wo 2015/118376 A1]I ¥ 00000 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/118376 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

13 August 2015 (13.08.2015) WIPOIPCT
International Patent Classification:
GO6F 11/07 (2006.01)
International Application Number:
PCT/IB2014/003167

International Filing Date:
14 December 2014 (14.12.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/937,741 10 February 2014 (10.02.2014) US
14/522,520 23 October 2014 (23.10.2014) US

Applicant: VIA ALLIANCE SEMICONDUCTOR CO.,
LTD. [CN/CN]; Room 301, No.2537, Jinke Road,
Zhangjiang Hi-Tech Park, Shanghai, 201203 (CN).

Inventors: HENRY, Glenn, G.; 411 Lake Cliff Trail, Aus-
tin, TX 78746 (US). PARKS, Terry; #6 Carriage House
Lane, Austin, TX 78737 (US). HOOKER, Rodney, E.;
12632 Calistoga Way, Austin, TX 78732 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: PROCESSOR THAT RECOVERS FROM EXCESSIVE APPROXIMATE COMPUTING ERROR

FIG. 10

(57) Abstract: A processor includes a stor-
age configured to receive a snapshot of a
state of the processor prior to performing a
set of computations in an approximating
manner. The processor also includes an in-

APPROXIMATING CODE PATH) 1002

SPECIFY APPROXIMATION POLICY AND ALTERNATE CODE PATH (E.G., NON-

dicator that indicates an amount of error
accumulated while the set of computations

v

is performed in the approximating manner.

TAKE SNAPSHOT OF CURRENT PROCESSOR STATE 1004

| When the processor detects that the

&

amount of error accumulated has exceeded

<

A 4

an error bound, the processor is configured
to restore the state of the processor to the

PERFORM APPROXIMATE COMPUTATION USING APPROXIMATION POLICY AND
GENERATE APPROXIMATE RESULT AND APPROXIMATE CUMULATIVE ERROR OF
RESULT BASED ON ERROR VALUE OF SOURCE REGISTERS AND ERROR

INTRODUCED BY APPROXIMATE CALCULATION 1006

snapshot from the storage.

v

WRITE CUMULATIVE ERROR TO DESTINATION REGISTER ERRCR

1008

ERROR BOUND EXCEEDED? 1012

NO

APPROXIMATION 1014

RESTORE PROCESSOR STATE TO SNAPSHOT AND RE-RUN WITHOUT

WO 2015/118376 PCT/IB2014/003167

1

PROCESSOR THAT RECOVERS FROM EXCESSIVE APPROXIMATE

COMPUTING ERROR
by
G. Glenn Henry

Terry Parks

Rodney E. Hooker

CROSS REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims priority to U.S. Non-Provisional Application No.
14/522,520, filed 10/23/2014, which claims priority based on U.S. Provisional
Application, Serial No. 61/937,741, filed 02/10/2014, entitted PROCESSOR THAT
PERFORMS APPROXIMATE COMPUTING INSTRUCTIONS; PROCESSOR THAT
RECOVERS FROM EXCESSIVE APPROXIMATE COMPUTING ERROR;
PROCESSOR WITH APPROXIMATE COMPUTING FUNCTIONAL UNIT, which is

hereby incorporated by reference in its entirety.
BACKGROUND

[0002] There has been a considerable amount of theoretical work in the arca of
approximate computing. Approximate computing attempts to perform computations in a
manner that reduces power consumption in exchange for potentially reduced accuracy.
Although approximate computing has been a favorite topic of academia, little has been
produced regarding how to use approximate computing in a commercially viable

processor.
BRIEF SUMMARY

[0003] In one aspect the present invention provides a processor. The processor includes

a storage configured to receive a snapshot of a state of the processor prior to performing

WO 2015/118376 PCT/IB2014/003167

2

a set of computations in an approximating manner. The processor also includes an
indicator that indicates an amount of error accumulated while the set of computations is
performed in the approximating manner. When the processor detects that the amount of
error accumulated has exceeded an error bound, the processor is configured to restore
the state of the processor to the snapshot from the storage.

[0004] In another aspect, the present invention provides a method for operation on a
processor. The method includes taking a snapshot of a state of the processor prior to
performing a set of computations in an approximating manner, determining an indicator
of an amount of error accumulated while the set of computations is performed in the
approximating manner, and restoring the state of the processor to the snapshot when the
processor detects that the amount of error accumulated has exceeded an error bound.
[0005] In yet another aspect, the present invention provides a computer program product
encoded in at least one non-transitory computer usable medium for use with a computing
device, the computer program product comprising computer usable program code
embodied in said medium for specifying a processor. The computer usable program
code includes first program code for specifying a storage configured to receive a
snapshot of a state of the processor prior to performing a set of computations in an
approximating manner. The computer usable program code also includes second
program code for specifying an indicator that indicates an amount of error accumulated
while the set of computations is performed in the approximating manner. When the
processor detects that the amount of error accumulated has exceeded an error bound, the
processor is configured to restore the state of the processor to the snapshot from the

storage.
BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIGURE 1 is a block diagram illustrating an embodiment of a processor.
[0007] FIGURE 2 is block diagrams illustrating three embodiments of the
approximating functional units of Figure 1.

[0008] FIGURE 3 is a block diagram illustrating approximation instructions.

WO 2015/118376 PCT/IB2014/003167

3

[0009] FIGURE 4 is a flowchart illustrating operation of the processor of Figure 1
according to one embodiment.

[0010] FIGURE 5 is a flowchart illustrating operation of the processor of Figure 1
within a computer system.

[0011] FIGURE 6 is a block diagram illustrating three different computing systems.
[0012] FIGURE 7 is a flowchart illustrating operation of the systems of Figure 6.

[0013] FIGURE 8 is a flowchart illustrating a process for the development of software
to run on an approximate computing-aware processor.

[0014] FIGURE 9 is a flowchart illustrating an alternate process for the development of
software to run on an approximate computing-aware processor.

[0015] FIGURE 10 is a flowchart illustrating operation of the processor of Figure 1 to
run a program that performs approximate computations.

[0016] FIGURE 11 is a flowchart illustrating in greater detail operation of block 1014 of
Figure 10 according to one embodiment.

[0017] FIGURE 12 is a flowchart illustrating in greater detail operation of block 1014 of

Figure 10 according to an alternate embodiment.
DETAILED DESCRIPTION OF THE EMBODIMENTS

[0018] Embodiments are described in which a processor performs approximate
computations. Approximate computations occur when a computation is performed with
a degree of accuracy that is less than the full accuracy that may be specified by the
instruction set architecture of the processor.

[0019] Referring now to Figure 1, a block diagram illustrating an embodiment of a
processor 100 is shown. The processor 100 comprises a programmable data processor
that performs stored instructions, such as a central processing unit (CPU) or a graphics
processing unit (GPU). The processor 100 includes an instruction cache 102; an
instruction translator 104 coupled to the instruction cache 102; one or more
approximating functional units 106 coupled to receive microinstructions from the
instruction translator 104; architectural registers 108 coupled to provide instruction

operands 166 to the approximating functional units 106; an approximation control

WO 2015/118376 PCT/IB2014/003167

4

register 132 coupled to the approximating functional units 106; a data cache memory
138 coupled to the approximating functional units 106; and a snapshot storage 134
coupled to the approximating functional units 106. The processor 100 may also include
other units, for example, a renaming unit, instruction scheduler and/or reservation
stations may be employed between the instruction translator 104 and the approximating
functional units 106 and a reorder buffer may be employed to accommodate out-of-order
instruction execution.

[0020] The instruction cache 102 caches architectural instructions 174 fetched from
memory and performed by the processor 100. The architectural instructions 174 may
include approximate computing instructions, such as embodiments of approximate
computing instructions 399 described with respect to Figure 3. The approximate
computing instructions 399 control the approximate computing policies of the processor
100, namely, whether the approximating functional units 106 perform computations with
a full degree of accuracy or with less than a full degree of accuracy and the degree less
than the full degree. The approximate computing instructions 399 also control the
clearing of an error amount associated with each of the general purpose registers of the
processor 100, as described herein. Preferably, the processor 100 includes other
functional units that are not approximating. In one embodiment, the architectural
instructions 174 substantially conform to the x86 instruction set architecture (ISA)
modified to include embodiments of the approximate computing instructions 399
described herein. Other embodiments are contemplated in which the ISA of the
processor 100 is other than the x86 ISA.

[0021] The instruction translator 104 receives the architectural instructions 174 from the
instruction cache 102. The instruction translator 104 includes an instruction decoder that
decodes the architectural instructions 174 and translates them into microinstructions.
The microinstructions are defined by a different instruction set than the architectural
instruction set, namely the microarchitectural instruction set. The microinstructions
implement the architectural instructions 174.

[0022] Preferably, the instruction translator 104 also includes microcode 136 that

comprises microcode instructions, preferably stored in a read-only memory of the

WO 2015/118376 PCT/IB2014/003167

5

processor 100. In one embodiment, the microcode instructions are microinstructions. In
an alternate embodiment, the microcode instructions are translated into
microinstructions by a micro-translator. The microcode 136 implements a subset of the
architectural instructions 174 of the processor 100 ISA that are not directly translated
into microinstructions by a programmable logic array of the instruction translator 104.
Additionally, the microcode 136 handles microarchitectural exceptions, such as are
generated when the cumulative error bound generated by approximate computations
exceeds an error bound, according to one embodiment.

[0023] The architectural registers 108 provide instruction (e.g., microinstruction)
operands 166 to the approximating functional units 106 and receive the results generated
by the approximating functional units 106, preferably via a reorder buffer (not shown).
Associated with each of the architectural registers 108 is error storage 109 that holds an
indication of an amount of error in the result stored in the associated register 108. Each
time an approximating functional unit 106 generates a result 164 (which is written to an
architectural register 108), the approximating functional unit 106 also generates an
indication of the amount error 168 associated with the result 164 that has accumulated
due to approximating computations. The error 168 is written to the error storage 109
associated with the destination register 108. Furthermore, cach time a register 108
provides an operand to an approximating functional unit 106, the associated error
storage 109 provides to the approximating functional unit 106 the error 162 associated
with the operand. This enables the approximating functional unit 106 to accumulate
both the error of the input operands 166 of the computation and the error introduced by
the approximating functional unit 106 when performing the approximate computation.
[0024] The snapshot storage 134 holds a snapshot of the state of the processor 100.
Before the processor 100 begins to perform approximate computations, it writes its state
to the snapshot storage 134 so that if the accumulated error of a result of an approximate
computation exceeds an error bound, the processor 100 may restore its state from the
snapshot 134 and re-perform the computations without approximation, as described in
more detail below according to one embodiment. In one embodiment, the snapshot

storage 134 comprises a private memory of the processor 100. Preferably, the snapshot

WO 2015/118376 PCT/IB2014/003167

6

134 includes the address of the first instruction in a set of instructions that perform
approximate computations. In an embodiment (e.g., Figure 10) in which the microcode
136 causes re-execution of the set of instructions but without approximation, the
microcode 136 causes a branch to the address of the first instruction held in the snapshot
134.

[0025] The data cache 138 caches data from system memory locations. In one
embodiment, the data cache 138 is a hierarchy of cache memories that includes a first-
level data cache and a second level cache that backs the instruction cache 102 and the
first-level cache. In one embodiment, the program that employs the approximate
computations must insure that its data does not overflow the data cache 138 if it is to
enjoy the recovery after exceeding the error bound feature provided by the processor
100.

[0026] In one embodiment, the approximation control register 132 holds information
that specifies the approximation policy 176 for the processor 100 that is provided to the
approximating functional units 106. Preferably, the approximation control register 132
includes an approximation flag, an approximation amount, and an error bound (or error
threshold). The approximation flag indicates whether computations performed by the
approximating functional units 106 should be full accuracy computations or approximate
computations, i.e., in full accuracy mode or approximate computation mode (or
approximating mode). The approximation amount tells the approximating functional
units 106 the degree of accuracy less than the full degree they may employ to perform
their approximate calculations. The error bound specifies the amount of accumulated
error 168 that may be tolerated in a result 164 of an approximate computation, and
beyond which the processor 100 signals that the error bound has been exceeded,
preferably so that the computations may be performed again without approximation. In
one embodiment, the approximating functional units 106 perform computations
according to the approximation policy stored in the approximation control register 132.
In an alternate embodiment, each instruction specifies the approximation policy to the

approximating functional units 106, such as in a prefix. In one embodiment, the

WO 2015/118376 PCT/IB2014/003167

7

approximation control register 132 is writable by an instruction of the instruction set
architecture of the processor 100.

[0027] The approximating functional units 106 are capable of selectively performing
normal computations (i.e., with the full degree of accuracy specified by the instruction
set architecture) or approximate computations (i.e., with less than the full degree of
accuracy specified by the instruction set architecture). Each of the approximating
functional units 106 is hardware or a combination of hardware and microcode within the
processor 100 that performs a function associated with the processing of an instruction.
More specifically, the hardware or combination of hardware and microcode performs a
computation to generate a result. Examples of functional units include, but are not
limited to, execution units, such as an integer unit, a single issue multiple data (SIMD)
unit, a multimedia unit, and a floating point unit, such as a floating point multiplier,
floating point divider and floating point adder. Advantageously, the approximating
functional units 106 consume less power when performing approximate computations
than when performing normal computations. Embodiments of the approximating

functional units 106 are described in more detail with respect to Figure 2.

[0028] Referring now to Figure 2, block diagrams illustrating three embodiments of the
approximating functional units 106 of Figure 1 are shown. The three embodiments are
an approximating floating point multiplier 106A, an approximating transcendental
function computation unit 106B, and an approximating divider 106C.

[0029] The approximating floating point multiplier 106A receives input operands 166
from the registers 108 and generates the result 164 of Figure 1. The approximating
floating point multiplier 106A includes gates 202 that perform multiplication on the
most significant bits of the input operands 166 and gates 204 that perform multiplication
on the least significant bits of the input operands 166. The approximating floating point
multiplier 106A also includes power control logic 206 that controls the selective
provision of power to the least significant bit multiplication gates 204 based on the
approximation policy 176. For example, if the approximation mode is full accuracy, the

power control 206 causes power to be provided to the transistors of the least significant

WO 2015/118376 PCT/IB2014/003167

8

bit multiplication gates 204; whereas, if the approximation mode is less than the full
accuracy, the power control 206 causes power not to be provided to the transistors of the
least significant bit multiplication gates 204. In one embodiment, the least significant bit
multiplication gates 204 are grouped such that the power control 206 powers off the
gates associated with the multiplication of lesser or fewer of the least significant bits
based on the approximation amount indicated in the approximation policy 176.
Preferably, the approximating floating point multiplier 106A is configured such that
intermediate results of the least significant bit multiplication gates 204 are provided to
the most significant bit multiplication gates 202 (e.g., carries), and when the least
significant bit multiplication gates 204 are powered-off in approximate computation
mode, default values (e.g., zeroes) are provided as the intermediate results to the most
significant bit multiplication gates 202.

[0030] Generally speaking, the approximating multiplier 106A is capable of multiplying
N bits of each of two factors 166, where N bits is the full accuracy specified by the
instruction set architecture. However, the approximating multiplier 106A is also capable
of multiplying fewer than the N bits of each of the two factors 166 to generate a less
accurate result 164 than the full accuracy. Preferably, the multiplier excludes M of the
least significant bits of the factors 166 when performing the multiplication, where M is
less than N. For example, assume the mantissas of the factors 166 are each 53 bits, then
the transistors of the gates 204 of the approximating multiplier that would normally be
used in the multiplication of the lower N bits of the 53 bits of the factors 166 are turned
off such that the lower M bits of the factors 166 are not included in the approximate
multiply, where the number of bits M is specified in the approximation policy, ¢.g., in
the approximation control register 132. In this manner, the approximating multiplier
106A potentially uses less power in the approximating mode than in the full accuracy
mode because it may turn off transistors that would normally be used to multiply the
excluded bits. Preferably, the number of excluded bits M is quantized such that only a
limited number of values of M may be specified by the approximation policy in order to

reduce the complexity of the power gating logic 206.

WO 2015/118376 PCT/IB2014/003167

9

[0031] The approximating transcendental function unit 106B receives input operands
166 from the registers 108 and generates the result 164 of Figure 1. The approximating
transcendental function computation unit 106B includes transcendental computation
logic 214 that performs transcendental functions on the input operands 166 to generate
the result 164 based on a polynomial. The polynomial is selected from a mux 216 that
selects either a high order polynomial 212A or a low order polynomial 212B based on a
select control input from the computation policy 176, such as the approximation mode.
That is, the mux 216 selects the high order polynomial 212A when the approximating
mode is full accuracy and selects the low order polynomial 212B when the
approximating mode is less than the full accuracy. Generally speaking, the
approximating transcendental function computation unit 106B uses a polynomial of
order N to perform transcendental functions with full accuracy and uses a polynomial of
order M, where M is less than N, to perform transcendental functions with less than the
full accuracy, and where M is specified by the approximation policy. Advantageously,
by employing a lower order polynomial to perform the transcendental function
computations when in approximating mode, the approximating transcendental function
computation unit 106B may consume less power and perform better than when operating
in full accuracy mode. This is because employing a lower order polynomial requires
fewer multiplies and adds than a higher order polynomial.

[0032] The approximating divider 106C receives input operands 166 from the registers
108 and generates the result 164 of Figure 1. The approximating divider 106C includes
dividing logic 222 and iteration control logic 224. The dividing logic 222 performs a
division computation on the input operands 166 to generate an intermediate result 164
and an indication 226 of the accuracy of the intermediate result 164 during a first
iteration. The intermediate result 164 is fed back as an input to the dividing logic 222,
and the accuracy indication 226 is provided to iteration control logic 224. On
subsequent iterations, the dividing logic 222 performs a division computation on the
input operands 166 and intermediate result 164 of the previous iteration to generate
another intermediate result 164 and an indication 226 of the accuracy of the intermediate

result 164 during the present iteration, and the intermediate result 164 is fed back as an

WO 2015/118376 PCT/IB2014/003167

10

input to the dividing logic 222, and the accuracy indication 226 is provided to iteration
control logic 224. The iteration control 224 monitors the accuracy 226 and stops the
iterating once the accuracy 226 has reached an acceptable level indicated in the
approximation policy 176. Advantageously, by performing fewer iterations in exchange
for less than the full accuracy when the approximation policy indicates approximation
mode, a reduction in power consumption may be accomplished by the approximating
divider 106C.

[0033] In one embodiment, each of the approximating functional units 106 includes a
lookup table that outputs the amount of error 168 associated with the result 164
generated by the approximating functional unit 106 based on the input error 162 and
approximating amount of the approximation policy. Preferably, the amount of error 168
output by the lookup table is itself an approximation that specifies a maximum amount
of error associated with the result 164.

[0034] In one embodiment, the approximating functional units 106 include an
instruction decoder that decodes microinstructions generated by the instruction translator
104 when translating the approximating instructions 399 in order to determine all or a
portion of the approximation policy rather than, or in addition to, the approximation
policy provided by the approximation control register 132. In another embodiment, the
instruction decoder decodes the approximating instructions 399 themselves, e.g., in an
embodiment in which the instruction translator 104 simply decodes instructions 174 for
the purpose of routing to the appropriate approximating functional unit 106, and the
approximating functional unit 106 decodes the instructions 174 to determine the

approximation policy.

[0035] Referring now to Figure 3, a block diagram illustrating approximation
instructions 399 is shown. More specifically, the approximation instructions include a
computation instruction with an approximation prefix 300, an approximate computation
instruction 310, a computation instruction with a start approximation prefix 320, a start

approximation instruction 330, a computation instruction with a stop approximation

WO 2015/118376 PCT/IB2014/003167

11

prefix 340, a stop approximation instruction 350, a computation instruction with a clear
error prefix 360, a clear error instruction 370, and a load register instruction 380.

[0036] The computation instruction with an approximation prefix 300 includes an
opcode and other fields 304 such as generally found in the instruction set of the
processor 100. The opcode 304 may specify any of various computations that may be
performed by the approximating functional units 106, such as addition, subtraction,
multiplication, division, fused multiply add, square root, reciprocal, reciprocal square
root, and transcendental functions, for example, that are susceptible to generating a
result that has less accuracy than the full accuracy with which the approximating
functional units 106 are capable of performing the computation, i.e., according to the full
accuracy mode. The computation instruction with an approximation prefix 300 also
includes an approximation prefix 302. In one embodiment, the approximation prefix
302 comprises a predetermined value whose presence within the stream of instruction
bytes and preceding the opcode and other fields 304 instructs the processor 100 to
perform the specified computation in an approximating manner. In one embodiment, the
predetermined value is a value not already in use as a prefix value in the ISA, such as the
x86 ISA. In one embodiment, a portion of the approximation prefix 302 specifies the
approximation policy, or at least a portion thereof, such as the approximation amount
and/or error bound, to be employed in the computation specified by the opcode and other
fields 304. In another embodiment, the approximation prefix 302 simply indicates that
the computation specified by the opcode and other fields 304 should be performed
approximately, and the approximation policy is taken from the overall approximation
policy previously communicated by the to the processor 100, which may be stored, for
example, in a register, such as the approximation control register 132. Other
embodiments are contemplated in which the approximation policy for the instruction
300 is derived from a combination of the prefix 302 and the overall approximation
policy.

[0037] In an alternate embodiment, the approximate computation instruction 310
includes an approximate computation opcode and other fields 312. The approximate

computation opcode value is distinct from other opcode values in the instruction set of

WO 2015/118376 PCT/IB2014/003167

12

the processor 100. That is, the approximate computation opcode value is distinct from
other opcode values that normally (e.g., in the absence of a prefix, such as
approximation prefix 302) instruct the processor 100 to perform a computation with full
accuracy. Preferably, the instruction set includes multiple approximate computation
instructions 310, one for each type of computation, e.g., one for addition with its own
distinct opcode value, one for subtraction with its own distinct opcode value, and so
forth.

[0038] The computation instruction with start approximation prefix 320 includes an
opcode and other fields 314 such as generally found in the instruction set of the
processor 100. The opcode 314 may specify any of various computations, or it may be a
non-computation instruction. The computation instruction with start approximation
prefix 320 also includes a start approximation prefix 322. In one embodiment, the start
approximation prefix 322 comprises a predetermined value whose presence within the
stream of instruction bytes and preceding the opcode and other fields 324 instructs the
processor 100 to perform subsequent computations (including the computation specified
in the instruction 320, if present) in an approximating manner until instructed to stop
performing computations in an approximating manner (e.g., by instructions 340 and 350
described below). In one embodiment, the predetermined value is a value not already in
use as a prefix value in the ISA, such as the x86 ISA, and is distinct from the other
prefixes described herein (e.g., approximation prefix 302, stop approximation prefix 342
and clear error prefix 362). Embodiments of the start approximation prefix 322 are
similar to the approximation prefix 302 in that a portion of the start approximation prefix
322 may specify the approximation policy, or simply indicate that subsequent
computations should be performed approximately using the overall approximation
policy, or a combination thereof.

[0039] In an alternate embodiment, the start approximation instruction 330 includes a
start approximation opcode 332. The start approximation instruction 330 instructs the
processor 100 to perform subsequent computations in an approximating manner until
instructed to stop performing computations in an approximating manner. Embodiments

of the start approximation opcode 332 are similar to the approximation prefix 302

WO 2015/118376 PCT/IB2014/003167

13

regarding specification of the approximation policy. The start approximation opcode
332 value is distinct from other opcode values in the instruction set of the processor 100.
[0040] The computation instruction with stop approximation prefix 340 includes an
opcode and other fields 344 such as generally found in the instruction set of the
processor 100. The opcode 344 may specify any of various computations, or it may be a
non-computation instruction. The computation instruction with stop approximation
prefix 340 also includes a stop approximation prefix 342. In one embodiment, the stop
approximation prefix 342 comprises a predetermined value whose presence within the
stream of instruction bytes and preceding the opcode and other fields 344 instructs the
processor 100 to stop performing computations (including the computation specified in
the instruction 340, if present) in an approximating manner (until instructed to perform
computations in an approximating manner, ¢.g., by instructions 300, 310, 320 or 330).
In one embodiment, the predetermined value is a value not already in use as a prefix
value in the ISA, such as the x86 ISA, and is distinct from the other prefixes described
herein.

[0041] In an alternate embodiment, the stop approximation instruction 350 includes a
stop approximation opcode 352. The stop approximation instruction 350 instructs the
processor 100 to stop performing computations in an approximating manner (until
instructed to perform computations in an approximating manner). The stop
approximation opcode 352 value is distinct from other opcode values in the instruction
set of the processor 100. In one embodiment, the generation of an exception by the
processor 100 also instructs the processor 100 to stop performing computations in an
approximate manner, i.¢., causes the approximation mode to be set to full accuracy.
[0042] The computation instruction with clear error prefix 360 includes an opcode and
other fields 364 such as generally found in the instruction set of the processor 100. The
opcode 364 may specify any of various computations. The computation instruction with
clear error prefix 360 also includes a register field 366 that specifies a destination
register to which the processor 100 writes the result of the computation. The
computation instruction with clear error prefix 360 also includes a clear error prefix 362.

In one embodiment, the clear error prefix 362 comprises a predetermined value whose

WO 2015/118376 PCT/IB2014/003167

14

presence within the stream of instruction bytes and preceding the opcode and other fields
364 instructs the processor 100 to clear the error 109 associated with the register 108
specified by the register field 366. In one embodiment, the predetermined value is a
value not already in use as a prefix value in the ISA, such as the x86 ISA, and is distinct
from the other prefixes described herein.

[0043] In an alternate embodiment, the clear error instruction 370 includes a clear error
opcode 372 and a register field 376. The clear error instruction 370 instructs the
processor 100 to clear the error 109 associated with the register 108 specified by the
register field 376. The clear error opcode 372 value is distinct from other opcode values
in the instruction set of the processor 100.

[0044] The load register and clear error instruction 380 includes a load register opcode
382, memory address operand fields 384 and a register field 386. The opcode 382
instructs the processor 100 to load data from a memory location specified by the
memory address operands 384 into the destination register specified in the register field
386. The opcode 382 also instructs the processor 100 to clear the error 109 associated
with the register 108 specified by the register field 386.

[0045] In one embodiment, the clear error instruction 370 clears the error 109 for all
registers 108, rather than a single register 108. For example, the register field 376 value
may a predetermined value to indicate to clear all registers 108. A similar embodiment
is contemplated with respect to the computation instruction with a clear error prefix 360
and the load register and clear error instruction 380.

[0046] In one embodiment, the instruction translator 104 maintains a flag that indicates
whether the processor 100 is in approximate computation mode or full accuracy mode.
For example, the instruction translator 104 may set the flag in response to encountering a
start approximation instruction 330 or a computation instruction with start
approximation prefix 320 and may clear the flag in response to encountering a stop
approximation instruction 350 or a computation instruction with stop approximation
prefix 340. Each microinstruction includes an indicator that indicates whether the
computation specified by the microinstruction should be performed with full accuracy or

in an approximate manner. When the instruction translator 104 translates an

WO 2015/118376 PCT/IB2014/003167

15

architectural instruction 166 into one or more microinstructions, the instruction
translator 104 populates the indicator accordingly based on the current value of the mode
flag. Alternatively, in the case of an architectural approximate computation instruction
such as 300 or 310, the instruction translator 104 populates the indicator of the
microinstruction according to the prefix 302 or opcode 312, respectively. In yet another
embodiment, the indicator of the microinstruction comprises a microinstruction opcode
(distinct within the microarchitectural instruction set) that specifies an approximate

computation.

[0047] Referring now to Figure 4, a flowchart illustrating operation of the processor 100
of Figure 1 according to one embodiment is shown. Flow begins at block 402.

[0048] At block 402, the processor 100 decodes an architectural instruction 166. Flow
proceeds to decision block 404.

[0049] At decision block 404, the processor 100 determines whether the instruction 166
1S a start approximation instruction, e.g., 320 or 330 of Figure 3. If so, flow proceeds to
block 406; otherwise, flow proceeds to decision block 414.

[0050] At block 406, the processor 100 performs subsequent computations according to
the approximation policy (e.g., specified in the start approximation instruction, the
approximation policy specified in the approximation control register 132, or a
combination thereof) until it encounters a stop approximation instruction, e.g., 340 or
350 of Figure 3. Flow ends at block 406.

[0051] At decision block 414, the processor 100 determines whether the instruction 166
1S a stop approximation instruction, e.g., 340 or 350 of Figure 3. If so, flow proceeds to
block 416; otherwise, flow proceeds to decision block 424.

[0052] At block 416, the processor 100 stops performing computations in an
approximate manner and instead performs them with full accuracy (until it encounters a
start approximation instruction, e.g., 320 or 330 or approximate computation instruction

300 or 310 of Figure 3). Flow ends at block 416.

WO 2015/118376 PCT/IB2014/003167

16

[0053] At decision block 424, the processor 100 determines whether the instruction 166
is a clear error instruction, ¢.g., 360 or 370 or 380 of Figure 3. If so, flow proceeds to
block 426; otherwise, flow proceeds to decision block 434.

[0054] At block 426, the processor 100 clears the error 109 associated with the register
108 specified in the register field 366/376/386. Flow ends at block 426.

[0055] At decision block 434, the processor 100 determines whether the instruction 166
is a computational instruction 166. If so, flow proceeds to block 452; otherwise, flow
proceeds to block 446.

[0056] At block 446, the processor 100 performs the other instruction 166, i.c., the
instruction of the instruction set architecture other than the computational instructions
399. Flow ends at block 446.

[0057] At block 452, the relevant approximating functional unit 106 receives the
computational instruction 166 and decodes it. Flow proceeds to decision block 454.
[0058] At decision block 454, the approximating functional unit 106 determines whether
the approximation policy is approximating or full accuracy. If approximating, flow
proceeds to block 456; if full accuracy, flow proceeds to block 458.

[0059] At block 456, the approximating functional unit 106 performs the computation in
an approximating manner, ¢.g., as described herein, such as above with respect to Figure
2. Flow ends at block 456.

[0060] At block 458, the approximating functional unit 106 performs the computation in

a non-approximating mannet, i.c., with full accuracy. Flow ends at block 458.

[0061] Referring now to Figure 5, a flowchart illustrating operation of the processor 100
of Figure 1 within a computer system is shown. Flow begins at block 502.

[0062] At block 502, a program (e.g., operating system or other program) executing on
the processor 100 determines an approximation policy to be used by the processor 100 to
perform computations. Preferably, the approximation policy specifies the tolerable error
bound and the approximation amount in the computations themselves, i.e., the amount of
approximation cach approximating functional unit 106 should employ in each

approximated calculation. The program determines the approximation policy based, at

WO 2015/118376 PCT/IB2014/003167

17

least in part, on the current system configuration. For example, the program may detect
whether the computer system is operating from battery power or from an effectively
limitless source, such as A/C wall power. Additionally, the program may detect the
hardware configuration of the computer system, such as the display size and speaker
quality. The program may consider such factors in determining the desirability and/or
acceptability of performing certain computations approximately rather than with full
accuracy, such as audio/video-related computations. Flow proceeds to block 504.

[0063] At block 504, the program provides the approximation policy to the processor
100. In one embodiment, the program writes the approximation policy to the
approximation control register 132. In one embodiment, the program executes an x86
WRMSR instruction to provide the processor 100 with the new approximation policy.
Flow ends at block 504.

[0064] Preferably, when the system configuration changes, e.g., the system gets plugged
into a wall socket or unplugged from a wall socket, or plugged into an external monitor
of different size, then the program detects the configuration change and changes the
approximation policy at block 502 and communicates the new approximation policy to

the processor 100 at block 504.

[0065] Referring now to Figure 6, a block diagram illustrating three different computing
systems is shown. Each of the systems includes an approximation computation-capable
processor 100 of Figure 1, a display 606, and a buffer containing data 604 upon which
the processor 100 performs computations to render pixels to be shown on the display
606 using, for example, the approximate computation instructions 399 of Figure 3.

[0066] The first system is a desktop computer 602A that includes a large display 606A
(e.g., 24-inch or larger) and receives power from an essentially limitless power source,
e.g., a wall outlet. The second system is a laptop computer 602B that includes a medium
size display 606B (e.g., 15-inch) and receives power either from a wall outlet or from a
battery, depending upon the choice of the user. The third system is a hand-held
computer, such as a smartphone or table computer 602C that includes a relatively small

display (e.g., 4.8-inch) 606C and receives its power primarily from a battery. In the

WO 2015/118376 PCT/IB2014/003167

18

illustrative examples, it is assumed the displays all have approximately the same
resolution such that the amount of approximation that may be tolerated/accepted is
primarily based on the display size, although it should be understood that the amount of
approximate computation may also vary based on variation in the display resolution.
The three systems, referred to collectively as systems 602, are intended to be
representative of systems that may include the approximation computation-capable
processor 100 and are provided with different characteristics for comparison to illustrate
the varying uses of the approximate computing embodiments described herein; however,
other embodiments are contemplated, and the use of the approximation computation-
capable processor 100 is not limited to the embodiments shown.

[0067] The first system 602A tends to be intolerant of approximation and demand high
accuracy because visual distortion caused by approximation of the pixel rendering would
likely be readily apparent on the large display 602A, and the power source likely renders
the need for power savings due to approximate computations less necessary.

[0068] The second system 602B tends to demand a moderate amount of accuracy and
tolerate a moderate amount of approximation, particularly when running on battery
power, because the visual distortion caused by a moderate amount of approximation that
may be apparent, although less than on a larger display with a similar resolution, may be
an acceptable tradeoff for the advantage in battery life. Other the other hand, when the
system 602B is plugged into a wall power source, the preferred approximation policy
may be similar to that of the first system 602A.

[0069] The third system 602C tends to demand the least accuracy since the visual
distortion due to approximation may be non-apparent, or largely unapparent, on a small
display 606C at a nominal zoom level, and the need to save battery power is relatively

great.

[0070] Referring now to Figure 7, a flowchart illustrating operation of the systems 602
of Figure 6 is shown. Flow begins at block 702.
[0071] At block 702, a program detects the type of display 606 in the system 602, such

as when the system 602 is powered-on or reset. Alternatively, the program may detect a

WO 2015/118376 PCT/IB2014/003167

19

change in the display 606, ¢.g., when an external monitor is plugged into or unplugged
from a laptop 602B. Still further, the program may detect a change in the power source,
such as plugging into or unplugging from a wall outlet. Flow proceeds to block 502.
[0072] At block 502, the program determines the approximation policy based on the
system configuration, as described above with respect to Figure 5. Flow proceeds to
block 504.

[0073] At block 504, the program provides the processor 100 with the approximation
policy, as described above with respect to Figure 5. Flow proceeds to block 708.

[0074] At block 708, the processor 100 performs calculations based on the received
approximation policy as described herein, e.g., with respect to Figures 4 and 10 through
12. Flow ends at block 708.

[0075] Alternatively, the software running on the processor 100 (e.g., the graphics
software) includes different routines of code (that include computation instructions 399)
associated with different approximation policies (e.g., for each of the different
approximation policies associated with the different system configurations of Figure 6),
and the software branches to the appropriate routine based on the current system

configuration.

[0076] Referring now to Figure 8, a flowchart illustrating a process for the development
of software to run on an approximate computing-aware processor 100 such as described
herein is shown. Flow begins at block 802.

[0077] At block 802, a programmer develops a program, such as graphics software, with
a conventional programming language, such as the C language, and invokes an
approximation-aware compiler with an approximation directive. The approximation-
aware compiler knows the approximate computing capabilities of the target processor
100, more specifically, the set of approximation instructions 399 supported by the
processor 100. The approximation directive may be a command-line option or other
method of communicating to the compiler that the object code generated by the compiler
should include approximation instructions 399 to perform approximate computations.

Preferably, the approximation-aware compiler is invoked with the approximation

WO 2015/118376 PCT/IB2014/003167

20

directive only to compile routines in which the computations specified by the
programming language are tolerant of approximate computations; whereas, other
routines that are not tolerant of approximate computations are compiled without the
approximation directive; and the object files generated by the respective methods are
linked together into an executable program. The approximation-tolerant routines may
tend to be relatively specialized routines. For example, pixel-rendering routines may
include calculations on floating point data that are susceptible to approximate
computations for which the approximation-aware compiler generates approximating
instructions 399; whereas, loop control variables may be integer data, and the
approximation-aware compiler does not generate approximating instructions 399 to
perform calculations that update the loop control variables, for example. Flow proceeds
to block 804.

[0078] At 804, the approximation-aware compiler compiles the program and generates
machine language instructions that include approximation instructions 399 that instruct
the processor 100 to perform approximate computations as object code. In one
embodiment, the machine code generated by the compiler is similar to the machine code
that would otherwise be generated without the use of the approximation directive, but in
which some of the instructions are preceded by an approximation-related prefix, such as
the approximation prefix 302, the start approximation prefix 322, the stop approximation
prefix 342, or the clear error prefix 362 of Figure 3. In one embodiment, the
approximation-aware compiler generates approximate computation instructions 310 in
place of normal computation instructions that it would otherwise generate in the absence
of the approximation directive. In one embodiment, the approximation-aware compiler
generates normal instruction sequences punctuated with start/stop approximation
instructions 330/350 and/or start/stop approximation prefixes 322/342. In one
embodiment, the approximation-aware compiler generates multiple code routines each
of which employs a different approximation policy, as described above, and the
compiler generates code that calls the appropriate subroutine based on the current
system configuration, which the program may determine itself or may obtain from the

operating system. Flow ends at block 804.

WO 2015/118376 PCT/IB2014/003167

21

[0079] Referring now to Figure 9, a flowchart illustrating an alternate process for the
development of software to run on an approximate computing-aware processor 100 such
as described herein is shown. Flow begins at block 902.

[0080] At block 902, a programmer develops a program similar to the description at
block 802 and invokes an approximation-aware compiler. However, the programming
language and compiler support approximation directives and/or approximation-tolerant
data types. For example, a dialect of the C language may support such directives and/or
data types. The approximation directives may include compiler directives (e.g., similar
to the C language #include or #define directives) that the programmer may include in the
source code to mark selective program variables as approximation-tolerant data.
Similarly, the programmer may include in the source code program variables declared as
approximation-tolerant data type variables for which the compiler knows to generate
instructions 399 that cause approximate computations to be performed on the variables.
Flow proceeds to block 904.

[0081] At block 904, the approximation-aware compiler compiles the program to
generate object code similar to the manner described above with respect to block 804,
but in response to the approximation directives and/or approximation-tolerant data types

included in the source code being compiled. Flow ends at block 904.

[0082] Referring now to Figure 10, a flowchart illustrating operation of the processor
100 of Figure 1 to run a program that performs approximate computations is shown.
Flow begins at block 1002.

[0083] At block 1002, the program provides an approximation policy to the processor
100, similar to the manner described above. Alternatively, the program itself provides
the approximation policy (and restores the current approximation policy upon exit).
Additionally, an alternate code path is specified that does not perform approximate
computations that may be executed in the event that the error threshold is exceeded, as

described below. Flow proceeds to block 1004.

WO 2015/118376 PCT/IB2014/003167

22

[0084] At block 1004, the processor 100 takes a snapshot of its current state by writing
its state to the snapshot storage 134 of Figure 1. In one embodiment, the processor 100
takes the snapshot in response to encountering an instruction executed by the program.
In one embodiment, the instruction comprises an x86 WRMSR instruction. In one
embodiment, taking the snapshot includes writing back to memory dirty cache lines that
will be touched by the set of approximate computations of the program so that clean
copies of the cache lines reside in the cache 138 and then marking the cache lines as
special to denote they may be the target of approximate computations. Because the
cache lines are marked as special, as they are modified by the results of approximate
computations, they are not written back to memory — at least not until it has been
verified that the program can complete without exceeding the acceptable error bound.
Consequently, if subsequently the processor 100 determines that the error bound has
been exceeded (e.g., at block 1012), then the special cache lines are invalidated and
marked as non-special, and the pre-approximate computation state of the cache lines is
then available in memory for the subsequent non-approximate set of computations (e.g.,
at block 1014). In such an embodiment, the programmer must be aware that the special
cache lines must not spill out of the cache 138; otherwise, the processor 100 treats such a
condition as exceeding the error bounds. Preferably, in a multi-core processor
embodiment, the cache 138 must be local to the core executing the set of approximate
computations. Flow proceeds to block 1006.

[0085] At block 1006, the processor 100, in particular an approximating functional unit
106, performs an approximate computation specified by a program instruction based on
the approximation policy to generate an approximate result 164. The approximating
functional unit 106 also approximates the error 168 of the result 164 based on the error
values 162 of the input operands and the error introduced by the approximate
calculation, as described above. Flow proceeds to block 1008.

[0086] At block 1008, the approximating functional unit 106 writes the cumulative error
168 to the error storage 109 associated with the destination register 108 that receives the

approximate result 164. Flow proceeds to decision block 1012.

WO 2015/118376 PCT/IB2014/003167

23

[0087] At decision block 1012, the processor 100 determines whether the error 168
generated at block 1008 exceeds the error bound of the approximation policy. If so,
flow proceeds to block 1014; otherwise, flow returns to block 1006 to execute another
approximate computation of the program.

[0088] At block 1014, the processor 100 restores the processor 100 state to the snapshot
that is stored in the snapshot storage 134 and re-runs the program without
approximation, or at least a portion thereof after the taking of the snapshot at block 1004
that involved computations performed in an approximate manner that exceeded the error
bound. Embodiments of the operation of block 1014 are described below with respect to

Figures 11 and 12. Flow ends at block 1014.

[0089] Referring now to Figure 11, a flowchart illustrating in greater detail operation of
block 1014 of Figure 10 according to one embodiment is shown. Flow begins at block
1102.

[0090] At block 1102, control is transferred to the microcode 136 of the processor 100
via a micro-exception (i.e., a non-architectural exception) generated in response to
detecting that the error bound was exceeded at decision block 1012. The microcode 136
restores the processor 100 state to the snapshot as described above with respect to Figure
10. Additionally, the microcode 136 generates an architectural exception. Flow
proceeds to block 1104.

[0091] At block 1104, the architectural exception handler transfers control to the
alternate code path specified at block 1002 of Figure 10 so that the set of approximate
computations are performed with full accuracy. In one embodiment, the exception
handler sets the approximation policy to disable approximation (i.e., sets the
approximation policy to full accuracy) and then jumps to the same code that was
previously executed when approximation was enabled and which will now be executed

with approximation disbled. Flow ends at block 1104.

WO 2015/118376 PCT/IB2014/003167

24

[0092] Referring now to Figure 12, a flowchart illustrating in greater detail operation of
block 1014 of Figure 10 according to an alternate embodiment is shown. Flow begins at
block 1202.

[0093] At block 1202, control is transferred to the microcode 136 of the processor 100
via a micro-exception generated in response to detecting that the error bound was
exceeded, and the microcode 136 restores the processor 100 state to the snapshot. Flow
proceeds to block 1204.

[0094] At block 1204, the microcode 136 sets the approximation policy (e.g., writes the
approximation control register 132) to full accuracy. The microcode 136 also clears the
error values 109 associated with all the registers 108. The microcode 136 also causes re-
execution of the program, e.g., from the point after the taking of the snapshot at block
1004. In one embodiment, the microcode 136 re-runs the program from an instruction

address stored in the snapshot storage 134. Flow ends at block 1204.

[0095] Although embodiments have been described in which approximate computations
are performed for audio and video purposes, other embodiments are contemplated in
which approximate computations are performed for other purposes, such as sensor
calculations used in computer game physics calculations. For example, the analog-to-
digital converter values used in the calculations may only be accurate to 16 bits, such
that game physics analysis using 53 bits of precision, for example, is unnecessary.

[0096] While various embodiments of the present invention have been described herein,
it should be understood that they have been presented by way of example, and not
limitation. It will be apparent to persons skilled in the relevant computer arts that
various changes in form and detail can be made therein without departing from the scope
of the invention. For example, software can enable, for example, the function,
fabrication, modeling, simulation, description and/or testing of the apparatus and
methods described herein. This can be accomplished through the use of general
programming languages (e.g., C, C++), hardware description languages (HDL)
including Verilog HDL, VHDL, and so on, or other available programs. Such software

can be disposed in any known computer usable medium such as magnetic tape,

WO 2015/118376 PCT/IB2014/003167

25

semiconductor, magnetic disk, or optical disc (e.g., CD-ROM, DVD-ROM, etc.), a
network, wire line, wireless or other communications medium. Embodiments of the
apparatus and method described herein may be included in a semiconductor intellectual
property core, such as a processor core (e.g., embodied, or specified, in a HDL) and
transformed to hardware in the production of integrated circuits. Additionally, the
apparatus and methods described herein may be embodied as a combination of hardware
and software. Thus, the present invention should not be limited by any of the exemplary
embodiments described herein, but should be defined only in accordance with the
following claims and their equivalents. Specifically, the present invention may be
implemented within a processor device that may be used in a general-purpose computer.
Finally, those skilled in the art should appreciate that they can readily use the disclosed
conception and specific embodiments as a basis for designing or modifying other
structures for carrying out the same purposes of the present invention without departing

from the scope of the invention as defined by the appended claims.

WO 2015/118376 PCT/IB2014/003167

26

CLAIMS

1. A processor, comprising:

a storage, configured to receive a snapshot of a state of the processor prior to

performing a set of computations in an approximating manner;

an indicator that indicates an amount of error accumulated while the set of

computations is performed in the approximating manner; and

wherein when the processor detects that the amount of error accumulated has
exceeded an error bound, the processor is configured to restore the state

of the processor to the snapshot from the storage.

2. The processor of claim 1, wherein when the processor detects that the amount of
error accumulated has exceeded the error bound, the processor is configured to
generate an architectural exception to a software exception handler after

restoring the state of the processor to the snapshot from the storage.

3. The processor of claim 1, wherein when the processor detects that the amount of
error accumulated has exceeded the error bound, microcode of the processor
causes re-execution of instructions that instruct the processor to perform the set
of computations, wherein during the re-execution of the instructions the

processor performs the set of computations in a non-approximating manner.

4. The processor of claim 3, wherein the snapshot includes an address of a first of
the instructions, wherein the microcode causes re-execution of the instructions at

the address of the first of the instructions.
5. The processor of claim 3, further comprising:
functional units; and

wherein the microcode is configured to update an input to the functional units to
cause the functional units to perform the set of computations in the non-

approximating manner.

WO 2015/118376 PCT/IB2014/003167

10.

11.

12.

13.

14.

27

The processor of claim 1, wherein the processor is configured to begin
performing computations in the approximating manner in response to a first
predetermined instruction and to end performing computations in the

approximating manner in response to a second predetermined instruction.
The processor of claim 1, further comprising:

a plurality of hardware registers, configured to store results of the computations;

and

for each register of the plurality of hardware registers, the indicator, wherein the
indicator indicates an amount of error accumulated within the register

while the set of computations is performed in the approximating manner.

The processor of claim 7, wherein the indicator is cleared in response to an

instruction that loads the register from memory.

The processor of claim 7, wherein the indicator is cleared in response to an

instruction that includes a predetermined prefix value.

The processor of claim 7, wherein the indicator is cleared in response to an

instruction that includes a predetermined operation code value.

The processor of claim 1, wherein the error bound is provided to the processor by

software prior to performance of the set of computations.

The processor of claim 1, wherein the error bound is determined based on a

current power source of a system in which the processor is operating.

The processor of claim 12, wherein the error bound is determined based further
on a current configuration of a peripheral device of the system in relation to

which the set of computations are performed.
A method for operation on a processor, the method comprising:

taking a snapshot of a state of the processor prior to performing a set of

computations in an approximating manner;

WO 2015/118376 PCT/IB2014/003167

28

determining an indicator of an amount of error accumulated while the set of

computations is performed in the approximating manner; and

restoring the state of the processor to the snapshot when the processor detects

that the amount of error accumulated has exceeded an error bound.
15. The method of claim 14, further comprising:

generating an architectural exception to a software exception handler after said

restoring the state of the processor.
16. The method of claim 14, further comprising:

causing re-execution of instructions that instruct the processor to perform the set
of computations when the processor detects that the amount of error
accumulated has exceeded the error bound, wherein during the re-
execution of the instructions the processor performs the set of

computations in a non-approximating manner.
17. The method of claim 14, further comprising:

clearing the register in response to an instruction that loads the register from

memory.
18. The method of claim 14, further comprising:

determining the error bound based on a current power source of a system in

which the processor is operating.

19. The method of claim 18, wherein the error bound is determined based further on
a current configuration of a peripheral device of the system in relation to which

the set of computations are performed.

20. A computer program product encoded in at least one non-transitory computer
usable medium for use with a computing device, the computer program product

comprising:

computer usable program code embodied in said medium, for specifying a

processor, the computer usable program code comprising;:

WO 2015/118376 PCT/IB2014/003167

29

first program code for specifying a storage, configured to receive a
snapshot of a state of the processor prior to performing a set of

computations in an approximating manner;

second program code for specifying an indicator that indicates an amount
of error accumulated while the set of computations is performed

in the approximating manner; and

wherein when the processor detects that the amount of error accumulated
has exceeded an error bound, the processor is configured to

restore the state of the processor to the snapshot from the storage.

21. The computer program product of claim 20, wherein the at least one non-
transitory computer usable medium is selected from the set of a disk, tape, or

other magnetic, optical, or electronic storage medium.

WO 2015/118376 PCT/IB2014/003167

1/9
FIG. 1 00
INSTRUCTION CACHE /_
102
174 INSTRUCTIONS
(MAY INCLUDE APPROXIMATE COMPUTING INSTRUCTIONS)
INSTRUCTION

TRANSLATOR 104

MICROCODE
136
A
172 EXCEPTION
ERROR | REGISTERS APPROXIMATION
109 108 CONTROL REG. 132

1624 1664 176Ji
A 4

APPROXIMATING FUNCTIONAL UNITS 106

(CAPABLE OF SELECTIVELY PERFORMING NORMAL COMPUTATIONS OR
APPROXIMATE COMPUTATIONS, |.E., WITH FULL DEGREE OF ACCURACY OR WITH
LESS THAN FULL DEGREE OF ACCURACY)

tk 164 RESULT
168 ERROR T

|
L

SNAPSHOT
134 CACHE 138

WO 2015/118376

FIG. 2

2/9

MSB'S fl

MSB’S MULTIPLICATION
GATES 202

l

166 J%

TRANSCENDENTAL
COMPUTATION
LOGIC 214

164 Ji

PCT/IB2014/003167

/—106A
166
lNLSB’s 176 J%
LSB'S MULTIPLICATION POWER CONTROL
GATES 204 < 206
164
176 /—1068
«——] HIGH ORDER POLYNOMIAL 212A
— e
— le—— LOW ORDER POLYNOMIAL 212B

l/¥166

DIVIDING LOGIC 222

106C
S

176 J%

—

ITERATION CONTROL 224

164

L 226

WO 2015/118376 PCT/IB2014/003167

3/9
FIG. 3

(300 COMPUTATION INSTRUCTION WITH APPROXIMATION PREFIX

399
/_

APPROXIMATION PREFIX 302 OPCODE AND OTHER FIELDS 304

(310 APPROXIMATE COMPUTATION INSTRUCTION

APPROXIMATE COMPUTATION OPCODE AND OTHER FIELDS 312

(2320 COMPUTATION INSTRUCTION WITH START APPROXIMATION PREFIX

START APPROXIMATION PREFIX 322 OPCODE AND OTHER FIELDS 324

(330 START APPROXIMATION INSTRUCTION

START APPROXIMATION OPCODE 332

(2340 COMPUTATION INSTRUCTION WITH STOP APPROXIMATION PREFIX

STOP APPROXIMATION PREFIX 342 OPCODE AND OTHER FIELDS 344

(2350 STOP APPROXIMATION INSTRUCTION

STOP APPROXIMATION OPCODE 352

(360 COMPUTATION INSTRUCTION WITH CLEAR ERROR PREFIX

CLEAR ERROR PREFIX 362 | OPCODE AND OTHER FIELDS 364 REGISTER 366

(~ 370 CLEAR ERROR INSTRUCTION

CLEAR ERROR OPCODE 372 REGISTER 376

(380 LOAD REGISTER AND CLEAR ERROR INSTRUCTION

LOAD REGISTER OPCODE 382 ADDRESS OPERANDS 384 REGISTER 386

WO 2015/118376 PCT/IB2014/003167

4/9
FIG. 4A

DECODE INSTRUCTION 402

NO
START APPROXIMATION INSTR.? 404

PERFORM COMPUTATIONS ACCORDING TO APPROXIMATION POLICY UNTIL
ENCOUNTER STOP APPROXIMATION INSTRUCTION 406

STOP APPROXIMATION INSTR.? 414 NO
PERFORM COMPUTATIONS WITH FULL ACCURACY 416
ERROR CLEARING INSTR.? 424 NO
CLEAR ERROR ASSOCIATED WITH REGISTER 426
NO

COMPUTATIONAL INSTR.? 434

v

DO OTHER INSTR. 446

WO 2015/118376 PCT/IB2014/003167

5/9
FIG. 4B

APPROXIMATING FUNCTIONAL UNIT RECEIVES COMPUTATIONAL INSTRUCTION
452

APPROXIMATING? 454

YES

APPROXIMATING FUNCTIONAL UNIT PERFORMS APPROXIMATE COMPUTATION
(E.G., POWERS OFF LOWER BITS INDICATED BY APPROXIMATION POLICY AND
PERFORMS COMPUTATION SPECIFIED BY COMPUTATIONAL INSTRUCTION) 456

v

APPROXIMATING FUNCTIONAL UNIT PERFORMS COMPUTATION WITH FULL
DEGREE OF ACCURACY (E.G., POWERS ON ALL BITS AND PERFORMS
COMPUTATION SPECIFIED BY COMPUTATIONAL INSTRUCTION) 458

FIG. 5

DETERMINE APPROXIMATION POLICY (E.G., ERROR BOUND AND AMOUNT OF
COMPUTATION APPROXIMATION) BASED ON CURRENT SYSTEM CONFIGURATION
(E.G., (1) CURRENT POWER CONFIGURATION, E.G., BATTERY VS. WALL, AND (2)
CURRENT HARDWARE CONFIGURATION, E.G., HIGH/MEDIUM/LOW RESOLUTION/SIZE
SCREEN, GOOD/BAD SPEAKER QUALITY) 502

v

PROVIDE PROCESSOR WITH APPROXIMATION POLICY 504

WO 2015/118376 PCT/IB2014/003167

6/9
FIG. 6

~—POLICY #1 - HIGH ACCURACY/LOW APPROXIMATION

DESKTOP COMPUTER 602A

APPROXIMATE COMPUTATION-CAPABLE 24" DISPLAY
PROCESSOR 100 606A

DATA UPON WHICH PROCESSOR PERFORMS COMPUTATIONS TO
RENDER PIXELS FOR DISPLAY 604

~—POLICY #2 - MEDIUM ACCURACY/MEDIUM APPROXIMATION

LAPTOP COMPUTER 602B

APPROXIMATE COMPUTATION-CAPABLE 15" DISPLAY
PROCESSOR 100 606B

DATA UPON WHICH PROCESSOR PERFORMS COMPUTATIONS TO
RENDER PIXELS FOR DISPLAY 604

~—POLICY #3 - LOW ACCURACY/HIGH APPROXIMATION

HAND-HELD COMPUTER 602

APPROXIMATE COMPUTATION-CAPABLE 4.8" DISPLAY
PROCESSOR 100 606C

DATA UPON WHICH PROCESSOR PERFORMS COMPUTATIONS TO
RENDER PIXELS FOR DISPLAY 604

WO 2015/118376 PCT/IB2014/003167

719
FIG. 7

DETECT DISPLAY CONFIGURATION (OR CHANGE THERETO) 702

v

DETERMINE APPROXIMATION POLICY BASED ON SYSTEM CONFIGURATION 502
PROVIDE PROCESSOR WITH APPROXIMATION POLICY 504

v

PERFORM CALCULATIONS BASED ON APPROXIMATION POLICY 708

FIG. 8

DEVELOP PROGRAM WITH CONVENTIONAL PROGRAMMING LANGUAGE AND
INVOKE APPROXIMATION-AWARE COMPILER WITH APPROXIMATION DIRECTIVE
802

v

APPROXIMATION-AWARE COMPILER COMPILES PROGRAM AND GENERATES
APPROXIMATION PREFIXES AND/OR APPROXIMATION INSTRUCTIONS FOR THE
OBJECT CODE 804

FIG. 9

DEVELOP PROGRAM WITH PROGRAMMING LANGUAGE THAT SUPPORTS
APPROXIMATION DIRECTIVES AND/OR APPROXIMATION-TOLERANT DATA TYPES
AND INVOKE APPROXIMATION-AWARE COMPILER 902

v

APPROXIMATION-AWARE COMPILER COMPILES PROGRAM AND GENERATES
APPROXIMATION PREFIXES AND/OR APPROXIMATION INSTRUCTIONS FOR THE
OBJECT CODE 904

WO 2015/118376 PCT/IB2014/003167

8/9
FIG. 10

SPECIFY APPROXIMATION POLICY AND ALTERNATE CODE PATH (E.G., NON-
APPROXIMATING CODE PATH) 1002

v

TAKE SNAPSHOT OF CURRENT PROCESSOR STATE 1004

;

PERFORM APPROXIMATE COMPUTATION USING APPROXIMATION POLICY AND
GENERATE APPROXIMATE RESULT AND APPROXIMATE CUMULATIVE ERROR OF
RESULT BASED ON ERROR VALUE OF SOURCE REGISTERS AND ERROR
INTRODUCED BY APPROXIMATE CALCULATION 1006

v

WRITE CUMULATIVE ERROR TO DESTINATION REGISTER ERROR 1008

NO

ERROR BOUND EXCEEDED? 1012

RESTORE PROCESSOR STATE TO SNAPSHOT AND RE-RUN WITHOUT
APPROXIMATION 1014

WO 2015/118376 PCT/IB2014/003167

9/9

FIG. 11
ot

MICROCODE RESTORES STATE TO SNAPSHOT AND GENERATES
ARCHITECTURAL EXCEPTION 1102

v

ARCHITECTURAL EXCEPTION HANDLER TRANSFERS CONTROL TO ALTERNATE
CODE PATH THAT DOES NOT USE APPROXIMATION 1104

FIG. 12 el

MICROCODE RESTORES STATE TO SNAPSHOT 1202
MICROCODE SETS APPROXIMATION POLICY TO USE FULL ACCURACY, CLEARS
ERROR, AND CAUSES RE-EXECUTION OF INSTRUCTIONS BUT IN A NON-

APPROXIMATING MANNER DISREGARDING WHETHER THE INSTRUCTIONS
INSTRUCT THE PROCESSOR TO USE APPROXIMATION 1204

INTERNATIONAL SEARCH REPORT International application No.
PCT/1B2014/003167

A, CLASSIFICATION OF SUBJECT MATTER
GOG6F 11/07(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT;CNKLEPODOC; WPLapproximat+.finite,tolerant,comput???,translator,re,execution,error,exceed ??, threshold,bound,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A CN 103019876 A (SOUTHEAST UNIVERSITY) 03 April 2013 (2013-04-03) 1-21
description, paragraphs [0008], [0038], [0045]-[0047]

A US 8397187 B2 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 12 March 1-21
2013 (2013-03-12)

the whole document

A CN 101859243 A (VIA TECHNOLOGIES, INC.) 13 October 2010 (2010-10-13) 1-21

the whole document

A CN 1993679 A (ROBERT BOSCH GMBH) 04 July 2007 (2007-07-04) 1-21

the whole document

I:l Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

«p» document defining the general state of the art which is not considered <> later document published after the international filing date or priority
to be of particular relevance date and not in conflict with the application but cited to understand the

. L . . . rinciple or theory underlying the invention
“gr earlier application or patent but published on or after the international P P ry ying . . .
filing date e document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive step

“ document which may throw doubts on priority claim(s) or which is when the document is taken alone

cited to establish the publication date of another citation or other
special reason (as specified) wyn document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

“«o” document referring to an oral disclosure, use, exhibition or other
means

«p» document published prior to the international filing date but later than .., ,,
P P : &
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
12 June 2015 26 June 2015
Name and mailing address of the [SA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA .
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing LI,Weihua
100088, China
Facsimile No. (86-10)62019451 Telephone No. (86-10)82246738

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/1B2014/003167
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
CN 103019876 A 03 April 2013 WO 2014032610 Al 06 March 2014
[N 8397187 B2 12 March 2013 None
CN 101859243 A 13 October 2010 ™ 201102914 A 16 January 2011
[N 2011004644 Al 06 January 2011
CN 1993679 A 04 July 2007 [N 2009217090 Al 27 August 2009
JpP 2008508626 A 21 March 2008
WO 2006015945 A2 16 February 2006
BR PI0513229 A 29 April 2008
EP 1854007 A2 14 November 2007
RU 2007106437 A 10 September 2008
DE 102004037713 Al 16 March 2006

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report

