(54) 发明名称
包括 FRIM 的物品和其使用方法

(57) 摘要
本文所描述的某些实施方案是关于提供更少凹陷的物品。在一些实例中,所述物品可包括包含增强纤维和热塑性聚合物的纤维增强型热塑性聚合物核芯层，以及设置于所述纤维增强型聚合物核芯层上的 FRIM。在某些实例中,所述 FRIM 包含复合至稀松布的膜,所述稀松布包含防止所述物品例如在成形操作期间的体上凹陷的有效基重。
1. 一种热塑性复合物品，包含：纤维增强型热塑性聚合物核心层，其包含增强纤维和热塑性聚合物；和frim，其设置于所述纤维增强型聚合物核心层上，所述frim包含偶合至稀松布的膜。所述稀松布包含防止所述物品在成形操作期间的力体上凹陷的有效基重。
2. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少30gsm的基重。
3. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少45gsm的基重。
4. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少40gsm的基重。
5. 如权利要求1所述的热塑性物品，其中所述膜包含至少15gsm的基重。
6. 如权利要求1所述的热塑性物品，其中所述膜包含至少30gsm或45gsm的基重。
7. 如权利要求1所述的热塑性物品，其中所述膜包含至少40gsm的基重。
8. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少30gsm的基重并且所述膜包含至少30gsm的基重。
9. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少30gsm的基重并且所述膜包含至少45gsm的基重。
10. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少30gsm的基重并且所述膜包含至少40gsm的基重。
11. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少45gsm的基重并且所述膜包含至少30gsm的基重。
12. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少45gsm的基重并且所述膜包含至少40gsm的基重。
13. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少45gsm的基重并且所述膜包含至少45gsm的基重。
14. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少50gsm的基重并且所述膜包含至少30gsm的基重。
15. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少50gsm的基重并且所述膜包含至少45gsm的基重。
16. 如权利要求1所述的热塑性物品，其中所述稀松布包含至少50gsm的基重并且所述膜包含至少40gsm的基重。
17. 如权利要求1所述的热塑性复合物品，其中所述膜是用粘结剂偶合至所述稀松布。
18. 如权利要求1所述的热塑性物品，其中所述膜是熔融粘合至所述稀松布。
19. 如权利要求1所述的热塑性物品，其中所述稀松布包含聚对苯二酸乙二酯。
20. 如权利要求1所述的热塑性物品，其中所述膜包含聚酰胺。
21. 如权利要求20所述的热塑性物品，其中所述聚酰胺是尼龙6。
22. 如权利要求1所述的热塑性物品，其中所述膜包含聚丙烯并且所述稀松布包含聚对苯二酸乙二酯。
23. 如权利要求1所述的热塑性物品，其中所述稀松布和所述膜各自独立地包含以下中的至少一种：聚烯烃树脂、热塑性聚烯烃掺合树脂、聚乙烯聚合物树脂、丁二烯聚合物树脂、丙烯酸聚合物树脂、聚酰胺树脂、聚酰胺树脂、聚碳酸酯树脂、聚酯碳酸酯树脂、聚苯乙烯树脂、聚烯烃苯乙烯聚合物树脂、聚烯烃-丁基丙烯酸酯-苯乙烯聚合物树脂、聚醚酰亚胺。
权 利 要 求 书

树脂, 聚苯醚树脂, 聚亚苯基氧化物树脂, 聚苯硫醚树脂, 聚醚树脂, 聚醚酮树脂, 聚缩醛树脂, 聚氨酯树脂, 聚苯并咪唑树脂或其中某物或混合物。

24. 如权利要求 1 所述的热塑性物品, 其中所述膜包含多个层。
25. 如权利要求 24 所述的热塑性物品, 其中所述多个层中的至少一个层包含聚乙烯。
26. 如权利要求 24 所述的热塑性物品, 其中所述多个层中的至少一个层包含聚酰胺。
27. 如权利要求 24 所述的热塑性物品, 其中所述膜包含偶合至聚酰胺层的第一聚乙烯层和偶合至所述聚酰胺层的第二聚乙烯层。
28. 如权利要求 1 所述的热塑性物品, 其进一步包含设置于与设置所述 frim 的表面相对的表面上的膜层。
29. 如权利要求 28 所述的热塑性物品, 其中设置于与设置所述 frim 的所述表面相对的所述表面上的所述膜层包含聚丙烯。
30. 如权利要求 1 所述的热塑性物品, 其中所述稀松布有效防止所述物品在模制操作期间的凹陷。
31. 一种热塑性复合物品, 包含:
 - 纤维增强热塑性聚合物核心层, 其包含增强纤维和热塑性聚合物;
 - 膜, 其设置于所述聚合物核心层上; 以及
 - 稀松布, 其设置于所述膜上, 其中所述稀松布包含防止所述物品在成形操作期间的大体上凹陷的有效基体。
32. 如权利要求 31 所述的热塑性复合物品, 其中所述膜是用粘结剂偶合至所述稀松布。
33. 如权利要求 31 所述的热塑性物品, 其中所述稀松布包含聚对苯二甲酸乙二酯。
34. 如权利要求 31 所述的热塑性物品, 其中所述膜包含聚酰胺。
35. 如权利要求 34 所述的热塑性物品, 其中所述聚酰胺是尼龙 6。
36. 如权利要求 31 所述的热塑性物品, 其中所述膜包含聚丙烯并且所述稀松布包含聚对苯二甲酸乙二酯。
37. 如权利要求 31 所述的热塑性物品, 其中所述膜包含多个层。
38. 如权利要求 37 所述的热塑性物品, 其中所述多个层中的至少一个层包含聚乙烯。
39. 如权利要求 37 所述的热塑性物品, 其中所述多个层中的至少一个层包含聚酰胺。
40. 如权利要求 37 所述的热塑性物品, 其中所述膜包含偶合至聚酰胺层的第一聚乙烯层和偶合至所述聚酰胺层的第二聚乙烯层。
41. 如权利要求 31 所述的热塑性物品, 其进一步包含设置于与设置所述稀松布的表面相对的表面上的膜层。
42. 如权利要求 41 所述的热塑性物品, 其中设置于与设置所述稀松布的所述表面相对的所述表面上的所述膜层包含聚丙烯。
43. 如权利要求 41 所述的热塑性物品, 其进一步包含织物层, 所述织物层偶合至设置于与设置稀松布的所述表面相对的所述表面上的所述膜层。
44. 如权利要求 41 所述的热塑性物品, 其中所述核心层包含玻璃增强纤维。
45. 如权利要求 41 所述的热塑性物品, 其中所述增强纤维包含以下中的一种或多种: 碳纤维、石墨纤维、合成有机纤维、无机纤维、天然纤维、矿物纤维、金属纤维、金属化无机纤
权 利 要 求 书

维、金属化成纤维、陶瓷纤维或其组合。
46. 如权利要求 41 所述的热塑性物品，其中所述核心层是可渗透的并且包含约 0.1g/m³至约 1.8g/m³的密度。
47. 如权利要求 41 所述的热塑性物品，其中所述核心层具有在以所述核心层的计约 20%至约 80%之内的孔隙率。
48. 如权利要求 41 所述的热塑性物品，其中所述热塑性聚合物包含以下中的一种或多种：聚烯烃树脂、热塑性聚烯烃共聚物树脂、聚乙烯聚合物树脂、丁二烯聚合物树脂、丙烯酸聚合物树脂、聚酰胺树脂、聚酯树脂、聚碳酸酯树脂、聚醚酮树脂、聚苯乙烯树脂、丙烯腈苯乙烯聚合物树脂、丙烯酸-丁基丙烯酸酯-苯乙烯聚合物树脂、聚醚酮亚胺树脂、聚苯醚树脂、聚苯硫醚树脂、聚醚树脂、聚醚酮酯树脂、聚缩醛树脂、聚氨酯树脂、聚苯并咪唑树脂及其共聚物或混合物。
49. 如权利要求 41 所述的热塑性物品，其中所述热塑性核心层包含玻璃增强纤维并且热塑性聚合物包含聚丙烯，所述膜包含聚酰胺并且所述烯松布包含聚对苯二甲酸乙二酯。
50. 如权利要求 49 所述的热塑性物品，其进一步包含设置于与设置所述烯松布的表面相对的表面上的聚丙烯膜。
51. 一种热塑性复合物品，包含：
纤维增强型热塑性聚合物核心层，其包含增强纤维和热塑性聚合物；
屏障层，其偶合层并且设置于所述核心层；以及
烯松布层，其偶合层并且设置于所述屏障层，其中所述烯松布包含防止所述物品在成形操作期间的主体上凹陷的有效基重。
52. 如权利要求 51 所述的热塑性复合物品，其中所述屏障层是用粘结剂偶合至所述烯松布并且所述屏障层是用粘结剂偶合至所述核心层。
53. 如权利要求 52 所述的热塑性物品，其中所述烯松布包含聚对苯二甲酸乙二酯。
54. 如权利要求 31 所述的热塑性物品，其中所述屏障层包含以下中的一种：聚酰胺、聚丙烯、聚乙烯以及其共聚物。
55. 如权利要求 54 所述的热塑性物品，其中所述聚酰胺是尼龙 6。
56. 如权利要求 51 所述的热塑性物品，其中所述膜包含聚丙烯并且所述烯松布包含聚对苯二甲酸乙二酯。
57. 如权利要求 51 所述的热塑性物品，其中所述屏障层包含多个层。
58. 如权利要求 57 所述的热塑性物品，其中所述多个层中的至少一个层包含聚乙烯。
59. 如权利要求 57 所述的热塑性物品，其中所述多个层中的至少一个层包含聚酰胺。
60. 如权利要求 37 所述的热塑性物品，其中所述屏障层包含偶合至聚酰胺层的第一聚乙烯层和偶合至所述聚酰胺层的第二聚乙烯层，其中所述聚乙烯层是在不使用粘结剂的情况下使所述聚酰胺层有效粘结于所述核心层和所述烯松布。
61. 如权利要求 51 所述的热塑性物品，其进一步包含设置于与设置所述烯松布的表面相对的表面上的膜层。
62. 如权利要求 61 所述的热塑性物品，其中设置于与设置所述烯松布的所述表面相对的所述表面上的所述膜层包含聚丙烯。
63. 如权利要求 61 所述的热塑性物品，其进一步包含织物层，所述织物层偶合至设置
于与设置稀松布的所述表面相对的所述表面上的所述膜层。

64. 如权利要求 61 所述的热塑性物品，其中所述核心层包含玻璃增强纤维。

65. 如权利要求 61 所述的热塑性物品，其中所述核心层的所述增强纤维包含以下中的一种或多种：碳纤维、石墨纤维、合成有机纤维、无机纤维、天然纤维、矿物纤维、金属纤维、金属化无机纤维、金属化合成纤维、陶瓷纤维或其组合。

66. 如权利要求 61 所述的热塑性物品，其中所述核心层是可渗透的并且包含约 0.1gm/cm² 至约 1.8gm/cm² 的密度。

67. 如权利要求 61 所述的热塑性物品，其中所述核心层具有在以所述核心层的体积计算 20% 至约 80% 之间的孔隙率。

68. 如权利要求 61 所述的热塑性物品，其中所述热塑性聚合物包含以下中的一种或多种：聚烯烃树脂、热塑性聚烯烃掺合树脂、聚乙烯聚合物树脂、丁二烯聚合物树脂、丙烯酸聚合物树脂、聚醚胺树脂、聚酯树脂、聚酰胺酰胺树脂、聚酯碳酸酯树脂、聚苯乙烯树脂、丙烯腈苯乙烯聚合物树脂、丙烯酸酯基聚合物树脂；聚碳酰亚胺树脂、聚苯醚树脂、聚亚苯基氧化物树脂、聚苯硫醚树脂、聚醚酯树脂、聚酰酮树脂、聚缩醛树脂、聚氨酯树脂、聚苯并咪唑树脂或其共聚物或混合物。

69. 如权利要求 61 所述的热塑性物品，其中所述热塑性聚合物包含玻璃增强纤维并且热塑性聚合物包含聚丙烯，并所述膜包含聚醚胺并且所述稀松布包含聚对苯二甲酸乙二酯。

70. 如权利要求 69 所述的热塑性物品，其进一步包含设置于所述稀松布的表面相对的表面上的聚丙烯膜。

71. 一种用于装配车辆的方法，所述方法包括提供热塑性复合物，所述热塑性复合物包含：包含增强纤维和热塑性聚合物的纤维增强型热塑性聚合物核心层；以及设置于所述纤维增强型聚合物核心层上的 frim，所述 frim 包含聚丁至稀松布的膜，所述稀松布包含防止所述物品在成形操作期间的主体上凹陷的有效基重。

72. 如权利要求 71 所述的方法，其进一步包括将所述车辆部分配置或车辆的顶棚。

73. 如权利要求 71 所述的方法，其进一步包括将所述物品配置成在所述核心层中与所述核心层中所述 frim 的所述表面相对的表面上具有膜层。

74. 如权利要求 73 所述的方法，其进一步包括将所述物品朝向至泡沫层。

75. 如权利要求 71 所述的方法，其进一步包括将所述物品朝向至织物层。

76. 一种用于装配车辆的方法，所述方法包括提供热塑性复合物，所述热塑性复合物包含：包含增强纤维和热塑性聚丙烯的纤维增强型热塑性聚合物核心层；设置于所述聚丙烯核心层上的膜；以及设置于所述膜上的稀松布，其中所述稀松布包含防止所述物品在成形操作期间的主体上凹陷的有效基重。

77. 如权利要求 76 所述的方法，其进一步包括将所述车辆部分配置在车辆的顶棚。

78. 如权利要求 76 所述的方法，其进一步包括将所述物品配置成在所述核心层中与所述稀松布的所述表面相对的表面上具有膜层。

79. 如权利要求 78 所述的方法，其进一步包括将所述物品朝向至泡沫层。

80. 如权利要求 76 所述的方法，其进一步包括将所述物品朝向至织物层。

81. 一种用于装配车辆的方法，所述方法包括提供热塑性复合物，所述热塑性复合物包含：包含增强纤维和热塑性聚丙烯的纤维增强型热塑性聚合物核心层；偶合至并设置
置于所述核心层上的屏障层，以及偶合至并且设置于所述屏障层上的稀松布层，其中所述稀松布包含防止所述物品在成形操作期间的大体上凹陷的有效基重。

82. 如权利要求 81 所述的方法，其进一步包括将所述车辆部分配置成车辆的顶棚。

83. 如权利要求 81 所述的方法，其进一步包括将所述物品配置成在所述核心层中与所述核心层中设置所述稀松布的所述表面相对的表面上具有膜层。

84. 如权利要求 83 所述的方法，其进一步包括将所述物品偶合至泡沫层。

85. 如权利要求 81 所述的方法，其进一步包括将所述泡沫偶合至织物层。
包括 FRIM 的物品和其使用方法

[0001] 优先权申请

[0002] 本申请要求于 2012 年 11 月 13 日提交的美国临时申请号 61/725,956 的优先权。该临时申请的全部公开内容在此出于所有目的以引用的方式并入本文中。

技术领域

[0003] 本申请涉及包括一个或多个 frim 层的物品。特别地，本文的某些实施方案是关于包括塑料型聚合物核心层和设置于塑料型聚合物核心层上的膜和稀松布 (scrim) 层的物品。

[0004] 发明背景

[0005] 用于汽车和建筑材料应用的物品典型地被设计成满足许多竞争性的和严格的性能规范。使用所述物品制备的部件可凹陷，从而导致在成形操作期间的失败或部件的失效。

[0006] 发明概述

[0007] 在一个方面中，一种塑料型复合物品，其包含：包含增强纤维和塑料型聚合物的纤维增强型塑料型聚合物核心层；以及设置于纤维增强型聚合物核心层上的 frim，所述 frim 包含偶合至稀松布的膜，所述稀松布包含防止物品例如在诸如模具等成形操作期间的大体上凹陷或通常防止最终形成的物品在其放置于其使用环境中时的凹陷的有效基重。在一些实施方案中，frim 可包含防止包含约 550~650 克 / 平方米 (gsm) 的基重的核心层凹陷的有效基重。

[0008] 在某些实施方案中，frim 的稀松布包含至少 30gsm 的基重。在其它实施方案中，frim 的稀松布包含至少 45gsm 的基重。在其它实施方案中，frim 的稀松布包含至少 40gsm 或 50gsm 的基重。在某些实施方案中，frim 的膜包含至少 15gsm 的基重。在其它实施方案中，frim 的膜包含至少 30gsm 或 45gsm 的基重。在其它实施方案中，frim 的膜包含至少 50gsm 的基重。

[0009] 在某些实施方案中，稀松布包含至少 30gsm 的基重并且膜包含至少 30gsm 的基重。在其它实施方案中，稀松布包含至少 30gsm 的基重并且膜包含至少 45gsm 的基重。在其它实施方案中，稀松布包含至少 40gsm 或 50gsm 的基重。在其它实施方案中，稀松布包含至少 45gsm 的基重并且膜包含至少 40gsm 或 50gsm 的基重。在其它实施方案中，稀松布包含至少 45gsm 的基重并且膜包含至少 40gsm 或 50gsm 的基重。在其它实施方案中，稀松布包含至少 40gsm 或 50gsm 的基重，并且膜包含至少 45gsm 的基重。在其它实施方案中，稀松布包含至少 40gsm 或 50gsm 的基重，并且膜包含至少 40gsm 或 50gsm 的基重。

[0010] 在某些实例中，膜可用粘结剂偶合至稀松布。在某些实施方案中，膜是熔融粘合至稀松布。在其它实施方案中，稀松布包含聚对苯二甲酸乙二酯。在某些实施方案中，膜包含聚酰胺。在其它实施方案中，聚酰胺可以是尼龙 6 (nylon 6)。在某些实施方案中，膜包含聚丙烯并且稀松布包含聚对苯二甲酸乙二酯。
在某些实施方案中，稀松布和膜各自可独立地包含以下中的至少一种：聚烯烃树脂、热塑性聚烯烃树脂、聚乙烯聚合物树脂、丁二烯聚合物树脂、丙烯酸聚合物树脂、聚酯胺树脂、聚酯树脂、聚氨酯树脂、聚氨酯树脂、聚醚酰胺树脂、聚苯乙烯树脂、丙烯酸树脂-丁基丙烯酸酯-苯乙烯聚合物树脂、聚醚酰胺树脂、聚苯乙烯树脂、聚丙烯酸树脂、聚乙醇酸树脂、聚氨酯树脂、聚苯乙烯树脂、聚丙烯酸树脂、聚乙醇酸树脂、聚氨酯树脂。在其它实施方案中，膜包含聚烯烃树脂的第一聚乙烯层和聚烯烃树脂的第二聚乙烯层。

在某些实施方案中，膜可包括设置于与设置的firm的表面相对的表面上的膜层。在某些实施方案中，设置于与设置的firm的表面相对的表面上的膜层包含聚丙烯。

在某些实施方案中，膜可包括设置于与设置的firm的表面相对的表面上的膜层。在某些实施方案中，设置于与设置的firm的表面相对的表面上的膜层包含聚丙烯。

在某些实施方案中，膜可包括设置于与设置的firm的表面相对的表面上的膜层。在某些实施方案中，设置于与设置的firm的表面相对的表面上的膜层包含聚丙烯。

在某些实施方案中，膜可包括设置于与设置的firm的表面相对的表面上的膜层。在某些实施方案中，设置于与设置的firm的表面相对的表面上的膜层包含聚丙烯。

在某些实施方案中，膜可包括设置于与设置的firm的表面相对的表面上的膜层。在某些实施方案中，设置于与设置的firm的表面相对的表面上的膜层包含聚丙烯。
说明

[0021] 在另一个方面，一种热塑性复合物品，其包含：包含增强纤维和热塑性聚合物的纤维增强型热塑性聚合物核心层；偶合至并且设置于核心层上的屏蔽层；以及设置于屏蔽层上的疏松层，其中疏松层包含防止物品例如在诸如模制等成形操作期间的大体上凹陷的有效基重。在一些实施方案中，疏松层包含防止包含约550–650gsm的基重的核心层的大体上凹陷的有效基重。

[0022] 在某些实例中，屏蔽层可由粘结剂偶合至稀松布并且屏蔽层可由粘结剂偶合至核心层。在其它实施方案中，稀松布包含聚对苯二甲酸乙二酯。在其它实例中，屏蔽层包含以下中的一种：聚酰胺、聚丙烯、聚乙烯以及其共聚物。在一些实施方案中，聚酰胺是尼龙6。

在其它实施方案中，屏蔽层包含聚丙烯并且稀松布包含聚对苯二甲酸乙二酯。在一些实例中，屏蔽层包含多个层。在其它实例中，多个层中的至少一个层包含聚乙烯。在其它实例中，多个层中的至少一个层包含聚酰胺。在一些实施方案中，屏蔽层包含偶合至聚酰胺层的第一聚乙烯层和偶合至聚酰胺层的第二聚乙烯层，其中聚乙烯层在没有使用粘结剂的情况下使聚酰胺层有效粘结于核心层和稀松布。

[0023] 在某些实施方案中，物品可包括设置于与设置稀松布的表面相对的表面上的膜层。在一些实施方案中，设置于与设置稀松布的表面相对的表面上的膜层包含聚丙烯。

[0024] 在某些实例中，物品还可以包括织物层，所述织物层偶合至设置于与设置稀松布的表面相对的表面上的膜层。在一些实例中，核心层包含玻璃纤维。在其它实施方案中，核心层的增强纤维包含以下中的一种或多种：碳纤维、石墨纤维、合成有机纤维、无机纤维、天然纤维、矿物纤维、金属纤维、金属化有机纤维、金属化合成纤维、陶瓷纤维或其组合。

[0025] 在一些实例中，核心层是可渗透的并且包含约0.1g/cm²至约1.8g/cm²的密度。

在其它实例中，核心层具有在以核心层的体积计约20％至约80％之间的孔隙率。在一些实例中，核心层的热塑性聚合物包含以下中的一种或多种：聚乙烯树脂、热塑性聚烯烃掺合树脂、聚乙烯聚合物树脂、丁二烯聚合物树脂、丙烯酸聚合物树脂、聚酰胺树脂、聚酯树脂、聚碳酸酯树脂、聚酯酸酯树脂、聚苯乙烯树脂、聚乙烯树脂、聚丙烯酸酯树脂、聚氨酯树脂、聚苯乙烯树脂或其共聚物或混合物。在一些实施方案中，热塑性核心层包含玻璃增强纤维并且热塑性聚合物包含聚丙烯，膜包含聚酰胺并且稀松布包含聚对苯二甲酸乙二酯。

在其它实施方案中，物品可包括设置于与设置稀松布的表面相对的表面上的聚丙烯膜。

[0026] 在另一个方面中，一种便于装配车辆的方法，所述方法包括提供热塑性复合物品，其包含：包含增强纤维和热塑性聚合物的纤维增强型热塑性聚合物核心层；以及设置于纤维增强型聚合物核心层上的frim，所述frim包含偶合至稀松布的膜，所述稀松布包含防止物品例如在诸如模制等成形操作期间的大体上凹陷或通常防止最终形成的物品在其放置于其使用环境中时的凹陷的有效基重。在一些实施方案中，膜和/或稀松布包含防止包含约550–650gsm的基重的核心层的大体上凹陷的有效基重。

[0027] 在某些实施方案中，所述方法可包括将车辆部分配置成车辆的顶棚（headliner）。在其它实施方案中，所述方法可包括将物品配置成在核心层中与核心层中设置frim的表面相对的表面上具有膜层。在一些实例中，所述方法可包括将物品偶合至泡沫层。在某些实例中，所述方法可包括将泡沫偶合至织物层。
在另一个方面中，一种便于装配车辆的方法可包括提供热塑性复合物品，其包含：包含增强纤维和热塑性聚合物的纤维增强型热塑性聚合物核心层；设置于聚合物核心层上的 f rim；以及设置于膜上的防松布，其中防松布包含防止物品例如在诸如模制等成形操作期间的大体上凹陷或通常防止最终形成物品在其放置于使用环境中时的凹陷的有效基重。在一些实施方案中， f rim 可包含防止包含约 550–650gsm 的基重的核心层的凹陷的有效基重。

在某些实施方案中，所述方法可包括将车辆部分配置成车辆的顶棚。在其它实施方案中，所述方法可包括将物品配置成在核心层中与核心层中设置防松布的表面相对的表面上具有膜层。在一些实例中，所述方法可包括将物品合并至泡沫层。在某些实例中，所述方法可包括将泡沫合并至织物层。

在另一个方面中，一种便于装配车辆的方法可包括提供热塑性复合物品，其包含：包含增强纤维和热塑性聚合物的纤维增强型热塑性聚合物核心层；偶合至并且设置于核心层上的屏障层；以及偶合至并且设置于屏障层上的防松布层，其中防松布包含防止物品例如在诸如模制等成形操作期间的大体上凹陷或通常防止最终形成物品在其放置于其使用环境中时的凹陷的有效基重。在一些实施方案中， f rim 可包含防止包含约 550–650gsm 的基重的核心层的凹陷的有效基重。

在某些实施方案中，所述方法可包括将车辆部分配置成车辆的顶棚。在其它实施方案中，所述方法可包括将物品配置成在核心层中与核心层中设置防松布的表面相对的表面上具有膜层。在一些实例中，所述方法可包括将物品合并至泡沫层。在其它实例中，所述方法可包括将泡沫合并至织物层。

以下更详细描述其它特征、方面、实例以及实施方案。

附图简述

某些实施方案是参考附图进行描述，其中：

图 1 是根据某些实例的 f rim 的图解的侧视图；

图 2 是根据某些实例包含超过单个防松布的 f rim 的透视图；

图 3 是根据某些实例的多层 f rim 的图解；

图 4 是根据某些实例包含 f rim 和中心层的复合物品的图解；并且

图 5 是根据某些实例包含 f rim、中心层以及位于中心层的相对表面上的第二层的复合物品的图解。

本领域一般技术人员将认可的是，鉴于本公开的益处，图中的某些尺寸或特征可能已被放大、变形或以其它非常规或不成比例的方式显示以提供更用户友好的图示版本。图中的描述不指定特定厚度、宽度或长度，并且图组件的相对大小不旨在限制图中任一种组件的大小。在以下说明书中指定尺寸或值的情况下，所述尺寸或值仅出于说明目的而提供。此外，凭借为图中的某些部分画阴影并不意味需要特定材料或排列，并且尽管图中的不同组件出于区别的目的可包括阴影，但是如果需要，那么不同组件可包括相同或类似材料。

具体实施方式

以下参考单数和复数术语描述某些实施方案，以提供对本文所公开的技术的用户
友善的描述。如本文所描述的特定实施方案中所呈现，除非中另外指出，否则这些术语是仅出于方便目的而使用，并且不旨在限制如包括或排除某些特征的物品、复合物以及其它主题。

[0042] 在本文所描述的某些实例中，物品可包括 frim，其包含防止物品在成形操作期间的主体上凹陷的有效基重。在一些实施方案中，frim 的稀松布包含防止物品在成形操作期间的主体上凹陷的有效基重。如本文所用，成形操作通常应理解为包括但不限于物品的加热、模制或压力或温度加工以提供最终部件或物品。举例来说，本文所用的 frim 和 / 或 frim 的稀松布可有效降低物品在其于红外线烘箱中加热时的凹陷以避免或降低烘箱中着火的可能性。在其它情况下，本文所用的 frim 和 / 或 frim 的稀松布可有效减小在将加热的物品从烘箱中转移出来时产生的凹陷。在其它实例中，本文所用的 frim 和 / 或 frim 的稀松布可有效减小在将加热的物品转移至模制设备中时产生的凹陷。鉴于本公开的益处，本领域一般技术人员将容易选择可用于本文所描述的物品的其它类似类型的成形操作。

[0043] 在某些实施方案中，本文所描述的物品可包括一个或多个 frim 或 frim 层。术语 frim 是指稀松布与膜的组合。举例来说，并且参考图 1，frim 100 包含稀松布 110 和膜 120。frim 100 可以预浸湿形式使用或存在，所述预浸湿包括通过适宜的粘合、粘结剂或其它形式偶合至膜 120 的稀松布 110。在一些实施方案中，frim 100 可通过将材料加热至适合的温度以软化材料来进行预加工。在某些实例中，frim 100 可加热至所需温度，使得稀松布 110 和膜 120 熔融并且彼此偶合以提供内部没有任何可辨别的界面的 frim。在使用中，frim 的稀松布可存在于物品的外表面，而在其它配置中，frim 的膜可存在于物品的外表面。

[0044] 在某些实施方案中，frim 中所用的稀松布可以是重量大的稀松布。举例来说，现有物品中所用的典型稀松布是重量轻的，例如 10gsm 或更轻，使得在大体程度上物品的总重量未增加。在某些实施方案中，存在于 frim 中的稀松布可具有至少 30gsm 的基重，更明确地说至少 35gsm 的基重，例如 40gsm、45gsm、50gsm、55gsm、60gsm、65gsm、70gsm 或 75gsm 的基重。然而，取决于稀松布的厚度和结构，基重可以更低，例如 15gsm-30gsm。在某些实例中，稀松布可以是约 0.075mm 厚至约 2mm 厚，更明确地说约 0.1mm 厚至约 1mm 厚，例如约 0.1mm 厚至约 0.7mm 厚。

[0045] 在某些实例中，稀松布可设置成基本平面的层，其覆盖在膜层一侧的主体上所有表面。举例来说，稀松布可设置成覆盖膜并且通常从膜层的一侧延伸到另一侧的层。如果需要，那么稀松布可设置于膜层的两侧以将膜夹在稀松布层之间。在膜层夹在两个或更多个稀松布之间的情况下，膜的每一侧的稀松布可相同或可不同。此外，虽然膜的每一侧的稀松布可包含相同材料，但每一侧的稀松布的基重可不同。举例来说，膜的每一侧的稀松布可包含聚丙烯或聚对苯二甲酸乙二酯，但一个稀松布的基重可大于另一个稀松布的基重。在一些实施方案中，最靠近最终物品的外表面的稀松布可具有更高的基重，而在其它实例中，最靠近最终物品的外表面的稀松布可具有更低的基重。如果需要，那么稀松布可包含两个或更多个彼此偶合的层以形成所使用的整个稀松布。举例来说，稀松布可包括彼此粘结、熔融或偶合的多个材料层，以提供可被偶合至膜并且用作为本文所描述的 frim 的最终稀松布。如果需要，那么，相邻膜层可包含稀松布材料或不同稀松布层可由膜或一种或多种其它材料隔开。

[0046] 在一些实施方案中，稀松布可具有包含不同基重的区域以在那么区域中提供增加
说明书

的强度。举例来说，稀松布可主要具有 30gsm 的基重，但某些区域或区带可具有例如 45gsm 的增加的基重，以减轻那些区域中的凹陷。为提供所述具有增加的基重的区域，稀松布可以稀松布材料的贴片或条带形式设置于膜上。举例来说并且参考图 2，示出了 frim 200 的透视图。frim 200 包含设置于膜 220 上的多个稀松布 204、208 以及 212。在某些情况下，稀松布层或条带 204 和 208 包含与稀松布层 212 不同的基重。在一些实施方式中，条带 204 和 208 可包含相同基重，而在其它实施方式中，条带 204 和 208 可包含不同基重。在某些实例中，条带 204 具有比条带 208 和 212 更大的基重。在某些实施方式中，条带 208 具有比条带 204 和 208 更大的基重。

在某些实施方式中，条带 204 和 212 可具有约 30gsm 的基重并且条带 208 可具有约 35gsm 或更大的基重，40gsm 或更大的基重，45gsm 或更大的基重或 50gsm 或更大的基重。在其它实施方式中，条带 204 和 212 可具有约 35gsm 的基重并且条带 208 可具有约 40gsm 或更大的基重，45gsm 或更大的基重或 50gsm 或更大的基重。在某些实施方式中，条带 204 和 212 可具有约 40gsm 的基重并且条带 208 可具有约 45gsm 或更大的基重，50gsm 或更大的基重或 55gsm 或更大的基重。在某些实施方式中，条带 204 和 212 可具有约 45gsm 的基重并且条带 208 可具有约 50gsm 或更大的基重，55gsm 或更大的基重或 60gsm 或更大的基重。

在某些实施方式中，条带 208 可具有约 30gsm 的基重并且条带 204 和 212 各自独立地可具有约 35gsm 或更大的基重，40gsm 或更大的基重，45gsm 或更大的基重或 50gsm 或更大的基重。在其它实施方式中，条带 208 可具有约 35gsm 的基重并且条带 204 和 212 各自独立地可具有约 40gsm 或更大的基重，45gsm 或更大的基重或 50gsm 或更大的基重。在某些实施方式中，条带 208 可具有约 40gsm 的基重并且条带 204 和 212 各自独立地可具有约 45gsm 或更大的基重，50gsm 或更大的基重。在某些实施方式中，条带 208 可具有约 45gsm 的基重并且条带 204 和 212 各自独立地可具有约 50gsm 或更大的基重，55gsm 或更大的基重或 60gsm 或更大的基重。

在某些实施方式中，稀松布可包含一种或多种热塑性聚合物材料。举例来说，稀松布可包括一种或多种热塑性树脂，诸如聚烯烃树脂、热塑性聚烯烃掺合树脂、聚乙烯聚合物树脂、丁二烯聚合物树脂、丙烯酸聚合物树脂、聚酰胺树脂、聚酯树脂、聚碳酸酯树脂。聚丙烯树脂、聚酯羧基树脂、聚苯乙烯树脂、丙烯酸苯乙烯聚合物树脂、丙烯酸-丁基丙烯酸酯-苯乙烯聚合物树脂、聚酰胺树脂、聚丙烯酸酯树脂、聚酯树脂、聚氨酯树脂、聚苯乙烯树脂、聚丙烯酸酯树脂以及共聚物，混合物以及组合。在一些实施方式中，稀松布可包括两种聚合物树脂、三种聚合物树脂、四种聚合物树脂或更多。在其它实施方式中，稀松布的不同部分可包括不同聚合物材料组合物。

在其它实施方式中，稀松布可包含熔点大于 200℃、更明确地说大于 225℃的材料，例如熔点大于 250℃或大于 260℃，例如熔点在 250-260℃之间的材料。如果需要，那么材料可以是热塑性聚合物，诸如热塑性树脂或两种或更多种热塑性树脂。

在某些实施方式中，稀松布可包括增强材料。在一些实施方式中，增强材料可以是一种或多种类型的纤维。说明性纤维类型包括但不限于玻璃纤维、碳纤维、石墨纤维、合成有机纤维（特别是高模量有机纤维，诸如对位和间位芳纶纤维 (aramid fiber)、尼龙纤维、
聚酯纤维或本文所描述适合用作纤维的树脂中任一种）、天然纤维（诸如大麻、剑麻、黄麻、亚麻、椰壳纤维、红麻以及纤维素纤维）、矿物纤维（诸如玄武岩、矿棉（例如岩棉或矿渣棉）、硅灰石、氧化铝二氧化硅等）、或其混合物）、金属纤维、金属化天然和/或合成纤维、陶瓷纤维、纱纤维或其混合物。在一些实施方案中，存在与稀松布中的纤维可在用于提供所需官能团或赋予纤维其它物理性质之前被化学处理。稀松布中的纤维含量可以是以稀松布的重量计约1%至约90%，更特别是约30%至约70%。典型地，稀松布的纤维含量在约20重量%至约90重量%之间，更明确地，稀松布的重量计约40%至约80%之间变化。所用纤维的特定尺寸和/或取向可至少部分取决于所使用的聚合物材料和/或所需要的所得物品性质。鉴于本公开的益处，本领域一般技术人员将容易选择适合的其它纤维类型、纤维大小以及量。在一些实验中，存在于稀松布中的纤维的直径通常是大于约5微米，更明确地说约5微米至约20微米，并且长度是约5mm至约200mm；更明确地说，纤维直径可以是约10微米至约20微米并且纤维长度可以是约5mm至约75mm。在其它实施方案中，稀松布中可存在不同纤维类型。不同纤维类型可包含不同材料、不同纤维长度、不同纤维直径或其组合。

【0053】在某些实施方案中，膜的微孔可包含适宜的微孔在膜的最终产品中。在某些实施方案中，膜包括约10gsm至约75gsm，更明确地说约20gsm至约55gsm（例如约22gsm至约50gsm）的基重。如果需要，那么多孔可以是多孔或可以是非多孔的。膜可以透明的、有颜色的或有需要使其包括颜料、染料或其它添加剂。在某些实验中，膜可以是约0.05mm厚至约2mm厚，更明确地说约0.1mm厚至约1.5mm厚，约0.5mm厚至约1mm厚。

【0054】在某些实验中，膜可有效充当屏障层，其有效防止气味、有色流体或其它材料大体上吸附于最终产品上。举例来说，膜可有效防止香烟烟雾、柴油机排气、不好的气味等不被物品吸附和/或截留。在物品暴露于液体的试剂的情况下，膜可有效防止流体渗入下层材料，这种渗入会导致霉菌形成、物品变色或物品的永久染色。

【0055】在某些实验中，膜可包含以下中的一种或多种；聚烯烃、聚酰胺或其组合。在使用聚酰胺的情况下，聚酰胺可以是脂肪族聚酰胺（例如尼龙）、芳香族聚酰胺、半芳香族聚酰胺或其组合或共聚物。在其它实施方案中，膜可包含一种或多种热塑性树脂，诸如聚烯烃树脂、热塑性聚烯烃树脂、聚乙烯树脂、丁二烯-丙烯基树脂、丙烯酸酯树脂、聚酰胺树脂、聚酯树脂、聚碳酸酯树脂、聚丙烯树脂、聚酯酸酯树脂、聚苯乙烯树脂、丙烯腈-丁二烯-苯乙烯树脂、聚氨酯树脂、聚酯树脂、聚醚酮树脂、聚醚醚酮树脂、聚碳酸酯、聚苯并咪唑树脂、聚对苯二甲酸乙二醇酯树脂以及其共聚物、混合物以及组合。在一些实施方案中，膜可包括两种聚合物树脂、三种聚合物树脂、四种聚合物树脂或更多。在其它实验中，膜的不同部分可包括不同聚合物材料组合物。

【0056】在某些实验中，膜可包含增强材料。在某些实施方案中，增强材料可以是一种或多种类型的纤维。适合用于膜中的说明性纤维类型包括但不限于玻璃纤维、碳纤维、石墨纤维、合成有机纤维（特别是高强度有机纤维，诸如对位和间位芳纶纤维、尼龙纤维、聚酯纤维或本文所描述适合用作纤维的树脂中的任一种）、天然纤维（诸如大麻、剑麻、黄麻、亚麻、椰壳纤维、红麻以及纤维素纤维）、矿物纤维（诸如玄武岩、矿棉（例如岩棉或矿渣棉）、硅灰石、氧化铝二氧化硅等）或其混合物）、金属纤维、金属化天然和/或合成纤维、陶瓷纤
维、纱纤维或其混合物。在一些实施方案中，存在于膜中的纤维可在用于提供所需功能团或赋予纤维其他物理性质之前被化学处理。膜中的纤维含量可以是以膜的重量计约0%至约90%，更明确地说约30%至约70%。典型地，膜的纤维含量在约5重量%至约90重量%之间，更明确地说在按膜的重量计约40%至约80%之间变化。所用纤维的特定尺寸和/或取向可至少部分取决于所使用的聚合物材料和/或所用的所得物品性质。鉴于本公开的益处，本领域一般技术人员将容易选择适合的其它纤维类型、纤维大小以及量。在一些实例中，存在于膜中的纤维的直径通常是大于约5微米，更明确地说约5微米至约22微米，并且长度是约5mm至约200mm；更明确地说，纤维直径可以是约10微米至约22微米并且纤维长度可以是约5mm至约75mm。在其它实施方案中，膜中可存在不同纤维类型。不同纤维类型可包含不同材料、不同纤维长度、不同纤维直径或其组合。

[0056] 在某些实例中，frim可包含彼此偶合的稀松布/膜层的堆叠。举例来说并且参考图3，frim300包含层状堆叠，其包含设置于第一层320上的稀松布310。第一层320设置于第二层330上。另外的层340同样可存在于frim中。在一些实施方案中，第一层320可以是膜，不同于稀松布310的稀松布或其它材料。举例来说，第一层320可包含屏障性，其可赋予包括frim的最终物品所需性质。第二层320可以是膜、稀松布或其它材料，诸如屏障层。另外的层也可以是膜、稀松布或其它材料，诸如屏障层。在某些情况下，第一层320可以是粘结层。第二层330可以是层并且另外的层340可以是用于例如将frim200附着于如本文所描述的核心层的另一个粘结层。在其它配置中，稀松布310包含聚苯二酸乙二酯，第二层320可包含聚乙烯，第三层330可包含聚丙烯并且另外的层340可包含聚乙烯。图3中所示的特定阴影不具限制性并且仅仅为提供不同层之间的视觉差别而提供。

[0057] 在某些实施方案中，在frim存在情况下，frim的总重量可取决于所需要的包含frim的物品的总重量和性质而变化。在一些实施方案中，frim可包含约35克/平方米(gsm或g/m2)至约120gsm，更明确地说约40gsm至约95gsm（例如约45gsm至约75gsm）的基重。

[0058] 在某些实例中，frim的一个或多个层可包含染料、染料、颜料、颗粒、晶须、纤维或其它所需材料。在某些实施方案中，frim的一个或多个层亦可包括增强材料。在一些实施方案中，存在于frim的任一层中的增强材料可以是一种或多种类型的纤维。说明性纤维类型包括但不限于玻璃纤维、碳纤维、石墨纤维、合成有机纤维（特别是高模量有机纤维，诸如对位和间位芳纶纤维、尼龙纤维、聚酯纤维或本文所描述适合用作纤维的树脂中的任一种）、天然纤维（诸如大麻、剑麻、黄麻、亚麻、椰壳纤维、红麻以及纤维素纤维）、矿物纤维（诸如玄武岩、矿棉（例如岩棉或矿渣棉）、硅灰石、二氧化硅或其混合物）、金属纤维、金属化天然和/或合成纤维、泡沫纤维、金属或其混合物。在一些实施方案中，存在于frim中的纤维可在用于提供所需功能团或赋予纤维其它物理性质之前被化学处理。frim中的纤维含量可以是以frim的重量计约5%至约90%，更明确地说约30%至约70%。典型地，frim的纤维含量在约20重量%至约90重量%之间，更明确地说在按frim的重量计约40%至约80%之间变化。所用纤维的特定尺寸和/或取向可至少部分取决于所使用的聚合物材料和/或所用的所得物品性质。鉴于本公开的益处，本领域一般技术人员将容易选择适合的其它纤维类型、纤维大小以及量。在一些实例中，存在于frim中的纤维的直径通常是大于约5微米，更明确地说约5微米至约22微米，并且长度是约5mm至约200mm；更明确地说，纤维直径可以是约10微米至约22微米并且纤维长度可以是约5mm至约75mm。
在某些实施方案中，纤维可存在于稀松布中，膜中或稀松布与膜中。在其它实施方案中，不同纤维类型可存在于稀松布和 firm 的膜中或存在于 firm 中的其它层中。不同纤维类型可包含不同材料，不同纤维长度、不同纤维直径或其组合。

[0059] 在某些实施方案中，本文所描述的物品可包括设置于核心层上的 firm 以提供复合物品。所述复合物可提供许多属性，例如它们可模制并且在没有大体上凹陷的情况下形成多种适合的结构和非结构物品，包括但不限于汽车结构组件，诸如保险杠、内饰顶篷、底板护罩、挡泥板衬里、挡泥板外接板、防撞击滑板、横梁、仪表板以及内部和外部装饰部件或内部板或外部板。在其它实例中，复合物可用作建筑板、吸音板、车辆面板、重量轻的结构构件（诸如存在于娱乐车或可能需要使用或包括重量轻的材料的其它应用中的那些），或者可以是其一部分。在某些实施方案中，用于外部结构应用中的传统纤维复合物通常可被压缩流动模制并且其最终部件形状可以是大体上无孔隙的。比较起来，用于汽车内部应用的低密度纤维复合物在本质上通常可以是半结构的并且是多孔的和重量轻的，并且密度在 0.1 至 1.8g/cm³范围内并且在成品部件的厚度中含有均匀分布的 5% 至 95% 孔隙。某些汽车规范需要轻重量、良好弯曲强度、低程度凹陷、耐冲击性以及其它机械性质，以及良好热成形特性特征和 / 或改善的机械性质。

[0060] 在某些实施方案中，felm 可通过将膜偶合或附着于稀松布来制备。适合的膜和稀松布供应商包括但不限于 Mondi Group (Vienna, Austria)、Kurabo (Japan)、Condako (Belgium) 以及许多其它供应商。

[0061] 在本文所描述的某些实例中，复合物品包含设置于包含一种或多种热塑性聚合物的核心层上的 firm。在一些实施方案中，核心层的热塑性聚合物可以是聚合物树脂或聚合物松香。说明性聚合物树脂类型包括但不限于以下的聚合物树脂，聚烯烃树脂、热塑性聚烯烃掺合树脂、聚乙烯聚合物树脂、丁二烯聚合物树脂、丙烯酸聚合物树脂、聚醚胺树脂、聚酯树脂、聚碳酸酯树脂、聚酯碳酸酯树脂、聚苯乙烯树脂、聚丙烯苯乙烯聚合物树脂、丙烯腈 - 丁基丙烯酸酯 - 苯乙烯聚合物树脂、聚醚亚胺树脂、聚苯醚树脂、聚亚苯基氧化物树脂、聚苯硫醚树脂、聚醚树脂、聚醚酮树脂、聚醚酮树脂、聚氨酯树脂、聚苯并咪唑树脂以及其共聚物，混合物以及组合。在一些实施方案中，树脂可包括两种聚合物树脂、三种聚合物树脂、四种聚合物树脂或更多。在其它实例中，核心的不同部分可包括不同聚合物材料组合物。举例来说，核心的第一区域可包括第一聚合树脂，而复合物的第二区域可包括不同于第一树脂的第二聚合树脂。还可以使用其它树脂，其可通过加热或其它辐射充分软化以允许熔融和 / 或模制，而不会在复合物品的加工或成形期间化学或热分解（在任何大体程度上）。鉴于本公开的益处，本领域一般技术人员将容易选择所述其它适合的树脂。

[0062] 在一些实施方案中，核心的树脂可在用于本文所描述的复合物中之前被预加工或化学处理。举例来说，可在树脂用于提供复合物品之前向其中添加热稳定剂、软化剂、粘度调节剂、增稠剂、离聚剂、稀释剂或其它材料。在某些实例中，可将分散剂添加至树脂中以帮助树脂与用于提供物品的其它组分混合。

[0063] 在某些实施方案中，本文所描述的复合物可包含或被配置成重量轻的复合物或热塑性复合物，例如重量轻的增强热塑性（LWRT）复合物。所述复合物的实例是由 HANWHA AZDEL, Inc. 制备并且以商标 SUPERLITE® 薄片销售或出售。优选地，所述 LWRT 的面密度是约 400 克 / 平方米 LWRT (gsm) 至约 4000 gsm，不过取决于专门应用需要面密度可小于
400gsm或大于4000gsm。在一些实施方案中，上部密度可小于约4000gsm。如果需要，那么复合物可以采用其它形式，诸如玻璃毡热塑性复合物或包括热塑性物质和彼此偶合（例如彼此层合或粘结）的两个或更多个层的其它配置。

[0064] 在某些实施方案中，复合物的核心可包括增强材料，诸如纤维、晶须、粉末、颗粒，可与交联材料或可增加强度或赋予核心材料所需机械性能的其它材料。在增强材料存在的情况下，它们可以连续或不连续形式均匀存在于整个核心中或局部化或以其它方式与其它区域相比更大的量存在于一些区域中。在增强材料是纤维的实施方案中，纤维可被布置成彼此平行，彼此正交或不以特定角取向存在，这取决于所需要的核心材料性质。用于工艺的说明性纤维类型包括但不限于玻璃纤维、碳纤维、石墨纤维、合成有机纤维（特别是高模量有机纤维），诸如对位和间位芳纶纤维、尼龙纤维、聚酯纤维或本文所描述适合用作纤维的树脂中的任一种），天然纤维（诸如大麻、剑麻、黄麻、亚麻、椰壳纤维、红麻以及纤维素纤维），矿物纤维（诸如玄武岩、矿棉（例如岩棉或矿渣棉）、硅石棉、氧化铝二氧化硅等或其混合物）、金属纤维、金属化天然或/或合成纤维、陶瓷纤维、纱纤维或其混合物。在一些实施方案中，存在于核心中的纤维可在用于提供所需官能团或赋予纤维其它物理性质之前被化学处理。

[0065] 在某些实施方案中，聚合物核心层可包括约20重量％至约80重量％的平均长度在约5mm与约200mm之间的纤维，以及约20重量％至约80重量％的完全或大体上未固结纤维或颗粒状热塑性材料，其中重量百分数是以聚合物核心层的总重量计。在另一个实施方案中，本文的复合物的聚合物核心层包括约30重量％至约60重量％的纤维。在一些实例中，包含约50与约25mm之间的平均长度的纤维典型地用于聚合物核心中。适合的其它纤维类型包括但不限于金属纤维、金属化无机纤维、金属化合成纤维、玻璃纤维、石墨纤维、碳纤维、陶瓷纤维、矿物纤维、玄武岩纤维、无机纤维、芳纶纤维、红麻纤维、黄麻纤维、亚麻纤维、大麻纤维、纤维素纤维、剑麻纤维、椰壳纤维以及其组合。鉴于本公开的益处，本领域一般技术人员将容易选择其它适合的纤维。

[0066] 在某些实施方案中，包括约5mm至约200mm的平均长度的纤维可与可提供树脂的诸如聚丙烯粉末等热塑性粉末粒子一起添加至搅拌后的水性泡沫中。在另一个实施方案中，可使用包括约5mm至约75mm或更明确地说约5mm至约50mm的平均长度的增强纤维。可将组分搅拌足以形成增强纤维与热塑性粉末于水性泡沫中的分散混合物的时间。然后，可将分散混合物放于任何适合的支撑结构（例如线网）上，并且然后可通过支撑结构将水抽空，从而形成网。可将网干燥并且加热超过热塑性粉末的软化温度。可将网冷却并且压至预定厚度并且冷却以制备孔隙率以体积计大于0％，更明确地说在约5％至约95％之间的聚合物核心层。

[0067] 在一些实施方案中，可将网加热超过核心层中热塑性树脂的软化温度以大体上软化塑料材料并且使其穿过一个或多个固定装置，例如压延机、层合机、双层皮带层合机、分度压力机、多层压力机（multiple daylight press）、压热机以及用于薄片和织物的层合和固定的各种结构，使得塑料材料可流动并且湿润纤维。固定装置中的固结构件之间的空隙可设定这样的尺寸（小于未固结网的尺寸，而如果网是要完全固结那么大于所述的网的尺寸），因而允许网在穿过所述辊之后展开并且保持是大体上可渗透的。在一个实施方案中，如果网是要完全固结，那么可将空隙设定至比网的尺寸大约5％至约10％的尺寸。完
全固结的网意指完全压缩并且大体上无孔隙的网。完全固结的网将具有小于约5%的孔隙含量并且具有可以忽略的开放孔结构。

在某些实例中，颗粒状材料通常包括短塑料纤维，所述短塑料纤维可被包括以增强制备期间网结构的结合力。粘合可通过利用网结构内部材料的热特性来形成。可将网结构加热到足以引起热塑性组分在其表面上熔化从而将粒子与纤维连接。在一个实施方案中，用于形成热塑性树脂可至少部分呈颗粒状形式。鉴于本公开的益处，适合热塑性物质包括本文中所提到的那些树脂，或本领域一般技术人员将选择的其它类似树脂中的任一种。一般来说，呈颗粒状形式的热塑性树脂不需要是过分精细的。

在某些实施方案中，核心可以是多孔的、非多孔的或包括多孔的区域同时包含非多孔的其它区域。存在于核心中的精确孔隙率可取决于复合物的预期用途而变化。在某些实施方案中，聚合物核心可包含以聚合物核心的体积计大于0%的聚合物核心的体积计大于0%且不小于95%（并且更准确地说以聚合物核心的体积计至少30%至约70%之间的孔隙率。虽然不要求，但也可包括聚合物核心和frim的整个复合物是多孔或孔隙率在以上所提到的范围内，例如复合物的孔隙率通常可大于复合物总体积的0%至约95%，更准确地说在以复合物的总体积计大于0%至约95%之间，并且更准确地说在以复合物的总体积计约30%至约70%之间。在其它实例中，核心或整个复合物可包含0-30%、10-40%、20-50%、30-60%、40-70%、50-80%、60-90%、0-40%、0-50%、0-60%、0-70%、0-80%、0-90%、10-50%、10-60%、10-70%、10-80%、10-90%、10-95%、20-60%、20-70%、20-80%、20-90%、20-95%、30-70%、30-80%、30-90%、30-95%、40-80%、40-90%、40-95%、50-90%、50-95%、60-95%、70-80%、70-90%、70-95%、80-90%、80-95%或这些示例性范围内的任何说明性值的孔隙率。如果需要，那么可选择或整个复合物的孔隙率可大于95%，例如可以是约96%或97%。

在某些实例中，热塑性复合物通常可使用以下材料制备，短切玻璃纤维、分度树脂(equn resin)以及热塑性聚合物膜和或使用玻璃纤维或诸如聚丙烯(PP)、聚对苯二甲酸丁二酯(PBT)、聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、PC/PBT掺合物或PC/PET掺合物热塑性树脂纤维制造的编织或非交织织物。在某些实施方案中，PP/PBT、PET/PC/PET掺合物或PC/PBT掺合物可用作树脂。为制备热塑性复合物或其组分，可将树脂、增强材料/或其它添加剂添加或计量于包含有基材的顶部开口混合槽中的分散溶液中。在不希望受任何特定理论限制的情况下，泡沫中空气捕获袋的存在可帮助分散玻璃纤维和树脂。在一些实例中，可经由分配歧管将玻璃与树脂的分散混合物注入到定位于造纸机的网部上方的流浆箱中。然后在使真空将分散混合物提供至移动中的网筛时，可将泡沫、而非玻璃纤维或树脂移除，从而连续制备均匀纤维湿网。湿网可在适合的温度下穿过干燥器以降低水分含量并且熔融或软化树脂。当热网离开干燥器时，可通过使玻璃纤维、热塑性树脂以及frim的网穿过一组加热器的板幕将诸如frim等表面层层合至网上。还可以将其它层与frim一起或替代frim粘附至网的一侧或两侧以促使容易处理玻璃纤维增强型核心。然后，可使复合物穿过拉伸层并且连续切割（裁切）成所需尺寸以便随后形成最终物品。关于所述LWRT复合物的制备的其它信息（包括适合用于形成所述复合物的材料和加工条件）描述于例如美国专利号6,923,494、978,489,494,843,944,964,935,734,321,5,053,449、4,925,615,5,609,966以及美国专利申请公布号US 2005/0082881、US2005/0228108、US

[0071] 在某些实施方案中并且参考图4，示出了复合物品400，其包含设置于核心420上的frim410和设置于核心420的相对表面上的另外的层430。frim410可以是本文所述的frim中的任何一种或多种，包括多层frim、包含单个热塑性单层膜的frim以及其它适合的frim。核心层420可以是本文所述的任何核心层，包括但不限于热塑性复合层或其它适合的核心层。另外的层430可以是聚丙烯等热塑性聚合物和诸如玻璃纤维等任选的增强材料。举例来说，另外的层可包括例如聚丙烯等热塑性聚合物和诸如玻璃纤维等任选的增强纤维。各个层的精确厚度可取决于所需的物品400最终性质而变化。

[0072] 在一些实施方案中并且参考图5，示出了复合物品500，其包含设置于核心520上的frim510和设置于核心520的相对表面上的另外的frim530。frim510和530可以是本文所述的frim中的任何一种或多种，包括多层frim、包含单个热塑性单层膜的frim以及其它适合的frim。frim510和530可相同或不相同。在一些实例中，frim510和530可包括至少一种共同的材料，例如类似增强烧结或类似热塑性聚合物。核心层520可以是本文所述的任何核心层，包括但不限于热塑性复合层，例如1WRT复合层，或其它适合的核心层。frim510和530以及核心层520各自的精确厚度可取决于所需的物品500最终性质而变化。在一些实施方案中，frim510和530中的一者或两者可包括如存在于核心层520中的一种共同的材料。

[0073] 在某些实施方案中，可使用许多方法来制备本文所描述的复合物品。举例来说，通常可将复合物制备成诸如薄片或膜等各种形式，于预成形衬底上的层状材料或其它更刚性的形式，这取决于所需的特定应用。对于某些应用，复合物可以薄片形式提供并且除表面层之外可选包括位于所述薄片上的一个或多个另外的层。在一个实例中，所述另外的表面或表层可以是例如膜、非织造纺布、面纱、另外的frim、织造织物或其组合。如果需要，那么表面层可以是可透气的并且可在热成形和/或模制操作期间大体上铺设和散布有复合物品。此外，所述层可以是粘结剂，诸如施加至纤维热塑性材料的表面的热塑性材料（例如乙烯醇乙烯酸共聚物或其他所述聚合物）。一般来说，复合物品，特别在当呈薄片形式时的面密度从约150gsm变化至约4000gsm，更明确地讲约500gsm至约3000gsm，例如约300gsm至约500gsm，或约500gsm至约750gsm或约750gsm至约2500gsm。

[0074] 在某些实施方案中，本文所描述的复合物可用于提供中间和最终形式物品，包括结构物品或用于汽车和包括但不限于以下其它应用的物品：车身板件、置于板、杂物盘、顶篷、门模、仪表板顶盖、机罩板、诸如用于娱乐车、定期荷载的侧板、前立柱和/或后立柱饰板、遮阳板等。其它所述物品对本领域技术人员来说将是显而易见的。可使用包括但不限于以下的多种方法将复合材料模制成各种物品：压力成形，热成形，热冲压，真空成形，压缩成形以及热压处理。说明性方法描述于例如美国专利号6,923,494和5,601,679以及DuBois和Pribble的"Plastics Mold Engineering Handbook"，第五版，1995，第468至498页和其它任何地方。

[0075] 在某些实施方案中，frim的稀松布或整个frim可有效防止物品在诸如加热、模制等成形操作期间的大体上凹陷。在一些实施方案中，成形操作或加工可在约160℃至约240℃（例如约180℃至约230℃）进行。鉴于本公开的优点，本领域一般技术人员将认识
到，在形成或加工操作期间物品可有意地变形或以其它方式改变。在一些实施方案中，frim 可有效防止最终形成的物品，如果未进一步加工即使用那么是物品，在物品放置于其使用环境中例如作为顶篷或者顶篷、内部组件或其它适合的物品的一部分时的凹陷。

例如以下描述某些具体实施例以进一步说明本文所描述的技术的一些新颖方面。

实施例 1

frim 可通过将稀松布偶合至膜来制备。特别地，可将稀松布设置于膜上并且如果需要，那么使用粘结点或点焊使其暂时保持在适当的位置。可使化合物穿过层合机或加热辊组以压制成品并且将稀松布和膜彼此偶合来提供 frim。

在一些实施方案中，稀松布可包含聚对苯二甲酸乙二酯并且膜可包含聚酰胺，诸如尼龙 6。在其它实施方案中，稀松布可包含聚对苯二甲酸乙二酯并且膜可包含聚丙烯。在其它实施方案中，稀松布可包含不是聚对苯二甲酸乙二酯的材料并且膜可包含诸如尼龙 6 等聚酰胺。在某些实施方案中，稀松布可包含不是聚对苯二甲酸乙二酯的材料并且膜可包含聚丙烯。

实施例 2

复合物品可通过将 frim 偶合至热塑性核心层来制备。在一些实施方案中，可将包含聚对苯二甲酸乙二酯稀松布和聚丙烯膜的 frim 设置于包含聚丙烯和切碎的玻璃纤维的核心层上。如果需要，那么可使用粘结点或点焊使 frim 暂时保持在适当的位置。

可使复合物穿过层合机或加热辊组以压制成品并且将 frim 和核心层彼此偶合来提供最终物品。

实施例 3

可使用实施例 2 中所制备的物品在最终物品的相对的表面上设置另外的层。在一些实施方案中，另外的层可以是聚丙烯膜。

实施例 4

复合物品可通过将 frim 偶合至热塑性核心层来制备。在一些实施方案中，可将包含聚对苯二甲酸乙二酯稀松布和尼龙 6 膜的 frim 设置于包含聚丙烯和切碎的玻璃纤维的核心层上。如果需要，那么可使用粘结点或点焊使 frim 暂时保持在适当的位置。

可使复合物穿过层合机或加热辊组以压制成品并且将 frim 和核心层彼此偶合来提供最终物品。

实施例 5

可使用实施例 4 中所制备的物品在最终物品的相对的表面上设置另外的层。在一些实施方案中，另外的层可以是聚丙烯膜。

实施例 6

复合物品可通过将 frim 偶合至热塑性核心层来制备。在一些实施方案中，可将包含聚对苯二甲酸乙二酯稀松布、膜以及介于稀松布与膜之间的聚乙烯层的多层 frim 设置于包含聚丙烯和切碎的玻璃纤维的核心层上。如果需要，那么可使用粘结点或点焊使 frim 暂时保持在适当的位置。

可使复合物穿过层合机或加热辊组以压制成品并且将稀松布和膜彼此偶合来提供最终物品。如果需要，那么在膜与核心层之间可存在另外的聚乙烯层。

实施例 7
[0094] 可使用实施例6中所制备的物品在最终物品的相对的表面上设置另外的层。在一些实施方案中，另外的层可以是聚丙烯膜。如果需要，那么在核心层与另外的层之间可存在另外的聚乙烯层。

[0095] 实施例8

[0096] 复合物品可通过将frim偶合至热塑性核心层来制备。在一些实施方案中，可将包含聚对苯二甲酸乙二酯聚酯、尼龙6膜以及介于稀松布与膜之间的聚乙烯层的多层frim设置于包含聚丙烯和切碎的玻璃纤维的核心层上。如果需要，那么可使用粘结点或点焊使frim暂时保持在适当的位置。

[0097] 可使复合物穿过层合机或加热辊组以压制物品并且将稀松布和膜彼此偶合来提供最终物品。如果需要，那么在膜与核心层之间可存在另外的聚乙烯层。

[0098] 实施例9

[0099] 可使用实施例8中所制备的物品在最终物品的相对的表面上设置另外的层。在一些实施方案中，另外的层可以是聚丙烯膜。如果需要，那么在核心层与另外的层之间可存在另外的聚乙烯层。

[0100] 实施例10

[0101] 复合物品可通过设置包含47gsm膜层和45gsm稀松布层的frim来制备。核心材料的基重可以是约550—650gsm，其提供约730gsm至约830gsm的物品总基重。

[0102] 实施例11

[0103] 物品可根据实施例10制备，其中frim用包含基重为约45gsm的膜和基重为约17gsm的稀松布的62gsmfrim取代。

[0104] 实施例12

[0105] 物品可根据实施例10制备，其中frim用包含基重为约55gsm的膜和基重为约17gsm的稀松布的72gsmfrim取代。

[0106] 实施例13

[0107] 物品可根据实施例10制备，其中frim用包含基重为约45gsm的膜和基重为约19gsm的稀松布的64gsmfrim取代。

[0108] 实施例14

[0109] 物品可根据实施例10制备，其中frim用包含基重为约47gsm的膜和基重为约45gsm的稀松布的92gsmfrim取代。

[0110] 实施例15

[0111] 物品可根据实施例10制备，其中frim用包含基重为约48gsm的膜和基重为约17gsm的稀松布的65gsmfrim取代。

[0112] 实施例16

[0113] 物品可根据实施例10制备，其中frim用包含基重为约56gsm的膜和基重为约20gsm的稀松布的76gsmfrim取代。

[0114] 实施例17

[0115] 物品可根据实施例10制备，其中frim用包含基重为约24gsm的膜和基重为约19gsm的稀松布的43gsmfrim取代。

[0116] 实施例18
[0117] 物品可根据实施例10制备，其中frim用包含基重为约22gsm的膜和基重为约
19gsm的稀松布的41gsmfrim取代。
[0118] 实施例19
[0119] 物品可根据实施例10制备，其中frim用包含基重为约28gsm的膜和基重为约
30gsm的稀松布的58gsmfrim取代。
[0120] 实施例20
[0121] 物品可根据实施例10制备，其中frim用包含基重为约29gsm的膜和基重为约
29gsm的稀松布的58gsmfrim取代。
[0122] 当介绍本文所公开的实施例的元素时，冠词“一”、“该”以及“所述”旨在意指存在
一个或多个所述元素。术语“包含”、“包括”以及“具有”旨在为开放性的并且意指可存在
不同于所列元素的其它元素。本领域一般技术人员将认识到，鉴于本公开的益处，实施例的
各种组分可与其它实施例中的各种组分互换或用其取代。
[0123] 虽然上文已描述了某些方面、实施例以及实施方案，但本领域一般技术人员将认
识到，鉴于本公开的益处，所公开的说明性方面、实施例以及实施方案的添加、取代、改性以
及变更均是可能的。