实用新型名称
房屋智能化温度控制装置

摘要
本实用新型涉及一种房屋智能化温度控制装置，其特点是：在屋檐下设置有室外数据采集器与水蒸发制冷器，室外数据采集器的数据输出端连入服务器，服务器的数据输出端连入智能主机。房屋本体的室内设有室内数据采集器，室内数据采集器的数据输出端亦连入服务器；水蒸发制冷器的控制端连入智能主机；屋檐端部设有智能遮阳设备，智能遮阳设备的控制端连入智能主机；房屋本体的底部设置有地源热泵。由此，能够通过各个温度采集装置与服务器的配合，有效集成空调的节能使用并结合智能化的控制系统，实现建筑取暖和制冷能耗降低70%。
1. 房屋智能化温度控制装置，包括有房屋本体，所述房屋本体的顶端设有屋檐，其特征在于：所述的屋檐上设置有室外数据采集器与水蒸发制冷器，所述室外数据采集器的数据输出端连入服务器，所述服务器的数据输出端连入智能主机；所述房屋本体的室内设有室内数据采集器，室内数据采集器的数据输出端连入服务器；所述水蒸发制冷器的控制端连入智能主机；所述屋檐端部设有智能遮阳设备，所述智能遮阳设备的控制端连入智能主机；所述房屋本体的底部设置有地源热泉，所述地源热泉的控制端连入智能主机；所述的室外数据采集器、水蒸发制冷器、服务器、室内数据采集器、智能主机、智能遮阳设备、地源热泉的供电端共同连入用电设备的输出端。

2. 根据权利要求1所述的房屋智能化温度控制装置，其特征在于：所述的室外数据采集器设置在屋檐顶端。

3. 根据权利要求1所述的房屋智能化温度控制装置，其特征在于：所述的室内数据采集器分布在房屋本体所属的每个房间内。

4. 根据权利要求1所述的房屋智能化温度控制装置，其特征在于：所述的屋檐上铺设太阳能发电板，所述太阳能发电板的输出端连接有太阳能逆变器，所述太阳能逆变器的输出端连接用电设备的输入端。
房屋智能化温度控制装置

技术领域
[0001] 本实用新型涉及一种温度控制装置，尤其涉及一种房屋智能化温度控制装置。

背景技术
[0002] 城市文明给我们带来了美好生活，而文明的另一面则是城市的能耗大大增加，能源日益枯竭。2009年12月，上百个国家的领导人齐聚丹麦哥本哈根，这场被称作拯救地球最后机会的气候变化大会提醒着每一个人。
[0003] 建筑是城市的身躯，为人类遮风避雨。然而，美轮美奂的建筑，消耗了地球上50%的能源。城市化进程所需的钢材、铝材、水泥、玻璃，都是大量消耗能源的产物。城市特有的大型公共建筑更是“吞噬”着能源，其每平方米能耗是居民住宅的10~15倍。若全球城市化继续按原有方式推进，将何以堪？2009年清华大学的研究报告显示，在建筑的整个生命周期中，建筑运行能耗约占建筑整个生命周期能耗的80%，因此建筑运行能耗就成为我们重点关注的对象。

实用新型内容
[0004] 本实用新型的目的就是为了解决现有技术中存在的上述问题，提供一种房屋智能化温度控制装置。
[0005] 本实用新型的目的通过以下技术方案来实现：
[0006] 房屋智能化温度控制装置，包括有房屋本体，所述房屋本体的顶端设有屋檐，其中：所述的屋檐上设置有室外数据采集器与水蒸发制冷器，所述室外数据采集器的数据输出端连入服务器，所述服务器的数据输出端连入智能主机；所述房屋本体的室内设有室内数据采集器，室内数据采集器的数据输出端连入服务器；所述水蒸发制冷器的控制端连入智能主机；所述屋檐端部设有智能遮阳设备，所述智能遮阳设备的控制端连入智能主机；所述房屋本体的底部设有地源热泵，所述地源热泵的控制端连入智能主机；所述的室外数据采集器、水蒸发制冷器、服务器、室内数据采集器、智能主机、智能遮阳设备、地源热泵的供电端共同连入用电设备的输出端。
[0007] 上述的房屋智能化温度控制装置，其中：所述的室外数据采集器设置在屋檐顶端。
[0008] 进一步地，所述的房屋智能化温度控制装置，其中：所述的室内数据采集器分布在房屋本体所属的每个房间内。
[0009] 更进一步地，所述的房屋智能化温度控制装置，其中：所述的屋檐上设有太阳能发电板，所述太阳能发电板的输出端连接有太阳能逆变器，所述太阳能逆变器的输出端连接用电设备的输入端。
[0010] 本实用新型技术方案的优点主要体现在：能够通过各个温度采集装置与服务器的配合，有效集成空调的节能使用并结合智能化的控制系统，实现建筑采暖和制冷能耗降低70%，符合现有的绿色环保要求。
附图说明
[0011] 本实用新型的目的、优点和特点，将通过下面优选实施例的非限制性说明进行图
示和解释。这些实施例仅是应用本实用新型技术方案的典型范例，凡采取等同替换或者等
效变换而形成的技术方案，均落在本实用新型要求保护的范围之内。这些附图中当，
[0012] 图 1 是房屋智能化温度控制装置的构造示意图。
[0013] 图中各附图标记的含义如下：
[0014] 1 室外数据采集器 2 水蒸发制冷器
[0015] 3 服务器 4 智能主机
[0016] 5 室内数据采集器 6 智能遮阳设备
[0017] 7 地源热泵 8 用电设备
[0018] 9 太阳能发电板 10 太阳能逆变器

具体实施方式
[0019] 如图 1 所示的房屋智能化温度控制装置，包括有房屋本体，在房屋本体的顶端设
有屋檐，其不同之处在于：在屋檐上设置有室外数据采集器 1 与水蒸发制冷器 2，室外数据
采集器 1 的数据输出端连入服务器 3，且服务器 3 的数据输出端连入智能主机 4。与之对应
的是，在房屋本体的室内设有室内数据采集器 5，室内数据采集器 5 的数据输出端亦连入服
务器 3，水蒸发制冷器 2 的控制端连入智能主机 4。在屋檐端部设有智能遮阳设备 6，该智能
遮阳设备 6 的控制端连入智能主机 4。
[0020] 考虑到能够进行有效的制热和制冷辅助，本实用新型在房屋本体的底部设置有地
源热泵 7，所述地源热泵 7 的控制端连入智能主机 4，所述的室外数据采集器 1、水蒸发制冷
器 2、服务器 3、室内数据采集器 5、智能主机 4、智能遮阳设备 6、地源热泵 7 的供电端共同连
入用电设备 8 的输出端，进行一个同一的供电。
[0021] 为了提升采集的精确程度，室外数据采集器 1 设置在屋檐顶端，而室内数据采集
器 5 分布在房屋本体所属的每个房间内。
[0022] 再者，为了实现一个绿色能源的供给，所述的屋檐上铺设有太阳能发电板 9，太阳
能发电板 9 的输出端连接有太阳能逆变器 10，该太阳能逆变器 10 的输出端连接用电设备 8
的输入端。
[0023] 结合本实用新型的实际使用来看，首先，通过室外数据采集器 1 收集室外气象数
据，包括风速、降雨程度、阳光辐照度、室外温度；通过室内数据采集器 5 收集室内数据，包
括温度与湿度数据。然后，将室外气象数据、室内数据传输至服务器 3 通过端口 232/485 转
换传输到服务器 3，存入服务器 3 所属的数据库内。接着，数据库将室外气象数据、室内温度
与湿度数据进行比较，针对当前季节进行相关处理。
[0024] 具体来说，如果当前季节为夏季既室内温度需要降温时，如果室内温度超过首个
夏日温度上限如 25 摄氏度，则首先水蒸发制冷器 2 运行进行第一时间的降温。如温度继续
升至次级夏日温度上限如 27 摄氏度，则启动地源热泵 7 进行制冷工作。同时，伴随着降温工
作的进行，如果室内温度低于首个夏日温度上限，则停止水蒸发制冷器 2 与地源热泵 7 的
运行，使得室内温度达到适宜的状态。
[0025] 进一步，如果当前季节为冬季既室内温度需要升温时，如果室内温度低于冬
日温度下限如 15 摄氏度，则启动地源热泵 7 进行制热工作，对室内进行升温。接着，随着制热的进行，如果室内温度高于日温度上限如 25 摄氏度，则关闭地源热泵 7，以免造成额外的能源浪费。

[0026] 再进一步来看，为了起到辅助室内温度的作用，便于对日照进行有效的遮挡调节，如果采集到的阳光辐射度超过预先设定值，则智能主机 4 控制智能遮阳设备 6 开启，对阳光进行遮挡可有效阻阳光直接射入室内。如果采集到的风速大于 5m/s 或是下雨，则智能主机 4 控制遮阳设备收起。这样能够对智能遮阳设备 6 起到保护作用，避免其被风吹坏或是受雨淋后出现锈蚀。

[0027] 并且，本实用新型还能很好的调节室内的湿度。具体来说，如果室内数据采集器 5 采集到的湿度低于预先设定的 30%，则智能主机 4 控制水蒸发制冷器 2 运行；当湿度达到 60% 时，则水蒸发制冷器 2 停止工作。这样，确保室内湿度适宜居住。

[0028] 同时，为了便于用户能够及时知晓房屋智能化温度控制所带来的能耗对比，室内数据采集器 5 还能收集太阳能逆变器 10 输出电量与房屋使用电量信息。之后，将太阳能逆变器 10 输出电量与房屋使用电量信息存入数据库内。继而，能够通过智能主机 4 对比太阳能逆变器 10 输出电量与房屋用电量，得出使用能耗。

[0029] 通过上述的文字表述并结合附图可以看出，采用本实用新型后，能够通过各个温度采集装置与服务器的配合，有效集成空调的节能使用并结合智能化的控制系统，实现建筑采暖和制冷能耗降低 70%，符合现有的绿色环保要求。