.request

[0146] Function: Generated by the UMS to bind an I/O
controller to a service connection.

[0147] Semantics: TSL:BIND.request (IOC_ID, SC_ID,
ConnType, MdsMessageQueueDepth, MdsData-QueueDe-

pth)

[0148] Parameters: IOC_ID parameter specifies the con-
troller that is the target of this primitive. SC_ID specifies the
service connection to which the request refers. The
ConnType parameter identifies this as either a compound
service connection (capable of sup-porting both message
and data) or a data only service connection. The MdsMes-
sageQueueDepth and MdsDataQueueDepth parameters are
an indication to the I/O controller of the resources available
on the TCA for moving messages and data. The MdsMes-
sage-QueueDepth parameter specifies the total number of
TSI:MSG_GET.request and TSI:MSG_SEND .request
primitives the I/O controller may have outstanding at any
given time. The MdsDataQueueDepth parameter specifies
the total number of TSI:DATA_GET.request and TSI-
:DATA_PUT.request messages that the I/O controller may
have outstanding at any given time.

[0149] When Generated: The UMS generates the TSI:B-
IND.request primitive after it has successfully

[0150] allocated the appropriate number of work queue(s)
for the requested service connection. Work queue

Jun. 3, 2004

[0151] allocation occurs as a result of receiving a
UMS_ServiceCreate request from an initiating client.

[0152] Effect of receipt: The I/O controller prepares its end
of the service connection and then generates the TSI:BIN-
D.response primitive.

[0153] TSI:BIND.response

[0154] Function: Generated by the I/O controller to inform
the UMS that the I/O controller is ready to

[0155] receive I/O requests on the control channel.

[0156] Semantics: TSI:BIND.response (I0C_ID, SC_ID,
status)

[0157] Parameters: IOC_ID identifies the controller which
generated this primitive. The SC_ID parameter identifies the
service connection to which this request refers. The status
parameter indicates whether the service connection was
successfully bound or not.

[0158] When Generated: The I/O controller generates the
TSL:BIND .request primitive after it posts at least one receive
buffer.

[0159] Effect of receipt: The UMS finishes the service
create sequence and signals the host that the service con-
nection is operational.

[0160] TSL.UNBIND.request

[0161] Function: Generated by either the UMS or the I/O
controller to initiate teardown of a service connection pre-
viously bound to the I/O controller.

[0162] Semantics:
SC_ID)

TSLUNBIND.request (IOC_ID,

[0163] Parameters: IOC_ID parameter specifies the con-
troller that is the target of this primitive. SC_ID identifies the
Service Connection being unbound.

[0164] When Generated: The UMS generates the UNBIN-
D.request primitive at the time it deallocates any work queue
comprising a service connection. This might be as a result of
receiving a Uma_Service_Destroy request from a host or as
a result of a fatal error. The I/O controller may generate the
TSL:UNBIND.request at any time when it believes that the
service connection has become unusable, or whenever the
service connection is no longer needed.

[0165] Effect of receipt: The I/O controller stops generat-
ing TSI primitives referring to that Service Connection.
Further TSI primitives generated with the defunct Service
Connection may be ignored by the MDS.

[0166] TSL:RESYNC.request

[0167] Function: Generated by the I/O controller after
receipt of any functional response message containing non-
zero status. This primitive applies only to service connec-
tions constructed using the Ordered Response Protocol. If
this primitive is received on a service connection which is
using the Unordered Response Protocol, it is considered a
violation of TSI usage and will cause the TCA to initiate
teardown of the service connection via the TSI:UNBIN-
D.request primitive.

US 2004/0107304 Al

[0168] Semantics: TSLRESYNC.request(SC_ID, Flag)

[0169] Parameters: SC_ID specifies the service connec-
tion to which this re-sync applies. Flag may be an 8 bit, bit
significant field indicating to which service this resync
request applies. The flag bits are as follows:

[0170] Flag(0): resynchronize the outbound message
send service,

[0171] Flag(1l): resynchronized the inbound message
receive service,

[0172] Flag(2): resynchronize the data transfer service,
[0173] Flag(3:7): reserved, must be set to zero.

[0174] When Generated: This primitive is generated by
the I/O controller after it has received a response to a
functional request primitive (TSI:MSG_SEND.request,
TSI:MSG_RCVrequest, TSI:DATA_GETrequest, TSI-
:DATA_PUT.request), which contains a non-zero status
field. The non-zero status field indicates that the correspond-
ing TSI request primitive had failed. The re-sync primitive
is used by the I/O controller to instruct the TCA that it may
resume accepting new request primitives. Until the TCA
receives the re-sync primitive, it will respond to all TSI
primitive requests received subsequent to the failed primi-
tive with a failed status.

[0175] Effect of receipt: Receiving this primitive is the
TCA=s signal that it may begin accepting new request
primitives from the I/O controller.

[0176] Functional Primitives

[0177] The following set of primitives may be used during
the transfer of I/O service requests, I/O data and I/O ending
status (completion reply) messages. TSI:MSG_SEN-
D.request

[0178] Function: Generated by the I/O controller to send a
message on a control connection

[0179] Semantics: TSI:MSG_SEND.request
SC_ID, MsgOpld, Bufferld, Len)

(Flag,

[0180] Parameters: Flag is a bit significant field modifying
the remaining fields of the primitive as follows: Flag(0): this
bit indicates the presence of an immediate data field as a
primitive parameter SC_ID identifies the service connection.
The MsgOplD field is a handle supplied by the I/O controller
that it uses to correlate this message service request with a
given message service response and to correlate the entire
sequence with a particular I/O transaction. The Bufferld
parameter is a pointer to a message buffer. The Bufferld
parameter is a logical handle for a buffer field, which is
translated by the SHIF layer into a physical address repre-
senting a location in the I/O controller=s memory space. For
a simple implementation, the Bufferld field may degenerate
into a physical address field. The len parameter specifies the
size of the buffer.

[0181] When Generated: Anytime the I/O controller
wishes to send a message

[0182] Effect of receipt: The TCA queues the message for
transmission on the appropriate channel.

Jun. 3, 2004

[0183] TSI:MSG_SEND.response

[0184] Function: Generated by the TCA to acknowledge
completion of a TSI:MSG_SEND .request

[0185] Semantics: TSI:MSG_SEND.response (SC_ID,
MsgOpld, Bufferld, Messagelen, SendStatus)

[0186] Parameters: SC_ID identifies the service connec-
tion. The MsgOpldfield is a handle supplied by the I/O
controller that it uses to correlate this message service
request with a given message service response and to
correlate the entire sequence with a particular I/O transac-
tion. The Bufferld parameter is a handle pointing to the
buffer for which control is being returned to the I/O con-
troller. The Messagelen parameter specifies the amount of
data transmitted successfully. The SendStatus specifies the
result of the send operation. The status codes are as follows:

[0187] When Generated: When the MDS retires the SEND
request from the appropriate channel=s send queue.

[0188] Effect of receipt: Control of the message buffer is
returned to the I/O controller for re-use.

[0189] TSI:MSG_RCV.request

[0190] Function: Generated by the I/O controller to
specify the location in the I/O controller=s memory space to
which the TCA should deliver an inbound message.

[0191] Semantics: TSI:MSG_RCVrequest (SC_ID,
MsgOpld, Bufferld, BufferLen)

[0192] Parameters: SC_ID identifies the service connec-
tion to which this request refers. The MsgOplID field is a
name supplied by the I/O controller that it uses to correlate
this message ser-vice request with a given message service
response and to correlate the entire sequence with a particu-
lar I/O transaction. The BufferID parameter is a handle to a
buffer for which control is being passed to the MDS.

[0193] When Generated: The I/O controller arbitrarily
posts message frames in preparation to receiving inbound
I/O service requests from an initiating client.

[0194] Effect of receipt: The TCA queues a receive
descriptor to the receive work queue of the specified service
connection.

[0195] TSI:MSG_RCV.indicate

[0196] Function: Generated by the TCA to indicate that an
inbound message has been received.

[0197] Semantics: TSI:MSG_RCV.indicate
MsgOpld, RevStatus, Bufferld, MessageLen)

[0198] Parameters: SC_ID identifies the service connec-
tion to which this request refers. The MsgOplID field is a
handle supplied by the I/O controller that it uses to correlate
this message service request with a given message service
response and to correlate the entire sequence with a particu-
lar I/O transaction. The RevStatus specifies the result of the
receive operation and if the message data is valid. The
BufferID parameter points to the buffer containing the
inbound message. The messagel.en parameter specifies the
size of the received message.

[0199] When Generated: The TCA generates this primitive
when a message buffer posted to the receive queue of a
service connection is removed from the receive queue in
response to receipt of an inbound message.

(SC_ID,

US 2004/0107304 Al

[0200] Effect of receipt: The message buffer is returned to
the I/O controller, allowing the I/O controller to schedule the
processing of the received message.

[0201] TSI:DATA_GET.request

[0202] Function: Generated by the I/O controller to per-
form a read from a host=s memory using the specified data
service.

[0203] Semantics: TSLDATA_GET.request (SC_ID,
DataOpld, Datalength, BufferID, RemotetAddress)

[0204] Parameters: SC_ID specifies the service connec-
tion to which this request applies. The DataOpld parameter
is an arbitrary value supplied by the I/O controller for use by
the TCA, which returns it along with the response to the
request in order to correlate the acknowledgment to the
original request. The Datal.ength parameter specifies the
length of data to move. The BufferID parameter specifies the
where the data is to be placed in the I/O Unit. The
RemotetAddress parameter specifies where the data is
located in the host and includes the memory handle.

[0205] When Generated: The I/O controller generates this
primitive whenever it needs to read host memory.

[0206] Effect of receipt: The TCA queues RDMA Read
operation(s) to one or more work queue(s).

[0207] TSI:DATA_PUT.request

[0208] Function: Generated by the I/O controller to per-
form a write to a host=s memory using the specified data
service.

[0209] Semantics: TSI:DATA_PUTrequest (S CID,
DataOpid, DataLength, BufferID, RemoteAddress)

[0210] Parameters: The SC_ID parameter specifies the
service connection to which this request applies. The
DataOpID parameter is an arbitrary value supplied by the
I/O controller for use by the TCA, which returns it along
with the response to the request in order to correlate the
acknowledgement to the original request. The Datal.ength
parameter specifies the length of data to move. The BufferID
parameter specifies where the data resides in the I/O unit.
The RemoteAddress parameter specifies where the data is to
be placed in the remote address space (host memory) and
includes the memory handle. The RemoteAddress parameter
may be in the form of a Virtual Address/Memory Handle
pair, and must have been supplied previously by the remote
host.

[0211] When Generated: The I/O controller generates this
primitive whenever it needs to write data to host memory.

[0212] Effect of receipt: The TCA queues RDMA Write
operation(s) to one or more work queue(s).

[0213] TSI:DATA_GET.response

[0214] Function: Generated by the TCA to inform the I/O
controller that a data operation has completed.

[0215] Semantics: TSI:DATA_GET.response
DataOpid, DataMoveStatus)

(SC_ID,

[0216] Parameters: SC_ID specifies the service connec-
tion to which this response applies. DataOpld is the name
supplied by the I/O controller at the time of the request. This
parameter is furnished to the I/O controller as a service to

Jun. 3, 2004

simplify the mechanism for correlating this response to a
given data transfer request and to a specific I/O operation
such as a particular SCSI read operation. The DataMoveSta-
tus parameter specifies the result of the data movement
operation.

[0217] When Generated: The TCA generates this primitive
whenever it completes a TSI:DATA_GET operation.

[0218] Effect of receipt: Control of the buffer specified in
the original operation is returned to the I/O con-troller.

[0219] TSI:DATA_PUT.response

[0220] Function: Generated by the TCA to inform the I/O
controller that a data operation has completed.

[0221] Semantics: TSI:DATA_PUT.response (SC_ID,
DataOpld, DataMoveStatus) Parameters: SC_ID specifies
the service connection to which this response applies. The
DataOpld parameter is the value supplied by the I/O con-
troller at the time of the request. This parameter is furnished
to the I/O controller as a service to simplify the mechanism
for correlating this response to a given data transfer request
and to a specific I/O operation such as a particular SCSI read
operation. The DataMoveStatus parameter specifies the
result of the data movement operation.

[0222] When Generated: The TCA generates this primitive
whenever it completes a TSI:DATA_PUT operation.

[0223] Effect of receipt: Control of the buffer specified in
the original operation is returned to the I/O con-troller.

[0224] TSI:DATA_GET_LIST.request

[0225] Function: Generated by the I/O controller to per-
form a read from a host=s memory using the specified data
service. This primitive differs from the normal TSI:DAT-
A_GET.request in that this primitive is used to pass a buffer
containing a scatter list. Each element in the scatter list is a
separate DMA object defining a block of data to be fetched
from remote memory and a buffer handle in local memory
to which the block should be written. This primitive allows
the I/O controller to request transfer of a number of blocks
of data each of which may be written to physically discon-
tiguous buffers in the I/O controller=s memory space.

[0226] Semantics: TSLDATA_GET_LIST.request
(SC_ID, DataOpld, ListLength, ListID)

[0227] Parameters: SC_ID specifies the service connec-
tion to which this request applies. The DataOpld parameter
is an arbitrary value supplied by the I/O controller for use by
the TCA, which returns it along with the response to the
request in order to correlate the acknowledgement to the
original request. The ListLength parameter specifies the
length of the scatter list. Each entry in the scatter list
represents a data element (block) to be moved from remote
memory to the I/O controller=s memory space. The ListID
parameter specifies the handle of the buffer containing the
list of elements to be transferred. The TCA uses the
ListLength and ListID parameters to fetch the scatter list
from the I/O controller=s memory space. The scatter list
must be in physically contiguous memory in the I/O con-
troller=s memory space if the TCA=s SHIF layer does not
perform virtual to physical address mapping. If the TCA=s
SHIF layer is capable of performing virtual to physical
address mapping, then the only requirement is that the
scatter list be in virtually contiguous memory.

US 2004/0107304 Al

[0228] When Generated: The I/O controller generates this
primitive whenever it needs to read host memory. This
command allows the I/O controller to fetch multiple blocks
of data from host memory. The sole restriction is that the
blocks of data in host memory must be virtually contiguous.

[0229] Effect of receipt: The TCA queues RDMA Read
operation(s) to one or more work queue(s).

[0230] TSI:DATA_PUT_LIST.request

[0231] Function: Generated by the I/O controller to per-
form a write to a host=s memory using the specified data
service. This primitive allows the I/O controller to direct the
TCA to gather blocks of data from discontiguous locations
in the I/O controller=s memory space for delivery to a
remote location. The only restrictions to this primitive are
that the list, which describes the DMA objects to be trans-
ported must be in physically contiguous memory unless the
TCA=s SHIF layer supports physical to virtual memory
mapping. In that case, the gather list must be in virtually
contiguous memory in the I/O con-troller=s memory space.
For each data block being transferred, the destination must
be to virtually contiguous locations in the remote node=s
memory space.

[0232] Semantics: TSLDATA_PUT_LIST.request
(SC_ID, DataOpld, ListLength, ListID)

[0233] Parameters: SC_ID specifies the service connec-
tion to which this request applies. The DataOpID parameter
is an arbitrary value supplied by the I/O controller, which is
returned by the TCA along with the response primitive in
order to allow the I/O controller to correlate the acknowl-
edgement to the original request and to the underlying I/O
transaction. The Datal.ength parameter specifies the length
of data to move. The ListID parameter is a handle identi-
fying the buffer which contains the gather list. The
RemoteAddress parameter specifies where the data is to be
placed in the remote address space (host memory) and
includes the memory handle. The RemoteAddress parameter
may be in the form of a Virtual Address/Memory Handle
pair, and must have been supplied previously by the remote
host.

[0234] When Generated: The I/O controller generates this
primitive whenever it needs to write data to host memory.

[0235] Effect of receipt: The TCA queues RDMA Write
operation(s) to one or more work queue(s).

[0236] TSI:DATA_GET_LIST.response

[0237] Function: Generated by the TCA to inform the I/O
controller that a data operation has completed.

[0238] Semantics: TSLDATA_GET_LIST.response
(SC_ID, DataOpld, DataMoveStatus)

[0239] Parameters: SC_ID specifies the service connec-
tion to which this response applies. The DataOpID param-
eter is the value supplied by the I/O controller at the time of
the request. This parameter is furnished to the I/O controller
as a service to simplify the mechanism for correlating this
response to a given data transfer request and to a specific I/O
operation such as a particular SCSI read operation. The
DataMoveStatus parameter specifies the result of the data
movement operation.

Jun. 3, 2004

[0240] When Generated: The TCA generates this primitive
whenever it completes a TSLDATA_GET_LIST operation.

[0241] Effect of receipt: Control of the buffer specified in
the original operation is returned to the I/O con-troller.

[0242] TSI:DATA_PUT_LIST.response

[0243] Function: Generated by the TCA to inform the I/O
controller that a data operation has completed.

[0244] Semantics: TSLDATA_PUT_LIST.response
(SC_ID, DataOpld, DataMoveStatus)

[0245] Parameters: SC_ID specifies the service connec-
tion to which this response applies. The DataOpID param-
eter is the value supplied by the I/O controller at the time of
the request. This parameter is furnished to the I/O controller
as a service to simplify the mechanism for correlating this
response to a given data transfer request and to a specific I/O
operation such as a particular SCSI read operation. The
DataMoveStatus parameter specifies the result of the data
movement operation.

[0246] When Generated: The TCA generates this primitive
whenever it completes a TS:DATA_PUT _LIST operation.

[0247] Effect of receipt: Control of the buffer specified in
the original operation is returned to the I/O con-troller.

[0248] Diagnostic Primitives (TBD)

[0249] This set of TSI primitives is used to invoke both
diagnostics internal to the I/O controller and to control the
execution of diagnostics involving interactions between the
I/O controller and the MDS (e.g. loop back tests).

[0250] Maintenance Primitives (TBD)

[0251] This set of TSI primitives is used to both download
firmware to an I/O controller, change configurable settings
on an I/O controller, and change configurable settings on the
TCA.

[0252] Error Behavior

[0253] A target service interface according to the present
invention may include interactions between a TCA and its
associated I/O controllers in the course of responding to and
managing errors that may be detected related to the channel-
based switch fabric. Since the TCA target channel adapter
responds to requests from the I/O controller to move either
a message or data, the target channel adapter bears some
responsibility for attempting to recover from errors that may
arise in the course of transferring a message and/or data. If
the target channel adapters recovery attempt is unsuccessful,
it may report to the I/O controller that the given message or
data transfer did not succeed. Therefore, the TCA may retry
a message transfer operation if a retry is allowed, or may
simply report the error to the I/O controller that the message
could not be transferred successfully. Errors that may be
related to a specific channel (e.g., sequence errors and
channels errors) may be termed isolating errors since they
may be isolated to a particular service connection. A TCA
that detects an isolating error may be responsible for per-
forming recovery activities to attempt to recover from the
error. The error and the recovery activities may be transpar-
ent to the I/O controller. If a target channel adapter has
exhausted its recovery procedures and is unable to correct or
recover from an error, the error may be considered a
non-recoverable error and, therefore, the I/O controller may

US 2004/0107304 Al

be notified accordingly by the target channel adapter. At this
point, the I/O controller may initiate recovery operations of
its own or take appropriate action based on the detected error
and the unsuccessful transfer of the message or data.

[0254] 1Inatarget service interface according to the present
invention it is desirable that whenever possible, as much
communication be preserved between an I/O controller and
a host, even in the presence of errors. This allows for greater
opportunities for error recovery operations. For example, if
an unrecoverable error occurs while a target channel adapter
is attempting to send a message from an I/O controller to the
host, it is desirable to maintain a viable inbound message
path for messages from the host to the I/O controller. This
inbound path may be used by the host, for example, to issue
a reset command in an attempt to recover the use of the I/0
controller.

[0255] A target channel adapter may implement the trans-
fer of messages and data using either of two different
protocols. A target channel adapter may implement the
transfers via an ordered response protocol or an unordered
response protocol. These protocols apply to a specific ser-
vice connection independently and may be established at the
time the service connection is created. An ordered response
protocol may be used in applications where there may be
some degree of interdependence between the operations
posted to a given service connection, which implies a need
for ordering between the operations.

[0256] For example, if it is necessary for a read operation
to complete prior to the execution of the following write
operation, there is an implied ordering relationship between
the read and write operations. On the other hand, for some
applications the order of operations posted to a given service
connection may be unimportant. For example, since the
TCP/IP protocol stack does not rely on a channel-based
switched fabric=s reliable delivery characteristics to guar-
antee delivery of network packets, the loss of one or more
packets may not be considered a failure. Therefore, in these
cases, an unordered response protocol may be used for these
applications.

[0257] The protocol implemented may determine how
specific errors that are detected may be handled. In an
ordered response protocol, since this protocol effects only
operations posted to a given target service interface for a
specific service connection, an error detected during an
outbound message send operation may not effect either the
inbound message receive service or the data transfer service.
If a target channel adapter is implementing an order response
protocol, an unrecoverable error that is detected will cause
the target channel adapter to pause the operation on which
the error occurred. All other operations for the same service
which were posted subsequent to it may also be paused. The
target channel adapter may then purge all subsequent opera-
tions and return a target service interface response primitive
to the I/O controller notifying the I/O controller of the failed
operation.

[0258] FIG. 13 shows an example message send request
queue and message send response queue of a target channel
adapter according to the present invention. The message
send request queue 60 receives inbound target service inter-
face primitives from an I/O controller. These primitives
define messages which are queued inside the message send
request queue 60. Note that in this diagram the target

Jun. 3, 2004

channel adapter 22 has detected an unrecoverable error
during the operation of send request number two. Therefore,
in the response queue 62 the target channel adapter 22 may
send a response status of good for all successful transfers
that occurred before detection of the unrecoverable error,
and send a response status of fail for the message on which
the error was detected (i.c., message (2)). All subsequent
message transfers to the message where an unrecoverable
error was detected may be purged from the send message
response queue 62, and therefore, not sent to the I/O
controller.

[0259] Under ordered response protocol, after the target
channel adapter has received a failure status for an opera-
tion, it will accept no further inbound target service interface
primitives from the I/O controller until it has received a
resync.indicate primitive for the service on which the error
occurred. This primitive may signal to the target channel
adapter that the I/O controller has recognized the failed
operation and understands that any operation subsequent to
it have been lost. After sending the resync primitive, the I/O
controller may not be required to await an acknowledgment
from the target channel adapter. The I/O controller may
immediately begin posting target service interface primi-
tives to the target channel adapter. An I/O controller may
choose one of four actions after sending the resink primitive:
it may choose to resume operations with the failed operation
simply by reposting the failed target service interface primi-
tive; it may choose to skip the failed operation and resume
operations at a different point at the protocol flow; it may
choose to send a message to the initiator indicating the loss
of one or more messages, where this option gives a host the
opportunity to attempt to reset an I/O controller and restart
the associated service connections; or it may issue an unbind
primitive, effectively requesting that the target channel
adapter discontinue the effected service connection. The
choice of the recovery action may be governed solely by the
higher level protocol being implemented by an I/O control-
ler. This gives an I/O controller wide latitude in implement-
ing an error recovery procedure. If the I/O controller chooses
to drop the service connection, the target channel adapter
may purge all operations associated with that particular
service connection, return all associated resources to their
respective free pools, and clear any context associated with
the service connection and return to an idle condition. Any
further inbound packets for any of the channels formerly
associated with that service connection will be dropped.

[0260] When executing an unordered response protocol,
the target channel adapter may always return a target service
interface response primitive for every inbound target service
interface request primitive received. However, only the
effected operation may be allowed to fail. All other opera-
tions on the same service connection are allowed to continue
to execute normally. The target channel adapter may simply
return a target service interface response primitive indicating
which operation failed, while obeying the normal rules
about returning responses in the correct order.

[0261] Two types of errors that may occur on a target
service interface are: the hardware interface may indicate a
transmission error, such as a parity error, in moving a target
service interface primitive between a target channel adapter
and an I/O controller; or a target channel adapter may
receive an unexpected or unrecognized target service inter-
face primitive. For both of these cases the particular service

US 2004/0107304 Al Jun. 3, 2004
16
connection may be considered no longer valid. It may be the
responsibility of the client at the end of the interface which TABLE 1-continued
detects the error to generate an unbind request primitive in
. . TARGET CHANNEL ~ RESPONSE TO
order to destroy the service connection. Any further target ADAPTER UNRECOVERABLE
service interface primitive received by the station detecting ERROR NAME RECOVERY METHOD ERROR

the error may be discarded.

[0262] Errors detected by a target channel adapter may be
classified as a non-isolating error or an isolating error.
Non-isolating errors are errors that render the entire trans-
ferred data unusable such that it is not possible to correlate
the inbound transferred data to any given channel. In these
cases, the target channel adapter may simply drop the
transferred data. No other action may required by the target
channel adapter. Further, no specific recovery action may be
required. However, note that dropped transferred data may
generally cause follow-on errors, which may be isolating
eITorS.

[0263] Isolating errors are errors that may be detected by
a target channel adapter and that may be isolated to a given
channel. Isolating errors may include: sequence errors,
bounds errors, execution errors, and remote access errors.
There may be a number of circumstances that may prevent
a target channel adapter from successfully delivering a
request packet to a host. These circumstances may range
from a local error preventing the target channel adapter from
fetching the request packet from the I/O controllers memory,
to errors detected in the process of transmitting the request
packet, to errors detected in the response to the request
packet.

[0264] Table 1 shows example errors that may prevent a
target channel adapter from delivering an outbound request
packet, and prescribes the target channel adapters recom-
mended response to each. After the target channel adapter
has completed the procedure described in the second column
of Table 1, if the target channel adapter is still unable to
successfully deliver the outbound request message, the
target channel adapter may consider the error unrecoverable
and notify the I/O controller accordingly. A status message
that a target channel adapter may return to an I/O controller
is shown in column 3 of Table 1. An execution error may be
catastrophic, meaning that the remote node to which a target
channel adapter was attempting to transmit the request will
not continue operating, or may be an operator error.

TABLE 1

Bounds FError

Remote Access
Error

Non-catastrophic
Execution Error

Catastrophic
Execution Error

Optional retry, then
mark the error as
unrecoverable

Optional retry, then
mark the error as
unrecoverable

Perform defined
number of retries,
then mark the error

as unrecoverable.
Immediately mark the
corresponding TCA
service as unavailable.

Return response to I/O
controller: status =
failed, outbound
bounds error

Return response to I/O
controller: status =
failed, remote access
error

Return response to I/O
controller: status =
failed, non-catastrophic
execution error

Return response to I/O
controller: status =
failed, catastrophic

ERROR NAME

TARGET CHANNEL
ADAPTER
RECOVERY METHOD

RESPONSE TO
UNRECOVERABLE
ERROR

Outbound Local
Access Error

Inbound Response
Error

Sequence Error

Perform defined
number of retries,
then mark as
unrecoverable
Handle the same as
channel timeout.
Perform defined
number of retries,
then mark as
unrecoverable
Perform defined
number of retries,
then mark the error
as unrecoverable

Return response to I/O
controller: status =
failed, local access
error.

Return response to I/O
controller: status =
failed, error on inbound
response packet.

Return response to I/O
controller: status =
failed, outbound seq
error

Ignore any further execution error
inbound TSI primitives
for that service on that

service connection.

[0265] Outbound local access errors may be errors
detected by a service hardware interface in the process of
attempting to fetch an outbound request packet from an I/O
controller=s local memory space. This may be due to a parity
error detected by the service hardware interface, a time out
on the local access bus, an addressing error, or an invalid
access for cases where the service hardware interface imple-
ments an address translation mechanism. To guard against
incomplete request packets, a target channel adapter may be
required to not begin transmitting any part of the outbound
request packet until the entire request packet has been
fetched from the I/O controllers local memory space. Thus,
the target channel adapter may be required to provide
buffering for at least one complete outbound request packet.
To recover from these errors, a target channel adapter may
retry the local bus access for a number of times. If a service
hardware interface fails to deliver an outbound request
packet after a specific number of retries, the target channel
adapter may consider the error unrecoverable.

[0266] An inbound response packet error suggests that the
target channel adapter was able to isolate the inbound packet
to a given channel and to determine that it is a response
packet, but some other error in the structure of the response
packet invalidates the response. An example of this may be
an inbound response packet with an incorrect transfer data
payload length. For the sake of simplicity these packets may
be simply dropped by a target channel adapter, and handled
in the same manner as a channel timeout.

[0267] A sequence error is an error that suggests that a
target channel adapter received a negative acknowledgment
from the remote end indicating that a packet had been
received out of order. This may generally occur because a
transferred data packet from a previous transferred data
packet had been dropped, or because the packet sequence
number counters on both ends of the transaction had become
unsynchronized. Sequence errors generally may occur with
a low frequency and thus may be considered recoverable by
a target channel adapter. A packet sequence number may be
contained in an inbound negative acknowledge packet that
the remote end had expected to receive. Given that a target

US 2004/0107304 Al

channel adapter may maintain a queue of outbound requests
for a particular channel, the target channel adapter may back
up of the list of outstanding operations posted to this channel
and resend them, beginning with the operation bearing the
remote ends expected packet sequence number. Although
many of these errors may be recoverable it may be possible
that many are not, therefore to prevent endless retrying of
such operations a target channel adapter may be required to
limit itself to a specific number of retry attempts. Following
these retry attempts, a target channel adapter may mark the
error as unrecoverable and return a response to the I/O
controller indicating failure.

[0268] Bounds error on outbound request operations occur
when a target channel adapter received a negative acknowl-
edgment from the remote end indicating that the response
was outside the specific limits of the channels behavior. For
example, if a remote end specified that it could accept no
more than three outstanding read requests at any one time,
then it may signal a bounds error if the target channel adapter
posted a request for a read request in addition to the number
allowed (e.g., three). A bounds error may be considered by
a channel-based switched fabric to be one of a number of
channel errors that may be isolated to a channel, but is not
a sequence error. Bounds errors, in general, indicate a
serious misuse of a channel-based switch fabric, and may
occur, for example, because the target channel adapter may
have mishandled an inbound target service interface primi-
tive, or because the target channel adapter may have lost
track of the number of outstanding read requests, or because
the I/O controller requested immediate data transfer on a
service which does not support it. A target channel adapter
may or may not retry these errors since there may be a low
likelihood of successful recovery of these operations
through retry. Once a target channel adapter is marked in
operation as unrecoverable, it notifies the I/O controller by
returning the proper status and the target service interface
response primitive.

[0269] Remote access error indicates that a remote node
may have been unable to write the packet payload into its
memory. This may occur because the memory token passed
to the remote node by the target channel adapter was invalid,
or because of a page fault in host memory. If the memory
token is invalid, it may be because the memory token, as
passed to an I/O controller by a host I/O driver, was invalid,
or because it was corrupted due to an error in the I/O
controller. In either case, given the low likelihood of success
if the operation is retried, remote access errors may be
considered unrecoverable by a target channel adapter imme-
diately. The target channel adapter may simply inform the
I/O controller of the operation failure and wait for the I/O
controller to recover. The higher level protocol may either
return ending status to the host indicating that an I/O
operation failed, or it may choose to retry the data transfer
operation.

[0270] An execution error indicates that a remote end
encountered an error while attempting to process a request
packet. Execution errors may be further subdivided into
catastrophic errors or operational errors. Both may be con-
sidered execution errors in that the remote site is unable to
fulfil their request. A catastrophic execution error effects all
subsequent requests posted to the same channel. Therefore,
the channel has become unusable and may not be recovered
through retry mechanisms. Catastrophic execution errors

Jun. 3, 2004

may be ones that prevent the host from continuing operation
on the effected channel. Therefore, the corresponding target
channel adapter becomes unavailable. If an I/O controller
believes that the corresponding service, such as an inbound
message send service, is crucial to continue execution of a
higher level protocol, then the I/O controller may elect to
request that the service connection be destroyed. If, on the
other hand, an I/O controller believes that it may continue
operations, but at a degraded level, then it may due so.
However, it may have to discontinue use of the service on
which the error was detected. The I/O controller may
continue to use the other services provided on the service
connection. For example, if a catastrophic execution error
occurred while the target channel adapter was attempting to
perform a write operation, the target channel adapter may
ignore any further primitives posted to the data transfer
service. However, the outbound message send service and
inbound message receive service may continue to operate
normally. Non-catastrophic execution errors may be handled
very much like a sequence error in that the same operation
that caused the error should be retried by the target channel
adapter a specific number of times.

[0271] Tt is noted that the foregoing examples have been
provided merely for the purpose of explanation and are in no
way to be construed as limiting of the present invention.
While the present invention has been described with refer-
ence to a preferred embodiment, it is understood that the
words which have been used herein are words of description
and illustration, rather than words of limitation. Changes
may be made within the purview of the appended claims, as
presently stated and as amended, without departing from the
scope and spirit of the present invention in its aspects.
Although the present invention has been described herein
with reference to particular methods, materials, and embodi-
ments, the present invention is not intended to be limited to
the particulars disclosed herein, rather, the present invention
extends to all functionally equivalent structures, methods
and uses, such as are within the scope of the appended
claims.

What is claimed:
1. A method for interfacing at least one Input/Output (I/O)
controller to a channel-based switched fabric comprising:

providing at least one channel adapter, the at least one
channel adapter allowing connection of the at least one
I/O controller to a channel-based switched fabric, the at
least one channel adapter supporting transferring of at
least one of messages and data between the at least one
I/O controller and at least one initiating unit connected
to the channel-based switched fabric;

providing a physical interface between the at least one 1/0
controller and the at least one channel adapter; and

defining a set of command primitives, the command
primitives communicating information between the at
least one I/O controller and the at least one channel
adapter via the physical interface.
2. The method according to claim 1, wherein the trans-
ferring of messages from one of the at least one initiating
unit to one of the at least one I/O controller includes:

allocating at least one buffer to receive inbound messages,
the allocation performed by the one of the at least one
I/O controller;

US 2004/0107304 Al

passing control of the at least one buffer from the one of
the at least one I/O controller to the channel adapter;

receiving an inbound message, the inbound message
being received by the channel adapter from the one of
the at least one initiating unit;

storing the inbound message in one of the at least one
buffer; and

passing control of the one of the at least one buffer from

the channel adapter to the one of the at least one I/O
controller.

3. The method according to claim 1, wherein the trans-

ferring of messages from one of the at least one I/O

controller to one of the at least one initiating unit includes:

constructing a message in at least one buffer, the con-
structing being performed by the one of the at least one
I/O controller;

passing control of the at least one buffer from the one of
the at least one I/O controller to the channel adapter;

transferring the message to the one of the at least one
initiating unit by the channel adapter; and

passing control of the at least one buffer from the channel
adapter to the one of the at least one I/O controller.
4. The method according to claim 1, wherein the trans-
ferring of data includes:

passing control of at least one block of memory in one of
the at least one initiating unit to one of the at least one
I/O controller;

transferring the data between the one of the at least one
initiating unit and the one of the at least one I/O
controller, the data being transferred one of from the at
least one block of memory and to the at least one block
of memory; and

passing control of the at least one block of memory from
the one of the at least one I/O controller to the one of
the at least one initiating unit.
5. The method according to claim 1, wherein the trans-
ferring of data includes:

passing control of at least one block of memory in one of
the at least one I/O controller to one of the at least one
initiating unit;

transferring the data between the one of the at least one
initiating unit and the one of the at least one I/O
controller, the data being transferred one of from the at
least one block of memory and to the at least one block
of memory; and

passing control of the at least one block of memory from
the one of the at least one initiating unit to the one of
the at least one I/O controller.
6. The method according to claim 1, wherein the trans-
ferring of data includes:

loading the data in at least one buffer in one of the at least
one initiating unit;

sending the data from the buffer to one of the at least one
I/O controller; and

receiving the sent data at the one of the at least one I/O
controller.

Jun. 3, 2004

7. The method according to claim 1, wherein the trans-
ferring of data includes:

loading the data in at least one buffer in one of the at least
one I/O controller;

sending the data from the buffer to one of the at least one
initiating unit; and

receiving the sent data at the one of the at least one

initiating unit.

8. The method according to claim 1, the channel adapter
being a part of an I/O unit.

9. The method according to claim 1, the at least one I/O
controller being a part of an I/O unit.

10. The method according to claim 8, further comprising
providing a unit management service (UMS), the UMS
being a part of the channel adapter, the UMS managing at
least one of initialization operations, discovery operations,
and connection configuration operations related to at least
one of the at least one I/O controller, the channel adapter,
and the I/O unit.

11. The method according to claim 8, further comprising
providing a message and data service (MDS), the MDS
being a part of the channel adapter, the MDS performing the
transferring of at least one of messages and data between the
at least one I/O controller and the at least one initiating unit.

12. The method according to claim 1, wherein the physi-
cal interface is adaptable to the at least one I/O controller.

13. The method according claim 1, wherein the command
primitives is adaptable to the at least one I/O controller and
the transferring of at least one of messages and data.

14. The method according to claim 1, at least one of the
at least one I/O controller, the physical interface, and the at
least one channel adapter detecting errors that occur during
the communicating of information between the at least one
I/O controller and the at least one channel adapter.

15. The method according to claim 1, the at least one
channel adapter detecting errors that occur during the trans-
ferring of at least one of messages and data between the at
least one I/O controller and the at least one initiating unit, the
at least one channel adapter reporting errors detected to the
at least one 1/O controller.

16. A method for interfacing at least one Input/Output
(I/0) controller to an adapter, the at least one I/O controller
being part of an I/O unit, the adapter providing an interface
for the I/O unit to a channel-based switched fabric, com-
prising:

executing initialization operations related to the at least
one 1/O controller and the adapter;

executing discovery operations related to the at least one
I/O controller and the adapter;

establishing a connection configuration between at least
one initiating unit and the I/O unit;

sending an I/O service request from the at least one
initiating unit to the I/O unit;

transferring at least one of messages and data between the
at least one initiating unit and the at least one I/O
controller; and

sending an I/O completion message from the at least one
I/O unit to the at least one initiating unit after comple-
tion of the transferring,

US 2004/0107304 Al

wherein the first sending, transferring, and second sending
occur across a channel-based switched fabric.
17. The method according to claim 16, wherein the I/O
service request comprises:

an 1/0O controller identification for one of the at least one
I/O controller;

an initiating unit identification for one of the at least one
initiating unit; and

at least one pointer to at least one buffer in the one of the
at least one initiating unit, the at least one pointer being
used by the one of the at least one I/O controller to
identify where to one of transfer data to and transfer
data from the at least one buffer.

18. A method for interfacing at least one Input/Output
(1/O) controller to an adapter, the at least one I/O controller
and the adapter being part of an I/O unit, the adapter
providing an interface for the at least one I/O controller to
a channel-based switched fabric, comprising:

providing a physical interface between the at least one I/O
controller and the adapter, the physical interface being
adaptable to the at least one I/O controller;

defining a set of command primitives, the command
primitives communicating commands between the at
least one I/O controller and the adapter, the command
primitives being transferred between the at least one
I/O controller and the adapter via the physical interface;

providing a unit management service (UMS), the UMS
being a part of the adapter, the UMS managing at least
one of initialization operations, discovery operations,
and connection configuration operations related to at
least one of the at least one I/O controller, the adapter,
and the I/O unit; and

providing a message and data service (MDS), the MDS
being a part of the adapter, the MDS supporting trans-
ferring of at least one of messages and data between the
at least one I/O controller and at least one initiating unit
connected to a channel-based switched fabric.
19. The method according to claim 1, the initialization
operations comprising at least one of:

initializing the physical interface between each at least
one I/O controller and the adapter;

naming each at least one I/O controller; and

initializing each at least one I/O controller.
20. The method according to claim 1, the discovery
operations comprising at least one of:

retrieving a unit profile for the I/O unit, the unit profile
information being retrieved by the adapter and sent to
at least one I/O resource manager, each at least one I/O
resource manager being part of the at least one initiat-
ing unit;

retrieving a controller list for the I/O unit, the controller
list being retrieved by the adapter and sent to the at least
one I/O resource manager; and

retrieving an I/O controller profile for each at least one I/O
controller, each I/O controller profile being retrieved by
the adapter and sent to the at least one I/O resource
manager.

Jun. 3, 2004

21. The method according to claim 1, the connection
configuration established by at least one of:

establishing a unit control connection between the 1/O
unit and an I/O resource manager, the I/O resource
manager being part of the at least one initiating unit;
and

creating service connections between at least one driver of
the at least one initiating unit and the at least one 1/O
controller.

22. The method according to claim 21, wherein the unit
control connection is destroyed upon completion of the
creating service connections.

23. The method according to claim 21, the service con-
nections comprising channels in the channel-based switched
fabric, the channels handling the transferring of at least one
of messages and data between the at least one initiating unit
and the at least one I/O controller.

24. The method according to claim 23, the service con-
nections being used for the transferring of messages only.

25. The method according to claim 23, the service con-
nections being used for the transferring of data only.

26. The method according to claim 23, the service con-
nections being used for the transferring of both messages
and data.

27. The method according to claim 21, wherein the
destroying is initiated by the I/O resource manager.

28. The method according to claim 21, wherein the
destroying is initiated by the I/O unit.

29. The method according to claim 28, wherein the
destroying is initiated when the at least one I/O controller
decides to abandon use of the service connections.

30. The method according to claim 28, wherein the
destroying is initiated when the I/O adapter detects errors on
the service connection.

31. The method according to claim 21, wherein the
creating includes:

determining a message queue size of a message queue in
the I/O unit, the message queue capable of buffering
messages transferable between one of the at least one
I/O controller and one of the at least one initiating unit;

determining a data queue size of a data queue in the I/O
unit, the data queue capable of buffering data transfer-
able between the one of the at least one I/O controller
and the one of the at least one initiating unit; and

sending the message queue size, the data queue size, and
an initiating unit identification for the one of the at least
one initiating unit to the one of the at least one I/O
controller.
32. A system for interfacing at least one Input/Output
(I/0) controller to a channel-based switched fabric compris-
ing:

at least one I/O controller;

at least one initiating unit connected to a channel-based
switched fabric;

at least one channel adapter, the at least one channel
adapter allowing connection of the at least one I/O
controller to a channel-based switched fabric, the at
least one channel adapter supporting transferring of at
least one of messages and data between the at least one
I/O controller and the at least one initiating unit; and

US 2004/0107304 Al

a physical interface between the at least one I/O controller
and the at least one channel adapter, the physical
interface allowing transfer of command primitives that
communicate information between the at least one I/O
controller and the at least one channel adapter via the
physical interface.

33. The system according to claim 32, wherein the chan-

nel adapter is part of an I/O unit.

34. The system according to claim 32, the channel adapter
further comprising a unit management service (UMS), the
UMS managing at least one of initialization operations,
discovery operations, and connection configuration opera-
tions related to at least one of the at least one I/O controller
and the adapter.

35. The system according to claim 32, the channel adapter
further comprising a message and data service (MDS), the
MDS performing the transferring of at least one of messages
and data between the at least one I/O controller and at least
one initiating unit.

36. An Input/Output (I/O) unit comprising:

at least one 1/O controller;

at least one channel adapter, the at least one channel
adapter allowing connection of the at least one I/O
controller to a channel-based switched fabric, the at

20

Jun. 3, 2004

least one channel adapter supporting transferring of at
least one of messages and data between the at least one
I/O controller and at least one initiating unit connected
to a channel-based switched fabric; and

a physical interface between the at least one I/O controller
and the at least one channel adapter, the physical
interface allowing transfer of command primitives that
communicate information between the at least one I/O
controller and the at least one channel adapter via the
physical interface.

37. The unit according to claim 36, the channel adapter
further comprising a unit management service (UMS), the
UMS managing at least one of initialization operations,
discovery operations, and connection configuration opera-
tions related to at least one of the at least one I/O controller
and the adapter.

38. The unit according to claim 36, the channel adapter
further comprising a message and data service (MDS), the
MDS performing the transferring of at least one of messages
and data between the at least one I/O controller and at least
one initiating unit.

