一种高强韧性铸态球墨铸铁及其生产方法

摘要

本发明公开了一种高强韧性铸态球墨铸铁及其生产方法，该高强韧性铸态球墨铸铁较现有技术生产的球铁在满足高强度性能前提下具有更高的伸长率，不含Ni、Mo，铸态可以达到高强度高韧性球铁铸件的要求；采用该方法生产的高强韧性铸态球墨铸铁，以普通铸铁为原料，球化率高，综合机械性能好，兼具了EN1563标准中GJS-600-3牌号抗拉强度以及GJS-450-10伸长率的要求。
1. 一种高强韧性铸态球墨铸铁，其特征在于，该球铁成分不含 Ni、Mo，所述本球墨铸铁
的化学成分的质量百分比为：C 3.5% ~ 3.8%，Si 2.6% ~ 3.0%，Mn ≤ 0.6%，P ≤ 0.06%，S
0.005% ~ 0.02%，Sn 0.01% ~ 0.04%，Bi ≤ 0.004%，Mg 0.03% ~ 0.06%，Re 0.01% ~ 0.04%，
余量为 Fe。
2. 一种上述高强韧性铸态球墨铸铁的生产方法，其特征在于包括以下步骤：
脱硫；铁水包内吹 N2 脱硫，将炉内化学成分质量百分比调整为：C 3.7% ~ 3.9%，Si
1.2% ~ 1.7%，Mn ≤ 0.4%，P ≤ 0.06%，S ≤ 0.02%，余量为 Fe；
对上述产物进行球化处理，炉前二次孕育；
球化处理温度为 1510 ± 10℃，球化剂加入量为处理铁水重量的 1.2% ~ 1.7%；
一次孕育剂采用 Si-Mn-Sn 复合孕育剂，其中硅、锰、铝加入量为满足孕育激硅量
0.15% ~ 0.3%；Mn 加入量为满足最终 ω (Mn) ≤ 0.6% 的补足量；
Sn 的加入量为满足最终 ω (Sn) = 0.01% ~ 0.04%；
二次孕育剂在电炉出铁槽加入，加入量为满足最终 ω (Si) = 2.6% ~ 3.0% 的补足量；
经过球化和二次孕育处理的液态铁水在 1360 ~ 1400℃ 温度条件下浇注至湿型粘土
砂铸型中，在浇注过程中进行二次孕育，即随流瞬时孕育，加入孕育剂为浇注铁水重量的
0.1% ~ 0.15%，二次孕育的增硅量不计算在终硅量内；
浇注后的铁水在铸型中冷却凝固成型，随铸型缓慢冷却至 500℃ 以下落砂。
3. 根据权利要求 2 所述的生产方法，其特征在于：
所述的球化剂为轻稀土球化剂。
4. 根据权利要求 2 所述的生产方法，其特征在于：一次孕育剂采用 Si-Mn-Sn 复合孕育
剂，其中硅加入量为满足孕育激硅量 ω (Si) = 0.15% ~ 0.3%；Mn 加入量为满足最终
ω (Mn) ≤ 0.6% 的补足量，Sn 的加入量为满足最终 ω (Sn) = 0.01% ~ 0.04%。
5. 根据权利要求 2 所述的生产方法，其特征在于：二次孕育剂为硅系孕育剂，加入量为
满足最终 ω (Si) = 2.6% ~ 3.0% 的补足量。
6. 根据权利要求 2 所述的生产方法，其特征在于：所述的随流瞬时孕育剂为合金 Si-Bi
孕育剂，其中质量分数 Si ≥ 70%，Bi 0.5% ~ 2%；3 次孕育的增硅量不计算在终硅量内。
7. 根据权利要求 2 所述的生产方法，其特征在于：所述脱硫工艺采用双联熔炼，冲天炉
炉外脱硫；所述球化处理工艺采用盖包法。
8. 根据权利要求 2 所述的生产方法，其特征在于：出铁三分之一时按铁液总重的
1%~1.5% 加脱硫剂，并开始吹氮气脱硫。
9. 根据权利要求 2 所述的生产方法，其特征在于：球化后，整包铁水从扒渣完成到浇注
结束应控制在不超过 8 分钟。
10. 根据权利要求 2 所述的生产方法，其特征在于：采用含 Si-Mn-Sn-Bi 元素的合金材
料进行复合孕育；其孕育过程：一次孕育为 Si-Mn-Sn 复合孕育，二次为硅系合金孕育，
三次为 Si-Bi 孕育。
一种高强韧性铸态球墨铸铁及其生产方法

技术领域
[0001] 本发明涉及一种铸态球铁及其生产方法，尤其是一种高强韧性铸态球墨铸铁及其生产方法。

背景技术
[0002] 高强韧性球墨铸铁由于具有较高抗拉强度和较高伸长率在工程机械、汽车零件中应用广泛，包括曲轴、转向节、行星轮壳、轮毂等安全件，壁厚一般在6~50mm，单件重量一般5~100kg。有些原来采用铸钢材料的产品正在逐步被高强韧性球墨铸铁所替代，用球墨铸铁代替铸钢件，可使其自重下降8%~12%。国外一般采用 EN1563 材料标准，通常材料牌号为 GJS-600-3 或 GJS-450-10，前者抗拉强度较高但伸长率较低，后者伸长率较高但抗拉强度却偏低。因此，有客户提出 GH 60-38-10 的牌号，相当于牌号 QT600-10，希望得到既有较高抗拉强度又有较高伸长率的新材料。

[0003] 根据标准要求，其性能等级根据单铸试块上取的测试以抗拉强度为依据来测得的机械性能。Y型单铸试块厚度 25mm。三种牌号的材料其技术要求对照见表 1：

<table>
<thead>
<tr>
<th>牌号</th>
<th>抗拉强度σs (MPa)</th>
<th>屈服强度σb (MPa)</th>
<th>伸长率δ (%)</th>
<th>硬度</th>
<th>主要金相组织</th>
</tr>
</thead>
<tbody>
<tr>
<td>GJS-450-10</td>
<td>450</td>
<td>310</td>
<td>10</td>
<td>160~210</td>
<td>铁素体</td>
</tr>
<tr>
<td>GJS-600-3</td>
<td>600</td>
<td>370</td>
<td>3</td>
<td>190~250</td>
<td>珠光体+铁素体</td>
</tr>
<tr>
<td>GH 60-38-10</td>
<td>600</td>
<td>380</td>
<td>10</td>
<td>190~250</td>
<td>珠光体+铁素体</td>
</tr>
</tbody>
</table>

由于曲轴、转向节、行星轮壳、轮毂在车辆上均属于安全件，是主要承载受力件，不允许出现铸造缺陷，成品每件质量要求，特别是质量稳定性要求极为严格。要求零件具有较高的强度，同时具有较好的延伸性。国内高精度零件的牌号如 QT500-7，QT550-6 珠光体和铁素体混合基体的球墨铸铁与 QT600-3，QT700-2 等珠光体基体的球墨铸铁，一般情况下铸态获得该牌号铸件必须采用合金化，常用的合金元素有 Cu、Mn、Ni、Sn、Mo 等几种。目前国内公开的技术是采用加 Cu、Mn、Ni、Mo 提高强度，或采用热处理方法，结果成本较高，工艺复杂。这些牌号的材料其伸长率都较低。国内公开的论文—2009 中国铸造活动周论文集《铸态 QT600-10 球铁的制备》一文其提高珠光体的途径是加入微量 Sb，这对于大断面球墨铸铁能显著提高石墨圆整度和增加石墨球数，促进珠光体组织转变，并稳定珠光体，而对于壁厚 50mm 以下的中小型件及薄壁件，其抑制铁素体析
出的作用不利于获得较好的伸长率；在国内公开发表的另一篇论文—2007/6 现代铸铁《铸态 QT600-10 球墨铸铁的研制》，采用的球化处理为加入 1.3% 的含铜球化剂（w(Mg) 7.89%，w(RE) 4.38%，w(Si) 34.6%，w(Cu) 20%）。其含 Cu 球化剂较普通球化剂价格要高许多，使其成本大幅增加。两篇论文都对 Mn 进行了限制，要求严格控制在 0.5% 以内，而 Mn 与 Cu( 以及 Ni、Mo) 相比是低廉的。

发明内容

【0004】 本发明的目的在于提供一种高强韧性铸态球墨铸铁及其生产方法，该高强韧性铸态球墨铸铁较现有技术生产的球铁具有更高的强度和伸长率，构成 Ni、Mo。可满足对安全性能及综合机械性能有特殊要求的球铁件的性能要求；采用该方法生产的高强韧性铸态球铁，以普通铸铁为原料，球化率高，机械性能达到或超出 GH 60-38-10 的要求。

【0005】 为达到上述目的，本发明所采用的技术方案如下：

一种高强韧性铸态球墨铸铁，该球铁成分不含 Ni、Mo，所述本球墨铸铁的化学成分的质量百分比为：C 3.5% ~ 3.8%，Si 2.6% ~ 3.0%，Mn ≤ 0.6%，P ≤ 0.06%，S 0.005% ~ 0.02%，Sn 0.01% ~ 0.04%，Bi ≤ 0.004%，Mg 0.03% ~ 0.06%，Re 0.01% ~ 0.04%，余量为 Fe。

【0006】一种上述高强韧性铸态球墨铸铁的生产方法，包括以下步骤：
脱硫：铁水包内吹 N2 脱硫，将炉内化学成分质量百分比调整为：C 3.7% ~ 3.9%，Si 1.2% ~ 1.7%，Mn ≤ 0.4%，P ≤ 0.06%，S ≤ 0.02%，余量为 Fe；
对上述产物进行球化处理，炉前二次孕育；

球化处理温度为 1510±10°C，球化剂加入量为处理铁水重量的 1.2% ~ 1.7%；

一次孕育剂采用 Si- Mn- Sn 复合孕育剂，其中硅钡钾合金加入量为满足孕育增硅量 0.15% ~ 0.3%；Mn 为锰铁其加入量为满足最终 w(Mn)≤ 0.6% 的补足量。Sn 的加入量为满足最终 w(Sn)=0.01% ~ 0.04%；

二次孕育剂在电炉出铁槽加入，加入量为满足最终 w(Si)=2.6% ~ 3.0% 的补足量。

经过球化和二次孕育处理的液态铁水在 1360 ~ 1400°C 温度下浇注至铁型粘土砂铸型中，在浇注过程中进行三次孕育，即随流瞬间孕育，加入孕育剂为浇注铁水重量的 0.1% ~ 0.15%，三次孕育的增硅量不计算在终硅量内；

浇注后的铁水在铁型中冷却凝固成形，随铸型缓慢冷却至 500°C 以下落砂。

【0007】上述的生产方法，所述的球化剂为轻稀土球化剂；一次孕育剂采用 Si-Mn-Sn 复合孕育剂，其中硅加入量为满足孕育处理增硅量 w(Si) = 0.15% ~ 0.3%；Mn 加入量为满足最终 w(Mn)≤ 0.6% 的补足量。Sn 的加入量为满足最终 w(Sn)=0.01% ~ 0.04%；二次孕育剂为硅钡孕育剂，加入量为满足最终 w(Si)=2.6% ~ 3.0% 的补足量；所述的随流瞬间孕育剂为合金 Si-Bi 孕育剂，其中质量分数 Si ≥ 70%，Bi 0.5% ~ 2%，三次孕育的增硅量不计算在终硅量内；所述脱硫工艺采用双联熔炼，冲天炉外脱硫；所述球化处理工艺采用盖包法，出铁三分钟时按铁液总重的 1%~1.5% 加脱硫剂，并开始吹氮气脱硫。

【0008】上述的生产方法，球化后，整包铁水从扒渣完成到浇注结束应控制不超过 8 分钟，采用含 Si、Mn、Sn、Bi 元素的合金材料进行复合孕育。其孕育过程：一次孕育为 Si-Mn-Sn 复合孕育，二次为硅钡合金孕育，三次为 Si-Bi 孕育。

【0009】本发明的有益效果表现在：
C 元素，对于铸态球墨铸铁应选择高碳量。在含 Si 量一定的条件下，随着 C 含量增加，碳当量 CE 提高，其自身按石墨析出的倾向增大，石墨球数相应增加，可减少收缩缺陷，而获得健全铸件。而过高的 C 容易产生石墨易飘，降低铸件综合机械性能。珠光体球墨铸铁推荐的 C 含量为 \( \omega (C) 3.6\% \sim 3.8\% \)，\( \omega (Si) 2.1\% \sim 2.5\% \)。降低 \( \omega (C) \) 量会减少石墨球数，而铸件的抗拉强度、伸长率和硬度提高，因此确定 \( \omega (C) \) 含量为 3.5\% \sim 3.8\%，对应碳当量 CE 4.4\% \sim 4.8\%。球墨铸铁力学性能必须考虑碳当量的影响，当 CE=4.4\% 时石墨球数是 CE=4.1\% 时的 1.5 倍。CE4.6\% \sim 4.8\% 时铁液的流动性最好，因此，选择 CE4.4\% \sim 4.8\%。

[0010] Si 元素，Si 使 C 在铁液中的溶解度降低，促进石墨化，Si 的孕育使球墨铸铁的珠光体和铁素体的比例改变。随 Si 量的增加珠光体量逐渐减少，提高铸件的塑性，试验表明，当 \( \omega (Si) \) 含量在 2.60\% 以上时，常温下的延伸率稳定，当 CE 维持在 20\% 以上，最高可达 27.55\%，所以本发明确定 Si 含量的范围为 \( \omega (Si) 2.6\% \sim 3.0\% \)。

[0011] Mn 元素，Mn 使球墨铸铁凝固时的白口倾向增加。对于壁厚 6mm 以下的铸件，要求 Mn 的质量分数小于 0.3\%，以防止出现游离渗碳体，对于厚大断面球墨铸铁来说，Mn 的偏析倾向特别显著，易形成晶间碳化物，恶化力学性能。为此单时球光体基体的球墨铸铁，Mn 的质量分数不应超过 0.6\%。Mn 能稳定球光体，固溶强化铁素体，对于铁素体基体的球墨铸铁来说，Mn 的质量分数从 0.6\% ～ 0.8\% 开始，对强度明显提高，但是断后伸长率随 Mn 量增加而显著下降。综上所述 6mm ～ 50mm 壁厚球墨铸铁件取 Mn 的质量分数为 \( \omega (Mn) \leq 0.6\% \)。

[0012] S 元素，S 是反石墨化元素，属于有害杂质。降低原铁液含 S 量是确保球化处理成功的前提，也是获得优质铸件的基础，因此对于要求高的球铁铸件，铁液必须经过脱硫。但含 S 量过低时也有不利的一面，例如铁液自口倾向加大，石墨球数量减少，石墨球粗大。所以确定 S 含量的范围为 \( \omega (S) 0.005\% \sim 0.02\% \)。

[0013] P 元素，由于 P 对铸态球铁的有害影响，特别是对塑性的影响是显著的，所以其含量应是愈低愈好。因此确定含量 \( \omega (P) \leq 0.06\% \)。

[0014] Mg 含量相应可以控制得低一些，但由于本发明中选择的是高 C 含量，为保证球化所需得残余 Mg 量相应要高一些，确定范围 0.03\% ～ 0.06\%。

[0015] RE 残量，RE 有抵消干扰元素对球化不良影响的作用，是稀土元素（主要为 Ce）易形成团状和片状石墨，影响石墨球的圆整度的负面作用成为主要，所以 RE 残量尽量低些，确定范围为 0.01\% ～ 0.04\%。

[0016] 由于本发明对上述元素的含量进行了合理的限定，使得采用本发明的球铁铸件具有了良好的综合机械性能，满足了在具备高强度的同时具备较高的伸长率。

[0017] 在本发明的生产方法生产高韧性铸态球墨铸铁时，为了获得较高的强度，必须采用合金化，一般铸件获得 QT600-3，QT700-2 牌号的铸件，提高强度的合金元素有 Cu、Mn、Ni、Sn、Mo 等几种，而 Ni、Mo 的价格较高，会导致铸件成本较大幅度提高，虽然废 Cu 的价格只是 Ni 的 1/5 ～ 1/6，但对铸态铁素体基体来说，加 Cu 使抗拉强度 σ b 明显提高，而断后伸长率 δ 则有明显下降；对于铸态珠光体基体的球墨铸铁来说，附加质量分数为 0.5\% ～ 2\% 的 Cu，对抗拉强度 σ b 增加不多，对断后伸长率实际上也影响甚微。

[0018] Mn 与 Cu 相较，Mn 的价格又比 Cu 低得多，约是 1/8，但如前文所述 Mn 的加入上限
已确定，限制其自口倾向，充分发挥其固溶强化作用，是使用 Mm 能够达到 \( \omega (Mn) \leq 0.6\% \) 的重要前提。

[0019] Sn 与 Cu 相较，Sn 的价格是 Cu 的两倍多，但 Cu 的加入量是千分之几而 Sn 却是微量。在球墨铸铁中附加质量分数为 0.06%～0.1% 的 Sn 可使基体组织中的珠光体明显增加。低熔点的 Sn (233°C) 在铁水凝固过程中偏析于球状石墨与金属界面间，形成 Sn 的富集层，这个比较稳定的 Sn 的富集层能够有致的阻止或减少共析渗碳体中的 C 向球状石墨表层扩展，因此有利于稳定珠光体。在 \( \omega (Sn) = 0.02\% \sim 0.03\% \) 时，冲击韧度得到改善，这种作用归结为，当晶界形成了低熔点的区域，因而改善了变形能力。这种作用同样使得断后伸长率获益。取 Sn 的质量分数为 \( \omega (Sn) \leq 0.04\% \)。

[0020] 在稀土镁球墨铸铁中，加入微量铋 \( \omega (Bi) \leq 0.01\% \)，在含有稀土铈的情况下，石墨球数剧增，它对消除变型石墨，形成球状石墨是有利的，当加气量从 0 增加到 0.002% 时，10mm 断面石墨球数从 652 个/mm² 增加到 992 个/mm²，这一特性，在混合基体铸态球墨铸铁中能增加铁素体的比例，同时减少 Mn 碳化物形成倾向。

[0021] 在本发明中，硅铁和锰铁、锡块以孕育目的加入球化包，孕育效果最好，硅铁单独作为孕育剂使用，孕育衰退较快，效果并不理想，而铁以孕育的方式加入，MnFe 造成的显微浓度梯度差和温度差的原子团使石墨能形成奥氏体，减少偏析，共析转变时可以大幅度提高珠光体量，增加强度。Mn 的潜力只有在 Si 和 Mn 复合孕育条件下才能得到充分激发。所以 Mn 在 Si-Mn 复合孕育时，算得上是理想的促进珠光体形成（或稳定珠光体）元素。把 Mn、Sn 作为孕育剂加入硅包内，而不加入熔炼炉内，与 Si 同时起孕育作用，使得 Mn、Sn 稳定珠光体，提高强度的潜力得到充分发挥，偏析的倾向得到抑制。本发明采用 Si-Mn-Sn-Bi 复合多重孕育，而不单独采用以 Sn 代 Cu 生产球墨铸铁。这是获得高强韧性的铸态球墨铸铁的关键。

[0022] 为了确保孕育效果，本发明采用了炉前一次孕育——出铁槽二次孕育——瞬时三次孕育的复合强化孕育措施，不仅有效地防止了孕育衰退，提高了石墨球数和石墨圆整度，而且使基体组织得到强化和改善。本发明的抗拉强度 \( \sigma_b \) 与断后伸长率 \( \delta \) 明显提高，材料综合机械性能较新有技术生产的球铁有较大提高。

[0023] 由于采用 Si-Mn-Sn-Bi 复合多重孕育工艺使得本发明的工艺稳定性得到大大提高，并且在不经过热处理的情况下，取自 Y 型试块检测的机械性能能达到或超过抗拉强度 \( \sigma_b \geq 600MPa, \delta \geq 10\% \) 的要求。

具体实施方式

[0024] 下面以具体实施方式来对本发明进行详细描述：

实施例一（此实施例的生产方法能准确生产出本实施例的所述百分含量的的球墨铸铁，下同例二、例三）

所述生产的高强韧型铸态球墨铸铁，该球铁成分中不含 Ni、Mo。其化学成分质量百分含量比为：C 3.5%，Si 3.0%，Mn 0.6%，P 0.06%，S 0.02%，Sn 0.04%，Mg 0.06%，RE 0.03%，Bi 0.004%，余量为 Fe。

[0025] 高强韧型铸态球墨铸铁的生产方法：

采用冲天炉—电炉双联熔炼，冲天炉熔炼铁水出铁冲入脱硫包，脱硫包内加脱硫剂吹氮气（N2）脱硫，脱硫后的铁水倒入电炉调整成分和升温，使其化学成分达到：C 3.75%、Si
1.7%, Mn 0.4%, P 0.046%, S 0.020% 余量为 Fe; 使铁液温度达到 1510℃, 然后出铁球化。
[0026] 所述的脱硫工艺是将冲天炉熔炼铁水冲入脱硫包, 脱硫包使用前要包, 并确保脱
硫塞通。出铁温度: 1470~1510℃; 出铁重量: 2000±30Kg (根据使用电炉调整确定); 出铁
时严格控制防止炉渣进入脱硫包, 以防回硫或脱硫失效; 出铁三分之一时加脱硫剂(按铁液
总重的 1%~1.5%), 并开始吹氮气脱硫, 直到出铁重量达到铁液总重, 整包铁液吹氮脱硫用时
约 5~7 分钟; 停止吹氮, 脱硫结束, 开始扒渣, 扒渣干净后表面撒一薄层聚渣剂调运至电炉,
倒入电炉升温调质。
[0027] 所述的脱硫剂化学成分为 CaO 47.4%, 水分 < 0.5%, 粒度 < 5mm; 氮气为工业氮气
纯度 > 99.5%; 聚渣剂成分中 SiO₂ 70.9%, Fe₂O₃ < 5%。
[0028] 所述的球化处理工艺为: 将烘干新包或清理干净包底残渣余铁的球化包预热至
暗红色 (≥600℃), 向堤坝一侧包坑内加入球化剂, 用平头锤捣实, 上面覆盖孕育剂, 覆
盖干净无锈球铁铁屑, 捣实, 高度低于堤坝 20mm~30mm; 铁水过包盖流入包内加球化剂的堤坝对面即堤
坝另一侧包坑, 盖严包盖, 等 2 分钟内出铁球化; 出铁温度控制在 1510±10℃, 出铁重量: 1000±10Kg; 铁水通过包盖流孔冲入盖包内加球化剂的堤坝对面, 二次孕育剂出铁槽随流
加入。反应完全结束后打开包盖扒渣 (若包盖打开后反应仍未结束, 必须待反应完才开始
扒渣), 扒渣重复进行 3 次, 扒渣须干净。整包铁水从扒渣完成到浇注结束应控制不超过 8
分钟。
[0029] 所述的球化剂为 REMg3~8 合金, 化学成分质量百分含量为: Mg6%~8%, RE2%~4%,
Si41%~43%, Ca1%~2%, 余量为 Fe, 粒度 5~30mm, 加入量为铁水量的 (下同) 1.5%
(15kg); 复合孕育剂: 硅钡 0.3% (3kg) 镁铁 0.28% (2.8kg) 锡粒 0.04% (400g)、铁屑:
1%~1.3% (10~13kg); 加入球化剂的材料在使用前须经烘干处理。
[0030] 所述的二次孕育剂为硅铁 FeSi75 (各质量分数 Si74%~80%, Mn ≤ 0.4%,
Cr ≤ 0.4%, P ≤ 0.035%, S ≤ 0.020%, C ≤ 0.1%), 余量为 Fe, 粒度 10~40mm, 加入量 0.4%
(4 kg);
将经过球化处理和二次孕育处理的熔铁铁水在 1360~1400℃温度条件下浇注到湿型粘
土砂型铸和 Y 型试块砂型中, 在浇注过程中, 随铁水流同步进行随流瞬时二次孕育, 瞬时三
次孕育剂预先加入可调随流孕育舵斗, 调整加入量为处理铁水重量的 0.15%。
[0031] 所述的随流瞬时孕育剂为: 合金 Si–Bi 孕育剂 (各质量分数 Si ≥ 71.2%, Bi1%
Ca1.32%, RE0.25%, A10.9%), 余量为 Fe, 粒度 0.2~1.5mm。
[0032] 表 2 球化后光谱分析结果: (微量元素未计)
表 3 取自 Y 型试块的机械性能、金相试验、硬度试验检测结果：

实施例 2

所述生产的高强韧性铸态球墨铸铁，该球铁成分中不含 Ni、Mo。其化学成分为：C3.8%，
Si2.8%，Mn0.4%，P0.05%，S0.01%，Sn0.04%，Mg0.04%，RE0.03%，余量为 Fe。

[0033] 高强韧性铸态球墨铸铁的生产方法：

采用双联熔炼，冲天炉熔炼铁水经过多孔塞吹氮脱硫，加入中频熔炼电炉进行升温、
调质，使其化学成分达到：C3.95%、Si1.7%、Mn0.4%、P0.046%、S0.02% 余量为 Fe；使铁
液温度达到 1510℃，然后出铁球化。

[0034] 所述的脱硫工艺是将冲天炉熔炼铁水冲入脱硫包，脱硫包使用前烫包，并确保脱
硫塞通畅。出铁温度：1470~1510℃；出铁重量：2000±30Kg（根据使用电炉调整确定）；出
铁时严格控制防止炉渣进入脱硫包，以防回硫或脱硫失效；出铁三分之一时加脱硫剂（按铁
液总重的 1~1.5%），并开始吹氮气脱硫，直到出铁重量达到铁液总重，整包铁液吹氮脱硫用
时约 5~7 分钟；停止吹氮，脱硫结束，开始扒渣，扒渣干净后表面撒一薄层聚渣剂调运至电
炉，倒入电炉升温调质。
所述的脱硫剂化学成分为 Ca047.4%, 水分 ≤ 0.5%, 粒度 ≤ 5mm; 其气化为工业氨气纯度 ≥ 99.5%; 聚氨泡沫中 Si070.9%, Fe2O3 < 5%。

所述的球化处理工艺为: 将烘干新包或清理干净底残渣余铁的球化包预热至暗红色 (≥ 600°C), 向堤内加入球化剂, 用平头锤捣实, 上面覆盖孕育剂, 覆盖干净无锈球铁铁屑, 捣实, 高度低于堤坝 20mm ~ 30mm; 硅铁等其他加入球化剂对面堤坝, 盖严包盖, 在2分钟内出铁球化; 出铁温度控制在 1510 ± 10°C, 出铁重量: 1000 ± 10Kg; 铁水通过包盖流孔冲入盖包内加球化剂的堤坝对面, 二次孕育剂出铁槽随流加入。反应完全结束后打开包盖扒渣 (若包盖打开后反应仍未结束, 必须待反应完才能开始扒渣), 扒渣重复进行 3 次, 扒渣须干净。整包铁水从扒渣完成到浇注结束应控制不超过 8 分钟。

所述的球化剂为 REMg3~8 合金, 化学成分为: Mg6%~8%, RE2%~4%, Si14%~43%, Ca1%~2%, 余量为 Fe, 粒度 5 ~ 30mm, 加入量为 1.5% (15kg); 复合孕育剂, 硅钡 0.3% (3kg) 锰铁 0.28% (2.8kg) 锰粒 0.04% (400g) 铁屑 1%~1.3% (10~13kg); 加入球化包的材料在使用前须烘干处理。

所述的二次孕育剂为硅铁 FeSi75 (各质量分数 Si74% ~ 80%, Mn ≤ 0.4%, Cr ≤ 0.4%, P ≤ 0.035%, S ≤ 0.020%, C ≤ 0.10%), 余量为 Fe, 粒度 10~40mm, 加入量为 0.3% (3kg);

将经过球化处理和二次孕育处理的熔融铁水在 1360~1400°C 温度条件下浇注到湿型粘土砂铸型和 Y 型块块铸模中, 在浇注过程中, 随铁水流同步进行随流瞬时三次孕育, 瞬时三次孕育剂先加入可调随流孕育漏斗, 调整加入量为处理铁水量的 0.15%。

所述的随流瞬时孕育剂为: 合金 Si-Bi 孕育剂 (各质量分数 Si ≥ 71.2%, Bi1%, Ca1.32%, RE0.25%, Al0.9%), 余量为 Fe, 粒度 0.2 ~ 1.5mm。

表 4 球化后光谱分析结果 (微量元素未计):  

<table>
<thead>
<tr>
<th>试样编号</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Mg</th>
<th>Re</th>
<th>Sn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.8</td>
<td>2.8</td>
<td>0.60</td>
<td>0.049</td>
<td>0.010</td>
<td>0.040</td>
<td>0.030</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.79</td>
<td>2.82</td>
<td>0.60</td>
<td>0.051</td>
<td>0.012</td>
<td>0.041</td>
<td>0.032</td>
<td>0.040</td>
<td></td>
</tr>
</tbody>
</table>

表 5 取自 Y 型块的机械性能、金相试验、硬度试验检测结果：
实施例3

所述生产的高强韧性铸态球墨铸铁，该球铁成分中不含Ni、Mo。其化学成分为：C3.7%、Si2.6%、Mn0.6%、P0.04%、S0.015%、Sn0.04%、Mg0.040%、RE0.02%、余量为Fe。

[0041] 高强韧性铸态球墨铸铁的生产方法：

采用双联熔炼，冲天炉熔炼铁水经多孔塞吹氮脱硫，加入中频熔炼电炉进行升温、调质，使其化学成分达到：C3.90%、Si1.5%、Mn0.4%、P0.04%、S0.02%、余量为Fe；使铁液温度达到1510℃，然后出铁球化。

[0042] 所述的脱硫工艺是将冲天炉熔炼铁水冲入脱硫包，脱硫包使用前浇包，并确保脱硫塞通。出铁温度：1470~1510℃，出铁重量：2000±30Kg（根据使用电炉调整确定）；出铁时严格控制防止炉渣进入脱硫包，以防回硫或脱硫失效；出铁三分之一时加脱硫剂（按铁液总重的1%~1.5%），并开始吹氮气脱硫，直到出铁重量达到铁液总重，整包铁液吹氮脱硫用时约5~7分钟；停止吹氮，脱硫结束，开始扒渣，扒渣干净后表面撒一层聚氮剂调运至电炉，倒入电炉升温调质。

[0043] 所述的脱硫剂化学成分为CaO47.4%，水分＜0.5%，粒度＜5mm；氮气为工业氮气纯度≥99.5%；聚氮剂成分中SiO270.9%，Fe2O3≤5%。

[0044] 所述的球化处理工艺为：将烘干新包或清理干净包底残渣余铁的球化包预热至暗红色（≥600℃），向包内加入球化剂，用平头锤捣实，上面覆盖孕育剂，覆盖干净无锈球铁屑，捣实，高度低于球铁管20mm~30mm；锰铁及硅粒加入球化剂对面球化，盖严包盖，在2分钟内出铁球化；出铁温度控制在1510±10℃，出铁重量：1000±10Kg；铁水通过包盖流孔冲入盖包内加球化剂的球铁管对面，二次孕育剂出铁槽随流加入。反应完全结束后打开包盖扒渣（若包盖打开后反应仍未结束，必须待反应完才能开始扒渣），扒渣重复进行3次，扒渣须干净。整包铁水从扒渣完成到浇注结束应控制不超过8分钟。

[0045] 所述的球化剂为RE,Mg3~8合金，化学成分为：Mg6%~8%，RE2%~4%；Si14%~43%；Ca1%~2%，余量为Fe，粒度5~30mm，加入量为1.5%（15kg）；复合孕育剂；硅钡0.3%（3kg）；硅钡0.28%（2.8kg）；硅粉0.4%（400g）；铁屑或薄钢片1%~1.3%（10~13kg）；加入球化包的材料在使用前必须经烘干处理。
所述的二次孕育剂为硅铁 FeSi75（各质量分数 Si 74% ~ 80%，Mn ≤ 0.4%，Cr ≤ 0.4%，P ≤ 0.035%，S ≤ 0.020%，C ≤ 0.10%），余量为 Fe，粒度 10~40mm，加入量为 0.3%（3kg）。

将经过球化处理和二次孕育处理的熔融铁水在 1360~1400℃温度条件下浇注到湿型粘土砂型和 Y 型试块砂模中，在浇注过程中，随铁水流同步进行随流瞬时三次孕育，瞬时三次孕育剂预先加入可调随流孕育漏斗，调整加入量为处理铁水量的 0.15%。

所述的随流瞬时孕育剂为：合金 Si-Bi 孕育剂（各质量分数 Si 71.2%，Bi1%，Ca1.32%，RE0.25%，Al0.9%），余量为 Fe，粒度 0.2 ~ 1.5mm。

表 6 球化后光谱分析结果（微量元素未计）：

<table>
<thead>
<tr>
<th>试样编号</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Mg</th>
<th>Re</th>
<th>Sn</th>
<th>Fe</th>
<th>余量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.71</td>
<td>2.6</td>
<td>0.60</td>
<td>0.038</td>
<td>0.015</td>
<td>0.040</td>
<td>0.022</td>
<td>0.039</td>
<td>余量</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.70</td>
<td>2.6</td>
<td>0.59</td>
<td>0.039</td>
<td>0.015</td>
<td>0.037</td>
<td>0.026</td>
<td>0.040</td>
<td>余量</td>
<td></td>
</tr>
</tbody>
</table>

表 7 取自 Y 型试块的机械性能、金相试验、硬度试验检测结果：

<table>
<thead>
<tr>
<th>编号</th>
<th>抗拉强度 σ（MPa）</th>
<th>屈服强度 σs（MPa）</th>
<th>伸长率 δ（%）</th>
<th>布氏硬度</th>
<th>球化率</th>
<th>主要基体组织</th>
</tr>
</thead>
<tbody>
<tr>
<td>标准要求</td>
<td>600</td>
<td>330</td>
<td>10</td>
<td>190-250</td>
<td>85</td>
<td>珠光体+铁素体</td>
</tr>
<tr>
<td>试样 1</td>
<td>675</td>
<td>455</td>
<td>12</td>
<td>220</td>
<td>90</td>
<td>珠光体 60%+铁素体 40%</td>
</tr>
<tr>
<td>试样 2</td>
<td>665</td>
<td>445</td>
<td>12</td>
<td>220</td>
<td>90</td>
<td>珠光体 60%+铁素体 40%</td>
</tr>
</tbody>
</table>

从实施例可以看出，所生产出的球墨铸铁其性能指标均达到了要求。