
(19) United States
US 20150222556A1

(12) Patent Application Publication (10) Pub. No.: US 2015/0222556A1
CHAN et al. (43) Pub. Date: Aug. 6, 2015

(54) FLOW CONTROL FOR RELIABLE MESSAGE
PASSING

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventors: UMAN CHAN, WAPPINGERS FALLS,
NY (US); DERYCK X. HONG,
JACKSON HEIGHTS, NY (US);
TSAI-YANG JEA, POUGHKEEPSIE,
NY (US); CHULHO KIM,
POUGHKEEPSIE, NY (US); ZENONJ.
PIATEK, POUGHKEEPSIE, NY (US);
HUNG Q. THAI, POUGHKEEPSIE,
NY (US); ABHINAV VISHNU,
KENNEWICK, WA (US); HANHONG
XUE, POUGHKEEPSIE, NY (US)

(21) Appl. No.: 14/690,343

(22) Filed: Apr. 17, 2015

Related U.S. Application Data
(63) Continuation of application No. 13/857.462, filed on

Apr. 5, 2013, now Pat. No. 9,049,112, which is a con
tinuation of application No. 12/841,399, filed on Jul.
22, 2010, now Pat. No. 8,452,888.

112

1

INTERCONNECTION NETWORK

Publication Classification

(51) Int. Cl.
H04L 12/80 (2006.01)
H04L 2/26 (2006.01)
H04L 2/855 (2006.01)

(52) U.S. Cl.
CPC H04L 47/29 (2013.01); H04L 47/2466

(2013.01); H04L 43/16 (2013.01)

(57) ABSTRACT

A message flow controller limits a process from passing a new
message in a reliable message passing layer from a source
node to at least one destination node while a total number of
in-flight messages for the process meets a first level limit. The
message flow controller limits the new message from passing
from the source node to a particular destination node from
among a plurality of destination nodes while a total number of
in-flight messages to the particular destination node meets a
second level limit. Responsive to the total number of in-flight
messages to the particular destination node not meeting the
second level limit, the message flow controller only sends a
new packet from among at least one packet for the new
message to the particular destination node while a total num
ber of in-flight packets for the new message is less than a third
level limit.

114 - 100 M

10

118

Patent Application Publication Aug. 6, 2015 Sheet 1 of 8 US 2015/0222556 A1

112

10 1

INTERCONNECTION NETWORK

212
214

PROCESSOR SOFTWARE 250 to
222

232

I/O INTERFACE MASS STORAGE NETWORK INTERFACE
DEVICE ADAPTER

226 218 234

224 110

OUTPUT INPUT INTERCONNECTION
DEVICE DEVICE FIG. 2 NETWORK

Y 300
APPLICATIONS 310

RELABLE TRANSPORT
322 LAP MESSAGE 324 NETWORK 320

PASSINGLAYER MESSAGING
LINK

PHYSICAL 330

FIG. 3

Patent Application Publication Aug. 6, 2015 Sheet 2 of 8 US 2015/0222556 A1

SOURCE NODE 400 DESTINATIONNODE 450

PROCESS4O2 PROCESS.404

LAP 406 LAP 456
MESSAGE FLOW CONTROLLER 410 MESSAGE FLOW CONTROLLER 460

LEVEL 1 LEVEL2 LEVEL3 LEVEL2 LEVEL3
LIMITS LIMITS LIMITS THRESHOLDS THRESHOLDS
412 414 416 462 464

MEMORYPOOL 430 ACK MEMORYPOOL 480
REUSABLE TIMER 418 REUSABLE
BUFFERS 434 BUFFERS484

IN-FLIGHT MESSAGE IMMEDIATEACK
COUNTER420 FLAG 422 SEND COMPLETED

ID 474
NEXT ID | COMPLETED ID RECW COMPLETED

424 426 ID 476

SEND OBJECT438 L STATE 444 RECEIVE OBJECT 488 STATE 482
PACKET PACKET 2 c6 ER 20 cGr
428 478

PHYSICAL 442 PHYSICAL492

DATA
446 110

INTERCONNECTION
NETWORK 448 ACK

494

ACK COMPLETED ID 496

ACK RECW COMPLETED ID
FIG. 4

Patent Application Publication Aug. 6, 2015 Sheet 3 of 8 US 2015/0222556 A1

FLOW CONTROL RECEIVING CONTROL
LEVEL SENDING LIMITS THRESHOLDS MECHANISMS

TOTAL NUMBER OF IN-FLIGHT
LEVEL 1502 MESSAGES BY PROCESS AUTOMATIC IMMEDIATE ACK FLAG

THE NUMBER OF IN-FLIGHT MIN COALESCING! MESSAGE DS WITH
LEVEL2504 MESSAGES TO EACH PER DESTINATION MESSAGE LEVEL

DESTINATION LIMIT ACKNOWLEDGEMENTS

| THENUMBER OF INFLIGHT | PERMESSAGELIMIT | SLIDING WINDOW OR PACKETS BY MESSAGE TRIGGERED PACKETIDS

FIG. 5

BLOCKED BY 714 UNBLOCKED
MESSAGE FLOW FROMMESSAGE

CONTROL

SEND
NEW DATA

702 MESSAGE ALLOWED BY MESSAGE RECEIVE
RECQUEST FLOW CONTROL ACKS

MESSAGE ALLDATA
HISTORY NOT SENT OUT
NEEDED RECEIVE

ACKS

NEW RECEIVE
802 INCOMING DATASEND

MESSAGE ACKS

MESSAGE ALLDATA
HISTORY NOT RECEIVED
NEEDED 814

RECEIVED

Patent Application Publication Aug. 6, 2015 Sheet 4 of 8 US 2015/0222556 A1

SENT SENT SENT SENDING SENDING

SOURCE ID 01 NEXT ID COMPLETED ID TRACKMESSAGE
ID'S 03-07 FROM 902

DESTINATION ID O2
08 O2

LEVEL3

O3 06 LEVEL2
RCVD RCVD RCVD RECEIVING RECEIVING

sEND compleTEDIREcy compleTED TRACK MESSAGE
D D ID'S 03 AND

GREATER FROM
O2 05 SOURCE ID 01

SEND MESSAGE
ACK RECW COMPLETED ID LEVELACKFROM

DESTINATION ID 02

4
05 DESTINATION TO 904

SOURCE ID 01

NEXT ID COMPLETED ID UPDATESOURCE ID

08 05

SEND ACKFROM TRACK MESSAGE 06
ACK COMPLETED ID SOURCE ID 01 TO ID'S 06 FROM

05 DESTINATION ID 02 DESTINATION ID 02

SEND COMPLETED RECW COMPLETED UPDATE DESTINATION ID 02
ID ID DESTINATION ID O2

WITHACKFROM
05 05 SOURCE ID 01

08

FIG. 9

Patent Application Publication

PRE-ALLOCATE A SELECTED NUMBER
OF REUSABLE BUFFERS TO THE

MEMORYPOOL

PASSING FOR A NEW
MESSAGE

YE

N-FLIGHT 1006
MESSAGE COUNTER

AT LEVEL 1
LIMITS?

NO

1008
REUSABLE

BUFFERAVAILABLE IN
MEMORYPOOL

YES

1010
ALLOCATE AREUSABLE BUFFER IN

THE MEMORYPOOL

1012

RELEASE BUFFER FROMMEMORYPOOL
FOR SEND OBJECT FOR THE MESSAGE

1014
ADDAN ENTRY FOR THE MESSAGE IN
THE HASH.TABLE FOR AMESSAGE ID

= NEXT ID

1016

INCREMENTNEXT ID

Aug. 6, 2015 Sheet 5 of 8

N-FLIGHT MESSAGE
FOR THE DESTINATION

AT LEVEL2
LIMITS?

1020 NO

INCREMENT THE IN-FLIGHT MESSAGE
COUNTER

SEND APACKET FOR THE MESSAGE

NUMBER OF
IN-FLIGHT PACKETS FOR
THE MESSAGE AT LEVEL3

LIMITS?

ALL OF MESSAG
ACKNOWLEDGED BEFORE

TIME OUT2

YES
1030

DISCARD MESSAGE HISTORY AND
RETURN SEND OBJECT BUFFERTO

MEMORYPOOL

1032

DECREMENT THE IN-FLIGHT MESSAGE
COUNTER

FIG. 10 END

US 2015/0222556 A1

Patent Application Publication Aug. 6, 2015 Sheet 6 of 8 US 2015/0222556 A1

100

1102

PRE-ALLOCATEA SELECTED NUMBER
OF REUSABLE BUFFERS TO THE

MEMORYPOOL

RECEIVE 1104
INCOMING

PACKET WITH MESSAGE ID
GREATER THAN

END COMPLETED ID FOR
SOURCE

YES
1 NO 106

NEWMESSAGE 1118
ALLPACKET
RECEIVED FOR
MESSAGE?

RELEASE BUFFER FROMMEMORY NO
POOL FOR RECEIVE OBJECT FOR THE

MESSAGE

1110
UPDATE THE ENTRY FOR THE
MESSAGE IN THE HASH.TABLE

1112

MARK THE PACKETRECEIVED IN THE
RECEIVE OBJECT

CURRENT
PACKETFLOW TRIGGER
PACKET-LEVELACKS

INLEVEL3
THRESHOLDS?

YES

SEND COALESCED PACKET ACKS
TO SOURCE

FIG. 11 END

1119
SET THE RECEIVE OBJECT STATE TO

RECEIVED

1120
NO MMEDIATEAC

FLAGSET FOR
MESSAGEP

SEND IMMEDIATELEVEL 1 ACK
PACKET FOR THE COMPLETED
MESSAGE TO THE SOURCE

DISCARD MESSAGE HISTORY AND
RETURN RECEIVE OBJECT BUFFERTO

MEMORYPOOL

Patent Application Publication Aug. 6, 2015 Sheet 7 of 8 US 2015/0222556 A1

BEGIN 200

202
MONITOR ALL MESSAGES WITH
MESSAGE IDS GREATER THAN

SEND COMPLETED ID FOREACHSOURCE

CURRENT
RECEIVE OBJECT

STATES FORTRACKED MESSAG
IDS FOR A PARTICULAR SOURCE
TRIGGER MESSAGE-LEVELACK

NLEVEL 2
THRESHOLDS?

YES 206

SEND ACK RECW COMPLETED ID SET
TO MESSAGE ID OF LAST RECEIVE

OBJECT FULLY RECEIVED TO SOURCE

RECEIVE
ACK COMPLETED ID
EROMSOURC

YES 210

SET SEND COMPLETED ID TO
ACK COMPLETED ID SET FOR

SOURCE

FIG. 12

Patent Application Publication Aug. 6, 2015 Sheet 8 of 8

300 BEGIN

302

RECEIVE NEW
ACKNOWLEDGMENT FOR

MESSAGE WITH MESSAGE ID
FROM COMPLETED ID+1 TO

NEXT ID-1 FOREACH
DESTINATION

PACKET

306
UPDATE SEND OBJECT
FOR MESSAGE ID WITH
COMPLETED PACKETACK

YES

MESSAGE
LEVEL

SET COMPLETED ID FOR
DESTINATION TO

ACK RECW COMPLETED ID

US 2015/0222556 A1

LEVEL 1

312

TRIGGER LEVEL 1 FLOW
CONTROL WITH MESSAGE

COMPLETED TO
IMMEDIATELY RETURN THE

310

SEND ACK COMPLETED ID SET TO
COMPLETED ID TO THE DESTINATION

FIG. 13

BUFFER FOR THE SEND
OBJECT FOR THE MESSAGE
TO THE MEMORYPOOL

US 2015/0222556 A1

FLOW CONTROL FOR RELIABLE MESSAGE
PASSING

BACKGROUND

0001 1. Technical Field
0002 This invention relates in general to communication
protocols for computing environments, and more particu
larly, to flow control for message passing in a reliable mes
Sage passing layer.
0003 2. Description of the Related Art
0004. The Internet and other networks typically imple
ment protocol layers stacked on top of each other with each
protocol layer offering differing functionalities and perfor
mance. In one example, protocol layering may be used to
protect software layers, which use the protocol layers for
reliable communication, from the physical hardware details
that control the actual sending of data over the network.
0005. As computer systems become more complex, addi
tional protocol layers may be added for Support. For example,
protocol layering in high-performance parallel computing
systems may include message layer protocols for enhancing
message-based communications over a network. Low-level
application program interface (LAPI) is an example of a
messaging layer protocol that is a message-passing API pro
viding an active message, one-sided communication model.
0006. By implementing LAPI and other reliable commu
nication layers, the reliable communication layer provides for
reliable message passing, whether across a reliable or unre
liable interconnect or others layers. LAPI and other reliable
communication layers may include a sending or source node
and a receiving or destination node, where the source node
requires the destination node to return an acknowledgment of
receipt of each packet of a message. The source node tracks
whether acknowledgments are received and if the destination
node does not return an acknowledgment within a period of
time, the source node may resend the packet. When packets
are only traveling to a few destinations, memory requirements
for tracking acknowledgment of packets by destination are
typically manageable. In the current network environment,
however, the memory and resource management for tracking
acknowledgment of packets by destination for a few destina
tions does not scale well when the number of destinations
scales up. Such as to a million destinations.

BRIEF SUMMARY

0007. In view of server systems implementing a messag
ing protocol layer for reliable message passing, as the number
of destinations passed to by a source increases, there is a need
for managing flow control for in-flight messages and packets
at multiple levels, rather than only per destination, to optimize
memory resource usage.
0008. In one embodiment, a method for flow control for
message passing in a reliable message passing layer is
directed, responsive to receiving a request to pass a new
message in a reliable message passing layer from a process
from among a plurality of processes, to determining, using a
processor, whether to allow the process to pass the new mes
sage from a source node to at least one destination node from
among a plurality of destination nodes. The method is
directed, responsive to allowing the process to send the at
least one packet from the source node to a particular destina
tion node from among the plurality of destination nodes, to
tracking, using a processor, whether an acknowledgement is

Aug. 6, 2015

received from the particular destination node of complete
receipt of the new message by maintaining a next identifier
value for the particular destination node, responsive to receiv
ing the new message for the particular destination node,
assigning the message identifier for the new message from a
particular next identifier value set for the particular destina
tion node and incrementing the value of the particular next
identifier value, detecting whether a particular acknowledge
ment packet received from the particular destination node
comprises an acknowledgment received completed identifier
falling within a range of values from a completed identifier
value plus one through the particular next identifier value less
one, responsive to detecting the particular acknowledgement
packet received from the particular destination node com
prises the acknowledgement received completed identifier
falling within the range, setting the completed identifier value
to the acknowledgment received completed identifier value
and sending an acknowledgement to the particular destina
tion node with an acknowledgement completed identifier set
to the completed identifier value.
0009. In another embodiment, a system for flow control
for message passing in a reliable message passing layer com
prises a message flow controller implemented in a reliable
message passing layer distributed within a computing envi
ronment comprising a plurality of computing nodes each
comprising at least one processor coupled to at least one
memory and each interconnected via an interconnection net
work, wherein the message flow controller is operative on at
least one of the at least one processor. The system comprises
the message flow controller, responsive to receiving a request
to pass a new message in a reliable message passing layer
from a process from among a plurality of processes, operative
to determine whether to allow the process to pass the new
message from a source node to at least one destination node
from among a plurality of destination nodes. The system
comprises the message flow controller, responsive to allow
ing the process to send the at least one packet from the Source
node to a particular destination node from among the plurality
of destination nodes, operative to track whether an acknowl
edgement is received from the particular destination node of
complete receipt of the new message by maintaining a next
identifier value for the particular destination node, responsive
to receiving the new message for the particular destination
node, assigning the message identifier for the new message
from a particular next identifier value set for the particular
destination node and incrementing the value of the particular
next identifier value, detecting whether a particular acknowl
edgement packet received from the particular destination
node comprises an acknowledgment received completed
identifier falling within a range of values from a completed
identifier value plus one through the particular next identifier
value less one, and responsive to detecting the particular
acknowledgement packet received from the particular desti
nation node comprises the acknowledgement received com
pleted identifier falling within the range, setting the com
pleted identifier value to the acknowledgment received
completed identifier value and sending an acknowledgement
to the particular destination node with an acknowledgement
completed identifier set to the completed identifier value.
0010. In another embodiment, a computer program prod
uct for flow control for message passing in a reliable message
passing layer comprises one or more computer-readable, tan
gible storage devices. The computer program product com
prises program instructions, Stored on at least one of the one

US 2015/0222556 A1

or more devices, responsive to receiving a request to pass a
new message in a reliable message passing layer from a
process from among a plurality of processes, for determining
whether to allow the process to pass the new message from a
Source node to at least one destination node from among a
plurality of destination nodes. The computer program product
comprises program instructions, stored on at least one of the
one or more devices, responsive to allowing the process to
send the at least one packet from the source node to a particu
lar destination node from among the plurality of destination
nodes, for tracking whether an acknowledgement is received
from the particular destination node of complete receipt of the
new message by maintaining a next identifier value for the
particular destination node, responsive to receiving the new
message for the particular destination node, assigning the
message identifier for the new message from a particular next
identifier value set for the particular destination node and
incrementing the value of the particular next identifier value,
detecting whether a particular acknowledgement packet
received from the particular destination node comprises an
acknowledgment received completed identifier falling within
a range of values from a completed identifier value plus one
through the particular next identifier value less one, and
responsive to detecting the particular acknowledgement
packet received from the particular destination node com
prises the acknowledgement received completed identifier
falling within the range, setting the completed identifier value
to the acknowledgment received completed identifier value
and sending an acknowledgement to the particular destina
tion node with an acknowledgement completed identifier set
to the completed identifier value.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0011. The novel features believed characteristic of one or
more embodiments of the invention are set forth in the
appended claims. The one or more embodiments of the inven
tion itselfhowever, will best be understood by reference to the
following detailed description of an illustrative embodiment
when read in conjunction with the accompanying drawings,
wherein:
0012 FIG. 1 is a block diagram depicting one example of
a high performance computing system implementing an
interconnection network with a reliable message passing
layer;
0013 FIG. 2 is a block diagram illustrating one example of
a computer system in which the present invention may be
implemented;
0014 FIG. 3 is a block diagram depicting one example of
a protocol stack within a high performance computing envi
ronment implementing at least one reliable message passing
layer;
0015 FIG. 4 is a block diagram illustrating one example of
flow control for efficiently scalable reliable message passing
over an unreliable interconnection network;
0016 FIG. 5 is a block diagram depicting one example of
the flow control levels and associated sending limits, receiv
ing thresholds, and control mechanisms;
0017 FIG. 6 is a block diagram illustrating one example of
a look-up table for message objects;
0018 FIG. 7 is a flow diagram depicting one example of
the states tracked for a message object when sending a mes
Sage,

Aug. 6, 2015

0019 FIG. 8 is a flow diagram illustrating one example of
the states tracked for a message object when receiving a
message;
0020 FIG. 9 is a block diagram depicting one example of
multiple level message flow control in a reliable message
passing layer,
0021 FIG. 10 is a high level logic flowchart illustrating a
process and program for a message flow controller at a source
node managing message passing:
0022 FIG. 11 is a high level flowchart depicting a process
and program for a message flow controller at a destination
node managing message passing:
0023 FIG. 12 is a high level flowchart depicting a process
and program for a message flow controller at a destination
node managing acknowledgments; and
0024 FIG. 13 is a high level logic flowchart illustrating a
process and program for a message flow controller at a source
node managing acknowledgments.

DETAILED DESCRIPTION

0025. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art that the
present invention may be practiced without these specific
details. In other instances, well-known structures and devices
are shown in block diagram form in order to avoid unneces
sarily obscuring the present invention.
0026. In addition, in the following description, for pur
poses of explanation, numerous systems are described. It is
important to note, and it will be apparent to one skilled in the
art that the present invention may execute in a variety of
systems, including a variety of computer systems and elec
tronic devices operating any number of different types of
operating systems.
0027. With reference now to the Figures, and in particular
with reference to FIG. 1, a block diagram illustrates one
example of a high performance computing system imple
menting an interconnection network with a reliable message
passing layer. In the example, a high performance computing
environment 100 includes an interconnection network 110 for
connecting multiple nodes, illustrated as nodes 112,114,116,
and 118.
0028. Each of nodes 112, 114, 116, and 118 may include
multiple types of computing nodes including, but not limited
to, one or more of a processing node, an input/output (I/O)
node, a singe processor system, a multiple processor System,
a cluster system of multiple computing nodes, a grid environ
ment, and other systems including a network interface for
connecting to interconnection network 110. Those of ordi
nary skill in the art will appreciate that while FIG. 1 illustrates
nodes 112, 114, 116, and 118, high performance computing
environment 100 may include any number of nodes imple
mented in one or more network protocol architectures.
0029. In the example depicted, each of nodes 112, 114,
116, and 118 may include one or more adapters as part of the
network interface for connecting to interconnection network
110. It will be understood that multiple types of adapters may
be implemented by each of nodes 112, 114, 116, and 118,
where each adapter may communicate with another adapter,
a Switch, or other component within interconnection network
110.
0030 Interconnection network 110 may include one or
more types of network elements, Switching elements, nodes,

US 2015/0222556 A1

clusters, adapters, and other elements for communicatively
connecting with nodes 112, 114, 116, and 118. In addition,
interconnection network 110 may implement one or more
types of underlying network architectures and services. For
example, interconnection network 110 may include, but is not
limited to, the Internet, a wide area networks (WANs), a local
area networks (LANs), an Ethernet, a token ring, and a net
work service providers. Further, interconnection network 110
may transport data between nodes using one or more types of
communication protocols. In one example, interconnection
network 110 implements protocols for transferring data
within a packet-switching network, Such as using the trans
mission control protocol/internet protocol (TCP/IP), how
ever, interconnection network 110 may include multiplegate
ways, routers, and other hardware, software and other
elements to enable integration of networks using additional or
alternate protocols and additional or alternate layers of pro
tocols. The hardware and software implemented by intercon
nection network 110 may provide one or more of reliable and
unreliable passing of messages.
0031. In one example, interconnection network 110 may
implement one or more Switches connected in one or more
network topologies. For example, interconnection network
110 may implement a hierarchy of Switches for connecting
nodes where multiple nodes share links between switches. In
one example, the Switches implemented within interconnec
tion network 110 may include InfiniBand switches (Infini
Band is a registered trademark of InfiniBand Trade Associa
tion) implemented within an InfiniBand architecture. In one
example, an InfiniBand architecture may represent a channel
based architecture, which may include capabilities such as
Zero-copy data transfers using remote direct memory access
(RDMA) and congestion-management. In addition, an Infini
Band architecture may implement a multi-layer architecture
to transfer data from one node to another node. Each of nodes
112, 114, 116, and 118 may include software layers, drivers,
and other components for sending and receiving data packets
within the Infiniband architecture and in particular, for opti
mizing use of all available bandwidth within interconnection
network 110.

0032. Although not depicted, interconnection network
110 may implement high-speed, bi-directional interconnects
between devices and between each of nodes 112, 114, 116,
and 118. Each bi-directional link may contain one or more
dedicated send and receive channels. One skilled in the art
will appreciate that additional or alternate types of link hard
ware may be implemented within parallel computing envi
ronment 100.

0033 Each nodes 112, 114, 116, and 118 may act as a
Source node, sending packets to one or more other nodes via
interconnection network 110, and each of nodes 112, 114,
116, and 118 may act as a destination node, receiving packets
from one or more other nodes via interconnection network
110. Each of nodes 112, 114, 116, and 118 may implement
one or more reliable message passing layers that track in
flight packets between nodes, to detect and retransmit any lost
packets. To optimize the available memory available to the
reliable message passing layer from nodes 112, 114,116, and
118, the reliable message passing layer implements multiple
levels of flow control on the number of in-flight messages
allowed by a process at any one time, the number of in-flight
messages allowed per each destination at any one time, and
the number of in-flight packets allowed for a message at any
one time. By implementing multiple levels of flow control, as

Aug. 6, 2015

the number of destination nodes for a message exponentially
scales up, use of available memory is optimized for timely
tracking of in-flight packets and sending of acknowledge
ments to avoid unnecessary retransmissions. By implement
ing reliability within a message passing layer, other layers,
such as one or more layers of interconnection network 110.
may perform as unreliable layers to avoid unnecessary con
Sumption of resources for packet tracking as the number of
nodes accessible via interconnection network 110 scales up.
0034. One skilled in the art will appreciate that the number
and configuration of nodes, Switches and links shown in FIG.
1 is provided as an example high performance computing
environment. Numerous implementations and arrangements
of a number of nodes, Switches, and links in all types of data
and computing networks may be implemented.
0035 Referring now to FIG. 2, a block diagram illustrates
one example of a computer system in which the present
invention may be implemented. The present invention may be
performed in a variety of systems and combinations of sys
tems, made up of functional components, such as the func
tional components described with reference to computer sys
tem 200 and may be communicatively connected to a
network, such interconnection network 110. As described
herein, one or more functional components of computer sys
tem 200 may represent a node, such as one of nodes 112,114,
116, and 118, or a grouping of multiple instances of one or
more functional components of computer system 200 may
represent a node, such as one ofnodes 112, 114,116, and 118.
0036 Computer system 200 includes a bus 222 or other
communication device for communicating information
within computer system 200, and at least one hardware pro
cessing device. Such as processor 212, coupled to bus 222 for
processing information. Bus 222 preferably includes low
latency and higher latency paths that are connected by bridges
and adapters and controlled within computer system 200 by
multiple bus controllers. When implemented as a server or
node, computer system 200 may include multiple processors
designed to improve network servicing power. Where mul
tiple processors share bus 222, additional controllers (not
depicted) for managing bus access and locks may be imple
mented.

0037 Processor 212 may be at least one general-purpose
processor such as IBM's PowerPC (PowerPC is a registered
trademark of International Business Machines Corporation)
processor that, during normal operation, processes data under
the control of software 250, which may include at least one of
application Software, an operating system, middleware, and
other code and computer executable programs accessible
from a dynamic storage device such as random access
memory (RAM) 214, a static storage device such as Read
Only Memory (ROM) 216, a data storage device, such as
mass storage device 218, or other data storage medium. Soft
ware 250 may include, but is not limited to, applications,
protocols, interfaces, and processes for controlling one or
more systems within a network including, but not limited to,
an adapter, a Switch, a cluster system, and a grid environment.
0038. In one embodiment, the operations performed by
processor 212 may control the operations of flowchart of
FIGS. 10-13 and other operations described herein. Opera
tions performed by processor 312 may be requested by soft
ware 250 or other code or the steps of the present invention
might be performed by specific hardware components that

US 2015/0222556 A1

contain hardwired logic for performing the steps, or by any
combination of programmed computer components and cus
tom hardware components.
0039 Those of ordinary skill in the art will appreciate that
aspects of one embodiment of the invention may be embodied
as a system, method or computer program product. Accord
ingly, aspects of one embodiment of the invention may take
the form of an entirely hardware embodiment, an entirely
Software embodiment (including firmware, resident Software,
micro-code, etc.) or an embodiment containing software and
hardware aspects that may all generally be referred to herein
as “circuit,” “module.” or “system.” Furthermore, aspects of
one embodiment of the invention may take the form of a
computer program product embodied in one or more tangible
computer readable medium(s) having computer readable pro
gram code embodied thereon.
0040 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor system, apparatus, device, or any suitable combi
nation of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
Such as mass storage device 218, a random access memory
(RAM), such as RAM 214, a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
executing system, apparatus, or device.
0041. A computer readable signal medium may include a
propagated data signal with the computer readable program
code embodied therein, for example, in baseband or as part of
a carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction executable system,
apparatus, or device.
0042 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to, wireless, wireline, optical fiber
cable, radio frequency (RF), etc., or any suitable combination
of the foregoing.
0.043 Computer program code for carrying out operations
of on embodiment of the invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, such as computer
system 200, partly on the user's computer, as a stand-alone
Software package, partly on the user's computer and partly on
a remote computer or entirely on the remote computer or

Aug. 6, 2015

server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of net
work, Such as interconnection network 110, through a com
munication interface. Such as network interface 232, over a
network link that may be connected, for example, to intercon
nection network 110.
0044. In the example, network interface 232 includes an
adapter 234 for connecting computer system 200 to intercon
nection network 110 through a link. Although not depicted,
network interface 232 may include additional software, such
as device drivers, additional hardware and other controllers
that enable communication. When implemented as a server,
computer system 200 may include multiple communication
interfaces accessible via multiple peripheral component
interconnect (PCI) bus bridges connected to an input/output
controller, for example. In this manner, computer system 200
allows connections to multiple clients via multiple separate
ports and each port may also support multiple connections to
multiple clients.
0045. The present invention is described below with ref
erence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. Those of
ordinary skill in the art will appreciate that each block of the
flowchart illustrations and/or block diagrams, and combina
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.
0046. These computer program instructions may also be
stored in a computer-readable medium that can direct a com
puter, such as computer system 200, or other programmable
data processing apparatus to function in a particular manner,
such that the instructions stored in the computer-readable
medium produce an article of manufacture including instruc
tion means which implement the function/act specified in the
flowchart and/or block diagram block or blocks.
0047. The computer program instructions may also be
loaded onto a computer, such as computer system 200, or
other programmable data processing apparatus to cause a
series of operational steps to be performed on the computer or
other programmable apparatus to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0048 Network interface 232, the network link to intercon
nection network 110, and interconnection network 110 may
use electrical, electromagnetic, or optical signals that carry
digital data streams. The signals through the various networks
and the signals on interconnection network 110, the network
link to interconnection network 110, and network interface
232 which carry the digital data to and from computer system
200, may be forms of carrier waves transporting the informa
tion.
0049. In addition, computer system 200 may include mul
tiple peripheral components that facilitate input and output.
These peripheral components are connected to multiple con

US 2015/0222556 A1

trollers, adapters, and expansion slots, such as input/output
(I/O) interface 226, coupled to one of the multiple levels of
bus 222. For example, input device 224 may include, for
example, a microphone, a video capture device, an image
scanning system, a keyboard, a mouse, or other input periph
eral device, communicatively enabled on bus 222 via I/O
interface 226 controlling inputs. In addition, for example, a
display device 220 communicatively enabled on bus 222 via
I/O interface 226 for controlling outputs may include, for
example, one or more graphical display devices, audio speak
ers, and tactile detectable output interfaces, but may also
include other output interfaces. In alternate embodiments of
the present invention, additional or alternate input and output
peripheral components may be added.
0050 Those of ordinary skill in the art will appreciate that
the hardware depicted in FIG.2 may vary. Furthermore, those
of ordinary skill in the art will appreciate that the depicted
example is not meant to imply architectural limitations with
respect to the present invention.
0051. With reference now to FIG.3, a block diagram illus
trates one example of a protocol stack within a high perfor
mance computing environment implementing at least one
reliable message passing layer. As illustrated, protocol layers
300 include an application layer 310, a transport/network/
messaging/link layer 320, and a physical layer 330. One of
ordinary skill in the art will appreciate that protocol layers
300 may include additional or alternate layers and that each
application layer 310, transport/network/messaging/link
layer 320, and physical layer 330 may include additional or
alternate components and layers and protocol components
may overlap one or more of the layers illustrated.
0052. In the example depicted, transport/network/messag
ing/link layer 320 may include multiple layers and multiple
components within each layer. In addition, in the example
depicted, transport/network/messaging/link layer 320 may
include at least one reliable message passing layer 324. Reli
able message passing layer 324 implements reliable message
passing that tracks in-flight packets between nodes, to detect
and retransmit any lost packets. Reliable message passing
layer 324 implements multiple levels of flow control on the
number of in-flight messages allowed by a process at any one
time, the number of in-flight messages allowed per each des
tination at any one time, and the number of in-flight packets
allowed for a message at any one time. By implementing
multiple levels of flow control, as the number of destination
nodes for a message exponentially scales up, use of available
memory is optimized for timely tracking of in-flight packets
and sending of acknowledgements to avoid unnecessary
retransmissions.
0053. In particular, in the example depicted, one example
of a reliable message passing layer is low-level application
program interface (LAPI) 322. LAPI 322 is a one-sided com
munication protocol that does not require both the sending
node of a computing environment and the receiving node to
each take an action before a data message transfer between
the nodes can be completed. LAPI provides communication
reliability by requiring retransmission of packets of a mes
sage that are not acknowledged by the receiving node or
retransmission of packets for which the receiving node
requests retransmission. LAPI 322 includes a LAPI library
that provides basic operations to “put data and to “get data
from one or more virtual addresses of a remote task. In addi
tion, LAPI 322 provides an active message infrastructure that
enables programs to installa set of handlers that are called and

Aug. 6, 2015

run in the address space of a target task on behalf of the task
originating the active message. One of ordinary skill in the art
will appreciate that although FIG. 3 illustrates LAPI 322 as
the example of a one-sided protocol layer for reliable message
passing within reliable message layer 324, other one-sided or
active messaging protocol layers may be implemented within
reliable message layer 324 within one or more layers of
transport/network/messaging/link layer 320. In addition, one
of ordinary skill in the art will appreciate that LAPI322 may
receive messages directly from applications layer 310 or from
a layer within transport/network/messaging/link layer 320,
Such as a message passing interface (MPI) layer.
0054 Transport/network/messaging/link layer 320 may
be implemented within one or more adapters, such as adapter
234, and may include one or more additional protocols
between LAPI322 and physical layer 330. Physical layer 330
may include, for example, the port and other hardware for
interfacing with interconnection network 110 or additional
communication network layers. In one example, while reli
able message layer324 provides for reliable message passing
by requiring retransmission of packets of a message that are
not acknowledged by the receiving node or retransmission of
packets for which the receiving node requests retransmission,
other protocols within transport/network/messaging/link
layer 320 and physical layer 330 that reliable message layer
324 passes messages over may be unreliable.
0055 With reference now to FIG.4, a block diagram illus
trates one example of flow control for efficiently scalable
reliable message passing over an unreliable interconnection
network. In the example, for purposes of example, a source
node 400 includes multiple processes, illustrated as processes
402 and 404, LAPI 406, and a physical layer 442 and a
destination node 450 includes LAPI 456 and a physical layer
492. Source node 400 transfers packets of data 446 to desti
nation node 450 via interconnection network 110 and desti
nation node 450 returns acknowledgment packets (ACK) 448
to source node 400 via interconnection network 110. Source
node 400 may also send acknowledgement packets to desti
nation node 450. One of ordinary skill in the art will appre
ciate that a single node may incorporate the components
illustrated in both source node 400 and destination node 450
and that a single node may perform the functions of both
source node 400 and destination node 450.
0056. In one example, each of processes 402 and 404 may
trigger multiple jobs, with each job triggering multiple tasks
for passing messages in a message passing layer implemented
by LAPI 406 and LAPI 456. In the example, LAPI 406
includes a message flow controller 410 and LAPI 456
includes a message flow controller 460 for flow control for
reliable message passing. To implement efficiently scalable,
reliable message passing, message flow controller 410 and
message flow controller 460 control the flow of messages, in
packet form, by minimizing the size of the data structure
required for monitoring the flow of messages and acknowl
edgment of received messages within multiple levels of flow
control. Although not depicted, for a particular process, each
of message flow controller 410 and message flow controller
460 may be implemented by calling one or more LAPI han
dlers to handle the processing of each process task and LAPI
may implement one or more additional counters for counting
the number of messages, jobs, tasks, and other values.
0057. In the example, to minimize the size of the data
structure required by LAPI 406 and LAPI 456 for efficiently
scalable, reliable control of the flow of messages, LAPI 406

US 2015/0222556 A1

and LAPI 456 allocate a message object on-demand for each
message and free the message object on the fly for each
message when fully acknowledged. In the example, the mes
sage object allocated for a sent message is illustrated as send
object 438 and the message object allocated for a received
message is illustrated as receive object 488. Rather than pre
allocating a fixed number of message buffers and packet
buffers for each destination to enable reliable communica
tion, send object 438 and receive object 488 are allocated
on-demand per message and freed on the fly per message
completion, reducing the use of memory resources when
there are large number of tasks in a job. Each message object,
illustrated as send object 438 and receive object 488, is used
to track the state of the message, to Support packet level flow
control, and to achieve reliable communication. In particular,
each of send object 438 and receive object 488 further include
state bits 444 and 482 for tracking a state of each memory
object, and packet flow control windows 440 and 490, which
track the flow of packets per message.
0.058 To minimize resource allocation overhead for on
demand allocation and freeing of memory buffers when cre
ating memory objects, LAPI 406 and LAPI 456 each imple
ment a memory pool of reusable, pre-allocated buffers,
illustrated as memory pool 430 and memory pool 480, respec
tively, with reusable buffers 434 and reusable buffers 484. At
initialization, each of LAPI 406 and LAPI 456 may allocate a
minimum number of pre-allocated buffers within reusable
buffers 434 and reusable buffers 484. In addition, in the
absence of any free buffers within reusable buffers 434 or
reusable buffers 484, LAPI 406 or LAPI 456 may allocate a
new buffer within reusable buffers 434 or reusable buffers
484. LAPI 406 and LAPI 456 release memory buffers from
reusable buffers 434 and reusable buffers 484 to allocate
memory objects on-demand. Once a buffer is freed, the buffer
can be reused and is returned to reusable buffers 434 or
reusable buffers 484. For well behaved applications, a steady
state may be reached after a number of allocations to reusable
buffers, such that all requests may be serviced from memory
pool 430 and memory pool 480 without allocation overhead
for the allocation of additional reusable buffers within
memory pool 430 and memory pool 480.
0059. To maximize the use of memory pool 430 and
memory pool 480 while also tracking whether acknowledg
ments are received for each packet in-flight in a timely man
ner to avoid unnecessary retransmissions of packets, message
flow controller 410 controls the amount of in-flight traffic
tracked between source node 400 and one or more destination
nodes. To control the actual flow of messages within effi
ciently scalable, reliable message passing layers, message
flow controller 410 and message flow controller 460 apply
multiple levels of flow control. As described herein, three
levels of flow control are implemented and each level
includes at least one limit. For example, as illustrated, the
three levels of flow control are referred to by “level 1”, “level
2, and “level 3”. The limits applied by each level, for
example by LAPI 406, are illustrated by level 1 limits 412,
level 2 limits 414, and level 3 limits 416.
0060. As illustrated in FIG. 5, a block diagram illustrates
one example of the flow control levels and associated sending
limits, receiving thresholds, and control mechanisms. Refer
ring now to FIGS. 4 and 5, message flow controller 410 may
implement handlers for applying level 1 limits 412, level 2
limits 414, and level 3 limits 416 where level 1 flow control
502 applies level 1 limits 412 to a limit on the total number of

Aug. 6, 2015

in-flight messages that tasks of each of process 402 and pro
cess 404 can produce, level 2 flow control 504 applies level 2
limits 414 to a limit on the number of in-flight messages to
each destination, and level 3 flow control 506 applies level 3
limits 416 to a limit on the number of in-flight packets that a
message can produce. By limiting the total number of in
flight messages that a process can produce and limiting the
total number of in-flight packets that a message can produce,
applying level 1 limits 412 and level 3 limits 416 effectively
limits the total amount of memory allocated on-demand for
memory objects at any one time at Source node 400 and limits
the total amount of memory required for allocating memory
objects on-demand for messages received by a destination
node 450.

0061 LAPI 406 and LAPI 456 add identification to in
flight packets passed from source node 400 to destination
node 450 to implement multiple level flow control. In one
example, in-flight packets may be identified by a per-desti
nation message ID and a per-message packet ID. In another
example, in-flight packets may be identified by a source,
destination, message ID and packet ID. Such as when the
in-flight packet is issued for a parallel job. Message IDs and
packet IDS may be reused once delivery confirmation is
received for the message or packet. The size of message IDs
may be minimized to numbers modulo M, where M is the
limit on the number of in-flight messages to each destination
set in level 2 limits 414.

0062. As illustrated in FIG. 6, a message object hash table
610 may be maintained within one or more of source node
400, destination node 450, and interconnection network 110
to provide a minimized data structure for maintaining a look
up table for each message object by one or more of source and
message ID, as illustrated at reference numeral 612, and
destination and message ID, as illustrated at reference
numeral 614. Level 2 flow control 504 and level 3 flow control
506 may look up message objects by source and message ID
or destination and message ID in message object hash table
610 for flow control, as will be further described. Message
object hash table 610 may maintain hash values as indexes
into each entry. One of ordinary skill in the art will appreciate
that a hash table is one type of data structure that may be used
for a look-up table for each message object, however addi
tional or alternate types of data structures may be imple
mented.
0063. In particular, message flow controller 410 imple
ments level 1 flow control 502 by tracking the number of
in-flight messages by process through an in-flight message
counter 420 and limiting processes 402 and 404 to a maxi
mum number of in-flight messages set in level 1 limits 412. To
minimize any slowdown that may occur by in-flight message
counter 420 reaching level 1 limits 412 and level 2 flow
control 504 delaying in return of message-level completion
acknowledgments, an immediate ack flag 422 may be set by
level 1 flow control 502 to solicit immediate return of mes
sage completion acknowledgments from message flow con
troller 460 of destination node 450
0064 Message flow controller 410 implements level 2
flow control 504 by limiting the number of in-flight messages
to each destination and providing message level acknowledg
ments of completion. In the example, message flow controller
410 and message flow controller 460 implement level 2 flow
control 504 by each maintaining two message identifiers per
destination or source. In the example, the two level 2 message
identifiers maintained by source node 400 per destination are

US 2015/0222556 A1

illustrated as a next ID 424 and a completed ID 426 and the
two level 2 message identifiers maintained by destination
node 450 per source are illustrated as send completed id474
and recV completed id 476.
0065. In the example, next ID 424 indicates the ID to be
used by the next message and completed ID 426 indicates
that any message using the completed ID or an older ID has
completed. By maintaining next ID 424 and completed ID
426, for level 2 flow control 504, message flow controller 410
only needs to track messages using IDs with the values of
“completed ID+1 to “next ID-1 for each destination. As
will be further described with reference to FIG. 7, send object
438 includes a state 444 of each message being tracked indi
cating whether the message is waiting to be processed, being
sent, sent, or done.
0066. Using the value of “next ID-1-completed ID',
message flow controller 410 may efficiently determine the
number of in-flight messages for a destination. Upon allocat
ing send object 438 for a particular message to be sent, if the
number of in-flight messages for a destination has reached
level 2 limits 414, then message flow controller may set state
444 to “wait' and require completion of one or more in-flight
messages for a particular destination prior to sending addi
tional messages to the destination.
0067. In addition, in the example, send completed ID
474 mirrors the value in completed ID 426 and recV com
pleted ID 476 holds a value indicating any message using the
recV completed ID or older ID has completed. By maintain
ing send completed ID 474 and recV completed ID 476,
for level 2 flow control 504, message flow controller 460 only
needs to track messages using IDs with values greater than
“send completed ID' for each sender. In particular, only
tracking messages using IDS with values greater than 'send
completed ID' is necessary because source node 400 may
retransmit any incomplete message and destination node 450
needs to identify the retransmission and identify whether the
retransmission is a duplicate, to avoid delivery of the same
message twice. In the example, the value of send completed
ID 474 is not greater than the value of recV completed ID
476 because without destination node 450 completing a mes
sage first, destination node 450 will not send the acknowledg
ment to complete the same message at Source node 400. As
will be further described with reference to FIG. 8, receive
object 488 includes a state 482 of each message being tracked
indicating whether the message is being received or has been
received.

0068 For level 2 flow control 504, message flow control
lers 410 and 460 issue message-level acknowledgments with
message IDs, illustrated by anack completed ID 494 and an
ack recV completed ID 496. Ack completed ID 494 cop
ies completed ID 426 so destination node 450 may update
send completed ID 474 and ack recV completed ID 496
copies recV completed ID 476 at destination node 450 so
source node 400 may update completed ID. The two ACK
message IDs of a message-level acknowledgment are a small,
optimized size and may be easily carried in any ackpacket
flowing from destination node 450 to source node 400 or may
be sent in a dedicated packet from destination node 450 to
source node 400. Although level 2 flow control 504 maintains
reliability on a per destination basis, the size of the message
IDS required for monitoring packet flow is minimized to only
a few bytes, such that even as the number of destinations scale
up memory consumption for level 2 flow control 504 opti
mizes memory usage.

Aug. 6, 2015

0069 Message flow controller 410 and message flow con
troller 460 may implement message-level flow control for
level 2 flow controller 504 using a flow control mechanism
similar to the Sliding Window Protocol, but distinguishable
from Sliding Window Protocol because the level 2 flow con
trol 504 flow control mechanism allows messages to com
plete out-of-order, as will be further described with reference
to FIG. 9, and allows for coalescing multiple message
completion acknowledgments. In particular, message flow
controller 410 assigns each message a unique consecutive
sequence number as a message ID and message flow control
ler 460 uses the message IDs to place messages in order,
discard duplicate messages, and identify missing messages.
However, because a state of each message is maintained at a
message level and level 2 flow control 504 tracks the state of
messages within a range of message ID values and sends
message-level acknowledgments between Source node 400
and destination node 450 to acknowledge a range of com
pleted message IDs, level 2 flow control 504 allows message
flow controller 410 and message flow controller 460 to reli
ably optimize the tracking of messages of the same size or
different sizes and whether completed in-order or out-of
order. By waiting for a range of message IDs for a same
Source ID to complete prior to sending a message-level
acknowledgement with an updated ack recV completed ID
496 to source node 400, message flow controller 460 effec
tively coalesces multiple acknowledgments formultiple mes
sage IDS into a single acknowledgment.
0070. In one example, level 2 thresholds 462 specify the
receiving thresholds for level 2 flow control 504 and may
include multiple types of thresholds for controlling coalesc
ing of message-level acknowledgments. In one example,
level 2 thresholds 462 may specify a minimum difference
between send completed ID 474 and recV completed ID
476 before a message-level acknowledgment may be
returned. In another example, level 2 thresholds 462 may
specify an in-flight per destination limit and trigger no coa
lescing or a lower coalescing threshold for message-level
acknowledgments if the number of in-flight messages for a
particular source reaches the in-flight message limit for a
destination. It is important to note that, as previously
described with reference to immediate ack flag 422, when the
number of in-flight messages reaches level 1 limits 412, level
1 flow control 502 may set immediate ack flag 422 to request
message flow controller 460 provide an immediate comple
tion acknowledgment be returned to source node 400, in
addition to the message level acknowledgments from level 2
flow control 504, to avoid any slowdown from message level
acknowledgments.
0071 Message flow controller 410 and message flow con
troller 460 implement level 3 flow control 506 by tracking the
number of in-flight packets through a packet counter 428 per
message object and limiting a message to producing a maxi
mum number of in-flight packets set in level 3 limits 416. For
managing level 3 flow control 506 message flow controller
410 and message flow controller 460 may implement mul
tiple types of flow control mechanisms. For example, level 3
flow control 560 flow control mechanisms may include, but is
not limited to, Sliding Window Protocol that enforces packets
in the message to be received in-order, a mechanism similar to
level 2 flow control allowing for out-of-orderpackets, or other
flow control mechanisms that ensure reliable delivery of
packets. Level 3 thresholds 464 may specify the receiving
thresholds for level 3 flow control 506 and may include mul

US 2015/0222556 A1

tiple types of thresholds for controlling triggering of packet
level acknowledgements and coalescing triggered packet
level acknowledgements. In one example, level 3 thresholds
464 may be set to trigger packet-level acknowledgements
when the number of in-flight received packets reaches level 3
limits 416. Such that packet-level acknowledgments are only
triggered when the number of packets produced by a message
reaches level 3 limits 416 on the number of in-flight packets
for the message because packet-level acknowledgments are
required before the message is allowed to produce additional
in-flight packets. In addition, level 3 thresholds 464 may
include a minimum number of packet-level acknowledg
ments to coalesce once packet-level acknowledgments are
triggered.
0072. In one example, at one or more of by process, by
message, by destination or by packet, message flow controller
410 may trigger a timer when a message is sent or as indi
vidual packets are sent, illustrated as acktimer 418. When ack
timer 418 pops message flow controller 410 scans the
progress of relevantactive messages, determines the progress
of an active message, and may retransmit a message or indi
vidual packets of a message. The amount of time counted by
ack timer 418 may be set according to process, message,
node, or other factor. In addition, message flow controller 410
may monitor message flow statistics over time and set ack
timer 418 to an amount which reflects the median waiting
period for messages to complete, to balance between the
potential for a message to need to be retransmitted with the
resource usage for unnecessarily retransmitting messages too
early.
0073. Although FIG. 4 has been described with reference
to three level of flow control, one of ordinary skill in the art
will appreciate that additional levels of flow control may be
implemented for additional or alternate types of data and that
additional reliable message passing layers may include one or
more additional levels of flow control.

0074. With reference now to FIG. 7, a flow diagram illus
trates one example of the states tracked for a message object
when sending a message. In the example, when a new mes
sage request is received, as illustrated at reference numeral
702. So long as the in-flight message counter has not reached
level 1 limits, the message flow controller initiates the data
transfer by retrieving a new send object from the memory
pool. The new send object allocated from the memory pool
has a “free” state, as illustrated at reference numeral 710.
Next, the message flow controller checks whether level 2
limits are met by detecting whether the number of in-flight
message by destination meets the level 2 limits on the number
of in-flight messages by destination.
0075. In the example, when a send object is set to a “free'
state, if the number of messages sent by destination does not
exceed the level 2 limits, then the message flow controller
allows the new message request and the send object is set to
the “sending state, as illustrated at reference numeral 718.
0076. In the example, when the send object is set to the
“free” state, if the number of messages set by destination
meets the level 2 limits, then the message flow controller
blocks the new message request and the send object is set to a
“wait' state, as illustrated at reference numeral 714. Once the
level 2 limits are no longer exceeded, the message flow con
troller unblocks the new message request and the send object
is set to a 'sending state as illustrated at reference numeral
718.

Aug. 6, 2015

0077. When a send object is in the “sending state' illus
trated at reference numeral 718, the message flow controller
sends the data for the message, as further limited by level 3
flow control limiting the number of in-flight packets that each
message can produce. At 'sending state', as illustrated at
reference numeral 718, the message flow controller may both
send data and receive packet-level acknowledgements if the
message is large and level 3 flow control limits are applied.
Once the message flow controller detects all the packets for
the new message request are sent out, the message flow con
troller sets the send object to a “sent state as illustrated at
reference numeral 722. While the send object is set to a “sent
state, the message flow controller monitors for message-level
acknowledgements and any packet-level acknowledgments
from the destination node. Once the message flow controller
detects all the acknowledgements for all the data packets sent
for a new message request are received, the message flow
controller sets the state of the send object to “done” as illus
trated at reference numeral 724, discards the message history,
sets the state of the send object to “free” as illustrated at
reference numeral 710, and returns the buffer for the send
object to the memory pool for further reuse.
0078 Referring now to FIG. 8, a flow diagram illustrates
one example of the states tracked for a message object when
receiving a message. In the example, when a new incoming
message is received, as illustrated at reference numeral 802.
the message flow controller requests a new receive object
from the memory pool. The new receive object allocated from
the memory pool initially has a “free” state, as illustrated at
reference numeral 810, and when the buffer is received from
the memory pool the state of the receive object is set to a
“receiving state, as illustrated at reference numeral 812. The
message flow controller detects received data packets and
triggers message-level and packet-level acknowledgments as
level 2 limits and level 3 receiving thresholds are reached.
Once all the data packets of a message are received, the
message flow controller sets the receive object to a “received
state as illustrated at reference numeral 814, discards the
message history, sets the state of the receive object to “free’ as
illustrated at reference numeral 810, and returns the buffer for
the receive object to the memory pool for further reuse.
(0079. With reference now to FIG. 9, a block diagram
depicts one example of multiple level message flow control in
a reliable message passing layer. In the example, at a first time
902, at the source node with an ID of “source ID 01, level 2
flow control IDs are set for a destination node with an ID of
“destination ID 02” to a “next ID' at “08” and a “complete
d ID' at “02. For level 2 flow control, the message flow
controller will track in-flight packets for the particular desti
nation with message IDs from “completed ID+1 of “03 to
“next ID-1 of “07. As illustrated, a message object for
each of the messages, numbered “03 through '07 indicates
a state of the message as “sent’ or “sending. Level 3 includes
packet IDs tracked in send objects for message IDs “06' and
“07, where packets “01” and “02” are sent for message ID
“06” and packets “01, “02”, “03, and “04” are sent for
message ID “07”.
0080. At a next time 904, at the destination node “desti
nation ID 02, level 2 flow control IDs for “source ID 01
are set to a “send completed ID' of “02 and a “recV com
pleted ID' of"05”. For level 2 flow control, the message flow
controller will track in-flight packets with message IDs
greater than “send completed ID' of '03 and greater for
“source ID 01. As illustrated, a message object for each of

US 2015/0222556 A1

the messages numbered “03 through '07 indicates a state of
the message as “rcvd' (for received) and “receiving. Level 3
includes packet IDs tracked in receive objects for message
IDs “06' and “07, where none of the sent packets for mes
sage ID "06' are yet received and where only packets “01
and “O2 are yet received for message ID "07”. Although not
depicted, if an immediate ack flag were set for “source ID
01 at “destination ID 02, the message flow controller may
return acknowledgments for each of the messages numbered
“03”, “04, and “05’ upon completion, separate from a mes
sage-level acknowledgment.
I0081. In the example, at time 904, the level 2 threshold
may be triggered when three or more message are received for
a particular source, regardless of the order in which the mes
sages were received, such that in the example where message
IDs “03, “04, and “05” are set to “rcvd’, the received
acknowledgments for message IDs "03”, “04, and “05” are
triggered and effectively coalesced into a single acknowledg
ment. In particular, the destination node message flow con
troller sends a message-level acknowledgment packet to the
source node with “ack recV completed'ID' set to “05’ to
report the last received message ID to the Source node. In
addition, although not depicted, the message flow controller
for the destination node may set the receive objects for mes
sage IDs “03”, “04, and “05” to “free” and return the buffers
used by the receive objects to the memory pool.
0082. At a next time 906, at the source node, level 2 flow
control updates “competed ID' for “source ID 01' with the
value of “ack received completed ID in the acknowledg
ment packet. In the example, by setting "completed ID' to
“ack received completed ID, the source node receives a
single acknowledgment for the messages with IDs “03.
“04, and “05” and the message flow controller may release
the buffers for the send objects for these messages back to the
memory pool. In addition, “source ID 01' sends an acknowl
edgement packet to “destination ID 02 with “ack com
pleted ID set to “completed ID'.
0083. At a next time 908, at the destination node, level 2
flow control updates “send completed ID' at “destination
ID 02 with the value in the acknowledgment “ack com
pleted ID. After updating “send completed ID, the
Source node and destination node have both completed the
message passing process for messages through message ID
“05.

0084. Referring now to FIG. 10, a high level logic flow
chart depicts a process and program for a message flow con
troller at a source node managing message passing. As illus
trated, the process starts at block 1000 and thereafter proceeds
to block 1002. Block 1002 depicts pre-allocating a selected
number of reusable buffers to the memory pool. Next, block
1004 illustrates a determination whether a process is request
ing message passing for a new message. If a process is
requesting message passing for a new message, then the pro
cess passes to block 1006. Block 1006 depicts a determina
tion whether the in-flight message counter is at level 1 limits.
If the in-flight message counter is at level 1 limits, then the
number of in-flight messages for a process is limited and the
process waits at block 1006. If the in-flight message counter
is not at level 1 limits, then the process passes to block 1008.
I0085 Block 1008 depicts a determination whether there is
a reusable buffer available in the memory pool. If there is a
reusable buffer available in the memory pool, then the process
passes to block 1012. If there is not a reusable buffer available
in the memory pool, then the process passes to block 1010.

Aug. 6, 2015

Block 1010 illustrates allocating a reusable buffer in the
memory pool, and the process passes to block 1012.
I0086 Block 1012 illustrates releasing an available buffer
from the memory pool for allocation to a send object for the
message. Next, block 1014 depicts adding an entry for the
message in the hash table for a message ID set to the next ID
value maintained by the source node. Thereafter, block 1016
illustrates incrementing the next ID value, and the process
passes to block 1018.
I0087 Block 1018 depicts a determination whether the
number of in-flight messages for the destination is at level 2
limits. If the number of in-flight messages for the destination
for the message has reached level 2 limits, then the number of
in-flight messages for the destination is limited and the pro
cess waits at block 1018. If the number of in-flight messages
for the destination is not at level 2 limits, then the process
passes to block 1020.
I0088 Block 1020 illustrates incrementing the in-flight
message counter. Next, block 1022 illustrates sending a
packet for the message to the destination. Thereafter, block
1024 depicts a determination whether the number of in-flight
packets for the message is at level 3 limits. If the number of
in-flight packets for the message is at level 3 limits, then the
number of in-flight packets is limited and the process waits at
block 1024. If the number of in-flight packets for the message
is not at level 3 limits, then the process passes to block 1026.
I0089 Block 1026 depicts a determination whether the
packet sent is the last packet. If the last packet is not sent, then
the process returns to block 1022. If last packet is sent, then
the process passes to block 1028. Block 1028 illustrates a
determination whether all of the message is acknowledged
before a timer times out and expires. In one example, FIG. 13
illustrates a process for monitoring for and processing level 1,
message-level and packet-level acknowledgements. If not all
the message is acknowledged before a timer times out, then
the process triggers resending the packet and returns to block
1022. If a message is acknowledged before the timer times
out, then the process passes to block 1030. Block 1030 depicts
discarding the message history for the send object for the
message and returning the send object buffer to the memory
pool. Next, block 1032 illustrates decrementing the in-flight
counter, and the process ends.
(0090. With reference now to FIG. 11, a high level flow
chart depicts a process and program for a message flow con
trollerata destination node managing message passing. In the
example, the process starts at block 1100 and thereafter pro
ceeds to block 1102. Block 1102 depicts pre-allocating a
selected number of reusable buffers to the memory pool.
Next, block 1104 illustrates a determination whether an
incoming packet is received with a message ID greater than
the send completed ID for the particular source from which
the packet is sent. If the packet does not have a message ID
greater than the send completed ID then the process waits. If
the packet does have a message ID greater than the send
completed ID then the process passes to block 1106.
(0091 Block 1106 depicts a determination whether the
message ID of the packet is for a new message. If the mes
sage ID of the packet is not for a new message, then the
process passes to block 1112. If the message ID of the packet
is for a new message, then the process passes to block 1108.
Block 1108 illustrates releasing a buffer from the memory
pool for allocating a receive object for the message. Next,
block 1110 depicts updating the entry for the message in the
hash table, and the process passes to block 1112.

US 2015/0222556 A1

0092 Block 1112 illustrates marking the packet received
in the receive object. Next, block 1114 depicts a determina
tion whether the current packet flow triggers packet-level
acknowledgments in the level 3 thresholds. If the current
packet flow does not trigger packet-level acknowledgments,
then the process passes to block 1118. If the current packet
flow triggers packet-level acknowledgments, then the process
passes to block 1116. Block 1116 depicts sending coalesced
packet acknowledgments to the source, and the process
passes to block 1118.
0093. Block 1118 depicts a determination whether all the
packets are received for a message. If all the packets are not
received for a message, then the process ends. If all the
packets are received for a message, then the process passes to
block 1119. Block 1119 depicts setting the receive object
state to received, which may trigger sending a message-level
acknowledgement as described in FIG. 12, and the process
passes to block 1120. Block 1120 depicts a determination
whether the immediate ack flag is set for a message. If the
immediate ack flag is not set for a message, then the process
passes to block 1124. If the immediate ack flag is set for a
message, then the process passes to block 1122. Block 1122
depicts sending an immediate level lack packet for the com
pleted message to the source, and the process passes to block
1124. Block 1124 depicts discarding the message history for
the message and returning the receive object buffer for the
message to the memory pool, and the process ends.
0094. With reference now to FIG. 12, a high level flow
chart depicts a process and program for a message flow con
troller at a destination node managing acknowledgments. In
the example, the process starts at block 1200 and thereafter
proceeds to block 1202. Block 1202 depicts monitoring all
messages with message IDS greater than the value of send
completed ID for each source. Next, block 1204 illustrates a
determination whether the current receive object states for
tracked message IDs for a particular source trigger message
level acknowledgments in level 2 thresholds. If current
receive object states do not trigger message-level acknowl
edgments in level 2 thresholds, then the process waits. If
current receive object states do trigger message-level
acknowledgements in level 2 thresholds, then the process
passes to block 1206. Block 1206 depicts sending a packet to
the source with ack recV completed ID set to the message
ID of the receive object with a state showing the message is
fully received. Next, block 1208 illustrates a determination
whether a packet with ack completed ID is received from
the source. Once a packet with ack completed ID is received
from the source, the process passes to block 1210. Block 1210
depicts setting send completed ID to ack completed ID for
the source, and the process ends.
0095 Referring now to FIG. 13, a high level logic flow
chart illustrates a process and program for a message flow
controller at a source node managing acknowledgments. In
the example, the process starts at block 1300 and thereafter
proceeds to block 1302. Block 1302 depicts a determination
whether a new acknowledgment is received for a message
with a message ID value within the range of completed
ID+1 to next ID-1 for a destination. If a new acknowledg
ment within the range is received, then the process passes to
block 1304. Block 1304 depicts a determination of the type of
acknowledgement.
0096. At block 1304, if the acknowledgment is a packet
level acknowledgement, then the process passes to block
1306. Block 1306 depicts updating the send object for the

Aug. 6, 2015

identified message ID with the completed packet acknowl
edgment, and the process ends.
0097. At block 1304, if the acknowledgment is a message
level acknowledgment, then the process passes to block 1308.
Block 1308 depicts a setting the completed ID for the iden
tified destination to ack recV completed ID in the acknowl
edgment. Next, block 1310 illustrates sending a packet to the
destination withack completed ID set to completed ID, and
the process ends.
(0098. At block 1304, if the acknowledgement is a level 1
ack, then the process passes to block 1312. Block 1312
depicts triggering level 1 flow control that the message is
completed for immediate return of the buffer for the send
object for the completed message to the memory pool, and the
process ends.
0099. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, occur Substantially concurrently,
or the blocks may sometimes occur in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.
0100. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises' and/
or “comprising, when used in this specification specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but not preclude the presence or
addition of one or more other features, integers, steps, opera
tions, elements, components, and/or groups thereof.
0101 The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the one or more embodiments of the invention has been pre
sented for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica
tions as are Suited to the particular use contemplated.
0102) While the invention has been particularly shown and
described with reference to one or more embodiments, it will

US 2015/0222556 A1

be understood by those skilled in the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the invention.

1. A method for flow control for message passing in a
reliable message passing layer, comprising:

responsive to receiving a request to pass a new message in
a reliable message passing layer from a process from
among a plurality of processes, determining, using a
processor, whether to allow the process to pass the new
message from a source node to at least one destination
node from among a plurality of destination nodes;

responsive to allowing the process to send the at least one
packet from the source node to a particular destination
node from among the plurality of destination nodes,
tracking, using a processor, whether an acknowledge
ment is received from the particular destination node of
complete receipt of the new message by:

maintaining a next identifier value for the particular desti
nation node:

responsive to receiving the new message for the particular
destination node, assigning the message identifier for
the new message from a particular next identifier value
set for the particular destination node and incrementing
the value of the particular next identifier value;

detecting whether a particular acknowledgement packet
received from the particular destination node comprises
an acknowledgment received completed identifier fall
ing within a range of values from a completed identifier
value plus one through the particular next identifier
value less one; and

responsive to detecting the particular acknowledgement
packet received from the particular destination node
comprises the acknowledgement received completed
identifier falling within the range, setting the completed
identifier value to the acknowledgment received com
pleted identifier value and sending an acknowledgement
to the particular destination node with an acknowledge
ment completed identifier set to the completed identifier
value.

2. The method according to claim 1, further comprising:
responsive to receiving the new packet at the particular

destination node, detecting whether the new packet has
a message identifier for the new message for a message
already allocated at the particular destination node;

responsive to the new packet having a message identifier
for the new message not already allocated at the particu
lar destination node, allocating a destination buffer from
a destination memory pool for a receive object for the
message identifier of the new message;

marking the new packet received in the receive object for
the new message;

monitoring for additional packets from among the at least
one packet for the new message and marking the addi
tional packets received in the receive object for the new
message;

responsive to a current number of in-flight packets for the
new message meeting a level three threshold, sending a
packet level acknowledgment for the new message
specifying receipt of the in-flight packets to the Source
node:

responsive to receiving a last packet of the at least one
packet for the new message at the particular destination,
setting the state of the receive object to received; and

Aug. 6, 2015

responsive to detecting a number of a plurality of receive
objects set to a received State meeting a second level
threshold minimum number of receive objects set to the
received state, sending a message level acknowledge
ment comprising an acknowledgment received com
pleted identifier set to a value of a message identifier
associated with a last sequential receive object set to the
received state. Such that acknowledgements for the plu
rality of receive objects are coalesced into the message
level acknowledgment.

3. The method according to claim 1, further comprising:
sending the at least one packet from the Source node to the

particular destination node across an unreliable inter
connection network.

4. The method according to claim 1, wherein the reliable
message passing layer is a low-level application program
interface (LAPI).

5. A system for flow control for message passing in a
reliable message passing layer, comprising:

a message flow controller implemented in a reliable mes
Sage passing layer distributed within a computing envi
ronment comprising a plurality of computing nodes each
comprising at least one processor coupled to at least one
memory and each interconnected via an interconnection
network, wherein the message flow controller is opera
tive on at least one of the at least one processor,

the message flow controller, responsive to receiving a
request to pass a new message in a reliable message
passing layer from a process from among a plurality of
processes, operative to determine whether to allow the
process to pass the new message from a source node to at
least one destination node from among a plurality of
destination nodes;

the message flow controller, responsive to allowing the
process to send the at least one packet from the source
node to a particular destination node from among the
plurality of destination nodes, operative to track whether
an acknowledgement is received from the particular des
tination node of complete receipt of the new message by:

maintaining a next identifier value for the particular desti
nation node:

responsive to receiving the new message for the particular
destination node, assigning the message identifier for
the new message from a particular next identifier value
set for the particular destination node and incrementing
the value of the particular next identifier value;

detecting whether a particular acknowledgement packet
received from the particular destination node comprises
an acknowledgment received completed identifier fall
ing within a range of values from a completed identifier
value plus one through the particular next identifier
value less one; and

responsive to detecting the particular acknowledgement
packet received from the particular destination node
comprises the acknowledgement received completed
identifier falling within the range, setting the completed
identifier value to the acknowledgment received com
pleted identifier value and sending an acknowledgement
to the particular destination node with an acknowledge
ment completed identifier set to the completed identifier
value.

6. The system according to claim 5, further comprising:
the message flow controller, responsive to receiving the
new packet at the particular destination node, operative

US 2015/0222556 A1

to detect whether the new packet has a message identifier
for the new message for a message already allocated at
the particular destination node:

the message flow controller, responsive to the new packet
having a message identifier for the new message not
already allocated at the particular destination node,
operative to allocate a destination buffer from a destina
tion memory pool for a receive object for the message
identifier of the new message;

the message flow controller, operative to mark the new
packet received in the receive object for the new mes
Sage,

the message flow controller, operative to monitor for addi
tional packets from among the at least one packet for the
new message and marking the additional packets
received in the receive object for the new message;

the message flow controller, responsive to a current num
ber of in-flight packets for the new message meeting a
level three threshold, operative to send a packet level
acknowledgment for the new message specifying
receipt of the in-flight packets to the source node,

the message flow controller, responsive to receiving a last
packet of the at least one packet for the new message at
the particular destination, operative to set the state of the
receive object to received; and

the message flow controller, responsive to detecting a num
ber of a plurality of receive objects set to a received state
meeting a second level threshold minimum number of
receive objects set to the received state, operative to send
a message level acknowledgement comprising an
acknowledgment received completed identifier set to a
value of a message identifier associated with a last
sequential receive object set to the received state, Such
that acknowledgements for the plurality of receive
objects are coalesced into the message level acknowl
edgment.

7. The system according to claim 5, further comprising:
the message flow controller operative to send the at least

one packet from the source node to the particular desti
nation node across an unreliable interconnection net
work.

8. The system according to claim 5, wherein the reliable
message passing layer is a low-level application program
interface (LAPI).

9. A computer program product for flow control for mes
sage passing in a reliable message passing layer, the computer
program product comprising:

one or more computer-readable, tangible storage devices;
program instructions, stored on at least one of the one or
more devices, responsive to receiving a request to pass a
new message in a reliable message passing layer from a
process from among a plurality of processes, for deter
mining whether to allow the process to pass the new
message from a source node to at least one destination
node from among a plurality of destination nodes;

program instructions, stored on at least one of the one or
more devices, responsive to allowing the process to send
the at least one packet from the Source node to a particu
lar destination node from among the plurality of desti
nation nodes, for tracking whetheran acknowledgement
is received from the particular destination node of com
plete receipt of the new message by:
maintaining a next identifier value for the particular

destination node;

Aug. 6, 2015

responsive to receiving the new message for the particu
lar destination node, assigning the message identifier
for the new message from a particular next identifier
value set for the particular destination node and incre
menting the value of the particular next identifier
value;

detecting whether a particular acknowledgement packet
received from the particular destination node com
prises an acknowledgment received completed iden
tifier falling withina range of values from a completed
identifier value plus one through the particular next
identifier value less one; and

responsive to detecting the particular acknowledgement
packet received from the particular destination node
comprises the acknowledgement received completed
identifier falling within the range, setting the completed
identifier value to the acknowledgment received com
pleted identifier value and sending an acknowledgement
to the particular destination node with an acknowledge
ment completed identifier set to the completed identifier
value.

10. The computer program product according to claim 9.
further comprising:

program instructions, stored on at least one of the one or
more devices, responsive to receiving the new packet at
the particular destination node, for detecting whether the
new packet has a message identifier for the new message
for a message already allocated at the particular desti
nation node,

program instructions, stored on at least one of the one or
more devices, responsive to the new packet having a
message identifier for the new message not already allo
cated at the particular destination node, for allocating a
destination buffer from a destination memory pool for a
receive object for the message identifier of the new mes
Sage,

program instructions, stored on at least one of the one or
more devices, for marking the new packet received in the
receive object for the new message;

program instructions, stored on at least one of the one or
more devices, for monitoring for additional packets
from among the at least one packet for the new message
and marking the additional packets received in the
receive object for the new message;

program instructions, stored on at least one of the one or
more devices, responsive to a current number of in-flight
packets for the new message meeting a level three
threshold, for sending a packet level acknowledgment
for the new message specifying receipt of the in-flight
packets to the Source node,

program instructions, stored on at least one of the one or
more devices, responsive to receiving a last packet of the
at least one packet for the new message at the particular
destination, for setting the state of the receive object to
received; and

program instructions, stored on at least one of the one or
more devices, responsive to detecting a number of a
plurality of receive objects set to a received State meeting
a second level threshold minimum number of receive
objects set to the received State, for sending a message
level acknowledgement comprising an acknowledg
ment received completed identifier set to a value of a
message identifier associated with a last sequential
receive object set to the received state, such that

US 2015/0222556 A1 Aug. 6, 2015
13

acknowledgements for the plurality of receive objects
are coalesced into the message level acknowledgment.

11. The computer program product according to claim 9.
further comprising:

program instructions, stored on at least one of the one or
more devices, for sending the at least one packet from
the source node to the particular destination node across
an unreliable interconnection network.

k k k k k

