

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2002356844 C1

(54)	Title PSMA antibodies and protein multimers		
(51)	International Patent Classification(s)		
	G01N 33/50 (2006.01) C07K 16/28 (2006.01)		
	A61K 31/7088 (2006.01) C07K 16/30 (2006.01)		
	A61K 38/00 (2006.01) C07K 16/46 (2006.01)		
	A61K 38/21 (2006.01) C12N 1/15 (2006.01)		
	A61K 39/395 (2006.01) C12N 1/19 (2006.01)		
	A61K 45/00 (2006.01) C12N 1/21 (2006.01)		
	A61K 47/48 (2006.01) C12N 5/10 (2006.01)		
	A61K 48/00 (2006.01) C12N 15/09 (2006.01)		
	A61K 51/10 (2006.01) C12P 21/08 (2006.01)		
	A61P 31/12 (2006.01) C12Q 1/02 (2006.01)		
	A61P 35/00 (2006.01) C12Q 1/34 (2006.01)		
	A61P 37/02 (2006.01) C12Q 1/37 (2006.01)		
	A61P 37/04 (2006.01) G01N 33/15 (2006.01)		
	A61P 43/00 (2006.01) G01N 33/574 (2006.01)		
	C07K 14/705 (2006.01)		
(21)	Application No:	2002356844	(22) Date of Filing: 2002.10.23
(87)	WIPO No:	WO03/034903	
(30)	Priority Data		
(31)	Number	(32) Date	(33) Country
	60/362,747	2002.03.07	US
	60/335,215	2001.10.23	US
	60/412,618	2002.09.20	US
(43)	Publication Date:	2003.05.06	
(43)	Publication Journal Date:	2003.07.03	
(44)	Accepted Journal Date:	2009.11.12	
(44)	Amended Journal Date:	2010.03.04	
(71)	Applicant(s)		
	PSMA Development Company, L.L.C.		
(72)	Inventor(s)		
	Donovan, Gerald P.;Maddon, Paul J.;Ma, Dangshe;Olson, William C.;Schulke, Norbert;Gardner, Jason		
(74)	Agent / Attorney		
	Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000		
(56)	Related Art		
	US 6107090 A (BANDER) 22 August 2000		
	WO 1997/035616 A1 (PACIFIC NORTHWEST CANCER FOUNDATION) 2 October 1997		

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 May 2003 (01.05.2003)

PCT

(10) International Publication Number
WO 03/034903 A3

(51) International Patent Classification⁷: C07H 21/04,
C12N 5/12, C07K 16/00, A61K 39/395, G01N 33/53

(74) Agent: VAN AMSTERDAM, John, R.; Wolf, Greenfield
& Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210
(US).

(21) International Application Number: PCT/US02/33944

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZW.

(22) International Filing Date: 23 October 2002 (23.10.2002)

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/335,215 23 October 2001 (23.10.2001) US
60/362,747 7 March 2002 (07.03.2002) US
60/412,618 20 September 2002 (20.09.2002) US

(71) Applicant (for all designated States except US): PSMA
DEVELOPMENT COMPANY, L.L.C. [US/US]; Pro-
genics Pharmaceuticals, 777 Old Saw Mill River Road,
Tarrytown, New York 10591 (US).

Published:

— with international search report

(72) Inventors; and

(75) Inventors/Applicants (for US only): MADDON, Paul,
J. [US/US]; 191 Fox Meadow Road, Scarsdale, NY
10583 (US). DONOVAN, Gerald, P. [US/US]; 430 East
63rd Street, Apartment 5L, New York, NY 10021 (US).
OLSON, William, C. [US/US]; 21 Fawn Court, Ossining,
NY 10562 (US). SCHÜLKE, Norbert [US/US]; 101
Ridge Road, New City, NY 10956 (US). GARDNER,
Jason [US/US]; 24 Bramble Brook Road, Ardsley, NY
10502 (US). MA, Dangshe [US/US]; 49 Glenwood Road,
Millwood, NY 10546 (US).

(88) Date of publication of the international search report:
30 October 2003

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 03/034903 A3

(54) Title: PSMA ANTIBODIES AND PROTEIN MULTIMERS

(57) Abstract: The invention includes antibodies or antigen-binding fragments thereof which bind specifically to conformational epitopes on the extracellular domain of PSMA, compositions containing one or a combination of such antibodies or antibodies or antigen-binding fragments thereof, hybridoma cell lines that produce the antibodies, and methods of using the antibodies or antigen-binding fragments thereof for cancer diagnosis and treatment. The invention also includes oligomeric forms of PSMA proteins, compositions comprising the multimers, and antibodies that selectively bind to the multimers.

PSMA ANTIBODIES AND PROTEIN MULTIMERSRelated Applications

This application claims the benefit under 35 U.S.C. § 119 of United States provisional application 60/335,215, filed October 23, 2001, United States provisional application 60/362,747, filed March 7, 2002, and United States provisional application 60/_____, filed September 20, 2002, each of which is incorporated herein by reference.

Field of the Invention

This invention relates generally to the field of cancer associated polypeptides and antibodies that recognize native epitopes on the polypeptides. In particular, the invention relates in part to antibodies or antigen-binding fragments thereof which bind specifically to conformational epitopes on the extracellular domain of PSMA, multimeric forms of PSMA proteins, antibodies that selectively bind to the multimers, and compositions containing such antibodies or multimers.

Background of the Invention

Prostate cancer is the most prevalent type of cancer and the second leading cause of death from cancer in American men, with an estimated 179,000 cases and 37,000 deaths in 1999, (Landis, S.H. *et al. CA Cancer J. Clin.* 48:6-29 (1998)). The number of men diagnosed with prostate cancer is steadily increasing as a result of the increasing population of older men as well as a greater awareness of the disease leading to its earlier diagnosis (Parker *et al.*, 1997, *CA Cancer J. Clin.* 47:5-280). The life time risk for men developing prostate cancer is about 1 in 5 for Caucasians, 1 in 6 for African Americans. High risk groups are represented by those with a positive family history of prostate cancer or African Americans.

Over a lifetime, more than 2/3 of the men diagnosed with prostate cancer die of the disease (Wingo *et al.*, 1996, *CA Cancer J. Clin.* 46:113-25). Moreover, many patients who do not succumb to prostate cancer require continuous treatment to ameliorate symptoms such as pain, bleeding and urinary obstruction. Thus, prostate cancer also represents a major cause of suffering and increased health care expenditures.

Where prostate cancer is localized and the patient's life expectancy is 10 years or more, radical prostatectomy offers the best chance for eradication of the disease.

Historically, the drawback of this procedure is that most cancers had spread beyond the bounds of the operation by the time they were detected. Patients with bulky, high-grade tumors are less likely to be successfully treated by radical prostatectomy.

Radiation therapy has also been widely used as an alternative to radical 5 prostatectomy. Patients generally treated by radiation therapy are those who are older and less healthy and those with higher-grade, more clinically advanced tumors. Particularly preferred procedures are external-beam therapy which involves three dimensional, confocal radiation therapy where the field of radiation is designed to conform to the volume of tissue treated; interstitial-radiation therapy where seeds of radioactive compounds are implanted using 10 ultrasound guidance; and a combination of external-beam therapy and interstitial-radiation therapy.

For treatment of patients with locally advanced disease, hormonal therapy before or following radical prostatectomy or radiation therapy has been utilized. Hormonal therapy is the main form of treating men with disseminated prostate cancer. Orchiectomy reduces 15 serum testosterone concentrations, while estrogen treatment is similarly beneficial.

Diethylstilbestrol from estrogen is another useful hormonal therapy which has a disadvantage of causing cardiovascular toxicity. When gonadotropin-releasing hormone agonists are administered testosterone concentrations are ultimately reduced. Flutamide and other nonsteroidal, anti-androgen agents block binding of testosterone to its intracellular receptors. 20 As a result, it blocks the effect of testosterone, increasing serum testosterone concentrations and allows patients to remain potent--a significant problem after radical prostatectomy and radiation treatments.

Cytotoxic chemotherapy is largely ineffective in treating prostate cancer. Its toxicity makes such therapy unsuitable for elderly patients. In addition, prostate cancer is relatively 25 resistant to cytotoxic agents.

Relapsed or more advanced disease is also treated with anti-androgen therapy. Unfortunately, almost all tumors become hormone-resistant and progress rapidly in the absence of any effective therapy.

Accordingly, there is a need for effective therapeutics for prostate cancer which are 30 not overwhelmingly toxic to normal tissues of a patient, and which are effective in selectively eliminating prostate cancer cells.

Summary of the Invention

The present invention relates to antibodies or antigen-binding fragments thereof which specifically bind the extracellular domain of prostate specific membrane antigen (PSMA), compositions containing one or a combination of such antibodies or antigen-binding fragments thereof, hybridoma cell lines that produce the antibodies, and methods of using the antibodies or antigen-binding fragments thereof for cancer diagnosis and treatment.

According to one aspect of the invention, isolated antibodies or an antigen-binding fragments thereof are provided. The antibodies or fragments thereof specifically bind to an extracellular domain of prostate specific membrane antigen (PSMA), and competitively inhibit the specific binding of a second antibody to its target epitope on PSMA. In a second aspect of the invention, isolated antibodies or antigen-binding fragments thereof are provided which specifically bind to an epitope on prostate specific membrane antigen (PSMA) defined by a second antibody. In each of the forgoing aspects of the invention, the second antibody is selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1, Abgenix 4.152.1, and antibodies comprising (a) a heavy chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 2-7, and (b) a light chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 8-13.

In certain embodiments, the antibody or antigen-binding fragment thereof is selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1, and Abgenix 4.152.1.

In other embodiments, the antibody or antigen-binding fragment thereof is selected from the group consisting of antibodies comprising (a) a heavy chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 2-7, and (b) a light chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 8-13, and antigen-binding fragments thereof.

In further embodiments, the antibody or antigen-binding fragments thereof is encoded by a nucleic acid molecule comprising a nucleotide sequence that is at least about 90% identical to the nucleotide sequence encoding the foregoing antibodies, preferably at least about 95% identical, more preferably at least about 97% identical, still more preferably at least about 98% identical, and most preferably is at least about 99% identical.

In some embodiments of the foregoing aspects, antigen-binding fragments of the isolated antibodies are provided. The antigen-binding fragments include (a) a heavy chain variable region encoded by a nucleic acid molecule comprising the coding regions or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as: SEQ ID NOs: 14, 18, 22, 26 and 30, and (b) a light chain variable region encoded by a nucleic acid molecule comprising the coding region or region of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as: SEQ ID NOs: 16, 20, 24, 28 and 32. In other embodiments, the antigen-binding fragment includes (a) a heavy chain variable region comprising an amino acid sequence selected from the group consisting of amino acid sequences set forth as: SEQ ID NOs: 15, 19, 23, 27 and 31, and (b) a light chain variable region comprising an amino acid sequence selected from the group consisting of nucleotide sequences set forth as: SEQ ID NOs: 17, 21, 25, 29 and 33.

In a further embodiments of the invention, isolated antigen-binding fragments of antibodies, which include a CDR of the foregoing antigen-binding fragments are provided. Preferably the CDR is CDR3.

According another aspect of the invention, expression vectors including an isolated nucleic acid molecule encoding the foregoing isolated antibodies or antigen-binding fragments is provided. Host cells transformed or transfected by these expression vectors also are provided.

In certain embodiments, the antibody or antigen-binding fragment thereof is selected for its ability to bind live cells, such as a tumor cell or a prostate cell, preferably LNCaP cells. In other embodiments, the antibody or antigen-binding fragment thereof mediates cytolysis of cells expressing PSMA. Preferably cytolysis of cells expressing PSMA is mediated by 5 effector cells or is complement mediated in the presence of effector cells.

In other embodiments, the antibody or antigen-binding fragment thereof inhibits the growth of cells expressing PSMA. Preferably the antibody or antigen-binding fragment thereof does not require cell lysis to bind to the extracellular domain of PSMA.

10 In further embodiments, the antibody or antigen-binding fragment thereof is selected from the group consisting of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE or has immunoglobulin constant and/or variable domain of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD or IgE. In other embodiments, the antibody is a bispecific or multispecific antibody.

15 In still other embodiments, the antibody is a recombinant antibody, a polyclonal antibody, a monoclonal antibody, a humanized antibody or a chimeric antibody, or a mixture of these. In particularly preferred embodiments, the antibody is a human antibody, e.g., a monoclonal antibody, polyclonal antibody or a mixture of monoclonal and polyclonal antibodies. In still other embodiments, the antibody is a bispecific or multispecific antibody.

20 Preferred antigen-binding fragments include a Fab fragment, a F(ab')₂ fragment, and a Fv fragment CDR3.

In further embodiments, the isolated antibody or antigen-binding fragment is a monoclonal antibody produced by a hybridoma cell line selected from the group consisting of PSMA 3.7 (PTA-3257), PSMA 3.8, PSMA 3.9 (PTA-3258), PSMA 3.11 (PTA-3269), PSMA 5.4 (PTA-3268), PSMA 7.1 (PTA-3292), PSMA 7.3 (PTA-3293), PSMA 10.3 (PTA-3247) , 25 PSMA 1.8.3 (PTA-3906), PSMA A3.1.3 (PTA-3904), PSMA A3.3.1 (PTA-3905), Abgenix 4.248.2 (PTA-4427), Abgenix 4.360.3 (PTA-4428), Abgenix 4.7.1 (PTA-4429), Abgenix 4.4.1 (PTA-4556), Abgenix 4.177.3 (PTA-4557), Abgenix 4.16.1 (PTA-4357), Abgenix 4.22.3 (PTA-4358), Abgenix 4.28.3 (PTA-4359), Abgenix 4.40.2 (PTA-4360), Abgenix 4.48.3 (PTA-4361), Abgenix 4.49.1 (PTA-4362), Abgenix 4.209.3 (PTA-4365), Abgenix 30 4.219.3 (PTA-4366), Abgenix 4.288.1 (PTA-4367), Abgenix 4.333.1 (PTA-4368), Abgenix 4.54.1 (PTA-4363), Abgenix 4.153.1 (PTA-4388), Abgenix 4.232.3 (PTA-4389), Abgenix

4.292.3 (PTA-4390), Abgenix 4.304.1 (PTA-4391), Abgenix 4.78.1 (PTA-4652), and Abgenix 4.152.1(PTA-4653).

In certain other embodiments, the antibody or antigen-binding fragment thereof binds to a conformational epitope and/or is internalized into a cell along with the prostate specific membrane antigen. In other embodiments, the isolated antibody or antigen-binding fragment thereof is bound to a label, preferably one selected from the group consisting of a fluorescent label, an enzyme label, a radioactive label, a nuclear magnetic resonance active label, a luminescent label, and a chromophore label.

In still other embodiments, the isolated antibody or antigen-binding fragment thereof is bound to at least one therapeutic moiety, such as a drug, preferably a cytotoxic drug, a replication-selective virus, a toxin or a fragment thereof, or an enzyme or a fragment thereof. Preferred cytotoxic drug include: calicheamicin, esperamicin, methotrexate, doxorubicin, melphalan, chlorambucil, ARA-C, vindesine, mitomycin C, cis-platinum, etoposide, bleomycin, 5-fluorouracil, estramustine, vincristine, etoposide, doxorubicin, paclitaxel, docetaxel, dolastatin 10, auristatin E and auristatin PHE. In other embodiments, the therapeutic moiety is an immunostimulatory or immunomodulating agent, preferably one selected from the group consisting of: a cytokine, chemokine and adjuvant.

In some embodiments, the antibodies or antigen-binding fragments of the invention specifically bind cell-surface PSMA and/or rsPSMA with a binding affinity of about $1 \times 10^{-9} M$ or less. Preferably, the binding affinity is about $1 \times 10^{-10} M$ or less, more preferably the binding affinity is about $1 \times 10^{-11} M$ or less. In other embodiments the binding affinity is less than about $5 \times 10^{-10} M$.

In additional embodiments, the antibodies or antigen-binding fragments of the invention mediate specific cell killing of PSMA-expressing cells with an IC_{50} s of less than about $1 \times 10^{-10} M$. Preferably the IC_{50} s is less than about $1 \times 10^{-11} M$. More preferably the IC_{50} s is less than about $1 \times 10^{-12} M$. In other embodiments the IC_{50} s is less than about $1.5 \times 10^{-11} M$.

In yet other embodiments, the isolated antibody or antigen-binding fragment thereof is bound to a radioisotope. The radioisotope can emit α radiations, β radiations, or γ radiations. Preferably the radioisotope is selected from the group consisting of ^{225}Ac , ^{211}At , ^{212}Bi , ^{213}Bi , ^{186}Rh , ^{188}Rh , ^{177}Lu , ^{90}Y , ^{131}I , ^{67}Cu , ^{125}I , ^{123}I , ^{77}Br , ^{153}Sm , ^{166}Ho , ^{64}Cu , ^{212}Pb , ^{224}Ra and ^{223}Ra .

According to another aspect of the invention, hybridoma cell lines are provided that produce an antibody selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 5 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1 and Abgenix 4.152.1. In some embodiments, the hybridoma cell line is selected from the group consisting of PSMA 3.7 (PTA-3257), PSMA 3.8, PSMA 3.9 (PTA-10 3258), PSMA 3.11 (PTA-3269), PSMA 5.4 (PTA-3268), PSMA 7.1 (PTA-3292), PSMA 7.3 (PTA-3293), PSMA 10.3 (PTA-3247), PSMA 1.8.3 (PTA-3906), PSMA A3.1.3 (PTA-3904), PSMA A3.3.1 (PTA-3905), Abgenix 4.248.2 (PTA-4427), Abgenix 4.360.3 (PTA-4428), Abgenix 4.7.1 (PTA-4429), Abgenix 4.4.1 (PTA-4556), Abgenix 4.177.3 (PTA-4557), Abgenix 4.16.1 (PTA-4357), Abgenix 4.22.3 (PTA-4358), Abgenix 4.28.3 (PTA-4359), 15 Abgenix 4.40.2 (PTA-4360), Abgenix 4.48.3 (PTA-4361), Abgenix 4.49.1 (PTA-4362), Abgenix 4.209.3 (PTA-4365), Abgenix 4.219.3 (PTA-4366), Abgenix 4.288.1 (PTA-4367), Abgenix 4.333.1 (PTA-4368), Abgenix 4.54.1 (PTA-4363), Abgenix 4.153.1 (PTA-4388), Abgenix 4.232.3 (PTA-4389), Abgenix 4.292.3 (PTA-4390), Abgenix 4.304.1 (PTA-4391), Abgenix 4.78.1 (PTA-4652), and Abgenix 4.152.1(PTA-4653).

According to a further aspect of the invention, compositions are provided that include the foregoing antibodies or antigen-binding fragments thereof and a pharmaceutically acceptable carrier, excipient, or stabilizer. Other compositions include a combination of two or more of the foregoing antibodies or antigen-binding fragments thereof and a pharmaceutically acceptable carrier, excipient, or stabilizer. In some embodiments, the 20 compositions also include an antitumor agent, an immunostimulatory agent, an immunomodulator, or a combination thereof. Preferred antitumor agents include a cytotoxic agent, an agent that acts on tumor neovasculature, or a combination thereof. Preferred immunomodulators include α -interferon, γ -interferon, tumor necrosis factor- α or a combination thereof. Preferred immunostimulatory agents include interleukin-2, 25 immunostimulatory oligonucleotides, or a combination thereof.

According to another aspect of the invention, kits for detecting prostate cancer for diagnosis, prognosis or monitoring are provided. The kits include the foregoing isolated

labeled antibody or antigen-binding fragment thereof, and one or more compounds for detecting the label. Preferably the label is selected from the group consisting of a fluorescent label, an enzyme label, a radioactive label, a nuclear magnetic resonance active label, a luminescent label, and a chromophore label.

5 The invention in another aspect provides one or more of the foregoing isolated antibodies or antigen-binding fragments thereof packaged in lyophilized form, or packaged in an aqueous medium.

10 In another aspect of the invention, methods for detecting the presence of PSMA, or a cell expressing PSMA, in a sample are provided. The methods include contacting the sample with any of the foregoing antibodies or antigen-binding fragments thereof which specifically bind to an extracellular domain of PSMA, for a time sufficient to allow the formation of a complex between the antibody or antigen-binding fragment thereof and PSMA, and detecting the PSMA-antibody complex or PSMA-antigen-binding fragment complex. The presence of a complex in the sample is indicative of the presence in the sample of PSMA or a cell
15 expressing PSMA.

20 In another aspect, the invention provides other methods for diagnosing a PSMA-mediated disease in a subject. The methods include administering to a subject suspected of having or previously diagnosed with PSMA-mediated disease an amount of any of the foregoing antibodies or antigen-binding fragments thereof which specifically bind to an extracellular domain of prostate specific membrane antigen. The method also includes allowing the formation of a complex between the antibody or antigen-binding fragment thereof and PSMA, and detecting the formation of the PSMA-antibody complex or PSMA-antigen-binding fragment antibody complex to the target epitope. The presence of a complex in the subject suspected of having or previously diagnosed with prostate cancer is indicative
25 of the presence of a PSMA-mediated disease.

30 In certain embodiments of the methods, the PSMA-mediated disease is prostate cancer. In other embodiments, the PSMA-mediated disease is a non-prostate cancer, such as those selected from the group consisting of bladder cancer including transitional cell carcinoma; pancreatic cancer including pancreatic duct carcinoma; lung cancer including non-small cell lung carcinoma; kidney cancer including conventional renal cell carcinoma; sarcoma including soft tissue sarcoma; breast cancer including breast carcinoma; brain cancer including glioblastoma multiforme; neuroendocrine carcinoma; colon cancer including

colonic carcinoma; testicular cancer including testicular embryonal carcinoma; and melanoma including malignant melanoma.

In preferred embodiments of the foregoing methods, the antibody or antigen-binding fragment thereof is labeled. In other embodiments of the foregoing methods, a second 5 antibody is administered to detect the first antibody or antigen-binding fragment thereof.

In a further aspect of the invention, methods for assessing the prognosis of a subject with a PSMA-mediated disease are provided. The methods include administering to a subject suspected of having or previously diagnosed with PSMA-mediated disease an effective amount of an antibody or antigen-binding fragment thereof according to claim A1 or B1, 10 allowing the formation of a complex between the antibody or antigen-binding fragment thereof and PSMA, and detecting the formation of the complex to the target epitope. The amount of the complex in the subject suspected of having or previously diagnosed with PSMA-mediated disease is indicative of the prognosis.

In another aspect of the invention, methods for assessing the effectiveness of a 15 treatment of a subject with a PSMA-mediated disease are provided. The methods include administering to a subject suspected treated for a PSMA-mediated disease an effective amount of the foregoing antibodies or antigen-binding fragments thereof, allowing the formation of a complex between the antibody or antigen-binding fragment thereof and PSMA, and detecting the formation of the complex to the target epitope. The amount of the 20 complex in the subject suspected of having or previously diagnosed with PSMA-mediated disease is indicative of the effectiveness of the treatment.

In certain embodiments of these two aspects of the invention, the PSMA-mediated disease is prostate cancer. In other embodiments, the PSMA-mediated disease is a non-prostate cancer. In those embodiments, the non-prostate cancer preferably is selected from 25 the group consisting of bladder cancer including transitional cell carcinoma; pancreatic cancer including pancreatic duct carcinoma; lung cancer including non-small cell lung carcinoma; kidney cancer including conventional renal cell carcinoma; sarcoma including soft tissue sarcoma; breast cancer including breast carcinoma; brain cancer including glioblastoma multiforme; neuroendocrine carcinoma; colon cancer including colonic 30 carcinoma; testicular cancer including testicular embryonal carcinoma; and melanoma including malignant melanoma. In still other embodiments, the antibody or antigen-binding

fragment thereof is labeled. In further embodiments, a second antibody is administered to detect the first antibody or antigen-binding fragment thereof.

According to yet another aspect of the invention, methods for inhibiting the growth of a cell expressing PSMA are provided. The methods include contacting a cell expressing PSMA with an amount of at least one of the foregoing antibodies or antigen-binding fragments thereof which specifically binds to an extracellular domain of PSMA effective to inhibit the growth of the cell expressing PSMA.

According to another aspect of the invention, methods for inducing cytolysis of a cell expressing PSMA are provided. The methods include contacting a cell expressing PSMA with an amount of at least one of the foregoing antibodies or antigen-binding fragments thereof which specifically binds to an extracellular domain of PSMA effective to induce cytolysis of the cell expressing PSMA. In certain embodiments, the cytolysis occurs in the presence of an effector cell. In other embodiments, the cytolysis is complement mediated.

According to still another aspect of the invention, methods for treating or preventing a PSMA-mediated disease are provided. The methods include administering to a subject having a PSMA-mediated disease an effective amount of at least one of the forgoing antibodies or antigen-binding fragments thereof to treat or prevent the PSMA-mediated disease. In some embodiments, the PSMA-mediated disease is a cancer, such as prostate cancer or a non-prostate cancer (including the nonprostate cancers described elsewhere herein).

In yet a further aspect of the invention, methods for treating or preventing a PSMA-mediated disease are provided. The methods include administering to a subject having a PSMA-mediated disease or at risk of having a PSMA-mediated disease an amount of at least one of the foregoing antibodies or antigen-binding fragments thereof effective to treat or prevent the PSMA-mediated disease.

In some embodiments, the PSMA-mediated disease is a cancer, such as prostate cancer or a non-prostate cancer (including the nonprostate cancers described elsewhere herein).

In other embodiments, the method also includes administering another therapeutic agent to treat or prevent the PSMA-mediated disease at any time before, during or after the administration of the antibody or antigen-binding fragment thereof. In some of these

embodiments, the therapeutic agent is a vaccine, and preferably the vaccine immunizes the subject against PSMA.

In still other embodiments, the antibody or antigen-binding fragment thereof is bound to at least one therapeutic moiety, preferably a cytotoxic drug, a drug which acts on the tumor neovasculature and combinations thereof. Preferred cytotoxic drugs are selected from the group consisting of: calicheamicin, esperamicin, methotrexate, doxorubicin, melphalan, chlorambucil, ARA-C, vindesine, mitomycin C, cis-platinum, etoposide, bleomycin, 5-fluorouracil, estramustine, vincristine, etoposide, doxorubicin, paclitaxel, docetaxel, dolastatin 10, auristatin E and auristatin PHE.

10 In other embodiments, the antibody or antigen-binding fragment thereof is bound to a radioisotope and the radiations emitted by the radioisotope is selected from the group consisting of α , β and γ radiations. Preferably, the radioisotope is selected from the group consisting of ^{225}Ac , ^{211}At , ^{212}Bi , ^{213}Bi , ^{186}Rh , ^{188}Rh , ^{177}Lu , ^{90}Y , ^{131}I , ^{67}Cu , ^{125}I , ^{123}I , ^{77}Br , ^{153}Sm , ^{166}Ho , ^{64}Cu , ^{212}Pb , ^{224}Ra and ^{223}Ra .

15 The present invention provides methods for modulating at least one enzymatic activity of PSMA. As used in preferred embodiments of the methods, "modulating" an enzymatic activity of PSMA means enhancing or inhibiting the enzymatic activity. Thus in certain aspects of the invention, methods for inhibiting an enzymatic activity of PSMA are provided, and in other aspects of the invention, methods for enhancing an enzymatic activity 20 of PSMA are provided. The terms "enhancing" and "inhibiting" in this context indicate that the enzymatic activity of PSMA is enhanced or inhibited in the presence of an antibody that specifically binds PSMA, or antigen-binding fragment thereof, relative to the level of activity in the absence of such an antibody or antigen-binding fragment thereof. Enzymatic activities of PSMA include folate hydrolase activity, N-acetylated α -linked acidic dipeptidase 25 (NAALADase) activity, dipeptidyl dipeptidase IV activity and γ -glutamyl hydrolase activity.

Thus the invention in another aspect provides methods for modulating folate hydrolase activity. In certain embodiments of these methods, the activity is inhibited and in other embodiments, the activity is enhanced. The methods include contacting a folate hydrolase polypeptide with an amount of the foregoing isolated antibody or antigen-binding 30 fragment thereof, under conditions wherein the isolated antibody or antigen-binding fragment thereof modulates the folate hydrolase activity. The folate hydrolase polypeptide can be isolated, contained in a sample such as a cell, a cell homogenate, a tissue, or a tissue

homogenate, or contained in an organism. The organism preferably is an animal, particularly preferably a mammal.

In another aspect of the invention, methods for modulating N-acetylated α -linked acidic dipeptidase (NAALADase) activity are provided. In certain embodiments of these methods, the activity is inhibited and in other embodiments, the activity is enhanced. The methods include contacting a NAALADase polypeptide with an amount of the foregoing isolated antibody or antigen-binding fragment thereof under conditions wherein the isolated antibody or antigen-binding fragment thereof modulates NAALADase activity. The NAALADase polypeptide can be isolated, contained in a sample such as a cell, a cell homogenate, a tissue, or a tissue homogenate, or contained in an organism. The organism preferably is an animal, particularly preferably a mammal.

In yet another aspect of the invention, methods for modulating dipeptidyl dipeptidase IV activity are provided. In certain embodiments of these methods, the activity is inhibited and in other embodiments, the activity is enhanced. The methods include contacting a dipeptidyl dipeptidase IV polypeptide with an amount of the foregoing isolated antibody or antigen-binding fragment thereof under conditions wherein the isolated antibody or antigen-binding fragment thereof modulates dipeptidyl dipeptidase IV activity. The dipeptidyl dipeptidase IV polypeptide can be isolated, contained in a sample such as a cell, a cell homogenate, a tissue, or a tissue homogenate, or contained in an organism. The organism preferably is an animal, particularly preferably a mammal.

In yet another aspect of the invention, methods for modulating γ -glutamyl hydrolase activity are provided. In certain embodiments of these methods, the activity is inhibited and in other embodiments, the activity is enhanced. The methods include contacting a γ -glutamyl hydrolase polypeptide with an amount of the foregoing isolated antibody or antigen-binding fragment thereof under conditions wherein the isolated antibody or antigen-binding fragment thereof modulates γ -glutamyl hydrolase activity. The γ -glutamyl hydrolase polypeptide can be isolated, contained in a sample such as a cell, a cell homogenate, a tissue, or a tissue homogenate, or contained in an organism. The organism preferably is an animal, particularly preferably a mammal.

30 Methods of specific delivery of at least one therapeutic agent to PSMA-expressing cells are provided according to another aspect of the invention. The methods include administering an effective amount of at least one of the foregoing antibodies or antigen-

binding fragments thereof conjugated to the at least one therapeutic agent. In some embodiments, the therapeutic agent is a nucleic acid molecule, an antitumor drug, a toxin or a fragment thereof, an enzyme or a fragment thereof, a replication-selective virus, or an immunostimulatory or immunomodulating agent. Preferred antitumor drugs include 5 cytotoxic drugs, drugs which act on the tumor neovasculature and combinations thereof. Preferred cytotoxic drugs include calicheamicin, esperamicin, methotrexate, doxorubicin, melphalan, chlorambucil, ARA-C, vindesine, mitomycin C, cis-platinum, etoposide, bleomycin, 5-fluorouracil, estramustine, vincristine, etoposide, doxorubicin, paclitaxel, docetaxel, dolastatin 10, auristatin E and auristatin PHE. Preferred immunostimulatory or 10 immunomodulating agent included cytokines, chemokines and adjuvants.

In still another aspect of the invention, isolated antibodies that selectively bind a PSMA protein multimer are provided. In preferred embodiments, the PSMA protein multimer is a dimer, and preferably at least one of the PSMA proteins forming the multimer is a recombinant, soluble PSMA (rsPSMA) polypeptide. Preferably the rsPSMA polypeptide 15 consists essentially of amino acids 44-750 of SEQ ID NO:1.

In a further aspect of the invention, isolated antibodies are provided that selectively bind a PSMA protein multimer and modulate one or more enzymatic activities of the PSMA protein multimer. As used in preferred embodiments of this aspect of the invention, “modulating” an enzymatic activity of a PSMA multimer means enhancing or inhibiting the 20 enzymatic activity. Thus in certain aspects of the invention, antibodies that inhibit an enzymatic activity of PSMA multimers are provided, and in other aspects of the invention, antibodies that inhibit an enzymatic activity of PSMA multimers are provided. The terms “enhancing” and “inhibiting” in this context indicate that the enzymatic activity of a PSMA multimer is enhanced or inhibited in the presence of an antibody that specifically binds the 25 PSMA multimers, or antigen-binding fragment thereof, relative to the level of activity in the absence of such an antibody or antigen-binding fragment thereof. In some embodiments, the enzymatic activity is selected from the group consisting of folate hydrolase activity, NAALADase activity, dipeptidyl dipeptidase IV activity and γ -glutamyl hydrolase activity. In other embodiments, the enzymatic activity is in the extracellular domain of the PSMA 30 molecule. In still other embodiments, the antibody or antigen-binding fragment thereof specifically binds to an extracellular domain of PSMA.

5 In a further aspect, an isolated antibody or antigen-binding fragment thereof is provided that selectively binds a PSMA protein multimer. In this aspect, the isolated antibody is raised by immunizing an animal with a preparation comprising a PSMA protein multimer. Preferred preparations used in raising the antibody include those having at least about 10%, 20%, 30%, 40%, 50%, 75%, 90%, or 95% PSMA protein multimer. Preferably the PSMA protein multimer is a dimer.

10 In yet another aspect of the invention, compositions are provided that include one or more of the foregoing isolated antibodies, and an immunostimulatory molecule, such as an adjuvant and/or and a cytokine. Preferably the immunostimulatory molecule is IL-2 or an immunostimulatory oligonucleotide. In certain embodiments, the foregoing compositions also include a pharmaceutically-acceptable carrier.

15 The invention also includes methods for inducing an immune response, including administering to a subject in need of such treatment an effective amount of the foregoing isolated antibodies or compositions.

20 The invention provides, in another aspect, isolated antibodies or antigen-binding fragments thereof that selectively bind a PSMA protein multimer and modulate at least one enzymatic activity of PSMA. As used in preferred embodiments of this aspect of the invention, "modulating" an enzymatic activity of a PSMA means enhancing or inhibiting the enzymatic activity. Thus in certain aspects of the invention, antibodies that inhibit an enzymatic activity of PSMA are provided, and in other aspects of the invention, antibodies that inhibit an enzymatic activity of PSMA are provided. The terms "enhancing" and "inhibiting" in this context indicate that the enzymatic activity of PSMA is enhanced or inhibited in the presence of an antibody that specifically binds PSMA, or antigen-binding fragment thereof, relative to the level of activity in the absence of such an antibody or antigen-binding fragment thereof. The enzyme, in certain embodiments, is selected from the group consisting of hydrolases and peptidases. Preferred hydrolases include folate hydrolase and γ -glutamyl hydrolase. In a particularly preferred embodiment of PSMA inhibition, the hydrolase is folate hydrolase and the antibody is mAb 5.4 or mAb 3.9. Preferred peptidases include NAALADase and dipeptidyl dipeptidase IV. In some embodiments, the enzyme is active in cancer cells and has lesser activity in normal cells than in cancer cells or, preferably, no activity in normal cells. In preferred embodiments, the cancer cells in which the enzyme is active are prostate cancer cells. Compositions including the foregoing isolated antibodies

or antigen-binding fragments thereof, and a pharmaceutically acceptable carrier, also are provided by the invention.

In another aspect of the invention, compositions are provided that include an isolated PSMA protein multimer. Preferably the PSMA protein multimer is a dimer. In certain 5 embodiments, the compositions include at least about 10%, 20%, 30%, 40%, 50%, 75%, 90%, or 95% PSMA protein multimer. In other embodiments, the PSMA protein multimer comprises noncovalently associated PSMA proteins. The PSMA proteins preferably are noncovalently associated under nondenaturing conditions.

In certain embodiments of the foregoing compositions, at least one of the PSMA 10 proteins forming the multimer is a recombinant, soluble PSMA (rsPSMA) polypeptide. In other embodiments, the PSMA protein multimer is reactive with a conformation-specific antibody that specifically recognizes PSMA. Preferably, the PSMA protein multimer comprises PSMA proteins in a native conformation and/or the PSMA multimer is enzymatically active. In preferred embodiments, the enzymatic activity is folate hydrolase 15 activity, NAALADase activity, dipeptidyl dipeptidase IV activity and/or γ -glutamyl hydrolase activity.

In still other embodiments, the foregoing compositions also include an adjuvant and/or a cytokine or other immunostimulatory molecule. Preferred cytokines include IL-2, 20 IL-12, IL-18 and GM-CSF. In further embodiments, the foregoing compositions also include a pharmaceutically acceptable carrier.

According to yet another aspect of the invention, methods for inducing an immune response are provided. The methods include administering to a subject in need of such treatment an effective amount of one or more of the foregoing compositions.

In a further aspect, the invention includes isolated recombinant soluble PSMA 25 (rsPSMA) protein multimers, and isolated rsPSMA protein dimers. In some embodiments, the dimer includes noncovalently associated rsPSMA proteins, and preferably the rsPSMA proteins are noncovalently associated under nondenaturing conditions. In other embodiments, the isolated rsPSMA dimer is reactive with a conformation-specific antibody that specifically recognizes PSMA.

30 In a certain preferred embodiment, the isolated rsPSMA dimer is enzymatically active, with the enzymatic activity selected from the group consisting of folate hydrolase

activity, NAALADase activity, dipeptidyl dipeptidase IV activity and γ -glutamyl hydrolase activity.

In still another aspect of the invention, methods of screening for a candidate agent that modulates at least one enzymatic activity of a PSMA enzyme are provided. As used in

5 preferred embodiments of the methods, "modulating" an enzymatic activity of PSMA means enhancing or inhibiting the enzymatic activity. Thus in certain aspects of the invention, methods for screening for a candidate agent that inhibits an enzymatic activity of PSMA are provided, and in other aspects of the invention, methods for screening for a candidate agent that enhances an enzymatic activity of PSMA are provided. The terms "enhancing" and
10 "inhibiting" in this context indicate that the enzymatic activity of PSMA is enhanced or inhibited in the presence of a candidate agent relative to the level of activity in the absence of such an agent. The methods include mixing the candidate agent with an isolated PSMA protein multimer to form a reaction mixture, followed by adding a substrate for the PSMA enzyme to the reaction mixture, and determining the amount of a product formed from the
15 substrate by the PSMA enzyme. A change in the amount of product formed in comparison to a control is indicative of an agent capable of modulating at least one enzymatic activity of the PSMA enzyme. A decrease in the amount of product formed in comparison to a control is indicative of an agent capable of inhibiting at least one enzymatic activity of the PSMA enzyme. An increase in the amount of product formed in comparison to a control is
20 indicative of an agent capable of enhancing at least one enzymatic activity of the PSMA enzyme. In some embodiments the PSMA enzyme is selected from the group consisting of NAALADase, folate hydrolase, dipeptidyl dipeptidase IV and γ -glutamyl hydrolase. In other embodiments the PSMA multimer comprises recombinant, soluble PSMA. In yet other embodiments the candidate agent is selected from the group consisting of an antibody, a
25 small organic compound, or a peptide.

In another aspect of the invention, candidate agents that modulate at least one enzymatic activity of PSMA are provided. The candidate agents are identified according to the foregoing methods. Thus in certain aspects of the invention, candidate agents that inhibit an enzymatic activity of PSMA are provided, and in other aspects of the invention, candidate agents that enhance an enzymatic activity of PSMA are provided. In certain embodiments, the agent is selected from a combinatorial antibody library, a combinatorial protein library, or a small organic molecule library.

The invention also provides methods for identifying compounds that promote dissociation of PSMA dimers. The methods include contacting a PSMA dimer with a compound under conditions that do not promote dissociation of the PSMA dimer in the absence of the compound, measuring the amount of PSMA monomer and/or dimer; and

5 comparing the amount of PSMA monomer and/or dimer measured in the presence of the compound with that observed in the absence of the compound. An increase in the amount of PSMA monomer measured in the presence of the compound indicates that the compound is capable of promoting dissociation of the PSMA dimer. A decrease in the amount of PSMA dimer measured in the presence of the compound indicates that the compound is capable of

10 promoting dissociation of the PSMA dimer. When the amounts of PSMA monomer and PSMA dimer are measured, the methods can include calculating a ratio of PSMA monomer to PSMA dimer and comparing the ratio obtained in the presence of the compound with that obtained in the absence of the compound. In such methods, an increase in the ratio measured in the presence of the compound indicates that the compound is capable of promoting

15 dissociation of the PSMA dimer.

The use of the foregoing compositions, molecules and agents in the preparation of medicaments also is provided. In preferred embodiments, the medicaments are useful in the treatment of conditions related to hyperproliferative diseases including cancer, and diseases of inappropriate NAALADase activity, folate hydrolase activity, dipeptidyl dipeptidase IV activity and/or γ -glutamyl hydrolase activity.

These and other aspects of the invention will be described in further detail in connection with the detailed description of the invention.

Brief Description of the Drawings

25 Figure 1 depicts PSMA reactivity of mAbs as determined by flow cytometry. Anti-PSMA mAbs (3.7, 3.9, 3.11, 3.12, 5.4, and 10.3) incubated with either parental 3T3 cells (denoted by black lines) or 3T3 cells engineered to express cell-surface PSMA (3T3-PSMA; gray lines).

Figure 2 shows a digitized image of immunoprecipitation of PSMA by mAbs.

30 Lysates from 3T3-PSMA cells or parental 3T3 cells were incubated with each mAb and then precipitated using Protein A/G agarose beads. After washing, proteins were resolved on a

polyacrylamide gel, blotted onto nitrocellulose membranes and visualized using the MAB544 anti-PSMA mAb.

Figure 3 shows the recognition of non-denatured PSMA by several PSMA antibodies that recognize PSMA conformation.

5 Figure 4 is a digitized image of a Western blot that shows the recognition of denatured PSMA by two PSMA antibodies and shows that antibodies that recognize PSMA conformation do not recognize denatured PSMA.

Figure 5 is a digitized image of a polyacrylamide gel that shows an analysis of purified recombinant, soluble PSMA (rsPSMA) and of full-length PSMA from 3T3 cells
10 (3T3 PSMA) or LNCaP cells (LNCaP PSMA) by reduced and non-reduced SDS-PAGE.

Figure 6 is a digitized image of a polyacrylamide gel that depicts a Blue Native PAGE analysis of purified recombinant, soluble PSMA (Purified rsPSMA) and of full-length PSMA extracted from 3T3 cells (3T3 PSMA) or LNCaP cells (LNCaP PSMA).

15 Figure 7 shows the effect of four antibodies (mAb 3.9, mAb 5.4, mAb 7.3 and mAb J591) on the enzymatic activity of folate hydrolase through measuring the rate of cleavage of glutamate from methotrexate di-gamma glutamate by folate hydrolase present in 0.0002 μ g rsPSMA #7.

20 Figure 8 shows the effect of four antibodies (mAb 3.9, mAb 5.4, mAb 7.3 and mAb J591) on the enzymatic activity of folate hydrolase through measuring the rate of cleavage of glutamate from methotrexate di-gamma glutamate by folate hydrolase present in 0.0002 μ g rsPSMA #8.

25 Figure 9 shows the effect of four antibodies (mAb 3.9, mAb 5.4, mAb 7.3 and mAb J591) on the enzymatic activity of folate hydrolase through measuring the rate of cleavage of glutamate from methotrexate di-gamma glutamate by folate hydrolase present in lysates of C4-2 cells.

Figure 10 depicts the cloning protocol for IgG1 antibody cloning into pcDNA.

Figure 11 provides the plasmid map of a nucleic acid molecule encoding the heavy chain of antibody AB-PG1-XG1-006.

30 Figure 12 provides the plasmid map of a nucleic acid molecule encoding the heavy chain of antibody AB-PG1-XG1-026.

Figure 13 provides the plasmid map of a nucleic acid molecule encoding the heavy chain of antibody AB-PG1-XG1-051.

Figure 14 provides the plasmid map of a nucleic acid molecule encoding the heavy chain of antibody AB-PG1-XG1-069.

Figure 15 provides the plasmid map of a nucleic acid molecule encoding the heavy chain of antibody AB-PG1-XG1-077.

5 Figure 16 provides the plasmid map of a nucleic acid molecule encoding the heavy chain of antibody PSMA 10.3.

Figure 17 provides the plasmid map of a nucleic acid molecule encoding the light chain of antibody AB-PG1-XG1-006.

10 Figure 18 provides the plasmid map of a nucleic acid molecule encoding the light chain of antibody AB-PG1-XG1-026.

Figure 19 provides the plasmid map of a nucleic acid molecule encoding the light chain of antibody AB-PG1-XG1-051.

Figure 20 provides the plasmid map of a nucleic acid molecule encoding the light chain of antibody AB-PG1-XG1-069.

15 Figure 21 provides the plasmid map of a nucleic acid molecule encoding the light chain of antibody AB-PG1-XG1-077.

Figure 22 provides the plasmid map of a nucleic acid molecule encoding the light chain of antibody PSMA 10.3.

Figure 23 depicts the cytotoxicity of ^{225}Ac -3.9 on LNCaP target cells.

20 Figure 24 illustrates the reactivity of anti-PSMA monoclonal antibodies XG-006, XG-051, 4.40.1, 4.49.1, 4.292.1 and 4.304.1 incubated with either parent 3T3 cells (black histogram) or 3T3 cells engineered to express cell-surface human PSMA (grey histogram) and analyzed by flow cytometry.

Figure 25 illustrates the binding of the anti-PSMA Abs. Figure 25A shows that anti-PSMA mAbs bind to 3T3-PSMA cells and not 3T3 cells. One representative experiment from at least ten determinations is shown. Figure 25B illustrates that binding to cell-surface PSMA using serial dilutions of anti-PSMA mAb-containing culture supernatants occurred. One representative experiment from five is shown. Figure 25C shows binding to cell-surface PSMA using serial dilutions of purified anti-PSMA mAbs, XG-006 and 10.3 One representative experiment is shown.

30 Figure 26 illustrates the immunotoxin cytotoxicity of murine anti-PSMA antibodies on C4-2 prostate cancer cells. SJ25C-1 as a control antibody is a murine anti-CD19 IgG.

- 20 -

The LD 50s (M) for 5.4, 3.9, and mJ591 antibodies were 2.27×10^{-11} , 2.29×10^{-11} and 8.82×10^{-11} , respectively.

Figure 27 illustrates the immunotoxin cytotoxicity of murine anti-PSMA antibodies on PSMA-3T3 cells. SJ25C-1 as a control antibody is a murine anti-CD19 IgG. The LD 50s (M) for 5.4, 3.9, and mJ591 antibodies were 1.64×10^{-11} , 1.96×10^{-11} and 8.90×10^{-11} , respectively.

Figure 28 provides the cytotoxicity of direct conjugated human 4.304 anti-PSMA antibodies with saporin on PSMA-3T3. The LD50 was 1.48×10^{-11} M for direct conjugated 4.304 anti-PSMA antibodies with saporin.

Figure 29 illustrates the results of the competition assay of unmodified 4.304, 4.40, mJ591 anti-PSMA antibodies used to compete with In-111 radiolabeled 4.40 and 4.304 anti-PSMA antibodies.

Figure 30 illustrates the results of the competition assay of unmodified 4.304, mJ591 anti-PSMA antibodies used to compete with In-111 radiolabeled mJ591 anti-PSMA antibodies.

Figure 31 shows an analysis of antibody PRGX1-XG-006 in association phase and dissociation phase at different concentrations of rsPSMA from 100 nM to 6.25 nM.

Figure 32 shows the results of the comparison of the fully human anti-PSMA antibodies 4.40.1, 4.49.1, 051 and 006 and the murine anti-PSMA antibody 3.9 performed using Biacore analysis.

Figure 33 provides results from the Scatchard analysis using In-111 labeled anti-PSMA antibody 3.9 of the PSMA-3T3, LNCaP and C4-2 cell lines.

Figure 34 shows *in vitro* cytotoxicity of Ac-225 labeled human anti-PSMA antibody 4.40 on prostate cancer cells.

Figure 35 shows the results of *in vivo* radioimmunotherapy with Lu-177 labeled human anti-PSMA antibodies.

Figure 36 is a series of graphs that show flow cytometry data for the binding of anti-PSMA antisera to PSMA-3T3 cells. Antisera from mice immunized with a rsPSMA dimer preparation (ABIM151, ABIM152, ABIM153, ABIM154 and ABIM155) exhibited strong binding to PSMA-expressing cells. Antisera from mice immunized with a rsPSMA monomer preparation (ABIM156, ABIM157, ABIM158, ABIM159 and ABIM160) exhibited little or no binding to PSMA-expressing cells.

Detailed Description of the Invention

The present invention provides antibodies or antigen-binding fragments thereof which bind specifically to conformational epitopes on the extracellular domain of PSMA, 5 compositions containing one or a combination of such antibodies or antigen-binding fragments thereof, hybridoma cell lines that produce the antibodies, and methods of using the antibodies or antigen-binding fragments thereof for cancer diagnosis and treatment.

Prostate specific membrane antigen (PSMA) is a 100 kD Type II membrane glycoprotein expressed in prostate tissues and was originally identified by reactivity with a 10 monoclonal antibody designated 7E11-C5 (Horoszewicz et al., 1987, *Anticancer Res.* 7:927-935; U.S. Pat. No. 5,162,504). PSMA was obtained in purified form (Wright et al., 1990, *Antibody Immunconjugates and Radio Pharmaceuticals* 3:Abstract 193) and characterized 15 as a type II transmembrane protein having sequence identity with the transferrin receptor (Israeli et al., 1994, *Cancer Res.* 54:1807-1811) and with NAALADase activity (Carter et al., 1996, *Proc. Natl. Acad. Sci. U.S.A.* 93:749-753). More importantly, PSMA is expressed in increased amounts in prostate cancer, and elevated levels of PSMA are also detectable in the sera of these patients (Horoszewicz et al., 1987; Rochon et al., 1994, *Prostate* 25:219-223; Murphy et al., 1995, *Prostate* 26:164-168; and Murphy et al., 1995, *Anticancer Res.* 15:1473-1479). PSMA expression increases with disease progression, becoming highest in metastatic, 20 hormone-refractory disease for which there is no present therapy. Provocative recent data indicates that PSMA is also abundantly expressed on the neovasculature of a variety of other important tumors, including bladder, pancreas, sarcoma, melanoma, lung, and kidney tumor cells, but not on normal vasculature.

One aspect of the invention provides an isolated antibody or an antigen-binding 25 fragment thereof which specifically binds to an extracellular domain of PSMA wherein the antibody or the antigen-binding fragment thereof competitively inhibits the specific binding of a second antibody to its target epitope on PSMA, and wherein the second antibody is selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, 4.248.2, 30 4.360.3, 4.7.1, 4.4.1, 4.177.3, 4.16.1, 4.22.3, 4.28.3, 4.40.2, 4.48.3, 4.49.1, 4.209.3, 4.219.3, 4.288.1, 4.333.1, 4.54.1, 4.153.1, 4.232.3, 4.292.3, 4.304.1, 4.78.1, and 4.152.1.

Another aspect of the invention provides an isolated antibody or an antigen-binding fragment thereof that specifically binds to an epitope on PSMA defined by an antibody selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, 4.248.2, 5 4.360.3, 4.7.1, 4.4.1, 4.177.3, 4.16.1, 4.22.3, 4.28.3, 4.40.2, 4.48.3, 4.49.1, 4.209.3, 4.219.3, 4.288.1, 4.333.1, 4.54.1, 4.153.1, 4.232.3, 4.292.3, 4.304.1, 4.78.1, and 4.152.1.

In particular embodiments, these antibodies are produced by hybridomas referred to herein as PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, 10 Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1, and Abgenix 4.152.1, respectively. These hybridomas were deposited with ATCC as an International Depository Authority and 15 given the following Patent Deposit Designations (Table 1):

Table 1.

Antibody	Hybridoma/Plasmid	Patent Deposit Designation	Date of Deposit
PSMA 3.7	PSMA 3.7	PTA-3257	April 5, 2001
PSMA 3.9	PSMA 3.9	PTA-3258	April 5, 2001
PSMA 3.11	PSMA 3.11	PTA-3269	April 10, 2001
PSMA 5.4	PSMA 5.4	PTA-3268	April 10, 2001
PSMA 7.1	PSMA 7.1	PTA-3292	April 18, 2001
PSMA 7.3	PSMA 7.3	PTA-3293	April 18, 2001
PSMA 10.3	PSMA 10.3	PTA-3347	May 1, 2001
	PSMA 10.3 HC in pcDNA (SEQ ID NO: 7)	PTA-4413	May 29, 2002
	PSMA 10.3 Kappa in pcDNA (SEQ ID NO: 13)	PTA-4414	May 29, 2002
PSMA 1.8.3	PSMA 1.8.3	PTA-3906	Dec. 5, 2001
PSMA A3.1.3	PSMA A3.1.3	PTA-3904	Dec. 5, 2001

PSMA A3.3.1	PSMA A3.3.1	PTA-3905	Dec. 5, 2001
Abgenix 4.248.2	Abgenix 4.248.2	PTA-4427	June 4, 2002
Abgenix 4.360.3	Abgenix 4.360.3	PTA-4428	June 4, 2002
Abgenix 4.7.1	Abgenix 4.7.1	PTA-4429	June 4, 2002
Abgenix 4.4.1	Abgenix 4.4.1	PTA-4556	July 18, 2002
Abgenix 4.177.3	Abgenix 4.177.3	PTA-4557	July 18, 2002
Abgenix 4.16.1	Abgenix 4.16.1	PTA-4357	May 16, 2002
Abgenix 4.22.3	Abgenix 4.22.3	PTA-4358	May 16, 2002
Abgenix 4.28.3	Abgenix 4.28.3	PTA-4359	May 16, 2002
Abgenix 4.40.2	Abgenix 4.40.2	PTA-4360	May 16, 2002
Abgenix 4.48.3	Abgenix 4.48.3	PTA-4361	May 16, 2002
Abgenix 4.49.1	Abgenix 4.49.1	PTA-4362	May 16, 2002
Abgenix 4.209.3	Abgenix 4.209.3	PTA-4365	May 16, 2002
Abgenix 4.219.3	Abgenix 4.219.3	PTA-4366	May 16, 2002
Abgenix 4.288.1	Abgenix 4.288.1	PTA-4367	May 16, 2002
Abgenix 4.333.1	Abgenix 4.333.1	PTA-4368	May 16, 2002
Abgenix 4.54.1	Abgenix 4.54.1	PTA-4363	May 16, 2002
Abgenix 4.153.1	Abgenix 4.153.1	PTA-4388	May 23, 2002
Abgenix 4.232.3	Abgenix 4.232.3	PTA-4389	May 23, 2002
Abgenix 4.292.3	Abgenix 4.292.3	PTA-4390	May 23, 2002
Abgenix 4.304.1	Abgenix 4.304.1	PTA-4391	May 23, 2002
AB-PG1-XG1-006	AB-PG1-XG1-006 Heavy	PTA-4403	May 29, 2002
	Chain (SEQ ID NO: 2)	PTA-4404	
AB-PG1-XG1-026	AB-PG1-XG1-026 Heavy	PTA-4405	May 29, 2002
	Chain (SEQ ID NO: 3)	PTA-4406	
AB-PG1-XG1-051	AB-PG1-XG1-051 Heavy	PTA-4407	May 29, 2002
	Chain (SEQ ID NO: 4)	PTA-4408	
	AB-PG1-XG1-051 Light		

	Chain (SEQ ID NO: 10)		
AB-PG1-XG1-069	AB-PG1-XG1-069 Heavy	PTA-4409	May 29, 2002
	Chain (SEQ ID NO: 5)	PTA-4410	
AB-PG1-XG1-077	AB-PG1-XG1-077 Heavy	PTA-4411	May 29, 2002
	Chain (SEQ ID NO: 6)	PTA-4412	

In another aspect of the invention, antibodies having particular sequences are provided. Specifically, the antibodies are selected from the group consisting of antibodies comprising: a heavy chain encoded by a nucleic acid molecule comprising the heavy chain coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 2-7, and a light chain encoded by a nucleic acid molecule comprising the light chain coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 8-13. Also provided are antigen-binding fragments of the foregoing antibodies.

The plasmids encoding the heavy and light chains of antibodies PSMA 10.3, AB-PG1-XG1-006, AB-PG1-XG1-026, AB-PG1-XG1-051, AB-PG1-XG1-069, AB-PG1-XG1-077 were also deposited with ATCC and are shown in Table 1 above. As used herein, the names of the deposited hybridomas or plasmids may be used interchangeably with the names of the antibodies. It would be clear to one of skill in the art when the name is intended to refer to the antibody or when it refers to the plasmids or hybridomas that encode or produce the antibodies, respectively. Additionally, the antibody names may be an abbreviated form of the name shown in Table 1. For instance antibody AB-PG1-XG1-006 may be referred to as AB-PG1-XG1-006, PG1-XG1-006, XG1-006, 006, etc. In another example, the antibody name PSMA 4.232.3 may be referred to as PSMA 4.232.1, 4.232.3, 4.232.1, 4.232, etc. It is intended that all of the variations in the name of the antibody refer to the same antibody and not a different one.

Antibodies are also provided that are encoded by particular sets of heavy and light chain sequences. In one embodiment an antibody (AB-PG1-XG1-006) encoded by a nucleic

acid molecule which comprises the coding region or regions of the nucleic acid sequences set forth as :SEQ ID NOs: 2 and 8 is provided. In another embodiment the antibody (AB-PG1-XG1-026) is encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 3 and 9. In still another embodiment the antibody (AB-PG1-XG1-051) is encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 4 and 10. In yet another embodiment the antibody (AB-PG1-XG1-069) is encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 5 and 11. In another embodiment the antibody (AB-PG1-XG1-077) is encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 6 and 12. In yet another embodiment the antibody (PSMA 10.3) is encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 7 and 13.

In particularly preferred embodiments, the antibodies include a heavy chain variable region encoded by a nucleic acid molecule comprising the coding regions or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as: SEQ ID NOs: 14, 18, 22, 26 and 30, and a light chain variable region encoded by a nucleic acid molecule comprising the coding region or region of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as: SEQ ID NOs: 16, 20, 24, 28 and 32. As used herein, a “coding region” refers to a region of a nucleotide sequence that encodes a polypeptide sequence; the coding region can include a region coding for a portion of a protein that is later cleaved off, such as a signal peptide.

Those of skill in the art will appreciate that the invention includes nucleic acids and polypeptides that include nucleotide and amino acid sequences presented herein. In some instances, the nucleotide and amino acid sequences may include sequences that encode or that are signal peptides. The invention embraces each of these sequences with, or without, the portion of the sequence that encodes or is a signal peptide.

Antibodies also are provided that include particular sets of heavy and light chain variable sequences. In one embodiment an antibody (AB-PG1-XG1-006) includes an immunoglobulin variable sequence encoded by nucleic acid molecules which included the coding region or regions of the nucleic acid sequences set forth as :SEQ ID NOs: 14 and 16 is provided. Likewise the antibody may include an immunoglobulin variable sequence which

comprises the amino acid sequences set forth as SEQ ID NOs: 15 and 17. In another embodiment the antibody (AB-PG1-XG1-026) includes an immunoglobulin variable sequence encoded by nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 18 and 20 or includes an immunoglobulin variable sequence which comprises the amino acid sequences set forth as SEQ ID NOs: 19 and 21. In still another embodiment the antibody (AB-PG1-XG1-051) includes an immunoglobulin variable sequence encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 22 and 24 or includes an immunoglobulin variable sequence which comprises the amino acid sequences set forth as SEQ ID NOs: 23 and 25. In yet another embodiment the antibody (AB-PG1-XG1-069) includes an immunoglobulin variable sequence encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 26 and 28 or includes an immunoglobulin variable sequence which comprises the amino acid sequences set forth as SEQ ID NOs: 27 and 29. In another embodiment the antibody (AB-PG1-XG1-077) includes an immunoglobulin variable sequence encoded by the nucleic acid molecules comprising the coding region or regions of nucleotide sequences set forth as: SEQ ID NOs: 30 and 32 or includes an immunoglobulin variable sequence which comprises the amino acid sequences set forth as SEQ ID NOs: 31 and 33.

In certain embodiments, the antibody is encoded by a nucleic acid molecule that is highly homologous to the foregoing nucleic acid molecules. Preferably the homologous nucleic acid molecule comprises a nucleotide sequence that is at least about 90% identical to the nucleotide sequence provided herein. More preferably, the nucleotide sequence is at least about 95% identical, at least about 97% identical, at least about 98% identical, or at least about 99% identical to the nucleotide sequence provided herein. The homology can be calculated using various, publicly available software tools well known to one of ordinary skill in the art. Exemplary tools include the BLAST system available from the website of the National Center for Biotechnology Information (NCBI) at the National Institutes of Health.

One method of identifying highly homologous nucleotide sequences is via nucleic acid hybridization. Thus the invention also includes antibodies having the PSMA-binding properties and other functional properties described herein, which are encoded by nucleic acid molecules that hybridize under high stringency conditions to the foregoing nucleic acid molecules. Identification of related sequences can also be achieved using polymerase chain

reaction (PCR) and other amplification techniques suitable for cloning related nucleic acid sequences. Preferably, PCR primers are selected to amplify portions of a nucleic acid sequence of interest, such as a CDR.

The term "high stringency conditions" as used herein refers to parameters with which the art is familiar. Nucleic acid hybridization parameters may be found in references that compile such methods, e.g. *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. One example of high-stringency conditions is hybridization at 65°C in hybridization buffer (3.5X SSC, 0.02% Ficoll, 0.02% polyvinyl pyrrolidone, 0.02% Bovine Serum Albumin, 2.5mM NaH₂PO₄(pH7), 0.5% SDS, 2mM EDTA). SSC is 0.15M sodium chloride/0.015M sodium citrate, pH7; SDS is sodium dodecyl sulphate; and EDTA is ethylenediaminetetraacetic acid. After hybridization, a membrane upon which the nucleic acid is transferred is washed, for example, in 2X SSC at room temperature and then at 0.1 - 0.5X SSC/0.1X SDS at temperatures up to 68°C.

In other preferred embodiments, the antibodies include a heavy chain variable region comprising an amino acid sequence selected from the group consisting of amino acid sequences set forth as: SEQ ID NOs: 15, 19, 23, 27 and 31, and a light chain variable region comprising an amino acid sequence selected from the group consisting of nucleotide sequences set forth as: SEQ ID NOs: 17, 21, 25, 29 and 33. Antigen-binding fragments of the foregoing also are provided, as described elsewhere herein.

As used herein, the term "antibody" refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as HCVR or V_H) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, C_H1, C_H2 and C_H3. Each light chain is comprised of a light chain variable region (abbreviated herein as LCVR or V_L) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The V_H and V_L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each V_H and V_L is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The

variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (C1q) of the classical complement system.

5 The term "antigen-binding fragment" of an antibody as used herein, refers to one or more portions of an antibody that retain the ability to specifically bind to an antigen (e.g., PSMA). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term "antigen-binding fragment" of an antibody include (i) a Fab fragment, a monovalent 10 fragment consisting of the V_L, V_H, C_L and C_{H1} domains; (ii) a F(ab')₂ fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the V_H and CH1 domains; (iv) a Fv fragment consisting of the V_L and V_H domains of a single arm of an antibody, (v) a dAb fragment (Ward *et al.*, (1989) 15 *Nature* 341:544-546) which consists of a V_H domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, V_L and V_H, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the V_L and V_H regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., 20 Bird *et al.* (1988) *Science* 242:423-426; and Huston *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:5879-5883). Such single chain antibodies are also intended to be encompassed within the term "antigen-binding portion" of an antibody. These antibody fragments are obtained using conventional procedures, such as proteolytic fragmentation procedures, as described in J. 25 Goding, *Monoclonal Antibodies: Principles and Practice*, pp 98-118 (N.Y. Academic Press 1983), which is hereby incorporated by reference as well as by other techniques known to those with skill in the art. The fragments are screened for utility in the same manner as are intact antibodies.

An "isolated antibody", as used herein, is intended to refer to an antibody which is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds to PSMA is substantially free of antibodies that specifically bind antigens other than PSMA). An isolated antibody that specifically binds to an epitope, isoform or variant of PSMA may, however, have cross-reactivity to other related antigens, 30 e.g., from other species (e.g., PSMA species homologs). Moreover, an isolated antibody may

be substantially free of other cellular material and/or chemicals. As used herein, "specific binding" refers to antibody binding to a predetermined antigen. Typically, the antibody binds with an affinity that is at least two-fold greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen or a closely-related antigen.

5 The isolated antibodies of the invention encompass various antibody isotypes, such as IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE. As used herein, "isotype" refers to the antibody class (e.g. IgM or IgG1) that is encoded by heavy chain constant region genes. The antibodies can be full length or can include only an antigen-binding fragment such as the antibody constant and/or variable domain of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, 10 IgA2, IgAsec, IgD or IgE or could consist of a Fab fragment, a F(ab')₂ fragment, and a Fv fragment.

15 The antibodies of the present invention can be polyclonal, monoclonal, or a mixture of polyclonal and monoclonal antibodies. The antibodies can be produced by a variety of techniques well known in the art. Procedures for raising polyclonal antibodies are well known. For example anti-PSMA polyclonal antibodies are raised by administering PSMA protein subcutaneously to New Zealand white rabbits which have first been bled to obtain pre-immune serum. The PSMA can be injected at a total volume of 100 μ l per site at six different sites, typically with one or more adjustments. The rabbits are then bled two weeks after the first injection and periodically boosted with the same antigen three times every six 20 weeks. A sample of serum is collected 10 days after each boost. Polyclonal antibodies are recovered from the serum, preferably by affinity chromatography using PSMA to capture the antibody. This and other procedures for raising polyclonal antibodies are disclosed in E. Harlow, et. al., editors, *Antibodies: A Laboratory Manual* (1988), which is hereby incorporated by reference.

25 Monoclonal antibody production may be effected by techniques which are also well known in the art. The term "monoclonal antibody," as used herein, refers to a preparation of antibody molecules of single molecular composition. A monoclonal antibody displays a single binding specificity and affinity for a particular epitope. The process of monoclonal antibody production involves obtaining immune somatic cells with the potential for 30 producing antibody, in particular B lymphocytes, which have been previously immunized with the antigen of interest either *in vivo* or *in vitro* and that are suitable for fusion with a B-cell myeloma line.

Mammalian lymphocytes typically are immunized by *in vivo* immunization of the animal (e.g., a mouse) with the desired protein or polypeptide, e.g., with PSMA in the present invention. Such immunizations are repeated as necessary at intervals of up to several weeks to obtain a sufficient titer of antibodies. Once immunized, animals can be used as a source of antibody-producing lymphocytes. Following the last antigen boost, the animals are sacrificed and spleen cells removed. Mouse lymphocytes give a higher percentage of stable fusions with the mouse myeloma lines described herein. Of these, the BALB/c mouse is preferred. However, other mouse strains, rabbit, hamster, sheep and frog may also be used as hosts for preparing antibody-producing cells. See; Goding (in *Monoclonal Antibodies: Principles and Practice*, 2d ed., pp. 60-61, Orlando, Fla., Academic Press, 1986). In particular, mouse strains that have human immunoglobulin genes inserted in the genome (and which cannot produce mouse immunoglobulins) are preferred. Examples include the HuMAb mouse strains produced by Medarex/GenPharm International, and the XenoMouse strains produced by Abgenix. Such mice produce fully human immunoglobulin molecules in response to immunization.

Those antibody-producing cells that are in the dividing plasmablast stage fuse preferentially. Somatic cells may be obtained from the lymph nodes, spleens and peripheral blood of antigen-primed animals, and the lymphatic cells of choice depend to a large extent on their empirical usefulness in the particular fusion system. The antibody-secreting lymphocytes are then fused with (mouse) B cell myeloma cells or transformed cells, which are capable of replicating indefinitely in cell culture, thereby producing an immortal, immunoglobulin-secreting cell line. The resulting fused cells, or hybridomas, are cultured, and the resulting colonies screened for the production of the desired monoclonal antibodies. Colonies producing such antibodies are cloned, and grown either *in vivo* or *in vitro* to produce large quantities of antibody. A description of the theoretical basis and practical methodology of fusing such cells is set forth in Kohler and Milstein, *Nature* 256:495 (1975), which is hereby incorporated by reference.

Alternatively, human somatic cells capable of producing antibody, specifically B lymphocytes, are suitable for fusion with myeloma cell lines. While B lymphocytes from biopsied spleens, tonsils or lymph nodes of an individual may be used, the more easily accessible peripheral blood B lymphocytes are preferred. The lymphocytes may be derived from patients with diagnosed prostate carcinomas or another PSMA-expressing cancer. In

addition, human B cells may be directly immortalized by the Epstein-Barr virus (Cole et al., 1995, *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96). Although somatic cell hybridization procedures are preferred, in principle, other techniques for producing monoclonal antibodies can be employed such as viral or oncogenic transformation 5 of B lymphocytes.

Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of the desired hybridomas. Examples of such myeloma cell lines that may be used for the 10 production of fused cell lines include P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4.1, Sp2/0-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7, S194/5XX0 Bul, all derived from mice; R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210 derived from rats and U-266, GM1500-GRG2, LICR-LON-HMy2, UC729-6, all derived from humans (Goding, in *Monoclonal Antibodies: Principles and Practice*, 2d ed., pp. 65-66, Orlando, Fla., Academic Press, 1986; Campbell, in 15 *Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology* Vol. 13, Burden and Von Knippenberg, eds. pp. 75-83, Amsterdam, Elseview, 1984).

Fusion with mammalian myeloma cells or other fusion partners capable of replicating indefinitely in cell culture is effected by standard and well-known techniques, for example, 20 by using polyethylene glycol ("PEG") or other fusing agents (See Milstein and Kohler, *Eur. J. Immunol.* 6:511 (1976), which is hereby incorporated by reference).

In other embodiments, the antibodies can be recombinant antibodies. The term "recombinant antibody", as used herein, is intended to include antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies isolated from an 25 animal (e.g., a mouse) that is transgenic for another species' immunoglobulin genes, antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a recombinant, combinatorial antibody library, or antibodies prepared, expressed, created or isolated by any other means that involves splicing of immunoglobulin gene sequences to other DNA sequences.

30 In yet other embodiments, the antibodies can be chimeric or humanized antibodies. As used herein, the term "chimeric antibody" refers to an antibody, that combines the murine variable or hypervariable regions with the human constant region or constant and variable

framework regions. As used herein, the term "humanized antibody" refers to an antibody that retains only the antigen-binding CDRs from the parent antibody in association with human framework regions (see, Waldmann, 1991, *Science* 252:1657). Such chimeric or humanized antibodies retaining binding specificity of the murine antibody are expected to have reduced 5 immunogenicity when administered *in vivo* for diagnostic, prophylactic or therapeutic applications according to the invention.

According to an alternative embodiment, the monoclonal antibodies of the present invention can be modified to be in the form of a bispecific antibody, or a multispecific antibody. The term "bispecific antibody" is intended to include any agent, e.g., a protein, 10 peptide, or protein or peptide complex, which has two different binding specificities which bind to, or interact with (a) a cell surface antigen and (b) an Fc receptor on the surface of an effector cell. The term "multispecific antibody" is intended to include any agent, e.g., a protein, peptide, or protein or peptide complex, which has more than two different binding specificities which bind to, or interact with (a) a cell surface antigen, (b) an Fc receptor on the 15 surface of an effector cell, and (c) at least one other component. Accordingly, the invention includes, but is not limited to, bispecific, trispecific, tetraspecific, and other multispecific antibodies which are directed to cell surface antigens, such as PSMA, and to Fc receptors on effector cells. The term "bispecific antibodies" further includes diabodies. Diabodies are 20 bivalent, bispecific antibodies in which the V_H and V_L domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen-binding sites (see e.g., Holliger, P., *et al.* (1993) *Proc. Natl. Acad. Sci. USA* 90:6444-6448; Pojark, R.J., *et al.* (1994) *Structure* 2:1121-1123).

A bispecific antibody can be formed of an antigen-binding region specific for the 25 extracellular domain of PSMA and an antigen-binding region specific for an effector cell which has tumoricidal or tumor inhibitory activity. The two antigen-binding regions of the bispecific antibody are either chemically linked or can be expressed by a cell genetically engineered to produce the bispecific antibody. (See generally, Fanger *et al.*, 1995 *Drug News & Perspec.* 8(3):133-137). Suitable effector cells having tumoricidal activity include but are 30 not limited to cytotoxic T-cells (primarily CD8⁺ cells), natural killer cells, etc. An effective amount of a bispecific antibody according to the invention is administered to a prostrate

cancer patient and the bispecific antibody kills and/or inhibits proliferation of the malignant cells after localization at sites of primary or metastatic tumors bearing PSMA.

In certain embodiments, the antibodies are human antibodies. The term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis *in vitro* or by somatic mutation *in vivo*). However, the term “human antibody”, as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse have been grafted onto human framework sequences (referred to herein as “humanized antibodies”). Human antibodies directed against PSMA are generated using transgenic mice carrying parts of the human immune system rather than the mouse system.

Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. See, e.g., U.S. patents 5,591,669, 5,598,369, 5,545,806, 5,545,807, 6,150,584, and references cited therein, the contents of which are incorporated herein by reference. These animals have been genetically modified such that there is a functional deletion in the production of endogenous (e.g., murine) antibodies. The animals are further modified to contain all or a portion of the human germ-line immunoglobulin gene locus such that immunization of these animals results in the production of fully human antibodies to the antigen of interest. Following immunization of these mice (e.g., XenoMouse (Abgenix), HuMAb mice (Medarex/GenPharm)), monoclonal antibodies are prepared according to standard hybridoma technology. These monoclonal antibodies have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (HAMA) responses when administered to humans.

Preferably, the mice are 6-16 weeks of age upon the first immunization. For example, a purified or enriched preparation of PSMA antigen (e.g., recombinant PSMA or PSMA-expressing cells) is used to immunize the mice intraperitoneally (IP), although other routes of immunization known to one of ordinary skill in the art are also possible. PSMA antigen is injected in combination with an adjuvant, such as complete Freund's adjuvant, and preferably the initial injection is followed by booster immunizations with antigen in an adjuvant, such as

incomplete Freund's adjuvant. The immune response is monitored over the course of the immunization protocol with plasma samples obtained by, for example, retroorbital bleeds. The plasma is screened by ELISA (as described below), and mice with sufficient titers of anti-PSMA human immunoglobulin are used for fusions. Mice are boosted intravenously 5 with antigen 3 days before sacrifice and removal of the spleen.

In particular embodiments, the antibodies are produced by hybridomas referred to herein as PSMA 3.7 (PTA-3257), PSMA 3.8, PSMA 3.9 (PTA-3258), PSMA 3.11 (PTA-3269), PSMA 5.4 (PTA-3268), PSMA 7.1 (PTA-3292), PSMA 7.3 (PTA-3293), PSMA 10.3 (PTA-3247), PSMA 1.8.3 (PTA-3906), PSMA A3.1.3 (PTA-3904), PSMA A3.3.1 (PTA-3905), Abgenix 4.248.2 (PTA-4427), Abgenix 4.360.3 (PTA-4428), Abgenix 4.7.1 (PTA-4429), Abgenix 4.4.1 (PTA-4556), Abgenix 4.177.3 (PTA-4557), Abgenix 4.16.1 (PTA-4357), Abgenix 4.22.3 (PTA-4358), Abgenix 4.28.3 (PTA-4359), Abgenix 4.40.2 (PTA-4360), Abgenix 4.48.3 (PTA-4361), Abgenix 4.49.1 (PTA-4362), Abgenix 4.209.3 (PTA-4365), Abgenix 4.219.3 (PTA-4366), Abgenix 4.288.1 (PTA-4367), Abgenix 4.333.1 (PTA-4368), Abgenix 4.54.1 (PTA-4363), Abgenix 4.153.1 (PTA-4388), Abgenix 4.232.3 (PTA-4389), Abgenix 4.292.3 (PTA-4390), Abgenix 4.304.1 (PTA-4391), Abgenix 4.78.1 (PTA-4652), and Abgenix 4.152.1 (PTA-4653). These hybridomas were deposited pursuant to, and in satisfaction of, the requirements of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure with the American Type 10 Culture Collection ("ATCC") as an International Depository Authority and given the Patent 15 Deposit Designations shown above and in Table 1.

The present invention further provides nucleic acid molecules encoding anti-PSMA antibodies and vectors comprising the nucleic acid molecules as described herein. The vectors provided can be used to transform or transfect host cells for producing anti-PSMA 25 antibodies with the specificity of antibodies described herein. In a preferred embodiment the antibodies produced will have the specificity of the antibodies AB-PG1-XG1-006, AB-PG1-XG1-026, AB-PG1-XG1-051, AB-PG1, XG1-069, AB-PG1-XG1-077 and PSMA 10.3. In one embodiment the vectors can comprise an isolated nucleic acid molecule encoding the heavy chain of the antibodies listed above encoded by a nucleic acid molecules comprising 30 the coding region or regions of the nucleic acid sequences set forth as SEQ ID NO: 2-7. In another embodiment, the vectors can comprise the nucleic acid sequences encoding the light chain of the antibodies set forth as SEQ ID NOs: 8-13. In a further embodiment the vectors

of the invention may comprise a heavy chain and a light chain sequence. In a further embodiment, plasmids are given which produce the antibodies or antigen binding fragments described herein. Plasmids of the invention include plasmids selected from the group consisting of: AB-PG1-XG1-006 Heavy Chain (SEQ ID NO: 2), AB-PG1-XG1-006 Light Chain (SEQ ID NO: 8), AB-PG1-XG1-026 Heavy Chain (SEQ ID NO: 3), AB-PG1-XG1-026 Light Chain (SEQ ID NO: 9), AB-PG1-XG1-051 Heavy Chain (SEQ ID NO: 4), AB-PG1-XG1-051 Light Chain (SEQ ID NO: 10), AB-PG1-XG1-069 Heavy Chain (SEQ ID NO: 5), AB-PG1-XG1-069 Light Chain (SEQ ID NO: 11), AB-PG1-XG1-077 Heavy Chain (SEQ ID NO: 6), AB-PG1-XG1-077 Light Chain (SEQ ID NO: 12), PSMA 10.3 Heavy Chain (SEQ ID NO: 7), and PSMA 10.3 Kappa (SEQ ID NO: 13).

The isolated antibody or antigen-binding fragment thereof preferably is selected for its ability to bind live cells expressing PSMA. In order to demonstrate binding of monoclonal antibodies to live cells expressing the PSMA, flow cytometry can be used. For example, cell lines expressing PSMA (grown under standard growth conditions) or prostate cancer cells that express PSMA are mixed with various concentrations of monoclonal antibodies in PBS containing 0.1% Tween 80 and 20% mouse serum, and incubated at 37°C for 1 hour. After washing, the cells are reacted with fluorescein-labeled anti-human IgG secondary antibody (if human anti-PSMA antibodies were used) under the same conditions as the primary antibody staining. The samples can be analyzed by a fluorescence activated cell sorter (FACS) instrument using light and side scatter properties to gate on single cells. An alternative assay using fluorescence microscopy may be used (in addition to or instead of) the flow cytometry assay. Cells can be stained exactly as described above and examined by fluorescence microscopy. This method allows visualization of individual cells, but may have diminished sensitivity depending on the density of the antigen.

Binding of the antibody or antigen-binding fragment thereof to live cells expressing PSMA can inhibit the growth of the cells or mediate cytolysis of the cells. Cytolysis can be complement mediated or can be mediated by effector cells. In a preferred embodiment, the cytolysis is carried out in a living organism, preferably a mammal, and the live cell is a tumor cell. Examples of tumors which can be targeted by the antibodies of the invention include, any tumor that expresses PSMA, such as, prostate, bladder, pancreas, lung, colon, kidney, melanomas and sarcomas. In a preferred embodiment the tumor cell is a prostate cancer cell.

The testing of antibody cytolytic activity *in vitro* by chromium release assay can provide an initial screening prior to testing *in vivo* models. This testing can be carried out using standard chromium release assays. Briefly, polymorphonuclear cells (PMN), or other effector cells, from healthy donors can be purified by Ficoll Hypaque density centrifugation, 5 followed by lysis of contaminating erythrocytes. Washed PMNs can be suspended in RPMI supplemented with 10% heat-inactivated fetal calf serum and mixed with ⁵¹Cr labeled cells expressing PSMA, at various ratios of effector cells to tumor cells (effector cells:tumor cells). Purified anti-PSMA IgGs can then be added at various concentrations. Irrelevant IgG can be used as negative control. Assays can be carried out for 0-120 minutes at 37°C. Samples can 10 be assayed for cytolysis by measuring ⁵¹Cr release into the culture supernatant. Anti-PSMA monoclonal antibodies can also be tested in combinations with each other to determine whether cytolysis is enhanced with multiple monoclonal antibodies.

Antibodies which bind to PSMA also can be tested in an *in vivo* model (e.g., in mice) to determine their efficacy in mediating cytolysis and killing of cells expressing PSMA, e.g., 15 tumor cells. These antibodies can be selected, for example, based on the following criteria, which are not intended to be exclusive:

- 1) binding to live cells expressing PSMA;
- 2) high affinity of binding to PSMA;
- 3) binding to a unique epitope on PSMA (to eliminate the possibility that 20 antibodies with complimentary activities when used in combination would compete for binding to the same epitope);
- 4) opsonization of cells expressing PSMA;
- 5) mediation of growth inhibition, phagocytosis and/or killing of cells expressing PSMA in the presence of effector cells;
- 6) modulation (inhibition or enhancement) of NAALADase, folate 25 hydrolase, dipeptidyl peptidase IV and/or γ -glutamyl hydrolase activities;
- 7) growth inhibition, cell cycle arrest and/or cytotoxicity in the absence of effector cells;
- 8) internalization of PSMA;
- 9) binding to a conformational epitope on PSMA;

- 10) minimal cross-reactivity with cells or tissues that do not express PSMA; and
- 11) preferential binding to dimeric forms of PSMA rather than monomeric forms of PSMA.

5 Preferred antibodies of the invention meet one or more, and preferably all, of these criteria. In a particular embodiment, the antibodies are used in combination, e.g., as a pharmaceutical composition comprising two or more different anti-PSMA antibodies or binding fragments thereof. For example, anti-PSMA antibodies having different, but complementary activities can be combined in a single therapy to achieve a desired therapeutic 10 or diagnostic effect. An illustration of this would be a composition containing an anti-PSMA antibody that mediates highly effective killing of target cells in the presence of effector cells, combined with another anti-PSMA antibody that inhibits the growth of cells expressing 15 PSMA.

In a preferred aspect of the invention, the antibody or antigen-binding fragment 15 thereof binds to a conformational epitope within the extracellular domain of the PSMA molecule. To determine if the selected human anti-PSMA antibodies bind to conformational epitopes, each antibody can be tested in assays using native protein (e.g., non-denaturing immunoprecipitation, flow cytometric analysis of cell surface binding) and denatured protein (e.g., Western blot, immunoprecipitation of denatured proteins). A comparison of the results 20 will indicate whether the antibodies bind conformational epitopes. Antibodies that bind to native protein but not denatured protein are those antibodies that bind conformational epitopes, and are preferred antibodies.

To determine if the selected human anti-PSMA antibodies bind preferentially (i.e., 25 selectively and/or specifically) to a PSMA dimer, each antibody can be tested in assays (e.g., immunoprecipitation followed by Western blotting) using native dimeric PSMA protein and dissociated monomeric PSMA protein. A comparison of the results will indicate whether the antibodies bind preferentially to the dimer or to the monomer. Antibodies that bind to the PSMA dimer but not to the monomeric PSMA protein are preferred antibodies.

Preferred antibodies include antibodies that competitively inhibit the specific binding 30 of a second antibody to its target epitope on PSMA. To determine competitive inhibition, a variety of assays known to one of ordinary skill in the art can be employed. For example, the cross-competition assays set forth in Examples 4 and 21 can be used to determine if an

antibody competitively inhibits binding to PSMA by another antibody. These examples provide cell-based methods employing flow cytometry or solid phase binding analysis. Other assays that evaluate the ability of antibodies to cross-compete for PSMA molecules that are not expressed on the surface of cells, in solid phase or in solution phase, also can be used.

5 These assays preferably use the PSMA multimers described herein.

Certain preferred antibodies competitively inhibit the specific binding of a second antibody to its target epitope on PSMA by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 99%. Inhibition can be assessed at various molar ratios or mass ratios; for example competitive binding experiments can be conducted with a 2-fold, 3-fold, 10 4-fold, 5-fold, 7-fold, 10-fold or more molar excess of the first antibody over the second antibody.

Other preferred antibodies include antibodies that specifically (i.e., selectively) bind to an epitope on PSMA defined by a second antibody. To determine the epitope, one can use standard epitope mapping methods known in the art. For example, fragments (peptides) of PSMA antigen (preferably synthetic peptides) that bind the second antibody can be used to determine whether a candidate antibody binds the same epitope. For linear epitopes, overlapping peptides of a defined length (e.g., 8 or more amino acids) are synthesized. The peptides preferably are offset by 1 amino acid, such that a series of peptides covering every 8 amino acid fragment of the PSMA protein sequence are prepared. Fewer peptides can be prepared by using larger offsets, e.g., 2 or 3 amino acids. In addition, longer peptides (e.g., 9-, 10- or 11-mers) can be synthesized. Binding of peptides to antibodies can be determined using standard methodologies including surface plasmon resonance (BIACORE; see Example 22) and ELISA assays. For examination of conformational epitopes, larger PSMA fragments can be used. Other methods that use mass spectrometry to define conformational epitopes have been described and can be used (see, e.g., Baerga-Ortiz et al., *Protein Science* 11:1300-1308, 2002 and references cited therein). Still other methods for epitope determination are provided in standard laboratory reference works, such as Unit 6.8 ("Phage Display Selection and Analysis of B-cell Epitopes") and Unit 9.8 ("Identification of Antigenic Determinants Using Synthetic Peptide Combinatorial Libraries") of *Current Protocols in Immunology*, 30 Coligan et al., eds., John Wiley & Sons. Epitopes can be confirmed by introducing point mutations or deletions into a known epitope, and then testing binding with one or more antibodies to determine which mutations reduce binding of the antibodies.

In one embodiment of the invention the antibody or antigen-binding fragment thereof binds to and is internalized with PSMA expressed on cells. The mechanism by which the antibody or antigen-binding fragment thereof is internalized with the prostate specific membrane antigen is not critical to the practice of the present invention. For example, the 5 antibody or antigen-binding fragment thereof can induce internalization of PSMA.

Alternatively, internalization of the antibody or antigen-binding fragment thereof can be the result of routine internalization of PSMA. The antibody or antigen-binding fragment thereof can be used in an unmodified form, alone or in combination with other compositions.

Alternatively, the antibody or antigen-binding fragment thereof can be bound to a substance 10 effective to kill the cells upon binding of the antibody or antigen-binding fragment thereof to prostate specific membrane antigen and upon internalization of the biological agent with the prostate specific membrane antigen.

The human PSMA antibodies of the present invention specifically bind cell-surface PSMA and/or rsPSMA with sub-nanomolar affinity. The human PSMA antibodies of the 15 present invention have binding affinities of about 1×10^{-9} M or less, preferably about 1×10^{-10} M or less, more preferably 1×10^{-11} M or less. In a particular embodiment the binding affinity is less than about 5×10^{-10} M.

An antibody can be linked to a detectable marker, an antitumor agent or an 20 immunomodulator. Antitumor agents can include cytotoxic agents and agents that act on tumor neovasculature. Detectable markers include, for example, radioactive or fluorescent markers. Cytotoxic agents include cytotoxic radionuclides, chemical toxins and protein toxins.

The cytotoxic radionuclide or radiotherapeutic isotope preferably is an alpha-emitting isotope such as ^{225}Ac , ^{211}At , ^{212}Bi , ^{213}Bi , ^{212}Pb , ^{224}Ra or ^{223}Ra . Alternatively, the cytotoxic 25 radionuclide may be a beta-emitting isotope such as ^{186}Rh , ^{188}Rh , ^{177}Lu , ^{90}Y , ^{131}I , ^{67}Cu , ^{64}Cu , ^{153}Sm or ^{166}Ho . Further, the cytotoxic radionuclide may emit Auger and low energy electrons and include the isotopes ^{125}I , ^{123}I or ^{77}Br .

Suitable chemical toxins or chemotherapeutic agents include members of the enediyne 30 family of molecules, such as calicheamicin and esperamicin. Chemical toxins can also be taken from the group consisting of methotrexate, doxorubicin, melphalan, chlorambucil, ARA-C, vindesine, mitomycin C, cis-platinum, etoposide, bleomycin and 5-fluorouracil. Other antineoplastic agents that may be conjugated to the anti-PSMA antibodies of the

present invention include dolastatins (U.S. Patent Nos. 6,034,065 and 6,239,104) and derivatives thereof. Of particular interest is dolastatin 10 (dolavaline-valine-dolaisoleuine-dolaproline-dolaphenine) and the derivatives auristatin PHE (dolavaline-valine-dolaisoleuine-dolaproline-phenylalanine-methyl ester) (Pettit, G.R. et al., *Anticancer Drug Des.* 13(4):243-277, 1998; Woyke, T. et al., *Antimicrob. Agents Chemother.* 45(12):3580-3584, 2001), and aurastatin E and the like. Toxins that are less preferred in the compositions and methods of the invention include poisonous lectins, plant toxins such as ricin, abrin, modeccin, botulina and diphtheria toxins. Of course, combinations of the various toxins could also be coupled to one antibody molecule thereby accommodating variable cytotoxicity. Other 10 chemotherapeutic agents are known to those skilled in the art.

Toxin-conjugated forms of the PSMA antibodies of the present invention mediate specific cell killing of PSMA-expressing cells at picomolar concentrations. The toxin-conjugated PSMA antibodies of the present invention exhibit IC₅₀s at concentrations of less than about 1 X 10⁻¹⁰M, preferably less than about 1 X 10⁻¹¹M, more preferably less than about 15 1 X 10⁻¹²M. In a particular embodiment an IC₅₀ is achieved at a concentration of less than about 1.5 X 10⁻¹¹M.

Agents that act on the tumor vasculature can include tubulin-binding agents such as combrestatin A4 (Griggs et al., *Lancet Oncol.* 2:82, 2001), angiostatin and endostatin (reviewed in Rosen, *Oncologist* 5:20, 2000, incorporated by reference herein) and interferon 20 inducible protein 10 (U.S. Patent No. 5,994,292). A number of antiangiogenic agents currently in clinical trials are also contemplated. Agents currently in clinical trials include: 2ME2, Angiostatin, Angiozyme, Anti-VEGF RhuMAb, Apra (CT-2584), Avicine, Benefin, BMS275291, Carboxyamidotriazole, CC4047, CC5013, CC7085, CDC801, CGP-41251 (PKC 412), CM101, Combretastatin A-4 Prodrug, EMD 121974, Endostatin, Flavopiridol, 25 Genistein (GCP), Green Tea Extract, IM-862, ImmTher, Interferon alpha, Interleukin-12, Iressa (ZD1839), Marimastat, Metastat (Col-3), Neovastat, Octreotide, Paclitaxel, Penicillamine, Photofrin, Photopoint, PI-88, Prinomastat (AG-3340), PTK787 (ZK22584), RO317453, Solimastat, Squalamine, SU 101, SU 5416, SU-6668, Suradista (FCE 26644), Suramin (Metaret), Tetrathiomolybdate, Thalidomide, TNP-470 and Vitaxin. additional 30 antiangiogenic agents are described by Kerbel, J. Clin. Oncol. 19(18s):45s-51s, 2001, which is incorporated by reference herein. Immunomodulators suitable for conjugation to anti-PSMA antibodies include α -interferon, γ -interferon, and tumor necrosis factor alpha (TNF α).

The coupling of one or more toxin molecules to the anti-PSMA antibody is envisioned to include many chemical mechanisms, for instance covalent binding, affinity binding, intercalation, coordinate binding, and complexation. The toxic compounds used to prepare the anti-PSMA immunotoxins are attached to the antibodies or PSMA-binding fragments thereof by standard protocols known in the art.

The covalent binding can be achieved either by direct condensation of existing side chains or by the incorporation of external bridging molecules. Many bivalent or polyvalent agents are useful in coupling protein molecules to other proteins, peptides or amine functions, etc. For example, the literature is replete with coupling agents such as carbodiimides, diisocyanates, glutaraldehyde, diazobenzenes, and hexamethylene diamines. This list is not intended to be exhaustive of the various coupling agents known in the art but, rather, is exemplary of the more common coupling agents.

In preferred embodiments, it is contemplated that one may wish to first derivatize the antibody, and then attach the toxin component to the derivatized product. Suitable cross-linking agents for use in this manner include, for example, SPDP (N-succinimidyl-3-(2-pyridyldithio)propionate), and SMPT, 4-succinimidyl-oxy carbonyl-methyl-(2-pyridyldithio)toluene.

In addition, protein toxins can be fused to the anti-PSMA antibody or PSMA binding fragment by genetic methods to form a hybrid immunotoxin fusion protein. To make a fusion immunotoxin protein in accordance with the invention, a nucleic acid molecule is generated that encodes an anti-PSMA antibody, a fragment of an anti-PSMA antibody, a single chain anti-PSMA antibody, or a subunit of an anti-PSMA antibody linked to a protein toxin. Such fusion proteins contain at least a targeting agent (e.g., anti-PSMA antibody subunit) and a toxin of the invention, operatively attached. The fusion proteins may also include additional peptide sequences, such as peptide spacers which operatively attach the targeting agent and toxin compound, as long as such additional sequences do not appreciably affect the targeting or toxin activities of the fusion protein. The two proteins can be attached by a peptide linker or spacer, such as a glycine-serine spacer peptide, or a peptide hinge, as is well known in the art. Thus, for example, the C-terminus of an anti-PSMA antibody or fragment thereof can be fused to the N-terminus of the protein toxin molecule to form an immunotoxin that retains the binding properties of the anti-PSMA antibody. Other fusion arrangements will be known to one of ordinary skill in the art.

To express the fusion immunotoxin, the nucleic acid encoding the fusion protein is inserted into an expression vector in accordance with standard methods, for stable expression of the fusion protein, preferably in mammalian cells, such as CHO cells. The fusion protein can be isolated and purified from the cells or culture supernatant using standard methodology, 5 such as a PSMA affinity column.

Radionuclides typically are coupled to an antibody by chelation. For example, in the case of metallic radionuclides, a bifunctional chelator is commonly used to link the isotope to the antibody or other protein of interest. Typically, the chelator is first attached to the antibody, and the chelator-antibody conjugate is contacted with the metallic radioisotope. A 10 number of bifunctional chelators have been developed for this purpose, including the diethylenetriamine pentaacetic acid (DTPA) series of amino acids described in U.S. patents 5,124,471, 5,286,850 and 5,434,287, which are incorporated herein by reference. As another example, hydroxamic acid-based bifunctional chelating agents are described in U.S. patent 5,756,825, the contents of which are incorporated herein. Another example is the chelating 15 agent termed *p*-SCN-Bz-HEHA (1,4,7,10,13,16-hexaazacyclo-octadecane-
N,N',N'',N''',N''''-hexaacetic acid) (Deal et al., *J. Med. Chem.* 42:2988, 1999), which is an effective chelator of radiometals such as ²²⁵Ac. Yet another example is DOTA (1,4,7,10-tetraazacyclododecane N,N',N'',N''''-tetraacetic acid), which is a bifunctional chelating agent (see McDevitt et al., *Science* 294:1537-1540, 2001) that can be used in a two-step method for 20 labeling followed by conjugation.

In another aspect, the invention provides compositions comprising an isolated antibody, an antibody derivatized or linked to other functional moieties, or an antigen-binding fragment thereof or a combination of one or more of the aforementioned antibodies or antigen-binding fragments thereof. The compositions include a physiologically or 25 pharmaceutically acceptable carrier, excipient, or stabilizer mixed with the isolated antibody or antigen-binding fragment thereof. In a preferred embodiment, the compositions include a combination of multiple (e.g., two or more) isolated antibodies or antigen-binding portions thereof of the invention. Preferably, each of the antibodies or antigen-binding portions thereof of the composition binds to a distinct conformational epitope of PSMA. In one 30 embodiment, anti-PSMA antibodies having complementary activities are used in combination, e.g., as a pharmaceutical composition, comprising two or more anti-PSMA antibodies. For example, an antibody that mediates highly effective cytolysis of target cells

in the presence of effector cells can be combined with another antibody that inhibits the growth of cells expressing PSMA. As used herein, "target cell" shall mean any undesirable cell in a subject (e.g., a human or animal) that can be targeted by a composition of the invention. In preferred embodiments, the target cell is a cell expressing or overexpressing 5 PSMA. Cells expressing PSMA typically include tumor cells, such as prostate, bladder, pancreas, lung, kidney, colon tumor cells, melanomas, and sarcomas.

Pharmaceutical compositions of the invention also can be administered in combination therapy, i.e., combined with other agents. For example, the combination therapy can include a composition of the present invention with at least one anti-tumor agent, 10 immunomodulator, immunostimulatory agent, or other conventional therapy. The agent may be bound or conjugated to or formed as a recombinant fusion molecule with the PSMA antibodies of the present invention for directed targeting of the agent to PSMA-expressing cells.

The PSMA antibodies of the present invention may be used as a targeting moiety for 15 delivery of replication-selective virus to PSMA-expressing cells for tumor therapy. Replication-competent virus such as the p53 pathway targeting adenovirus mutant dl1520, ONYX-015, kill tumor cells selectively (Biederer, C. et al., J. Mol. Med. 80(3):163-175, 2002).

As used herein, "pharmaceutically acceptable carrier" or "physiologically acceptable 20 carrier" includes any and all salts, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Preferably, the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). Depending on the route of administration, the active compound, i.e., antibody may be coated 25 in a material to protect the compound from the action of acids and other natural conditions that may inactivate the compound.

When administered, the pharmaceutical preparations of the invention are applied in pharmaceutically-acceptable amounts and in pharmaceutically-acceptable compositions. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with 30 the effectiveness of the biological activity of the active ingredients. Such preparations may routinely contain salts, buffering agents, preservatives, compatible carriers, and optionally other therapeutic agents, such as supplementary immune potentiating agents including

adjuvants, chemokines and cytokines. When used in medicine, the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically-acceptable salts thereof and are not excluded from the scope of the invention.

5 A salt retains the desired biological activity of the parent compound and does not impart any undesired toxicological effects (see e.g., Berge, S.M., et al. (1977) *J. Pharm. Sci.* 66: 1-19). Examples of such salts include acid addition salts and base addition salts. Acid addition salts include those derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, phosphorous and the like, as well as 10 from nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl substituted alkanoic acids, hydroxy alkanoic acids, aromatic acids, aliphatic and aromatic sulfonic acids and the like. Base addition salts include those derived from alkaline earth metals, such as sodium, potassium, magnesium, calcium and the like, as well as from nontoxic organic amines, such as N,N'-dibenzylethylenediamine, N-methylglucamine, 15 chioroprocaine, choline, diethanolamine, ethylenediamine, procaine and the like.

An anti-PSMA antibody composition may be combined, if desired, with a pharmaceutically-acceptable carrier. The term "pharmaceutically-acceptable carrier" as used herein means one or more compatible solid or liquid fillers, diluents or encapsulating substances which are suitable for administration into a human. The term "carrier" denotes an 20 organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate the application. The components of the pharmaceutical compositions also are capable of being co-mingled with the molecules of the present invention, and with each other, in a manner such that there is no interaction which would substantially impair the desired pharmaceutical efficacy.

25 The pharmaceutical compositions may contain suitable buffering agents, including: acetic acid in a salt; citric acid in a salt; boric acid in a salt; and phosphoric acid in a salt.

The pharmaceutical compositions also may contain, optionally, suitable preservatives, such as: benzalkonium chloride; chlorobutanol; parabens and thimerosal.

30 The pharmaceutical compositions may conveniently be presented in unit dosage form and may be prepared by any of the methods well-known in the art of pharmacy. All methods include the step of bringing the active agent into association with a carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly

and intimately bringing the active compound into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product.

Compositions suitable for parenteral administration conveniently comprise a sterile aqueous or non-aqueous preparation of anti-PSMA antibodies, which is preferably isotonic with the blood of the recipient. This preparation may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation also may be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butane diol.

Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid may be used in the preparation of injectables. Carrier formulations suitable for oral, subcutaneous, intravenous, intramuscular, etc. administration can be found in

Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA.

The active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., *Sustained and Controlled Release Drug Delivery Systems*, J.R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.

The therapeutics of the invention can be administered by any conventional route, including injection or by gradual infusion over time. The administration may, for example, be oral, intravenous, intraperitoneal, intramuscular, intracavity, intratumor, or transdermal. When antibodies are used therapeutically, preferred routes of administration include intravenous and by pulmonary aerosol. Techniques for preparing aerosol delivery systems containing antibodies are well known to those of skill in the art. Generally, such systems should utilize components which will not significantly impair the biological properties of the antibodies, such as the paratope binding capacity (see, for example, Sciarra and Cutie, "Aerosols," in *Remington's Pharmaceutical Sciences*, 18th edition, 1990, pp. 1694-1712;

incorporated by reference). Those of skill in the art can readily determine the various parameters and conditions for producing antibody aerosols without resorting to undue experimentation.

The compositions of the invention are administered in effective amounts. An “effective amount” is that amount of an anti-PSMA antibody composition that alone, or together with further doses, produces the desired response, e.g. treats a malignancy in a subject. This may involve only slowing the progression of the disease temporarily, although more preferably, it involves halting the progression of the disease permanently. This can be monitored by routine methods. The desired response to treatment of the disease or condition also can be delaying the onset or even preventing the onset of the disease or condition.

Such amounts will depend, of course, on the particular condition being treated, the severity of the condition, the individual patient parameters including age, physical condition, size and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a patient may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons.

The pharmaceutical compositions used in the foregoing methods preferably are sterile and contain an effective amount of anti-PSMA antibodies for producing the desired response in a unit of weight or volume suitable for administration to a patient. The response can, for example, be measured by determining the physiological effects of the anti-PSMA antibody composition, such as regression of a tumor or decrease of disease symptoms. Other assays will be known to one of ordinary skill in the art and can be employed for measuring the level of the response.

The doses of anti-PSMA antibodies administered to a subject can be chosen in accordance with different parameters, in particular in accordance with the mode of administration used and the state of the subject. Other factors include the desired period of treatment. In the event that a response in a subject is insufficient at the initial doses applied,

higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits.

In general, doses can range from about 10 $\mu\text{g}/\text{kg}$ to about 100,000 $\mu\text{g}/\text{kg}$. Based upon the composition, the dose can be delivered continuously, such as by continuous pump, or at 5 periodic intervals. Desired time intervals of multiple doses of a particular composition can be determined without undue experimentation by one skilled in the art. Other protocols for the administration of anti-PSMA antibody compositions will be known to one of ordinary skill in the art, in which the dose amount, schedule of administration, sites of administration, mode of administration and the like vary from the foregoing.

10 In general, doses of radionuclide delivered by the anti-PSMA antibodies of the invention can range from about 0.01 mCi/Kg to about 10 mCi/kg. Preferably the dose of radionuclide ranges from about 0.1 mCi/Kg to about 1.0 mCi/kg. The optimal dose of a given isotope can be determined empirically by simple routine titration experiments well known to one of ordinary skill in the art.

15 Administration of anti-PSMA antibody compositions to mammals other than humans, e.g. for testing purposes or veterinary therapeutic purposes, is carried out under substantially the same conditions as described above.

20 The compositions (antibodies to PSMA and derivatives/conjugates thereof) of the present invention have *in vitro* and *in vivo* diagnostic and therapeutic utilities. For example, these molecules can be administered to cells in culture, e.g. *in vitro* or *ex vivo*, or in a subject, e.g., *in vivo*, to treat, prevent or diagnose a variety of disorders. As used herein, the term "subject" is intended to include humans and non-human animals. Preferred subjects include a human patient having a disorder characterized by expression, typically aberrant expression (e.g., overexpression) of PSMA.

25 One aspect of the present invention relates to a method of detecting cancerous cells or portions thereof in a biological sample (e.g., histological or cytological specimens, biopsies and the like), and, in particular, to distinguish malignant tumors from normal tissues and non-malignant tumors. This method involves providing an antibody or an antigen-binding binding fragment thereof, probe, or ligand, which binds to an extracellular domain of PSMA 30 of such cells, e.g., an anti-PSMA antibody. The anti-PSMA antibody is bound to a label that permits the detection of the cells or portions thereof (e.g., PSMA or fragments thereof liberated from such cancerous cells) upon binding of the anti-PSMA antibody to the cells or

portions thereof. The biological sample is contacted with the labeled anti-PSMA antibody under conditions effective to permit binding of the anti-PSMA antibody to the extracellular domain of PSMA of any of the cells or portions thereof in the biological sample. The presence of any cells or portions thereof in the biological sample is detected by detection of 5 the label. In one preferred form, the contact between the anti-PSMA antibody and the biological sample is carried out in a living mammal and involves administering the anti-PSMA antibody to the mammal under conditions that permit binding of the anti-PSMA antibody to PSMA of any of the cells or portions thereof in the biological sample. Again, such administration can be carried out by any suitable method known to one of ordinary skill 10 in the art.

In addition, the anti-PSMA antibodies of the present invention can be used in immunofluorescence techniques to examine human tissue, cell and bodily fluid specimens. In a typical protocol, slides containing cryostat sections of frozen, unfixed tissue biopsy samples or cytological smears are air dried, formalin or acetone fixed, and incubated with the 15 monoclonal antibody preparation in a humidified chamber at room temperature. The slides are then washed and further incubated with a preparation of a secondary antibody directed against the monoclonal antibody, usually some type of anti-mouse immunoglobulin if the monoclonal antibodies used are derived from the fusion of a mouse spleen lymphocyte and a mouse myeloma cell line. This secondary antibody is tagged with a compound, for instance 20 rhodamine or fluorescein isothiocyanate, that fluoresces at a particular wavelength. The staining pattern and intensities within the sample are then determined by fluorescent light microscopy and optionally photographically recorded.

As yet another alternative, computer enhanced fluorescence image analysis or flow cytometry can be used to examine tissue specimens or exfoliated cells, i.e., single cell 25 preparations from aspiration biopsies of tumors using the anti-PSMA antibodies of this invention. The anti-PSMA antibodies of the invention are particularly useful in quantitation of live tumor cells, i.e., single cell preparations from aspiration biopsies of prostate tumors by computer enhanced fluorescence image analyzer or with a flow cytometer. The antibodies of the invention are particularly useful in such assays to differentiate benign from malignant 30 prostate tumors since the PSMA protein to which the anti-PSMA antibodies bind is expressed in increased amounts by malignant tumors as compared to benign prostate tumors. The percent PSMA positive cell population, alone or in conjunction with determination of other

attributes of the cells (e.g., DNA ploidy of these cells), may, additionally, provide very useful prognostic information by providing an early indicator of disease progression.

In yet another alternative embodiment, the antibodies of the present invention can be used in combination with other known antibodies to provide additional information regarding 5 the malignant phenotype of a cancer.

The method of the present invention can be used to screen patients for diseases associated with the presence of cancerous cells or portions thereof. Alternatively, it can be used to identify the recurrence of such diseases, particularly when the disease is localized in a particular biological material of the patient. For example, recurrence of prostatic disease in 10 the prostatic fossa may be encountered following radical prostatectomy. Using the method of the present invention, this recurrence can be detected by administering a short range radiolabeled antibody to the mammal and then detecting the label rectally, such as with a transrectal detector probe.

Alternatively, the contacting step can be carried out in a sample of serum or urine or 15 other body fluids, including but not limited to seminal fluid, prostatic fluid, ejaculate, and the like, such as to detect the presence of PSMA in the body fluid. When the contacting is carried out in a serum or urine sample, it is preferred that the biological agent recognize substantially no antigens circulating in the blood other than PSMA. Since intact cells do not excrete or secrete PSMA into the extracellular environment, detecting PSMA in serum, urine, 20 or other body fluids generally indicates that cells are being lysed or shed. Thus, the biological agents and methods of the present invention can be used to determine the effectiveness of a cancer treatment protocol by monitoring the level of PSMA in serum, urine or other body fluids.

In a particularly preferred embodiment of the method of detecting cancerous cells in 25 accordance with the present invention, the anti-PSMA antibodies or an antigen-binding fragment thereof, binds to and is internalized with the prostate specific membrane antigen of such cells. Again, the biological agent is bound to a label effective to permit detection of the cells or portions thereof upon binding of the biological agent to and internalization of the biological agent with the prostate specific membrane antigen.

30 Biological agents suitable for detecting cancerous cells include anti-PSMA antibodies, such as monoclonal or polyclonal antibodies. In addition, antibody fragments, half-antibodies, hybrid derivatives, probes, and other molecular constructs may be utilized. These

5 biological agents, such as antibodies, antigen-binding fragments thereof, probes, or ligands, bind to extracellular domains of prostate specific membrane antigens or portions thereof in cancerous cells. As a result, the biological agents bind not only to cells which are fixed or cells whose intracellular antigenic domains are otherwise exposed to the extracellular environment. Consequently, binding of the biological agents is concentrated in areas where there are prostate cells, irrespective of whether these cells are fixed or unfixed, viable or necrotic. Additionally or alternatively, these biological agents bind to and are internalized with prostate specific membrane antigens or portions thereof in normal, benign hyperplastic, and to a greater degree in cancerous cells.

10 The antibodies or antigen-binding fragments thereof can also be utilized in *in vivo* therapy of cancer. The antibodies can be used alone or covalently attached, either directly or via linker, to a compound which kills and/or inhibits proliferation of the malignant cells or tissues following administration and localization of the conjugates. When the antibody is used by itself, it may mediate tumor destruction by complement fixation or antibody-
15 dependent cellular cytotoxicity. Alternatively, the antibody may be administered in combination with a chemotherapeutic drug to result in synergistic therapeutic effects (Baslya and Mendelsohn, 1994 *Breast Cancer Res. and Treatment* 29:127-138). A variety of different types of substances can be directly conjugated to the antibody for therapeutic uses, including radioactive metal and non-metal isotopes, chemotherapeutic drugs, toxins, etc. as
20 described above and known in the art (see, e.g., Vitetta and Uhr, 1985, *Annu. Rev. Immunol.* 3:197).

25 The antibodies or antigen-binding fragments thereof of the invention can also be administered together with complement. Accordingly, within the scope of the invention are compositions comprising antibodies or antigen-binding fragments thereof and serum or complement. These compositions are advantageous in that the complement is located in close proximity to the human antibodies or antigen-binding fragments thereof. Alternatively, the antibodies or antigen-binding fragments thereof of the invention and the complement or serum can be administered separately.

30 The antibodies can be administered with one or more immunostimulatory agents to induce or enhance an immune response, such as IL-2 and immunostimulatory oligonucleotides (e.g., those containing CpG motifs). Preferred immunostimulatory agents

stimulate specific arms of the immune system, such as natural killer (NK) cells that mediate antibody-dependent cell cytotoxicity (ADCC).

Antigens, such as the PSMA dimers described herein, can be administered with one or more adjuvants to induce or enhance an immune response. An adjuvant is a substance which 5 potentiates the immune response. Adjuvants of many kinds are well known in the art.

Specific examples of adjuvants include monophosphoryl lipid A (MPL, SmithKline Beecham); saponins including QS21 (SmithKline Beecham); immunostimulatory oligonucleotides (e.g., CpG oligonucleotides described by Kreig et al., *Nature* 374:546-9, 1995); incomplete Freund's adjuvant; complete Freund's adjuvant; montanide; vitamin E and 10 various water-in-oil emulsions prepared from biodegradable oils such as squalene and/or tocopherol, Quil A, Ribi Detox, CRL-1005, L-121, and combinations thereof.

Other agents which stimulate the immune response of the subject to PSMA multimer antigens can also be administered to the subject. For example, cytokines are also useful in vaccination protocols as a result of their lymphocyte regulatory properties. Many cytokines 15 useful for such purposes will be known to one of ordinary skill in the art, including interleukin-2 (IL-2); IL-4; IL-5; IL-12, which has been shown to enhance the protective effects of vaccines (see, e.g., *Science* 268: 1432-1434, 1995); GM-CSF; IL-15; IL-18; combinations thereof, and the like. Thus cytokines can be administered in conjunction with antibodies, antigens, chemokines and/or adjuvants to increase an immune response.

20 Chemokines useful in increasing immune responses include but are not limited to SLC, ELC, MIP3 α , MIP3 β , IP-10, MIG, and combinations thereof.

The antibodies or antigen-binding fragments thereof of the present invention can be used in conjunction with other therapeutic treatment modalities. Such other treatments include surgery, radiation, cryosurgery, thermotherapy, hormone treatment, chemotherapy, 25 vaccines, and other immunotherapies.

Also encompassed by the present invention is a method which involves using the antibodies or antigen-binding fragments thereof for prophylaxis. For example, these materials can be used to prevent or delay development or progression of cancer.

Use of the cancer therapy of the present invention has a number of benefits. Since the 30 anti-PSMA antibodies or antigen-binding fragments thereof according to the present invention preferentially target prostate cancer cells, other tissue is spared. As a result, treatment with such biological agents is safer, particularly for elderly patients. Treatment

according to the present invention is expected to be particularly effective, because it directs high levels of anti-PSMA antibodies or antigen-binding fragments thereof to the bone marrow and lymph nodes where prostate cancer metastases predominate. Moreover, tumor sites for prostate cancer tend to be small in size and, therefore, easily destroyed by cytotoxic agents. Treatment in accordance with the present invention can be effectively monitored with clinical parameters such as serum prostate specific antigen and/or pathological features of a patient's cancer, including stage, Gleason score, extracapsular, seminal, vesicle or perineural invasion, positive margins, involved lymph nodes, etc. Alternatively, these parameters can be used to indicate when such treatment should be employed.

Because the antibodies or antigen-binding fragments thereof of the present invention bind to living cells, therapeutic methods using these biological agents are much more effective than those which target lysed cells. For the same reasons, diagnostic and imaging methods which determine the location of living normal, benign hyperplastic, or cancerous cells are much improved by employing the antibodies or antigen-binding fragments thereof of the present invention. In addition, the ability to differentiate between living and dead cells can be advantageous, especially to monitor the effectiveness of a particular treatment regimen.

Also within the scope of the invention are kits comprising the compositions of the invention and instructions for use. The kits can further contain at least one additional reagent, such as complement, or one or more additional antibodies of the invention (e.g., an antibody having a complementary activity which binds to an epitope in PSMA antigen distinct from the first antibody). Other kits can include the PSMA multimers described hereinbelow.

Kits containing the antibodies or antigen-binding fragments thereof of the invention can be prepared for *in vitro* diagnosis, prognosis and/or monitoring cancer by the immunohistological, immunocytological and immunoserological methods described above. The components of the kits can be packaged either in aqueous medium or in lyophilized form. When the antibodies or antigen-binding fragments thereof are used in the kits in the form of conjugates in which a label moiety is attached, such as an enzyme or a radioactive metal ion, the components of such conjugates can be supplied either in fully conjugated form, in the form of intermediates or as separate moieties to be conjugated by the user or the kit.

A kit may comprise a carrier being compartmentalized to receive in close confinement therein one or more container means or series of container means such as test tubes, vials, flasks, bottles, syringes, or the like. A first of said container means or series of container means may contain one or more anti-PSMA antibodies or antigen-binding fragments thereof or PSMA. A second container means or series of container means may contain a label or linker-label intermediate capable of binding to the primary anti-PSMA antibodies (or fragment thereof).

Kits for use in *in vivo* tumor localization and therapy method containing the anti-PSMA antibodies or antigen-binding fragments thereof conjugated to other compounds or substances can be prepared. The components of the kits can be packaged either in aqueous medium or in lyophilized form. When the antibodies or antigen-binding fragments thereof are used in the kits in the form of conjugates in which a label or a therapeutic moiety is attached, such as a radioactive metal ion or a therapeutic drug moiety, the components of such conjugates can be supplied either in fully conjugated form, in the form of intermediates or as separate moieties to be conjugated by the user of the kit.

In one aspect of the invention, a method for modulating at least one enzymatic activity of PSMA, the activity selected from the group consisting of N-acetylated α -linked acidic dipeptidase (NAALADase), folate hydrolase, dipeptidyl dipeptidase IV and γ -glutamyl hydrolase activity or combination thereof *in vitro* or *in vivo*. The modulation may be enhancement or inhibition of at least one enzymatic activity of PSMA.

In a preferred embodiment, the invention provides methods for inhibiting at least one enzymatic activity of PSMA, the activity selected from the group consisting of N-acetylated α -linked acidic dipeptidase (NAALADase), folate hydrolase, dipeptidyl dipeptidase IV and γ -glutamyl hydrolase activity or combination thereof *in vitro* or *in vivo*. The method comprises contacting a NAALADase, a folate hydrolase, a dipeptidyl dipeptidase IV and/or a γ -glutamyl hydrolase with an amount of an isolated antibody or antigen-binding fragment thereof of the invention under conditions wherein the isolated monoclonal antibody or antigen-binding fragment thereof inhibits NAALADase, folate hydrolase, dipeptidyl dipeptidase IV or γ -glutamyl hydrolase activity.

Tissue levels of NAALADase can be determined by detergent solubilizing homogenizing tissues, pelleting the insoluble material by centrifugation and measuring the NAALADase activity in the remaining supernatant. Likewise, the NAALADase activity in

bodily fluids can also be measured by first pelleting the cellular material by centrifugation and performing a typical enzyme assay for NAALADase activity on the supernatant. NAALADase enzyme assays have been described by Frieden, 1959, *J. Biol. Chem.*, 234:2891. In this assay, the reaction product of the NAALADase enzyme is glutamic acid.

5 This is derived from the enzyme catalyzed cleavage of N-acetylaspartylglutamate to yield N-acetylaspartic acid and glutamic acid. Glutamic acid, in a NAD(P)⁺ requiring step, yields 2-oxoglutarate plus NAD(P)H in a reaction catalyzed by glutamate dehydrogenase. Progress of the reaction can easily and conveniently be measured by the change in absorbance at 340 nm due to the conversion of NAD(P)⁺ to NAD(P)H.

10 Folate hydrolase activity of PSMA can be measured by performing enzyme assays as described by Heston and others (e.g., *Clin. Cancer Res.* 2(9):1445-51, 1996; *Urology* 49(3A Suppl):104-12, 1997). Folate hydrolases such as PSMA remove the gamma-linked glutamates from polyglutamated folates. Folate hydrolase activity can be measured using substrates such as methotrexate tri-gamma glutamate (MTXGlu3), methotrexate di-gamma glutamate (MTXGlu2) and pteroylpentaglutamate (PteGlu5), for example using capillary electrophoresis (see *Clin. Cancer Res.* 2(9):1445-51, 1996). Timed incubations of PSMA with polyglutamated substrates is followed by separation and detection of hydrolysis products.

15 The invention also includes isolated antibodies and binding fragments thereof that selectively bind PSMA multimers. As used herein, particularly with respect to the binding of PSMA multimers by the anti-PSMA antibodies and binding fragments, "selectively binds" means that an antibody preferentially binds to a PSMA protein multimer (e.g., with greater avidity, greater binding affinity) rather than to a PSMA protein monomer. In preferred embodiments, the antibodies of the invention bind to a PSMA protein multimer with an avidity and/or binding affinity that is 1.1-fold, 1.2-fold, 1.3-fold, 1.4-fold, 1.5-fold, 1.6-fold, 1.7-fold, 1.8-fold, 1.9-fold, 2-fold, 3-fold, 4-fold, 5-fold, 7-fold, 10-fold, 20-fold, 30-fold, 40-fold, 50-fold, 70-fold, 100-fold, 200-fold, 300-fold, 500-fold, 1000-fold or more than that exhibited by the antibody for a PSMA protein monomer. Preferably, the antibody selectively binds a PSMA protein multimer, and not a PSMA protein monomer, i.e., substantially exclusively binds to a PSMA protein multimer. Most preferably, the antibody selectively binds a PSMA protein dimer.

The isolated antibody or binding fragment that selectively binds a PSMA protein multimer can, in some embodiments, modulate enzymatic activity of the PSMA protein multimer. In one such embodiment, the antibody inhibits at least one enzymatic activity such as NAALADase activity, folate hydrolase activity, dipeptidyl dipeptidase IV activity, 5 γ -glutamyl hydrolase activity, or combinations thereof. In another embodiment, the antibody enhances at least one enzymatic activity such as NAALADase activity, folate hydrolase activity, dipeptidyl dipeptidase IV activity, γ -glutamyl hydrolase activity, or combinations thereof.

A PSMA protein multimer, as used herein, is a protein complex of at least two PSMA 10 proteins or fragments thereof. The PSMA protein multimers can be composed of various combinations of full-length PSMA proteins (e.g., SEQ ID NO:1), recombinant soluble PSMA (rsPSMA, e.g., amino acids 44-750 of SEQ ID NO:1) and fragments of the foregoing that form multimers (i.e., that retain the protein domain required for forming dimers and/or higher order multimers of PSMA). In preferred embodiments, at least one of the PSMA proteins 15 forming the multimer is a recombinant, soluble PSMA (rsPSMA) polypeptide. Preferred PSMA protein multimers are dimers, particularly those formed from recombinant soluble PSMA protein. A particularly preferred embodiment is a rsPSMA homodimer.

The PSMA protein multimers referred to herein are believed to assume a native 20 conformation and preferably have such a conformation. The PSMA proteins in certain embodiments are noncovalently bound together to form the PSMA protein multimer. For example, it has been discovered that PSMA protein noncovalently associates to form dimers under non-denaturing conditions, as described in the Examples below.

The PSMA protein multimers can, and preferably do, retain the activities of PSMA. 25 The PSMA activity may be an enzymatic activity, such as folate hydrolase activity, NAALADase activity, dipeptidyl peptidase IV activity and γ -glutamyl hydrolase activity. Methods for testing the PSMA activity of multimers are well known in the art (reviewed by O'Keefe et al. in: Prostate Cancer: Biology, Genetics, and the New Therapeutics, L.W.K. Chung, W.B. Isaacs and J.W. Simons (eds.) Humana Press, Totowa, NJ, 2000, pp. 307-326), some of which are described in the Examples herein below.

30 In certain aspects, the invention also includes compositions including one or more of the isolated PSMA protein multimers described herein, such as the PSMA protein dimer. In preferred embodiments, a PSMA protein multimer composition contains at least about 10%

PSMA protein multimer. In other embodiments, the PSMA protein multimer composition contains at least about 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 99.5% PSMA protein multimer. In a preferred embodiment, the PSMA protein multimer composition contains substantially pure PSMA protein multimer, with substantially no 5 PSMA protein monomer. It is understood that the list of specific percentages includes by inference all of the unnamed percentages between the recited percentages.

As used herein with respect to polypeptides, proteins or fragments thereof, "isolated" means separated from its native environment and present in sufficient quantity to permit its identification or use. Isolated, when referring to a protein or polypeptide, means, for 10 example: (i) selectively produced by expression cloning or (ii) purified as by chromatography or electrophoresis. Isolated proteins or polypeptides may be, but need not be, substantially pure. The term "substantially pure" means that the proteins or polypeptides are essentially free of other substances with which they may be found in nature or *in vivo* systems to an extent practical and appropriate for their intended use. Substantially pure 15 polypeptides may be produced by techniques well known in the art. Because an isolated protein may be admixed with a pharmaceutically acceptable carrier in a pharmaceutical preparation, the protein may comprise only a small percentage by weight of the preparation. The protein is nonetheless isolated in that it has been separated from the substances with 20 which it may be associated in living systems, i.e. isolated from other proteins.

Fragments of a PSMA protein preferably are those fragments which retain a distinct functional capability of the PSMA protein. Functional capabilities which can be retained in a fragment include binding of other PSMA molecules to form dimers and higher order multimers, interaction with antibodies, interaction with other polypeptides or fragments thereof, and enzymatic activity. Other PSMA protein fragments, e.g., other recombinant 25 soluble fragments of SEQ ID NO:1, can be selected according to their functional properties. For example, one of ordinary skill in the art can prepare PSMA fragments recombinantly and test those fragments according to the methods exemplified below.

Modifications to a PSMA polypeptide are typically made to the nucleic acid which encodes the PSMA polypeptide, and can include deletions, point mutations, truncations, 30 amino acid substitutions and additions of amino acids or non-amino acid moieties. Alternatively, modifications can be made directly to the polypeptide, such as by cleavage, addition of a linker molecule, addition of a detectable moiety, such as biotin, addition of a

fatty acid, and the like. Modifications also embrace fusion proteins comprising all or part of the PSMA amino acid sequence.

In general, modified PSMA polypeptides include polypeptides which are modified specifically to alter a feature of the polypeptide unrelated to its physiological activity. For example, cysteine residues can be substituted or deleted to prevent unwanted disulfide linkages. Similarly, certain amino acids can be changed to enhance expression of a PSMA polypeptide by eliminating proteolysis by proteases in an expression system (e.g., dibasic amino acid residues in yeast expression systems in which KEX2 protease activity is present).

Modifications conveniently are prepared by altering a nucleic acid molecule that encodes the PSMA polypeptide. Mutations of a nucleic acid which encode a PSMA polypeptide preferably preserve the amino acid reading frame of the coding sequence, and preferably do not create regions in the nucleic acid which are likely to hybridize to form secondary structures, such as hairpins or loops, which can be deleterious to expression of the modified polypeptide.

Modifications can be made by selecting an amino acid substitution, or by random mutagenesis of a selected site in a nucleic acid which encodes the PSMA polypeptide. Modified PSMA polypeptides then can be expressed and tested for one or more activities (e.g., antibody binding, enzymatic activity, multimeric stability) to determine which mutation provides a modified polypeptide with the desired properties. Further mutations can be made to modified PSMA polypeptides (or to non-modified PSMA polypeptides) which are silent as to the amino acid sequence of the polypeptide, but which provide preferred codons for translation in a particular host. The preferred codons for translation of a nucleic acid in, e.g., *E. coli*, are well known to those of ordinary skill in the art. Still other mutations can be made to the noncoding sequences of a PSMA coding sequence or cDNA clone to enhance expression of the polypeptide. The activity of modified PSMA polypeptides can be tested by cloning the gene encoding the modified PSMA polypeptide into a bacterial or mammalian expression vector, introducing the vector into an appropriate host cell, expressing the modified PSMA polypeptide, and testing for a functional capability of the PSMA polypeptides as disclosed herein. The foregoing procedures are well known to one of ordinary skill in the art.

The skilled artisan will also realize that conservative amino acid substitutions may be made in PSMA polypeptides to provide functionally equivalent PSMA polypeptides, i.e.,

modified PSMA polypeptides that retain the functional capabilities of PSMA polypeptides. As used herein, a “conservative amino acid substitution” refers to an amino acid substitution which does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Modified PSMA polypeptides can be prepared according to 5 methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references which compile such methods, e.g. *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Exemplary functionally 10 equivalent PSMA polypeptides include conservative amino acid substitutions of SEQ ID NO:1, or fragments thereof, such as the recombinant soluble PSMA polypeptide (amino acids 44-750 of SEQ ID NO:1). Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D.

15 Conservative amino-acid substitutions in PSMA polypeptides typically are made by alteration of a nucleic acid encoding a PSMA polypeptide. Such substitutions can be made by a variety of methods known to one of ordinary skill in the art. For example, amino acid substitutions may be made by PCR-directed mutation, site-directed mutagenesis, or by chemical synthesis of a gene encoding a PSMA polypeptide. Where amino acid substitutions 20 are made to a small fragment of a PSMA polypeptide, the substitutions can be made by directly synthesizing the peptide. The activity of functionally equivalent fragments of PSMA polypeptides can be tested by cloning the gene encoding the altered PSMA polypeptide into a bacterial or mammalian expression vector, introducing the vector into an appropriate host cell, expressing the altered PSMA polypeptide, and testing for a functional capability of the 25 PSMA polypeptides as disclosed herein.

30 The PSMA protein multimers as described herein have a number of uses, some of which are described elsewhere herein. The multimers are useful for testing of compounds that modulate PSMA enzymatic activity or PSMA multimerization. The multimers can be used to isolate antibodies that selectively bind PSMA, including those selective for conformational epitopes, those selective for binding PSMA multimers and not PSMA monomers, and those that selectively modulate an enzymatic activity of PSMA. The

multimers, particularly dimeric PSMA, also can be used to induce or increase immune responses to PSMA, as vaccine compositions.

Agents that selectively modulate an enzymatic activity of PSMA include agents that inhibit or enhance at least one enzymatic activity of PSMA, such as NAALADase activity, 5 folate hydrolase activity, dipeptidyl dipeptidase IV activity, γ -glutamyl hydrolase activity, or combinations thereof.

Thus methods of screening for candidate agents that modulate at least one enzymatic activity of a PSMA enzyme are provided in accordance with the invention. The methods can include mixing the candidate agent with an isolated PSMA protein multimer to form a 10 reaction mixture, thereby contacting the PSMA enzyme with the candidate agent. The methods also include adding a substrate for the PSMA enzyme to the reaction mixture, and determining the amount of a product formed from the substrate by the PSMA enzyme. Such methods are adaptable to automated, high-throughput screening of compounds. A decrease in the amount of product formed in comparison to a control is indicative of an agent capable of 15 inhibiting at least one enzymatic activity of the PSMA enzyme. An increase in the amount of product formed in comparison to a control is indicative of an agent capable of enhancing at least one enzymatic activity of the PSMA enzyme. The PSMA enzyme can be NAALADase, folate hydrolase, dipeptidyl dipeptidase IV and/or γ -glutamyl hydrolase. The PSMA enzyme preferably is a PSMA multimer that includes recombinant soluble PSMA, most preferably a 20 noncovalently associated dimer of PSMA in a native conformation.

The reaction mixture comprises a candidate agent. The candidate agent is preferably an antibody, a small organic compound, or a peptide, and accordingly can be selected from combinatorial antibody libraries, combinatorial protein libraries, or small organic molecule libraries. Typically, a plurality of reaction mixtures are run in parallel with different agent 25 concentrations to obtain a different response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration of agent or at a concentration of agent below the limits of assay detection.

Candidate agents encompass numerous chemical classes, although typically they are organic compounds, proteins or antibodies (and fragments thereof that bind antigen). In 30 some preferred embodiments, the candidate agents are small organic compounds, i.e., those having a molecular weight of more than 50 yet less than about 2500, preferably less than about 1000 and, more preferably, less than about 500. Candidate agents comprise functional

chemical groups necessary for structural interactions with polypeptides and/or nucleic acids, and typically include at least an amine, carbonyl, hydroxyl, or carboxyl group, preferably at least two of the functional chemical groups and more preferably at least three of the functional chemical groups. The candidate agents can comprise cyclic carbon or heterocyclic structure and/or aromatic or polycyclic structures substituted with one or more of the above-identified functional groups. Candidate agents also can be biomolecules such as peptides, saccharides, fatty acids, sterols, isoprenoids, purines, pyrimidines, derivatives or structural analogs of the above, or combinations thereof and the like.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides, synthetic organic combinatorial libraries, phage display libraries of random or non-random peptides, combinatorial libraries of proteins or antibodies, and the like. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are available or readily produced. Additionally, natural and synthetically produced libraries and compounds can be readily be modified through conventional chemical, physical, and biochemical means. Further, known agents may be subjected to directed or random chemical modifications such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs of the agents.

A variety of other reagents also can be included in the mixture. These include reagents such as salts, buffers, neutral proteins (e.g., albumin), detergents, etc. which may be used to facilitate optimal protein-protein and/or protein-agent binding. Such a reagent may also reduce non-specific or background interactions of the reaction components. Other reagents that improve the efficiency of the assay such as protease inhibitors, nuclease inhibitors, antimicrobial agents, and the like may also be used.

The mixture of the foregoing reaction materials is incubated under conditions whereby, the candidate agent interacts with the PSMA enzyme. The order of addition of components, incubation temperature, time of incubation, and other parameters of the assay may be readily determined. Such experimentation merely involves optimization of the assay parameters, not the fundamental composition of the assay. Incubation temperatures typically are between 4°C and 40°C. Incubation times preferably are minimized to facilitate rapid, high throughput screening, and typically are between 0.1 and 10 hours.

After incubation, the presence or absence of PSMA enzyme activity is detected by any convenient method available to the user. For example, the reaction mixture can contain a substrate for the PSMA enzyme. Preferably the substrate and/or the product formed by the action of the PSMA enzyme are detectable. The substrate usually comprises, or is coupled to, 5 a detectable label. A wide variety of labels can be used, such as those that provide direct detection (e.g., radioactivity, luminescence, optical, or electron density, etc) or indirect detection (e.g., epitope tag such as the FLAG epitope, enzyme tag such as horseradish peroxidase, etc.). The label may be bound to the substrate, or incorporated into the structure of the substrate.

10 A variety of methods may be used to detect the label, depending on the nature of the label and other assay components. For example, the label may be detected while bound to the substrate or subsequent to separation from the substrate. Labels may be directly detected through optical or electron density, radioactive emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, strepavidin-biotin conjugates, etc. Methods 15 for detecting a variety of labels are well known in the art.

Examples

Materials and Methods

20 *DNA constructs.* All secreted PSMA constructs were derived from the original human PSMA clone p55A provided by Dr. W.D.W. Heston (Israeli et al., *Cancer Res.* 53: 227-230, 1993). The constructs were subcloned into expression vector PPI4 (Trkola et al., *Nature* 384: 184-187, 1996) for high-level expression and secretion in mammalian cells. Recombinant soluble PSMA (rsPSMA) corresponds to the entire extracellular domain of PSMA (amino acids 44-750 of SEQ ID NO:1 (GenBank Protein Accession number AAA60209)).

25 *pcDNA Plasmid Constructs:* Nucleic acid molecules encoding the anti-PSMA antibodies 10.3, 006, 026, 051, 069 and 077 were cloned into plasmid pcDNA. The cloning protocol is given in Figure 10. Primers (SEQ ID NOs: 33-36, sense and anti-sense) used for the variable region amplifications are also shown. The plasmids constructed for anti-PSMA antibodies 30 006, 026, 051, 069, 077 and 10.3 contain nucleotide sequences encoding the heavy chain of the antibodies (SEQ ID NOs: 2-7; PTA-4403, PTA-4405, PTA-4407, PTA-4409, PTA-4411,

PTA-4413, respectively) or contain nucleotide sequences encoding light chain of the antibodies (SEQ ID NOs: 8-13; PTA-4404, PTA-4406, PTA-4408, PTA-4410, PTA-4412 and PTA-4414, respectively). Plasmid maps are given in Figures 11-22.

5 *Western blots.* Cells were lysed in PBS containing 1mM EDTA, 1% NP-40, 1% Triton X-100, and 5mg/ml aprotinin and cell debris was removed by centrifugation at 3000g for 30 min at 4°C. Lysates were separated on a 5-20% gradient gel before transfer to nitrocellulose membranes. The resulting blots were blocked in PBS containing 5% milk, 0.02% SDS and 0.1% Triton X-100 before incubation with MAB544 primary antibody (Maine

10 Biotechnologies) at a concentration of 2mg/ml. After three washes, blots were incubated with a goat anti-mouse HRP-conjugated secondary antibody at a concentration of 0.2mg/ml. Blots are visualized using the Renaissance chemiluminescence system (Perkin-Elmer Life Sciences, Boston, MA).

15 *ELISA.* Cells were lysed in PBS containing 1mM EDTA, 1% NP-40, 1% Triton X-100, and 5mg/ml aprotinin. The resulting cell membranes were plated onto 96-well plates and dried in a sterile hood overnight. The plates were then blocked with PBS containing casein and Tween-20 before addition of mouse sera or hybridoma supernatants, using purified MAB544 (Maine Biotechnologies) or 7E11 (Cytogen) as a standard. After washing in PBS, an alkaline 20 phosphatase conjugated secondary antibody (subclass specific) was incubated and subsequently washed in PBS. The pNPP substrate was then added for colorimetric detection at a wavelength of 405 nm.

25 *Flow cytometry.* Wild-type 3T3 or PSMA-expressing 3T3 cells (10^6 cells per condition) were washed in PBS containing 0.1% NaN_3 . Antibodies or sera were then added (1:100 dilution in PBS) and incubated on ice for 30 minutes. After washing in PBS+0.1% NaN_3 , the cells were incubated with anti-mouse IgG+IgM (Calbiotech) for 30 minutes on ice. Cells were washed again in PBS+0.1% NaN_3 and analyzed by flow cytometry.

30 Example 1: Generation of a panel of monoclonal antibodies (mAbs) to conformational epitopes on PSMA

A panel of anti-PSMA mAbs that represent promising candidates for therapy was created. Briefly, the mAbs were generated as follows: BALB/c mice were immunized subcutaneously with recombinant PSMA at approximately three-week intervals. After a total of 4 injections, mice were sacrificed and their splenocytes fused with a myeloma cell line using standard techniques in order to create hybridomas. Individual hybridoma supernatants were screened by ELISA for reactivity with PSMA derived from either LNCaP human prostate tumor cells or from 3T3 cells engineered to express full-length human PSMA (3T3-PSMA cells). Positive clones were secondarily screened by flow cytometry for specific reactivity with intact 3T3-PSMA and LNCaP cells so as to select antibodies that recognize native, cell-surface PSMA and thus have the greatest therapeutic potential.

Mice having the ability to produce human antibodies (XenoMouse, Abgenix; Mendez et al., *Nature Genetics* 15:146, 1997) were immunized subcutaneously once or twice weekly with 5×10^6 LNCaP cells adjuvanted with alum or Titermax Gold (Sigma Chemical Co., St. Louis, MO). Animals were boosted twice with 10 μ g of recombinant PSMA protein immunoaffinity captured onto protein G magnetic microbeads (Miltenyi Biotec, Auburn, CA). PSMA mAb 3.11 was used for capture. Splenocytes were fused with NSO myeloma cells and the hybridomas that resulted were screened as above by flow cytometry to detect clones producing antibodies reactive with the extracellular portion of PSMA. One clone, 10.3 (PTA-3347), produced such antibodies.

These methods have yielded a high proportion of mAbs that react exclusively with conformation-specific epitopes on cell-surface PSMA. As shown in Fig. 1, several (mAbs 3.7, 3.9, 3.11, 5.4, and 10.3) but not all (mAb 3.12) mAbs specifically bind viable PSMA-expressing cells. Using recombinant soluble PSMA proteins expressed in Chinese hamster ovary (CHO) cell lines, it further was demonstrated that the mAbs bind epitopes in the extracellular region of PSMA. The mAbs were also tested for their ability to immunoprecipitate native PSMA from 3T3-PSMA cell lysates. The mAbs positive in flow cytometry (Fig. 1) were also effective in immunoprecipitation (Fig. 2), whereas mAb 3.12 was unreactive. Fig. 3 shows the recognition of non-denatured full-length PSMA and recombinant soluble PSMA by several PSMA antibodies that recognize PSMA conformation. This further confirms that these methods yield a preponderance of mAbs that efficiently recognize native PSMA.

The mAbs were tested for reactivity with denatured PSMA by Western blot analysis (Fig. 4). Lysates from the indicated cells and samples (controls: 3T3 cells, PSMA-negative human prostate cell lines PC-3 and DU145, mock supernatant; PSMA-positive samples: PSMA-expressing 3T3 cells, PSMA-positive human prostate cell line LNCaP, rsPSMA-positive supernatant) were resolved by SDS-PAGE, electroblotted, and probed with anti-PSMA mAbs 3.1 and 3.12 (ATCC Patent Deposit Designations PTA-3639 and PTA-3640, respectively). Four mAbs tested in parallel (3.7, 3.8, 3.9, 3.11) showed no reactivity to either full-length or secreted rsPSMA proteins. 7E11 mAb immunoprecipitated full-length but not secreted rsPSMA.

10 The mAbs reactive in flow cytometry and immunoprecipitation (mAbs 3.7, 3.9, 3.11, 5.4, and 10.3) were all unreactive in Western blot analysis, indicating that the mAbs do not recognize linear epitopes. Taken together, the data strongly suggest that these 5 mAbs recognize conformation-specific epitopes located in the extracellular domain of PSMA. Since mAbs to conformational epitopes typically possess the greatest affinity and specificity 15 for antigen, they represent preferred candidates for therapy.

The reactivities of certain anti-PSMA antibodies are described in Table 2:

Table 2: anti-PSMA antibody properties

mAb	Reactivity				Epitope
	ELISA	Flow Cytometry	IP	Western	
3.1	+	+	+	+	Linear, Extracellular, exposed on native PSMA
3.7	+	+	+	-	Conformational, extracellular
3.8	+	+	+	-	Conformational, extracellular
3.9	+	+	+	-	Conformational, extracellular
3.11	+	+	+	-	Conformational, extracellular
3.12	+	-	-	+	Linear, Extracellular, not exposed on native PSMA
5.4	+	+	+	-	Conformational, extracellular
7.1	+	-	-	+	Linear, Extracellular, not exposed on

					native PSMA
7.3	+	+	+	-	Conformational, extracellular
10.3	+	+	+	-	Conformational, extracellular
1.8.3	+	+		-	Extracellular
A3.1.3	+	+		-	Extracellular
A3.3.1	+	+		-	Extracellular

The mAbs were determined by ELISA to be primarily of the mouse IgG2a, mouse IgG2b and human IgG1 isotypes, which mediate potent effector functions. Although a number of anti-PSMA mAbs have been described over the years and evaluated for 5 therapeutic potential (see, e.g., Liu, H. *et al. Cancer Res.* 57: 3629-3634, 1997; Chang, S.S. *et al. Cancer Res.* 59: 3192-3198, 1999; Murphy, G.P. *et al. J Urology* 160: 2396-2401, 1998), none inhibit the enzymatic activity of PSMA and few recognize conformational determinants on PSMA.

10 Example 2: Production of anti-PSMA mAbs

To accurately and quantitatively assess the therapeutic potential of these mAbs, the mAbs are produced in a quantity and quality suitable for extensive *in vitro* and *in vivo* characterization. Briefly, the mAb-secreting hybridomas are cultured in roller bottles in DMEM/F12 medium supplemented with 10% FBS that has been depleted of bovine IgG 15 (Life Technologies). During the production phase of the culture, cells are maintained at ~5 x 10⁶ cells/mL via twice-weekly exchanges of media. Collected media are clarified by filtration through a 0.22 micron filter and stored at -95 °C prior to purification. Given an average antibody expression levels of ~25 mg/L, approximately 3L of roller bottle supernatants are required for each antibody to allow for losses in purification.

20 Culture supernatants from a given hybridoma are pooled and loaded onto a Protein A Sepharose affinity column. Mouse IgG2a, mouse IgG2b and human IgG1 antibodies are loaded directly, but supernatants containing mouse IgG1 antibodies are adjusted to pH 8.5 and 1M NaCl prior to loading in order to promote binding. After washing the column, the mAb is eluted with low pH buffer into fractions using 1M Tris, pH 8.0. Elution peak 25 fractions are pooled, dialyzed against PBS buffer, concentrated to 5 mg/mL and stored in sterile aliquots at -95 °C. All purification procedures are carried out using endotoxin-free

buffers and sanitized chromatography columns. Purified mAbs are tested for purity by reducing and nonreducing SDS-PAGE, for PSMA binding affinity by ELISA, and for endotoxin levels by the *limulus* amebocyte lysate assay. These procedures routinely yield “animal-grade” antibody at >95% purity and <0.5 endotoxin units per milligram of protein.

5

Example 3: Evaluation of the therapeutic potential of the unlabeled mAbs *in vitro*

Purified mAbs are tested in a battery of assays for therapeutically relevant properties, including affinity, specificity, enzyme inhibitory activity and effector functions. The ideal product candidate binds and inhibits PSMA activity at subnanomolar concentrations and mediates potent cell-killing through Fc-related effector functions.

First, the mAbs’ affinity for cell-surface and secreted forms of PSMA is measured by flow cytometry and ELISA, respectively. In the flow cytometry assay, varying amounts of mAbs are incubated with 5×10^5 3T3-PSMA cells in FACS buffer (PBS containing 1% FBS and 0.1% NaN_3) for 2 hr to allow for saturation binding. Cells are washed and incubated with a phycoerythrin-coupled goat antibody to mouse IgG (ICN/Cappel) for detection of bound mAb by flow cytometry. Specific binding is calculated by subtracting the fluorescence intensity observed with parental 3T3 cells.

For ELISA, CHO cell-derived recombinant soluble PSMA protein (rsPSMA, Progenics, Tarrytown, NY) is diluted to 1 $\mu\text{g}/\text{ml}$ in 50 mM carbonate buffer, pH 9.4, and coated overnight at 4 °C onto 96-well Immulon II microtiter plates at 100 $\mu\text{l}/\text{well}$. The plates are then blocked for 2 hr with PBS buffer containing 5% BSA. mAbs are added in a range of concentrations in ELISA buffer (PBS buffer containing 2% BSA, 1% FBS and 0.5% Tween 20) for 2 hours at room temperature. The plates are washed, and horseradish peroxidase conjugated goat antibody to mouse IgG is added for 1 hr at room temperature. The plates are washed again and 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB) substrate (Pierce, Rockford, IL) is added for colorimetric readout at 450 nm using an ELISA plate reader (Molecular Devices, Sunnyvale, CA).

Example 4: mAb cross-competition binding assay

To identify whether a given group of mAbs recognize distinct or overlapping epitopes on PSMA, cross-competition binding assays are performed (Liu, H. *et al. Cancer Res* 57: 3629-3634, 1997). In this flow cytometry assay, a biotinylated test mAb is incubated with

30

3T3-PSMA cells in the presence or absence of varying concentrations of unlabeled competitor mAbs as described above. Following washing, phycoerythrin-conjugated streptavidin is added to determine the amount of bound biotinylated mAb. The percent inhibition is defined relative to that observed in the presence of an isotype-matched mAb of 5 irrelevant specificity (0% inhibition) and to that observed using excess unlabeled test mAb (100% inhibition).

Example 5: Effects of mAbs on PSMA enzymatic activity

PSMA has been shown to possess both folate hydrolase and N-acetylated α -linked acidic dipeptidase (NAALADase) enzymatic activities, which may influence the proliferation and malignancies of the tumor cell (Heston, W.D.W. *Prostate: Basic and Clinical Aspects* (R.K. Naz, ed.). CRC Press, New York: 219-243, 1997). Several of the mAbs described above (mAb 3.9, mAb 5.4 and mAb 7.3) and mAb J591 (ATCC #HB-12126) were tested for folate hydrolase modulating activity using previously described assays for measuring PSMA enzymatic activity (Pinto, J.T. *et al. Clinical Cancer Res* 2: 1445-1451, 1996).

Briefly, folate hydrolase activity was measured as follows. Fifty μ M methotrexate di-gamma glutamate and 10 μ g/ml rsPSMA (premixed with anti-PSMA or irrelevant mAb) was incubated in pH 4.5 acetate buffer in a volume of 100 μ l for 2 hr at 37°C. Reactions were terminated by boiling for 5 minutes prior to separation of free, mono- and di-gamma glutamate forms of methotrexate by capillary electrophoresis on a Spectra Phoresis 1000 (Thermo Separation, San Jose, CA). The various methotrexate derivatives were quantified based on their retention times and absorbance at 300 nm.

The data show that mAb 5.4 potently blocks the enzymatic activity of purified rsPSMA protein and in lysates of C4-2 cells. C4-2 is an androgen independent derivative of 25 the LNaCP cell line (human prostate cancer line) which expresses endogenous PSMA. More details regarding the C4-2 cell line may be found in O'Keefe D.S. *et al. Prostate* 45: 149-157, 2000). Figures 7 and 8 provide the results for two production lots of rsPSMA (rsPSMA #7 and rsPSMA #8). The results for the C4-2 cell lysates are shown in Figure 9. The figures 30 illustrate the effect of four antibodies (mAb 3.9, mAb 5.4, mAb 7.3 and mAb J591) on the enzymatic activity of folate hydrolase by way of the rate of cleavage of glutamate from methotrexate di-gamma glutamate (MTXGlu2) by folate hydrolase present in the two

production lots of rsPSMA and in the C4-2 cell lysates. In addition to the inhibitory effects of mAb 5.4, mAb 3.9 was also found to inhibit folate hydrolase activity.

For NAALADase activity assays, rsPSMA protein is incubated with varying amounts of anti-PSMA or control mAbs in 50mM Tris pH 7.4, 1mM CoCl₂ for 10 minutes at 37°C before adding 50μl of 0.6μM N-acetylaspartyl-[³H]glutamate. After 15 minutes, the reaction is stopped by adding 1 ml of 100mM NaPO₄. Cleaved glutamate is separated from the substrate by ion exchange chromatography and detected by scintillation counting. Each measurement is performed in triplicate.

10 Example 6: Reactivity with normal and malignant human tissues by immunohistochemistry

Anti-PSMA mAbs are tested by immunohistochemistry for reactivity with both normal and malignant human tissues using an avidin-biotin peroxidase method (Silver, D.A. et al. *Clin Cancer Res* 3: 81-85, 1997). Frozen or paraffin-embedded tissues can be used.

15 Paraffin-embedded tissue sections are deparaffinized and endogenous peroxidase activity is blocked by incubation with 1% H₂O₂ for 15 minutes. Sections are blocked in a 1:10 dilution of horse serum in 2% PBS-BSA (Sigma Chemical, St Louis, MO) for 30 minutes before overnight incubation with 2μg/ml anti-PSMA mAb in 2% PBS-BSA. After washing, sections are incubated with biotinylated secondary antibody, washed, and incubated with avidin:biotin peroxidase complexes (Vector Laboratories, Burlingame, CA) diluted 1:25 in 20 PBS for 30 minutes. After washing, sections are visualized by immersion in PBS containing 0.05% diaminobenzidine tetrachloride, 0.01% H₂O₂, and 0.5% Triton X-100. Negative control sections are incubated with isotype-matched mAbs of irrelevant specificity. As a positive control, 7E11 (Cytogen, Princeton, NJ), a well-characterized anti-PSMA mAb, is used.

25

Example 7: Antibody-dependent cellular cytotoxicity (ADCC)

In the ADCC assay, mAbs are serially diluted and combined with ⁵¹Cr-labeled 3T3-PSMA cells or human prostate PC-3 cells that have been engineered to express human PSMA (PC-3-PSMA cells). NK effector cells are purified from lymph nodes or spleens using anti-30 NK microbeads (Miltenyi Biotec). Sera, NK effector cells, and ⁵¹Cr-loaded target cells are co-incubated at effector:target cell ratios of 10:1, 20:1, and 40:1, with each condition performed in triplicate. Cells are incubated 4-5 hours at 37°C before supernatants are

collected for measurement of ^{51}Cr release by gamma counting. The percent specific lysis is determined relative to that observed in the presence of isotype-matched non-specific mAb (0% lysis) to that obtained using 10% sodium dodecyl sulfate (100% lysis).

5 Example 8: Complement-mediated lysis (CML)

For CML, ^{51}Cr -loaded 3T3-PSMA or PC-3-PSMA cells serve as target cells. Serial dilutions of mAbs are co-incubated with rabbit complement and target cells for 4-5 hours at 37°C, with each condition being performed in triplicate. Supernatants are then collected and counted with a gamma counter. Specific lysis is computed as previously done with the

10 ADCC assay data.

Example 9: Anti-proliferative effects

To test anti-proliferative effects of these antibodies, anti-PSMA mAbs are serially diluted and incubated with LNCaP, PC-3-PSMA and parental PC-3 cells in log-phase growth.

15 At 4 hr, 24 hr, and 72 hr intervals, cells are removed and analyzed for density and viability by trypan blue staining and WST-1 assay (Roche Biochemicals).

Example 10: Optimization of chelation and radiolabeling procedures

The most promising mAbs identified using the procedures described in the foregoing examples will be optimized for biochemical and biological stability and activity after labeling prior to evaluation in animals. Success in *in vitro* experiments is defined as identification of a radiolabeled mAb that specifically kills PSMA-expressing tumor cells at >10-fold lower concentrations than unlabeled or similarly labeled isotype control mAb.

Because the preferred α - and β -emitting isotopes are all radiometals, each of the mAbs is first conjugated with an appropriate metal chelating agent. Based on the favorable *in vivo* stability data and its proven use in human clinical trials, the bifunctional chelating agent C-functionalized trans cyclohexyldiethylenetriaminepentaacetic acid (*p*-SCN-CHX-A"-DTPA) is the preferred agent for attaching either ^{90}Y or ^{213}Bi to the antibody (Brechbiel, M.W. *et al. J. Chem. Soc. Chem. Commun.* 1169-1170, 1991). A form of this chelate has previously been tested in more than 70 doses in humans in ongoing trials at Memorial-Sloan Kettering Cancer Center (McDevitt, M.R. *et al. J. Nucl. Med.* 40:1722-1727, 1999). For ^{225}Ac , our initial studies will examine a novel bifunctional chelating agent termed *p*-SCN-Bz-

HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N'''',N''''-hexaacetic acid) (Deal, K.A. *et al. J. Med. Chem.* 42:2988-2992, 1999). The objective is to optimize the antibody conjugation and chelation ratios to maximize labeling yield and activity while maintaining suitable stability for *in vivo* utilization. Additional chelating agents also are used
5 as they become available from the N.I.H. and other sources.

Initially, the antibody is rendered metal-free by incubation with a large molar excess of EDTA at pH=5. The EDTA and any metals scavenged from the antibody preparation are removed via continuous buffer exchange/dialysis so as to replace the pH=5 buffer with the conjugation buffer (Nikula, T.K. *et al. Nucl. Med. Biol.* 22:387-390, 1995). Conditions that
10 yield optimal chelator to antibody ratio but still remain immunoreactive are identified by systematically varying the chelator:antibody ratio, reaction time, temperature, and/or buffer systems about initial conditions that employ a 40-fold molar excess of chelator to antibody in HEPES buffer, pH 8.5. The number of chelates bound per antibody is determined using an established spectrophotometric method (Pippin, C.G. *et al. Bioconjugate Chemistry* 3: 342-
15 345, 1992).

For ⁹⁰Y and ²²⁵Ac constructs, labeling efficiency is measured directly. For ²¹³Bi, initial antibody constructs are tested for chelation efficiency using ¹¹¹In, which has similar chelation chemistry as ²¹³Bi but possesses the advantages of a longer half life ($t_{1/2}=3$ days), ready availability, and traceable γ -emission. Once optimized using ¹¹¹In, labeling efficiency
20 is determined for ²¹³Bi.

Radiolabeled mAb is purified over a BioRad 10DG desalting column using 1% HSA as the mobile phase and evaluated by instant thin layer liquid chromatography (ITLC) and/or high performance liquid chromatography (HPLC) to determine the percent incorporation of radionuclide (Zamora, P.O. *et al. Biotechniques* 16: 306-311, 1994). ITLC and HPLC
25 provide a means of establishing purity and identifying the percent of low molecular weight radiochemical impurities (*i.e.*, metal chelates, colloids, and free metal). Duplicate ITLC strips for each mobile phase are developed, dried, and cut at the R_f of 0.5 mark and counted in a gamma counter. The HPLC system is equipped with both an online UV absorption detector and radioactivity detector. The HPLC elution profile directly correlates radioactivity
30 with protein and low molecular weight species as a function of the elution time. A TSK SW3000_{XL} column (TosoHaas, Montgomeryville, PA) is used and calibrated using a range of protein molecular weight standards.

Example 11: Affinity and immunoreactivity of radiolabeled mAbs

Once radiolabeled constructs are obtained, purified, and assessed for biochemical and radiochemical purity, biological activity is determined. Binding activity of the radioconstruct 5 is performed by Scatchard analysis of binding data obtained using whole LNCaP and 3T3-PSMA cells and/or membrane fractions as previously described (Scheinberg, D.A. *et al.* *Leukemia* 3: 440-445 (1991)).

The immunoreactivity of the synthetic constructs is evaluated in order to correlate the chelate:antibody molar ratio with the biological activity. Briefly, 2 ng of labeled mAb is 10 incubated with a ~25-fold excess of PSMA as expressed on 3T3-PSMA cells. After a 30 min incubation at 0°C, the cells are collected by centrifugation and the supernatant containing unbound mAb is added to fresh 3T3-PSMA cells for an additional 30 min at 0°C. Both sets of cells are centrifuged and washed twice with cold PBS. The cell pellets, supernatant and wash fractions are counted for radioactivity. Immunoreactivity is defined as the amount of 15 radioactivity in the cell pellets divided by the total radioactivity in the cell pellets, supernatant and wash fractions.

Example 12: mAb internalization

The activity of radiolabeled mAbs can be significantly modulated by their 20 internalization rates. Internalization of the cell surface antibody-antigen complex is measured using ¹¹¹In radiolabeled antibody constructs (Caron, P.C. *et al.* *Cancer Res* 52: 6761-6767, 1992). Briefly, 5x10⁵ 3T3-PSMA cells are incubated at 37°C with ¹¹¹In radiolabeled antibody for varying time periods. Cells are washed with PBS and cell-surface bound radiolabeled constructs are stripped with 1ml of 50mM glycine/150mM NaCl, pH=2.8. Total 25 cell-associated radioactivity and acid-resistant (internalized) radioactivity are determined by γ-counting to ascertain the rate of internalization. Parental 3T3 cells that do not express PSMA are used as a control to determine non-specific binding. Based upon previous results by other groups (Smith-Jones P.M. *et al.* *Cancer Res* 60: 5237-5243, 2000), significant internalization of PSMA after binding with one or more of the mAb constructs is expected.

30

Example 13: *In vitro* cytotoxicity studies

Assessment of *in vitro* cytotoxicity of α -labeled mAbs was undertaken once the immunoreactivity of the radioimmunoconjugate was established. Approximately 50,000 target cells (either LNCaP or 3T3-PSMA cells) were treated in 96 well plates and analyzed 24-96 hours later. Quantification of cell death due to ^{225}Ac -labeled constructs (or ^{213}Bi) was 5 accomplished by determining the uptake of ^3H -thymidine by surviving cells (Nikula, T.K. *et al.* *J. Nucl. Med.* 40: 166-176, 1999). Specificity was determined by use of control cells (PSMA-negative human prostate cell lines PC-3 and DU-145, as well as control 3T3 cells), blocking with excess unlabeled antibody, and control radioconjugates.

The cytotoxic effects of antibody conjugate concentration, specific activity, and time 10 of exposure were then assessed. Cytotoxicity was expressed relative to that seen with 1M HCl (100% cell death) and media (background cell death). LD₅₀ values were calculated by plotting cell viability as a function of the number of ^{225}Ac atoms bound on the cells (McDevitt, M.R. *et al.* (1998) *Eur. J. Nucl. Med.* 25: 1341-1351 (1998)).

Multicellular spheroids of LNCaP-FGC cells had been established and were used to 15 investigate the potential of radioimmunotherapy (RIT) to eradicate minimal disease *in vitro*. These three-dimensional spheroids mimic tissue structures more accurately than monolayer cultures and thus provide a more relevant model of solid tumors (O'Connor, K.C. *Pharm. Res.* 16: 486-493, 1999). LNCaP-FGC is a fast growing clone of the original LNCaP cell line, and the cells were grown using a liquid overlay technique to a size of 200-600 μm 20 (Ballangrud, A.M. *et al.* *Clin. Cancer Res.* 5: 3171s-3176s, 1999). In larger spheroids, the inner mass of cells becomes necrotic, while the outer rim consists of proliferating tumor cells. Antibody penetration was measured by confocal microscopy, and prior results suggested that 25 an anti-PSMA antibody should penetrate to a depth of 40-50 μm (Ballangrud, A.M. *et al.* 7th Conference on Radioimmunodetection and Radioimmunotherapy of Cancer, Princeton NJ, 1998). The *in vitro* cytotoxicity of ^{225}Ac -3.9 on LNCaP target cells is shown in Figure 23. The percentage of viable PSMA⁺ LNCaP cells was plotted as a function of activity of the radioconjugate. Addition of a 100-fold excess of unlabeled antibody was used as a control for specificity.

30 Example 14: Evaluation of the *in vivo* efficacy of unlabeled and radiolabeled mAbs in mouse xenograft models of human prostate cancer

Antibodies that are successful in the foregoing assays demonstrate significant specificity and functional properties that suggest they will be useful for therapeutic use. The most promising of these radiolabeled and "naked" mAb constructs are evaluated in the best available mouse models of prostate cancer. The studies employ an established xenograft model in which the LNCaP human prostate tumor cell line is injected into immunocompromised nude mice and allowed to form solid tumors (Ellis, W.J. *et al. Clin Cancer Res* 2: 1039-1048 (1996), which then are treated with both radiolabeled and unlabeled anti-PSMA mAb constructs. Follow-on studies also utilize a mouse xenograft model, CWR22, which reproduces many of the key biological features of human prostate cancer.

10

LNCaP tumor cell xenograft model

A construct showing high affinity and high specificity is taken into the LNCaP tumor cell xenograft *in vivo* model for biodistribution and pharmacokinetic analysis. ¹¹¹In-labeled anti-PSMA antibody is used for these studies due to its favorable chelation chemistry, radioactive half-life and traceable gamma emission. Timepoints are evaluated as appropriate for the half-lives of ²¹³Bi, ²²⁵Ac, ¹⁷⁷Lu and ⁹⁰Y, which are the nuclides of therapeutic interest. Labeled radioconstructs (1-5 μ g) are injected i.v. into nude mice (normal and tumor bearing) and the mice are sacrificed at 5 min, 15 min, 30 min, 60 min, 2 hrs, 4 hrs, 18hrs, and 24hrs post-injection. Blood and major organs are taken from animals, weighed, and the percent radioactivity injected per gram of tissue is determined (Nikula, T.K. *et al. J. Nucl. Med.* 40: 166-176, 1999). Specificity is addressed by pre-injection with excess unlabeled construct. Macroscopic tumor volume and animal survival rates is recorded throughout the experiments.

A dose-ranging study is also conducted to determine the toxicity of the constructs when administered via i.v. or i.p. injection to normal and tumor-bearing mice. These animals are routinely examined for toxic side effects during the course of the studies by blood chemistry and physical examination. Animals are sacrificed during and at the conclusion of the study in order to collect blood and body tissues for further evaluation. Previous data has demonstrated an approximate maximum tolerated dose of 250 μ Ci/mouse, so total doses are kept below that level.

Once i.v. biodistribution and toxicity is documented, radiotherapy of tumors is assessed. Groups of five mice are injected with <1 μ g radiolabeled anti-PSMA mAb construct both pre- and post-tumor challenge to assess anti-tumor activity. Antigen negative

(RAJI or RAMOS) xenografted tumors are also used as a control. Other controls include (1) treatment with unlabeled anti-PSMA mAb only and (2) excess unlabeled anti-PSMA mAb pretreatment before ²¹³Bi, ²²⁵Ac, ¹⁷⁷Lu and/or ⁹⁰Y-labeled anti-PSMA to block specific targeting.

5 Groups of tumor bearing mice are injected with unlabeled anti-PSMA mAbs (at equimolar concentrations) and several dose levels of radiolabeled anti-PSMA or a similarly labeled isotype control antibody. The effect on tumor growth is assessed over time. Statistical differences between therapy groups is determined using an analysis of variance (ANOVA) method and animal survival is illustrated using Kaplan-Meier plots. The efficacy 10 of ²¹³Bi, ²²⁵Ac, ¹⁷⁷Lu and/or ⁹⁰Y-labeled anti-PSMA constructs is correlated to the data obtained *in vitro*. Success in these experiments is defined as the ability to significantly (p <0.05) increase life-span and/or decrease tumor volume as compared to a radiolabeled isotype control mAb.

15 Furthermore, the tumor models are used to test whether predosing with unlabeled antibody prior to injection of radiolabeled antibody improves delivery of the radiolabeled antibody to the tumor. The tumor-bearing mice are injected with <1 μ g radiolabeled anti-PSMA antibody with or without a prior single injection of 5-100 μ g of unlabeled antibody. After several days, animals are sacrificed for evaluation of the distribution of radioactivity in 20 the tumor, normal tissue, and blood. If predosing with unlabeled antibody improves delivery and targeting of radiolabeled antibody to the tumors, this approach is applied and optimized in toxicity and therapeutic studies.

25 In addition to overall survival, the role of timing of the injection after tumor transplantation (Day 1 vs 3 vs 7), the role of dosage (dose-response curves using 3-4 dose levels), the role of schedule (single vs multiple divided daily injections) and the specificity of the treatment (pre-treatment with unlabeled anti-PSMA to block targeting) is examined.

30 These *in vivo* studies are designed to address the maximum tolerated dose of radiolabeled antibody, the activity of the antibody, the optimal dosing schedule (single or multiple injections), and the effect on tumor size. Successful completion of this work enables determination of the feasibility of PSMA-targeted alpha particle radioimmunotherapy (RIT) of prostate cancer and identifies the optimal ²¹³Bi and/or ²²⁵Ac-labeled constructs to enter into clinical development.

CWR22 mouse xenograft model

The most promising anti-PSMA mAbs in unlabeled, toxin-labeled and/or radiolabeled form are tested in the CWR22 human prostate cancer xenograft mouse model, (Wainstein, M.A. *et al. Cancer Res* 54:6049-6052 (1994); Nagabhushan, M. *et al. Cancer Res* 56:3042-3046 (1996); Pretlow, T.G. *et al. J Natl Cancer Inst* 85:394-398 (1993)). This model has many features of the human condition including a dependence on androgens, a correlation between measured levels of PSA in serum and tumor size, and high-level expression of PSMA. Following androgen withdrawal, PSA levels decrease to nearly undetectable levels and tumor volume decreases. Later, the tumor regrows as an androgen-independent neoplasm, manifest initially by a rise in PSA and later, measurable tumor growth. After androgen withdrawal, tumors regrow at variable time periods.

Four to six week old nude athymic BALB/c male mice are obtained from the National Cancer Institute-Frederick Cancer Center and maintained in pressurized ventilated caging. While immunodeficient in many respects, these mice mediate wild-type levels of ADCC and CML. The CWR22 tumor line is propagated in the animals by the injection of minced tumor tissue from an established tumor into the subcutaneous tissue of the flanks of athymic nude mice together with reconstituted basement membrane (Matrigel, Collaborative Research, Bedford, MA). To maintain serum androgen levels, the mice are administered 12.5-mg sustained-release testosterone pellets (Innovative Research of America, Sarasota, FL) subcutaneously before receiving tumors. Three to four weeks after inoculation, tumors of approximately 1.5 x 1.0 x 1.0 cm are measured. Androgens are withdrawn by surgical castration under pentobarbital anesthesia and removal of the sustained-release testosterone pellets. Tumor size is determined by caliper measurements of height, width and depth. PSA values are performed on the serum of the mice after tail bleeding using a Tandem-R PSA immuno-radiometric assay (Hybritech, San Diego, CA).

Groups of five mice are injected with anti-PSMA mAb or a similar isotype control mAb at dosages from 5-100 μ g to assess anti-tumor activity. The effect of scheduling single doses vs. multiple divided daily injections is also examined. Macroscopic tumor volume and animal survival rates are recorded throughout the experiments. Statistical differences between therapy groups are determined using an analysis of variance (ANOVA) method and animal survival are illustrated using Kaplan-Meier plots, with success defined as a difference

of $p < 0.05$. Similarly, the efficacy of “naked” mAbs is compared to that seen with ^{90}Y , ^{177}Lu , ^{213}Bi and/or ^{225}Ac -labeled anti-PSMA constructs.

These *in vivo* studies are designed to address the maximum tolerated dose of mAb, the activity of the antibody, the optimal dosage and dosing schedule (single or multiple divided 5 injections), and the effect of treatment on tumor size. Successful completion of this work will enable determination of the feasibility of PSMA-targeted immunotherapy of prostate cancer and identification of the optimal constructs to enter into clinical development.

Example 15: Investigation Of Native PSMA Protein Conformation

10

Extraction of PSMA from the cell surface of LNCaP and 3T3 cells

LNCaP or 3T3 cells were grown to confluence in a T150 cell culture flask, detached using cell dissociation solution (Mediatech, Herndon, VA) and transferred to a 15ml conical tube. The cells were washed twice with PBS and resuspended with 2ml of M-PerTM

15 Mammalian Protein Extraction Reagent (Pierce, Rockford, IL). Following incubation for 10 min at 4°C, cell debris and insoluble aggregates were removed by centrifugation at 15,000 rpm for 30 min at 4°C. The supernatant was transferred to a cryogenic vial and stored at -80°C until further use.

20 *Production and Purification of Recombinant, Soluble PSMA (rsPSMA)*

The extracellular domain of PSMA (amino acids 44-750 of the full-length protein, SEQ ID NO:1) was obtained as a secreted protein from a DXB11 Chinese hamster ovary (CHO) cell line, stably transfected with an rsPSMA expression vector. The cells were grown in a Celligen Plus 2.2L Packed Bed Bioreactor (New Brunswick Scientific, Edison, NJ) in protein-free media. The Bioreactor was operated in perfusion mode, and supernatant was collected aseptically into collection bags maintained at 4°C. The protease inhibitor aprotinin was added to the harvest supernatant, which was concentrated 25-fold prior to storage at -90°C. For purification, the concentrate was thawed and purified using subsequent steps of Concanavalin A lectin affinity chromatography and Butyl-Sepharose hydrophobic interaction chromatography. The purified protein was dialyzed against 10mM potassium phosphate, pH 7.0. The purified rsPSMA protein is dimeric, and possesses folate hydrolase enzymatic activity when tested according to published procedures (Pinto et al., *Clinical Cancer*

Research 2:1445, 1996) and reacts with each of a panel of conformation-specific monoclonal antibodies, indicating that rsPSMA adopts a native conformation.

5 *Polyacrylamide Gel Electrophoresis (PAGE) and Western Blotting of the different PSMA proteins*

For each individual PAGE analysis, 15 μ l of each cell lysate and 5 μ l of the purified rsPSMA were used.

10 SDS-PAGE was performed using standard procedures. Samples were prepared by boiling for 5 minutes in the presence of Laemmli sample buffer (with or without the reducing agent dithiothreitol [DTT]). Samples were then applied on a 4-15% Tris-Glycine gel (BioRad, Hercules, CA). After electrophoresis for 1h at 200V, the proteins were transferred onto nitrocellulose (BioRad) and analyzed by Western blotting.

15 The oligomeric nature of the different PSMA proteins was analyzed using Blue Native PAGE (BN-PAGE). Each sample was diluted with an equal volume of 2x BN-PAGE sample buffer (0.1M MOPS / 0.1M Tris / 40% glycerol / 0.1% Coomassie G-250) prior to loading onto the gel. BN-PAGE was performed using 4-12% BisTris gels (Invitrogen, Carlsbad, CA) and 50mM MOPS / 50mM Tris, pH 7.7 as running buffer. Coomassie Blue was omitted from the cathode buffer to avoid interference with protein binding during the transfer of the proteins onto nitrocellulose. Following electrophoresis for 2.5hrs at 125V, the 20 proteins were transferred onto a nitrocellulose membrane (BioRad) and analyzed by Western blotting.

25 Western blotting was performed as follows: Subsequent to transfer, the nitrocellulose membrane was blocked with 5% milk in PBS / 0.1% Triton X-100 / 0.02% SDS, which was also used for the subsequent wash and antibody incubation steps. PSMA proteins were detected using the anti-PSMA mAbs 3.1 or 3.9 (Progenics Pharmaceuticals) as primary antibody and HRP-labeled anti-mouse IgG as secondary antibody and 1h incubation at room temperature. The membranes were colorimetrically developed using chemiluminescence (NEN Plus, Perkin Elmer Life Sciences, Boston, MA).

30 *Results*

Both full-length PSMA and recombinant, soluble PSMA (rsPSMA) migrate on reducing and non-reducing SDS-PAGE with a molecular weight of ~100 kDa (Fig. 5). The

result for full-length PSMA is in accordance with prior observations (Israeli et al., U.S. Patent 5,538,866; Murphy et al., U.S. Patent 6,158,508; Israeli, et al., *Cancer Research* 54:1807, 1994; Troyer et al. *Int. J. Cancer* 62:552, 1995; Troyer et al., *The Prostate* 30:233, 1997; Grauer et al., *Cancer Research* 58:4787, 1998). In each of these reports, full-length PSMA 5 migrated as a major band of 100-120 kDa, with a minor (typically <5% of the total PSMA protein) 180-200 kDa band observed in a subset of reports (U.S. Patent 6,158,508; Troyer et al., 1995; Troyer et al., 1997). Troyer et al. (1995) describe the 180-200 kDa species as being a noncovalently associated PSMA dimer that can be disrupted with increasing concentrations of SDS detergent.

10 rsPSMA contains 94% (707 of 750) of the amino acids present in full-length PSMA, and the two proteins are not clearly resolved in this analysis, as expected.

SDS-PAGE allows the analysis of denatured proteins only. In order to examine native proteins in their native state, other techniques have to be employed, such as Blue Native PAGE (BN-PAGE). BN-PAGE is used to determine the native molecular weight of 15 proteins and their noncovalent complexes (Schägger & v. Jagow, *Anal. Biochem.* 199:223-231, 1991; Schägger et al., *Anal. Biochem.* 217:220-230, 1994). The dye Coomassie Blue G-250 binds to the hydrophobic domains on the surface of most proteins, enhances solubility, and introduces a charge shift on the native proteins resulting in migration towards the anode at pH 7.5 irrespective of the isoelectric point of the protein. Although the migration velocity 20 of proteins in BN-PAGE varies somewhat, the molecular mass of proteins can be determined by their respective end points of migration due to the decreasing pore size of the acrylamide gradient present in the gels.

When analyzed by BN-PAGE, full-length PSMA (extracted from LNCaP or 3T3 cells) as well as purified rsPSMA migrate with a molecular weight of ~190kDa (Fig. 6). This 25 surprising observation for full-length PSMA indicates that the predominant form of cell-surface PSMA is a noncovalently associated dimer. This unexpected result can be contrasted with that of previous reports (U.S. Patent 6,158,508; Troyer et al. 1995; Troyer et al., 1997), where the PSMA dimer represents a minor species in SDS-PAGE analyses. Presumably, the noncovalent PSMA dimer is largely dissociated by boiling in the presence of the denaturing 30 detergent SDS.

Moreover, the result for the purified rsPSMA protein indicates that the dimer is stabilized via interactions between extracellular amino acids in addition to or exclusive of

amino acids in the transmembrane or intracellular segments, which are not present in rsPSMA.

Example 16: Dissociation of PSMA Multimers

5 PSMA is a putative zinc metalloprotease, and site-directed mutagenesis of amino acids implicated in zinc binding results in a profound loss of enzymatic activity (Speno et al., *Molecular Pharmacology*, 55:179, 1999). These amino acids include His-377, Asp-387, Glu-425, Asp-453 and His-553. Ethylenediaminetetraacetic acid (EDTA) is a strong chelating agent for Zn^{2+} and other divalent cations, and thus has the potential to remove Zn^{2+}
10 or other coordinate divalent cations from PSMA. We have determined that EDTA treatment causes the PSMA homodimer to dissociate into monomeric subunits. Similar results can be expected for other agents that possess similar chelating properties, such as ethyleneglycol-bis(beta-aminoethyl ether) (EGTA).

15 The purified rsPSMA protein was incubated with or without 10mM EDTA for 16 hr at 4°C and then analyzed by BN-PAGE. Under these conditions, the EDTA-treated protein was monomeric, whereas rsPSMA remained dimeric in the absence of EDTA. Although the dissociation of the PSMA dimer into monomer was essentially complete, any residual dimeric protein can be removed if desired by gel filtration, ultracentrifugation or other size-based separation methods that are well-known to those skilled in the art.

20

Example 17: Methods for identifying promoters of PSMA dissociation

Compounds are screened for the ability to promote dissociation of PSMA dimers using a method that includes:

25 (a) contacting a PSMA dimer with a compound under conditions that do not promote dissociation of the PSMA dimer in the absence of the compound;

(b) measuring the amount of PSMA monomer; and

(c) comparing the amount of PSMA monomer measured in the presence of the compound with that observed in the absence of the compound.

30 An increase in the amount of PSMA monomer measured in the presence of the compound indicates that the compound is capable of promoting dissociation of the PSMA dimer.

In a further embodiment, compounds are screened for the ability to promote dissociation of PSMA dimers using a method that includes:

- (a) contacting a PSMA dimer with a compound under conditions that do not promote dissociation of the PSMA dimer in the absence of the compound;
- 5 (b) measuring the amount of PSMA dimer; and
- (c) comparing the amount of PSMA dimer measured in the presence of the compound with that observed in the absence of the compound.

A decrease in the amount of PSMA dimer measured in the presence of the compound indicates that the compound is capable of promoting dissociation of the PSMA dimer.

10

In a further embodiment, compounds are screened for the ability to promote dissociation of PSMA dimers using a method that includes:

- (a) contacting a PSMA dimer with a compound under conditions that do not promote dissociation of the PSMA dimer in the absence of the compound;
- 15 (b) measuring the amounts of PSMA monomer and PSMA dimer;
- (c) calculating a ratio of PSMA monomer to PSMA dimer; and
- (d) comparing the ratio obtained in (c) with that obtained in the absence of the compound.

An increase in the ratio measured in the presence of the compound indicates that the 20 compound is capable of promoting dissociation of the PSMA dimer.

Example 18: Cell surface PSMA binding studies

Flow cytometry

25 Parent 3T3 cells or PSMA-expressing 3T3 cells (2×10^5 cells per condition) were washed in PBS and incubated with PBS containing goat serum (10% v/v) for 20 minutes on ice to block non-specific binding sites. Anti-PSMA monoclonal antibodies (unpurified form in supernatants or purified mAbs) were added in serial dilutions to cells in 100 μ l PBS and incubated on ice for 30 minutes. Control anti-human IgG (Caltag, Burlingame, CA) was used 30 to establish background binding. After two washes in PBS, the cells were incubated with anti-human IgG (BD Pharmingen, San Diego, CA) for 30 minutes on ice. Cells were washed twice in PBS, resuspended in 250 μ l PBS and analyzed by flow cytometry using a FACScan machine (Becton Dickinson, Franklin Lakes, NJ) and CellQuest software. Viable cells were

gated by forward scatter and side scatter parameters, and binding was quantified using histogram plots of mean fluorescence intensity (MFI) levels.

5 Anti-PSMA mAbs XG-006 (PTA-4403 and PTA-4404, heavy and light chain plasmids), XG-051 (PTA-4407 and PTA-4408), 4.40.1 (PTA-4360; 4.40, 4.40.1 and 4.40.2 are the same antibody that represent different stages of subcloning the hybridoma), 4.49.1, 4.292.1 (PTA-4390) and 4.304.1 were found to avidly bind to cell surface PSMA (Figure 24).

Maximal Binding

10 Flow cytometry data (mean fluorescence intensity v. antibody concentration) were transposed and plotted using Excel software (Microsoft, Redmond, WA). Results from representative experiments of at least three determinations are depicted in Figures 25A-25C. Binding was compared by calculation of 50% effective concentration (EC50) using the Forecast function in Excel. The EC50 value represents the concentration of antibody 15 required for half-maximal binding.

Anti-PSMA mAbs 10.3 (PSMA 10.3) and XG-006 were found to bind to 3T3-PSMA cells and not 3T3 cells (Figure 25A). Antibody (26nM) was added to cells, which were analyzed by flow cytometry. Binding to cell-surface PSMA using serial dilutions of anti-PSMA mAb-containing culture supernatants of XG-006, 4.304.1, XG-026 (PTA-4405 and 20 PTA-4406) and 4.49.1 also was demonstrated (Figure 25B). Binding to cell-surface PSMA using serial dilutions of purified anti-PSMA mAbs XG-006 and 10.3 is represented by Figure 25C.

Example 19: Cytotoxicity of toxin-labeled antibody

25 PSMA-3T3, LNCaP, and/or C4-2 cells (and control cell lines 3T3 and PC3 that do not express PSMA) were plated at 2,500 cells/100 µL/well in 96-well microplates (Falcon) and were incubated overnight at 37 °C in the presence of 5% CO₂. The media used for PSMA-3T3 (and 3T3) and LNCaP (and C4-2 and PC3) was DMEM or RMPI 1640, respectively, containing 2 mM L-glutamine, 10% FBS, and 1% penicillin-streptomycin. 50 ng (in 50 µL) 30 of Mab-Zap or Hum-ZAP (Advanced Targeting Systems, San Diego, CA) in medium was added in each well. Mab-Zap and Hum-Zap are goat anti-mouse IgG antibody or goat anti-human IgG antibody covalently linked to saporin, the most potent of the plant ribosome-

inactivating proteins (RIP) from the seeds of the plant *Saponaria officinalis*. Saporin induces cell death by apoptosis (Bergamaschi, G., Perfetti, V., Tonon, L., Novella, A., Lucotti, C., Danova, M., Glennie, M.J., Merlini, G., Cazzola, M. Saporin, a ribosome-inactivating protein used to prepare immunotoxins, induces cell death via apoptosis. *Br J Haematol* 93, 789-94. 5 (1996)). The Mab-Zap did not bind to or internalize in cells in the absence of an appropriate primary antibody.

Murine 3.9, 5.4, mJ591 (ATCC# HB-12126) and human 006, 4.40, 4.304 anti-PSMA antibodies (and control IgG antibodies) were added into plates at different concentrations to bring the total volume to 200 μ L in triplicate. The plates were kept cold on ice for at least 30 10 min to maximize Map-Zap or Hum-Zap binding to PSMA antibodies before internalization. The plates were incubated for 2 days and then the medium was changed and incubated for another 2 days. After 4 days incubation, the medium was withdrawn and fresh medium containing 10 % Alamar Blue (20 μ L, Bioscience, Camarillo, CA) was added into each well and incubated for 2 hrs. A CytoFlour plate reader was used to measure fluorescence in 96- 15 well plates at wavelengths of 530 nm excitation and 590 nm emission. Internalization of toxin was mediated by anti-PSMA antibodies. The cell kill is illustrated in Figure 26 on C4-2 cells and in Figure 27 on PSMA-3T3 cells.

Human 4.304 anti-PSMA antibody was directly conjugated with saporin (Wrenn et al., *Brain Res.* 740:175-184, 1996), and its cytotoxicity was demonstrated using a similar 20 protocol as described above (see Figure 28).

Example 20: Immunoreactivity

PSMA-3T3, LNCaP and C4-2 were used as PSMA expressing cell lines and 3T3 was used as a control cell line not expressing PSMA. The cells were blocked with 10% goat 25 serum on ice to reduce non-specific binding in this assay.

A small amount (1-5 ng) of labeled mAb was added into a cell pellet of 10 million cells and incubated at 0°C (on ice) with gentle mixing. After a 1 hour incubation, the cells were collected by centrifugation and the supernatant containing unbound mAb was transferred to a fresh cell pellet for an additional 1 hour incubation at 0°C. Both sets of cells 30 were centrifuged and washed twice with cold PBS. The cell pellets, supernatant and wash fractions were counted for radioactivity. Immunoreactivity is defined as the amount of

radioactivity in the cell pellets divided by the total radioactivity in the cell pellets, supernatant and wash fractions. These data are shown below in Table 3.

Table 3. Immunoreactivity of In-111 radiolabeled antibody on PSMA expressing cells

Radiolabeled mAb	Immunoreactivity (%)	Cell line
In-111 4.304	92.6 (1.4)	PSMA-3T3 (3T3)
	92.6	PSMA-3T3
	91.4 (1.7)	PSMA-3T3 (3T3)
	89.1	LNCaP
	92.4	C4-2
	Average= 91.6 ± 1.5	
In-111 4.40	87.7 (0.5)	PSMA-3T3 (3T3)
	86.8	PSMA-3T3
	89.4 (1.5)	PSMA-3T3 (3T3)
	Average= 88.0 ± 1.3	
In-111 mJ591	58.5	PSMA-3T3
	54.9 (1.1)	PSMA-3T3 (3T3)
	Average= 56.7 ± 2.5	
In-111 3.9	88	LNCaP
	87	C4-2
	89 (2)	PSMA-3T3 (3T3)
	95.3 (0.5)	PSMA-3T3 (3T3)
	88.6	PSMA-3T3
	84.8	C4-2
	89.3	PSMA-3T3
	Average= 88.6 ± 3.2	

Antibodies 4.40, 4.304 and mJ591 were conjugated to the bifunctional chelate CHX-A"-DTPA and antibody 3.9 was conjugated to C-DOTA.

Example 21: Competitive binding assay to identify binding epitopes

To identify whether a given group of mAbs recognize distinct or overlapping epitopes on PSMA, competition binding assays were performed with In-111 radiolabeled antibodies.

2×10^5 cells (100 μ L) of PSMA-3T3 were plated into 96-well microplates, and antibodies

5 4.40, 4.304 and mJ591 (100 μ L) at different concentrations (series dilution) were added. The cells were incubated at 0°C for 30 min. 20 μ L of In-111 radiolabeled CHX-A²⁺-DTPA antibody constructs were added into each well. After a 2 hour incubation on ice for competition binding, the cells were washed 5 times using cold PBS. The cells containing bound In-111 antibodies were recovered from microplates into test tubes and counted in a

10 gamma counter.

Results detailed in Figures 29 show that mJ591 blocked In-111 4.40 binding to PSMA-3T3 cells and did not block In-111 4.304. In addition, 4.40 and 4.304 did not block each other. Unmodified antibodies 4.304 and mJ591 were also used to compete with In-111 radiolabeled mJ591. Human 4.304 did not compete with In-111 mJ591 for binding to

15 PSMA-3T3 (Figure 30).

Example 22: Binding affinity using Biacore 3000

To determine the kinetics and affinity of the antibodies, the antibodies in crude supernatants, in purified form and in bifunctional chelate modified forms were analyzed 20 using a Biacore 3000 instrument (Biacore Inc., Piscataway, NJ). Biacore 3000 is a fully automated surface plasmon resonance (SPR)-based biosensor system that is designed to provide real-time kinetic data from assay formats that require no tags or labeling of compounds for biomolecular interactions. It is ideal for screening crude supernatants.

The streptavidin-coated sensor chips (SA chips, Biacore) were used to capture 25 biotinylated anti-human IgG antibody (Sigma, St. Louis, MO). The entire sensor chip surface was conditioned with five injections of conditioning solution (1 M NaCl, 50 mM NaOH) and equilibrated with PBS buffer containing 0.005% polysorbate 20. Two to three thousand resonance units (RU) of biotinylated anti-human IgG antibody (Sigma) were immobilized onto the SA chip followed by an injection of regeneration buffer (glycine-HCl, pH 2.2). 30 Antibodies in supernatants were diluted to 2 μ g/mL in PBS buffer and captured onto one anti-human IgG flow cell, while isotype-matched control human antibody (Sigma) was similarly captured on a second flow cell. rsPSMA at different concentrations in PBS buffer was

flowed over the cells at 30 μ L/min for 3 min in an “association phase” followed by a “dissociation phase” for 10 min. SPR was monitored and displayed as a function of time. For each antibody at one concentration, the chip was regenerated and equilibrated. An example of the analysis of antibody PRGX1-XG-006 in association phase and dissociation phase at different concentrations of rsPSMA from 100 nM to 6.25 nM is shown in Figure 31. Thermodynamic and kinetic rate constants of binding were calculated using the Biacore Evaluation software. For example, the affinity of XG-006 antibodies in a supernatant to rsPSMA was determined to be 4.92×10^{-10} M with a K_a of 1.3×10^5 M $^{-1}$ s $^{-1}$ and a K_d of 6.4×10^{-5} s $^{-1}$. Selective data for several human PSMA antibodies in crude supernatant, purified form, and modified with bifunctional chelate is listed in Table 4 for comparison.

Binding activity of In-111 radiolabeled antibodies was determined by Scatchard analysis of binding data obtained using PSMA-expressing cells (LNCaP, C4.2, PSMA-3T3 and parental 3T3 as a control). The experimental procedures and methods of data analysis have been described previously (Scheinberg, D.A. *et al. Leukemia* 3: 440-445 (1991)).

15

Table 4: Kinetic rate constants of antibodies in crude supernatant, purified, bifunctional chelate modified forms along with KD determined using In-111 radiolabeled Scatchard analysis.

Antibodies	Ka (M ⁻¹ ,s ⁻¹)	Kd (s ⁻¹)	KD (M ⁻¹)	Avg KD
006 Supernatant	1.30E+05	6.40E-05	4.92E-10	4.92E-10
Purified 006-1	2.94E+05	1.37E-04	4.66E-10	
Purified 006-2	2.26E+05	1.27E-04	5.62E-10	5.14E-10
4.40 Supernatant	2.10E+05	1.25E-04	5.95E-10	5.95E-10
Purified 4.40-1	2.54E+05	1.52E-04	5.98E-10	
Purified 4.40-2	2.43E+05	2.37E-04	9.75E-10	7.87E-10
CHX-4.40-1	2.57E+05	1.60E-04	6.23E-10	
CHX-4.40-2	2.47E+05	1.55E-04	6.28E-10	6.25E-10
IN-111CHX-4.40-1			4.44E-09	
IN-111CHX-4.40-2			4.95E-09	4.70E-09
4.304 Supernatant	1.40E+05	1.25E-04	8.93E-10	8.93E-10
Purified 4.304-1	8.31E+04	1.20E-04	1.44E-09	
Purified 4.304-2	1.06E+05	6.33E-05	5.97E-10	1.02E-09
CHX-4.304-1	6.19E+04	1.21E-04	1.95E-09	
CHX-4.304-2	6.79E+04	1.49E-04	2.19E-09	2.07E-09
IN-111CHX-4.304-1			9.63E-09	
IN-111CHX-4.304-2			5.97E-09	7.80E-09
10.3 Supernatant	1.90E+05	3.63E-04	1.91E-09	1.91E-09
Purified 10.3-1	3.28E+05	6.32E-05	1.93E-10	
Purified 10.3-2	2.96E+05	6.43E-05	2.17E-10	2.05E-10

A comparison of the fully human antibodies 4.40.1, 4.49.1, 051 and 006 and the murine antibody 3.9 was performed by Biacore. For each antibody for comparison, response was normalized to 100 RU. The graph of time vs. response difference for these antibodies is 5 given in Figure 32. The binding affinities for these antibodies were determined to be 6.1 , 6.7, 5.8, 4.8 and 13.7×10^{-10} M, respectively.

Example 23: Characterization of cell lines for *in vitro* and *in vivo* studies

Results from a Scatchard analysis using In-111 labeled anti-PSMA antibody 3.9 are 10 represented in Figure 33. Transfected murine 3T3 cells express >1 million copies of PSMA per cell, LNCAP cells (androgen dependent human prostate cancer cell line) express 0.64 million copies, while C4-2 cells (androgen independent) express 0.25 million copies per cell. The affinity of 3.9 for cell surface PSMA is 6.4 nM for PSMA-3T3, 4.0 nM for LNCAP and 3.3 nM for C4-2 (4.6 nM is the average of these data).

15

A summary of the analyses of crude supernatants for the human anti-PSMA antibodies is given in Table 5 below.

Table 5: Characterization of anti-PSMA monoclonal antibodies

	Ab Conc (μ g/mL)		Binding to 3T3- PSMA (FACS)			C4.2 FACS	Anti-PSMA Western	Biacore studies		
	PGNX	Lysate EIA	PGNX FACS	AVG Max binding	AVG EC50			KD, M-1 ($\times 10^{-10}$)	Ka, M-1s-1 ($\times 10^5$)	Kd, s-1 ($\times 10^{-5}$)
Supernatant										
PRGX1-XG1-026	4.7	ND ¹	ND	148	2.4	ND	Conf. ²	2.0	1.5	2.9
4.4.1	4.7	0.08	7	8	ND	5.2	Conf.	4.2	2.3	9.7
PRGX1-XG1-006	1.8	0.39	114	183	3.4	9.5	Conf.	4.8	1.3	6.4
PRGX1-XG1-051	3.5	0.48	83	202	2.0	9.9	Conf.	5.8	1.4	8.2
4.40.1	4.3	0.33	53	163	2.3	10.8	Conf.	6.1	2.1	12.5
4.49.1	2.6	0.36	362	162	0.9	16.2	Conf.	6.7	3.1	20.7
4.292.1	2.7	0.18	75	195	6.0	9.2	Conf.	6.8	1.2	8.5
4.304.1	4.1	0.39	92	184	9.1	8.4	Conf.	8.7	1.4	12.5
4.232.1	2.4	0.49	97	138	2.7	6.0	Linear ³	9.4	1.5	13.8
4.153.1	5.9	0.29	279	182	5.3	14.8	Conf.	9.5	1.2	11.8
4.333.1	2.9	0.18	82	168	3.1	6.6	Conf.	11	0.7	8.5
PRGX1-XG1-077	3.9	0.45	392	227	6.0	12.4	Conf.	16	0.6	10.4
10.3	8.5	1.06	ND	ND	ND	ND	ND	19	1.9	36.4
pure 10.3		0.44	130	181	7.5	ND	Conf.	ND		
					4.7					
4.22.1	2.8	0.08	7	ND	ND	4.7	ND	20	1.7	33
4.248.1	3.5	0.37	7	ND	ND	4.1	Conf.	27	1.0	28
4.54.1	10	0.14	267	162	3.9	13.6	ND	30	1.9	56
4.7.1	5	0.23	156	141	1.6	10.2	Conf.	32	1.7	56
4.78.1	5.3	0.00	205	118	1.0	7.9	Conf.	53	2.4	125
4.48.1	4.9	0.06	14	ND	ND	7.7	ND	62	0.9	59
4.209.1	3.5	0.22	60	ND	ND	6.7	ND	142	0.9	125
4.177.1	1.1	0.15	236	174	2.4	10.6	ND	155	0.6	93
4.152.1	3.4	0.38	81	85	4.0	7.5	ND	163	0.8	126
4.28.1	4.2	0.04	112	155	4.2	11.3	ND	167	1.2	192
4.16.1	5.3	0.00	8	ND	ND	7.8	ND	177	1.8	313
4.360.1	1.5	0.02	112	130	2.2	7.9	ND	197	1.0	201
4.288.1	15.4	0.02	67	141	4.1	6.5	ND	198	1.3	257
4.219.2	0.5	0.34	69	ND	ND	5.9	ND	ND		
PRGX1-XG1-069	6.5	ND	ND	71	7.9	ND	ND	No Binding		
Murine 3.9								13.7	0.7	9.7
Control								6.34	2.24	14.2

¹ ND=not determined² conf.=conformational epitope³ linear=linear epitope

Example 24: Cytotoxicity of radiolabeled antibody

The *in vitro* cytotoxicity of Ac-225 labeled anti-PSMA antibody was determined using methodology similar to that used in Example 19. Prostate cancer cells (100 μ L of C4-2, LNCaP, and PC3 cells at a concentration of 2×10^4 cells/mL) were placed into separate 5 well of a 96 well microplate. After overnight incubation, the cells were treated with Ac-225 labeled human anti-PSMA 4.40 antibody at different concentrations for over 4 days. Cell cytotoxicity was quantified using Alamar Blue (Biosource International, Camarillo, CA).

Figure 34 shows a plot of cell survival vs. Ac-225 activity concentration. The EC50 for PSMA expressing cells (C4-2 and LNCaP) was < 2 nCi/mL. However, the EC50 was 420 10 nCi/mL for PC3 cells, which do not express PSMA on the cell surface. Therefore, the Ac-225 labeled human anti-PSMA 4.40 antibody shows > 200-fold selectivity in killing PSMA expressing prostate cancer cells (C4-2 and LNCaP) vs. control cells (PC3).

Example 25: *In Vivo* Radioimmunotherapy with Lu-177 Labeled Antibodies

15 Athymic nude mice from the National Cancer Institute were implanted subcutaneously with 2×10^6 PSMA-3T3 cells. After measurable tumors appeared at day 7 post implantation, the mice were treated by injection with either a single 250 μ Ci dose human anti-PSMA antibody 4.40 or 4.304 labeled with Lu-177 (University of Missouri Research Reactor), or were injected with buffer only as control. The tumor size of individual animals 20 was measured using an electronic caliper. Figure 35 shows a plot of the median tumor size in each group over time. Tumor growths were substantially reduced in Lu-177 antibody treated groups compared to the control group.

Example 26: Immunization with rsPSMA dimer preparations

25

Immunization

BALB/c mice were immunized by subcutaneous injection at days 0, 7, 14, and 42 with either 5 μ g clinical rsPSMA lot # 4019-C001 (75 % dimer/25 % monomer) or 5 μ g 30 rsPSMA batch # TD045-003 run 1/peak 2 (100 % monomer) and adjuvanted with 50 μ g alhydrogel per dose. Serum was drawn 10 days after the fourth immunization and analyzed by enzyme-linked immunoassay (EIA) and flow cytometry.

EIA

rsPSMA lot # 4019-C001 or rsPSMA batch # TD045-003 run 1/peak 2 was passively adsorbed to 96-well microtiter plates. Remaining binding sites on the plate were blocked with a PBS/Casein/Tween 20 buffer. Serially diluted mouse serum or controls were added and bound antibody was detected using a goat anti-mouse IgG antibody conjugated to alkaline phosphatase. The EIA was developed with the substrate pNPP which produces a color change that is directly proportional to the amount of anti-PSMA antibody bound. Absorbance was read at 405 nm with a correction of 620 nm. Antibody titer was defined as the highest dilution of mouse serum yielding a blank corrected absorbance of 0.1. Immune mouse serum with a known anti-PSMA titer or normal mouse serum with no anti-PSMA reactivity was used as controls.

Flow Cytometry Analysis

PSMA-3T3 cells were incubated with 200 μ L of immune serum at a dilution of 1/50 in PBS with 0.1 % sodium azide on ice for 30 minutes. Immune mouse serum with known anti-PSMA titer or normal mouse serum with no anti-PSMA reactivity was used as controls. The cells were washed twice with PBS with 0.1 % sodium azide and incubated for 30 minutes on ice with FITC-conjugated goat anti-mouse IgG. Cells were washed once, resuspended in PBS with 0.1 % sodium azide and subjected to flow cytometric analysis on FACScaliber (Becton Dickinson).

Results

5/5 mice immunized with rsPSMA lot # 4019-C001 showed an anti-PSMA antibody response by EIA. Antibody titer was similar for assay plates coated with rsPSMA lot # 4019-C001 (75 % dimer/25 % monomer) and assay plates coated with rsPSMA batch # TD045-003 run 1/peak 2 (100 % monomer). Median response for the group was 1/6400.

4/5 mice immunized with rsPSMA batch # TD045-003 run 1/peak 2 showed an anti-PSMA antibody response by EIA. One mouse was negative. Antibody titer was similar for assay plates coated with rsPSMA lot # 4019-C001 (75 % dimer/25 % monomer) and assay plates coated with rsPSMA batch # TD045-003 run 1/peak 2 (100 % monomer). Median response for the group was 1/6400.

The results of the EIA analysis are provided in Table 6.

21 Oct 2009

2002356844

- 90 -

Table 6: Specificity of the anti-PSMA antibody response in mice vaccinated 4 times with rsPSMA 5 lig/dose and 50 µg/dose Alhydrogel

Mouse ID #	Inununogen	EIA Titer vs. Lot 4019-0001	EIA Titer vs. Batch TD045-003 run1/peak 2	Median RFI vs. PSMA-3T3 cells
ABIM151	4019-0001 Dimer	1/3200	1/3200	84
ABIM152	4019-0001 Dimer	1/3200	1/3200	41
ABIM153	4019-0001 Dimer	1/25600	1/25600	76
ABIM154	4019-0001 Dimer	1/12800	1/12800	63
ABIM155	4019-0001 Dimer	1/6400	1/6400	74
ABIM156	Monomer	1/1600	1/1600	5
ABM/1157	Monomer	1/6400	1/12800	8
ABIM158	Monomer	0	0	6
ABIM159	Monomer	1/6400	1/6400	6
ABIM160	Monomer	1/6400	1/6400	12

As shown in Fig. 36, anti-PSMA antibody in the serum of mice immunized with a dimer preparation of rsPSMA (lot # 4019-0001) showed strong binding to PSMA-3T3 cells. Anti-

5 PSMA antibody in the serum of mice immunized with a 100% monomer preparation of rsPSMA (batch # TD045-003 run 1/peak 2) showed no binding to PSMA-3T3 cells.

Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose and variations can be made by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following

10 claims.

The contents of all references, patents and published patent applications cited throughout this application are incorporated herein by reference.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as acknowledgement or

15 admission or any form of suggestion that that prior to publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will

20 be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any integer or step or group of integers or steps.

21 Oct 2009

2002356844

- 91 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An isolated antibody or an antigen-binding fragment which
 - (i) specifically binds to an epitope on prostate specific membrane antigen (PSMA)
- 5 defined by an antibody or antigen-binding fragment thereof selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA B3.1.3, PSMA B3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 10 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1, Abgenix 4.152.1, and antibodies comprising:
 - (a) a heavy chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group 15 consisting of nucleotide sequences set forth as SEQ ID NOs: 2-7, and
 - (b) a light chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 8-13; or
 - (ii) competitively inhibits the specific binding of a second antibody to its target 20 epitope on PSMA, wherein the second antibody is selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA B3.1.3, PSMA B3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 25 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1, Abgenix 4.152.1, and antibodies comprising:
 - (a) a heavy chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group 30 consisting of nucleotide sequences set forth as SEQ ID NOs: 2-7, and

21 Oct 2009

2002356844

5

(b) a light chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 8-13; wherein the sequence of PSMA is set forth in SEQ ID NO: 1.

2. The isolated antibody or antigen-binding fragment of claim 1, wherein the antibody or antigen-binding fragment is selected from the group consisting of

- PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA B3.1.3, PSMA B3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1, and Abgenix 4.152.1,

15 (b) antibodies comprising:

- a heavy chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 2-7, and a light chain encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 8-13; or
- a heavy chain variable region encoded by a nucleic acid molecule comprising the coding regions or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 14, 18, 22, 26 and 30, and a light chain variable region encoded by a nucleic acid molecule comprising the coding region or regions of a nucleotide sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 16, 20, 24, 28 and 32; or
- a heavy chain variable region comprising an amino acid sequence selected from the group consisting of amino acid sequences set forth as SEQ ID NOs: 15, 19, 23, 27 and 31, and a light chain variable region comprising an amino

- 92 -

21 Oct 2009

2002356844

- 93 -

acid sequence selected from the group consisting of nucleotide sequences set forth as SEQ ID NOs: 17, 21, 25, 29 and 33; and

(c) antigen-binding fragments of (a) or (b).

5 3. The isolated antibody or antigen-binding fragment of claim 1 or 2, wherein the antibody or antigen-binding fragment is encoded by a nucleic acid molecule comprising a nucleotide sequence that is at least 90%, 95%, 97%, 98% or 99% identical to the nucleotide sequence encoding the antibody or antigen-binding fragment of claim 2.

10 4. An isolated antibody or antigen-binding fragment that selectively binds a PSMA protein dimer.

5. The isolated antibody or antigen-binding fragment of claim 4, wherein at least one of the PSMA proteins forming the dimer is a recombinant, soluble PSMA (rsPSMA) polypeptide.

15 6. The isolated antibody or antigen-binding fragment of claim 5, wherein the rsPSMA polypeptide consists essentially of amino acids 44-750 of SEQ ID NO: 1.

20 7. The isolated antibody or antigen-binding fragment of any of claims 1 to 6, wherein the antibody or antigen-binding fragment specifically binds to an extracellular domain of PSMA.

8. The isolated antibody or antigen-binding fragment according to any one of claims 1
25 to 7, wherein said antibody or antigen-binding fragment mediates cytolysis of cells expressing PSMA, or inhibits the growth of cells expressing PSMA, or does not require cell lysis to bind to the epitope on PSMA.

9. The isolated antibody or antigen-binding fragment according to any one of claims 1
30 to 8, wherein said antibody or antigen-binding fragment is selected from the group consisting of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD, IgE or has

21 Oct 2009

2002356844

- 94 -

immunoglobulin constant and/or variable domain of IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgAsec, IgD or IgE.

10. The isolated antibody or antigen-binding fragment according to any one of claims 1
5 to 9 wherein said antibody is selected from the group consisting of a recombinant antibody, a humanized antibody, a chimeric antibody, a human antibody, a bispecific or a multispecific antibody.

11. The isolated antibody or antigen-binding fragment according to any one of claims 1
10 to 10 wherein the isolated antigen-binding fragment is selected from the group consisting of a Fab fragment, a $F(ab')_2$ fragment, and a Fv fragment CDR3.

12. The isolated antibody or antigen-binding fragment according to any one of claims 1
to 11 wherein the antibody or antigen-binding fragment specifically binds to a
15 conformational epitope.

13. The isolated antibody or antigen-binding fragment according to any one of claims 1
to 12 wherein the antibody or antigen-binding fragment is internalized into a cell with
PSMA.

20
14. The isolated antibody or antigen-binding fragment of any one of claims 1 to 13,
wherein the antibody or antigen-binding fragment specifically binds cell-surface PSMA
and/or recombinant, soluble PSMA (rsPSMA) with a binding affinity of $1 \times 10^{-9} M$ or less,
 $1 \times 10^{-10} M$ or less, $1 \times 10^{-11} M$ or less or $5 \times 10^{-10} M$ or less; or wherein the antibody or
25 antigen-binding fragment mediates specific cell killing of PSMA-expressing cells with an
 IC_{50} of less than $1 \times 10^{-10} M$, $1 \times 10^{-11} M$, $1 \times 10^{-12} M$ or $1.5 \times 10^{-11} M$.

30
15. The isolated antibody or antigen-binding fragment of any one of claims 1 to 14,
wherein the antibody or antigen-binding fragment is bound to at least one therapeutic
moiety.

21 Oct 2009

2002356844

- 95 -

16. The isolated antibody or antigen-binding fragment of claim 15, wherein the therapeutic moiety is selected from the group consisting of a cytotoxic drug, a replication selective virus, a toxin or fragment thereof, an enzyme or a fragment thereof, a radioisotope, an immunostimulatory agent and an immunomodulating agent.

5

17. The isolated antibody or antigen-binding fragment of any one of claims 1 to 16, bound to a label.

10

18. The isolated antibody or antigen-binding fragment of claim 17, wherein the label is selected from the group consisting of a fluorescent label, an enzyme label, a radioactive label, a nuclear magnetic resonance active label, a luminescent label, and a chromophore label.

15

19. The isolated antibody or antigen-binding fragment of any one of claims 1 to 18 packaged in lyophilized form, or packaged in an aqueous medium.

20

20. The isolated antibody or antigen-binding fragment of any one of claims 1 to 19, wherein the antibody or antigen-binding fragment inhibits or enhances at least one enzymatic activity of the PSMA protein dimer.

25

21. The isolated antibody or antigen-binding fragment of claim 20, wherein the enzymatic activity is selected from the group consisting of folate hydrolase activity, NAALADase activity, dipeptidyl dipeptidase IV activity, γ -glutamyl hydrolase activity and combinations thereof.

22. The isolated antibody or antigen-binding fragment of either claim 20 or claim 21, wherein the enzymatic activity is in the extracellular domain of the PSMA molecule.

30

23. The isolated antibody or antigen-binding fragment of either claim 20 or claim 21, wherein the enzyme is active in cancer cells and has lesser activity in normal cells than in cancer cells or no activity in normal cells.

22 Oct 2009

2002356844

- 96 -

24. The isolated antibody or antigen-binding fragment of claim 23, wherein the cancer cells are prostate cancer cells.

5 25. The isolated antibody or antigen-binding fragment of any one of claims 1 to 24, wherein said antibody or antigen-binding fragment is selected for its ability to bind live cells.

10 26. The isolated antibody or antigen-binding fragment of claim 25, wherein the live cells are tumor cells, prostate tumor cells or LNCaP cells.

15 27. A composition comprising:
the isolated antibody or antigen-binding fragment according to any one of claims 1 to 26 and a pharmaceutically acceptable carrier, excipient, or stabilizer.

28. The composition of claim 27, further comprising an antitumor agent, an immunostimulatory agent, an immunomodulator, or a combination thereof.

20 29. The composition of claim 28, wherein the antitumor agent is a cytotoxic agent, an agent that acts on tumor neovasculature or a combination thereof.

30. The composition of claim 28, wherein the immunomodulator is a cytokine.

25 31. The composition of claim 28, wherein the immunostimulatory agent is an immunostimulatory oligonucleotide.

32. An expression vector comprising an isolated nucleic acid molecule encoding the isolated antibody or antigen-binding fragment of any one of claims 1 to 26.

30 33. A host cell transformed or transfected by the expression vector of claim 32.

22 Oct 2009

2002356844

- 97 -

34. A plasmid which produces the antibody or antigen binding fragments of any one of claims 1 to 26.

35. A kit comprising the isolated antibody or antigen-binding fragment of any one of 5 claims 1 to 26 and a label or therapeutic agent.

36. The kit of claim 35, wherein the isolated antibody or antigen-binding fragment is bound to the label or therapeutic agent.

10 37. The kit of claim 35 or 36, further comprising one or more compounds for detecting the label.

38. A method for detecting the presence of PSMA or a cell expressing PSMA in a sample or diagnosing a PSMA-mediated disease in a subject comprising:
15 contacting a sample with the antibody or antigen-binding fragment according to any one of claims 1 to 26 for a time sufficient to allow the formation of a complex between the antibody or antigen-binding fragment and PSMA, and
detecting the PSMA-antibody complex or PSMA-antigen-binding fragment complex,
20 wherein the presence of a complex in the sample is indicative of the presence in the sample of PSMA or a cell expressing PSMA or is indicative of PSMA-mediated disease.

39. A method for diagnosing a PSMA-mediated disease in a subject or assessing the prognosis of a subject with PSMA-mediated disease, said method comprising:
25 administering to a subject suspected of having, or previously diagnosed with, PSMA-mediated disease the antibody or antigen-binding fragment of any one of claims 1 to 26,
allowing the formation of a complex between the antibody or antigen-binding fragment and PSMA, and
30 detecting the formation of the complex;

22 Oct 2009

2002356844

- 98 -

wherein the amount of the complex in the subject is indicative of the presence or prognosis of PSMA-mediated disease.

40. A method for assessing the effectiveness of a treatment of a subject with a
5 PSMA-mediated disease, said method comprising:

administering to a subject suspected of having, or previously diagnosed with, a PSMA-mediated disease an effective amount of the antibody or antigen-binding fragment according to any one of claims 1 to 26,

10 allowing the formation of a complex between the antibody or antigen-binding fragment and PSMA, and

detecting the formation of the complex,

wherein the amount of the complex in the subject is indicative of the effectiveness of the treatment.

15 41. A method for treating or preventing PSMA-mediated disease in a subject, said method comprising:

administering the antibody or antigen-binding fragment of any one of claims 1 to 26 to a subject that has a PSMA-mediated disease, is suspected of having a PSMA-mediated disease or is at risk of having a PSMA-mediated disease.

20

42. The method of any one of claims 38 to 41, wherein the PSMA-mediated disease is prostate cancer or a non-prostate cancer.

25

43. The method of claim 42 wherein the non-prostate cancer is selected from the group consisting of bladder cancer including transitional cell carcinoma; pancreatic cancer including pancreatic duct carcinoma; lung cancer including non-small cell lung carcinoma; kidney cancer including conventional renal cell carcinoma; sarcoma including soft tissue sarcoma; breast cancer including breast carcinoma; brain cancer including glioblastoma multiforme; neuroendocrine carcinoma; colon cancer including colonic carcinoma; 30 testicular cancer including testicular embryonal carcinoma; and melanoma including malignant melanoma.

22 Oct 2009

2002356844

- 99 -

44. The method of either claim 39 or claim 40, wherein a second antibody is administered to detect the first antibody or antigen-binding fragment.

5 45. The method any one of claims 41 to 43, further comprising administering another therapeutic agent to treat or prevent the PSMA-mediated disease at any time before, during or after the administration of the antibody or antigen-binding fragment.

10 46. The method of claim 45, wherein the therapeutic agent is a cytotoxic drug or an agent that acts on tumor neovasculature.

15 47. The method of claim 46, wherein the cytotoxic drug is selected from the group consisting of calicheamicin, esperamicin, methotrexate, doxorubicin, melphalan, chlorambucil, ARA-C, vindesine, mitomycin C, cis-platinum, etoposide, bleomycin, 5-fluorouracil, estramustine, vincristine, paclitaxel, docetaxel, dolastatin 10, auristatin E and auristatin PHE.

20 48. The method of any one of claims 38 to 40, wherein the antibody or antigen-binding fragment is labeled, said label is selected from the group consisting of a fluorescent label, an enzyme label, a radioactive label, a nuclear magnetic resonance active label, a luminescent label and a chromophore label.

25 49. A method for inhibiting or enhancing an enzymatic activity of PSMA comprising: contacting PSMA with the antibody or antigen-binding fragment according to any one of claims 1 to 26 under conditions wherein the antibody or antigen-binding fragment inhibits or enhances the enzymatic activity of PSMA.

30 50. The method of 49, wherein the enzymatic activity is selected from the group consisting of folate hydrolase, N-acetylated α -linked acidic dipeptidase (NAALADase), dipeptidyl dipeptidase IV, or γ -glutamyl hydrolase activity.

22 Oct 2009

2002356844

- 100 -

51. A hybridoma cell line that produces an antibody selected from the group consisting of PSMA 3.7, PSMA 3.8, PSMA 3.9, PSMA 3.11, PSMA 5.4, PSMA 7.1, PSMA 7.3, PSMA 10.3, PSMA 1.8.3, PSMA A3.1.3, PSMA A3.3.1, Abgenix 4.248.2, Abgenix 4.360.3, Abgenix 4.7.1, Abgenix 4.4.1, Abgenix 4.177.3, Abgenix 4.16.1, Abgenix 4.22.3, 5 Abgenix 4.28.3, Abgenix 4.40.2, Abgenix 4.48.3, Abgenix 4.49.1, Abgenix 4.209.3, Abgenix 4.219.3, Abgenix 4.288.1, Abgenix 4.333.1, Abgenix 4.54.1, Abgenix 4.153.1, Abgenix 4.232.3, Abgenix 4.292.3, Abgenix 4.304.1, Abgenix 4.78.1 and Abgenix 4.152.1.

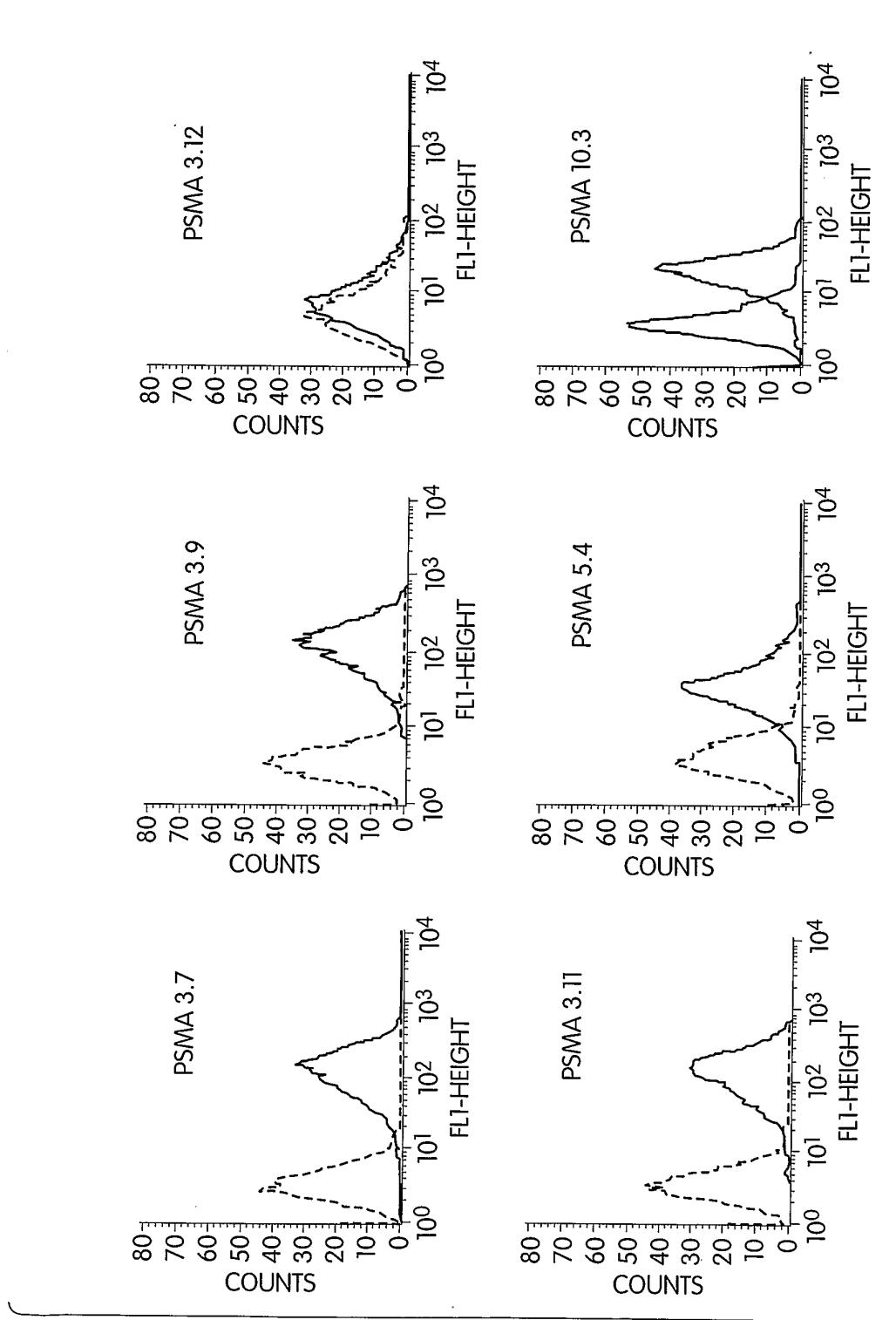


Fig. 1

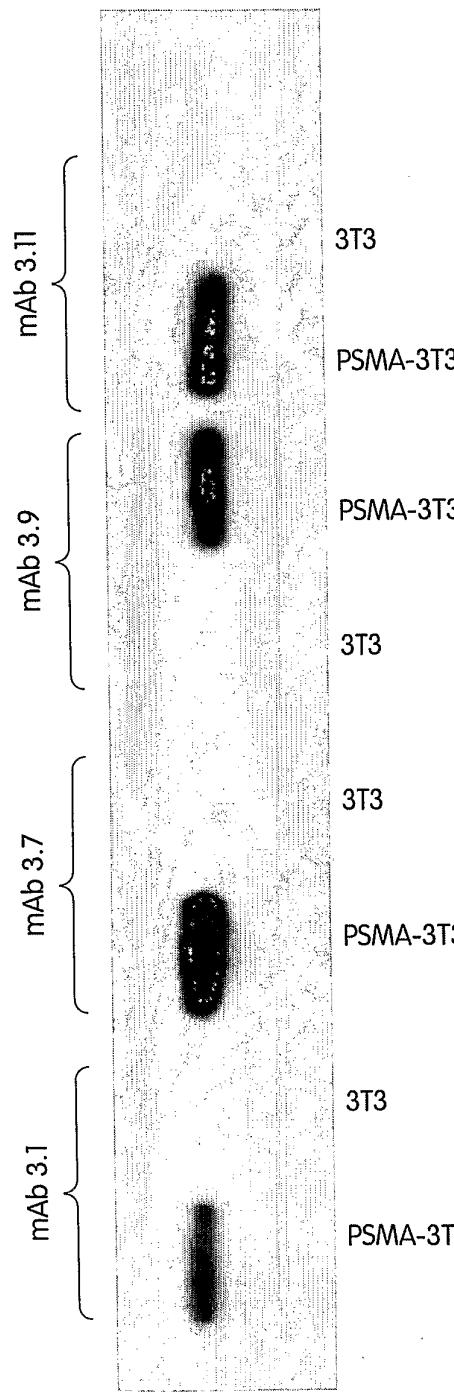


Fig. 2

3/33

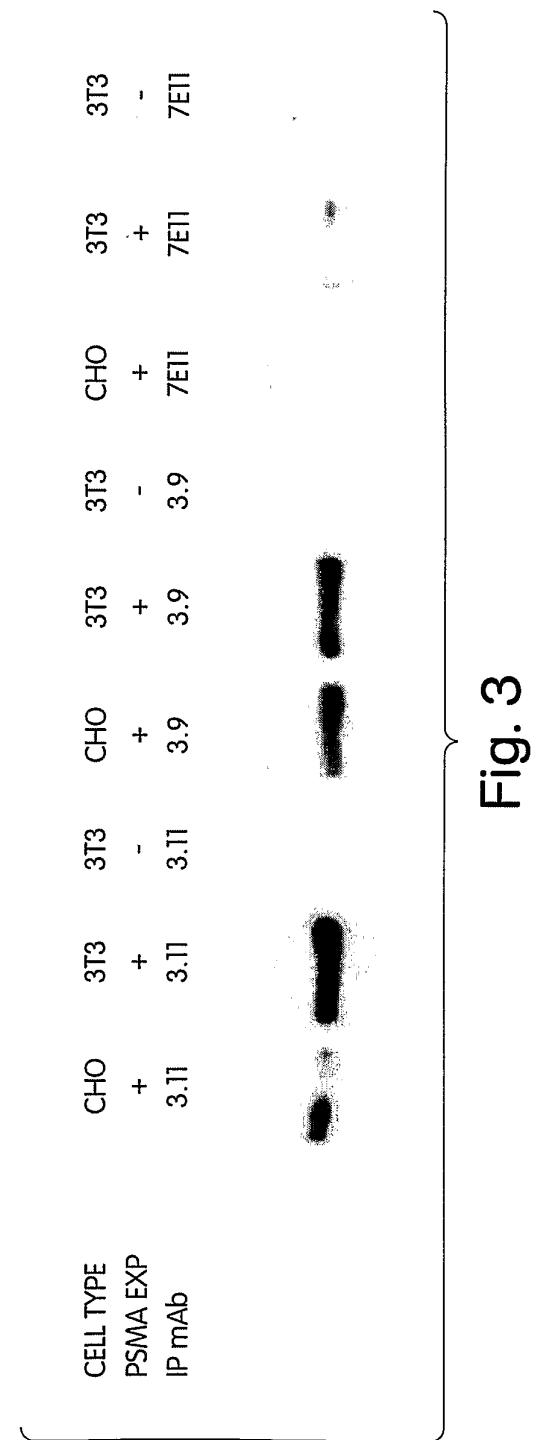


Fig. 3

4/33

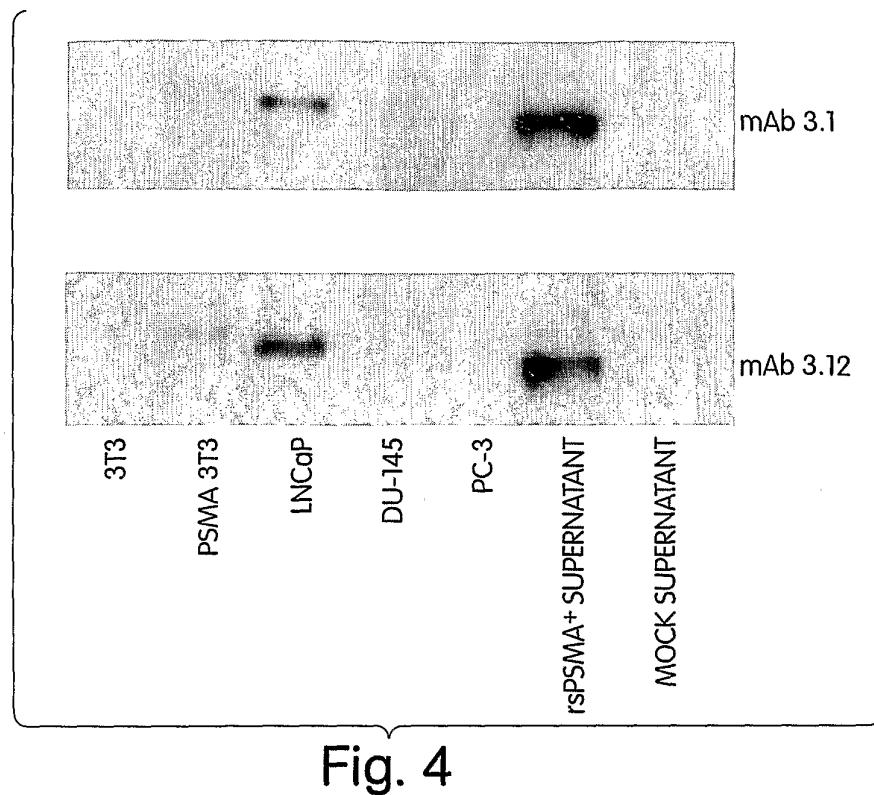


Fig. 4

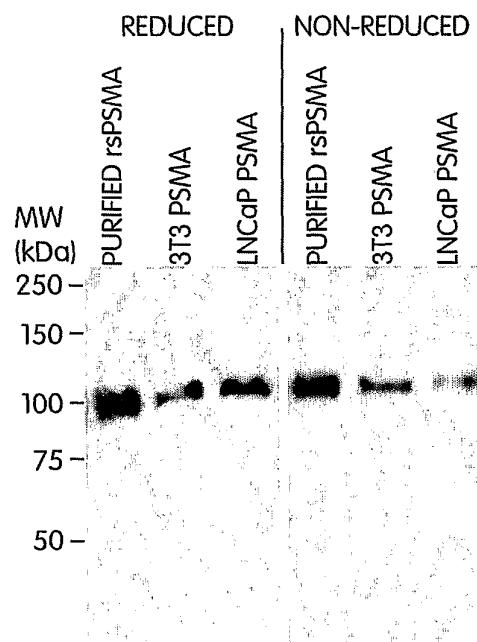


Fig. 5

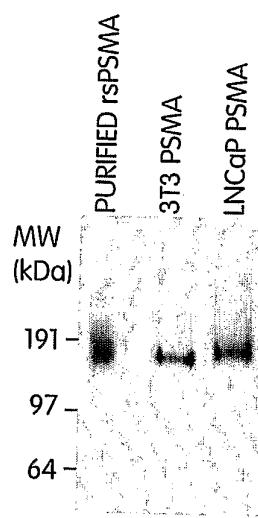
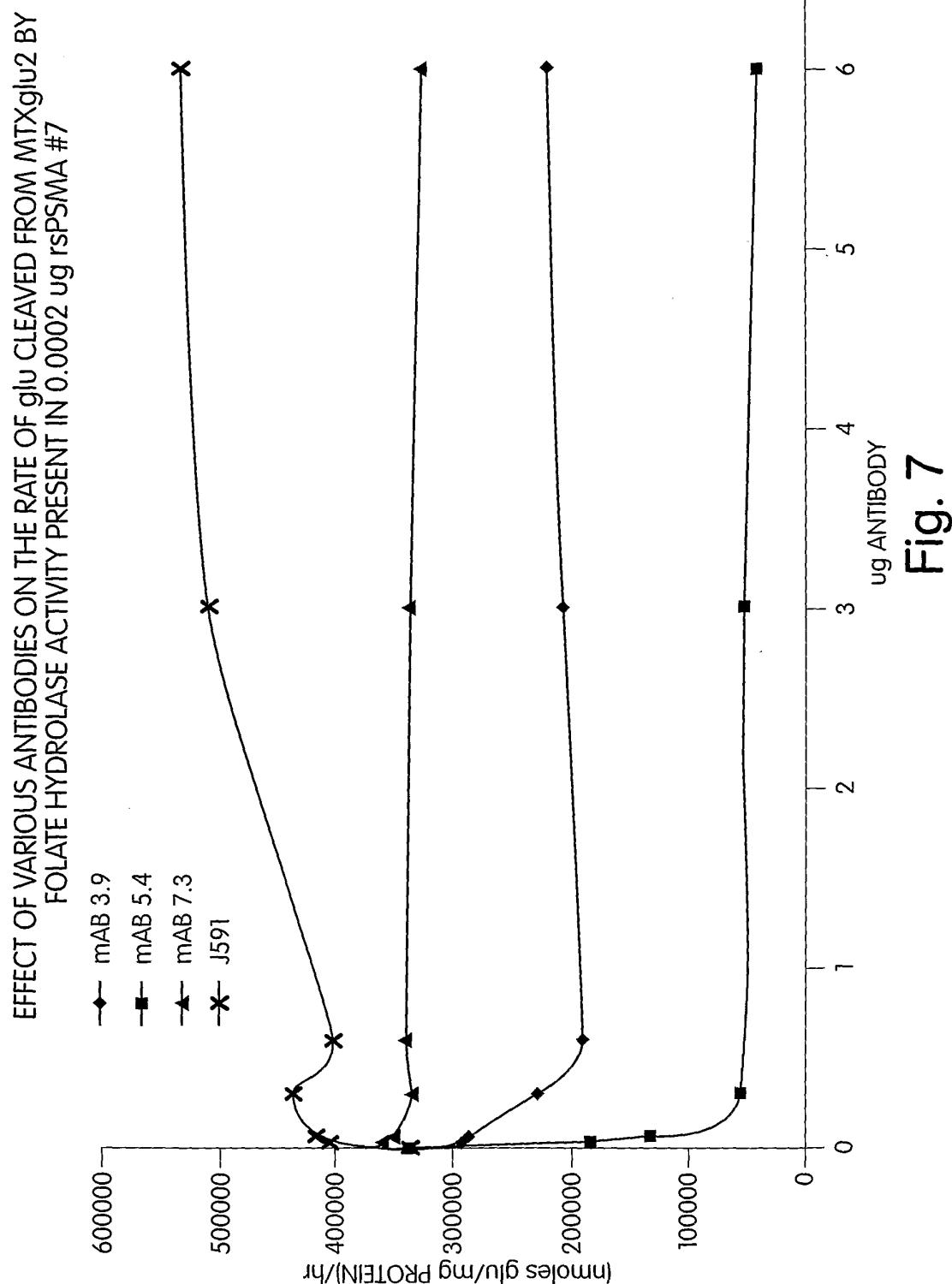



Fig. 6

6/33

7/33

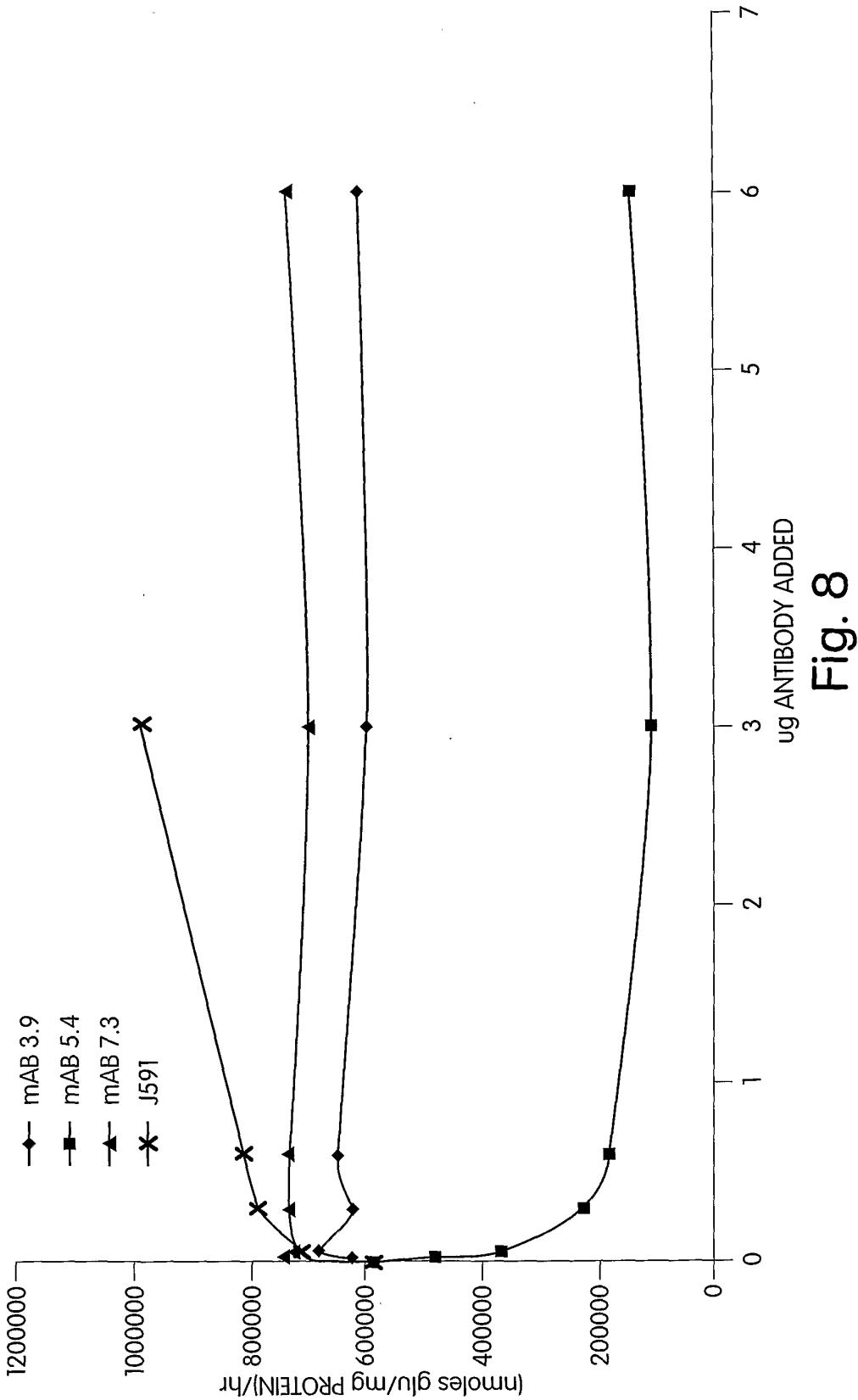

EFFECT OF VARIOUS ANTIBODIES ON THE RATE OF glu CLEAVED FROM MTXglu2 BY
FOLATE HYDROLASE ACTIVITY PRESENT IN 0.0002 ug rPSMA #8

Fig. 8

8/33

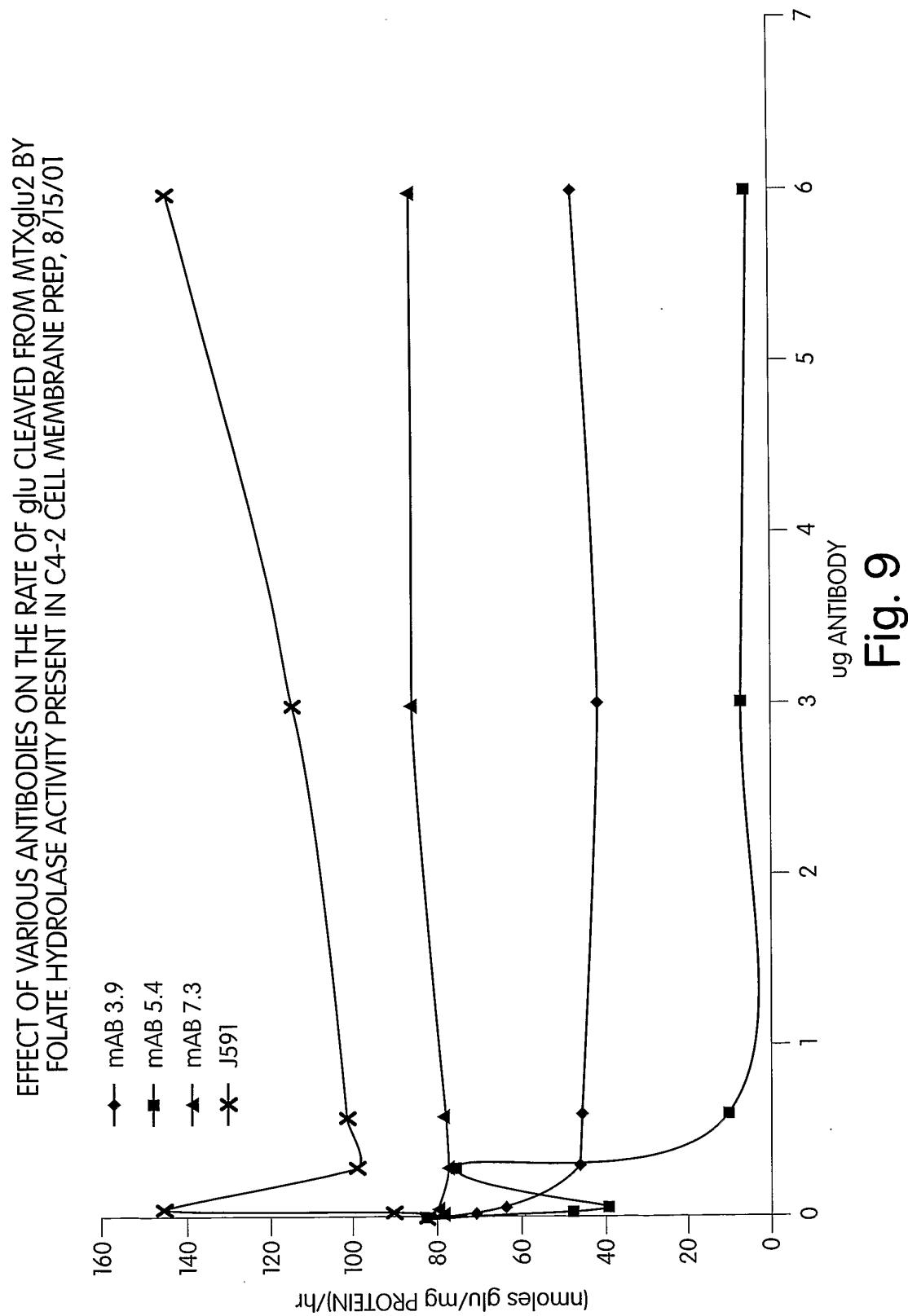


Fig. 9

9/33

Human IgG1 cloning - into pcDNA

Construction of pcDNA-huCK and pcDNA-huIgG1

		PCR product	Vector
CK	Sense	5' XbaI HindIII BamHI NheI 3'	5' NheI NotI 3' (pcDNA.neo)
	Anit-sense	EcoRI NotI	
Cγ1	Sense	5' XbaI KpnI HindIII BamHI NheI 3'	5' NheI/PmeI 3' (pcDNA Hygro)
	Anti-sense	EcoRI XbaI PmeI	

Construction of pcDNA-Ab (V-C cassette)

		PCR product	Vector
Vκ	Sense	BgIII or BamHI (if necessary)*	5' BamHI NheI 3' (pcDNA-huCK)
	Anti-sense	NheI	
Vγ1	Sense	BgIII or BamHI (if necessary)*	5' BamHI NheI 3' (pcDNA-huIgG1)
	Anti-sense	XbaI	

*BamHI primer is used if the V region has an internal BgIII site

Human IgG cloning- V-C cassette from pcDNA into "production" vector

Insert from pcDNA

Igκ	5' HindIII or BanHI (if alternate sense primer used)
	3' EcoRI, NotI, XbaI, XbaI or PmeI
IgG1	5' KpnI, HindIII or BamHI (if alternate sense primer used)
	3' EcoRI*, XbaI or PmeI

* 2nd EcoRI site present in hygromycin resistance gene

Primers used for V region amplification

Vκ-sense:

5' GAAGATCT**GACC** ATG + 20-23 bp leader sequence 3'
BgIII Kozak

Vκ anti-sense(reverse/complementary):

5' AACTA GCT **AGC** AGT TCC AGA TTT CAA CTG CTC ATC AGA T 3'
S A T G S K L Q E D S (aa. 23-13 CK)
NheI

CLONING SITE OF NheI CODES FOR A S - THEREFORE NO AMINO ACID CHANGE DUE TO CLONING.

Vγ-SENSE:

5' GAAGATCT**GACC** ATG + 17-29bp leader sequence 3'
BgIII KOZAK

Vγ anti-sense(reverse/complementary):

5' GC TCT **AGA** GGG TGC CAG GGG GAA GAC CGA T 3'
(R) S P A L P F V S (aa. 14-7 Cγ1)
XbaI

Cloning into

5' CG GCT **AGC**
S (A)

CLONING SITE JUNCTION OF XbaI/NheI (TCT AGC) CODES FOR S S - THEREFORE NO AMINO ACID CHANGE DUE TO CLONING

Fig. 10

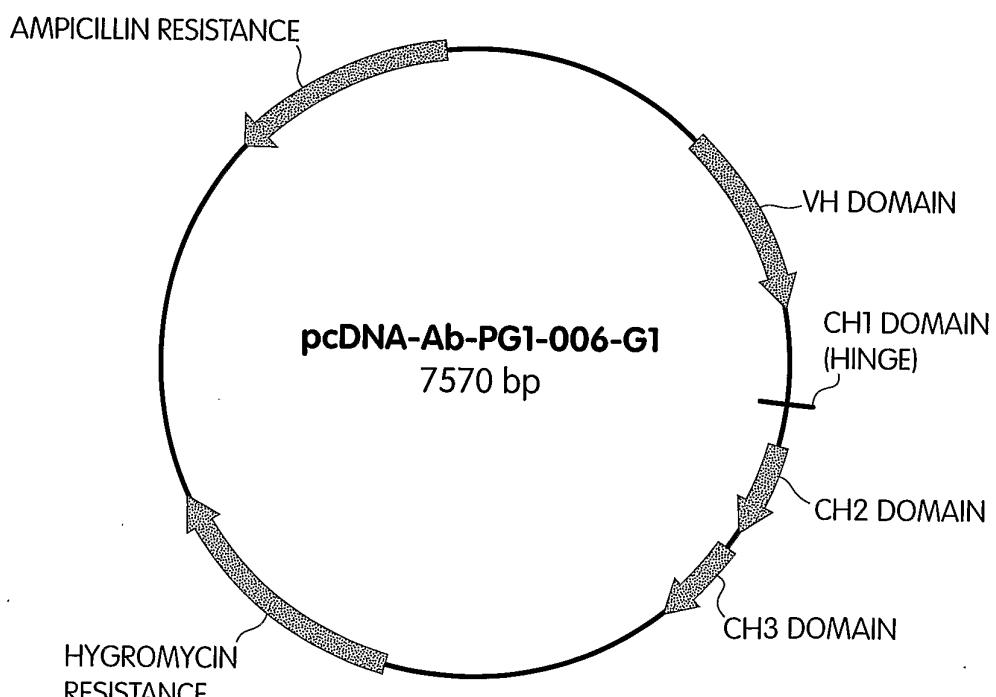


Fig. 11

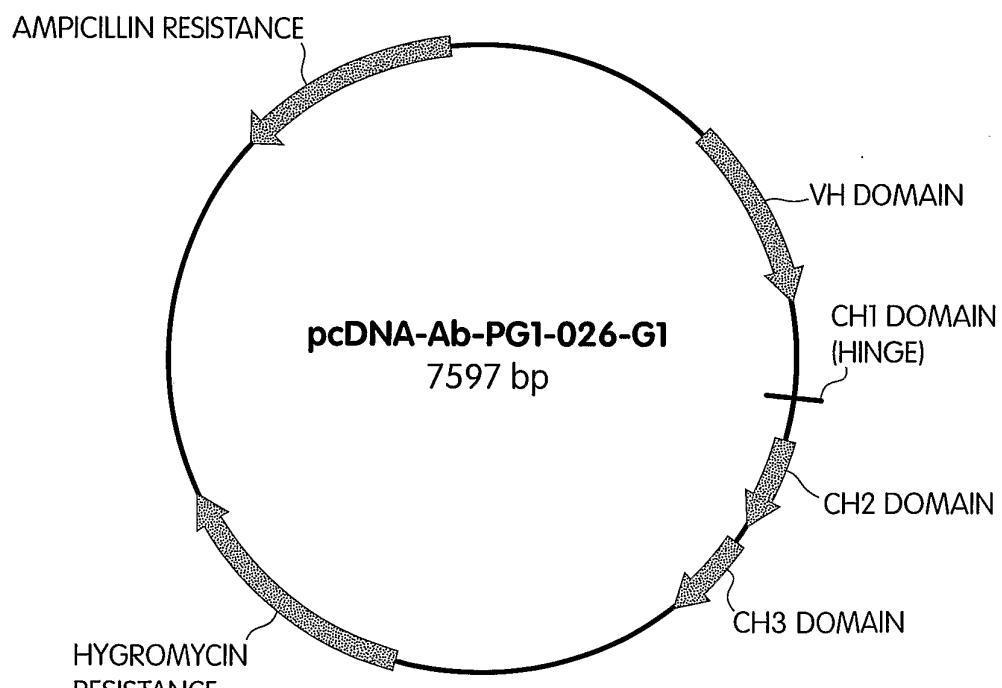


Fig. 12

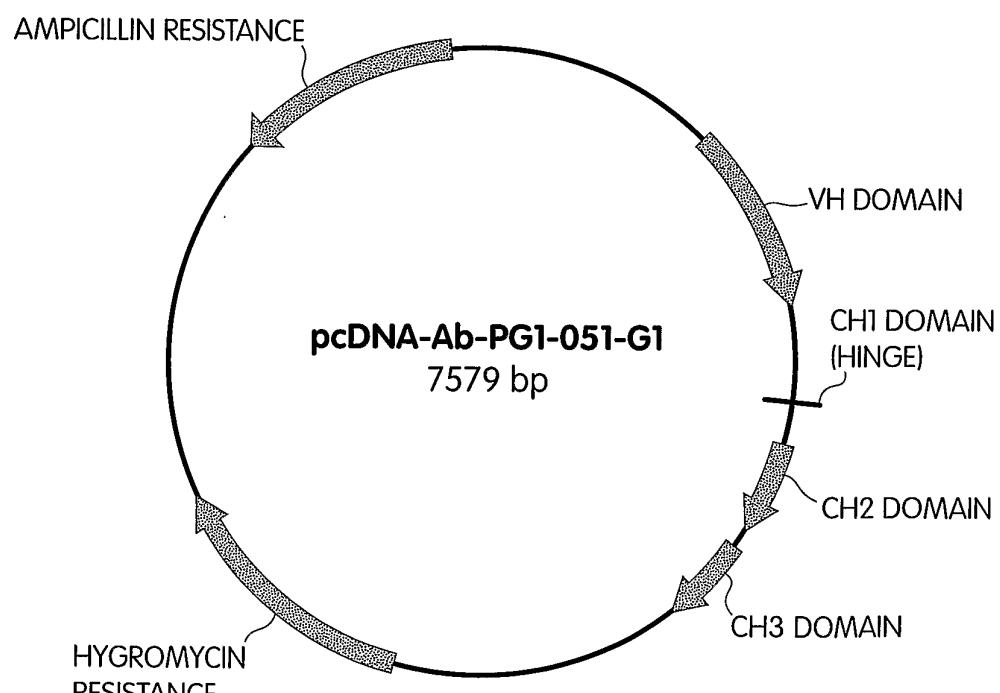


Fig. 13

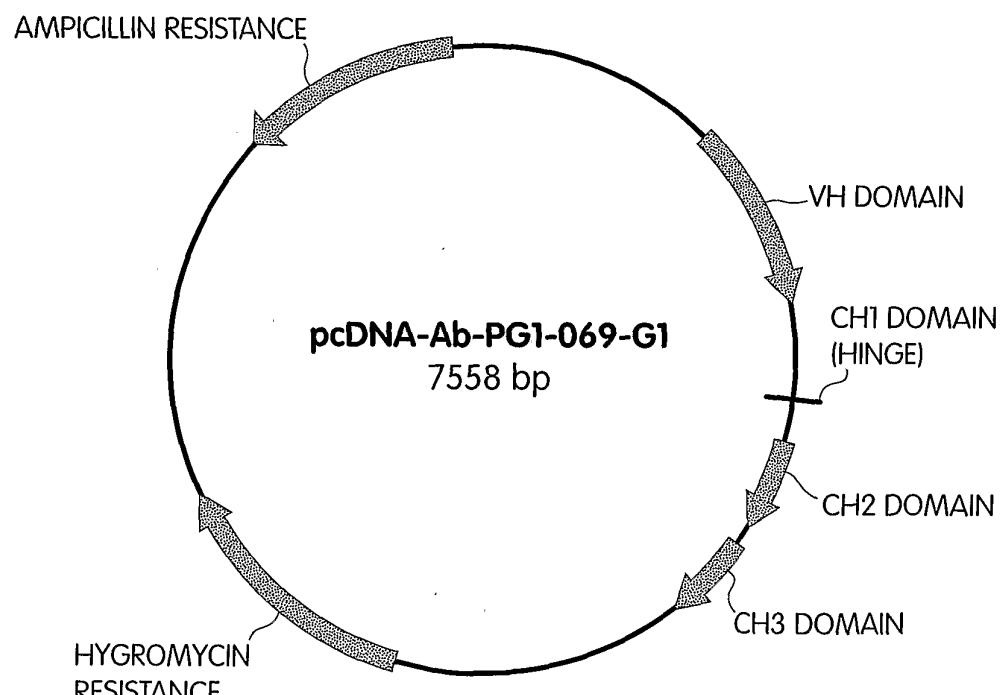


Fig. 14

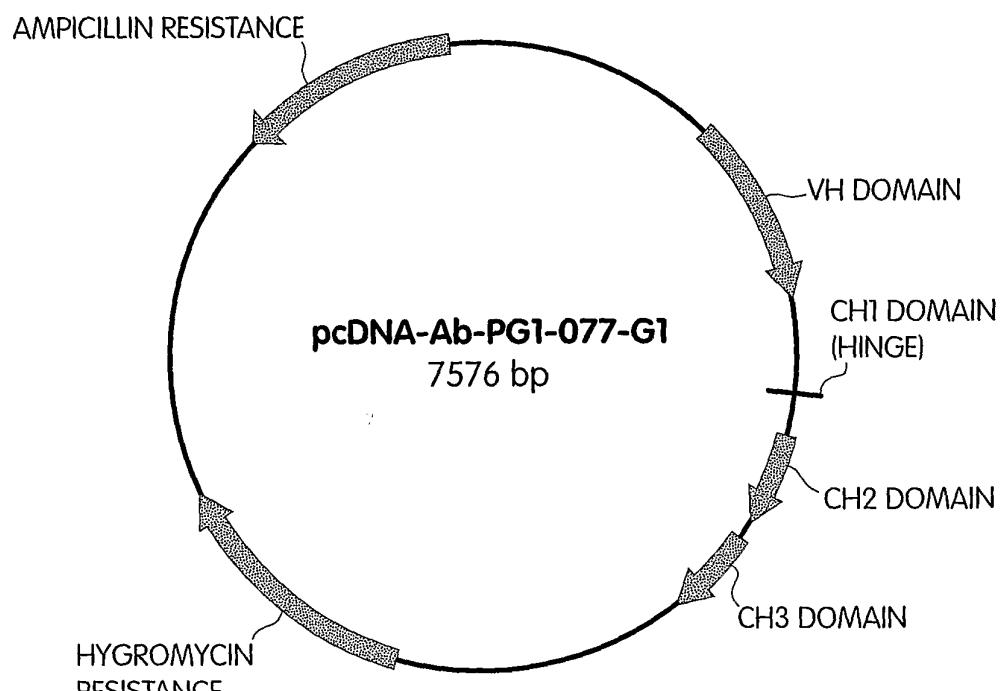


Fig. 15

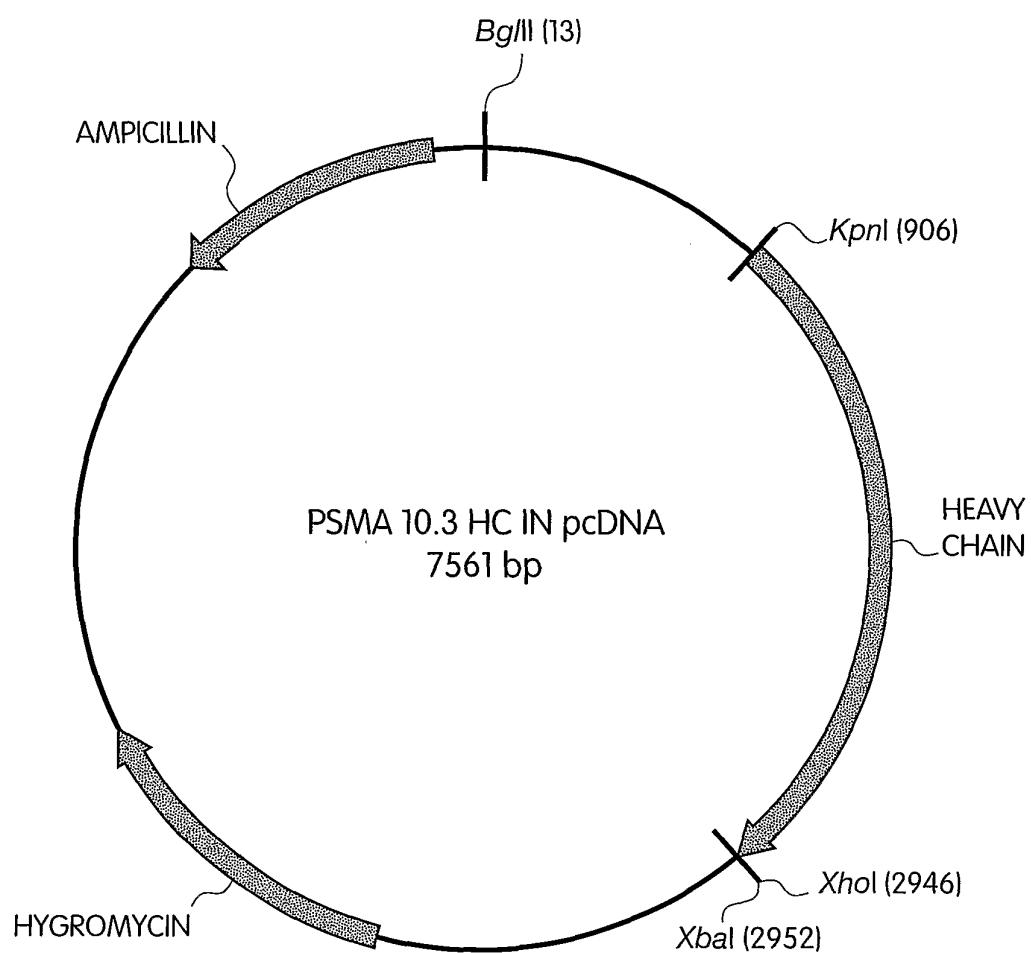


Fig. 16

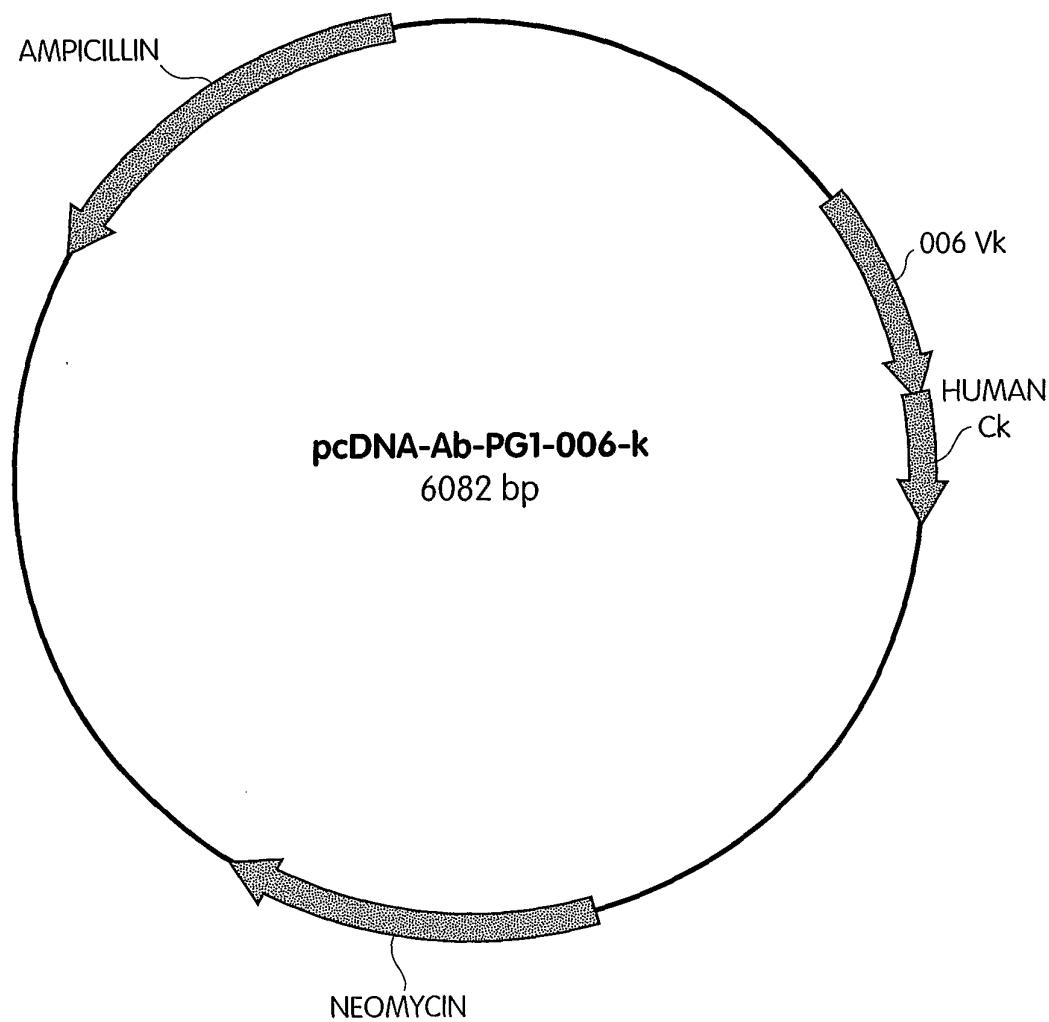


Fig. 17

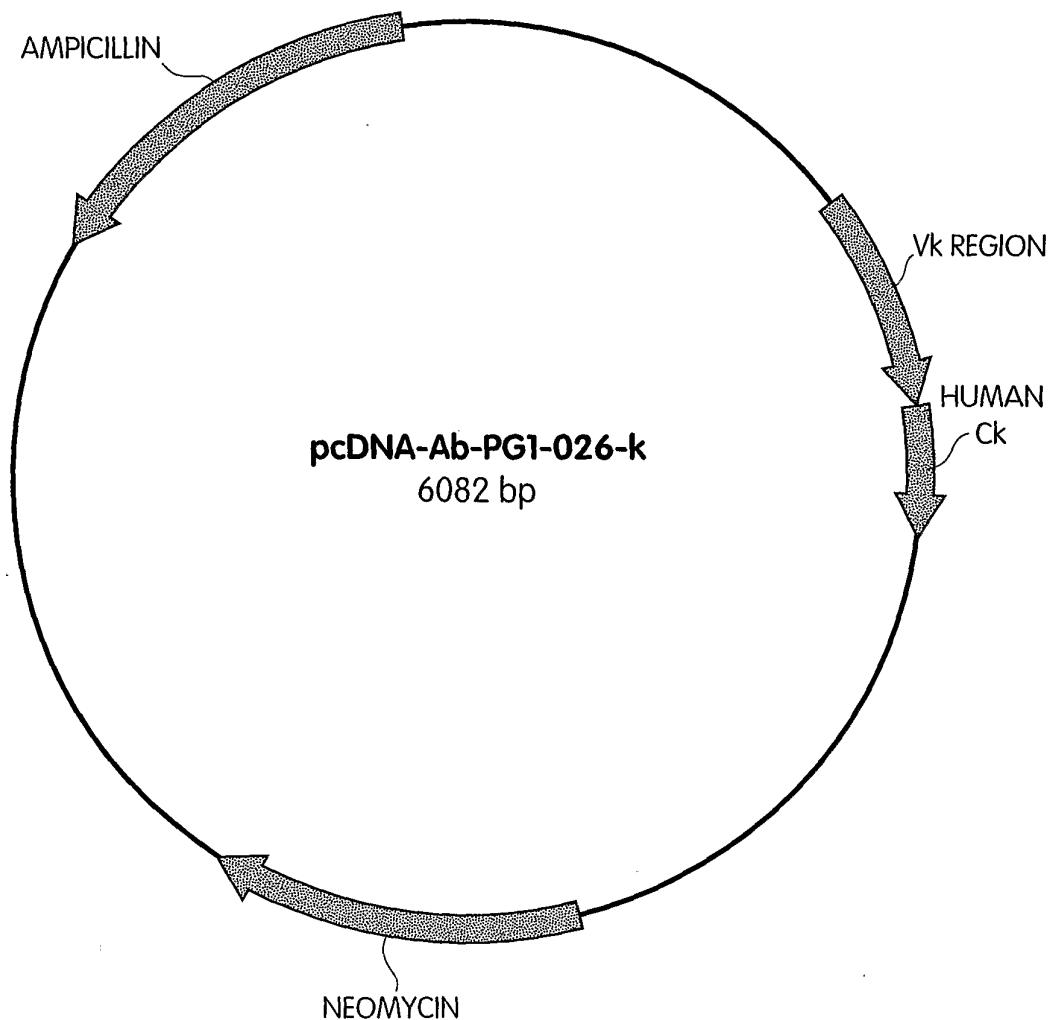


Fig. 18

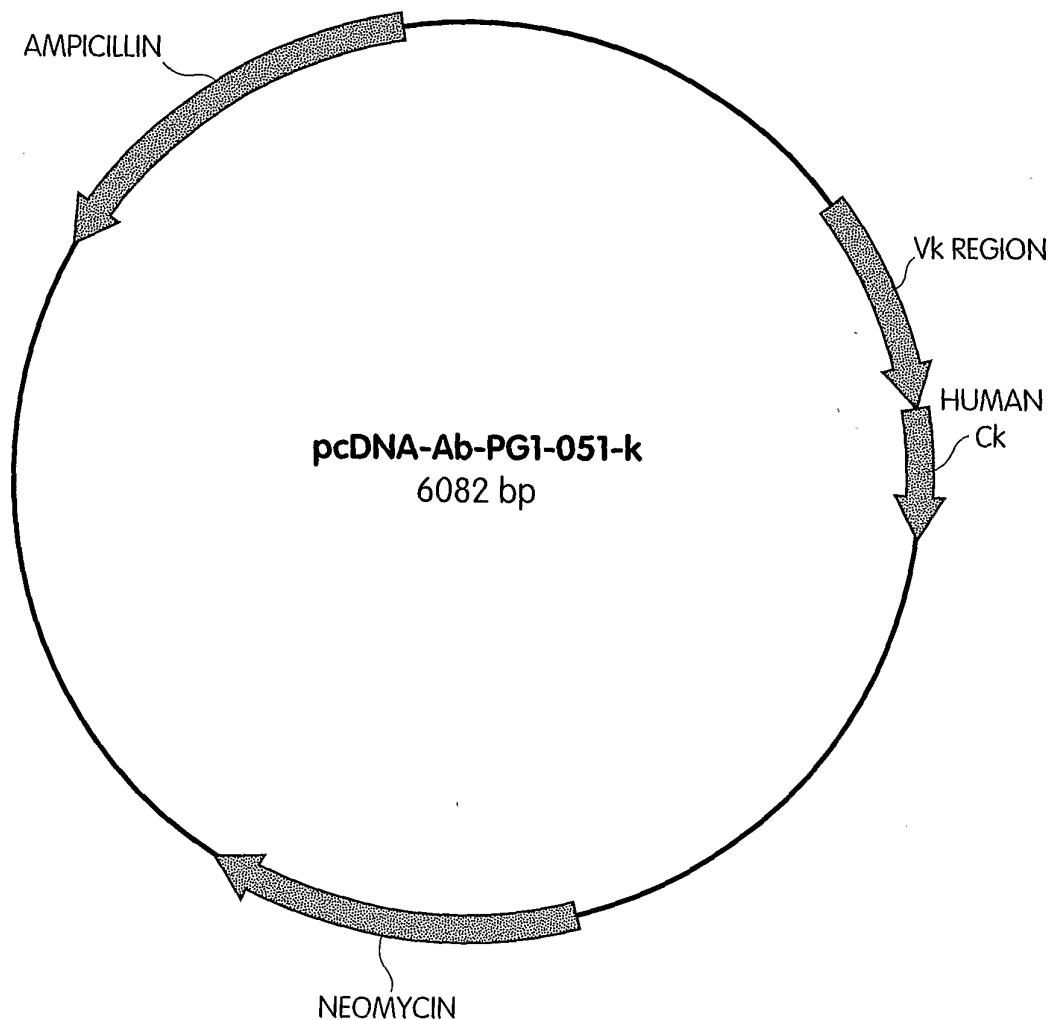


Fig. 19

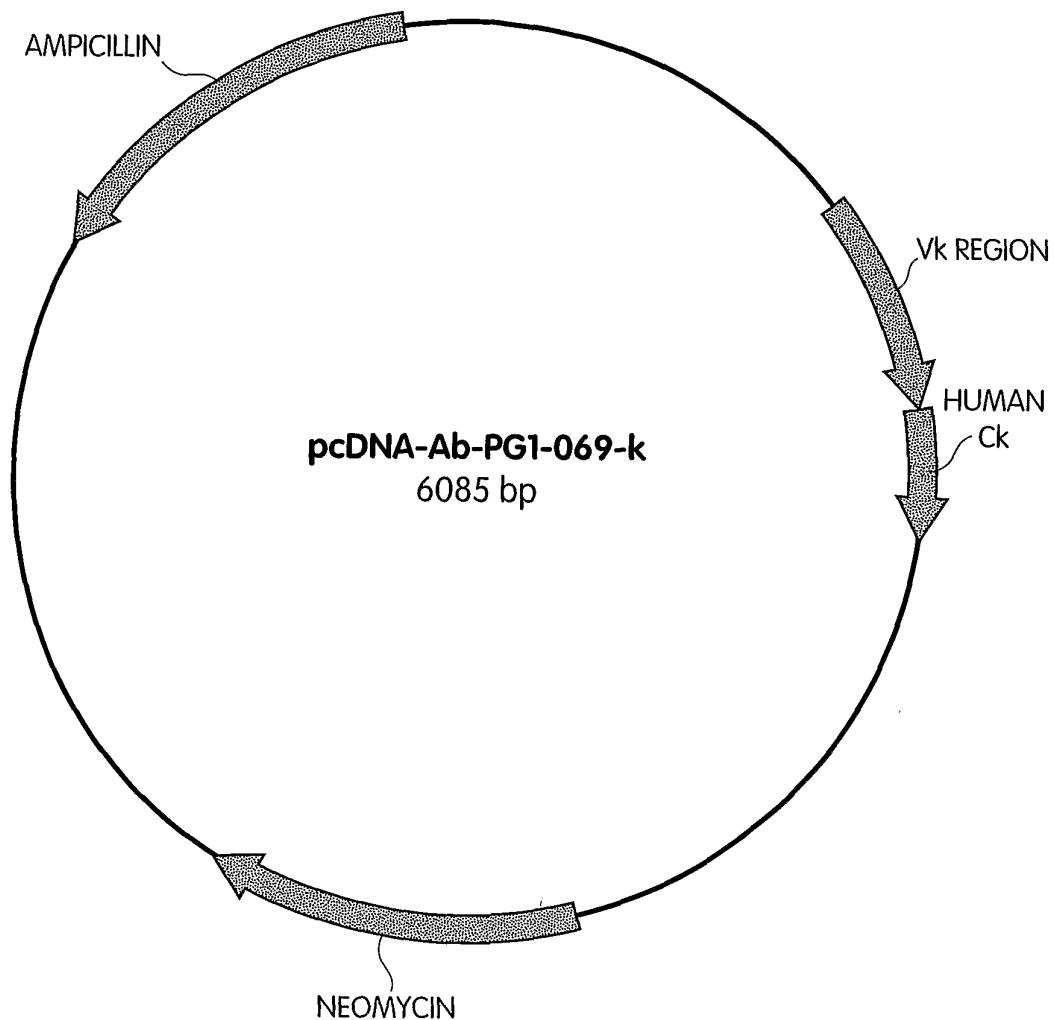


Fig. 20

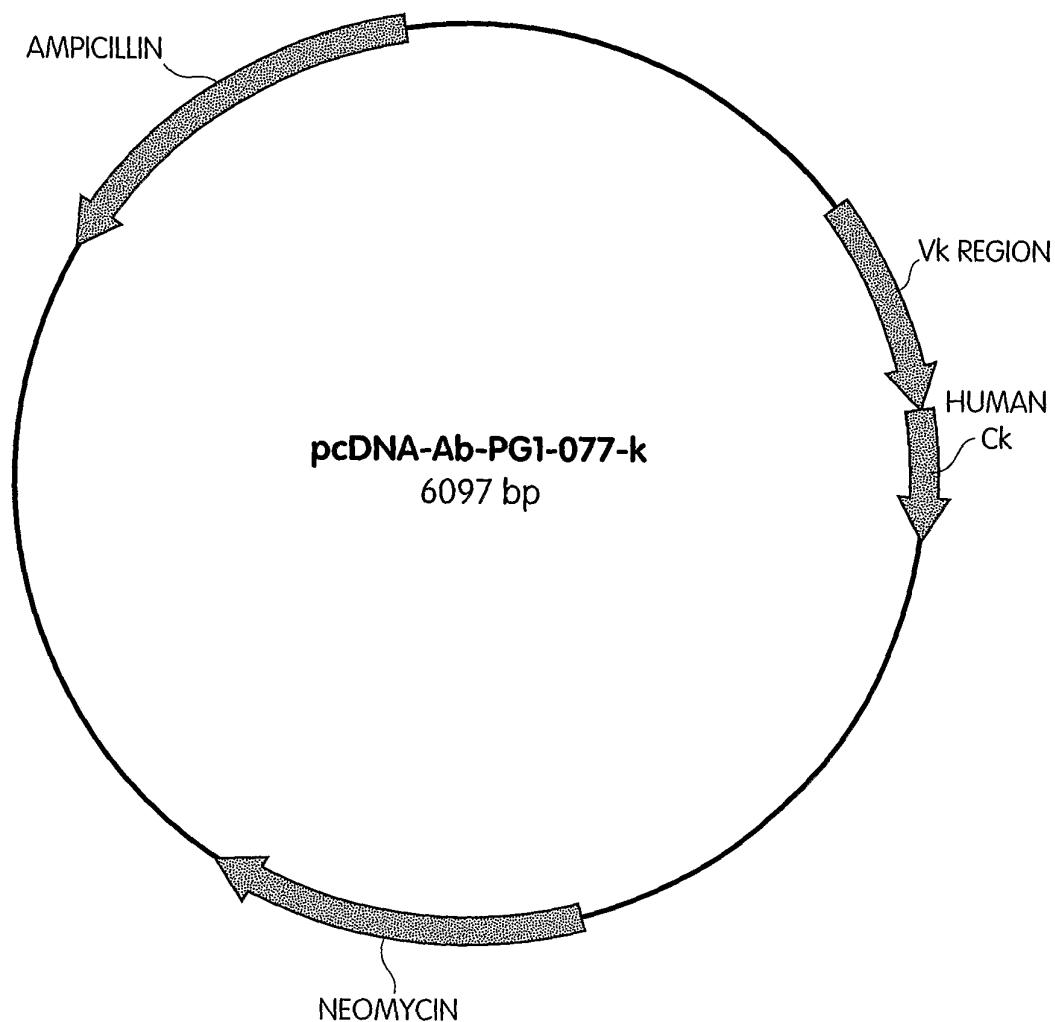


Fig. 21

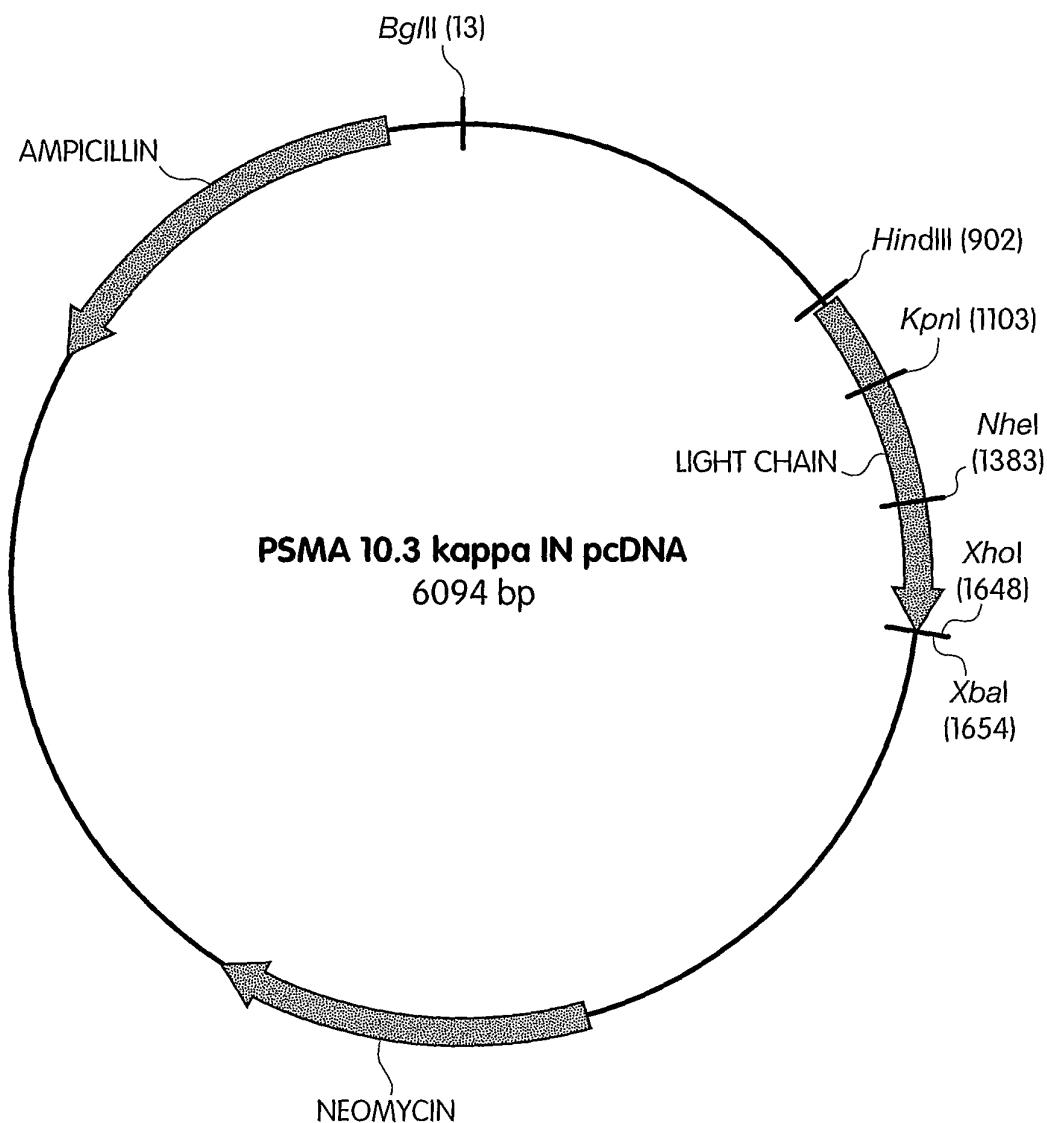


Fig. 22

22/33

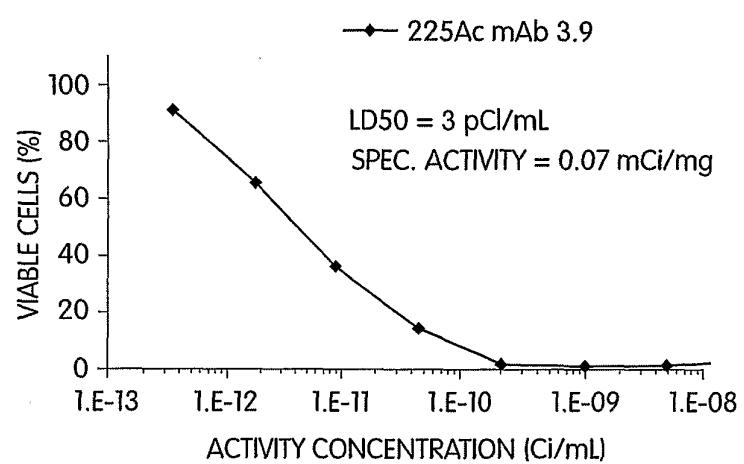


Fig. 23

23/33

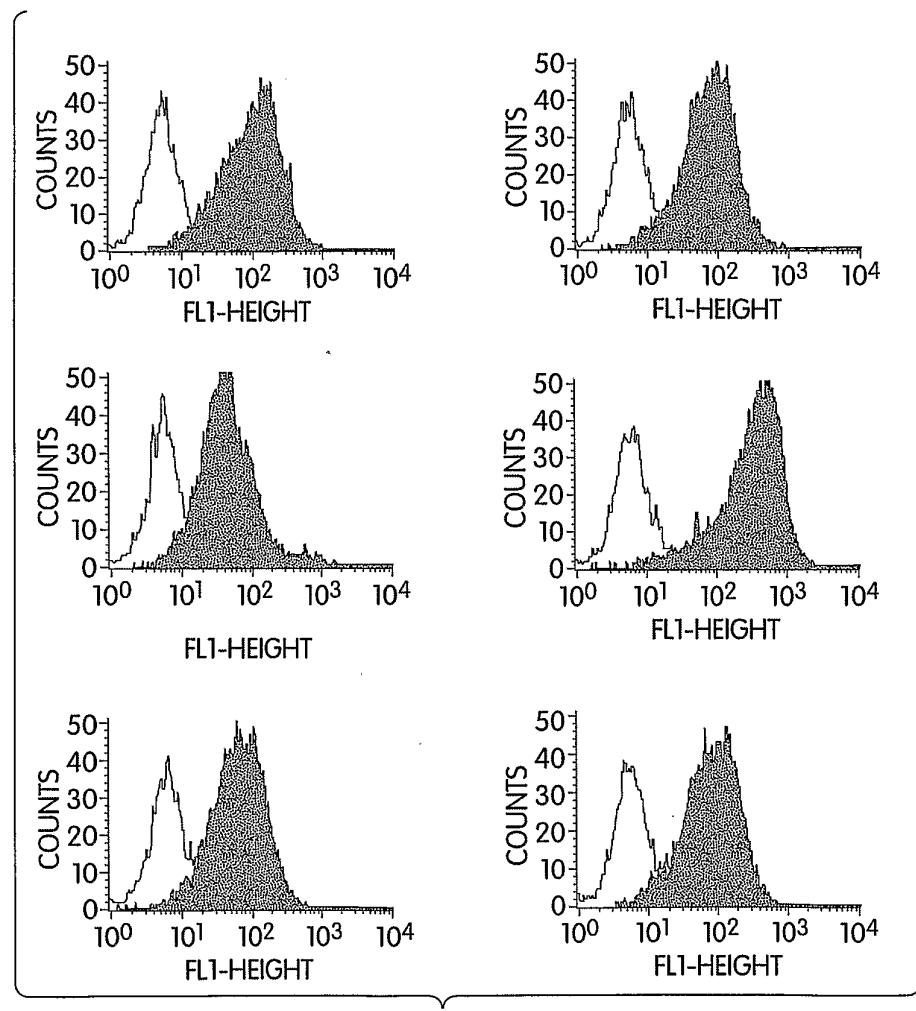


Fig. 24

24/33

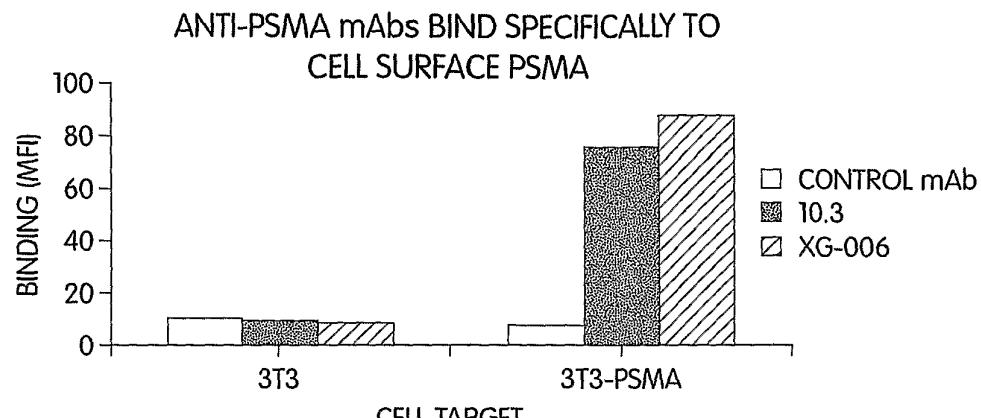


Fig. 25A

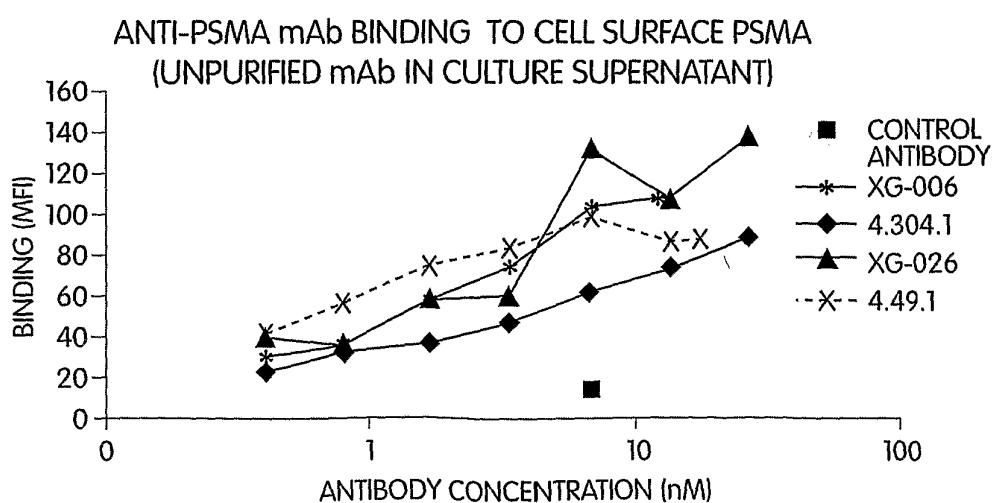


Fig. 25B

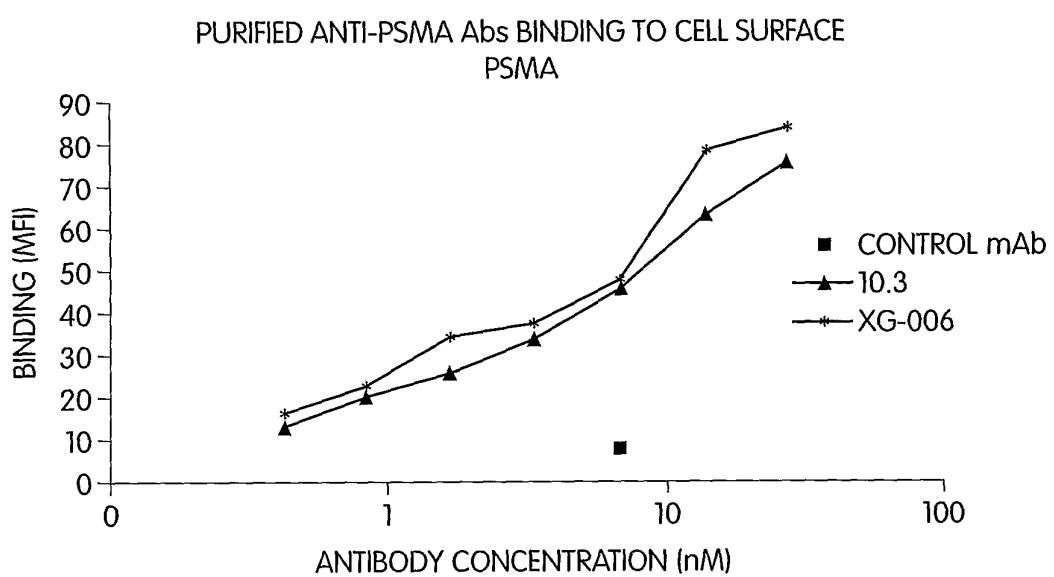


Fig. 25C

26/33

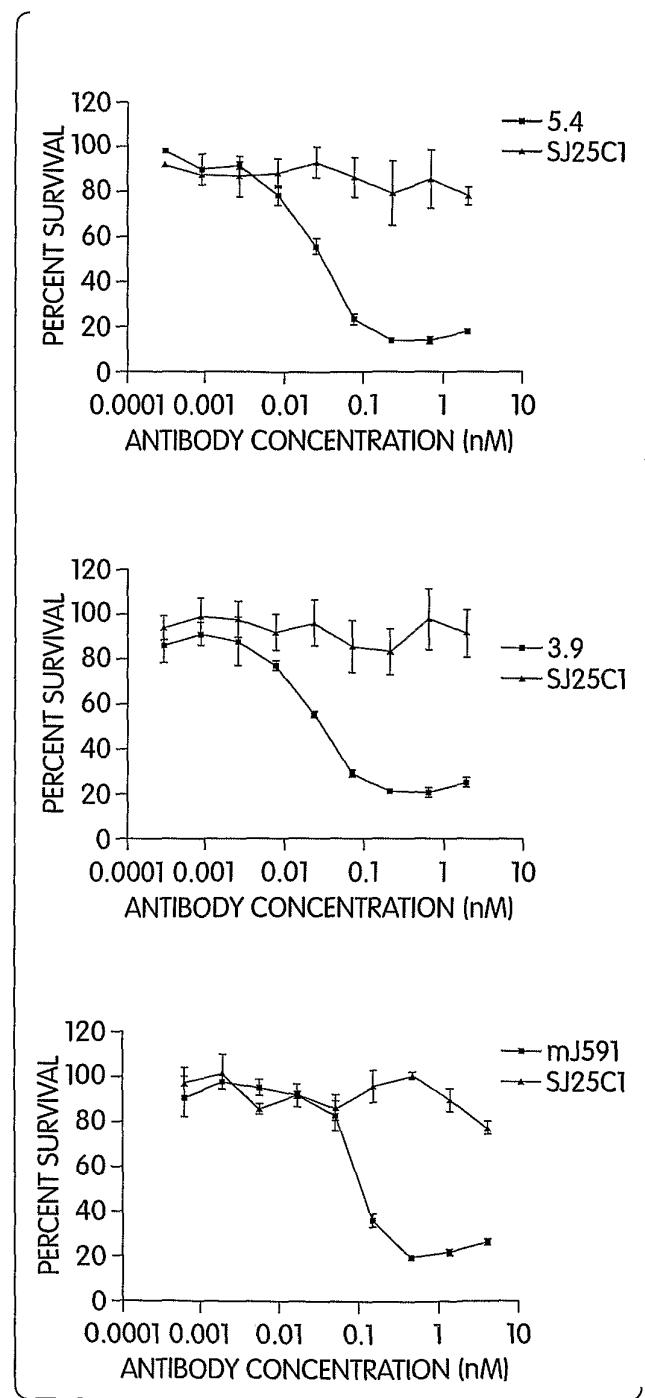


Fig. 26

27/33

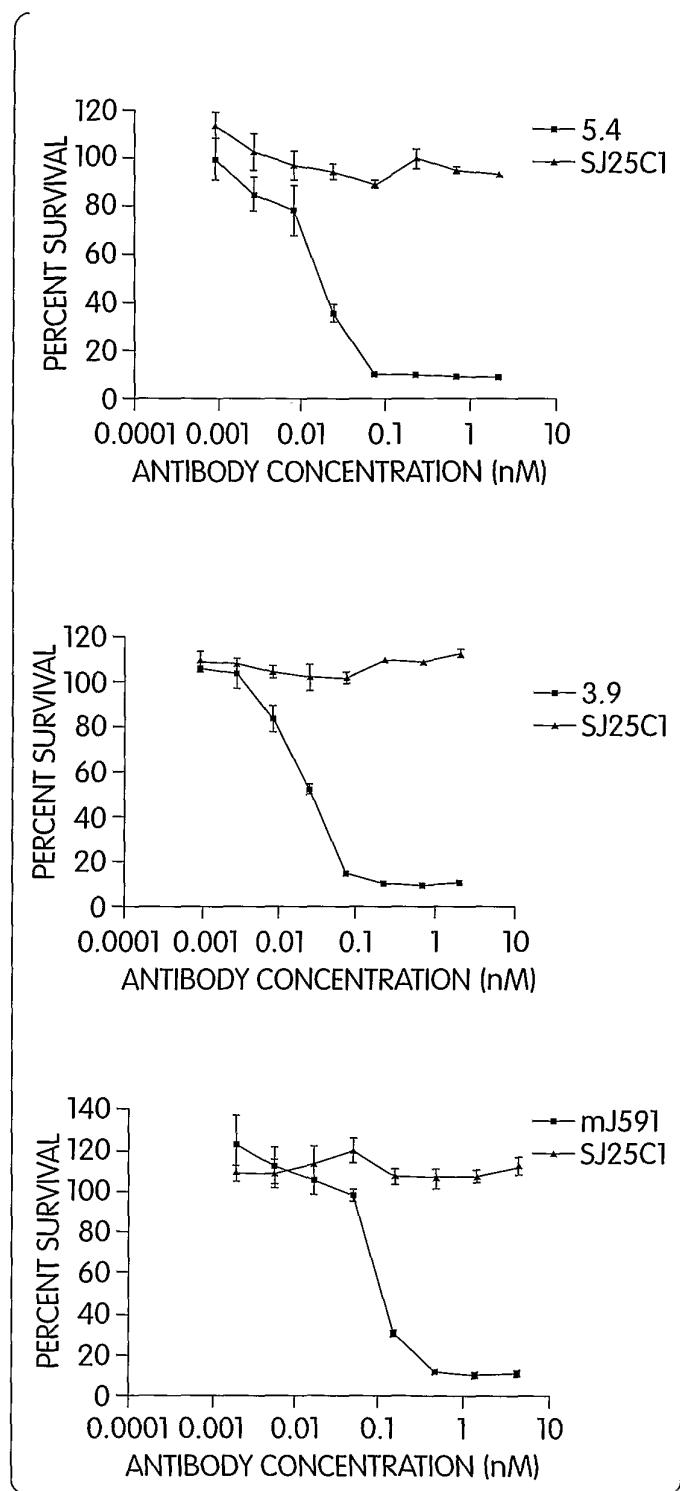


Fig. 27

28/33

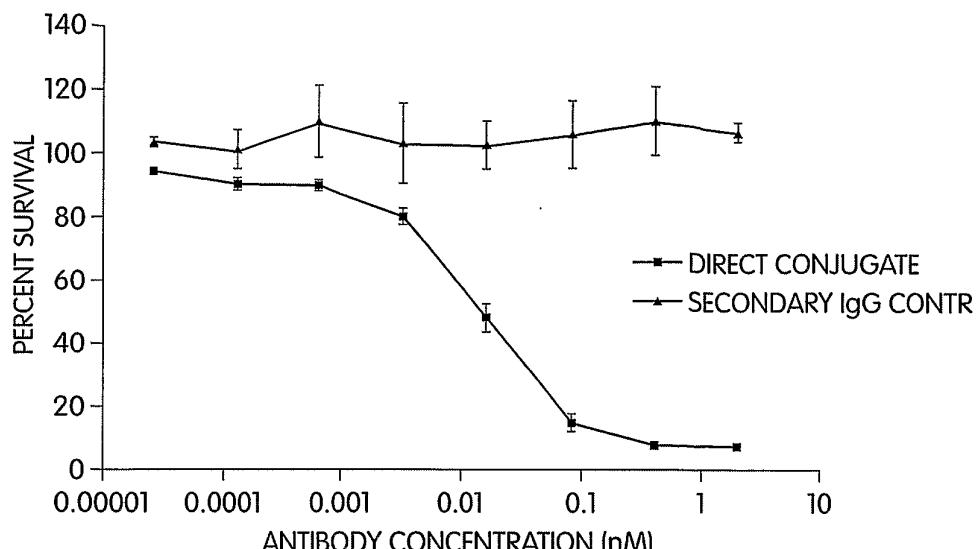


Fig. 28

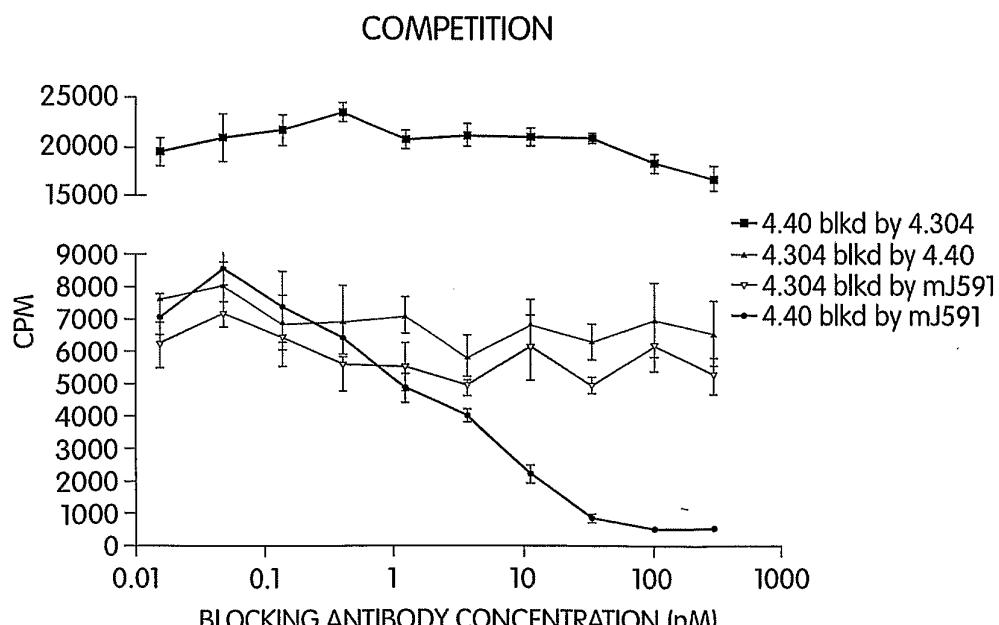


Fig. 29

29/33

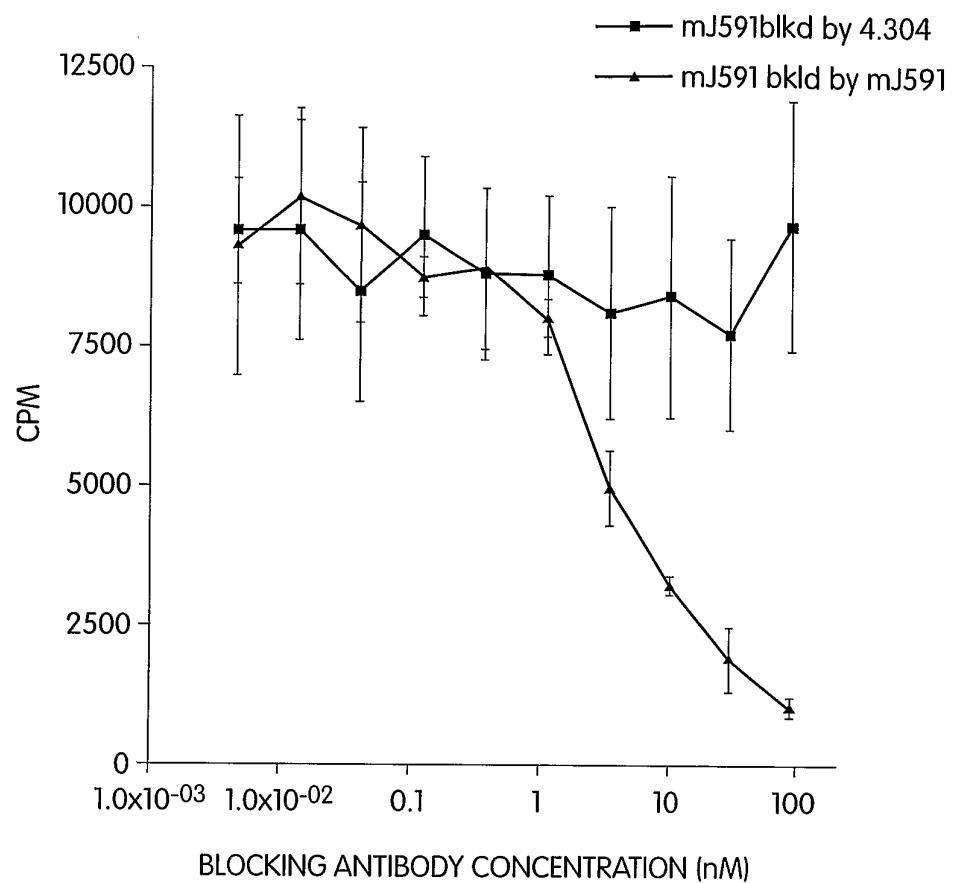


Fig. 30

30/33

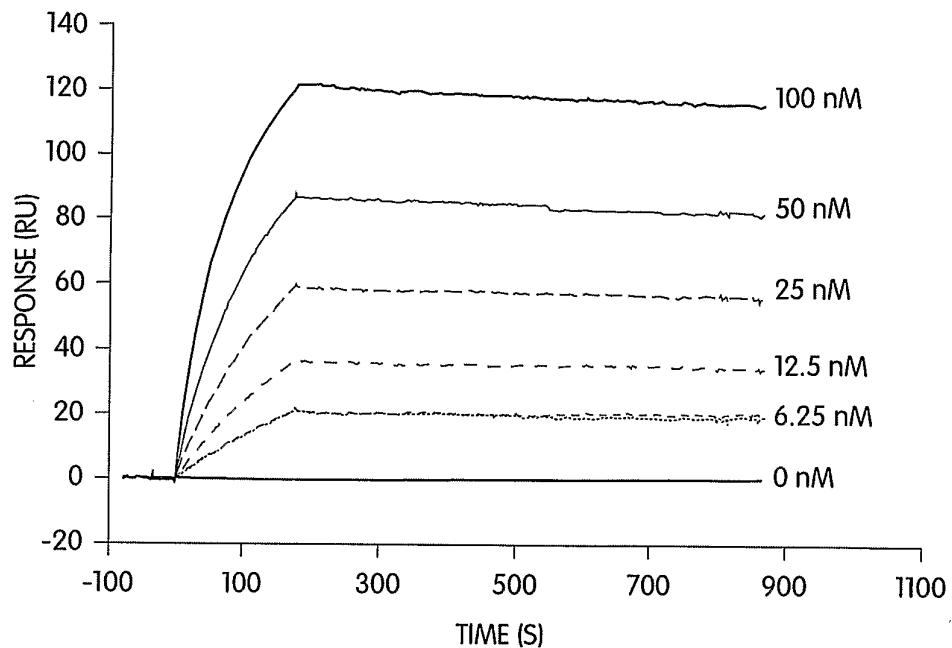


Fig. 31

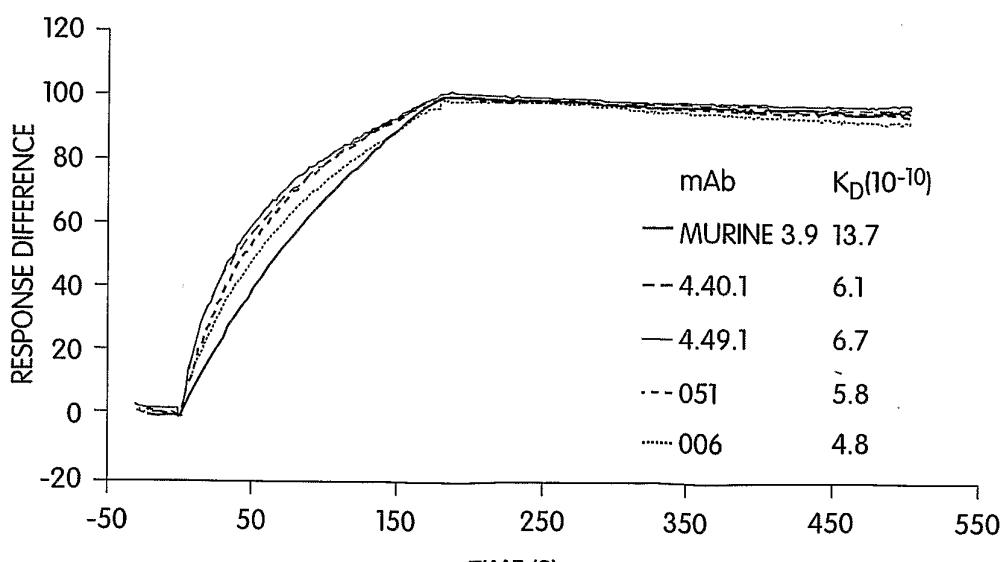


Fig. 32

31/33

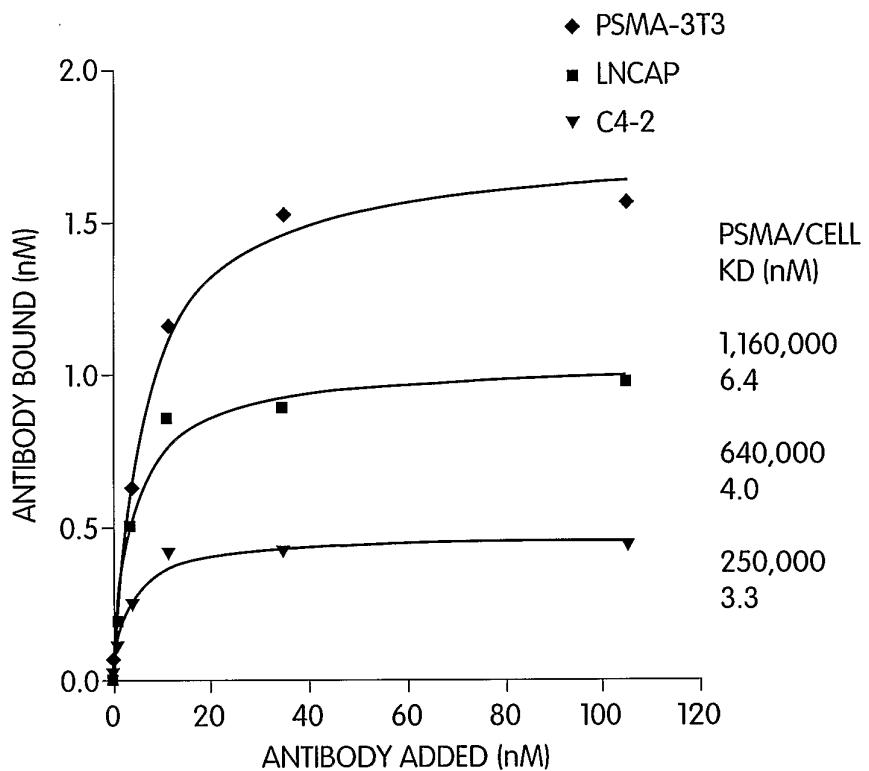


Fig. 33

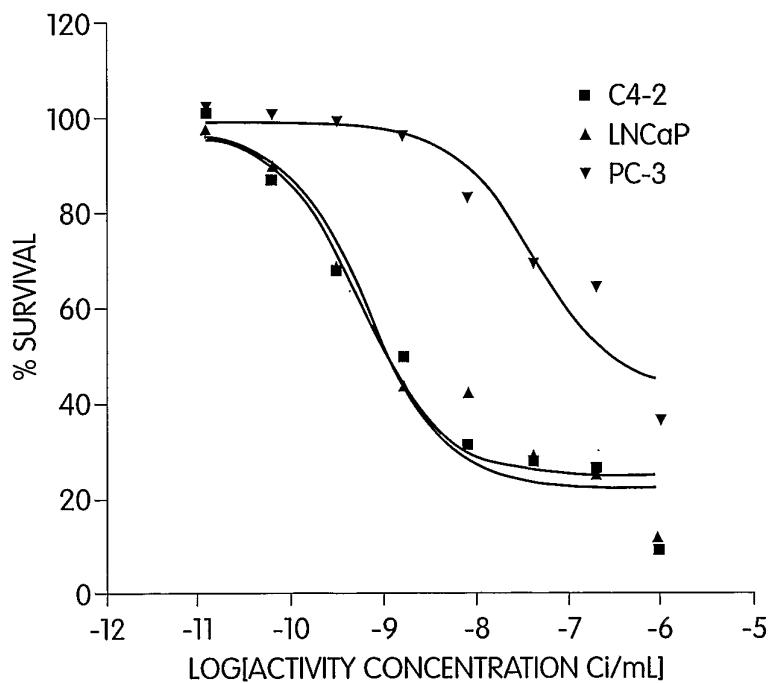


Fig. 34

32/33

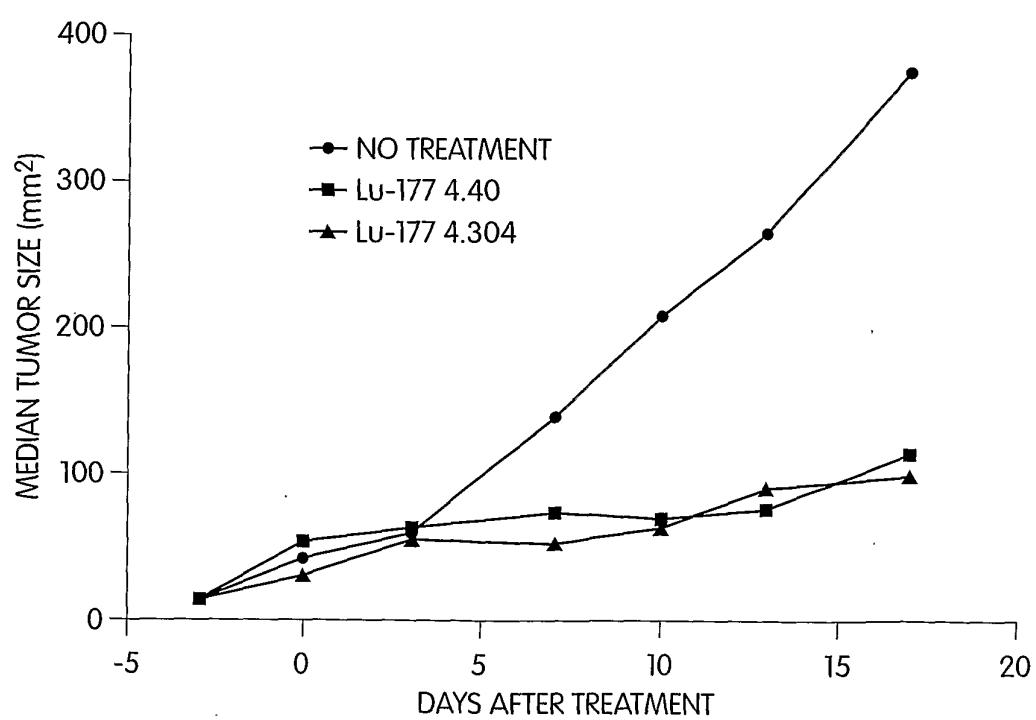


Fig. 35

33/33

Fig. 36

SEQUENCE LISTING

<110> PSMA DEVELOPMENT COMPANY, L.L.C.

MADDON, Paul J.

DONOVAN, Gerald P.

OLSON, William C.

SCHÜLKE, Norbert

GARDNER, Jason

MA, Dangshe

<120> PSMA ANTIBODIES AND PROTEIN MULTIMERS

<130> P00453.70005.WO

<150> US 60/335,215

<151> 2001-10-23

<150> US 60/362,747

<151> 2001-03-07

<150> US 60/____,____

<151> 2002-09-20

<160> 33

<170> PatentIn version 3.1

<210> 1

<211> 750

<212> PRT

<213> Homo sapiens

<400> 1

Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg
1 5 10 15

Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe
20 25 30

Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu
35 40 45

Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu
50 55 60

Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile
65 70 75 80

Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile
85 90 95

Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His
100 105 110

Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile
115 120 125

Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe
130 135 140

Glu Pro Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro
145 150 155 160

Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr
165 170 175

Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met
180 185 190

Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val
195 200 205

Phe Arg Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly
210 215 220

Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys
225 230 235 240

Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Val Gln Arg Gly
245 250 255

3/63

Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro Gly Tyr
260 265 270

Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu Ala Val Gly
275 280 285

Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr Asp Ala Gln Lys
290 295 300

Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro Asp Ser Ser Trp Arg
305 310 315 320

Gly Ser Leu Lys Val Pro Tyr Asn Val Gly Pro Gly Phe Thr Gly Asn
325 330 335

Phe Ser Thr Gln Lys Val Lys Met His Ile His Ser Thr Asn Glu Val
340 345 350

Thr Arg Ile Tyr Asn Val Ile Gly Thr Leu Arg Gly Ala Val Glu Pro
355 360 365

Asp Arg Tyr Val Ile Leu Gly Gly His Arg Asp Ser Trp Val Phe Gly
370 375 380

Gly Ile Asp Pro Gln Ser Gly Ala Ala Val Val His Glu Ile Val Arg
385 390 395 400

Ser Phe Gly Thr Leu Lys Lys Glu Gly Trp Arg Pro Arg Arg Thr Ile
405 410 415

Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Leu Leu Gly Ser Thr
420 425 430

Glu Trp Ala Glu Glu Asn Ser Arg Leu Leu Gln Glu Arg Gly Val Ala
435 440 445

Tyr Ile Asn Ala Asp Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val
450 455 460

Asp Cys Thr Pro Leu Met Tyr Ser Leu Val His Asn Leu Thr Lys Glu
465 470 475 480

Leu Lys Ser Pro Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr Glu Ser
485 490 495

Trp Thr Lys Lys Ser Pro Ser Pro Glu Phe Ser Gly Met Pro Arg Ile
500 505 510

Ser Lys Leu Gly Ser Gly Asn Asp Phe Glu Val Phe Phe Gln Arg Leu
515 520 525

Gly Ile Ala Ser Gly Arg Ala Arg Tyr Thr Lys Asn Trp Glu Thr Asn
530 535 540

Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val Tyr Glu Thr Tyr Glu
545 550 555 560

Leu Val Glu Lys Phe Tyr Asp Pro Met Phe Lys Tyr His Leu Thr Val
565 570 575

Ala Gln Val Arg Gly Gly Met Val Phe Glu Leu Ala Asn Ser Ile Val
580 585 590

Leu Pro Phe Asp Cys Arg Asp Tyr Ala Val Val Leu Arg Lys Tyr Ala
595 600 605

Asp Lys Ile Tyr Ser Ile Ser Met Lys His Pro Gln Glu Met Lys Thr
610 615 620

Tyr Ser Val Ser Phe Asp Ser Leu Phe Ser Ala Val Lys Asn Phe Thr
625 630 635 640

Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser
645 650 655

Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu
660 665 670

Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg
675 680 685

His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser
690 695 700

Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
705 710 715 720

Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala
725 730 735

Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala
740 745 750

<210> 2

<211> 7570

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 2

gacggatcg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtt ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc 360
cccgccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cggtttggc agtacatcaa tgggcgtgga tagcggtttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagtttg ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcgc 780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 900
ggtaccaagc ttggatctca ccatggagtt gggactgcgc tggggcttcc tcgttgctct 960
tttaagaggt gtccagtgatc aggtgcaatt ggtggagtct gggggaggcg tggccagcc 1020
tgggaggtcc ctgagactct cctgtgcagc gtctggattc gccttcagta gatatggcat 1080
gcactgggtc cgccaggctc caggcaaggg gctggagtg gtggcagttatgatgatgatg 1140
tggaaagtaat aaatactatg cagactccgt gaagggccga ttcaccatct ccagagacaa 1200
ttccaagaac acgcagttatc tgcaaattgaa cagcctgaga gccgaggaca cggctgtgt 1260
ttactgtcg agaggcggtg acttcctcta ctactactat tacggatgg acgtctgggg 1320
ccaagggacc acggtcacccg tctcctcagc ctccaccaag ggcccatcgg tcttccccct 1380
ggcacccctct agcaagagca cctctggggg cacagcggcc ctgggctgcc tggtaagga 1440
ctacttcccc gaaccgggtga cgggtgtcgatc gaactcaggc gccctgacca gcggcgtgca 1500

caccccccgg gctgtcctac agtcctcagg actctactcc ctcagcagcg tggtgaccgt 1560
gccctccagc agcttgggca cccagaccta catctgcaac gtgaatcaca agcccgacaa 1620
caccaagggtg gacaagagag ttggtgagag gccagcacag ggagggaggg tgtctgtgg 1680
aagccaggct cagcgctcct gcctggacgc atcccggtct tgcaagtccca gtccaggggca 1740
gcaaggcagg ccccgctcgc ctcttcaccc ggaggcctct gcccgcggca ctcatgtca 1800
gggagaggggt ctctggctt tttccccagg ctctggcag gcacaggcta ggtgccccta 1860
acccaggccc tgcacacaaaa ggggcaggtg ctgggctcag acctgccaag agccatatacc 1920
gggaggaccc tgccccctgac ctaagcccac cccaaaggcc aaactctcca ctccctcagc 1980
tcggacacct tctctcctcc cagattccag taactccaa tcttctctct gcagagccca 2040
aatcttgtga caaaactcac acatgcccac cgtgcccagg taagccagcc caggcctcgc 2100
cctccagctc aaggcgggac aggtgcctta gagtagcctg catccaggga cagggcccg 2160
ccgggtgctg acacgtccac ctccatctct tcctcagcac ctgaactcct ggggggaccc 2220
tcagtcttcc tcttcccccc aaaacccaag gacaccctca tgatctcccg gacccttag 2280
gtcacatgcg tggtggtgga cgtgagccac gaagaccctg aggtcaagtt caactggtag 2340
gtggacggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gtacaacagc 2400
acgtaccgtg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa tggcaaggag 2460
tacaagtgcg aggtctccaa caaagccctc ccagccccc tcgagaaaaac catctccaaa 2520
gccaaagggtg ggaccctgtgg ggtgcgaggg ccacatggac agaggccggc tcggccacc 2580
ctctgcctcg agagtgaccg ctgtaccaac ctctgtccct acagggcagc cccgagaacc 2640
acaggtgtac accctgcccc catccggga ggagatgacc aagaaccagg tcagcctgac 2700
ctgcctggtc aaaggcttct atcccagcga catcgccgtg gagtgggaga gcaatggca 2760
gccggagaac aactacaaga ccacgcctcc cgtgctggac tccgacggct cttcttcct 2820
ctatagcaag ctcaccgtgg acaagagcag gtggcagcag gggAACgtct tctcatgtc 2880
cgtgatgcat gaggctctgc acaaccacta cacgcagaag agcctctccc tgtctccggg 2940
taaatgagaa ttccctcgagt ctagagggcc cgtttaaacc cgctgatcag ctcgactgt 3000
gccttcttagt tgccagccat ctgttgggtt cccctccccct gtgccttcct tgaccctgga 3060
aggtgccact cccactgtcc tttcctaata aaatgaggaa attgcacgtc attgtctgag 3120
taggtgtcat tctattctgg ggggtggggt gggcaggac agcaaggggg aggattggga 3180
agacaatacg aggcatgctg gggatgcgggt gggctctatg gcttctgagg cggaaagaac 3240
cagctggggc tctaggggggt atccccacgc gcccgttagc ggccgtttaa ggcggcgggg 3300
tgtggtggtt acgcgcagcg tgaccgttac acttgccagc gcccgttagc cccgtcccttt 3360

cgcttttttc ctttcctttc tcgccacgtt cgccggctt ccccgtaag ctctaaatcg	3420
gggcattccct ttagggttcc gatttagtgc tttacggcac ctgcacccca aaaaacttga	3480
ttagggtgat gggtcacgta gtggccatc gocctgatag acggttttc gcccttgac	3540
gttggagtcc acgttctta atagtggact cttgttccaa actggaacaa cactcaaccc	3600
tatctcggtc tattctttt atttataagg gattttgggg atttcggcct attggtaaaa	3660
aaatgagctg atttaacaaa aatttaacgc gaattaattc tgtggaatgt gtgtcagtta	3720
gggtgtggaa agtccccagg ctccccaggc aggcagaagt atgcaaagca tgcacatcaa	3780
ttagtcagca accaggtgtg gaaagtcccc aggctccccca gcaggcagaa gtatgcaaag	3840
catgcacatc aatttagtcag caaccatagt cccgccccata actccgcccc tcccgcccc	3900
aactccgccc agttccgccc attctccgccc ccatggctga ctaattttt ttatttatgc	3960
agaggccgag gccgcctctg cctctgagct attccagaag tagtgaggag gctttttgg	4020
aggcctaggc ttttgcaaaa agctccggg agcttgcata tccatttcg gatctgatca	4080
gcacgtgatg aaaaagcctg aactcacccgc gacgtctgtc gagaagttt tgatcgaaaa	4140
gttcgacagc gtctccgacc tgatgcagct ctcggaggc gaagaatctc gtgccttcag	4200
cttcgatgta ggagggcgtg gatatgtcct gcgggtaaat agctgcgccg atggtttcta	4260
caaagatcgt tatgtttatc ggcactttgc atcggccgctg ctcccgattc cggaagtgc	4320
tgacattggg gaattcagcg agagcctgac ctattgcattc tcccgccgtg cacagggtgt	4380
cacgttgc当地 gacctgcctg aaaccgaact gcccgcgtt ctgcagccgg tcgcggaggc	4440
catggatgct atcgctgcgg ccgatcttag ccagacgcgc gggttcggcc cattcggacc	4500
gcaaggaatc ggtcaataca ctacatggcg tgatttcata tgcgcgattt ctgatcccc	4560
tgtgtatcac tggcaaaactg tgatggacga caccgtcagt gcgtccgtcg cgaggctct	4620
cgatgagctg atgctttggg ccgaggactg ccccgaaatc cggcaccccg tgcacgcgg	4680
tttcggctcc aacaatgtcc tgacggacaa tggccgcata acagcggta ttgactggag	4740
cgaggcgatg ttccgggatt cccaatacga ggtcgccaaac atcttcttgc ggaggccgt	4800
gttggcttgt atggagcagc agacgcgcata cttcgagccgg aggcatccgg agcttgcagg	4860
atcgccgcgg ctccggcgatg atatgcgtcc cattggcttt gaccaactct atcagagctt	4920
ggttgacggc aatttcgtatg atgcagcttg ggccgcagggt cgatgcgcacg caatcgccg	4980
atccggagcc gggactgtcg ggcgtacaca aatcgccgcg agaagcgcgg ccgtctggac	5040
cgatggctgt gtagaagtac tcgcccgtatg tggaaaccga cgcccccagca ctgcgtccgag	5100
ggcaaaggaa tagcacgtgc tacgagattt cgattccacc gccgccttct atgaaagggtt	5160
ggccttcgga atcgtttcc gggacgcggc ctggatgatc ctccagcgcg gggatctcat	5220

gctggagttc ttcccccacc ccaactgtt tattgcagct tataatggtt acaaataaaag 5280
caatagcatc acaaatttca caaataaagc attttttca ctgcattcta gttgtggttt 5340
gtccaaactc atcaatgtat cttatcatgt ctgtataccg tcgacctcta gctagagctt 5400
ggcgtaatca tggtcatagc tggttcgtgt gtgaaattgt tatccgctca caattccaca 5460
caacatacga gccggaagca taaaagtgtaa agcctgggt gcctaattgag tgagctaact 5520
cacattaatt gcgttgcgtc cactgcccgc ttccagtcg ggaaacctgt cgtgccagct 5580
gcattaatga atcggccaac gcgcggggag aggccgtttg cgtattggc gctttccgc 5640
ttccctcgctc actgactcgc tgcgctcggt cggtcggtc cgccgagcgg tatcagctca 5700
ctcaaaggcg gtaatacggt tatccacaga atcagggat aacgcaggaa agaacatgtg 5760
agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca 5820
taggctccgc cccctgacg agcatcacaa aaatcgacgc tcaagtcaaga ggtggcgaaa 5880
cccgacagga ctataaagat accaggcggtt tccccctgga agctccctcg tgcgctctcc 5940
tgttccgacc ctgcccgtta ccggataacct gtccgccttt ctcccttcgg gaagcgtggc 6000
gctttctcaa tgctcacgct gtaggtatct cagttcggtg taggtcggtc gctccaagct 6060
gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg 6120
tctttagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag 6180
gattagcaga gcgaggtatg taggcgggtgc tacagagtcc ttgaagtggt ggcctaacta 6240
cggtacact agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg 6300
aaaaagagtt ggtagctttt gatccggcaa acaaaccacc gctggtagcgt gtggtttttt 6360
tgtttgcaag cagcagatta cgccgcagaaa aaaaggatct caagaagatc ctttgatctt 6420
ttctacgggg tctgacgctc agtggaaacga aaactcacgt taagggattt tggcatgag 6480
attatcaaaa aggatcttca cctagatcct ttaaaattaa aaatgaagtt ttaaatcaat 6540
ctaaagtata tatgagtaaa cttggcttga cagttaccaa tgcttaatca gtgaggcacc 6600
tatctcagcg atctgtctat ttctgttcatc catagttgcc tgactcccg tcgtgttagat 6660
aactacgata cgggagggtt taccatctgg ccccaagtgc gcaatgatac cgccgacacc 6720
acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag 6780
aagtggctt gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaaagctag 6840
agtaagtagt tcgcccgtta atagttgcg caacgttggtt gccattgcta caggcatcgt 6900
ggtgtcacgc tcgtcggttg gtatggcttc attcagctcc ggttcccaac gatcaaggcg 6960
agttacatga tccccatgt tgtgcaaaaa agcggttagc tccttcggc tcctcgatcgt 7020
tgtcagaagt aagttggccg cagtggtatc actcatggtt atggcagcac tgcataattc 7080

tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact caaccaagtc 7140
attctgagaa tagtgtatgc ggcgaccgag ttgctttgc cccgcgtcaa tacggataa 7200
taccgcgccca catagcagaa cttaaaagt gctcatcatt ggaaaacgtt ctccggggcg 7260
aaaactctca aggatcttac cgctgtttag atccagttcg atgtaaccca ctctgtgcacc 7320
caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag 7380
gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tggtaatac tcatactctt 7440
cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt 7500
tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc 7560
acctgacgtc 7570

<210> 3

<211> 7597

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 3

gacggatcgg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat agccatata 300
tggagttccg cgttacataa cttacggtaa atggccgcgc tggctgaccg cccaaacgacc 360
cccgccatt gacgtcaata atgacgtatg ttcccatagt aacgcataa gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaaatggccc gcctggcatt 540
atgcccagta catgaccta tgggacttgc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cgggtttggc agtacatcaa tgggcgtgga tagcggtttgc 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttgc ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg 780
gtaggcgtgt acggtggag gtcttatataa gcagagctct ctggctaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcaactatag ggagacccaa gctggctaga 900

ggtaccaagc ttggatctca ccatgggtc aaccgccatc ctcaccatgg agttggggct 960
gcgctgggtt ctccctcggtt ctcttttaag aggtgtccag tgtcaggtgc agctggtgga 1020
gtctggggga ggcgtggtcc agcctggag gtccctgaga ctctcctgtg cagcgtctgg 1080
attcacccatc agtaactatg tcatgcactg ggtccgcccag gctccaggca aggggctgga 1140
gtgggtggca attatatgtt atgatggaag taataaaatac tatgcagact ccgtgaaggg 1200
ccgattcacc atctccagag acaattccaa gaacacgctg tatctgcaaa tgaacagcct 1260
gagagccgag gacacggctg tgtattactg tgccgggtgga tataactgga actacgagta 1320
ccactactac ggtatggacg tctggggcca agggaccacg gtcaccgtct cctcagcctc 1380
caccaagggc ccatcggtct tccccctggc accctcttagc aagagcacct ctgggggcac 1440
agcggccctg ggctgcctgg tcaaggacta cttcccccggaa ccggtgacgg tgtcgtggaa 1500
ctcaggcgcc ctgaccagcg gcgtgcacac cttcccggtct gtcctacagt cctcaggact 1560
ctactccctc agcagcgtgg tgaccgtgcc ctccagcagc ttgggcaccc agacctacat 1620
ctgcaacgtg aatcacaagc ccagcaacac caaggtggac aagagagttg gtgagaggcc 1680
agcacagggaa gggaggggtgt ctgctggaaag ccaggctcag cgctcctgccc tggacgcata 1740
ccggctatgc agtcccagtc cagggcagca aggcaggccc cgtctgcctc ttcacccggaa 1800
ggcctctgccc cgccccactc atgctcaggag agagggtctt ctggctttt ccccaggctc 1860
tgggcaggca caggctaggt gcccctaacc caggccctgc acacaaaggaa gcaggtgctg 1920
ggctcagacc tgccaagagc catatccggg aggaccctgc ccctgaccta agcccacccc 1980
aaaggccaaa ctctccactc cctcagctcg gacacctct ctcctccag attccagtaa 2040
ctccccatct tctctctgca gagcccaaattt cttgtgacaa aactcacaca tgcccaccgt 2100
gcccaggtaa gccagccccag gcctcgccct ccagctcaag gcgggacagg tgccctagag 2160
tagcctgcat ccagggacag gccccagccg ggtgctgaca cgtccacccctc catctttcc 2220
tcagcacctg aactcctggg gggaccgtca gtcttcctct tccccccaaa acccaaggac 2280
accctcatga tctcccgac ccctgagggtc acatgcgtgg tggtgacgt gagccacgaa 2340
gaccctgagg tcaagttcaa ctggtaacgtg gacggcgtgg aggtgcataa tgccaagaca 2400
aagccgcggg aggaggacta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg 2460
caccaggact ggctgaatgg caaggagacta aagtgcagg tctccaacaa agccctccca 2520
gcccccatcg agaaaaccat ctccaaagcc aaaggtggga cccgtgggggt gcgagggcca 2580
catggacaga ggcggcgtcg gcccacccctc tgccctgaga gtgaccgtcg taccacccctc 2640
tgtccctaca gggcagcccc gagaaccaca ggtgtacacc ctgccccat cccgggagga 2700
gatgaccaag aaccagggtca gcctgacactg cctggtaaaa ggcttctatc ccagcgtacat 2760

cggcgtggag	tgggagagca	atgggcagcc	ggagaacaac	tacaagacca	cgcctcccg	2820
gctggactcc	gacgggtcc	tcttcctcta	tagcaagctc	accgtggaca	agagcaggt	2880
gcagcagggg	aacgtcttct	catgctcgt	gatgcatgag	gctctgcaca	accactacac	2940
gcagaagagc	ctctccctgt	ctccggtaa	atgagaattc	ctcgagtcta	gagggcccgt	3000
ttaaaccgc	tgatcagcct	cgactgtgcc	ttctagttgc	cagccatctg	ttgtttgccc	3060
ctccccgtg	ccttccttga	ccctggaagg	tgccactccc	actgtcctt	cctaataaaa	3120
tgagggaaatt	gcatcgcatt	gtctgagtag	gtgtcattct	attctgggg	gtgggggtgg	3180
gcaggacagc	aagggggagg	attgggaaga	caatagcagg	catgctgggg	atgcgggtgg	3240
ctctatggct	tctgaggcgg	aaagaaccag	ctggggctct	agggggat	cccacgcgccc	3300
ctgtagcggc	gcattaagcg	cggcgggtgt	ggtggttacg	cgcagcgtga	ccgctacact	3360
tgccagcgcc	ctagcgcccg	ctccttcgc	tttctccct	tcctttctcg	ccacgttgc	3420
cggctttccc	cgtcaagctc	taaatcgggg	catccctta	gggttccgat	ttagtgc	3480
acggcacctc	gaccccaaaa	aacttgatta	gggtgatggt	tcacgtagtg	ggccatcgcc	3540
ctgatagacg	gtttttcgcc	ctttgacgtt	ggagtccacg	ttctttaata	gtggactctt	3600
gttccaaact	ggaacaacac	tcaaccctat	ctcggtctat	tctttgatt	tataagggat	3660
tttgggatt	tcggcctatt	ggttaaaaaaa	tgagctgatt	taacaaaaat	ttaacgcgaa	3720
ttaattctgt	ggaatgtgt	tcaagttaggg	tgtggaaagt	ccccaggc	cccaggcagg	3780
cagaagtatg	caaagcatgc	atctcaatta	gtcagcaacc	aggtgtggaa	agtccccagg	3840
ctccccagca	ggcagaagta	tgcaaagcat	gcatctcaat	tagtcagcaa	ccatagtccc	3900
gcccctaact	ccgccccatcc	cgcccctaac	tccgcccagt	tccgcccatt	ctccgcccc	3960
tggctgacta	attttttta	tttatgcaga	ggccgaggcc	gcctctgcct	ctgagctatt	4020
ccagaagtag	tgaggaggct	tttttgagg	cctaggctt	tgcaaaaagc	tcccgggagc	4080
ttgtatatcc	atttcggat	ctgatcagca	cgtgatgaaa	aagcctgaac	tcaccgcgac	4140
gtctgtcgag	aagtttctga	tcgaaaagtt	cgacagcgtc	tccgacctga	tgcagctctc	4200
ggagggcgaa	gaatctcg	ctttcagctt	cgatgttagga	gggcgtggat	atgtcctgc	4260
ggtaaatagc	tgcgccgatg	gtttctacaa	agatcgttat	gtttatcg	gc actttgc	4320
ggccgcgctc	ccgattccgg	aagtgc	tga cattggggaa	ttcagc	gaga gcctgaccta	4380
ttgcatctcc	cgccgtgcac	agggtgtcac	gttgc	aaagac	ctgc	4440
cgctgttctg	cagccggc	cg	ggaggccat	gatgc	gatc	4500
gacgagcggg	ttcggccat	tcggaccgca	aggaatcggt	caatacacta	catggcgt	4560
tttcatatgc	gcgattgctg	atccccatgt	gtatcactgg	caaactgtga	tggacgacac	4620

cgtcagtgcg tccgtcgcg aggctctcgatg ctttggcccg aggactgccc	4680
cgaagtccgg cacctcggtgc acgcggattt cggctccaac aatgtcctgatg cggacaatgg	4740
ccgcataaaca gcggtcattt actggagcga ggcgatgttc ggggattccc aatacgaggt	4800
cggcaacatc ttcttctgga ggcgcgtggtt ggcttgtatg gagcagcaga cgcgtactt	4860
cgagcggagg catccggagc ttgcaggatc gccgcggctc cggcgatata tgctccgcat	4920
tggtcttgac caactctatc agagcttggt tgacggcaat ttgcgtatg cagcttggc	4980
gcagggtcga tgcgacgcaa tcgtccgatc cggagccggg actgtcgggc gtacacaaat	5040
cgcgcgcaga agcgcggccg tctggaccga tggctgtgtaa gaagtactcg ccgatagtgg	5100
aaaccgacgc cccagcactc gtccgagggc aaaggaatag cacgtgctac gagatttcga	5160
ttccacccgccc gccttctatg aaagggttggg cttcggaaatc gttttccggg acgcggctg	5220
gatgatcctc cagcgcgggg atctcatgtt ggagttcttc gcccacccca acttgtttat	5280
tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaagcatt	5340
tttttcactg cattctagtt gtgggttgc ccaaactcatc aatgtatctt atcatgtctg	5400
tataccgtcg acctctagct agagcttggc gtaatcatgg tcatagctgt ttcctgtgtg	5460
aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc	5520
ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac tgcccgctt	5580
ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg	5640
cgggttgcgt attggggcgct cttccgcttc ctcgctact gactcgctgc gtcggcgt	5700
tcggctgcgg cgagcggat cagctcactc aaaggcggta atacggttat ccacagaatc	5760
aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa	5820
aaaggcccgcg ttgctggcgt tttccatag gctccgcccc cctgacgagc atcacaaaaaa	5880
tcgacgctca agtcagaggt ggcgaaaccc gacaggacta taaagataacc aggcgtttcc	5940
cccttggaaatc tccctcgatc gctctccgtt tccgaccctg ccgcttaccg gataccgtc	6000
cgccttctc cttcgggaa gcgtggcgct ttctcaatgc tcacgctgtt ggtatctcag	6060
ttcggctgttag gtcgttcgtt ccaagctggg ctgtgtgcac gaaccccccgtt ttcagccgaa	6120
ccgctgcgcc ttatccggta actatcgatc tgagtccaaac ccggtaagac acgacttac	6180
gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgttag gcggtgctac	6240
agagttcttgc aagtgggtggc ctaactacgg ctacactaga aggacagtat ttggatctg	6300
cgctctgctg aagccagtta cttccggaaa aagagttggt agctcttgcat cccggcaaaaca	6360
aaccaccgct ggtagcgggtg gttttttgtt ttgcaagcag cagattacgc gcagaaaaaaa	6420
aggatctcaa gaagatcctt tgatctttc tacgggtct gacgctcagt ggaacgaaaa	6480

ctcacgttaa gggattttgg tcatgagatt atcaaaaagg atcttcacct agatccttt 6540
aaataaaaaa tgaagttta aatcaatcta aagtatataat gagtaaactt ggtctgacag 6600
ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc tgtctattc gttcatccat 6660
agttgcctga ctccccgtcg tgtagataac tacgataacgg gagggcttac catctggccc 6720
cagtgcgtca atgataaccgc gagaccacg ctcaccggct ccagatttat cagcaataaa 6780
ccagccagcc ggaaggggccg agcgcagaag tggcctgca actttatccg cctccatcca 6840
gtctattaat tggccggg aagctagagt aagtagttcg ccagttataa gtttgcgcaa 6900
cgttgttgcc attgctacag gcatcgtgg tgcacgctcg tcgttggta tggcttcatt 6960
cagtcgggt tcccaacgtat caaggcgagt tacatgatcc cccatgttgc gaaaaaaagc 7020
ggtagctcc ttccgtcctc cgatcggtgt cagaagtaag ttggccgcag tgttatcact 7080
catggttatg gcagcactgc ataattctct tactgtcatg ccattccgtaa gatgctttc 7140
tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc gaccgagttg 7200
ctcttgcggc gcgtcaatac gggataatac cgcgcacat agcagaacct taaaagtgc 7260
catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc tggttagatc 7320
cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatctttt ctttcaccag 7380
cggttctggg tgagcaaaaa caggaaggca aaatgcgcga aaaaaggaa taagggcgac 7440
acggaaatgt tgaataactca tactcttcct tttcaatat tattgaagca tttatcaggg 7500
ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac aaatagggt 7560
tccgcgcaca tttccccgaa aagtgcacc tgacgtc 7597

<210> 4

<211> 7579

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 4

gacggatcgg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc 180
ttagggttag gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cggtgacatt 240
gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat agcccatata 300

tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc 360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgaccta tgggacttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cggtttggc agtacatcaa tgggcgtgga tagcggtttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttgc ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg 780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 900
ggtaccaagc ttggatctca ccatggagtt gggacttagc tgggtttcc tcgttgcct 960
tttaagaggt gtccagtgtc aggtccagct ggtggagtct gggggaggcg tggccagcc 1020
tgggagggtcc ctgagactct cctgtgcagc gtctggattc accttcagta gctatggcat 1080
gcactgggtc cgccaggctc caggcaaggg gctggactgg gtggcaatta tttggcatga 1140
tggaaagtaat aaatactatg cagactccgt gaagggccga ttcaccatct ccagagacaa 1200
ttccaagaag acgctgtacc tgcaaataatgaa cagttgaga gccgaggaca cggctgtgta 1260
ttactgtgcg agagcttggg cctatgacta cggtgactat gaatactact tcggtatgga 1320
cgtctggggc caagggacca cggtcaccgt ctctcagcc tccaccaagg gcccattcggt 1380
cttccccctg gcaccctcta gcaagagcac ctctggggc acagcggccc tggctgcct 1440
ggtaaggac tacttccccg aaccggtgac ggtgtcgtgg aactcaggcg ccctgaccag 1500
cggcgtgcac accttcccg ctgtcctaca gtcctcagga ctctactccc tcagcagcgt 1560
ggtgaccgtg ccctccagca gcttgggcac ccagacctac atctgcaacg tgaatcacaa 1620
gcccagcaac accaagggtgg acaagagagt tggtgagagg ccagcacagg gagggagggt 1680
gtctgctgga agccaggctc agcgctcctg cttggacgca tcccgctat gcagtcctcag 1740
tccaggcag caaggcaggc cccgtctgcc tcttcacccg gaggcctctg cccgccccac 1800
tcatgctcag ggagagggtc ttctggcttt ttccccaggc tctggcagg cacaggctag 1860
gtgccccctaa cccaggcccgc gcacacaaaag gggcagggtgc tgggctcaga cctgccaaga 1920
gccccatccg ggaggaccct gcccctgacc taagcccacc ccaaaggcca aactctccac 1980
tccctcagct cggacacacctt ctctcctccc agattccagt aactcccaat cttctctctg 2040
cagagcccaa atcttgtgac aaaactcaca catgcccacc gtgcccaggta aagccagccc 2100
aggcctcgc ctcagctca aggcgggaca ggtgccttag agtagcctgc atccaggac 2160

aggcccccagc	cgggtgctga	cacgtccacc	tccatctt	cctcagcacc	tgaactcctg	2220
gggggaccgt	cagtcttcct	cttccccca	aaacccaagg	acaccctcat	gatctcccg	2280
accctgagg	tcacatgcgt	ggtggtggac	gtgagccacg	aagaccctga	ggtcaagttc	2340
aactggtacg	tggacggcgt	ggaggtgcat	aatgccaaga	caaagccg	ggaggagcag	2400
tacaacagca	cgtaccgtgt	ggtcagcg	ctcaccgtcc	tgcaccagga	ctggctgaat	2460
ggcaaggagt	acaagtgc	aaagccctcc	cagccccat	cgagaaaacc		2520
atctccaaag	ccaaagggtgg	gaccctgtgg	gtgcgagg	catggaca	gaggccgg	2580
cggcccaccc	tctgccc	gagtgaccgc	tgtaccaacc	tctgtccct	cagggcagcc	2640
ccgagaacca	caggtgtaca	ccctgc	atcccggag	gagatgacca	agaaccagg	2700
cagcctgacc	tgcc	aggcttcta	tcccagcgac	atcgccgtgg	agtggagag	2760
caatggcag	ccggagaaca	actacaagac	cacgcctccc	gtgctggact	ccgacggc	2820
cttcttc	tatagca	tcaccgtg	caagagcagg	tggcagcagg	ggaacgt	2880
ctcatgtcc	gtgatgc	aggcttg	caaccactac	acgcagaaga	gcctctcc	2940
gtctccgg	aaatgaga	tcctcgag	tagagggccc	gtttaaacc	gctgatc	3000
ctcgactgt	ccttctag	gccagccat	tgttgttgc	ccctcccc	tgccttc	3060
gaccctggaa	ggtgccact	ccactgtc	ttcctaataa	aatgaggaaa	ttgcatcg	3120
ttgtctgagt	aggtgtcatt	ctattctgg	gggtgggtg	ggcaggaca	gcaagggg	3180
ggattggaa	gacaatagca	ggcatgtgg	ggatgcgg	ggctctatgg	cttctgagg	3240
ggaaagaacc	agctggg	ctaggggta	tcccacgc	ccctgtag	gcgcatta	3300
cgcggcgg	gtgg	cgcg	gaccgtaca	cttgc	ccctagcg	3360
cgctcc	gtttcttcc	ttcc	cgccacgtt	gccc	cccg	3420
tctaaatcgg	ggcatcc	ttgggttcc	atttagt	ttacgg	tcgac	3480
aaaacttgat	tagggtgat	gttcacgt	tggccat	ccctgata	cggtttt	3540
ccctt	tgggagt	cg	ttttaa	tagtgg	ttgttcc	3600
actcaacc	atctcggt	attcttt	tttataagg	atttggg	tttcgg	3660
ttgg	ttaaa	aatgag	tttaac	atthaac	ctgg	3720
tgtcag	tttt	gggtgg	aaat	acgcg	aattaatt	3780
gcatct	aat	ccagg	aaagt	ccca	ggctcc	3840
tatgcaaa	atgc	gtgg	aaagt	ccctaa	ccgc	3900
ccgc	ccct	ggc	tttcc	catgg	ctt	3960
tat	ttatg	gggg	ccgc	cttgc	ttcc	4020
ca	gagg	ccgc	cttgc	ttcc	ttcc	

cttttttgg a ggcctaggct tttgcaaaaaa gctcccgga gcttgatata ccattttcg 4080
atctgatcag cacgtgatga aaaagcctga actcaccgca acgtctgtcg agaagtttct 4140
gatcgaaaag ttcgacagcg tctccgaccc gatgcagctc tcggaggcg aagaatctcg 4200
tgcttcagc ttcgatgtag gagggcgtgg atatgtcctg cgggtaaata gctgcgccga 4260
tggtttctac aaagatcgtt atgtttatcg gcactttgca tcggccgcgc tcccgattcc 4320
ggaagtgcct gacattgggg aattcagcga gacgcgtacc tattgcattt cccgcgcgtgc 4380
acagggtgtc acgttgcaag acctgcctga aaccgaactg cccgctgttc tgcagccgg 4440
cgcggaggcc atggatgcga tcgctgcggc cgatcttagc cagacgagcg ggttcggccc 4500
attcggaccg caaggaatcg gtcaatacac tacatggcgt gatttcataat ggcgcattgc 4560
tgatccccat gtgtatcact ggcaaaactgt gatggacgac accgtcagtgc cgtccgtcgc 4620
gcaggctctc gatgagctga tgctttggc cgaggactgc cccgaagtcc ggacacctcg 4680
gcacgcggat ttccggctcca acaatgtcct gacggacaat ggccgcataa cagcggtcat 4740
tgactggagc gaggegatgt tcggggattc ccaatacgag gtcgccaaca tcttcttctg 4800
gaggccgtgg ttggcttgta tggagcagca gacgcgtac ttcgagcgga ggcattccgga 4860
gtttgcagga tcgcccggc tccggcgta tatgctccgc attggcttgc accaactcta 4920
tcagagcttgc ttgcacggca atttcgatga tgcagcttgc ggcgcagggtc gatgcgcacgc 4980
aatcgccgcg tccggagccg ggactgtcg ggcgtacacaa atcgccgcga gaagcgccggc 5040
cgtctggacc gatggctgtg tagaagtact cgccgatagt ggaaaccgcac gcccagcac 5100
tcgtccgagg gcaaaggaaat agcacgtgct acgagatttc gattccaccc cccgccttcta 5160
tgaaagggttgc ggcttcggaa tcgtttccg ggacgcggc tggatgatcc tccagcgccg 5220
ggatctcatg ctggagttct tcgcccaccc caacttgcattt attgcagctt ataatggta 5280
caaataaaagc aatagcatca caaatttcac aaataaaagca ttttttcac tgcattctag 5340
ttgtggtttgc tccaaactca tcaatgtatc ttatcatgtc tgcataccgt cgaccccttag 5400
ctagagcttgc gcgtaatcat ggtcatagct gttccctgtc tgaaattgtt atccgctcac 5460
aattccacac aacatacgag ccggaaagcat aaagtgtaaa gcctgggtg cctaatgagt 5520
gagctaactc acattnattt cgttgcgtc actgcccgtt ttccagtcgg gaaacctgtc 5580
gtgccagctg cattaatgaa tcggccaaacg cgccgggaga ggccgttgc gtattggcg 5640
ctcttcgcgt tcctcgctca ctgactcgct ggcgtcggtc gttccgtgc ggcgagcggt 5700
atcagctcac tcaaaggcgtaatacggtt atccacagaa tcagggata acgcaggaaa 5760
gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cggttgcggc 5820
gtttttccat aggctccgccc cccctgacga gcatcacaaa aatcgacgct caagtcagag 5880

gtggcgaaac ccgacaggac tataaagata ccaggcggtt cccccctggaa gctccctcg 5940
gcgctctcct gttccgaccc tgccgcttac cgatcacctg tccgccttc tcccttcggg 6000
aagcgtggcg ctttctcaat gtcacgctg taggtatctc agttcggtgt aggtcggtcg 6060
ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgctg ccttatccgg 6120
taactatcg 6180
ttaactatcg 6180
tttgagtc 6240
gcctaactac 6300
tacccggtaag 6360
tggtaacagg 6420
tttgatcttt 6480
tttgatcttt 6540
tttgatcttt 6600
tgaggcacct 6660
cgtgttagata 6720
gcaaggaccca 6780
cgagcgcaga 6840
ggaagctaga 6900
aggcatcg 6960
atcaaggcga 7020
tccgatcg 7080
gcataattct 7140
aaccaagtca 7200
acgggataat 7260
ttcggggcga 7320
tcgtgcaccc 7380
aacaggaagg 7440
catactcttc 7500
atacatattt 7560
aaaagtgc 7579

<211> 7558

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 5

gacggatcgg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg 60
ccgcataagtt aagccagttat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgaaaaatgcg ctgcttcgctg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc 360
cccgccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacctta tgggacttcc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cggaaaaatgcg agtacatcaa tggcgtgga tagcggttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tggaggtttg ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcgg 780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggcttaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 900
ggtaccaagc ttggatccca ccatggggtc aaccgtcatc ctgcctcc tcctggctgt 960
tctccaagga gtctgtgccg aggtgcagct ggtgcagtct ggagcagagg tgaaaaagcc 1020
cggggagtct ctgaagatct cctgtaaagg ttctggatac agctttacca gttactggat 1080
cggctgggtg cgccagatgc cggggaaagg cctggagtgg atggggatca tctatcctgg 1140
tgactctgtat accagataca gcccgtcctt ccaaggccag gtcaccatct cagccgacaa 1200
gtcccatcagc accgcctacc tgcagtggag cagcctgaag gcctcggaca cggccatgt 1260
ttactgtcg agacggatgg cagcagctgg ccccttgac tactggggcc agggaaaccct 1320
ggtcaccgtc tcctcagcct ccaccaaggg cccatcggtc ttccccctgg caccctctag 1380
caagagcacc tctggggca cagcggccct gggctgcctg gtcaaggact acttccccga 1440
accgggtgacg gtgtcgtgga actcaggcgc cctgaccagc ggcgtgcaca ccttcccggc 1500
tgtcctacag tcctcaggac tctactccct cagcagcgtg gtgaccgtgc cctccagcag 1560

cttgggcacc cagacctaca tctgcaacgt gaatcacaag cccagcaaca ccaagggtgga	1620
caagagagtt ggtgagaggc cagcacaggg agggagggtg tctgctggaa gccaggctca	1680
gcgctcctgc ctggacgcat cccggctatg cagtcccagt ccagggcagc aaggcaggcc	1740
ccgtctgcct cttcacccgg aggcctctgc ccgccccact catgctcagg gagagggtct	1800
tctggctttt tccccaggct ctgggcaggc acaggctagg tgcccctaac ccaggccctg	1860
cacacaaagg ggcaggtgct gggctcagac ctgccaagag ccatatccgg gaggaccctg	1920
ccctgacct aagcccaccc caaaggccaa actctccact ccctcagetc ggacacccctc	1980
tctcctccca gattccagta actcccaatc ttctctctgc agagccaaa tcttgtgaca	2040
aaactcacac atgcccaccc tgcccaggta agccagccca ggcctcgccc tccagctcaa	2100
ggcgggacag gtgccttaga gtgcctgca tccagggaca ggccccagcc gggtgctgac	2160
acgtccaccc ccatctcttc ctcagcacct gaactcctgg ggggaccgtc agtcttcctc	2220
ttccccccaa aacccaagga caccctcatg atctcccgga cccctgaggt cacatgcgtg	2280
gtggtgacg tgagccacga agaccctgag gtcaagttca actggtaacgt ggacggcggt	2340
gaggtgcata atgccaagac aaagccgcgg gaggagcagt acaacagcac gtaccgtgt	2400
gtcagcgtcc tcaccgtcct gcaccaggac tggctgaatg gcaaggagta caagtgcag	2460
gtctccaaca aagccctccc agcccccattc gagaaaacca tctccaaagc caaagggtgg	2520
acccgtgggg tgcgagggcc acatggacag aggccggctc ggcccacccct ctgcctgag	2580
agtgaccgct gtaccaaccc ctgtccctac agggcagccc cgagaaccac aggtgtacac	2640
cctgccccca tcccgaggag agatgaccaa gaaccaggc agcctgaccc gcctggtaa	2700
aggcttctat cccagcgcaca tcgcccgtgaa gtgggagagc aatgggcagc cggagaacaa	2760
ctacaagacc acgcctcccc tgctggactc cgacggctcc ttcttcctct atagcaagct	2820
caccgtggac aagagcaggt ggcagcaggga aacgtcttc tcatgctccg tgatgcata	2880
ggctctgcac aaccactaca cgcagaagag cctctccctg tctccggta aatgagaatt	2940
cctcgagtct agagggcccg tttaaaccgg ctgatcagcc tcgactgtgc cttctagttg	3000
ccagccatct gttgtttgcc cctcccccgt gccttccttg accctggaaag gtgccactcc	3060
cactgtccct tcctaataaa atgagggaaat tgcatcgcat tgtctgagta ggtgtcattc	3120
tattctgggg ggtgggggtgg ggcaggacag caagggggag gattggaaag acaatagcag	3180
gcatgctggg gatgcgggtgg gctctatggc ttctgaggcg gaaagaacca gctggggctc	3240
taggggtat ccccacgcgc cctgttagcgg cgcatthaagc gggcggttg tggtggttac	3300
gcgcagcgtg accgctacac ttgccagcgc cctagcgcacc gtcctttcg ctttcttccc	3360
ttcccttctc gccacgttcg ccggctttcc ccgtcaagct ctaaatcgaa gcatccctt	3420

agggttccga tttagtgctt tacggcacct cgaccccaa aaacttgatt agggtgatgg 3480
ttcacgtagt gggccatcg cctgatagac gtttttcgc ccttgacgt tggagtccac 3540
gttcttaat agtggactct tggtaacaac tggacaaca ctcaccccta tctcggtcta 3600
ttctttgat ttataaggga ttttgggat ttcggctat tggtaaaaaa atgagctgat 3660
ttaacaaaaa tttaacgcga attaattctg tggaatgtgt gtcagttagg gtgtggaaag 3720
tccccaggct ccccaggcag gcagaagtat gcaaagcatg catctcaatt agtcagcaac 3780
caggtgtgga aagtccccag gtcggccagc aggcagaagt atgcaaagca tgcatctcaa 3840
ttagtcagca accatagtcc cgcccttaac tccgcccata ccggccctaa ctccgcccag 3900
ttccgccccat tctccgcccc atggctgact aattttttt atttatgcag agggcgaggc 3960
cgccctcgcc tctgagctat tccagaagta gtgaggaggc tttttggag gcctaggctt 4020
ttgcaaaaag ctccccggag cttgtatatc cattttcgga tctgatcage acgtgatgaa 4080
aaagcctgaa ctcaccgcga cgtctgtcga gaagttctg atcgaaaagt tcgacagcgt 4140
ctccgacctg atgcagctct cggagggcga agaatctcgt gcttcagct tcgatgtagg 4200
agggcgtgga tatgtcctgc gggtaaatag ctgcggcgat ggtttctaca aagatcgta 4260
tgtttatcg cactttgcat cggccgcgct cccgattccg gaagtgcgtt acattgggaa 4320
attcagcgag agcctgaccc attgcatctc ccgcgtgca caggggtgtca cgttgcaga 4380
cctgcctgaa accgaactgc ccgctgttct gcagccggc gcggaggcca tggatgcgt 4440
cgctgcggcc gatcttagcc agacgagcgg gttcggccca ttcggaccgc aaggaatcg 4500
tcaatacact acatggcgtg atttcatatg cgcattgtc gatccccatg tgtatcactg 4560
gcaaaactgtg atggacgaca ccgtcagtgc gtccgtcg caggctctcg atgagctgat 4620
gctttggcc gaggactgcc ccgaagtccg gcacctcgtg cacggcggatt tcggctccaa 4680
caatgtcctg acggacaatg gccgcataac agcggcatt gactggagcg aggcgtgtt 4740
cggggattcc caatacgagg tcgccaacat cttttctgg aggccgtgg tggcttgtat 4800
ggagcagcag acgcgtact tcgagcggag gcatccggag cttgcaggat cgccgcggct 4860
ccgggcgtat atgctccgca ttggtcttgc ccaactctat cagagcttgg ttgacggcaa 4920
tttcgatgtat gcagcttggg cgcagggtcg atgcgacgca atcgatccgat ccggagccgg 4980
gactgtcggg cgtacacaaa tcgcccgcag aagcggccgc gtctggaccgc atggctgtgt 5040
agaagtactc gccgatagtg gaaaccgacg ccccagcact cgtccgaggg caaaggaaata 5100
gcacgtgcta cgagatttcg attccacccgc cgccttctat gaaaggttgg gcttcggaaat 5160
cgttttccgg gacgcggct ggatgatcct ccagcgcggg gatctcatgc tggagtttt 5220
cggccacccca aacttgttta ttgcagctta taatggttac aaataaaagca atagcatcac 5280

aaatttcaca aataaagcat tttttcaact gcattctagt tgtggttgt ccaaactcat	5340
caatgtatct tatcatgtct gtataccgtc gacctctago tagagcttgg cgtaatcatg	5400
gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacacaca acatacggc	5460
cggaagcata aagtgtaaag cctgggggtgc ctaatgagtg agctaactca cattaattgc	5520
gttgcgctca ctgcccgcctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat	5580
cggccaacgc gcggggagag gcgggttgcg tattgggcgc tcttccgcctt cctcgctcac	5640
tgactcgctg cgctcggtcg ttccggctgcg gcgagcggta tcagctcact caaaggcgg	5700
aatacggtta tccacagaat cagggataa cgcaggaaag aacatgtgag caaaaggcca	5760
gcaaaaaggcc aggaaccgta aaaaggccgc gttgctggcg ttttccata ggctccgccc	5820
ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact	5880
ataaaagatac cagggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct	5940
gccgcttacc ggataccctgt ccgcctttct ccattcggga agcgtggcgc tttctcaatg	6000
ctcacgctgt aggtatctca gttcggtgta ggtcggtcgc tccaaagctgg gctgtgtgca	6060
cgaacccccc gttcagcccg accgctgcgc cttatccggt aactatcgctc ttgagtccaa	6120
cccggttaaga cacgacttat cgccactggc agcagccact ggtAACAGGA ttagcagagc	6180
gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag	6240
aaggacagta tttggtatct gcgcctgtct gaagccagtt accttcggaa aaagagttgg	6300
tagctcttga tccggcaaacc aaaccaccgc tgtagcgggt ggtttttttgg tttgcaagca	6360
gcagattacg cgcaaaaaa aaggatctca agaagatcct ttgatctttt ctacggggc	6420
tgacgctcag tggAACGAAA actcacgtta agggattttg gtcatgagat tatcaaaaag	6480
gatcttcacc tagatccctt taaattaaaa atgaagtttt aaatcaatct aaagtatata	6540
ttagtaaact tggctgtaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat	6600
ctgtctatcc cgttcatcca tagttgcctg actcccgctc gtgttagataa ctacgatacg	6660
ggagggctta ccatctggcc ccagtgcgc aatgataccg cgagaccac gctcaccggc	6720
tccagattta tcagcaataa accagccagc cggaAGGGCC gagcgcagaa gtggcctgc	6780
aactttatcc gcctccatcc agtctattaa ttgttgcgg gaagctagag taagtagttc	6840
gccagttaat agtttgcgc acgttgtgc cattgctaca ggcacgtgg tgtcacgctc	6900
gtcggttggatggcttcat tcagctccgg ttcccaacga tcaaggcggat ttacatgatc	6960
ccccatgttg tgcaaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa	7020
gttggccgca gtgttatcac tcattgttat ggcagcactg cataattctc ttactgtcat	7080
gccatccgta agatgtttt ctgtgactgg tgagtactca accaagtcat tctgagaata	7140

gtgtatgcgg cgaccgagtt gctcttgcgg ggcgtcaata cgggataata ccgcgcacaca 7200
tagcagaact ttaaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag 7260
gatcttacccg ctgtttagat ccagttcgat gtaacccact cgtgcaccca actgatcttc 7320
agcatctttt actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc 7380
aaaaaaaggga ataagggcga cacggaaatg ttgaatactc atactcttcc ttttcaata 7440
ttatttgaaggc atttatcagg gttattgtct catgagcgga tacatatttgc aatgtatttt 7500
aaaaaaataaaa caaatagggg ttccgcgcac atttccccga aaagtgcacac ctgacgtc 7558

<210> 6

<211> 7576

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 6
gacggatcgg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc 180
tttagggtagt gcgcccccgcttgcg ctgcttcgatgtacgggc cagatatacg cgttgacatt 240
gattatttgcgat tagttattaa tagtaatcaa ttacggggtc attagttcat agccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc 360
cccgccattt gacgtcaata atgacgtatg ttcccatagt aacgcataa gggactttcc 420
attgacgtca atgggtggac tatttacggtaaactgccttca cttggcagta catcaagtgt 480
atcatatgcc aagtacgcctt cctattgacgt tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacccat tgggactttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cgggtttggc agtacatcaa tggcgttgc tagcggtttgc 660
actcacgggg atttccaaatg ctccacccca ttgacgtcaa tgggagtttgc ttttggcacc 720
aaaatcaacg ggactttccaaatgtcgta acaactccgc cccattgacg caaatggcg 780
gtaggcgtgt acgggtggag gtcttatataa gcagagctct ctggcttaact agagaaccc 840
ctgcttactg gcttatcgaa attaatacgat ctcactatag ggagacccaa gctggcttaga 900
ggtaccaaggc ttggatctca ccatggagtt tggctgtgc tggattttcc tcgttgctct 960
tttaagaggt gtccagtgtc aggtgcagct ggtggagtct gggggaggcg tggccagcc 1020

tgggaggtcc ctgagactct cctgtgcagc ctctggattc accttcattt gctatggcat 1080
gcactgggtc cggcaggctc caggcaaggg gctggagtgg gtggcagttt tatcatatga 1140
tggaaagtaat aaatactatg cagactccgt gaagggccga ttcaccatct ccagagacaa 1200
ttccaagaac acgctgtatc tgcaaattt gaga cagcctgaga gctgaggaca cggctgtgt 1260
ttactgtgcg agagtattttt tggttattttt aactactacg ggttggacgt 1320
ctggggccaa gggaccacgg tcaccgtctc ctcagcctcc accaaggggcc catcggtctt 1380
ccccctggca ccctctagca agagcacccctc tggggcaca gcggccctgg gctgcctgg 1440
caaggactac ttccccgaac cggtgacggt gtcgttggaaac tcaggcgccc tgaccagcgg 1500
cgtgcacacc ttccccggctg tcctacagtc ctcaggactc tactccctca gcagcgtgg 1560
gaccgtgccc tccagcagct tgggcaccca gacctacatc tgcaacgtga atcacaagcc 1620
cagcaacacc aaggtggaca agagagttgg tgagaggcca gcacaggggag ggagggtgtc 1680
tgcttggaaac caggctcaggc gtcctgcct ggacgcattcc cggctatgca gtcccagtcc 1740
agggcagcaa ggcaggcccc gtcgtcctct tcacccggag gcctctgccc gcccactca 1800
tgctcaggga gagggtcttc tggcttttc cccaggctct gggcaggcac aggcttaggt 1860
ccccctaacc cggccctgca cacaaagggg caggtgtgg gctcagaccc gccaagagcc 1920
atatccggga ggaccctgca cctgacccaa gcccacccca aaggccaaac tctccactcc 1980
ctcagctcgg acaccccttc tcctccaga ttccagtaac tcccaatctt ctctctgcag 2040
agcccaaatac ttgtgacaaa actcacacat gcccacccgtg cccaggttaag ccagcccagg 2100
cctcgccctc cagctcaagg cggcacagg gccccttagt agcctgcattc cagggacagg 2160
ccccagccgg gtgtgacac gtcacccctcc atctttctt cagcacctga actcctgggg 2220
ggaccgtcag tcttcctctt ccccccaaaa cccaaaggaca ccctcatgtat ctccggacc 2280
cctgagggtca catcggtggt ggtggacgtg agccacgaa accctgaggt caagttcaac 2340
tggtagtgg acggcgtgg a ggtgcataat gccaagacaa agccggggaa ggagcagtac 2400
aacagcacgt accgtgtggt cagcgtcctc accgtcctgc accaggactg gctgaatggc 2460
aaggagtaca agtgcacagg ctccaaacaaa gcccctccag ccccatcga gaaaaccatc 2520
tccaaagcca aagggtggac ccgtgggggtg cgagggccac atggacagag gccggctcg 2580
cccaccctct gcccgtggat tgaccgtgtt accaaccctct gtcctacatc ggcagcccc 2640
agaaccacag gtgtacaccc tgccccatc ccggggaggat atgaccaaga accaggtcag 2700
cctgacccctc ctggtcaaag gtttctatcc cagcgacatc gccgtggagt gggagagcaa 2760
tgggcagccg gagaacaact acaagaccac gcctccctgg ctggactccg acggctcctt 2820
cttcctctat agcaagctca ccgtggacaa gggcagggtgg cagcaggggaa acgttcttc 2880

atgctccgtg atgcatgagg ctctgcacaa ccactacacg cagaagagcc tctccctgtc	2940
tccgggtaaa tgagaattcc tcgagtctag agggcccgtt taaaccgcgt gatcagcctc	3000
gactgtgcct tctagttgcc agccatctgt tggggcccccc tccccgtgc cttccttgac	3060
cctggaaggt gccactccca ctgtccttcc ctaataaaaat gaggaaatttgc catgcatttgc	3120
tctgagtagg tgcattcta ttctgggggg tgggggtgggg caggacagca agggggagga	3180
ttgggaagac aatagcaggc atgctggggc tgccgtgggc tctatggcgtt ctgaggcggc	3240
aagaaccagc tggggctcta gggggatcc ccacgcgcgc tgcggccgc cattaagcgc	3300
ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgcgc tagcgccgc	3360
tcccttcgtt ttcttcctt ctttctcgcc cacgttgcgc ggctttcccc gtcaagctct	3420
aaatcggggc atcccttttag ggttccgatt tagtgcttta cggcacctcg accccaaaaaa	3480
acttgatttag ggtgatggtt cacgtatgttgg gccatcgccc tgatagacgg ttttcgcgc	3540
tttgacgttg gagtccacgt tcttaatag tggactcttg ttccaaactg gaacaacact	3600
caaccctatc tcggctattt ctttgcattt ataaggattt ttggggattt cggcctatttgc	3660
gttaaaaaat gagctgattt aacaaaaatt taacgcgaat taattctgtg gaatgtgtgt	3720
cagttagggt gtggaaagtc cccaggctcc ccaggcaggc agaagtatgc aaagcatgca	3780
tctcaattttt tcagcaacca ggtgtggaaa gtcccccaggc tcccccaggc gcagaagtat	3840
gcaaaagcatg catctcaattt agtcagcaac catagtcccc cccctaactc cgcccatccc	3900
gcccctaact ccgcccaggc ttcccccattc tccggcccat ggctgactaa ttttttttat	3960
ttatgcagag gcccaggccg cctctgcctc tgagctattc cagaagtatgtt gaggaggctt	4020
ttttggaggc ctaggctttt gcaaaaagct cccggagct tggatatcca ttttcggatc	4080
tgatcagcac gtgatgaaaaa agcctgaact caccgcgacg tctgtcgaga agtttctgtat	4140
cgaaaaagttc gacagcgtct ccgaccctgtat gcagctctcg gagggcgaag aatctcgat	4200
tttcagcttc gatgttaggag ggcgtggata tggctgtgggt gtaaaatagct gcccgtatgg	4260
tttctacaaa gatcgatattt tttatcgatc cttgcatttgc gcccgcgtcc cgattccggat	4320
agtgcatttgc attggggat tcaagcgatgg cctgacccat tgcatttttttgc gcccgtgcaca	4380
gggtgtcactt ttgcaagacc tgcctgaaac cgaactgcgc gctgttctgc agccggcgc	4440
ggaggccatg gatgcgtatcg ctgcggccgc tcttagccag acgagcgggt tcggcccat	4500
cggaccgcaa ggaatcggtc aatacactac atggcgtat ttcatatgcg cgattgtgc	4560
tccccatgtt ttttttttttgc aaactgtgtat ggacgcacacc gtcagtgcgtt ccgtcgat	4620
ggctctcgat gagctgatgc tttggccgcgaa ggactgcgc gaaatccggc acctcgat	4680
cgcggatttc ggctccaaca atgtcctgac ggacaatggc cgcataacag cggtcattga	4740

ctggagcgag	gcatgttcg	gggattccca	atacgaggc	gccaacatct	tcttctggag	4800
gccgtggttg	gcttgtatgg	agcagcagac	gcgctacttc	gagcggaggc	atccggagct	4860
tgcaggatcg	ccgcggctcc	ggcgatata	gctccgcatt	ggtcttgacc	aactctatca	4920
gagcttggtt	gacggcaatt	tcgatgtgc	agottggcg	cagggttagat	gcgacgcaat	4980
cgtccgatcc	ggagccggga	ctgtcggcg	tacacaaatc	gcccgcagaa	gcgcggccgt	5040
ctggaccgat	ggctgtgtag	aagtactcgc	cgatagtgg	aaccgacgcc	ccagcactcg	5100
tccgagggca	aaggaatagc	acgtgctacg	agatttcgat	tccaccgcgc	ccttctatga	5160
aaggttgggc	ttcggaatcg	ttttccggga	cgccggctgg	atgatcctcc	agcgcggggga	5220
tctcatgctg	gagttcttcg	cccacccaa	cttgcattt	gcagctata	atggttacaa	5280
ataaaagcaat	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	5340
tggtttgtcc	aaactcatca	atgtatctta	tcatgtctgt	ataccgtcga	cctctagcta	5400
gagcttggcg	taatcatggt	catagctgtt	tcctgtgtga	aattgttatac	cgctcacaat	5460
tccacacaac	atacgagccg	gaagcataaa	gtgtaaagcc	tggggtgccct	aatgagtgag	5520
ctaactcaca	ttaattgcgt	tgcgctca	gcccgtttc	cagtcggaa	acctgtcg	5580
ccagctgcat	taatgaatcg	gccaacgcgc	ggggagagggc	ggtttgcgt	ttgggcgc	5640
ttccgcttcc	tcgctca	actcgctgcg	ctcggtcg	cggctgcggc	gagcggatc	5700
agctcactca	aaggcggtaa	tacggttatc	cacagaatca	ggggataa	caggaaagaa	5760
catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	aaggccgcgt	tgctggcg	5820
tttccatagg	ctccggcccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagagg	5880
gcgaaacccg	acaggactat	aaagatacca	ggcggttccc	cctggaagat	ccctcg	5940
ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	cttcggaa	6000
cgtggcgctt	tctcaatgct	cacgctgtag	gtatctcagt	tcgggttagg	tcgttcgc	6060
caagctgggc	tgtgtgcacg	aaccccccgt	tca	cgctgcgcct	tatccgtaa	6120
ctatcgtctt	gagtccaaacc	cggtaagaca	cgacttatcg	ccactggcag	cagccactgg	6180
taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	gagttcttga	agtggtg	6240
taactacggc	tacactagaa	ggacagtatt	tggtatctgc	gctctgctga	agccagttac	6300
cttcggaaaa	agagttggta	gctcttgc	cgccaaacaa	accaccgt	gtagcgg	6360
ttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	ggatctcaag	aagatcctt	6420
gatctttct	acggggctcg	acgctcagt	gaacgaaaac	tcacgttaag	ggatttgg	6480
catgagatta	tcaaaaagga	tcttaccta	gatccttta	aattaaaaat	gaagttttaa	6540
atcaatctaa	agtatata	agtaaacttg	gtctgacagt	taccaatgct	taatcagtga	6600

ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt 6660
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgct 6720
agacccacgc tcaccggctc cagatttac agcaataaac cagccagccg gaagggccga 6780
gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga 6840
agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcctt tgctacagg 6900
catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc 6960
aaggcgagtt acatgatccc ccatgttgcg caaaaaagcg gttagctcct tcggcctcc 7020
gatcgttgctc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca 7080
taattctctt actgtcatgc catccgtaag atgctttct gtgactggtg agtactcaac 7140
caagtcatcc tgagaatagt gtatgcggcg accgagttgc tcttgcccg cgtaatacg 7200
ggataatacc gcgccacata gcagaacttt aaaagtgcgc atcattggaa aacgttcttc 7260
ggggcgaaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 7320
tgcacccaac tgatcttcag catctttac tttcaccagc gtttctgggt gagcaaaaac 7380
aggaaggcaa aatgccgcaa aaaagggaaat aaggcgaca cggaaatgtt gaatactcat 7440
actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca tgagcggata 7500
catatttggaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 7560
agtgccaccc gacgctc 7576

<210> 7

<211> 7561

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 7

gacggatcgg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cggtgacatt 240
gattatttgcg tagttattaa tagtaatcaa ttacggggtc attagttcat agccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
cccgccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420

atggacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgacctta tgggacttgc ctacttggca gtacatctac gtattagtca	600
tcgctattac catggtgatg cggtttggc agtacatcaa tgggcgtgga tagcggtttg	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttgc ttttggcacc	720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg	780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggcttaact agagaacccaa	840
ctgcttactg gcttatcgaa attaatacga ctcaactatag ggagacccaa gctggctaga	900
ggtaccggat ctcaccatgg agttgggct gagctggggtt ttcctcggttgc ctcttttaag	960
agggtgtccag tgcaggagc agctggtgga gtctggggaa ggcgtggtcc agcctggag	1020
gtccctgaga ctctcctgtg cagcgtctgg attcacccctc agtacctatg gcatgcactg	1080
ggtccggccag gctccaggca aggggctgga gtgggtggca gttacatggc atgatggaag	1140
taataaatac tatgcagact ccgtgaaggg ccgattcacc atctccagag acaactccaa	1200
gaacacgctg tatctgcaaa tgaacagcct gagagccgag gacacggctg tgtattactg	1260
tgcgagagga ggagtgggag caacttacta ctactactac ggtatggacg tctggggcca	1320
agggaccacg gtcaccgtct cctcagcctc caccaagggc ccatcggtct tccccctggc	1380
accctcttagc aagagcacct ctggggcac agcggccctg ggctgcctgg tcaaggacta	1440
cttccccgaa ccggtgacgg tgcgtggaa ctcaggcgcc ctgaccagcg gcgtgcacac	1500
cttccccggct gtcctacagt ctcaggact ctactccctc agcagcgtgg tgaccgtgcc	1560
ctccagcagc ttgggcaccc agacctacat ctgcaacgtg aatcacaagc ccagcaacac	1620
caaggtggac aagagagttg gtgagaggcc agcacaggga gggagggtgt ctgctggaag	1680
ccaggctcag cgctcactgcc tggacgcac ccggctatgc agtcccagtc cagggcagca	1740
aggcaggccc cgtctgcctc ttcacccgga gcctctgccc cgccccactc atgctcagg	1800
agagggtctt ctggctttt ccccaggctc tggcaggca caggcttaggt gcccttaacc	1860
caggcccctgc acacaaaggg gcaggtgctg ggctcagacc tgccaagagc catatccgg	1920
aggaccctgc ccctgaccta agcccacccc aaaggccaaa ctctccactc cctcagctcg	1980
gacacctctc ctccctccag attccagtaa ctcccaatct tctctctgca gagccaaat	2040
cttgtgacaa aactcacaca tgcccaccgt gcccaggtaa gccagccag gcctcgccct	2100
ccagctcaag gcgggacagg tgccctagag tagcctgcatt ccagggacag gccccagccg	2160
ggtgctgaca cgtccacctc catctcttcc tcagcacctg aactcctggg gggaccgtca	2220
gtcttcctct tccccccaaa acccaaggac accctcatga tctccggac ccctgaggc	2280

acatgcgtgg	tggtgtggacgt	gagccacgaa	gaccctgagg	tcaagtcaa	ctggtaacgt	2340
gacggcgtgg	aggtgtcataa	tgccaaagaca	aagccgcggg	aggagcagta	caacagcacg	2400
taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	ggctgaatgg	caaggagtag	2460
aagtgcagg	tctccaacaa	agccctccca	gccccatcg	agaaaaccat	ctccaaagcc	2520
aaagggtggga	cccggtgggt	gcgagggcc	catggacaga	ggccggctcg	gcccaccctc	2580
tgccctgaga	gtgaccgctg	taccaacctc	tgtccctaca	gggcagcccc	gagaaccaca	2640
ggtgtacacc	ctgccccat	cccgggagga	gatgaccaag	aaccaggta	gcctgacctg	2700
cctggtaaaa	ggcttctatc	ccagcgacat	cgccgtggag	tgggagagca	atgggcagcc	2760
ggagaacaac	tacaagacca	cgcctccgt	gctggactcc	gacggctcct	tcttcctcta	2820
tagcaagctc	accgtggaca	agagcaggtg	gcagcagggg	aacgtcttct	catgctccgt	2880
gatgcatgag	gctctgcaca	accactacac	gcagaagagc	ctctccctgt	ctccggtaa	2940
atgactcgag	tctagagggc	ccgtttaaac	ccgctgatca	gcctcgactg	tgccttctag	3000
ttgccagcca	tctgttgttt	gccccccccc	cgtgccttcc	ttgaccctgg	aaggtgccac	3060
tcccactgtc	ctttcctaatt	aaaatgagga	aattgcatcg	cattgtctga	gtaggtgtca	3120
ttctattctg	gggggtgggg	tggggcagga	cagcaagggg	gaggattggg	aagacaatag	3180
caggcatgct	ggggatgcgg	tgggctctat	ggcttctgag	gcggaaagaa	ccagctgggg	3240
ctctaggggg	tatccccacg	cgcctgttag	cggcgcatta	agcgcggcgg	gtgtgggtgt	3300
tacgcgcagc	gtgaccgcta	cacttgcag	cgcctagcg	cccgctcctt	tcgctttctt	3360
cccttccttt	ctcgccacgt	tcgcccgtt	tccccgtcaa	gctctaaatc	ggggcatccc	3420
tttagggttc	cgattttagtg	ctttacggca	cctcgacccc	aaaaaaacttg	attagggtga	3480
tggttcacgt	agtgggcat	cgcctgtata	gacggttttt	cgcctttga	cgttggagtc	3540
cacgttcttt	aatagtggac	tcttgttcca	aactggaaaca	acactcaacc	ctatctcggt	3600
ctattctttt	gatttataag	ggattttggg	gatttcggcc	tattggtaa	aaaatgagct	3660
gatttaacaa	aaatttaacg	cgaattaatt	ctgtggatg	tgtgtcagtt	agggtgtgga	3720
aaggccccag	gctccccagg	caggcagaag	tatgcaaagc	atgcacatct	attagtca	3780
aaccagggtt	ggaaagtccc	caggctcccc	agcaggcaga	agtatgcaa	gcatgcacat	3840
caattagtca	gcaaccatag	tccgccttct	aactccgccc	atcccgcctt	taactccgccc	3900
cagttccgccc	cattctccgc	cccatggctg	actaattttt	tttattttatg	cagaggccga	3960
ggccgcctct	gcctctgagc	tattccagaa	gtagtggagga	ggcttttttg	gaggcctagg	4020
cttttgcaaa	aagctcccg	gagcttgtat	atccattttc	ggatctgatc	agcacgtat	4080
aaaaaaaggct	gaactcacccg	cgacgtctgt	cgagaagttt	ctgtatcgaaa	agttcgacag	4140

cgtctccgac ctgatgcaga tctcggaggg cgaagaatct cgtgctttca gcttcgatgt 4200
aggagggcgt ggatatgtcc tgcgggtaaa tagctgcgcc gatggtttct acaaagatcg 4260
ttatgtttat cggcactttg catcggccgc gctcccgatt ccggaagtgc ttgacattgg 4320
ggaattcagc gagagcctga cctattgcat ctcccgccgt gcacagggtg tcacgttgca 4380
agacctgcct gaaaccgaac tgcccgtgt tctgcagccg gtcgcggagg ccatggatgc 4440
gatcgctgcg gccgatctta gccagacgag cgggttcggc ccattcggac cgcaaggaat 4500
cggtcaatac actacatggc gtgatttcat atgcgcgatt gctgatcccc atgtgtatca 4560
ctggcaaact gtgatggacg acaccgtcag tgcgtccgtc ggcgcaggctc tcgatgagct 4620
gatgcttgg gccgaggact gccccgaagt ccggcacctc gtgcacgcgg atttcggctc 4680
caacaatgtc ctgacggaca atggccgcat aacagcggtc attgactgga gcgaggcgat 4740
gttcggggat tcccaatacg aggtcgccaa catcttcttc tggaggccgt gggtggcttg 4800
tatggagcag cagacgcgct acttcgagcg gaggcatccg gagcttgcag gatgcgcg 4860
gctccggcg tatatgtcc gcattggtct tgaccaactc tatcagagct tggttgacgg 4920
caatttcgat gatgcagctt gggcgcaggg tcgatgcgac gcaatgtcc gatccggagc 4980
cgggactgtc gggcgtacac aaatcgcccg cagaagcgcg gccgtctgga ccgatggctg 5040
tgtagaágta ctgcggata gtggaaaccg acgcggcagc actcgtccga gggcaaaagga 5100
atagcacgtg ctacgagatt tcgattccac cgccgccttc tatgaaaggt tgggcttcgg 5160
aatcgtttc cgggacgccc gctggatgat cctccagcgc gggatctca tgctggagtt 5220
cttcgcccac cccaaacttgt ttattgcagc ttataatggt tacaataaaa gcaatagcat 5280
cacaatattc acaaataaaag cattttttc actgcattct agttgtggtt tgccaaact 5340
catcaatgtt tcttatcatg tctgtatacc gtgcacctct agctagagct tggcgtaatc 5400
atggtcatacg ctgtttcctg tgtgaaattt ttatccgctc acaattccac acaacatacg 5460
agccggaaagc ataaagtgtt aaggctgggg tgcctaatgt gtgagctaac tcacattaat 5520
tgcgttgcgc tcactgcggc cttccagtc gggaaacctg tcgtgccagc tgcattatg 5580
aatcgccaa cgccgcgggg gaggcggttt gcgtattggg cgctttccg cttccctcgct 5640
cactgactcg ctgcgtcgg tcgttccgtc gcggcgagcg gtatcagctc actcaaaggc 5700
ggttaatacg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 5760
ccagcaaaag gccaggaacc gtaaaaaggc cgcttgctg gcgttttcc ataggctccg 5820
ccccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 5880
actataaaaga taccaggcgt ttccccctgg aagctccctc gtgcgtctc ctgttccgac 5940
cctgcgcgtt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 6000

atgctcacgc tgttaggtatc tcagttcggt gtaggtcggt cgctccaagc tgggctgtgt 6060
gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 6120
caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 6180
agcgaggat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 6240
tagaaggaca gtatggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 6300
tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggtttt ttgtttgcaa 6360
gcagcagatt acgcccagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 6420
gtctgacgct cagtggaacg aaaactcacg ttaaggatt ttggtcatga gattatcaaa 6480
aaggatcttc acctagatcc ttttaaatta aaaaatgaagt tttaaatcaa tctaaagtat 6540
atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc 6600
gatctgtcta ttccgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat 6660
acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc 6720
ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgcga gaagtggtcc 6780
tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagttag 6840
ttcgcgcagtt aatagtttgc gcaacgttgc tgccattgct acaggcatcg tggtgtcacf 6900
ctcgtcggtt ggtatggctt cattcagctc cgggtcccaa cgatcaaggc gagttacatg 6960
atccccatg ttgtgcaaaa aagcggttag ctccctcggt cctccgatcg ttgtcagaag 7020
taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt 7080
catgccatcc gtaagatgct ttctgtgac tggtgagtac tcaaccaagt cattctgaga 7140
atagtgtatg cggcgaccga gttgctcttgc cccggcgtca atacggata ataccgcgcc 7200
acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc gaaaaactctc 7260
aaggatctta ccgctgttga gatccagttc gatgtaccc actcgtgcac ccaactgatc 7320
ttcagcatct ttactttca ccagcggttc tgggtgagca aaaacaggaa ggcaaaaatgc 7380
cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct tccttttca 7440
atattattga agcatttatac agggttatttgc tctcatgagc ggatacatat ttgaatgtat 7500
tttagaaaaat aaacaaatag gggttcccgcg cacattcccc cgaaaagtgc cacctgacgt 7560
c 7561

<210> 8

<211> 6082

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 8

gacggatcgg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg	60
ccgcatagtt aagccagttat ctgctccctg ctttgtgttt ggaggtcgct gagtagtgcg	120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc	180
ttagggtagt gcgaaaaatcg ctgcttcgct atgtacgggc cagatatacg cgttgacatt	240
gattattgac tagttattaa tagtaatcaa ttacgggttc attagttcat agccatata	300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc	360
cccgccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc	420
atgacgtca atgggtggac tatttacggt aaactgcccc cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca	600
tcgctattac catggtgatg cggtttggc agtacatcaa tgggcgttgg tagcggttg	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc	720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcgc	780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggcttaact agagaaccca	840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga	900
aagcttggat ctcaccatga gggccctgc tcagctcctg ggactccctgc tgctctggct	960
cccaagatacc agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcattctgt	1020
aggagacaga gtcaccatca cttggccggc gagtcagggc attagcaatt atttagcctg	1080
gtatcagcag aaaacaggga aagttcctaa gttcctgatc tatgaagcat ccactttgca	1140
atcaggggtc ccattctcggt tcagtgccgg tggatctggg acagattca ctctcaccat	1200
cagcagcctg cagcctgaag atgttgcac ttattactgt caaaaattata acagtgcggcc	1260
attcaatttc ggccctggga ccaaagtgg tatcaaacgaa actgtggctg caccctctgt	1320
cttcatcttc cggccatctg atgagcagtt gaaatctggaa actgctagcg ttgtgtgcct	1380
gctgaataac ttctatccca gagaggccaa agtacagtgg aagggtggata acgccttcca	1440
atcgggtaac tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct	1500
cagcagcacc ctgacgctga gcaaaggcaga ctacgagaaa cacaaggatct acgcctgcga	1560
agtcacccat cagggcctga gctcgccctg cacaaggagc ttcaacaggg gagagtgtta	1620
ggaattcgcg gcccgtcgag tctagaggcc cgcgtttaaac cgcgtgatca gcctcgactg	1680

tgcccttctag ttgccagcca tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg	1740
aagggtgccac tcccactgtc ctttccataat aaaatgagga aattgcatcg cattgtctga	1800
gtaggtgtca ttctattctg ggggggtgggg tggggcagga cagcaagggg gaggattggg	1860
aagacaatacg caggcatgct ggggatgcgg tgggtcttat ggcttctgag gcggaaagaa	1920
ccagctgggg ctctaggggg tatccccacg cgcctgttag cggcgcattt agcgcggcgg	1980
gtgtgggtt tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt	2040
tcgccttctt cccttcctt ctgcacgt tcgcccgtt tccccgtcaa gctctaaatc	2100
ggggcatccc tttagggttc cgattttagtg ctttacggca cctcgacccc aaaaaacttg	2160
attagggtga tggttcacgt agtggccat cgcctgtata gacggttttt cgccctttga	2220
cgttggagtc cacgttcttt aatagtggac tcttgttcca aactggaaaca acactcaacc	2280
ctatctcggt ctattctttt gatttataag ggattttggg gatttcggcc tattggttaa	2340
aaaatgagct gatttaacaa aaatttaacg cgaattaatt ctgtggaatg tgtgtcagtt	2400
agggtgtgga aagtccccag gctccccagg caggcagaag tatgcaaagc atgcacatca	2460
attagtcagc aaccagggtt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa	2520
gcatgcacatct caattagtca gcaaccatag tcccgccccct aactccgccc atcccgcccc	2580
taactccgccc cagttccgccc cattctccgc cccatggctg actaattttt tttatttatg	2640
cagaggccga ggccgcctct gcctctgagc tattccagaa gtagtgagga ggcttttttg	2700
gaggcctagg ctttgcaaa aagctcccg gaggcttgtat atccattttc ggatctgatc	2760
aagagacagg atgaggatcg ttgcgcata ttaacaaga tggattgcac gcagggtctc	2820
cggccgcctt ggtggagagg ctattccgct atgactgggc acaacagaca atccgcgtct	2880
ctgatgcgc cgttccgg ctgtcagegc agggcgccc ggttttttt gtcaagaccg	2940
acctgtccgg tgccctgaat gaaactgcagg acgaggcagc gcggctatcg tggctggcca	3000
cgacgggcgt tccttgcgc gctgtgcctg acgttgcac tgaagcggga agggactggc	3060
tgctattggg cgaagtgcgc gggcaggatc tcctgtcatc tcaccttgc cctgccgaga	3120
aagtatccat catggctgat gcaatgcggc ggctgcatac gcttgcattcg gctacctgcc	3180
cattcgacca ccaagcgaaa catcgcatcg agcgagcaca tactcggatg gaagccggc	3240
ttgtcgatca ggatgtctg gacgaagagc atcaggggct cgcgcgcagcc gaactgttcg	3300
ccaggctcaa ggcgcgcatg cccgacggcg aggatctcg cgtgaccat ggcgatgcct	3360
gcttgcggaa tatcatggtg gaaaatggcc gctttctgg attcatgcac tgtggccggc	3420
tgggtgtggc ggaccgcata caggacatacg cggtggctac ccgtgatatt gctgaagagc	3480
ttggccggcga atgggctgac cgcttcctcg tgctttacgg tatcgccgct cccgattcgc	3540

agcgcatcg	cttctatcg	cttcttgacg	agtcttctg	agcgggactc	tggggttcga	3600
aatgaccgac	caagcgacgc	ccaacctgcc	atcacgagat	ttcgattcca	ccggccgcct	3660
ctatgaaagg	ttgggcttcg	gaatcgttt	ccgggacgcc	ggctggatga	tcctccagcg	3720
cggggatctc	atgctggagt	tcttcgccc	ccccaaacttg	tttattgcag	cttataatgg	3780
ttacaaataa	agcaatagca	tcacaaattt	cacaaataaa	gcatttttt	cactgcattc	3840
tagttgttgt	ttgtccaaac	tcatcaatgt	atcttatcat	gtctgtatac	cgtcgacctc	3900
tagctagagc	ttggcgtaat	catggtcata	gctgtttcct	gtgtgaaatt	gttatccgct	3960
cacaattcca	cacaacatac	gagccggaag	cataaagtgt	aaagcctggg	gtgcctaattg	4020
agtgagctaa	ctcacattaa	ttgcgttgcg	ctcaactgccc	gctttccagt	cggaaacct	4080
gtcgtgccag	ctgcattaat	gaatcgccca	acgcgcgggg	agaggcggtt	tgcgtattgg	4140
gcgctttcc	gcttcctcgc	tcactgactc	gctgcgctcg	gtcggtcggc	tgccggcagc	4200
ggtatcagct	cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	4260
aaagaacatg	tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	4320
ggcggttttc	cataggctcc	gccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	4380
gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	4440
cgtgcgcct	cctgttccga	ccctgcccgt	taccggatac	ctgtccgcct	ttctcccttc	4500
ggaaagcgtg	gcgcgtttctc	aatgctcacg	ctgttaggtat	ctcagttcgg	tgttaggtcgt	4560
tcgctccaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatac	4620
cggtaactat	cgtcttgagt	ccaacccgg	aagacacgac	ttatcgccac	tggcagcagc	4680
cactggtaac	aggattagca	gagcgaggta	tgttaggcgg	gctacagagt	tcttgaagtg	4740
gtggcctaac	tacggctaca	ctagaaggac	agtatttgg	atctgcgtc	tgctgaagcc	4800
agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	4860
cggggtttt	tttggggca	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	4920
tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggAAC	aaaaactcac	gttaagggat	4980
tttggtcatg	agatttatcaa	aaaggatctt	cactagatc	cttttaaatt	aaaaatgaag	5040
ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	aatgcttaat	5100
cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	cctgactccc	5160
cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgtat	5220
accgcgagac	ccacgctcac	cggctccaga	tttatcagca	ataaaaccagc	cagccggaag	5280
ggccgagcgc	agaagtggtc	ctgcaacttt	atccgcctcc	atccagtcata	ttaattgttg	5340
ccggaaagct	agagtaagta	gttcgcoagt	taatagttt	cgcaacgttgc	ttgccattgc	5400

tacaggcatac gtgggtgtcac gtcgtcggtt tggatggct tcattcagct ccgggttccca 5460
acgatcaagg cgagttacat gatccccat gttgtgcaaa aaagcggtta gtccttcgg 5520
tcctccgatc gttgtcagaa gtaagttggc cgcaagtgtta tcactcatgg ttatggcagc 5580
actgcataat tctcttactg tcatgcccata cgtaagatgc ttttctgtga ctggtgagta 5640
ctcaaccaag tcattctgag aatagtgtat gggcgaccg agttgctctt gccccggcgtc 5700
aatacggat aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg 5760
ttcttcgggg cgaaaaactct caaggatctt accgctgttg agatccagtt cgatgttaacc 5820
cactcgtgca cccaaactgat ctgcagcatc ttttactttc accagcggtt ctgggtgagc 5880
aaaaacagga aggcaaaaatg ccgcaaaaaaaaa gggataagg ggcacacgga aatgttgaat 5940
actcataactc ttcccttttc aatattattt aagcattttt cagggttatt gtctcatgag 6000
cggatacata tttgaatgta ttttagaaaaaa taaacaaaata ggggttccgc gcacatttcc 6060
ccgaaaagtgcacatgacg tc 6082

<210> 9

<211> 6082

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 9
gacggatcgg gagatctccc gatccccat ggtcgactct cagtacaatc tgctctgtatg 60
ccgcatagtt aagccagttt ctgcctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaaat ttaagctaca acaaggcaag gcttgaccga caattgcattt aagaatctgc 180
ttagggttag gcgttttgcg ctgcattgcg atgtacgggc cagatatacg cgttgacatt 240
gattatttgcac tagttattaa tagtaatcaa ttacggggtc attagttcat agccatata 300
tggagttcccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc 360
cccgccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgcccc cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgccccagta catgacccatc tgggactttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatc cggtttggc agtacatcaa tgggcgtgga tagcggtttg 660
actcacgggg atttccaaatg ctccacccca ttgacgtcaa tgggagtttgc ttttggcacc 720

aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg 780
gtaggcgtgt acgggtggag gtcttatataa gcagagctct ctggctaact agagaacca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga 900
aagcttggat ctcaccatga gggccccgc tcagctcctg gggctcctgc tgctctgttt 960
cccagggtgcc agatgtgaca tccagatgac ccagtctcca tcctcaactgt ctgcacatctgt 1020
aggagacaga gtcaccatca cttgtcgggc gagtcagggc attaccaatt atttagcctg 1080
gtttcagcag aaaccaggaa aagccccaa gtccttatac tatgctgcat ccagtttgc 1140
aagtgggtc ccatcaaagt tcagcggcag tggatctggg acagatttca gtctcaccat 1200
cagcagcctg cagcctgaag attttgcac ttattactgc caacagtata atagttaccc 1260
gatcaccttc ggccaaggaa cacgactgga gattaaacga actgtggctg caccatctgt 1320
cttcatcttc cgcgcattctg atgagcagtt gaaatctgga actgctagcg ttgtgtgcct 1380
gctgaataac ttctatccca gagaggccaa agtacagtgg aaggtggata acgcctccca 1440
atcgggtaac tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct 1500
cagcagcacc ctgacgctga gcaaagcaga ctacgagaaa cacaaggatct acgcctgcga 1560
agtcacccat cagggcctga gctcgccctgt cacaaggagc ttcaacaggg gagagtgtta 1620
ggaattcgcg gccgcgcgag tctagagggc ccgtttaaac ccgcgtatca gcctcgactg 1680
tgccttctag ttgccagcca tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg 1740
aaggtgccac tcccactgtc ctttccataat aaaatgagga aattgcacatcg cattgtctga 1800
gtaggtgtca ttctattctg ggggggtgggg tggggcagga cagcaagggg gaggattggg 1860
aagacaatag cagggcatgtc ggggatgcgg tgggctctat ggcttctgag gcggaaagaa 1920
ccagctgggg ctctaggggg tatccccacg cgcgcatttgcg cggcgcatta agcgcggcgg 1980
gtgtgggtgt tacgcgcagc gtgaccgcata cacttgcctg cgcgcatttgcg cccgcctt 2040
tcgccttctt cccttccttt ctgcgcacgt tcgcggctt tccccgtcaa gctctaaatc 2100
ggggcatccc tttagggttc cgattttagtg cttacggca cctcgacccc aaaaaacttg 2160
attagggtga tgggtcacgt agtggccat cgcgcatttgcg gacggttttt cgcgccttgc 2220
cgttggagtc cacgttcttt aatagtggac tcttgccttca aactggaaaca acactcaacc 2280
ctatctcggt ctattcttt gatttataag ggattttggg gatttcggcc tattggttaa 2340
aaaatgagct gattnaaca aaatttaacg cgaattaatt ctgtggatg tgtgtcagtt 2400
aggggtgtgga aagtccccag gctccccagg caggcagaag tatgcaaagc atgcacatctca 2460
attagtcagc aaccagggtgt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa 2520
gcatgcacatct caattagtca gcaaccatag tcccgcccc aactccggccc atcccgcccc 2580

taactccgcc	cagttccgccc	cattctccgc	cccatggctg	actaattttt	tttattttatg	2640	
cagaggcccga	ggccgcctct	gcctctgagc	tattccagaa	gtagtgagga	ggcttttttg	2700	
gaggcctagg	cttttgcaaa	aagctccgg	gagcttgtat	atccatttc	ggatctgatc	2760	
aagagacagg	atgaggatcg	tttcgcatga	ttgaacaaga	tggattgcac	gcaggttctc	2820	
cggccgcgg	ggtggagagg	ctattcggt	atgactggc	acaacagaca	atcggctgct	2880	
ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggcgc	ggttctttt	gtcaagaccg	2940	
acctgtccgg	tgccctgaat	gaactgcagg	acgaggcagg	gcggctatcg	tggctggcca	3000	
cgacgggcgt	tccttgcgca	gctgtgc	acgttgcac	tgaagcggga	aggactggc	3060	
tgctatttggg	cgaagtgccc	gggcaggatc	tcctgtcatc	tcaccttgct	cctgcccaga	3120	
aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	gcttgc	gctacctgccc	3180	
cattcgacca	ccaaagcgaaa	catcgcatcg	agcgagcacg	tactcgatg	gaagccggtc	3240	
ttgtcgatca	ggatgatctg	gacgaagagc	atcagggct	cgcgc	gaactgttcg	3300	
ccaggctcaa	ggcgcgc	ccgcacggcg	aggatctcg	cgtgacc	ggcgc	3360	
gcttgcgaa	tatcatggtg	gaaaatggcc	gctttctgg	attcatcgac	tgtggccggc	3420	
tgggtgtggc	ggaccgctat	caggacatag	cgttg	ccgtgatatt	gctgaagagc	3480	
ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	tatcgcc	cccgcattcg	3540	
agcgcatcg	cttctatcg	cttcttgacg	agttcttctg	agcgggactc	tgggttcga	3600	
aatgaccgac	caagcgacgc	ccaac	tcgat	ttcc	ccgcgc	3660	
ctatgaaagg	ttgggcttcg	gaatcg	ttt	ccggac	ggctggatg	3720	
cggggatctc	atgctggagt	tctcg	ccccaa	cttgc	tcctcc	3780	
ttacaaataa	agcaatagca	tcacaaat	cacaataaa	gcattttt	cactgcattc	3840	
tagttgtggt	ttgtccaaac	tcatcaatgt	atcttatcat	gtctgtatac	cgtcgac	3900	
tagctagagc	ttggcgtaat	catggcata	gctgttcc	gtgtgaaatt	gttatccg	3960	
cacaattcca	cacaacatac	gagccggaag	cataaagtgt	aaagc	cttgg	4020	
agttagctaa	ctcacattaa	ttgcgttg	ctca	tcgc	ccgtt	4080	
gtcgtgccag	ctgcattaaat	gaatcg	ccac	acgcgc	gggtt	4140	
gctctttcc	gcttcctcg	tcactgactc	gctgc	gtcg	ttggc	4200	
ggtatcagct	cactcaaagg	cgttaatacg	gttatccaca	gaatcagg	ataacgcagg	4260	
aaagaacatg	tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgc	4320	
ggcg	ttttc	cataggctcc	cccccc	ctga	cgagcatc	aaaaatcgac	4380
gaggtggcga	aacccgacag	gactataaag	ataccaggc	tttcccc	ctg	gaagctcc	4440

cgtgcgcgtct cctgttccga ccctgccgt taccggatac ctgtccgcct ttctcccttc	4500
gggaagcgtg gcgctttctc aatgctcacg ctgtaggtat ctcagttcgg tgtaggtcgt	4560
tgcgtccaaag ctgggctgtg tgcacgaacc ccccggtcag cccgaccgct ggccttatac	4620
cggtaactat cgtcttgagt ccaaccgggt aagacacgac ttatgcacac tggcagcagc	4680
cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg	4740
gtggcctaac tacggctaca ctagaaggac agtatttggt atctgcgtc tgctgaagcc	4800
agttacccctc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag	4860
cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga	4920
tcctttgatc ttttctacgg ggtctgacgc tcagtggAAC gaaaactcac gttaaggat	4980
tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag	5040
ttttaaatca atctaaagta tatatgagta aacttggct gacagttacc aatgcttaat	5100
cagtgaggca cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc	5160
cgtcgtgttag ataaactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat	5220
accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag	5280
ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc atccagtcata ttaattgttg	5340
ccgggaagct agagtaagta gttcgccagt taatagtttgcgcaacgttg ttgccattgc	5400
tacaggcatc gtgggtgtcac gtcgtcggtt tggtatggct tcattcagat ccggttccca	5460
acgatcaagg cgagttacat gatccccat gttgtcaaa aaagcggta gctccttcgg	5520
tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc	5580
actgcataat tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtagtgc	5640
ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgtctt gcccggcgtc	5700
aatacggat aataccgcgc cacatagcag aactttaaa gtgctcatca ttggaaaacg	5760
ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaaacc	5820
cactcgtgca cccaaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc	5880
aaaaacagga aggcaaaatg cgcaaaaaaa gggataagg ggcacacgga aatgttgaat	5940
actcataactc ttcccttttc aatattatttgc aagcatttat cagggttatt gtctcatgag	6000
cggatacata ttgtaatgtt ttttagaaaaaa taaacaaata ggggttccgc gcacatttcc	6060
ccgaaaaagtgc ccacctgacg tc	6082

<210> 10

<211> 6082

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 10	
gacggatcg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg	60
ccgcatagtt aagccagtat ctgctccctg cttgtgttt ggaggtcgct gagtagtgcg	120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc	180
ttagggtag gcgtttgcg ctgcttcgat atgtacgggc cagatatacg cggtgacatt	240
gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat agccatata	300
tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccaacgacc	360
cccgccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc	420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgaccta tgggacttgc ctacttggca gtacatctac gtattagtca	600
tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggttt	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttgc ttttggcacc	720
aaaatcaacg ggactttcca aatgtcgta acaactccgc cccattgacg caaatggcg	780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca	840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctaga	900
aagcttggat ctcaccatga gggccctgc tcagctcctg gggccctgc tgctctgtt	960
cccaagggtgcc agatgtgaca tccagatgac ccagtctcca tcctcactgt ctgcacatgt	1020
aggagacaga gtcaccatca cttgtcgggc gagtcaggc attagccatt atttagcctg	1080
gtttcagcag aaaccaggga aagccctaa gtcctgatc tatgctgat ccagtttgc	1140
aagtgggtgc ccatcaaagt tcagcggcag tggatctggg acagattca ctctcaccat	1200
cagcagccta cagcctgaag attttgcac ttattactgc caacagtata atagtttccc	1260
gctcacttgc ggcggaggga ccaagggtgga gatcaaacgaa actgtggctg caccatctgt	1320
cttcatcttc cccatctg atgacgatgtt gaaatctggaa actgctagcg ttgtgtgcct	1380
gctgaataac ttctatccca gagaggccaa agtacagtgg aaggtggata acgcctccca	1440
atcggttaac tccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct	1500
cagcagcacc ctgacgctga gcaaaggcaga ctacgagaaa cacaaggatct acgcctgcga	1560
agtacccat cagggcctga gtcgcccgt cacaaggagc ttcaacaggg gagagtgtta	1620

ggaattcgcg gccgctcgag tctagagggc ccgttaaac ccgctgatca gcctcgactg 1680
 tgccttctag ttgccagcca tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg 1740
 aaggtgccac tcccactgtc ctttctaat aaaatgagga aattgcatcg cattgtctga 1800
 gtaggtgtca ttcttattctg ggggggtgggg tggggcagga cagcaagggg gaggattggg 1860
 aagacaatag cagggcatgtc ggggatgcgg tggctctat ggcttctgag gcggaaagaa 1920
 ccagctgggg ctctaggggg tatccccacg cgccctgtag cggcgcatta agcgccggcg 1980
 gtgtgggtgt tacgcgcagc gtgaccgcta cacttgcag cgccttagcg cccgctcctt 2040
 tcgctttctt cccttccttt ctcgcccacgt tcgcccgtt tccccgtcaa gctctaaatc 2100
 ggggcatccc tttagggttc cgattttagtg cttaacggca cctcgacccc aaaaaacttg 2160
 attagggtga tggttcacgt agtgggccat cgccctgata gacggttttt cgccctttga 2220
 cgttggagtc cacgttcttt aatagtggac tcttggcca aactggaaaca acactcaacc 2280
 ctatctcggt ctattctttt gatttataag ggattttggg gatttcggcc tattggttaa 2340
 aaaatgagct gattnaaca aaatttaacg cgaattaatt ctgtggaaatg tgtgtcagtt 2400
 agggtgtgga aagtccccag gtcggccagg caggcagaag tatgcaaagc atgcatctca 2460
 attagtcaagc aaccagggtgt ggaaagtccc caggctcccc agcaggcaga agtatgcaaa 2520
 gcatgcacatc caatttagtca gcaaccatag tcccgccccct aactccgcccc atcccgcccc 2580
 taactccgccc cagttccgccc cattctccgc cccatggctg actaattttt tttatattatg 2640
 cagaggccga ggccgcctct gcctctgagc tattccagaa gtagtggagga ggcttttttg 2700
 gaggcctagg cttttgcaaa aagctcccgag gagcttgtat atccattttc ggatctgatc 2760
 aagagacagg atgaggatcg tttcgcacatgaa ttgaacaaga tggattgcac gcaggttctc 2820
 cggccgcctt ggtggagagg ctattcggct atgactgggc acaacagaca atcggctgct 2880
 ctgatgcgcgc cgtgttccgg ctgtcagcgc agggcgcccc ggttttttt gtcaagaccg 2940
 acctgtccgg tgccctgaat gaactgcagg acgaggcagg gggctatcg tggctggcca 3000
 cgacgggcgt tccttgcgcac gctgtgcctcg acgttgcac tgaagcggga agggactggc 3060
 tgctattggg cgaagtgcgcg gggcaggatc tcctgtcata tcaccttgcct cctgcccaga 3120
 aagtatccat catggctgat gcaatgcggc ggctgcatac gcttgcatacg gctacctgccc 3180
 cattcgacca ccaagcgaaa catcgatcg agcgaggcactg tactcgatg gaagccggc 3240
 ttgtcgatca ggatgtatcg gacgaagagc atcaggggct cgcgcgcgc gaaactgttcg 3300
 ccaggctcaa ggccgcgcac cccgacggcg aggatctcgat cgtgaccat ggcgcgcct 3360
 gcttgcgcgaa tatcatggtg gaaaatggcc gcttttctgg attcatcgac tgtggccggc 3420
 tgggtgtggc ggaccgcatac caggacatag cggtggctac ccgtgatatt gctgaagagc 3480

ttggcggcga atgggctgac cgcttcctcg tgctttacgg tatcgccgt cccgattcgc	3540
agcgcatcgc cttctatcgc cttcttgacg agttttctg agcgggactc tggggttcga	3600
aatgaccgac caagcgacgc ccaacctgcc atcacgagat ttgcattcca ccggccgcctt	3660
ctatgaaagg ttgggcttcg gaatcgaaaa ccgggacgcc ggctggatga tcctccagcg	3720
cggggatctc atgctggagt tcttcgcca ccccaacttg tttattgcag cttataatgg	3780
ttacaaataa agcaatagca tcacaaattt cacaataaa gcatttttt cactgcattc	3840
tagttgtgg tttccaaac tcatcaatgt atcttatcat gtctgtatac cgtcgacctc	3900
tagctagagc ttggcgtaat catggtcata gctgtttcct gtgtgaaatt gttatccgct	3960
cacaattcca cacaacatac gagccggaag cataaaagtgt aaagcctggg gtgcctaatg	4020
agtgagctaa ctcacattaa ttgcgttgcg ctcactgccc gctttccagt cgggaaacct	4080
gtcgtgccag ctgcattaat gaatcgcca acgcgcgggg agaggcggtt tgcgtattgg	4140
gctctttcc gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgccgcgagc	4200
ggtatcagct cactcaaagg cgtaataacg gttatccaca gaatcagggg ataacgcagg	4260
aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct	4320
ggcgttttc cataggctcc gccccctga cgagcatcac aaaaatcgac gctcaagtca	4380
gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct	4440
cgtgcgtctt cctgttccga ccctgcccgt taccggatac ctgtccgcct ttctcccttc	4500
ggaaagcgtg gcgctttctc aatgctcacg ctgttaggtat ctgcgttcgg tgttaggtcg	4560
tcgctccaag ctgggtgtg tgcacgaacc ccccgttcag cccgaccgct ggccttatac	4620
cggtaactat cgtcttgagt ccaacccggta aagacacgac ttatcgccac tggcagcagc	4680
cactggtaac aggattagca gagcgaggtt tgttaggcgtt gctacagagt tcttgaagtg	4740
gtggcctaac tacggctaca ctagaaggac agtatttggt atctgcgttc tgctgaagcc	4800
agttacccctc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgcgtggtag	4860
cggtggttttt ttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga	4920
tcctttgatc tttctacgg ggtctgacgc tcagtggaaac gaaaactcaca gttaaaggat	4980
tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag	5040
ttttaaatca atctaaatgtatgatc aacttggtct gacagttacc aatgcattat	5100
cagtgaggca cctatctcag cgatctgtct atttcgttca tccatagttt cctgactccc	5160
cgtcgtgttag ataaactacga tacgggagggtt cttaccatct ggccccagtg ctgcataat	5220
accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag	5280
ggccgagcgc agaagtggtc ctgcacattt atccgcctcc atccagttca ttaattgttg	5340

ccgggaagct agagtaagta gttcgccagt taatagtttgc	5400
tacaggcattc gtgggtgtcac gctcgctgtt tggtatggct tcattcagct ccggttccca	5460
acgatcaagg cgagttacat gatccccat gttgtgcaaa aaagcggta gctcccttcgg	5520
tcctccgatc gttgtcagaa gtaagttggc cgcaagtgtta tcactcatgg ttatggcagc	5580
actgcataat tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtagta	5640
ctcaaccaag tcattcttag aatagtgtat gcggcgaccg agttgctt gcccggcg	5700
aatacggat aataccgcgc cacatagcag aactttaaaaa gtgctcatca ttggaaaacg	5760
ttcttcgggg cgaaaactct caaggatctt accgctgtt agatccagtt cgatgtacc	5820
cactcgtgca cccaaactgat cttagcattc tttactttc accagcggtt ctgggtgagc	5880
aaaaacacagga aggcaaaatg ccgaaaaaaaaa gggaaaataagg gcgacacgga aatgttgaat	5940
actcataactc ttcccttttc aatattattt aagcattttt cagggttatt gtctcatgag	6000
cggatacata tttgaatgtt ttttagaaaaaa taaacaaata ggggttccgc gcacatttcc	6060
ccgaaaagtgc acacccgtac tc	6082

<210> 11

<211> 6085

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 11

gacggatcg ggatctccc gatccctat ggtcgactct cagtacaatc tgctctgtat	60
ccgcatagtt aagccagtt ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg	120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc	180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cggtgacatt	240
gattatttgc tagttattaa tagtaatcaa ttacgggttc attagttcat agccatata	300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc	360
cccgccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc	420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgaccta tgggacttcc ctacttggca gtacatctac gtatttagtca	600
tcgcttattac catggtagtgc cggttttggc agtacatcaa tgggctgatg tagcggttg	660

actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagttt	tttggcacc	720
aaaatcaacg	ggactttcca	aatgtcgta	acaactccgc	cccattgacg	caaatggcgc	780
gtaggcgtgt	acggtggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
aagcttggat	ctcaccatga	gggtccccgc	tcagcttctc	ttccttctgc	tactctggct	960
cccgatacc	actggaggaa	tagtgtatgac	gcagtctcca	gccaccctgt	ctgtgtctcc	1020
aggggaaaga	gccaccctct	cctgcaggac	cagtcagagt	attggctgga	acttagcctg	1080
gtaccaacag	aaacctggcc	aggctccag	gctcctcatc	tatggtgcac	cttccaggac	1140
cactggtatac	ccagccaggt	tcagtggcag	tgggtctggg	acagagttca	ctctcaccat	1200
cagcagcctg	cagtctgaag	attctgcagt	ttattactgt	cagcattatg	ataactggcc	1260
catgtgcagt	tttggccagg	ggaccgagct	ggagatcaa	cgaactgtgg	ctgcaccatc	1320
tgtcttcatc	ttcccgccat	ctgatgagca	gttgaatct	ggaactgcta	gcgttgtgt	1380
cctgctgaat	aacttctatc	ccagagaggc	caaagtacag	tggaagggtgg	ataacgcct	1440
ccaatcggt	aactcccagg	agagtgtcac	agagcaggac	agcaaggaca	gcacctacag	1500
cctcagcagc	accctgacgc	tgagcaaagc	agactacgag	aaacacaaaag	tctacgcctg	1560
cgaagtccacc	catcagggcc	tgagctcgcc	cgtcacaaag	agcttcaaca	ggggagagtg	1620
ttaggaattc	gcggccgctc	gagtctagag	ggcccgttt	aaccgcgtga	tcagcctcga	1680
ctgtgccttc	tagttgccag	ccatctgttg	tttgcctctc	ccccgtgcct	tccttgaccc	1740
tggaagggtgc	cactcccact	gtcctttcct	aataaaatga	ggaaattgca	tcgcattgtc	1800
tgagtaggtg	tcattctatt	ctgggggtg	gggtggggca	ggacagcaag	ggggaggatt	1860
gggaagacaa	tagcaggcat	gtggggatg	cggtgggctc	tatggcttct	gaggcggaaa	1920
gaaccagctg	gggtcttagg	gggtatcccc	acgcgcctg	tagcggcgca	ttaagcgcgg	1980
cgggtgtgg	ggttacgcgc	agcgtgaccc	ctacacttgc	cagcgcctca	gcgcggctc	2040
ctttcgcttt	cttcccttcc	tttctcgcca	cgttcgcgg	ctttccccgt	caagctctaa	2100
atcggggcat	ccctttaggg	ttccgattta	gtgcttacg	gcacctcgac	cccaaaaaac	2160
ttgattaggg	tgtatggttca	cgtagtggc	catgcctctg	atagacggtt	tttcgcctt	2220
tgacgttgg	gtccacgttc	tttaatagtg	gactctgtt	ccaaactgg	acaacactca	2280
accctatctc	ggtctattct	tttgatttat	aaggatttt	ggggatttcg	gcctattgg	2340
taaaaaatga	gctgatttaa	caaaaattta	acgcgaatta	attctgtgg	atgtgtgtca	2400
gttagggtgt	ggaaagtccc	caggctcccc	aggcaggcag	aagtatgcaa	agcatgcac	2460
tcaatttagtc	agcaaccagg	tgtggaaagt	ccccaggctc	cccagcaggc	agaagtatgc	2520

aaagcatgca tctcaattag tcagcaacca tagtcccgcc cctaactccg cccatcccgc	2580
ccctaactcc gcccgagtcc gcccattctc cggccatgg ctgactaatt ttttttattt	2640
atgcagaggc cgaggccgcc tctgcctctg agctattcca gaagtagtga ggaggcttt	2700
ttggaggcct aggctttgc aaaaagctcc cgggagcttgc tatatccatt ttccggatctg	2760
atcaagagac aggatgagga tcgttcgca tgattgaaca agatggattg cacgcaggtt	2820
ctccggccgc ttgggtggag aggctattcg gctatgactg ggcacaacag acaatccggct	2880
gctctgatgc cgccgtgttc cggctgtcag cgccaggccg cccggttctt tttgtcaaga	2940
ccgacacctgc cggtgccctg aatgaactgc aggacgagga agcgcggcta tcgtggctgg	3000
ccacgacggg cgttccttgc gcagctgtgc tcgacgttgc cactgaagcg ggaaggggact	3060
ggctgctatt gggcgaagtgc cggggcagg atctcctgtc atctcacctt gctcctgcgg	3120
agaaagtatc catcatggct gatgcaatgc ggccggctgc tacgcttgat ccggctacct	3180
gcccatcgca ccaccaagcg aaacatcgca tcgagcgagc acgtactcgg atggaagccg	3240
gtcttgcga tcaggatgtat ctggacgaag agcatcaggg gctcgccca gccgaactgt	3300
tcgccaggct caaggcgcgc atgcccacg gcgaggatct cgtcggtacc catggcgatg	3360
cctgcttgcc gaatatcatg gtggaaaatg gcccgttttc tggattcatc gactgtggcc	3420
ggctgggtgt ggccggaccgc tatcaggaca tagcgttggc tacccgtat attgctgaag	3480
agcttggcgg cgaatggct gaccgcttcc tcgtgttttgc cggatcgcc gctcccgatt	3540
cgcagcgcatt cgccttctat cgccttcttgc acgagtttttgc tggacggggc ctctggggtt	3600
cggaaatgacc gaccaagcga cggccaaacctt gccatcacga gatttcgatt ccaccggccgc	3660
cttctatgaa aggttggct tcggaatcgt tttccggac gccggctggat tgatcctcca	3720
gcccggggat ctcatgctgg agtttttcgc ccaccccaac ttgttttattt cagcttataa	3780
tggttacaaa taaagcaata gcatcacaaa tttcacaaaat aaagcatttt tttcactgca	3840
ttctagttgt ggtttgtcca aactcatcaa tgtatcttat catgtctgtat taccgtcgac	3900
ctctagctag agcttggcgt aatcatggtc atagctgttt cctgtgtgaa attgttatcc	3960
gctcacaatt ccacacacaaca tacgagccgg aagcataaaag tgtaaaggctt ggggtgccta	4020
atgagtgagc taactcacat taattgcgtt gcgctactg cccgcttcc agtcgggaaa	4080
cctgtcgatgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat	4140
tgggcgtct tccgcttcct cgctcaactgat ctcgtcgcc tcggcgttgc ggctgcggcg	4200
agcggatatca gctcaactcaa aggccgtaat acggttatcc acagaatcag gggataacgc	4260
aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt	4320
gctggcggttt ttccataggc tccggccccc tgacgagcat cacaaaaatc gacgctcaag	4380

tcagaggtgg	cgaaacccga	caggactata	aagataccag	gcgtttcccc	ctggaagctc	4440
cctcggtgcgc	tctccgttgc	cgaccctgcc	gcttaccgga	tacctgtccg	ccttctccc	4500
ttcgggaagc	gtggcgctt	ctcaatgctc	acgctgttagg	tatctcagtt	cggtgttaggt	4560
cgttcgctcc	aagctggct	gtgtgcacga	accccccgtt	cagcccgacc	gctgcgcctt	4620
atccggtaac	tatcgcttg	agtccaaaccc	ggtaagacac	gacttatcgc	cactggcagc	4680
agccactggt	aacaggatta	gcagagcgag	gtatgttaggc	ggtgctacag	agttcttgaa	4740
gtggtggcct	aactacggct	acactagaag	gacagtattt	ggtatctgctg	ctctgctgaa	4800
gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	ccaccgctgg	4860
tagcggtggt	tttttgttt	gcaagcagca	gattacgcgc	agaaaaaaaaag	gatctcaaga	4920
agatcccttg	atctttctta	cggggctctga	cgctcagtgg	aacgaaaact	cacgttaagg	4980
gatttggtc	atgagattat	caaaaaggat	cttcacctag	atcctttaa	ataaaaaaatg	5040
aagttttaaa	tcaatctaaa	gtatatatga	gtaaaacttgg	tctgacagtt	accaatgctt	5100
aatcagttag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact	5160
ccccgtcgtg	tagataacta	cgatacggga	gggcttacca	tctggcccc	gtgctgcaat	5220
gataccgcga	gacccacgct	caccggctcc	agatttatca	gcaataaacc	agccagccgg	5280
aagggccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	ctattaattg	5340
ttgccggaa	gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	ttgttgccat	5400
tgctacaggc	atcgtggtgt	cacgctcgtc	gtttggatag	gcttcattca	gctccgggtc	5460
ccaacgatca	aggcgagtt	catgatcccc	catgttgtgc	aaaaaagcgg	ttagctcctt	5520
cggtcctccg	atcgttgtca	gaagtaagtt	ggccgcagtg	ttatcactca	tggttatggc	5580
agcactgcat	aattctctta	ctgtcatgcc	atccgtaaga	tgctttctg	tgactgggtga	5640
gtactcaacc	aagtcttct	gagaatagtg	tatgcggcga	ccgagttgt	cttgcggcgc	5700
gtcaatacgg	gataataccg	cgccacatag	cagaacttta	aaagtgcgtca	tcattggaaa	5760
acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	gttcgatgt	5820
acccactcgt	gcacccaaact	gatcttcagc	atctttact	ttcaccagcg	tttctgggtg	5880
agcaaaaaaca	ggaaggcaaa	atgcccacaa	aaagggata	agggcgacac	ggaaatgttg	5940
aataactcata	ctcttccttt	ttcaatatta	ttgaagcatt	tatcagggtt	attgtctcat	6000
gagcggatac	atatttgaat	gtatttagaa	aaataaaacaa	ataggggttc	cgcgcacatt	6060
tccccgaaaa	gtgccacactg	acgtc				6085

<211> 6097

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 12

gacggatcgg	gagatctccc	gatcccttat	ggtcgactct	cagtacaatc	tgctctgatg	60
ccgcatagtt	aagccagttat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggtag	gcgttttgcg	ctgcttcgct	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	tagttattaa	tagtaatcaa	ttacgggttc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacgttaa	atggcccgcc	tggctgaccg	cccaacgacc	360
ccgcatttgcatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggac	tatttacggt	aaactgccc	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
tcgcttattac	catggtgatg	cgggtttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttgc	tttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatggcgc	780
gtaggcgtgt	acgggtggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
aagcttggat	ctcaccatga	gggtccctgc	tcaagctcctg	gggctgctaa	tgctctggat	960
acctggatcc	agtgcagata	ttgtgatgac	ccagactcca	ctctctctgt	ccgtcacccc	1020
tggacagccg	gcctccatct	cctgcaagtc	tagtcagagc	ctcctgdata	gtgatggaaa	1080
gacctttttg	tattggtatac	tgcagaagcc	aggccagcct	ccacagctcc	tgatctatga	1140
ggtttccaac	cggttctctg	gagtgcacaga	tagttcaatgt	ggcagcgggt	cagggacaga	1200
tttcacactg	aaaatcagcc	gggtggaggc	tgaggatgtt	gggctttatt	actgcatgca	1260
aagtatacag	cttccgctca	ctttcggcgg	agggaccaag	gtggagatca	aacgaactgt	1320
ggctgcacca	tctgtcttca	tcttcccgcc	atctgatgag	cagttgaaat	ctggactgc	1380
tagcgttgcg	tgcctgctga	ataacttcta	tcccagagag	gccaaagtac	agtggaaaggt	1440
ggataacgcc	ctccaatcgg	gtaactccca	ggagagtgct	acagagcagg	acagcaagga	1500
cagcacctac	agcctcagca	gcaccctgac	gctgagcaaa	gcagactacg	agaaacacaa	1560

agtctacgcc	tgcgaagtca	cccatcaggg	cctgagctcg	cccgtcacaa	agagcttcaa	1620
caggggagag	tgttaggaat	tcgcggccgc	tcgagtctag	agggcccggt	taaacccgct	1680
gatcagccctc	gactgtgcct	tctagttgcc	agccatctgt	tgtttgcccc	tcccccgtgc	1740
cttccttgac	cctggaaggt	gccactccca	ctgtcctttc	ctaataaaat	gaggaaattg	1800
catcgcatcg	tctgagtagg	tgtcattcta	ttctgggggg	tgggggtgggg	caggacagca	1860
agggggagga	ttgggaagac	aatagcaggc	atgctgggg	tgcgggggc	tctatggc	1920
ctgaggcgg	aagaaccagc	tggggctcta	gggggtatcc	ccacgcgccc	tgtagcggc	1980
cattaagcgc	ggcggtgtg	gtggttacgc	gcagcgtgac	cgctacactt	gccagcgccc	2040
tagcgcccg	tccttcgct	ttcttcctt	ccttctcgc	cacgttcgccc	gggtttcccc	2100
gtcaagctct	aaatcggggc	atcccttag	ggttccgatt	tagtgcttta	cggcacctcg	2160
accccaaaaa	acttgattag	ggtgatggtt	cacgtagtgg	gccatcgccc	tgatagacgg	2220
tttttcgccc	tttgacgtt	gagtccacgt	tcttaatag	tggactctt	ttccaaactg	2280
gaacaacact	caaccctatc	tcggtctatt	ctttgattt	ataaggatt	ttggggattt	2340
cggcctattt	gtaaaaaat	gagctgattt	aacaaaaatt	taacgcgaat	taattctgt	2400
gaatgtgtgt	cagttagggt	gtggaaagtc	cccaggctcc	ccaggcaggc	agaagtatgc	2460
aaagcatgca	tctcaattag	tcagcaacca	ggtgtggaaa	gtccccaggc	tccccagcag	2520
gcagaagtat	gcaaagcatg	catctcaatt	agtcaac	catagtccc	cccctaactc	2580
cgcctatccc	gcccctaact	ccgcccagtt	ccgcccattc	tccgccccat	ggctgactaa	2640
tttttttat	ttatgcagag	gccgaggccg	cctctgcctc	tgagctattc	cagaagtagt	2700
gaggaggctt	ttttggaggc	ctaggcttt	gcaaaaagct	cccggagct	tgtatatcca	2760
tttcggatc	tcatcaagag	acaggatgag	gatcgttcg	catgattgaa	caagatggat	2820
tgcacgcagg	ttctccggcc	gcttgggtgg	agaggctatt	cggtatgac	tggcacaac	2880
agacaatcgg	ctgctctgat	gccggcgtgt	tccggctgtc	agcgcagggg	cgcgggttc	2940
ttttgtcaa	gaccgacctg	tccggtgc	tgaatgaact	gcaggacgag	gcagcgcggc	3000
tatcggtggct	ggccacgacg	ggcggtc	gcgcagctgt	gctcgacgtt	gtcactgaag	3060
cgggaaggga	ctggctgcta	ttgggcgaag	tgccggggca	ggatctcctg	tcatctcacc	3120
ttgctcctgc	cgagaaaagta	tccatcatgg	ctgatgcaat	gcccggctg	catacgctt	3180
atccggctac	ctgcccattc	gaccaccaag	cgaaacatcg	catcgagcga	gcacgtactc	3240
ggatggaagc	cggcttgc	gatcaggatg	atctggacga	agagcatcg	gggctcgcgc	3300
cagccgaact	gttcggccagg	ctcaaggcgc	gcatgcccga	cggcgaggat	ctcgtcgtga	3360
cccatggcga	tgcctgctt	ccgaatatca	tggtgaaaa	tggccgc	tctggattca	3420

tcgactgtgg ccggctgggt gtggcggacc gctatcagga catagcggtg gctacccgtg	3480
atattgctga agagcttggc ggcgaatggg ctgaccgctt cctcgtgctt tacggtatcg	3540
ccgctcccgta ttccgcagcgc atccgccttct atccgccttct tgacgagttc ttctgagcgg	3600
gactctgggg ttccgaaatga ccgaccaagc gacgcccac acgtccatcac gagatttcga	3660
ttccaccggcc gccttctatg aaagggtggg cttcggaatc gttttccggg acgcccggctg	3720
gatgatccctc cagcgcgggg atctcatgct ggagttcttc gcccacccca acttgtttat	3780
tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaagcatt	3840
tttttcaactg cattctagtt gtggttgtc caaactcatc aatgtatctt atcatgtctg	3900
tataccgtcg acctctagct agagcttggc gtaatcatgg tcatactgtt ttccctgtgt	3960
aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc	4020
ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac tgcccgctt	4080
ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg	4140
cggtttgcgt attggcgct ctccgccttc ctgcgtcact gactcgtgc gctcggtcgt	4200
tcggctgcgg cgagcggtat cagctcactc aaaggcggtt atacggttat ccacagaatc	4260
aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa	4320
aaaggcccgcg ttgctggcgt tttccatag gctccgcccc cctgacgagc atcacaaaaaa	4380
tcgacgctca agtcagaggt ggccaaaccc gacaggacta taaagatacc aggcgtttcc	4440
ccctggaagc tccctcggtc gctctccgtt tcagaccctg ccgcttaccg gatacctgtc	4500
cgccttctc ctttcggaa gcgtggcgct ttctcaatgc tcacgctgtt ggtatctcag	4560
ttcgggttag gtcgttcgtt ccaagctggg ctgtgtgcac gaaccccccgtt ttcagccccg	4620
ccgctgcgcc ttatccggta actatcgct ttagtccaaac ccggtaagac acgacttatac	4680
gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgttag gcggtgctac	4740
agagttcttg aagtggtggc ctaactacgg ctacactaga aggacagtat ttggtatctg	4800
cgtctgtctg aagccagttt cttccggaaa aagagttggt agctcttgcgtt ccggcaaaca	4860
aaccaccgct ggtagcggtg gttttttgtt ttgcaagcag cagattacgc gcagaaaaaaa	4920
aggatctcaa gaagatccctt tgatcttttc tacggggctt gacgctcagt ggaacgaaaa	4980
ctcacgttaa gggattttgg tcatgagatt atcaaaaaagg atcttcacccat agatcctttt	5040
aaataaaaaa tgaagttta aatcaatcta aagtatataat gagtaaactt ggtctgacag	5100
ttaccaatgc ttaatcagtg aggcacccat ctcagcgtatc tgcgttatcc gttcatccat	5160
agttgcctga ctccccgtcg ttttagataac tacgatacgg gagggcttac catctggccc	5220
cagtgcgtcata atgataaccgc gagacccacg ctcacccggctt ccagatttat cagcaataaa	5280

ccagccagcc	ggaaggggccg	agcgcagaag	tggcctgca	actttatccg	cctccatcca	5340
gtctattaat	tgttgcggg	aagctagagt	aagtagttcg	ccagttataa	gtttgcgcaa	5400
cgttgtgcc	attgctacag	gcatcgtgg	gtcacgctcg	tcgtttggta	tggcttcatt	5460
cagctccgg	tcccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaaagc	5520
ggtagctcc	ttcggtcctc	cgatcggtgt	cagaagtaag	ttggccgcag	tgttatcact	5580
catggttatg	gcagcactgc	ataattctct	tactgtcatg	ccatccgtaa	gatgctttc	5640
tgtgactgg	gagtactcaa	ccaagtcatt	ctgagaatag	tgtatgcggc	gaccgagttg	5700
ctcttgcgg	gcgtcaatac	gggataatac	cgcgccacat	agcagaactt	taaaagtgt	5760
catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgtttagatc	5820
cagttcgatg	taacccactc	gtgcacccaa	ctgatcttca	gcatcttttta	ctttcaccag	5880
cgttctggg	ttagcaaaaa	caggaaggca	aaatgccgca	aaaaaggaa	taagggcgac	5940
acggaaatgt	tgaataactca	tactcttcct	tttcaatat	tattgaagca	tttatcaggg	6000
ttattgtctc	atgagcggat	acatatttga	atgtatttag	aaaaataaaac	aaataggggt	6060
tccgcgcaca	tttccccgaa	aagtgcacc	tgacgtc			6097

<210> 13

<211> 6094

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<400> 13

gacggatcg	gagatctccc	gatccctat	ggtcgactct	cagtacaatc	tgctctgatg	60
ccgcatagtt	aagccagttat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cggcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatt	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacggtaa	atggccgc	tggctgaccg	cccaacgacc	360
cccgccccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggac	tatttacgg	aaactgccc	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgaccta	tgggacttcc	ctacttggca	gtacatctac	gtattagtca	600

tcgctattac	catggtgatg	cggtttggc	agtacatcaa	tgggcgtgga	tagcggttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagttt	tttggcacc	720
aaaatcaacg	ggactttcca	aatgtcgta	acaactccgc	cccattgacg	caaatggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctaga	900
aagcttggat	ctcaccatgg	tgttgcagac	ccaggtcttc	atttctctgt	tactctggat	960
ctctggtgcc	tacggggaca	tcgtgatgac	ccagtctcca	gactccctgg	ctgtgtctct	1020
gggcgagagg	gccaccatca	actgcaagtc	caaccagagt	gtcttacaca	gctccaacaa	1080
taagaactat	ttagcttggt	accagcagaa	accaggacag	cctcctaaat	tgctcattta	1140
ttgggcattc	ctccgggaat	ccggggtccc	tgaccgcttc	agtggcagcg	ggtctggac	1200
agatttcact	ctcaccatca	gcagcctgca	ggctgaagat	gtggcagttt	attactgtca	1260
ccaatattat	tctactttat	atacttcgg	cggagggacc	aaggtagaga	tcaaacgaac	1320
ygtggctgca	ccatctgtct	tcatcttccc	gcatctgat	gagcagttga	aatctggaac	1380
tgctagcggt	gtgtgcctgc	tgaataactt	ctatcccaga	gaggccaaag	tacagtggaa	1440
ggtgtgataac	gccctccaat	cgggtaactc	ccaggagagt	gtcacagagc	aggacagcaa	1500
ggacagcacc	tacagcctca	gcagcacccct	gacgctgagc	aaagcagact	acgagaaaca	1560
caaagtctac	gcctgcgaag	tcacccatca	ggcctgagc	tcgcccgtca	caaagagctt	1620
caacagggga	gagtgttagg	cggccgctcg	agtctagagg	gcccgtttaa	acccgctgat	1680
cagcctcgac	tgtgccttct	agttgccagc	catctgttgc	ttgcccctcc	cccgtgcctt	1740
ccttgaccct	ggaaggtgcc	actcccactg	tcctttccta	ataaaaatgag	gaaattgcat	1800
cgcattgtct	gagtaggtgt	cattctattc	tgggggggtgg	ggtggggcag	gacagcaagg	1860
gggaggattg	ggaagacaat	agcaggcatg	ctggggatgc	ggtggctct	atggcttctg	1920
aggcggaaag	aaccagctgg	ggctctaggg	ggtatcccc	cgcgcctgt	agcggcgcac	1980
taagcgcggc	gggtgtggtg	gttacgcgca	gcgtgaccgc	tacacttgcc	agcgccttag	2040
cgcgcgtcc	tttcgccttc	ttcccttcct	ttctcgccac	gttcgcggc	tttccccgtc	2100
aagctctaaa	tcggggcatc	cctttagggt	tccgatttag	tgctttacgg	cacctcgacc	2160
ccaaaaaact	tgatttagggt	gatggttcac	gtagtggcc	atcgccctga	tagacggttt	2220
ttcgcccttt	gacgttggag	tccacgttct	ttaatagtgg	actcttgc	caaactggaa	2280
caacactcaa	ccctatctcg	gtctattctt	ttgatttata	agggattttg	gggatttcgg	2340
cctattggtt	aaaaaatgag	ctgatttaac	aaaaatttaa	cgcgaattaa	ttctgtggaa	2400
tgtgtgtcag	ttagggtgtg	gaaagtcccc	aggctccca	ggcaggcaga	agtatgcaaa	2460

gcatgcacatct	caattagtca	gcaaccaggt	gtggaaagtc	cccaggctcc	ccagcaggca	2520
gaagtatgca	aagcatgcat	ctcaattagt	cagcaaccat	agtcccggcc	ctaactccgc	2580
ccatcccgcc	cctaactccg	cccagttccg	cccattctcc	gccccatggc	tgactaattt	2640
tttttattta	tgcagaggcc	gaggccgcct	ctgcctctga	gctattccag	aagtagtgag	2700
gaggctttt	tggaggccta	ggctttgca	aaaagctccc	gggagcttgt	atatccattt	2760
tcggatctga	tcaagagaca	ggatgaggat	cgtttcgcac	gattgaacaa	gatggattgc	2820
acgcaggttc	tccggccgct	tgggtggaga	ggctattcgg	ctatgactgg	gcacaacaga	2880
caatcggctg	ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggcgc	ccggttcttt	2940
ttgtcaagac	cgacctgtcc	ggtgccctga	atgaactgca	ggacgaggca	gcgcggctat	3000
cgtggctggc	cacgacgggc	gttccttgcg	cagctgtgct	cgacgttgct	actgaagcgg	3060
gaagggactg	gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tctcaccttg	3120
ctcctgccga	gaaagtatcc	atcatggctg	atgcaatgcg	gcggctgcac	acgcttgatc	3180
cggttacactg	cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	3240
tggaaaggccgg	tcttgcgtat	caggatgatc	tggacgaaga	gcatcaggggg	ctcgcgcccag	3300
ccgaactgtt	cggccaggctc	aaggcgcgca	tgcccgacgg	cgaggatctc	gtcgtgaccc	3360
atggcgatgc	ctgcttgccg	aatatcatgg	tggaaaatgg	ccgctttct	ggattcatcg	3420
actgtggccg	gctgggtgtg	gcccggccgt	atcaggacat	agcgttgct	acccgtgata	3480
ttgctgaaga	gcttggccgc	gaatggctg	accgcttcct	cgtgctttac	ggtatcgccg	3540
ctcccgattc	gcagcgcac	gccttctatc	gccttcttga	cgagttcttc	tgagcgggac	3600
tctggggttc	gaaatgaccg	accaagcgac	gcccaacctg	ccatcacgag	atttcgattc	3660
caccgcccgc	ttctatgaaa	ggttggctt	cggaatcggt	ttccggacg	ccggctggat	3720
gatcctccag	cgcggggatc	tcatgctgga	gttcttcgac	caccccaact	tgtttattgc	3780
agcttataat	ggttacaaat	aaagcaatag	catcacaaat	ttcacaaata	aagcattttt	3840
ttcaactgcat	tctagttgtg	gtttgtccaa	actcatcaat	gtatcttac	atgtctgtat	3900
accgtcgacc	tctagctaga	gcttggcgta	atcatggta	tagctgttcc	ctgtgtgaaa	3960
ttgttatccg	ctcacaaattc	cacacaacat	acgagccgga	agcataaaagt	gtaaagcctg	4020
gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	ccgctttcca	4080
gtcggggaaac	ctgtcgtgcc	agctgcattt	atgaatcgac	caacgcgcgg	ggagaggcgg	4140
tttgcgtatt	ggcgcttctt	ccgcttcttc	gctactgac	tcgctgcgt	cggtcgttcg	4200
gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtataa	cggttatcca	cagaatcagg	4260
ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaaa	4320

ggccgcgttg ctggcgccccccct gacgagcatc aaaaaatcg 4380
acgctcaagt cagaggtggc gaaacccgac aggactataa agataaccagg cgcccccccc 4440
tggaaagctcc ctctgtcgct ctccctgttcc gaccctgccc gttaccggat acctgtccgc 4500
ctttctccct tcgggaagcg tggcgcttcc tcaatgctca cgctgttaggt atctcagttc 4560
ggtgttaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 4620
ctgcgcctta tccggtaact atcgtcttga gtccaaacccg gtaagacacg acttatcgcc 4680
actggcagca gccactggta acaggattag cagagcgagg tatgttaggcg gtgctacaga 4740
gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg gtatctgcgc 4800
tctgctgaag ccagttaccc tcggaaaaag agttggtagc tcttgcgttccg gcaaacaaaac 4860
caccgctggc agcgggtggtt tttttgtttg caagcagcag attacgcgcgaa gaaaaaaaaagg 4920
atctcaagaa gatccttga tctttctac ggggtctgac gctcagtgga acgaaaactc 4980
acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga tcctttaaaa 5040
ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta 5100
ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt 5160
tgcctgactc cccgtcggt agataactac gatacgggag ggcttaccat ctggccccag 5220
tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag caataaacca 5280
gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc 5340
tattaattgt tgccggaaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt 5400
tgttgcatt gctacaggca tcgtgggtgc acgctcggt tttggtatgg cttcattcag 5460
ctccggttcc caacgatcaa ggcgagttac atgatcccc atgttgcgaa aaaaagcggt 5520
tagctcccttc ggtcctccga tcgttgcgt aagtaagttg gccgcagtgt tatcactcat 5580
ggttatggca gcactgcata attctcttac tgtcatgcca tccgtaagat gctttctgt 5640
gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac cgagttgcgc 5700
ttgccccggcg tcaatacggg ataataccgc gccacatagc agaactttaa aagtgcgtcat 5760
cattggaaaaa cgttcttcgg ggcggaaaact ctcaaggatc ttaccgctgt tgagatccag 5820
ttcgatgtaa cccactcggt cacccaaactg atcttcagca tctttactt tcaccagcgt 5880
ttctgggtga gcaaaaaacag gaaggaaaaa tgccgaaaaa aagggaataa gggcgacacg 5940
gaaatgtga atactcatac tcttccttt tcaatattat tgaagcattt atcagggtta 6000
ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc 6060
gccccacattt ccccgaaaaag tgccacctga cgtc 6094

53/63
 Thr Gln Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110

Tyr Tyr Cys Ala Arg Gly Gly Asp Phe Leu Tyr Tyr Tyr Tyr Gly
 115 120 125

Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140

<210> 16

<211> 463

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BglII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

<400> 16

ggatctcacc atgagggtcc ctgctcagct cctgggactc ctgctgtct ggctcccaga 60

taccagatgt gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga 120

cagagtcacc atcacttgcc gggcgagtca gggcattagc aattatttag cctggtatca 180

gcagaaaaaca gggaaagttc ctaagttcct gatctatgaa gcatccactt tgcaatcagg 240

ggtcccatct cggttcagtg gcggtggtac tggacagat ttcactctca ccatcagcag 300

cctgcagect gaagatgttgc aacttatta ctgtcaaaat tataacagtgc cccattcac 360

tttcggccct gggacccaaag tggatatcaa acgaactgtg gctgcaccct ctgtcttcat 420

cttcccgcca tctgatgagc agttgaaatc tggaaactgct agc 463

<210> 17

<211> 127

<212> PRT

<213> Homo sapiens

<400> 17

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp Leu Pro
 1 5 10 15

Asp Thr Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
 20 25 30

Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly
 35 40 45

Ile Ser Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Thr Gly Lys Val Pro
 50 55 60

Lys Phe Leu Ile Tyr Glu Ala Ser Thr Leu Gln Ser Gly Val Pro Ser
65 70 75 80

Arg Phe Ser Gly Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95

Ser Leu Gln Pro Glu Asp Val Ala Thr Tyr Tyr Cys Gln Asn Tyr Asn
100 105 110

Ser Ala Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
115 120 125

<210> 18

<211> 508

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BglIII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

<400> 18
ggatctcacc atggggtcaa ccgcctatcct caccatggag ttggggctgc gctgggttct 60
cctcggtgct cttaaagag gtgtccagtgc tcaggtgcag ctgggtggagt ctgggggagg 120
cgtgggtccag cctgggaggt ccctgagact ctccatgtgca gcgtctggat tcacccatcag 180
taactatgtc atgcactggg tccgcaggc tccaggcaag gggctggagt gggtgccat 240
tatatggat gatggaaagta ataaatacta tgcagactcc gtgaaggggcc gattcaccat 300
ctccagagac aattccaaga acacgctgta tctgcaaatg aacagcctga gagccgagga 360
cacggctgtg tattactgtg cgggtggata taactggAAC tacgagtacc actactacgg 420
tatggacgTC tggggccaag ggaccacggt caccgtctcc tcagcctcca ccaaggggccc 480
atcggtcttc cccctggcac cctctagc 508

<210> 19

<211> 143

<212> PRT

<213> Homo sapiens

<400> 19

Met Glu Leu Gly Leu Arg Trp Val Leu Leu Val Ala Leu Leu Arg Gly
1 5 10 15

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
20 25 30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

Ser Asn Tyr Val Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60

Glu Trp Val Ala Ile Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala
65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
85 90 95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110

Tyr Tyr Cys Ala Gly Gly Tyr Asn Trp Asn Tyr Glu Tyr His Tyr Tyr
115 120 125

Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
130 135 140

<210> 20

<211> 463

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BglIII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

<400> 20

ggatctcacc atgagggtcc ccgctcagct cctggggctc ctgctgctct gttcccaagg 60

tgccagatgt gacatccaga tgacccagtc tccatcctca ctgtctgcat ctgtaggaga 120

cagagtcacc atcacttgtc gggcgagtca gggcattacc aattattna cctggttca 180

gcagaaacca gggaaagccc ctaagtccct tatctatgct gcattccagtt tgcaaagtgg 240

ggtcccatca aagttcagcg gcagtggatc tggacagat ttcaagtctca ccatcagcag 300

cctgcagcct gaagatttttcaacttatta ctgccaacag tataatagtt acccgatcac 360

cttcggccaa gggacacgac tggagattaa acgaactgtg gctgcaccat ctgtcttcat 420

cttcccgcca tctgatgagc agttgaaatc tggaaactgct agc 463

<210> 21

<211> 127

<212> PRT

<213> Homo sapiens

<400> 21

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Cys Phe Pro
 1 5 10 15

Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
 20 25 30

Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly
 35 40 45

Ile Thr Asn Tyr Leu Ala Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro
 50 55 60

Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser
 65 70 75 80

Lys Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Ser Leu Thr Ile Ser
 85 90 95

Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn
 100 105 110

Ser Tyr Pro Ile Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys
 115 120 125

<210> 22

<211> 490

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BglIII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

<400> 22
 ggatctcacc atggagttgg gacttagctg gttttcctc gttgctcttt taagaggtgt 60
 ccagtgtcag gtccagctgg tggagtctgg gggaggcgtg gtccagcctg ggaggtccct 120
 gagactctcc tgtgcagcgt ctggattcac cttcagtagc tatggcatgc actgggtccg 180
 ccaggctcca ggcaaggggc tggactgggt ggcaattatt tggcatgatg gaagtaataa 240
 atactatgca gactccgtga agggccgatt caccatctcc agagacaatt ccaagaagac 300
 gctgtacctg caaatgaaca gtttgagagc cgaggacacg gctgtgtatt actgtgcgag 360
 agcttgggcc tatgactacg gtgactatga atactacttc ggtatggacg tctggggcca 420
 agggaccacg gtcaccgtct cctcagcctc caccaagggc ccatcggtct tccccctggc 480
 accctcttagc 490

<210> 23

<211> 145

<212> PRT

<213> Homo sapiens

<400> 23

Met Glu Leu Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
1 5 10 15

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
20 25 30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60

Asp Trp Val Ala Ile Ile Trp His Asp Gly Ser Asn Lys Tyr Tyr Ala
65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Lys
85 90 95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110

Tyr Tyr Cys Ala Arg Ala Trp Ala Tyr Asp Tyr Gly Asp Tyr Glu Tyr
115 120 125

Tyr Phe Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser
130 135 140

Ser
145

<210> 24

<211> 463

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BglII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

<400> 24

ggatctacc atgagggtcc ctgctcagct cctggggctc ctgctgctct gtttcccagg 60

tgccagatgt gacatccaga tgacccagtc tccatcctca ctgtctgcat ctgtaggaga 120

cagagtcacc atcaacttgtc gggcgagtca gggcattagc cattatttag cctggttca 180

gcagaaaacca gggaaagccc ctaagtccct gatctatgct gcatccagtt tgcaaagtgg 240

ggtccccatca aagttcagcg gcagtggatc tggacagat ttcactctca ccatcagcag 300

58/63

cctacagcct	gaagattttg	caacttatta	ctgccaacag	tataatagtt	tcccgctcac	360
tttcggcgga	gggaccaagg	tggagatcaa	acgaactgtg	gctgcaccat	ctgtcttcat	420
cttcccgcca	tctgatgagc	agttgaaatc	tggaactgct	agc		463

<210> 25

<211> 127

<212> PRT

<213> Homo sapiens

<400> 25

Met	Arg	Val	Pro	Ala	Gln	Leu	Leu	Gly	Leu	Leu	Leu	Cys	Phe	Pro
1														15

Gly	Ala	Arg	Cys	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser
					20			25						30	

Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gln	Gly
					35			40						45	

Ile	Ser	His	Tyr	Leu	Ala	Trp	Phe	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro
					50			55						60	

Lys	Ser	Leu	Ile	Tyr	Ala	Ala	Ser	Ser	Leu	Gln	Ser	Gly	Val	Pro	Ser
					65			70						80	

Lys	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser
					85			90						95	

Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Tyr	Asn
					100			105						110	

Ser	Phe	Pro	Leu	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Val	Glu	Ile	Lys	
					115			120						125	

<210> 26

<211> 469

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BgIII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction														
---	--	--	--	--	--	--	--	--	--	--	--	--	--	--

<400> 26

ggatccacc	atggggtcaa	ccgtcatact	cgccttcctc	ctggctgttc	tccaaaggagt	60
-----------	------------	------------	------------	------------	-------------	----

ctgtgccgag	gtgcagctgg	tgcagtctgg	agcagaggtg	aaaaagcccg	gggagtctct	120
------------	------------	------------	------------	------------	------------	-----

gaagatctcc	tgttaagggtt	ctggatacacag	ctttaccagt	tactggatcg	gctgggtgcg	180
------------	-------------	--------------	------------	------------	------------	-----

59/63

ccagatgcc	ggaaaggcc	tggagtggat	ggggatcatc	tatcctggtg	actctgatac	240
cagatacagc	ccgtccttcc	aaggccaggt	caccatctca	gccgacaagt	ccatcagcac	300
cgcctacctg	cagtggagca	gcctgaaggc	ctcggacacc	gccatgtatt	actgtgcgag	360
acggatggca	gcagctggcc	cctttgacta	ctggggccag	ggaaccctgg	tcaccgtctc	420
ctcagcctcc	accaaggggcc	catcggtctt	ccccctggca	ccctctagc		469

<210> 27

<211> 138

<212> PRT

<213> Homo sapiens

<400> 27

Met	Gly	Ser	Thr	Val	Ile	Leu	Ala	Leu	Leu	Ala	Val	Leu	Gln	Gly
1				5				10					15	

Val	Cys	Ala	Glu	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys
				20			25						30		

Pro	Gly	Glu	Ser	Leu	Lys	Ile	Ser	Cys	Lys	Gly	Ser	Gly	Tyr	Ser	Phe
				35			40					45			

Thr	Ser	Tyr	Trp	Ile	Gly	Trp	Val	Arg	Gln	Met	Pro	Gly	Lys	Gly	Leu
				50			55					60			

Glu	Trp	Met	Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Thr	Arg	Tyr	Ser
				65		70			75			80			

Pro	Ser	Phe	Gln	Gly	Gln	Val	Thr	Ile	Ser	Ala	Asp	Lys	Ser	Ile	Ser
				85				90				95			

Thr	Ala	Tyr	Leu	Gln	Trp	Ser	Ser	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met
				100			105					110			

Tyr	Tyr	Cys	Ala	Arg	Arg	Met	Ala	Ala	Ala	Gly	Pro	Phe	Asp	Tyr	Trp
				115			120				125				

Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser						
				130			135								

<210> 28

<211> 466

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BglII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

60/63

<400> 28		
ggatctcacc atgagggtcc ccgctcagct tctcttcctt ctgctactct ggctccaga	60	
taccactgga ggaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga	120	
aagagccacc ctctcctgca ggaccagtca gagtattggc tggaaacttag cctggatcca	180	
acagaaacct ggccaggctc ccaggctcct catctatggt gcatcttcca ggaccactgg	240	
tatcccagcc agttcagtg gcagtgggtc tgggacagag ttcaactctca ccatcagcag	300	
cctgcagtct gaagattctg cagtttatta ctgtcagcat tatgataact ggcccatgtg	360	
cagtttggc caggggaccg agctggagat caaacgaact gtggctgcac catctgtctt	420	
catcttcccg ccatctgatg agcagttgaa atctggaact gctagc	466	

<210> 29

<211> 128

<212> PRT

<213> Homo sapiens

<400> 29

Met Arg Val Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro				
1	5	10	15	

Asp Thr Thr Gly Gly Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser			
20	25	30	

Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Thr Ser Gln Ser			
35	40	45	

Ile Gly Trp Asn Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro			
50	55	60	

Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Thr Thr Gly Ile Pro Ala			
65	70	75	80

Arg Phe Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser			
85	90	95	

Ser Leu Gln Ser Glu Asp Ser Ala Val Tyr Tyr Cys Gln His Tyr Asp			
100	105	110	

Asn Trp Pro Met Cys Ser Phe Gly Gln Gly Thr Glu Leu Glu Ile Lys			
115	120	125	

<210> 30

<211> 487

<212> DNA

<213> Artificial Sequence

<220>

61/63

<223> Includes BamHI/BglII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

<400> 30
 gatatctcacc atggagtttg ggctgtgctg gattttcctc gttgctcttt taagaggtgt 60
 ccagtgtcag gtgcagctgg tggagtcctgg gggaggcgtg gtccagccctg ggaggtccct 120
 gagactctcc tgtgcagcct ctggattcac cttcatttgc tatggcatgc actgggtccg 180
 ccaggctcca ggcaaggggc tggagtggtt ggcagttata tcataatgatg gaagtaataa 240
 atactatgca gactccgtga agggccgatt caccatctcc agagacaatt ccaagaacac 300
 gctgtatctg caaatgaaca gcctgagagc tgaggacacg gctgtgtatt actgtgcgag 360
 agtattatgtt ggagctttat attattataa ctactacggg atggacgtct gggccaagg 420
 gaccacggtc accgtctcct cagcctccac caagggccca tcggtcttcc ccctggcacc 480
 ctcttagc 487

<210> 31

<211> 144

<212> PRT

<213> Homo sapiens

<400> 31

Met Glu Phe Gly Leu Cys Trp Ile Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

Ile Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

Glu Trp Val Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala
 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110

Tyr Tyr Cys Ala Arg Val Leu Val Gly Ala Leu Tyr Tyr Tyr Asn Tyr
 115 120 125

Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140

<210> 32

<211> 478

<212> DNA

<213> Artificial Sequence

<220>

<223> Includes BamHI/BglII cloning junction, signal peptide, V region, portion of C region and 3'XbaI/NheI (heavy) or NheI (light) cloning junction

<400> 32

ggatctcacc atgagggtcc ctgctcagct cctggggctg ctaatgctct ggataccctgg 60
atccagtgca gatattgtga tgaccagac tccactctct ctgtccgtca cccctggaca 120
gccggcctcc atccctgca agtctagtc gagcctcctg catagtgatg gaaagacctt 180
tttgtattgg tatctgcaga agccaggcca gcctccacag ctccctgatct atgaggttcc 240
caaccggttc tctggagtgc cagataggtt cagtggcagc gggtcaggga cagatttcac 300
actgaaaatc agccgggtgg aggctgagga ttttgggctt tattactgca tgcaaagtat 360
acagctccg ctcactttcg gcggaggac caaggtggag atcaaacgaa ctgtggctgc 420
accatctgtc ttcatcttcc cgccatctga tgagcagttt aaatctggaa ctgctagc 478

<210> 33

<211> 132

<212> PRT

<213> Homo sapiens

<400> 33

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Ile Pro
1 5 10 15

Gly Ser Ser Ala Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Ser
20 25 30

Val Thr Pro Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser
35 40 45

Leu Leu His Ser Asp Gly Lys Thr Phe Leu Tyr Trp Tyr Leu Gln Lys
50 55 60

Pro Gly Gln Pro Pro Gln Leu Leu Ile Tyr Glu Val Ser Asn Arg Phe
65 70 75 80

Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
85 90 95

Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Leu Tyr Tyr
100 105 110

Cys Met Gln Ser Ile Gln Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys
115 120 125

Val Glu Ile Lys
130

63/63