
(19) United States 
US 2001 0042204A1 

(12) Patent Application Publication (10) Pub. No.: US 2001/0042204 A1 
Blaker et al. (43) Pub. Date: Nov. 15, 2001 

(54) HASH-ORDERED DATABASES AND 
METHODS, SYSTEMS AND COMPUTER 
PROGRAM PRODUCTS FOR USE OFA 
HASH-ORDERED DATABASE 

(76) Inventors: David Blaker, Chapel Hill, NC (US); 
Dan Winkelstein, Raleigh, NC (US) 

Correspondence Address: 
MYERS BIGELSIBLEY & SAJOVEC 
PO BOX 37428 
RALEIGH, NC 27627 (US) 

(21) Appl. No.: 09/845,432 

(22) Filed: Apr. 30, 2001 

Related U.S. Application Data 

(63) Non-provisional of provisional application No. 
60/203,464, filed on May 11, 2000. 

IPSec PACKETS 

SELECTOR FIELDS 

MODIFIED SELECTOR FIELDS 

SECURITYPOLICY 

Datest 

IPSec PROCESSOR 
20 

SECURITY ASSOCATION 28 

Publication Classification 

(51) Int. Cl." ............................ G06F 12/14; G06F 17/30 
(52) U.S. Cl. ............................... 713/165; 713/193; 707/9 

(57) ABSTRACT 

Data Structures and methods, Systems and computer pro 
gram products for Searching, inserting and/or deleting 
entries in a database which includes a hash value corre 
sponding to data of the entry and which are Stored in a 
hash-ordered Sequence Such that a linear Search for an entry 
from an address corresponding to the hash value of the entry 
will result in the data being located by examining entries in 
consecutive addresses before an address without an entry is 
reached are provided. Such methods, Systems, computer 
program products and data Structures may be particularly 
useful for Internet Protocol Security (IPSec) security asso 
ciation databases (SADs). 

DATA PACKETS 

SECURITY INFORMATION 

HASHKEY 
GENERATOR 

26 SECURITY 
ASSOCATION 

HASHKEY DATA 

DATABASE 
24 

  

  

    

    

  

  

    

  



Patent Application Publication Nov. 15, 2001 Sheet 1 of 8 US 2001/0042204 A1 

IPSec PROCESSOR 
20 DATA PACKETS IPSec PACKETS 

SECURITY INFORMATION 
SELECTOR FIELDS 

HASHKEY 
GENERATOR 

26 SECURITY 
MODIFIED SELECTOR FIELDS ASSOCATION 

HASHKEY--" 
SECURITY ASSOCATION 28 

DATABASE SECURITYPOLICY 24 
DATABASE 

22 

FIG. J. 

    

  

    

    

  



Patent Application Publication Nov. 15, 2001 Sheet 2 of 8 US 2001/0042204 A1 

HASHKEY 
GENERATION 

GROUP 
MODIFIED 

SELECTOR FIELDS 
INTO 64-BIT 
BLOCKS 

40 

42 
PAD BLOCKSTO 

64-BIT 
BOUNDARIES 

FIG 2 

ENCRYPT 44 
MODIFIED 

SELECTOR FIELDS 
USING DES 

CBC 

TRUNCATE 46 
ENCRYPTED 

SELECTOR FIELDS 
TO PROVIDEN-BIT 

HASHKEY 

  

    

  

    

  

  

  

    

  

  

  

    

  



Patent Application Publication Nov. 15, 2001 Sheet 3 of 8 US 2001/0042204 A1 

ADDRESS DATABASE ENTRIES 28 
N- SECURITY WALUEA is LEN Y 

SECURITY VALUEB HASHVALUEN 
Nil SECURITY WALUE ( HASHVALUEN 
N: EMPTY EMPTY 
N+3 EMPTY EMPTY 
N+4 EMPTY EMPTY 

FIG 3A 

ADDRESS DATABASE ENTRIES 28 
SECURITY WALUEA is: WLE-1 / 
SECURITY VALUEB HASHWALUEN 
SECURITY WALUED HASHVALUEN 
SECURITY WALUEC HASH WALUEN+ 

EMPTY 
EMPTY 

FIG 3B 

ADDRESS DATABASE ENTRIES 28 
N- SECURITY WALUEA is LEI / 
N SECURITY VALUED HASHVALUEN 

N+ SECURITY WALUEC HASHVALUEN+l 
N+2 EMPTY EMPTY 
N+3 | EMPTY EMPTY 
N+4 EMPTY EMPTY 

FIG 30. 

    

  

  

  



Patent Application Publication Nov. 15, 2001 Sheet 4 of 8 US 2001/0042204 A1 

DATABASE 
SEARCH 

RECEIVEHASH 
KEY 

100 

LOCATE ENTRY -02 
FOR ADDRESSIN 

DATABASE 
CORRESPONDING 
TO HASHKEY 

106 

YES RETURN ENTRY 

108 INCREMENT 
ADDRESS AND 

LOCATE ENTRY FOR 
NEW ADDRESS IN 

DATABASE 
NO 

s YES 

FIG 4. 

RETURN"FAILED 
SEARCH" 

    

  

  

  

  

  

    

    

  



Patent Application Publication Nov. 15, 2001 Sheet 5 of 8 US 2001/0042204 A1 

DATABASE 
SEARCH 

RECEIVEHASH 
KEY 

SETCURRENT 
ENTRY TO 

ADDRESS OF 
HASHKEY 

OO 

O 

105 

YES RETURNENTRY 

17 

SETCURRENT 
ENTRY TONEXT 

ENTRY 

HASH 
WALUE OF CURRENTENTR 

CURRENTENTRY MSB's "1" AND 
> HASH HASHKEYMSB's 
KEY "00"? 

CURRENTENTR 
MSB's "00" AND 
HASHKEYMSB's 

t t 

YES 

INVERTMSBS OF 
HASH WALUE OF 
CURRENTENTRY 
AND HASHKEY YES 

RETURN"FAILED 
SEARCH" 

    

  

  

  

    

  

    

  

    

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Nov. 15, 2001 Sheet 6 of 8 

INSERTENTRY 

RECEIVEHASH 
KEY 

LOCATE ENTRY 
FOR ADDRESSIN 
DATABASEUSING 

HASHKEY 

26 NO 

PARSECLUSTER 
TO FIND END OF 
CLUSTER AND 
INSERTION 

LOCATION AND GO 
TOEND OF 
CLUSTER 

COPY ENTRY AT 
CURRENT 

LOCATION TONEX 
LOCATION 

INSERT 
LOCATION 
REACHED 

INSERTSECURITY 
INFORMATION 
AND HASHKEY 

ATENTRY 

20 

122 

128 

YES 

US 2001/0042204 A1 

    

  

    

  

  

  

  

  

  

  

  



Patent Application Publication Nov. 15, 2001 Sheet 7 of 8 

CLUSTER 
PARSING AND 
MOVEMENT 

SETCURRENT 
ENTRY TO HASH 

KEY WALUE 

CURRENT 
ENTRY-ENTRY 
FOR HASH 

KEY 

ENTRY AT 
ENTRY AFTER 

CURRENTENTR 
EMPTY 

SET CURRENT 

ENTRY 

FIG. V. 

ENTRY TOENTRY 
AFTERCURRENT 

YES 

50 

SET CURRENT 
ENTRY TO ENTRY 

PRIORTO CURRENT 
ENTRY 

YES 

NO 

64 

CURRENTENTRY 
MSB's "ll" AND 
HASHKEYMSB's 

INVERTMSB's OF 
HASH WALUE OF 
CURRENTENTRY 
AND HASHKEY 

YES 
COPY CURRENT 
ENTRY TOENTRY 
AFTERCURRENT 

ENTRY 

54 

US 2001/0042204 A1 

44 

INSERT NEW 
ENTRY AT 
CURRENT 
ENTRY 

58 

SET CURRENT 
ENTRY TO ENTRY 
AFTERCURRENT 

ENTRY 
NO 

    

  

  

  

    

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

      

  

  

  

    

      

  



US 2001/0042204 A1 Patent Application Publication Nov. 15, 2001 Sheet 8 of 8 

DELETEENTRY 

218 
REPLACE ENTRY 
AT ADDRESSX 

WITH NULLENTRY 

  

  



US 2001/0042204 A1 

HASH-ORDERED DATABASES AND METHODS, 
SYSTEMS AND COMPUTER PROGRAM 

PRODUCTS FOR USE OF A HASH-ORDERED 
DATABASE 

PROVISIONAL APPLICATIONS 

0001. The present application is related to and claims 
priority from U.S. Provisional Patent Application Ser. No. 
60/203.464, filed May 11, 2000 and entitled “METHODS 
AND APPARATUS FOR HIGH-PERFORMANCE HASH 
SEARCH' the disclosure of which is incorporated by ref 
erence as if set forth fully herein. 

FIELD OF THE INVENTION 

0002 The present invention relates to databases as well 
as the Searching and maintenance of Such databases, and 
more particularly to databases Suitable for hash Searching. 

BACKGROUND OF THE INVENTION 

0003) The Internet Protocol Security Architecture 
(IPSec), is a Virtual Private Network (VPN) technology. 
Typically, IPSec uses symmetric keys to secure traffic 
between peers. These Symmetric keys are generated and 
distributed by an Internet Key Exchange (IKE) function. 
IPSec uses Security associations (SAS) to provide Security 
Services to traffic. SAS are unidirectional logical connections 
between two IPSec systems. SAS associated with inbound 
packets may be uniquely identified by the triplet of <Secu 
rity Parameter Index, IP Destination Address, Security Pro 
tocold. To provide bidirectional communications, typically, 
two SAS are defined, one in each direction. 
0004 SAS are managed by IPSec systems maintaining 
two databases: a Security Policy Database (SPD) and a 
Security Associations Database (SAD). The SPD specifies 
what security services are to be offered to the IP traffic. 
Typically, the SPD contains an ordered list of policy entries 
which are separate for inbound and outbound traffic. These 
policies may specify, for example, that Some traffic must not 
go through IPSec processing, Some traffic must be discarded 
and some traffic must be IPSec processed. 
0005 The SAD contains parameter information about 
each SA. Such parameters may include the Security protocol 
algorithms and keys for Authentication Header (AH) or 
Encapsulating Security Payload (ESP) security protocols, 
sequence numbers, protocol mode and SA lifetime. With 
IPSec in place, for outbound packets, the SPD is consulted 
to determine if IPSec processing is required or if other 
processing or discarding of the packet is to be performed. If 
IPSec is required, the SAD is searched for an existing SA for 
which the packet matches the profile. If a SA is found or 
after negotiation of a SA, IPSec is applied to the packet as 
defined by the SA and the packet is delivered. For inbound 
packets, the SPD is consulted to determine if IPSec or other 
processing is required. If IPSec is required, the SAD is 
Searched for an existing Security parameter indeX to match 
the Security parameter index of the inbound packet. The SA 
is then used to IPSec process the inbound packet. 
0006. In operation, the SAD may include a large number 
of SAS. This may present performance problems unless the 
SAD may be quickly Searched to locate a particular SA. 
However, the searching of the SAD typically involves 

Nov. 15, 2001 

Searching for an exact match of a long String in a large 
database. Preferably, this Search is performed very quickly. 
Furthermore, because the SAD may be updated with new 
SAS it is also preferable that the Searching processes not be 
interrupted by the insertion or deletion of entries. 
0007 Conventional search methods used for hardware 
based Searches include: 

0008 1. direct search using content addressable 
memory (CAM); 

0009 2. tree-search approach such as a binary 
Search; 

0010) 3. hash approach; 
0011. 4. direct memory look-up; and 
0012 5. linear search. 

0013 Each one of these methods has limitations in terms 
of Speed, database size, Search field size, and the ability to 
update the database. 
0014 CAM devices are, typically, limited to a fixed field 
length and a maximum database size. Presently, field sizes of 
about 256 bits wide and database depths of about 8000 
entries are provided. CAM devices may be very fast and 
have predictable Search times. For an application with 
IPSec, CAM devices typically have too small a database and 
too Small a field size to meet Some important requirements. 
CAMS may also be approximately 64 times more expensive 
per bit than Synchronous Dynamic Random Access Memo 
ries (SDRAMs). 
0015 Tree-search approaches, such as a binary search, 
have the advantage of Supporting arbitrarily large databases 
and field sizes, and may also have bounded Search times. 
However, in a tree-Search, the entries must be strictly 
ordered. This makes fast insertions and deletions of entries 
problematic Since the entire database may have to be re 
Sorted if an entry at the beginning of the tree is inserted or 
deleted. 

0016 Hash-based approaches have the advantage of Sup 
porting arbitrarily large databases and field sizes. However, 
with hash approaches, the Search time is a priori undeter 
minable. Additionally, hash tables that use linear probing 
typically must stop Searching until a delete operation is 
complete, because this may require reinserting multiple 
entries. Additionally, certain hash-based approaches utilize 
linked lists or tree relationships in the event of a hash 
collision Such that the collision is resolved by a tree-Search 
or evaluation of a linked list. Such approaches may result in 
additional complexity which may increase cost or reduce 
performance. 
0017 Direct memory look-up may be fast but may be 
limited in field length and, therefore, may not be practical for 
long words Such as may be used in an IPSec Security 
asSociation database. 

0018 Linear searches may not be practical for some 
applications, including IPSec, because performance 
degrades linearly with database size. 
0019. Accordingly, in light of the above discussion, 
improvements may be needed in database Structures, Search 
ing and/or maintenance for large databaseS Such as, for 
example, a SAD in an IPSec system. 



US 2001/0042204 A1 

SUMMARY OF THE INVENTION 

0020 Embodiments of the present invention provide data 
Structures and methods, Systems and computer program 
products for Searching, inserting and/or deleting entries in a 
database which includes a hash value corresponding to data 
of the entry and which are Stored in a hash-ordered Sequence 
Such that a linear Search for an entry from an address 
corresponding to the hash value of the entry will result in the 
data being located by examining entries in consecutive 
addresses before an address without an entry is reached. 
Such methods, Systems, computer program products and 
data structures may be particularly useful for Internet Pro 
tocol Security (IPSec) Security association databases 
(SADs). 
0021. In particular embodiments of the present invention, 
a database, Such as a SAD, may be Searched by generating 
a hash key value based on a plurality of Selector values and 
Selecting an entry in the database having an address corre 
sponding to the hash key value. The entries in the database 
include corresponding hash values. The Selected entry is 
evaluated to determine if the entry in the database corre 
sponds to the plurality of Selector values. The address 
corresponding to the hash key value is incremented (i.e. 
moved to the next address in the database) if the selected 
entry does not correspond to the plurality of Selector values. 
This Selection, evaluation and incrementing of the address 
are repeated until the Selected entry has a hash value that 
indicates that Subsequent entries in the database will not 
correspond to the plurality of Selector values. For example, 
the entry having a null value or the hash value included in 
the Selected entry having a value greater than the hash key 
value may be indicators that the Search has failed. 

0022. In further embodiments of the present invention, 
the Selection, evaluation and incrementing of the address are 
repeated until an entry corresponding to the plurality of 
Selector values is reached. In Such embodiments, the 
Selected entry is provided if the Selected entry corresponds 
to the plurality of Selector values and an indicator of failure 
of the search is provided if the selected entry has a null value 
or includes a hash value which indicates failure of the 
Search. Failure of a Search may be indicated by a hash value 
of an entry being greater than the hash key value. In 
embodiments of the present invention where the database is 
in a circular memory, failure of the Search may be indicated 
by the hash value of a current Selected entry being less than 
the hash value of a previous Selected entry and greater than 
the hash key value. 

0023. In particular embodiments of the present invention 
where the database is in a circular or wrap-around memory, 
the hash value may indicate failure of the search if the hash 
value of the entry in the database at the address correspond 
ing to the hash key value is not greater than the hash key 
value and the hash value of an entry at a current address is 
greater than the hash key value. Similarly, failure may be 
indicated by the hash value of the entry in the database at the 
address corresponding to the hash key value being greater 
than the hash key value and the hash value of an entry at an 
immediately previous address being less than or equal to the 
hash key value and the hash value of the entry at the current 
address being greater than the hash key value. Additionally, 
in Such embodiments, incrementing the address may be 
provided by incrementing the address to a next consecutive 

Nov. 15, 2001 

address if the address is less than a maximum address of the 
circular memory and Setting the address to a first address of 
the circular memory if the address is equal to the maximum 
address of the circular memory. 

0024. In further embodiments of the present invention, 
the hash key value may be generated based on a plurality of 
Selector values by encrypting the Selector values to provide 
the hash key value. In particular, the Selector values may be 
encrypted by grouping the plurality of Selector values into 
blocks having a predefined number of bits, padding the 
blocks of grouped Selector values to the predefined number 
of bits, encrypting the padded blocks, and truncating the 
encrypted padded blocks to a number of bits in the hash key 
value to provide the hash key value. The padded blocks may 
be encrypted using Cipher-Block-Chaining encryption mode 
of Data Encryption Standard (DES-CBC) encryption. Fur 
thermore, the database may be an Internet Protocol Security 
(IPSec) Security association database, the plurality of Selec 
tor values may be IPSec selector fields and the predefined 
number of bits may be 64 bits. 

0025. In embodiments of the present invention where the 
database is an Internet Protocol Security (IPSec) security 
asSociation database and the plurality of Selector values are 
IPSec selector fields, the database may have a size of about 
four times a maximum number of Supported Security asso 
ciations. 

0026. In still further embodiments of the present inven 
tion, entries are inserted into a database by generating a hash 
key value based on a plurality of Selector values associated 
with the data for entry into the database and incorporating 
the data and the hash key value as an entry into the database 
at an address in the database which maintains entries in the 
database in hash key value Sequence Such that a linear Search 
for the data from an address corresponding to the hash key 
value will result in the data being located by examining 
entries in consecutive addresses in the database before an 
address in the database without an entry is reached. Further 
more, incorporating the data and the hash key value as an 
entry into the database may be carried out utilizing only 
atomic read and/or write operations Such that inserting data 
for entries into the database can be carried out Simulta 
neously with a Search of the database. 

0027. In particular embodiments, the data and the hash 
key value may be incorporated as an entry into the database 
by determining an address in the database closest to an 
address in the database corresponding to the hash key value 
for which the database does not have an entry and inserting 
the data and the hash key value as an entry in the database 
at the determined address if the determined address is the 
address corresponding to the hash key value. The data and 
the hash key value are inserted in the database at a next 
Subsequent address after the address corresponding to the 
hash key value which is after an address of an entry in the 
database having an associated hash value of less than or 
equal to the hash key value and before an entry in the 
database having an associated hash value of greater than the 
hash key value if the entry located at the address corre 
sponding to the hash key value is not empty. Data and hash 
key values are shifted from the next Subsequent address to 
an address just prior to the determined address to provide 
entries in the database from an address just after the next 



US 2001/0042204 A1 

Subsequent address to the determined address if the entry 
located at the address corresponding to the hash key value is 
not empty. 

0028. In embodiments of the present invention where the 
database is a circular memory, the data and the hash key 
value are inserted at a next Subsequent address after the 
address corresponding to the hash key value. The next 
Subsequent address is immediately after an address of an 
entry in the database having an associated value of less than 
a hash value of an entry in the database at the next Subse 
quent address and either the hash key value is greater than 
the next Subsequent address or the hash key value is both 
less than the next Subsequent address and less than the hash 
value of the entry in the database at the next Subsequent 
address. 

0029. In still further embodiments of the present inven 
tion, data is deleted from a database by generating a hash key 
value based on a plurality of Selector values associated with 
the data for deletion from the database, locating an entry in 
the database which includes the data and the hash key value 
and deleting the located entry. A Subset of the entries in the 
database are reordered So as to maintain entries in the 
database in hash key value Sequence Such that a linear Search 
for the data from an address corresponding to the hash key 
value will result in the data being located by examining 
entries in consecutive addresses in the database before an 
address in the database without an entry is reached. Further 
more, deleting the located entry and reordering a Subset of 
the entries in the database may be carried out utilizing only 
atomic read and/or write operations Such that deleting data 
from the database can be carried out Simultaneously with a 
Search of the database. 

0.030. In such embodiments, the entry in the database 
may be located by the Search operations described above. In 
particular embodiments, the located entry is deleted and the 
entries reordered by replacing the located entry in the 
database with a null entry if a next entry immediately after 
the located entry is a null entry. Furthermore, the located 
entry in the database may be replaced with a null entry if the 
next entry immediately after the located entry is at an 
address in the database corresponding to a hash value of the 
next entry immediately after the located entry. Similarly, in 
additional embodiments, an entry at a current address of the 
database may be replaced with an entry at a next Subsequent 
address in the database if the current address is not before an 
address of the located entry and the next Subsequent entry is 
not at an address in the database corresponding to a hash 
value of the next Subsequent entry after the located entry. In 
Still further embodiments, an entry at a current address of the 
database is replaced with an entry at a next Subsequent 
address in the database if the current address is not before an 
address of the located entry and the next Subsequent entry is 
not at an address in the database corresponding to a hash 
value of the next Subsequent entry after the located entry or 
if the next Subsequent entry is a null entry. 

0031. In still further embodiments of the present inven 
tion, Searching a database Stored in a circular memory is 
provided by generating a hash key value based on a plurality 
of Selector values, Selecting an entry in the database having 
an address corresponding to the hash key value, wherein 
entries in the database include corresponding hash values, 
evaluating the Selected entry to determine if the entry in the 

Nov. 15, 2001 

database corresponds to the plurality of Selector values. 
Most significant bits of a hash value of the selected entry and 
most significant bits of the hash key value are evaluated to 
determine if a wrap condition has occurred. The most 
significant bits of the hash value of the selected entry and the 
most significant bits of the hash key value are inverted if a 
wrap condition has occurred. The hash key value is com 
pared to the hash value of the selected entry to determine if 
the hash value of the Selected entry is greater than the hash 
key value and the address corresponding to the hash key 
value is incremented if the Selected entry does not corre 
spond to the plurality of Selector values and the hash value 
of the Selected entry is greater than the hash key value. 
0032. In additional embodiments of the present inven 
tion, the database is an Internet Protocol Security (IPSec) 
Security association database and the plurality of Selector 
values comprise IPSec selector fields. 
0033. In still further embodiments of the present inven 
tion, the database has a size of about four times a maximum 
number of Supported Security associations and the most 
Significant bits are the two most significant bits. In Such 
embodiments, evaluating the most significant bits may be 
provided by determining if the two most significant bits of 
the hash value of the current entry are “11” and the two most 
significant bits of the hash key value are “00” or if the two 
most significant bits of the hash value of the Selected entry 
are “00” and the two most significant bits of the hash key 
value are “11”. 

0034. In additional embodiments of the present inven 
tion, inserting data for entries into a database stored in a 
circular memory is provided by generating a hash key value 
based on a plurality of Selector values associated with the 
data for entry into the database, Selecting an entry in the 
database having an address corresponding to the hash key 
value, wherein entries in the database include corresponding 
hash values, determining an end of a cluster of database 
entries by incrementing the address corresponding to the 
hash key value and Selecting the corresponding entry in the 
database until an entry after the Selected entry is empty, 
evaluating most significant bits of a hash value of the 
Selected entry and most Significant bits of the hash key value 
to determine if a wrap condition has occurred, inverting the 
most significant bits of the hash value of the Selected entry 
and the most significant bits of the hash key value if a wrap 
condition has occurred, comparing the hash key value to the 
hash value of the selected entry to determine if the hash 
value of the Selected entry is greater than the hash key value, 
copying the Selected entry to an entry immediately after the 
selected entry if the hash value of the selected entry is 
greater than the hash key value, decrementing the address 
corresponding to the hash key value if the hash value of the 
Selected entry is greater than the hash key value, and 
copying the data into an entry immediately after the Selected 
entry if the hash value of the Selected entry is greater than 
the hash key value. 
0035). Additionally, the selected entry may be compared 
to the data to determine if a duplicate entry is to be inserted 
into the database and a failure indication returned if a 
duplicate entry is to be inserted into the database. Further 
more, the data may be copied to the Selected entry of the 
Selected entry is empty. 
0036). In additional embodiments of the present inven 
tion, a data Structure is provided having a plurality of data 



US 2001/0042204 A1 

entries, each of the plurality of data entries has an associated 
address and includes a hash value associated with the data 
which is generated from a plurality of Selector values which 
uniquely identify the data. The data Structure also includes 
a plurality of null entries having an associated address other 
than an address in the data Structure associated with a data 
entry. The address associated with a data entry is based on 
the hash value of the data entry Such that a linear Search for 
the data entry from an address corresponding to the hash 
value of the data entry will result in the data entry being 
located by examining entries in consecutive addresses 
before an address with a null entry is reached. 
0037. The addresses associated with the data entries may 
be in ascending order based on the hash values of the data 
entries. The addresses associated with the data entries may, 
alternatively, be in descending order based on the hash 
values of the data entries. The addresses may also be 
consecutive addresses. Furthermore, for a circular memory, 
a next consecutive address from a last address of the data 
Structure is a first address of the data Structure. The total 
number of data entries and null entries in the data structure 
may also be greater than a total number of potential unique 
data entries Such the a total number of addresses in the data 
Structure is greater than the total number of potential unique 
entries. In particular embodiments, the total number of 
addresses is about four times the total number of potential 
unique entries. In further embodiments, the data Structure is 
an Internet Protocol Security (IPSec) Security Association 
Database (SAD), the data of the data entries is IPSec 
Security association (SA) information and the hash values 
are hash keys generated from Selector fields of the SAS. 
0.038. In still further embodiments of the present inven 
tion, a System for managing Internet Protocol Security 
(IPSec) security associations (SAS) is provided. The system 
includes a hash key generator configured to generate hash 
key values based on modified selectors fields of Internet 
Protocol (IP) packets, the modified selector fields identify 
ing a SA associated with the packet. ASA data Structure is 
operably associated with the hash key generator and con 
figured to Store SA information and associated hash key 
values in hash-ordered Sequence Such that a linear Search for 
a SA from an address of the data Structure corresponding to 
a hash key value generated from the modified Selector fields 
identifying the SA will result in the SA being located by 
examining SAS at consecutive addresses before an address 
with a null entry is reached. Furthermore, the SA data 
Structure may be further configured to incorporate SAS and 
their corresponding hash key values into the data Structure at 
an address in the data structure which maintains the SAS in 
the data Structure in hash key value Sequence Such that a 
linear Search for a SA from an address of the data structure 
corresponding to a hash key value generated from the 
modified selector fields identifying the SA will result in the 
SA being located by examining SAS at consecutive 
addresses before an address with a null entry is reached. The 
SA data Structure may also be configured to locate a SA in 
the database for deletion, delete the located SA and reorder 
SAS in the data Structure So as to maintain the SAS in the data 
Structure in hash key value Sequence Such that a linear Search 
for a SA from an address of the data Structure corresponding 
to a hash key value generated from the modified Selector 
fields identifying the SA will result in the SA being located 
by examining SAS at consecutive addresses before an 
address with a null entry is reached. 

Nov. 15, 2001 

0039. As will further be appreciated by those of skill in 
the art, the present invention may be embodied as methods, 
apparatuS/Systems and/or computer program products. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0040 FIG. 1 is a block diagram of an IPSec processing 
System incorporating embodiments of the present invention; 
0041 FIG. 2 is a flowchart of operations for hash key 
generation according to embodiments of the present inven 
tion; 
0042 FIGS. 3A through 3C are block diagrams illus 
trating a data Structure of databases and database operations 
according to embodiments of the present invention; 
0043 FIG. 4 is a flowchart illustrating operations for 
Searching a database according to embodiments of the 
present invention; 
0044 FIG. 5 is a flowchart illustrating operations for 
Searching a database in a circular memory according to 
embodiments of the present invention; 
004.5 FIG. 6 is a flowchart illustrating operations for 
inserting an entry into a database according to embodiments 
of the present invention; 
0046 FIG. 7 is a more detailed flowchart illustrating 
operations for cluster parsing and movement to insert an 
entry into a database according to embodiments of the 
present invention; and 
0047 FIG. 8 is a flowchart illustrating operations for 
deleting an entry in a database according to embodiments of 
the present invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

0048. The present invention now will be described more 
fully hereinafter with reference to the accompanying draw 
ings, in which preferred embodiments of the invention are 
shown. This invention may, however, be embodied in many 
different forms and should not be construed as limited to the 
embodiments Set forth herein; rather, these embodiments are 
provided So that this disclosure will be thorough and com 
plete, and will fully convey the Scope of the invention to 
those skilled in the art. Like numbers refer to like elements 
throughout. 

0049. As will be appreciated by those of skill in the art, 
the present invention can take the form of an entirely 
hardware embodiment, an entirely Software (including firm 
ware, resident Software, micro-code, etc.) embodiment, or 
an embodiment containing both Software and hardware 
aspects. Furthermore, the present invention can take the 
form of a computer program product on a computer-usable 
or computer-readable Storage medium having computer 
uSable or computer-readable program code means embodied 
in the medium for use by or in connection with an instruction 
execution System. In the context of this document, a com 
puter-usable or computer-readable medium can be any 
means that can contain, Store, communicate, propagate, or 
transport the program for use by or in connection with the 
instruction execution System, apparatus, or device. 
0050. The computer-usable or computer-readable 
medium can be, for example, but is not limited to, an 



US 2001/0042204 A1 

electronic, magnetic, optical, electromagnetic, infrared, or 
Semiconductor System, apparatus, device, or propagation 
medium. More specific examples (a nonexhaustive list) of 
the computer-readable medium would include the follow 
ing: an electrical connection having one or more wires, a 
removable computer diskette, a random acceSS memory 
(RAM), a read-only memory (ROM), an erasable program 
mable read-only memory (EPROM or Flash memory), an 
optical fiber, and a portable compact disc read-only memory 
(CD-ROM). Note that the computer-usable or computer 
readable medium could even be paper or another Suitable 
medium upon which the program is printed, as the program 
can be electronically captured, Via, for instance, optical 
Scanning of the paper or other medium, then compiled, 
interpreted, or otherwise processed in a Suitable manner if 
necessary, and then Stored in a computer memory. 

0051. The present invention can be embodied as data 
Structures, Systems, methods, and/or computer program 
products which allow for high performance hash-based 
Searching of a database. Embodiments of the present inven 
tion may utilize a hash-ordered database which incorporates 
hash values as part of the entries of the database. AS 
described in more detail below, the hash values incorporated 
in the database may be used to maintain the hash ordering of 
the database when inserting and deleting entries. The hash 
ordering of the database and the hash Values being included 
in the entries of the database may also allow for early 
detection of a failed Search. 

0.052 Embodiments of the present invention will now be 
described with reference to FIGS. 1 through 8 which are 
flowchart and block diagram illustrations of operations of 
protocol Stacks incorporating embodiments of the present 
invention. It will be understood that each block of the 
flowchart illustrations and/or block diagrams, and combina 
tions of blocks in the flowchart illustrations and/or block 
diagrams, can be implemented by computer program 
instructions. These program instructions may be provided to 
a processor to produce a machine, Such that the instructions 
which execute on the processor create means for implement 
ing the functions Specified in the flowchart and/or block 
diagram block or blockS. The computer program instructions 
may be executed by a processor to cause a Series of 
operational Steps to be performed by the processor to 
produce a computer implemented process Such that the 
instructions which execute on the processor provide Steps 
for implementing the functions Specified in the flowchart 
and/or block diagram block or blockS. 

0.053 Accordingly, blocks of the flowchart illustrations 
and/or block diagrams Support combinations of means for 
performing the Specified functions, combinations of Steps 
for performing the Specified functions and program instruc 
tion means for performing the Specified functions. It will 
also be understood that each block of the flowchart illustra 
tions and/or block diagrams, and combinations of blocks in 
the flowchart illustrations and/or block diagrams, can be 
implemented by Special purpose hardware-based Systems 
which perform the Specified functions or Steps, or combi 
nations of Special purpose hardware and computer instruc 
tions. 

0054 FIG. 1 illustrates particular embodiments of the 
present invention which may be utilized for IPSec applica 
tions. As seen in FIG. 1 an IPSec processor 20 receives and 

Nov. 15, 2001 

provides data packets and receives and provides IPSec 
packets. The data packets may be unprocessed packets, 
packets with IPSec removed, packets for further IPSec 
processing or the like and are considered as input packets for 
packets to be IPSec processed by the IPSec processor 20 and 
output packets for packets processed by the IPSec processor 
20. The IPSec processor 20 associates various fields in the 
IPSec packets or the data packets with Security data. AS 
described above, the process for associating packets with 
security data in an IPSEC security system is a two-fold 
process. The first part of the look-up proceSS Searches a 
Small security policy database (SPD) 22 for entries corre 
sponding to Selected fields from a packet. The Second part of 
the look-up process is to Search a much larger Security 
association (SA) database (SAD) 24 for an exact match of 
Selected fields from the packet. 

0055. In general, a received packet is received by the 
IPSec processor 24 and relevant selector fields extracted 
from the packet. The SPD 22 is searched to determine if the 
traffic matches a Set of general Security policies. A CAM or 
other traditional Search method can be used to See if the 
Selectors of the incoming packet match one of the policies. 
If the Search is Successful, the output of the policy database 
Search is a modified Set of Selectors. AS described above, the 
inbound SAS may be uniquely identified by the source and 
destination IP address and the Security protocol. Because of 
wildcarding, additional information may, however, be 
needed to uniquely identify outbound SAS. Such informa 
tion may include, for example, destination and source 
addresses, the transport protocol, the Source and destination 
ports and a policy identifier. Thus, for a given SA, differing 
selectors may be needed to uniquely identify the SA. Fur 
thermore, in light of the ability to wildcard certain Selectors, 
the packet selector field may be modified by the SPD to 
indicate which fields are relevant. IPSec standards provide 
for multiple SAS for a given policy. The modified selector 
fields are a subset of the traffic value selector fields plus an 
indication of the policy associated with the SPD. Some of 
the Selector fields may be masked as dictated by the policy. 

0056. Accordingly, as is illustrated in FIG. 1, the IPSec 
processor 20 provides the selector fields to the security 
policy database 22 which provides the modified selector 
fields to a hash key generator 26 of the SAD 24 which 
generates a hash key which is used for Searching the Security 
asSociation data 28. The Security association data 28 is 
preferably maintained in a data Structure as described in 
more detail herein and the hash key is used to Search the 
Security association data 28 utilizing the operations 
described herein. Additionally, in particular embodiments of 
the present invention, operations described herein for insert 
ing and/or deleting data So as to maintain the Security 
asSociation data 28 in the data Structure may also be utilized. 
The SAD 24 provides the identified security information, if 
any, to the IPSec processor 20 so that the IPSec processor 20 
may process the packet, for example, to apply or remove 
IPSec. In particular embodiments, the security information 
may be encryption information associated with a given IP 
packet. In particular, through the use of the database Struc 
tures and/or methods of embodiments of the present inven 
tion, a very large SAD 28 may be searched for modified 
selector fields quickly and in a manner such that the SAD 28 
can be updated concurrently with Searches. 



US 2001/0042204 A1 

0057 Details for packet processing by the IPSec proces 
Sor 20 are described in RFC 2401, Security Architecture for 
the Internet Protocol, The Internet Society (November 
1998), the disclosure of which is incorporated herein by 
reference as if Set for the fully herein. Thus, packet proceSS 
ing by the IPSec processor 20 will not be described further 
herein. 

0058. The IPSec processor 20, SPD 22 and SAD 24 may 
be provided as an entirely hardware embodiment, an entirely 
Software embodiment or a combination of hardware and 
Software. Thus, for example, the IPSec processor 20 may be 
a general purpose processor or a Special purpose processor, 
Such as a digital Signal processor, programmed to carry out 
operations described herein, an application Specific inte 
grated circuit (ASIC) or other hardware implementations or 
as a combination thereof. Similarly, the SPD 22 may be 
implemented as described above or may be implemented as 
Software and a database in memory or Storage of a general 
purpose data processing System or a special purpose pro 
cessor or combinations thereof. Finally, the SAD 24 may be 
implemented in hardware, in Software including a database 
in memory or Storage of a general purpose data processing 
System or a Special purpose processor, or combinations 
thereof. For example, the hash key generator 26 may be 
provided by a hardware encryption device and the Security 
asSociation data 28 may be provided as a data Structure 
Stored in memory or Storage and controlled by Software 
executing on a general or Specific purpose processor. Thus, 
the blocks in FIG. 1 may be considered logical modules or 
components and should not be limited to particular imple 
mentations. 

0059 Similarly, while embodiments of the present inven 
tion are described with reference to the particular architec 
ture and interactions of the blocks of FIG. 1, as will be 
appreciated by those of Skill in the art in light of the present 
disclosure, the present invention should not be construed as 
limited to Such architecture and interactions but is intended 
to cover other configurations capable of carrying out the 
operations described herein. For example, while the hash 
key generator 26 is described as part of the SAD 24, the hash 
key generator 26 need not be incorporated in the SAD 24 but 
could be incorporated in other blocks, such as the IPSec 
processor 20, or provided as a Standalone component or 
module. Similarly, the modified selector fields could be 
provided to the IPSec processor 20 before they are provided 
to the SAD 24. 

0060 Embodiments of the present invention provide a 
database, Such as the SAD 24, which is accessed using a 
hash Search. A hash key may be generated from information 
which uniquely identifies the contents of an entry in the 
database and utilized as a pointer into the database. The 
entries in the database are maintained in a hash-ordered 
Sequence and include, as part of their entries, the hash key 
for the entry. In certain embodiments of the present inven 
tion, the database may be sized Such that there are more 
possible database addresses than there are potential unique 
entries. Thus, the data Structure according to these embodi 
ments of the present invention provides a data structure 
having more addresses for entries in the data Structure than 
possible unique entries. Entries in the data structure include 
data and a hash value associated with the data. The entries 
are ordered in the data Structure in hash value Sequence. 
Entries having the same hash value are Stored in a contigu 

Nov. 15, 2001 

ous block of addresses in the data Structure. The data 
Structure also includes empty or null values at addresses in 
the data Structure which do not have a corresponding entry. 
Entries are Stored in the data Structure at the address corre 
sponding to the hash value of the entry or at a Subsequent 
address to the address corresponding to the hash value of the 
entry which maintains the hash-ordered Sequence of the 
entries. In particular embodiments of the present invention, 
the data Structure may be a circular data structure or memory 
Such that the next Subsequent address after the last address 
in the data Structure is the first address in the data Structure. 
Such a data Structure may provide for efficient Searching and 
may also provide for insertions and deletions which may be 
carried out while the database utilizing Such a data structure 
is being Searched. An example of a database Structure 
according to embodiments of the present invention is illus 
trated in FIGS. 3A through 3C which are described in more 
detail below. 

0061 Databases as described above may be searched and 
entries inserted or deleted utilizing operations as described 
herein. Each of Such operations involve the generation of a 
hash key. Hash key generation provides a mechanism for 
generating very random hash values, preferably, even with 
Similar inputs. In particular embodiments of the present 
invention, hash keys may be generated utilizing an encryp 
tion algorithm such as the Data Encryption Standard (DES). 
Other algorithms that produce repeatable pseudo-random 
results for a given input may also be utilized. Encryption 
algorithms may be particularly well Suited for use in 
embodiments of the present invention, however, because 
any Single bit change in the input field will, in general, 
produce randomly dispersed hash keys. Also, typically, the 
randomneSS of the resulting hash key does not depend on the 
order of Specific fields of the input values. Encryption 
algorithms may also operate very quickly in hardware and 
the size of the hash key can easily be expanded or contracted 
while retaining pseudo-random distribution for any given 
input. 
0062 Operations for generating a hash key according to 
particular IPSec embodiments of the present invention uti 
lizing Cipher-Block-Chaining mode of DES encryption 
(DES-CBC) are illustrated in FIG. 2. As seen in FIG. 2, the 
modified selector fields are grouped into 64-bit blocks 
(block 40) and the blocks are padded to the block size of 
64-bits (block 42), which is the block size of DES. Using a 
constant known encryption key and a constant known initial 
vector, the 64-bit blocks are each encrypted using Cipher 
Block-Chaining encryption mode of DES (DES-CBC) 
(block 44). When all of the blocks are encrypted, the 
resulting encryption of the Selector fields is truncated to the 
number of bits in the hash key to generate a repeatable 
random key which provides the hash key for the SA corre 
sponding to the modified selectors (block 46). This hash key 
may be used as described herein and may be stored with the 
entry corresponding to the modified Selectors from which it 
was created. 

0063 FIG. 3A is an example of a data structure for 
Storing Security information, Such as the Security association 
data 28 of FIG. 1. As seen in FIG. 3A the entries in the data 
Structure at a given address include Security values, Such as 
IPSec SAS, and a hash value corresponding to the Security 
values. Thus, Security Value A has a corresponding hash 
value of N-1 which corresponds to the hash key generated 



US 2001/0042204 A1 

by the selectors for Security Value A. As such, Security 
Value A is stored in Address N-1 or a next Subsequent 
address after Address N-1 which maintains the hash-ordered 
Sequence of the data Structure. Security Value B has a 
corresponding hash value of N which corresponds to the 
hash key generated by the selectors for Security Value B. As 
such, Security Value B is stored in Address N or a next 
Subsequent address after Address N which maintains the 
hash-ordered Sequence of the data Structure. Finally, in the 
example illustrated in FIG. 3A, Security Value C has a 
corresponding hash value of N+1 which corresponds to the 
hash key generated by the selectors for Security Value C. As 
such, Security Value C is stored in Address N-1 or a next 
Subsequent address after Address N-1 which maintains the 
hash-ordered Sequence of the data Structure. 
0.064 FIG. 3B is an example of the insertion of an entry 
into the data structure of FIG. 3A. As seen in FIG. 3B, the 
entry for Security Value D, which includes a hash value of 
N which corresponds to the hash key generated by the 
selectors for Security Value D, is inserted at address N-1 and 
the entry for Security Value C has been copied to address 
N+2. Thus, Security Value D has been inserted into the data 
structure of FIG. 3A So as to maintain the hash-ordered 
Sequence of entries in the data structure Such that an entry is 
Stored in the address corresponding to its hash value or a 
next Subsequent address which maintains the hash ordering. 

0065 FIG. 3C is an example of the deletion of an entry 
from the data structure of FIG. 3B. As seen in FIG. 3C, the 
entry for Security Value B has been removed. Thus, to 
maintain the hash ordering of the data Structure and the 
entries being Stored in the address corresponding to their 
hash value or a next Subsequent address, the entries for 
Security Value D and Security Value C have been copied up 
one address to addresses N and N+1 respectively. Had the 
entry for Security Value D also been deleted, the entry for 
Security Value C would not be copied because it is already 
Stored at the address corresponding to its hash value. An 
entry Stored at the address corresponding to its hash value is 
referred to herein as being Stored in its “natural location' or 
“natural address.” 

0.066 As described above, to search the data structures 
according to embodiments of the present invention, the hash 
key generated from the Selectors corresponding to a desired 
entry may be used as a pointer to the address in the data 
Structure from which to Start a linear Search for an exact 
match between the modified selector fields and entries in the 
data Structure. If the hash keys which are generated have a 
random distribution within the data Structure address Space, 
then the lower the ratio of entries to table size, the Smaller 
the probability of a “cluster' of entries of a specific size 
being created. In particular IPSec embodiments of the 
present invention, the SAD can be designed to have four 
times the number of addresses as the maximum number of 
Supported SAS. In particular, a System can Support 262,144 
unique SAS and the SAD can have room for 1,048,576 
entries. Provided the hash key generation is random, one can 
expect uniform distribution of entries across the SAD. 

0067. A “cluster” forms when two modified selectors 
resolve to the same exact hash key Such that one of the 
entries corresponding to the hash key cannot be placed in its 
natural location. In this case, the conflict can be resolved by 
placing the Second SA in the slot immediately after the first 

Nov. 15, 2001 

item. Furthermore, there exists a mathematical probability 
that Subsequent slots are occupied. Conventionally, the new 
item would be placed at the first free Space after the address 
pointed to by the hash key (i.e., a heap). However, according 
to embodiments of the present invention, the hash-ordered 
Sequence of the data Structure is maintained. Thus, placing 
the entry in Sequence may displace other entries from their 
natural locations. A cluster is formed of entries which are not 
empty or null and which are at consecutive addresses in the 
data Structure. The cluster may contain entries having dif 
ferent hash values and runs from the address just after an 
empty address to the address just before an empty address. 

0068 Operations for searching, inserting entries into and 
deleting entries from, data Structures according to embodi 
ments of the present invention will now be described with 
reference to the examples of FIGS. 3A through 3C, the 
flowchart illustrations of FIGS. 4 through 8 and the block 
diagram of FIG. 1. Turning to Searching operations, as Seen 
in FIG. 4, the hash key is obtained from the hash key 
generator 26 for the modified selector fields for an entry to 
be found in the SAD 28 (block 100). The hash key is used 
to obtain an entry at the address in the data structure 
corresponding to the hash key value (block 102). The entry 
is evaluated to determine if the entry is the desired entry 
(block 104). Such a determination may be made, for 
example, by comparing the hash value of the entry to the 
hash key value for a match. If a match exists, the modified 
Selector field values which generated the hash key value may 
be compared to the modified selector fields of the entry for 
correspondence. Alternatively, the hash comparison could 
be skipped and only the modified Selector fields compared. 
If correspondence is found, the entry is the desired entry 
(block 104) and the desired entry is returned to the IPSec 
processor 20 (block 106). 

0069. However, if the entry is not the desired entry (block 
104), the address is incremented to the next address in the 
data structure and the entry for that address obtained (block 
108). In circular memory embodiments of the present inven 
tion, incrementing the address may involve circling back to 
the first address of the data structure if the current address is 
the last address in the data structure. If the obtained entry is 
empty (block 110), then no match was found in the data 
Structure for the desired entry and a “failed Search” response 
may be provided to the IPSec processor 20 (block 114). If 
the entry is not empty (block 110), then the hash value of the 
entry may be evaluated to determine if the hash value is 
greater than the hash key value (block 112). Because the 
entries are maintained in hash-ordered Sequence, for non 
circular memory embodiments, if the entry has a hash value 
greater than the hash key value, then it indicates that the 
desired entry was not found as the Subsequent entries in the 
data Structure will also have higher hash values than the hash 
key value. For circular memory embodiments, additional 
evaluation may be needed as described below. Thus, if the 
hash value of the entry is greater than the hash key value of 
the desired entry (block 112) the “failed search” response 
maybe provided to the IPSec processor 20 (block 114). If the 
hash value of the entry is not greater than the hash key value 
(block 112), operations may continue from block 104. These 
operations may repeat until either the desired entry is found, 
an empty or null entry is found or an entry with a greater 
hash value than the hash key value is found. 



US 2001/0042204 A1 

0070. As an example, the hash key value generated by the 
hash key generator 26 may be N and the SA to be located 
may be Security Value D. In the data structure in FIG. 3A, 
the entry at address N would be examined and found to have 
the same hash value as the hash key value. The modified 
Selector fields which generated the hash key value would 
then be compared to fields from Security Value B and found 
not to match. Thus, the entry at the next address, N+1, would 
be evaluated and found to have a hash value of N+1, which 
is greater than N. Thus, the “failed search” indication would 
be provided. In the data structure of FIG. 3B, however, after 
evaluating the entry at address N the entry at address N+1 
would be evaluated and found to have a hash value which 
matched the hash key value and fields matching the modified 
selector fields. Thus, the Security Value D would be pro 
vided. 

0071 FIG. 5 illustrates operations for searching a data 
base according to embodiments of the present invention 
where the database is in a circular or wraparound memory 
Such that incrementing from the last memory address in the 
database results in returning to the first address of the 
database. The operations illustrated in FIG. 5 may detect 
that an entry at a given address is from a cluster which has 
wrapped from the end of memory and, therefore, a simple 
comparison of the hash value of the entry to the hash key 
value would provide an erroneous result. Thus, the end of 
the wrapped cluster may be found and the Search operations 
for non-wrapped entries carried out from that point for 
Searches which were begun at the beginning of the memory 
or the end of the cluster may indicate that a Search has failed 
for a Search which began at the end of memory and wrapped 
to the beginning of memory. One mechanism which may be 
used to determine that an entry is from a cluster which has 
wrapped from the end of memory is to compare the hash 
value of the entry to the address of the entry. If the hash 
value of the entry is greater than the address of the entry, 
then the entry is from a cluster which has wrapped from the 
end of memory. 
0.072 Additionally, however, where the size of memory 
is greater than the total number of entries, the most-signifi 
cant bits of consecutive entries may be evaluated to detect 
the wrap condition. For example, in an embodiment where 
the size of the memory is at least four times the total number 
of possible entries, if the two most significant bits of the hash 
value of an entry at “11” and the two most significant bits of 
the hash value of a next entry are “00” then the entry has 
wrapped from the end of memory. These bits may be 
inverted and the same comparison as is used for a non-wrap 
condition used in the Search. Such a Searching technique for 
wrapped memory is illustrated in FIG. 5. 
0.073 Searching begins by obtaining a hash key value, 
Such as described above, which corresponds to the entry to 
be located (block 100). The current entry for evaluation is set 
to the entry corresponding to the hash key value (block 101). 
The current entry is evaluated to determine if it is the desired 
entry (block 103), as has been described above, and if so the 
entry is returned (block 105). If the entry is not the desired 
entry (block 103), it is determined if the entry was an empty 
entry (block 107). If so, then the search has failed and a 
“failed search” response may be provided (block 119). If the 
entry is not empty (block 107), it is determined if both the 
two most significant bits of the hash value of the entry are 
“11” and the two most significant bits of the hash key value 

Nov. 15, 2001 

are "00" (block 109). If so, then the entry has wrapped 
around from the end of the database and the two most 
Significant bits of the hash value of the current entry and the 
hash key value are inverted (block 113). If not, it is deter 
mined if both the two most significant bits of the hash value 
of the entry are “00” and the two most significant bits of the 
hash key value are “11” (block 111). If so, then the entry has 
wrapped around from the end of the database and the two 
most significant bits of the hash value of the current entry 
and the hash key value are inverted (block 113). If not, then 
the entry has not wrapped. 
0074. In either case, the hash value entry, possibly modi 
fied as described above, is compared to the hash key value 
(block 115). If the hash value entry is greater than the hash 
key value (block 115), then the search has failed and the 
failed search indication is returned (block 119). If the hash 
value entry is not greater than the hash key value, then the 
current entry is set to the next entry in the database (block 
117) and the evaluation operations beginning at block 103 
are repeated for the new current entry. These operations are 
repeated until either the entry is the desired entry, the entry 
is empty or the entry has a hash value greater than the hash 
key value. 
0075 FIG. 6 illustrates operations for inserting an entry 
into a data Structure according to embodiments of the 
present invention So as to maintain the hash-ordered 
sequence of the data structure. As seen in FIG. 6, the hash 
key value is obtained from the hash key generator 26 (block 
120). The entry at the address in the data structure corre 
sponding to the hash key value is located and obtained 
(block 122) and it is determined if the entry is empty (block 
124). An entry may be considered empty, for example, if it 
has a “NULL value. Thus, the data structure may be 
initialized to all NULL values which would then be over 
written by SA information. In any event, if the entry at the 
address corresponding to the hash key value is empty (block 
124), the Security information and the hash key value are 
stored at that address (block 130). 
0076. If the entry at the address corresponding to the hash 
key value is not empty (block 124), a cluster exists and the 
cluster is parsed to find the end of the cluster (the last address 
before an address with an empty entry) and the insertion 
location which will maintain the data Structure in hash 
ordered Sequence and a current location is Set to the end of 
the cluster (block 126). Entries at and after the insertion 
location are copied to a location of the next entry to provide 
an insertion location. Such may be accomplished by copying 
the entry at the current location to the next location begin 
ning with the end of the cluster (block 128) and repeating the 
copy of entries until the insertion location is reached (block 
129). The security information and hash key value may then 
be stored at the insertion location (block 130). 
0077. By utilizing only copy operations, the insert opera 
tion may be considered a number of atomic copy operations 
which maintain the integrity of the hash-ordered Structure of 
the database during the insert operation. Thus, because the 
values in the database and the Structure in the database are 
maintained, Searches may be performed while an insert 
operation is being carried out. Accordingly, multiple 
Searches and insertions may be interleaved. 
0078 FIG. 7 illustrates operations for locating an inser 
tion location and inserting an entry in a cluster for circular 



US 2001/0042204 A1 

memory embodiments of the present invention. The opera 
tions of FIG. 7 may correspond to the operations of blocks 
122, 124, 126, 128 and 130 of FIG. 6. The operations 
illustrated in FIG. 7 may detect that an entry at a given 
address is from a cluster which has wrapped from the end of 
memory and, therefore, a simple comparison of the hash 
value of the entry to the hash key value to determine the 
insert location would provide an erroneous result. Thus, the 
end of the wrapped cluster may be found and the Search 
operation to determine an insert location for non-wrapped 
entries carried out from that point for Searches which began 
at the beginning of the memory or the end of the cluster may 
indicate the insertion point for a Search which began at the 
end of memory and wrapped to the beginning of memory. 
One mechanism which may be used to determine that an 
entry is from a cluster which has wrapped from the end of 
memory is to compare the hash value of the entry to the 
address of the entry. If the hash value of the entry is greater 
than the address of the entry, then the entry is from a cluster 
which has wrapped from the end of memory. 
0079. In general, the location to insert a new entry may 
be determined by determining if the hash key value is leSS 
than the value of the hash value of the a current entry and is 
greater than or equal to the hash value of the entry after the 
current entry. If So, then the insertion location for the new 
entry value(s) is the entry after the current location. How 
ever, for circular or wrap-around memory embodiments of 
the present invention, additional conditions exist where Such 
a test may be insufficient by itself to establish the insertion 
location. Thus, even if these conditions are not met, it may 
be determined if the hash value of the entry after the current 
entry is less than the hash value of the current entry. This can 
only be the case if the entries have wrapped around from the 
end of the data Structure. If this wrap condition is met, then 
if either the hash key is greater than the address of the entry 
after the current entry (i.e. the entry to be inserted was to be 
inserted at the end of the data Structure but has wrapped to 
the beginning) or the hash key is less than the address of the 
entry after the current entry and less than the hash value of 
the entry after the current entry (i.e. the entry to be inserted 
was to be inserted at the beginning of the data Structure but 
its natural location was occupied by an entry that wrapped 
from the end of the data structure), the insertion location will 
be the location of the entry after the current entry. 
0080 Additionally, however, where the size of memory 
is greater than the total number of entries, the most-signifi 
cant bits of consecutive entries may be evaluated to detect 
the wrap condition. For example, in an embodiment where 
the size of the memory is at least four times the total number 
of possible entries, if the two most significant bits of the hash 
value of an entry at “11” and the two most significant bits of 
the hash value of a next entry are “00” then the entry has 
wrapped from the end of memory. These bits may be 
inverted and the same comparison as is used for a non-wrap 
condition used in determining an insertion location. Such a 
technique for determining an insertion location for wrapped 
memory embodiments of the present invention is illustrated 
in FIG 7. 

0.081 Furthermore, the insertion location for the new 
entry in the embodiments illustrated in FIG. 7 is after any 
existing entries which have the same hash value as the hash 
key. By placing the new entry at the end of the Sequence of 
existing entries having the Same hash value, the number of 

Nov. 15, 2001 

entries which may require moving may be reduced. How 
ever, if it is determined that new entries in the data structure 
are Searched for more often than older entries, then it may 
be beneficial to place the new entries at the beginning of the 
Sequence of entries having the same hash value. If Such is the 
case, then the test for determining the insertion point could 
be modified to test if the hash key value was equal to the 
hash value of an entry and, if So, then the insertion location 
would be set to the address of that entry. 
0082. As seen in FIG. 7, the current entry is set to the 
hash key value (block 140). The value of the current entry 
is evaluated to determine if it is empty (block 142) and, if so, 
the new entry value(s) and the hash key value are inserted at 
the current entry (block 144). This is the case where the 
natural address of the entry is empty. If the natural address 
of the entry is not open, a duplicate entry test is performed 
by comparing the current entry to the entry to be inserted 
(block 146). If a duplicate is found, a duplicate entry error 
is returned (block 148) and operations end. 
0083) If the entry is not a duplicate (block 146), it is 
determined if the entry after the current entry is empty 
(block 150). If so, then the end of the cluster has been 
reached. If not, the current entry is set to the entry after the 
current entry (e.g. the current entry address of the is incre 
mented) (block 152). In a circular or wrap-around memory, 
the current address may be incremented by Setting the 
address to address+1 MOD MAX ADDRESS where 
MAX ADDRESS is the highest address value in the data 
Structure. Otherwise in non-circular memory embodiments, 
the address may simply be incremented. After incrementing 
the address, operations continue from the duplicate entry test 
of block 146. These operations are repeated until an empty 
entry is located. 
0084. When an empty entry is located (block 150), it is 
determined if both the two most significant bits of the hash 
value of the current entry are “11” and the two most 
significant bits of the hash key value are "00" (block 154). 
If so, then the entry has wrapped around from the end of the 
database and the two most significant bits of the hash value 
of the current entry and the hash key value are inverted 
(block 158). If not, it is determined if both the two most 
significant bits of the hash value of the current entry are “00” 
and the two most Significant bits of the hash key value are 
“11” (block 156). If so, then the entry has wrapped around 
from the end of the database and the two most significant 
bits of the hash value of the current entry and the hash key 
value are inverted (block 158). If not, then the entry has not 
wrapped. 

0085. In either case, the hash value of the current entry, 
possibly modified as described above, is compared to the 
hash key value (block 160). If the hash value of the current 
entry is greater than the hash key value (block 160), the 
current entry is copied to the entry after the current entry 
(block 162) and the current entry is set to the entry prior to 
the current entry (block 164). If the hash value of the current 
entry is not greater than the hash key value (block 160), the 
current entry is set to the entry after the current entry (block 
166) and the new entry is inserted at the current entry (block 
144). 
0.086 Operations of FIGS. 6 and/or 7 may provide for 
inserting an entry in the SA look-up table Such that the entry 
at the location pointed to by the hash key value is examined, 



US 2001/0042204 A1 

and if it is a NULL entry, then the SA entry is placed at that 
location. If the location pointed to by the hash key value is 
occupied, the cluster is parsed to find a location to place the 
entry Such that the hash values are always increasing within 
the cluster. This may be accomplished by parsing the cluster 
to find both the end of the cluster (location with a NULL 
entry) and the location to insert the current entry. If the 
current entry has a hash value that is greater than or equal to 
the hash value of the last entry in the cluster, the current 
entry is placed at the end of the cluster. If the current entry 
has a HASH value that is less than the HASH value of the 
last entry in the cluster, then entries are moved down one 
memory location in order to open up a location within the 
cluster to properly insert the current entry. Finally, if the 
cluster wraps around the end of the memory, the cluster will 
be ordered Such that the highest value hash entry immedi 
ately precedes the lowest value HASH entry. When entries 
are moved down one memory location, the integrity of the 
cluster may be maintained by duplicating the last entry in a 
cluster into the NULL entry at the end of the cluster, and 
then duplicating the Second-to-last entry in the cluster down 
one memory location. This continues until there is a Space to 
insert the new entry. 
0.087 FIG. 8 illustrates operations for deleting any entry 
in a data Structure according to embodiments of the present 
invention. The operations in FIG.8 may be preceded by the 
operations described in FIGS. 4 or 5 so as to locate an entry 
to be deleted. Thus, operations of FIG. 8 may be seen as 
carried out after the operations of block 106 or block 105 of 
FIGS. 4 or 5. As seen in FIG. 8, once the desired entry has 
been located the address pointer “X” is set to the location of 
the desired entry and the entry of the next consecutive 
address, X+1, is obtained (block 208). If the next entry is 
empty (block 210), then no movement of entries is required 
and the entry at the address X is replaced with the NULL 
entry (block 218). However, if the next entry is not empty 
(block 210), then it is determined if the hash value of the 
entry at address X+1 is equal to the address X-1 (block 212) 
(i.e. the next entry is in its natural location). If this is the 
case, then the entry at the address X is replaced with the 
NULL entry (block 218). 
0088. If the entry at the address X-1 is not in its natural 
location (block 212), then the entry at the address x+1 is 
copied to address X (block 214) and the address pointer X is 
incremented to X-1. Operations then continue at block 210, 
wherein, if the next entry after the address X is empty, the 
end of the cluster has been reached and the entry at address 
X is replaced with the NULL entry. If the end of the cluster 
has not been reached, then the operations of blocks 212, 214 
and 216 are repeated until either the end of the cluster is 
reached or an entry in its natural location has been reached. 

0089. As described above, in embodiments of the present 
invention having a circular or wrap-around memory, incre 
menting the address to the next address may involve wrap 
ping the address to the beginning of the memory. Thus, in 
Such embodiments, references to addresses of X-1 refer to 
the next address in the Sequence of addresses irrespective of 
whether the value of X-1 is greater than or less than the value 
of X. 

0090 While embodiments of the present invention have 
primarily been described with reference to a SAD and IPSec 
processing the present invention should not be construed as 

Nov. 15, 2001 

limited to Such applications. Furthermore, while the data 
Structures described herein are in ascending order by hash 
value, as will be appreciated by those of skill in the art in 
light of the present disclosure, descending order may also be 
utilized. Such a descending order could be created by, for 
example, Subtracting the hash key from a maximum address 
of the data Structure. 

0091 Additionally, the present invention has been 
described with reference to Setting address values for a 
database. AS will be appreciated by those of skill in the art, 
Such address values may be memory addresses, offsets into 
memory Segments, offsets into a memory array, or other Such 
address values utilizing various addressing techniques. 
Accordingly, the present invention should not be construed 
as limited to address values which are identical to hash 
values but is intended to include address values which are 
based on hash values. 

0092. While the present invention has been described 
with respect to the data Structure and hash key generator as 
part of the SAD, as will be appreciated by those of skill in 
the art, Such functions may be provided as Separate func 
tions, objects or applications which may cooperate with each 
other, the SPD and the IPSec processor. Furthermore, the 
present invention has been described with reference to 
particular Sequences of operations. However, as will be 
appreciated by those of Skill in the art, other Sequences may 
be utilized while still benefiting from the teachings of the 
present invention. Thus, while the present invention is 
described with respect to a particular division of functions or 
Sequences of events, Such divisions or sequences are merely 
illustrative of particular embodiments of the present inven 
tion and the present invention should not be construed as 
limited to Such embodiments. 

0093. In the drawings and specification, there have been 
disclosed typical preferred embodiments of the invention 
and, although specific terms are employed, they are used in 
a generic and descriptive Sense only and not for purposes of 
limitation, the Scope of the invention being Set forth in the 
following claims. 
That which is claimed is: 

1. A method of Searching a database, the method com 
prising: 

generating a hash key value based on a plurality of 
Selector values, 

Selecting an entry in the database having an address 
corresponding to the hash key value, wherein entries in 
the database include corresponding hash values, 

evaluating the Selected entry to determine if the entry in 
the database corresponds to the plurality of Selector 
values, 

incrementing the address corresponding to the hash key 
value if the Selected entry does not correspond to the 
plurality of Selector values, 

wherein the Selecting, the evaluating and the incrementing 
are repeated until the hash value included in Selected 
entry has a value which indicates that entries Subse 
quent to the Selected entry will not correspond to the 
plurality of Selector values. 

2. A method according to claim 1, wherein the Selecting, 
the evaluating and the incrementing are repeated until an 



US 2001/0042204 A1 

entry corresponding to the plurality of Selector values is 
reached or until the hash value included in the Selected entry 
has a value which indicates that entries Subsequent to the 
Selected entry will not correspond to the plurality of Selector 
values. 

3. A method according to claim 1, wherein the Selecting, 
the evaluating and the incrementing are repeated until the 
Selected entry is a null entry. 

4. A method according to claim 1, wherein the Selecting, 
the evaluating and the incrementing are repeated until the 
Selected entry has a hash value greater than the hash key 
value. 

5. The method of claim 2, further comprising: 
providing the Selected entry if the Selected entry corre 

sponds to the plurality of Selector values, and 
providing an indicator of failure of the Search if the 

Selected entry includes a hash value other than the hash 
key value or the Selected entry has a null value. 

6. The method of claim 1, wherein generating a hash key 
value based on a plurality of Selector values comprises 
encrypting the Selector values to provide the hash key value. 

7. The method of claim 6, wherein encrypting the selector 
values to provide the hash key value comprises: 

grouping the plurality of Selector values into blockS 
having a predefined number of bits, 

padding the blocks of grouped Selector values to the 
predefined number of bits; 

encrypting the padded blocks, and 
truncating the encrypted padded blocks to a number of 

bits in the hash key value to provide the hash key value. 
8. The method of claim 7, wherein encrypting the padded 

blocks comprises encrypting the padded blocks using 
Cipher-Block-Chaining encryption mode of Data Encryp 
tion Standard (DES-CBC) encryption. 

9. The method of claim 8, wherein the database comprises 
an Internet Protocol Security (IPSec) security association 
database, the plurality of selector values comprise IPSec 
selector fields and the predefined number of bits comprises 
64 bits. 

10. The method of claim 1, wherein the database com 
prises an Internet Protocol Security (IPSec) security asso 
ciation database and the plurality of Selector values comprise 
IPSec Selector fields. 

11. The method of claim 10, wherein the database has a 
Size of about four times a maximum number of Supported 
Security associations. 

12. The method of claim 1, wherein the database is 
contained in a circular memory and wherein incrementing 
the address comprises: 

incrementing the address to a next consecutive address if 
the address is less than a maximum address of the 
circular memory; and 

Setting the address to a first address of the circular 
memory if the address is equal to the maximum address 
of the circular memory. 

13. The method of claim 12, wherein the selecting, the 
evaluating and the incrementing are repeated until a hash 
value of the Selected entry is less than a hash value of a 
previous Selected entry and the hash value of the Selected 
entry is greater than the hash key value. 

Nov. 15, 2001 

14. A method of inserting data for entries into a database, 
comprising: 

generating a hash key value based on a plurality of 
Selector values associated with the data for entry into 
the database; and 

incorporating the data and the hash key value as an entry 
into the database at an address in the database which 
maintains entries in the database in hash key value 
Sequence Such that a linear Search for the data from an 
address corresponding to the hash key value will result 
in the data being located by examining entries in 
consecutive addresses in the database before an address 
in the database without an entry is reached. 

15. The method of claim 14, wherein incorporating the 
data and the hash key value as an entry into the database is 
carried out utilizing only atomic read and/or write operations 
Such that inserting data for entries into the database can be 
carried out Simultaneously with a Search of the database. 

16. The method of claim 14, wherein incorporating the 
data and the hash key value as an entry into the database 
comprises: 

determining an address in the database closest to an 
address in the database corresponding to the hash key 
value for which the database does not have an entry; 

inserting the data and the hash key value as an entry in the 
database at the determined address if the determined 
address is the address corresponding to the hash key 
value; 

inserting the data and the hash key value in the database 
at a next Subsequent address after the address corre 
sponding to the hash key value which is after an address 
of an entry in the database having an associated hash 
value of less than or equal to the hash key value and 
before an entry in the database having an associated 
hash value of greater than the hash key value if the 
entry located at the address corresponding to the hash 
key value is not empty; and 

shifting data and hash key values from the next Subse 
quent address to an address just prior to the determined 
address to provide entries in the database from an 
address just after the next Subsequent address to the 
determined address if the entry located at the address 
corresponding to the hash key value is not empty. 

17. The method of claim 16, wherein the database com 
prises a circular memory, the method further comprising 
inserting the data and the hash key value at a Second next 
Subsequent address after the address corresponding to the 
hash key value, where the Second next Subsequent address is 
immediately after an address of an entry in the database 
having an associated value of less than a hash value of an 
entry in the database at the Second next Subsequent address 
and either the hash key value is greater than the Second next 
Subsequent address or the hash key value is both less than 
the Second next Subsequent address and less than the hash 
value of the entry in the database at the Second next 
Subsequent address. 

18. The method of claim 14, wherein generating a hash 
key value based on a plurality of Selector values comprises 
encrypting the Selector values to provide the hash key value. 

19. The method of claim 18, wherein encrypting the 
Selector values to provide the hash key value comprises: 



US 2001/0042204 A1 

grouping the plurality of Selector values into blockS 
having a predefined number of bits, 

padding the blocks of grouped Selector values to the 
predefined number of bits; 

encrypting the padded blocks, and 
truncating the encrypted padded blocks to a number of 

bits in the hash key value to provide the hash key value. 
20. The method of claim 19, wherein encrypting the 

padded blocks comprises encrypting the padded blockS 
using Cipher-Block-Chaining encryption mode of Data 
Encryption Standard (DES-CBC) encryption. 

21. The method of claim 19, wherein the database com 
prises an Internet Protocol Security (IPSec) security asso 
ciation database, the plurality of Selector values comprise 
IPSec selector fields and the predefined number of bits 
comprises 64 bits. 

22. The method of claim 14, wherein the database com 
prises an Internet Protocol Security (IPSec) security asso 
ciation database and the plurality of Selector values comprise 
IPSec Selector fields. 

23. The method of claim 22, wherein the database has a 
Size of about four times a maximum number of Supported 
Security associations. 

24. A method of deleting data from a database, the method 
comprising: 

generating a hash key value based on a plurality of 
Selector values associated with the data for deletion 
from the database, 

locating an entry in the database which includes the data 
and the hash key value; 

deleting the located entry; and 

reordering a Subset of the entries in the database So as to 
maintain entries in the database in hash key value 
Sequence Such that a linear Search for the data from an 
address corresponding to the hash key value will result 
in the data being located by examining entries in 
consecutive addresses in the database before an address 
in the database without an entry is reached. 

25. The method of claim 24, wherein deleting the located 
entry and reordering a Subset of the entries in the database 
are carried out utilizing only atomic read and/or write 
operations Such that deleting data from the database can be 
carried out Simultaneously with a Search of the database. 

26. The method of claim 24, wherein locating an entry in 
the database comprises: 

Selecting an entry in the database having an address 
corresponding to the hash key value, wherein entries in 
the database include corresponding hash values, evalu 
ating the Selected entry to determine if the entry in the 
database corresponds to the plurality of Selector values, 

incrementing the address corresponding to the hash key 
value if the Selected entry does not correspond to the 
plurality of Selector values, 

wherein the Selecting, the evaluating and the incrementing 
are repeated until an entry corresponding to the plural 
ity of Selector values is reached. 

27. The method of claim 24, wherein deleting the located 
entry and reordering entries in the database comprises 

Nov. 15, 2001 

replacing the located entry in the database with a null entry 
if a next Subsequent entry after the located entry is a null 
entry. 

28. The method of claim 27, wherein deleting the located 
entry and reordering entries in the database further com 
priseS replacing the located entry in the database with a null 
entry if the next Subsequent entry after the located entry is 
at an address in the database corresponding to a hash value 
of the next Subsequent entry after the located entry. 

29. The method of claim 28, wherein deleting the located 
entry and reordering entries in the database further com 
priseS replacing an entry at a current address of the database 
with an entry at a next Subsequent address in the database if 
the current address is not before an address of the located 
entry and the next Subsequent entry is not at an address in the 
database corresponding to a hash value of the next Subse 
quent entry after the located entry. 

30. The method of claim 25, wherein deleting the located 
entry and reordering entries in the database further com 
priseS replacing an entry at a current address of the database 
with an entry at a next Subsequent address in the database if 
the current address is not before an address of the located 
entry and the next Subsequent entry not at an address in the 
database corresponding to a hash value of the next Subse 
quent entry after the located entry or if the next Subsequent 
entry is a null entry. 

31. The method of claim 24, wherein generating a hash 
key value based on a plurality of Selector values comprises 
encrypting the Selector values to provide the hash key value. 

32. The method of claim 31, wherein encrypting the 
Selector values to provide the hash key value comprises: 

grouping the plurality of Selector values into blockS 
having a predefined number of bits, 

padding the blocks of grouped Selector values to the 
predefined number of bits; 

encrypting the padded blocks, and 
truncating the encrypted padded blocks to a number of 

bits in the hash key value to provide the hash key value. 
33. The method of claim 32, wherein encrypting the 

padded blocks comprises encrypting the padded blockS 
using Cipher-Block-Chaining encryption mode of Data 
Encryption Standard (DES-CBC) encryption. 

34. The method of claim 33, wherein the database com 
prises an Internet Protocol Security (IPSec) security asso 
ciation database, the plurality of Selector values comprise 
IPSec selector fields and the predefined number of bits 
comprises 64 bits. 

35. The method of claim 24, wherein the database com 
prises an Internet Protocol Security (IPSec) security asso 
ciation database and the plurality of Selector values comprise 
IPSec Selector fields. 

36. The method of claim 35, wherein the database has a 
Size of about four times a maximum number of Supported 
Security associations. 

37. A System Searching a database, comprising: 
means for generating a hash key value based on a plurality 

of Selector values, 
means for Selecting an entry in the database having an 

address corresponding to the hash key value, wherein 
entries in the database include corresponding hash 
values, 



US 2001/0042204 A1 

means for evaluating the Selected entry to determine if the 
entry in the database corresponds to the plurality of 
Selector values, 

means for incrementing the address corresponding to the 
hash key value if the Selected entry does not correspond 
to the plurality of Selector values, 

means for repeatedly Selecting, evaluating and increment 
ing until the Selected entry has a null value or the hash 
value included in Selected entry has a value other than 
the hash key value. 

38. A System for inserting data for entries into a database, 
comprising: 
means for generating a hash key value based on a plurality 

of Selector values associated with the data for entry into 
the database; and 

means for incorporating the data and the hash key value 
as an entry into the database at an address in the 
database which maintains entries in the database in 
hash key value Sequence Such that a linear Search for 
the data from an address corresponding to the hash key 
value will result in the data being located by examining 
entries in consecutive addresses in the database before 
an address in the database without an entry is reached. 

39. A System deleting data from a database, comprising: 
means for generating a hash key value based on a plurality 

of Selector values associated with the data for deletion 
from the database; 

means for locating an entry in the database which includes 
the data and the hash key value; 

means for deleting the located entry; and 
means for reordering a Subset of the entries in the database 

So as to maintain entries in the database in hash key 
value Sequence Such that a linear Search for the data 
from an address corresponding to the hash key value 
will result in the data being located by examining 
entries in consecutive addresses in the database before 
an address in the database without an entry is reached. 

40. A computer program product for Searching a database, 
comprising: 

a computer-readable Storage medium having computer 
readable program code embodied therein, the computer 
readable program code comprising: 

computer-readable program code which generates a hash 
key value based on a plurality of Selector values, 

computer-readable program code which Selects an entry 
in the database having an address corresponding to the 
hash key value, wherein entries in the database include 
corresponding hash values, 

computer-readable program code which evaluates the 
Selected entry to determine if the entry in the database 
corresponds to the plurality of Selector values, 

computer-readable program code which increments the 
address corresponding to the hash key value if the 
Selected entry does not correspond to the plurality of 
Selector values, 

computer-readable program code which repeatedly 
Selects, evaluates and increments until the Selected 

Nov. 15, 2001 

entry has a null value or the hash value included in 
Selected entry has a value other than the hash key value. 

41. A computer program product for inserting data for 
entries into a database, comprising: 

a computer-readable Storage medium having computer 
readable program code embodied therein, the computer 
readable program code comprising: 

computer-readable program code which generates a hash 
key value based on a plurality of Selector values 
asSociated with the data for entry into the database; and 

computer-readable program code which incorporates the 
data and the hash key value as an entry into the 
database at an address in the database which maintains 
entries in the database in hash key value Sequence Such 
that a linear Search for the data from an address 
corresponding to the hash key value will result in the 
data being located by examining entries in consecutive 
addresses in the database before an address in the 
database without an entry is reached. 

42. A computer program product for deleting data from a 
database, comprising: 

a computer-readable Storage medium having computer 
readable program code embodied therein, the computer 
readable program code comprising: 

computer-readable program code which generates a hash 
key value based on a plurality of Selector values 
asSociated with the data for deletion from the database; 

computer-readable program code which locates an entry 
in the database which includes the data and the hash 
key value; 

computer-readable program code which deletes the 
located entry; and 

computer-readable program code which reorders a Subset 
of the entries in the database So as to maintain entries 
in the database in hash key value Sequence Such that a 
linear Search for the data from an address correspond 
ing to the hash key value will result in the data being 
located by examining entries in consecutive addresses 
in the database before an address in the database 
without an entry is reached. 

43. A data Structure comprising: 
a plurality of data entries, each of the plurality of data 

entries including a hash value associated with the data 
and which is generated from a plurality of Selector 
values which uniquely identify the data and having an 
address associated therewith; 

a plurality of null entries having an associated address 
other than an address in the data structure associated 
with a data entry; 

wherein the address associated with a data entry is based 
on the hash value of the data entry Such that a linear 
Search for the data entry from an address corresponding 
to the hash value of the data entry will result in the data 
entry being located by examining entries in consecutive 
addresses before an address with a null entry is reached. 

44. The data structure of claim 43, wherein the addresses 
asSociated with the data entries are in ascending order based 
on the hash values of the data entries. 



US 2001/0042204 A1 

45. The data structure of claim 43, wherein the addresses 
asSociated with the data entries are in descending order 
based on the hash values of the data entries. 

46. The data structure of claim 43, wherein the addresses 
are consecutive addresses. 

47. The data structure of claim 46, wherein a next 
consecutive address from a last address of the data structure 
is a first address of the data Structure. 

48. The data structure of claim 43, wherein a total number 
of data entries and null entries in the data structure is greater 
than a total number of potential unique data entries Such the 
a total number of addresses in the data Structure is greater 
than the total number of potential unique entries. 

49. The data structure of claim 48, wherein the total 
number of addresses is about four times the total number of 
potential unique entries. 

50. The data structure of claim 43, wherein the data 
structure comprises an Internet Protocol Security (IPSec) 
Security Association Database (SAD), the data of the data 
entries comprises IPSec Security association (SA) informa 
tion and the hash values comprise hash keys generated from 
Selector fields of the SAS. 

51. A system for managing Internet Protocol Security 
(IPSec) Security associations (SAS), comprising: 

a hash key generator configured to generate hash key 
values based on modified selectors fields of Internet 
Protocol (IP) packets, the modified selector fields iden 
tifying a SA associated with the packet, and 

a SA data Structure operably associated with the hash key 
generator and configured to Store SA information and 
asSociated hash key values in hash-ordered Sequence 
Such that a linear Search for a SA from an address of the 
data Structure corresponding to a hash key value gen 
erated from the modified selector fields identifying the 
SA will result in the SA being located by examining 
SAS at consecutive addresses before an address with a 
null entry is reached. 

52. A system according to claim 51, wherein the SA data 
Structure is further configured to incorporate SAS and their 
corresponding hash key values into the data Structure at an 
address in the data Structure which maintains the SAS in the 
data Structure in hash key value Sequence Such that a linear 
Search for a SA from an address of the data structure 
corresponding to a hash key value generated from the 
modified selector fields identifying the SA will result in the 
SA being located by examining SAS at consecutive 
addresses before an address with a null entry is reached. 

53. A system according to claim 51, wherein the SA data 
Structure is further configured to locate a SA in the database 
for deletion, delete the located SA and reorder SAS in the 
data Structure So as to maintain the SAS in the data structure 
in hash key value Sequence Such that a linear Search for a SA 
from an address of the data Structure corresponding to a hash 
key value generated from the modified Selector fields iden 
tifying the SA will result in the SA being located by 
examining SAS at consecutive addresses before an address 
with a null entry is reached. 

54. A method of Searching a database Stored in a circular 
memory, the method comprising: 

generating a hash key value based on a plurality of 
Selector values, 

Nov. 15, 2001 

Selecting an entry in the database having an address 
corresponding to the hash key value, wherein entries in 
the database include corresponding hash values, 

evaluating the Selected entry to determine if the entry in 
the database corresponds to the plurality of Selector 
values, 

evaluating most Significant bits of a hash value of the 
Selected entry and most significant bits of the hash key 
value to determine if a wrap condition has occurred; 

inverting the most significant bits of the hash value of the 
Selected entry and the most Significant bits of the hash 
key value if a wrap condition has occurred; 

comparing the hash key value to the hash value of the 
selected entry to determine if the hash value of the 
Selected entry is greater than the hash key value; and 

incrementing the address corresponding to the hash key 
value if the Selected entry does not correspond to the 
plurality of selector values and the hash value of the 
Selected entry is greater than the hash key value. 

55. The method of claim 54, wherein the database com 
prises an Internet Protocol Security (IPSec) security asso 
ciation database and the plurality of Selector values comprise 
IPSec Selector fields. 

56. The method of claim 54, wherein the database has a 
Size of about four times a maximum number of Supported 
Security associations, the most significant bits comprises the 
two most significant bits and evaluating most significant bits 
comprises determining if the two most significant bits of the 
hash value of the current entry are “11” and the two most 
significant bits of the hash key value are “00” or if the two 
most significant bits of the hash value of the Selected entry 
are “00” and the two most significant bits of the hash key 
value are “11”. 

57. The method of claim 54, wherein incrementing the 
address comprises: 

incrementing the address to a next consecutive address if 
the address is less than a maximum address of the 
circular memory; and 

Setting the address to a first address of the circular 
memory if the address is equal to the maximum address 
of the circular memory. 

58. A method of inserting data for entries into a database 
Stored in a circular memory, comprising: 

generating a hash key value based on a plurality of 
Selector values associated with the data for entry into 
the database; 

Selecting an entry in the database having an address 
corresponding to the hash key value, wherein entries in 
the database include corresponding hash values, 

determining an end of a cluster of database entries by 
incrementing the address corresponding to the hash key 
value and Selecting the corresponding entry in the 
database until an entry after the Selected entry is empty; 

evaluating most Significant bits of a hash value of the 
Selected entry and most significant bits of the hash key 
value to determine if a wrap condition has occurred; 

inverting the most significant bits of the hash value of the 
Selected entry and the most Significant bits of the hash 
key value if a wrap condition has occurred; 



US 2001/0042204 A1 

comparing the hash key value to the hash value of the 
selected entry to determine if the hash value of the 
Selected entry is greater than the hash key value; 

copying the Selected entry to an entry immediately after 
the selected entry if the hash value of the selected entry 
is greater than the hash key value; 

decrementing the address corresponding to the hash key 
value if the hash value of the Selected entry is greater 
than the hash key value; and 

copying the data into an entry immediately after the 
selected entry if the hash value of the selected entry is 
greater than the hash key value. 

59. The method of claim 58, wherein the database com 
prises an Internet Protocol Security (IPSec) security asso 
ciation database and the plurality of Selector values comprise 
IPSec Selector fields. 

60. The method of claim 58, wherein the database has a 
Size of about four times a maximum number of Supported 

Nov. 15, 2001 

Security associations, the most significant bits comprises the 
two most significant bits and evaluating most significant bits 
comprises determining if the two most significant bits of the 
hash value of the current entry are “11” and the two most 
significant bits of the hash key value are “00” or if the two 
most significant bits of the hash value of the Selected entry 
are “00” and the two most significant bits of the hash key 
value are “11”. 

61. The method of claim 58, further comprising: 

comparing the Selected entry to the data to determine if a 
duplicate entry is to be inserted into the database, and 

returning a failure if a duplicate entry is to be inserted into 
the database. 

62. The method of claim 58, further comprising copying 
the data to the Selected entry of the Selected entry is empty. 


