METHOD AND DEVICE FOR PRODUCTION OF A NUMBER OF LAMINATES

VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG EINER VIELZAHL VON LAMINATEN

Abstract: The invention relates to a method for the production of a laminate with at least one powder layer, whereby said powder layer is produced continuously. An adhesive (164) is applied at least in strips on a first layer (167), whereby the adhesive (164) is applied transverse to a direction of movement of the first layer (167), between layers of powder arranged separately from each other. A second layer (169) is continuously introduced to the first layer (165) such that the first (165) and the second (169) layers surround the powder layer (168). The invention further relates to a device for the continuous production of a laminate.
(84) Bestimmungstaaten (regional):  ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UM, ZM, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR),

Veröffentlicht:
mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Laminats mit zumindest einer Pulverschicht, wobei die Pulverschicht kontinuierlich hergestellt wird. Auf eine erste Lage 167 wird ein Bindemittel 164 zumindest streifenförmig aufgetragen, wobei das Bindemittel 164 quer zu einer Bewegungsrichtung der ersten Lage 167 zwischen getrennt voneinander angeordneten Pulverschichten zum Liegen kommt. Eine zweite Lage 169 wird kontinuierlich der ersten Lage 165 zugeführt, so dass die erste 165 und die zweite 169 Lage die Pulverschicht 168 umgeben. Weiterhin betrifft die Erfindung eine Vorrichtung zur kontinuierlichen Herstellung eines Laminats.
Verfahren und Vorrichtung zur Herstellung einer Vielzahl von Laminaten

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Laminats aus einer zumindest einer Pulverschicht, wobei eine erste Lage einer zweiten Lage zugeführt wird und auf die erste Lage zumindest die Pulverschicht aufgetragen wird. Insbesondere wird eine Sauglage mittels zumindest einer Saugmittelschicht kontinuierlich hergestellt. Desweiteren wird eine Vorrichtung zur Herstellung eines Laminats zur Verfügung gestellt. Die Vorrichtung weist zumindest eine erste Zuführung zum Zuführen einer ersten Lage, eine zweite Zuführung zum Zuführen einer zweiten Lage und eine Saugmittelzuführung auf, um zwischen die erste Lage und die zweite Lage zumindest eine Pulverschicht anzuordnen.


Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung, ein Verfahren wie auch eine Vorrichtung zu schaffen, um eine automatisierte
Herstellungsweise zu erleichtern und gleichzeitig einen Zeitaufwand bis zur Herstellung eines fertigen Produktes wie auch einzusetzende Materialien minimieren zu können.


Das erfindungsgemässe Verfahren zur Herstellung eines Laminats mit zumindest einer Pulverschicht sieht vor, dass eine erste Lage einer zweiten Lage zugeführt wird und auf die erste Lage zumindest die Pulverschicht aufgetragen wird. Vor einem Anordnen der zweiten Lage auf die Pulverschicht und auf die erste Lage wird ein Teil der Pulverschicht von der ersten Lage entfernt, wobei getrennt voneinander angeordnete Pulverschichten erzeugt werden. Vorzugsweise wird ein Verbindungsmittel zumindest streifenförmig zwischen getrennt voneinander angeordneten Pulverschichten zur Erzeugung einer Querversiegelung des Laminats angeordnet.

Eine Weiterbildung sieht vor, dass mittels einer ersten Bindemitteleinrichtung ein erstes Bindemittel in Längsrichtung zur Erzeugung einer Längsversiegelung auf der ersten Lage aufgebracht wird und auf der zweiten Lage mittels einer zweiten Bindemitteleinrichtung ein zweites Bindemittel zur Erzeugung der Querversiegelung bei Kontakt des zweiten Bindemittels mit der ersten Lage aufgebracht wird.


Im folgenden wird die Erfindung exemplarisch anhand einer Anwendung als Sauglage näher beschrieben, ohne aber die nachfolgenden Ausführungen auf Sauglagen zu beschränken. Vielmehr können alle nachfolgenden Weiterbildungen, Merkmale und Ausgestaltungen auf alle anderen weiter oben und noch nachfolgend beschriebenen Beispiele angewandt werden. Eine erfindungsgemäß hergestellte Sauglage mit zumindest einer Saugmittelschicht sieht vor, dass die Sauglage kontinuierlich hergestellt wird. Eine erste Lage wird einer zweiten Lage zugeführt, so dass die erste und die zweite
Lage zumindest eine Saugmittelschicht umgeben. Ein Bindemittel wird quer zu einer Bewegungsrichtung der ersten Lage zumindest streifenförmig angeordnet, um zwischen getrennt voneinander angeordneten Saugmittelschichten zur Erzeugung einer Querversiegelung der Sauglage positioniert zu werden.


Gemäß einer Weiterbildung wird das Bindemittel zumindest teilweise, vorzugsweise nur in definierte Bereiche, diskontinuierlich zugeführt. Das bedeutet beispielsweise, auf der ersten Lage befindet sich das Bindemittel nur in einem bestimmten Abschnitt. Dieser Abschnitt kann eine Querversiegelung oder auch eine Längsversiegelung bilden. Ebenfalls besteht die Möglichkeit, dass ein oder mehrere Saugmittelschichten mit Bindemittel zumindest teilweise beaufschlagt oder auch durchsetzt sind. Dazu kann das
Bindemittel beispielsweise zwischen verschiedenen, übereinandergeordneten Saugmittelschichten angeordnet werden.


Vorzugsweise wird ein Kleberauftrag zur Versiegelung von etwa 1 bis 7 g/m², insbesondere von etwa 3 bis 4 g/m² verwendet. Das verwendete Pulver, insbesondere Saugmittel kann etwa zwischen 30 g/m² bis etwa 500 g/m² betragen, vorzugsweise etwa zwischen 50g/m² bis 300 g/m².

Eine zusätzliche Ausgestaltung sieht vor, dass neben einer mechanischen Versiegelung auch eine Versiegelung mittels eines anderen Bindemittels bei einer Sauglage vorgesehen ist. Beispielsweise kann die Querversiegelung mechanisch erfolgen, die Längsversiegelung durch einen Kleberauftrag.


Bei der Ablage der Sauglage wird vorzugsweise darauf geachtet, dass Faltungen nur in Bereichen auftreten, in denen keine Saugmittelschicht angeordnet ist. Dazu ist beispielsweise eine Saugmittelschicht detektierbar, beispielsweise mittels einer CCD-Kamera, über eine Kapazitätsmessung oder mittels einer Markierung, die mechanisch oder auf anderem Wege der Sauglage zugeführt wird. Über eine entsprechende


Das oben beschriebene Verfahren ermöglicht, dass einerseits eine Ablage der noch nicht voneinander getrennten, aber schon versiegelten Saugmittelschichten erfolgt. Zum anderen, wird ermöglicht, dass vollständig versiegelte und voneinander beabstandete Saugmittelschichten zusammenhängend gelagert und anschließend einer Weiterverarbeitung zugeführt werden, bei der die versiegelten Saugmittelschichten zumindest teilweise oder auch ganz voneinander getrennt werden.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass eine Ablage der einzelnen, voneinander getrennten und versiegelten Saugmittelschichten erfolgt und einzelne Sauglagen einer Weiterverarbeitung zugeführt werden. Beispielsweise werden die einzelnen Sauglagen gemeinsam transportiert, sind jedoch in ihrer Transportverpackung schon voneinander getrennt vorliegend. Es besteht die Möglichkeit, die einzelnen Sauglagen in Magazinen so zu lagern, vorzugsweise zu stapeln, so dass sie insbesondere direkt aus den Magazinen in einer Weiterverarbeitungsanlage eingesetzt werden können.


Gemäß einer anderen Ausgestaltung kann eine Sauglage auch durch mehrere Streifen gebildet werden, die nebeneinander liegen und nicht voneinander getrennt sind. Das ermöglicht beispielsweise, dass ein oder mehrere Sauglagen übereinandergefasst
werden, um somit ein Saugkissen zu bilden. Eine Versiegelung bildet dabei vorzugsweise eine Umklappebene.

Weiterhin stellt die Erfindung eine Vorrichtung zur kontinuierlichen Herstellung eines Laminats, insbesondere einer Sauglage zur Verfügung. Die Vorrichtung weist zumindest eine erste Zuführung zum Zuführen einer ersten Lage, eine zweite Zuführung zum Zuführen einer zweiten Lage und eine Pulverzuführung, insbesondere eine Saugmittelzuführung auf, um zwischen der ersten Lage und der zweiten Lage zumindest eine Pulverschicht, insbesondere Saugmittelschicht anzuordnen. An der Vorrichtung ist eine Materialabtragung vorzugsweise in Form einer Absaugung angeordnet, um Pulver, insbesondere Saugmittel, an definierten Stellen von der ersten Lage vor dem Zuführen der zweiten Lage auf die erste Lage abzutragen, insbesondere abzusaugen, zur Erzeugung von Unterbrechungen entlang einer Saugmittelstrecke.

Gemäß einer weiteren unabhängigen Vorrichtung zur kontinuierlichen Herstellung eines Laminats, insbesondere einer Sauglage mit zumindest einer ersten Zuführung, einer zweiten Zuführung und einer Pulverzuführung, insbesondere einer Saugmittelzuführung, ist zumindest ein Steg quer zu einer Bewegungsrichtung auf der ersten Lage aufbringbar, um eine Begrenzungsfläche für eine aufzutragende Pulverschicht, insbesondere ein aufzutragendes Saugmittel, zu bilden, wobei der Steg so ausgebildet ist, dass eine Fläche auf der ersten Lage frei gehalten wird, um Teil einer Querversiegelung des Laminats, vorzugsweise der Sauglage, zu sein.

Eine andere, unabhängig davon vorgeschlagenen Vorrichtung zur kontinuierlichen Herstellung eines Laminats, vorzugsweise einer Sauglage, weist zumindest eine erste Zuführung zum Zuführen einer ersten Lage, eine zweite Zuführung zum Zuführen einer zweiten Lage und eine Pulverzuführung, vorzugsweise Saugmittelzuführung, auf, um zwischen der ersten und er zweiten Lage zumindest eine Pulverschicht, vorzugsweise eine Saugmittelschicht anzuordnen. Der Pulverzuführung ist eine Bindemittelteinrichtung nachgeordnet, wobei aus der Bindemittelteinrichtung diskontinuierlich ein Bindemittel auf das Material auftragbar ist.
Eine weitere unabhängige Vorrichtung zur kontinuierlichen Herstellung eines Laminats, vorzugsweise einer Sauglage, hat zumindest eine erste Zuführung für eine erste Lage, eine zweite Zuführung für eine zweite Lage und eine Pulverzuführung, wobei die Pulverzuführung zumindest ein Pulver auf der ersten Lage anordnet, bevor die zweite Zuführung die zweite Lage der ersten Lage zuführt. Eine Bindemitteleinrichtung zur Erzeugung einer Querversiegelung ist zu der zweiten Zuführung derart angeordnet, dass ein Bindemittel auf eine Seite der zweiten Lage auftragbar ist, die anschließend mit einer Seite der ersten Lage verbunden wird, auf die eine Pulverschicht aufgetragen ist. Als Pulver ist beispielsweise ein Saugmaterial einsetzbar.


Im folgenden wird die Erfindung wiederum näher anhand einer Sauglage beschrieben, ohne damit aber weiter oben dargestellte Anwendungen, Weiterbildungen oder Merkmale, die andere Funktionen eines eingesetzten Pulvers beinhalten, auszuschließen. Vielmehr können die anhand einer Sauglage dargestellten Weiterbildungen auch für Saugkissen, Saugtücher, Duftkissen, Dufttücher wie auch für Waschmittelkissen oder Waschmitteltücher eingesetzt werden.
Eine Weiterbildung sieht vor, dass eine Ablageeinrichtung nachgeschaltet ist, die beispielsweise miteinander verbundene, jedoch durch vollständige Versiegelung voneinander getrennte Saugmittelschichten aufnimmt. Vorzugsweise weist die Ablageeinrichtung Detektierungsmittel auf, mittels denen Abschnitte der Sauglagerung mit und ohne Saugmittelschicht unterscheidbar sind. Das erlaubt, entsprechend der Beschaffenheit der Sauglage ein Ablegen gesteuert vornehmen zu können.

Weiterhin sieht die Erfindung eine Sauglage mit zumindest einer ersten Lage, einer zweiten Lage und einer Saugmittelschicht vor, wobei die Saugmittelschicht zwischen der ersten und der zweiten Lage angeordnet ist. Eine Querverseilegung der Sauglagerung weist ein anderes Bindemittel auf als eine Längsversiegelung. Gemäß einer Weiterbildung der Sauglagerung ist eine aufzuwendende Kraft zur Zerstörung einer Querverseilegung gegenüber der bei einer Längsversiegelung aufzuwendenden Kraft größer oder umgekehrt. Beispielsweise wird eine Kraft von mindestens 20 N/m² bis 25 N/m² benötigt, um eine Zerstörung zu erzielen. Werden Thermoplasten zur Versiegelung benutzt, ist es vorteilhaft, wenn eine Heißsiegelfestigkeit gemessen wird, die sich vorzugsweise in einem Bereich von über 2 N/15mm in einem Heißsiegelbereich von etwa 50°C bis 180°C befindet. Insbesondere werden Werte von über 6 N/15mm, vorzugsweise über 9 N/15mm im Maximum vor einer vollständige Zerstörung der Verbindung angestrebt. Als Testmethode ist beispielsweise der Federtest oder auch der Top Wave DTC anwendbar.

Vorzugsweise weist die Sauglage zumindest ein Markierungsmittel auf, anhand derer zum Beispiel eine Konfektionierungslinear, beispielsweise einen Schnitt, eine Faltlinie, ein Beginn und/oder Ende einer Saugmittelschicht, eine Positionsangabe der Sauglagerung als Bezugspunkt für eine Weiterverarbeitungsanlage sowie anderes detektierbar ist. Ein oder mehrere Markierungsmittel können in der Saugmittelschicht, in einer Versiegelung oder auch in einer der Lagen angeordnet sein.

Weiterhin sieht die Erfindung eine Absaugvorrichtung für eine Vorrichtung zur kontinuierlichen Herstellung eines Laminats, insbesondere einer Sauglagerung vor, wobei die Absaugvorrichtung so ausgebildet ist, dass zumindest eine Stelle zur Absaugung von
Pulver, vorzugsweise Saugmaterial auf einer ersten Lage über ein Öffnen oder Schließen einer Absaugung der Absaugeinrichtung definiert ist.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen des Laminats, einsetzbarer Pulver, der Herstellungsweisen etc. sind in der nachfolgenden Zeichnung aufgeführt. Die dort beschriebenen Einzelheiten und zu einzelnen Vorrichtungen angegebenen Merkmale bezüglich der Herstellung wie auch verwendeter Materialien, Parameter, Randbedingungen, Aufbauten, Einzelteile und deren Zusammenspiel sowie Erläuterungen sind allgemein auch bei anderen Vorrichtungen und Verfahren der Erfindung, ob oben oder nachfolgend beschrieben oder nicht, verwendbar. Insbesondere sind diese mit den oben und nachfolgend beschriebenen Ausgestaltungen zu weiteren vorteilhaften Weiterbildungen kombinierbar. Es zeigen:

Figur 1: Ein mit Schlitzen versehenes kontinuierlich umlaufendes Band,

Figur 2: das in Figur 1 dargestellte Band eingebaut in einer ersten Vorrichtung zur kontinuierlichen Herstellung einer Sauglage,

Figur 3: eine zweite Vorrichtung zur kontinuierlichen Herstellung einer Sauglage,

Figur 4: eine dritte Vorrichtung zur kontinuierlichen Herstellung einer Sauglage,

Figur 5: eine vierte Vorrichtung zur Herstellung einer Sauglage, die eine Walze aufweist,

Figur 6: eine fünfte Vorrichtung mit einer Walze, die an der Oberfläche Vertiefungen hat,

Figur 7: eine sechste Vorrichtung mit einem Band, welches Vertiefungen aufweist,
Figur 8: eine siebte Vorrichtung mit einer Hohlwalze mit veränderlichen Ansaugöffnungen,

Figur 9: eine achte Vorrichtung, die beispielsweise eine Hohlwalze wie aus Figur 8 beinhaltet,

Figur 10: einen Schnitt durch eine Hohlwalze, wie sie aus beispielsweise Figur 8 hervorgeht,

Figur 11: einen Absaugkanal, wie er beispielsweise in einer Vorrichtung nach Figur 9 einsetzbar ist,

Figur 12: eine schematische Ansicht eines Beispiels einer Ansaugöffnung,

Figur 13: eine neunte Vorrichtung zur Herstellung einer Sauglage,

Figur 14: eine zehnte Vorrichtung zur Herstellung einer Sauglage,

Figur 15: eine elfte Vorrichtung zur Herstellung einer Sauglage und

Figur 16: eine schematische Aufsicht auf eine Sauglage mit einer Detektierungseinheit.

Die folgenden Erläuterungen beziehen sich im wesentlichen auf das Beispiel einer Sauglage, ohne aber diese darauf zu beschränken. Vielmehr handelt es sich dabei nur um eine mögliche Verwendung des Laminats bzw. der einsetzbaren Pulverschichten und deren Funktionen.

Fig. 1 zeigt ein Band 1, dass um eine erste Rolle 2 und um eine zweite Rolle 3 umläuft. Das Band 1 weist Schlitze 4 auf. Die Schlitze 4 erstrecken sich quer zu einer Bewegungsrichtung des Bandes 1. Das Band 1 ist vorzugsweise aus einem
Kunststoffmaterial gefertigt, welches beispielsweise mittels Fasereinlagen verstärkt ist. Die im Band 1 enthaltenen Schlitze 4 gehen durch das Band 1 hindurch. Zumindest teilweise ist gemäß einer Weiterbildung Material benachbart zum Schlitz 4 in Band 1 verstärkt, so dass bei auf das Band 1 wirkende Spannungen keine Risse auftreten.

Fig. 2 zeigt eine erste Vorrichtung 5 zur Herstellung einer Sauglage als Laminat. Die erste Vorrichtung 5 weist die in Fig. 1 dargestellten erste Rolle 2, zweite Rolle 3 und das Band 1 auf. Weiterhin hat die erste Vorrichtung 5 eine dritte Rolle 6 sowie eine vierte Rolle 7. Um die dritte Rolle 6 und die vierte Rolle 7 läuft ein zweites Band 8. Das zweite Band 8 ist vorzugsweise ein Siebband, kann aber auch keine Öffnungen, sondern eine geschlossene Oberfläche 9 aufweisen. Auf die Oberfläche 9 des zweiten Bandes 8 wird kontinuierlich eine Lage aufgebracht, auf die wiederum eine Pulverschicht, hier eine Saugmittelschicht 10 aufgetragen wird. Das Band 1 sowie das zweite Band 8 bewegen sich vorzugsweise mit gleicher Geschwindigkeit, so dass die Saugmittelschicht 10 in Richtung des Pfeiles fortbewegt wird. In dem durch das Band 1 sowie der ersten Rolle 2 und der zweiten Rolle 3 gebildeten Hohlräum 11 ist eine Absaugung 12 anordbar. Die Absaugung 12 ist schematisch angedeutet und kann beispielsweise mittels eines im Hohlräum 11 angeordneten Kastenprofils verwirklicht werden. In dem Kastenprofil herrscht beispielsweise ein gegenüber dem Umgebungsdruck niedrigerer Druck. Dadurch kann das in unmittelbar Nähe zu den Schlitzen 4 angeordnete Material der Saugmittelschicht 10 abgesaugt werden. Vorzugsweise ist dazu das zweite Band 8 zumindest teilweise porös oder in anderer Art und Weise luftdurchlässig. Gemäß einer weiteren Ausgestaltung wird in einem zweiten Hohlräum 13, der durch die dritte Rolle 6, die vierte Rolle 7 und das zweite Band 8 gebildet wird, ein Überdruck zumindest teilweise aufgeprägt, so dass das abzusaugende Material der Saugmittelschicht 10 ebenfalls in die Absaugung 12 gelangt. Die Absaugung 12 wiederum muss jedoch nicht im ersten Hohlräum 11 angeordnet sein. Vielmehr kann sie auch im zweiten Hohlräum 13 vorliegen. Weiterhin besteht die Möglichkeit, dass die Absaugung über einen größeren Bereich erfolgt, so dass die Schlitze 4 einen längeren Weg durch die Absaugung 12 durchqueren. Dadurch gelingt es, vorzugsweise mit relativ geringen Drücken das Material vom zweiten Band 9 abzuheben und dauerhaft zu entfernen.

diesem Bereich vollständig entfernt wird. Der Umfang der Absaugung der zur unteren Öffnung 25 unmittelbar benachbarten Saugmittelschicht ist über verschiedene Parameter einstellbar. Dazu gehören beispielsweise die Umlaufgeschwindigkeit des Ablagebands 14 sowie des Rollensystems 19, eine Einstellung der jeweiligen Geschwindigkeiten (auch möglich ist die Einstellung einer Geschwindigkeitsdifferenz zwischen Ablageband 14 und der Absauger 20), die Ausgestaltung der unteren Öffnung 25, beispielsweise zusätzliche Absaugöffnungen entlang der zumindest in die Saugmittelschicht 10 eingreifenden Länge des Absaugers 20, ein Luftvolumenstrom wie auch ein Volumen selbst, das abgesaugt, eine Gasdurchlässigkeit des Ablagebandes 14, eine Vorverarbeitung der Saugmittelschicht 10 (beispielsweise kann diese als lockeres Pulver unterschiedlicher Korn durchmesserkonsistenz vorliegen, als vorverfestigtes Saugmittelmaterial wie auch beispielsweise in Form von untereinander befestigter Körner, insbesondere verklebter Körner, vorzugsweise als verhärtete Schicht). Bei der in Fig. 3 wie auch Fig. 2 dargestellten Vorrichtungen sind vorzugsweise die mit der Saugmittelschicht 10 unmittelbar in Kontakt geratenden Oberflächen so ausgebildet, dass die Saugmittelschicht 10 nicht an diesen Oberflächen haften bleibt, wenn diese Oberflächen von der Saugmittelschicht 10 entfernt werden. Dieses erfolgt beispielsweise über eine entsprechende Auswahl des Materials der Oberfläche, einer entsprechenden Oberflächenvergütung beispielsweise in Form einer Beschichtung. Insbesondere wird angestrebt, dass die Adhäsionsneigung dieser Oberfläche gegenüber der Saugmittelschicht 10 geringer ist als eine Festigkeit und damit Integrität der Saugmittelschicht 10 an zumindest ihrer Oberfläche, insbesondere auch über den gesamten Materialquerschnitt der Saugmittelschicht 10.

Fig. 4 zeigt eine dritte Vorrichtung 27 zur Herstellung einer Sauglage als Laminat. Die Vorrichtung 27 verwirklicht ebenso wie die aus Fig. 3 dargestellte zweite Vorrichtung 17 die Idee eines teilflächigen Kontaktes einer Absaugung mit der Saugmittelschicht 10. Vorzugsweise ist dieser teilflächige Kontakt auf einer Absaugeinrichtung wie in Form eines Absaugers beschränkt. Fig. 4 zeigt eine Ausgestaltung, bei der auf einem Transportband 28 das Material einer Saugmittelschicht 10 in Richtung des Pfeiles fortbewegt wird. Die dritte Vorrichtung 27 weist eine ebenfalls umlaufende
Absaugvorrichtung 29 auf. Die Absaugvorrichtung hat eine erste Transportrolle 30, eine zweite Transportrolle 31 sowie ein Führungsband 32. Im Führungsband 32 sind Saugstutzen 33 eingelassen. Die Saugstutzen 33 werden durch das Führungsband 32 um die Transportrollen 30, 31 geführt. Dabei treten sie in Kontakt mit der Saugmittelschicht 10. In einem Inneren 34 ist ein Saugkasten 35 angeordnet. Gelangen die Saugstutzen 33 mit dem Saugkasten 35 in Kontakt, wird das im Bereich der Saugstutzen 33 angeordnete Material der Saugmittelschicht 10 abgesaugt. Der Saugkasten 35 ist vorteilhafterweise so ausgebildet, dass ein Absaugen aufhört, bevor die Saugstutzen 33 keinen Kontakt mehr mit der Saugmittelschicht 10 bzw. mit dem Transportband 28 haben. Dadurch wird verhindert, dass bei einem Abheben der Saugstutzen 33 durch Weiterführung entlang der zweiten Transportrolle 31 noch seitlich Material von der Saugmittelschicht 10 abgesaugt oder auch wieder zurückfallen könnte. Vorzugsweise weisen die Saugstutzen 33 der Fig. 4 wie auch beispielsweise bei anderen technischen Weiterbildungen in die Saugmittelschicht 10 eingreifende oder angrenzende Vorrichtungen eine derartige Geometrie auf, dass ein Randbereich 36 weitestgehend unbeschädigt bleibt. Durch entsprechende Gestaltung, beispielsweise in konischer, in gerundeter, in konvexer, kegeliger oder sonstiger Art und Weise, besteht die Möglichkeit, einen genau definierten Randbereich 36 innerhalb der Saugmittelschicht 10 nach erfolgter Absaugung zu erhalten.

Fig. 5 zeigt eine vierte Vorrichtung 37 zur Herstellung einer Sauglage als Laminat. Die vierte Vorrichtung 37 weist anstatt eines umlaufenden Bandes eine Trommel 38 auf, um eine Absaugung von Material der Saugmittelschicht 10 zu erzielen. Die Trommel 38 ist ein Hohlzylinder, in dessen äußeren Rand 39 Einsätze 40 angeordnet sind. Anstatt der Einsätze 40 kann die Trommeloberfläche auch mit Bohrungen oder entsprechend geformten Ausstülpungen versehen sein. Vorzugsweise ist ein Teil der Einsätze 40 von der Oberfläche der Trommel 38 hervorstehend und kann auf diese Art und Weise in die Saugmittelschicht 10 eingreifen. Im Inneren der Trommel 38 ist eine Saugvorrichtung 41 angeordnet. Die Saugvorrichtung 41 weist eine erste Begrenzung 42 und eine zweite Begrenzung 43 auf. An einem jeweiligen Ende 44 der Begrenzungen 42, 43 wird mit einer inneren Oberfläche 45 der Trommel 38 dichtend abgeschlossen. Über eine
einen langandauernden Betrieb zu sichern. Weitere Schichten an oder um diese Trägerschicht können weitere Funktionen aufweisen: beispielsweise verbesserte Aufnahme der Saugmittelschicht, gute Durchlässigkeit und Kanalwirkung durchströmender Luft etc.

Fig. 6 zeigt eine fünfte Vorrichtung 52 zur Herstellung einer Sauglage als Laminat. Die fünfte Vorrichtung 52 hat eine Auftragstrommel 53. Eine Oberfläche 54 der Auftragstrommel 53 kann glatt sein, insbesondere auch aufgerauht oder aber auch Mulden aufweisen. Auf die Oberfläche 54 bzw. die Mulden wird über eine Saugmittelschichtzuführung 55 Saugmittelmaterial 56 zugeführt. Die Saugmittelmaterialzuführung kann beispielsweise kontinuierlich wie auch diskontinuierlich erfolgen, so dass vorzugsweise Abschnitte an Saugmittelmaterial 56 entstehen, die untereinander getrennt vorliegen. Beispielsweise kann eine Auftragswalze 57 der Saugmittelschichtzuführung 55 Unterteilungen aufweisen, so dass nicht nur eine Trennung von Saugmittelmaterial 56 in Querrichtung, das heißt parallel zu einer Achse der Auftragstrommel 53, sondern auch in Umfangsrichtung der Auftragstrommel 53 beispielsweise in Form von Spalten erfolgt. Vorzugsweise erfolgt ein Auftrag mit Saugmittelmaterial 56 zumindest in unmittelbarer Nachbarschaft zum höchsten Punkt der Auftragstrommel 53. Insbesondere kann ein Auftrag auch etwas vor diesem Punkt 58 vollzogen werden. Dadurch wird gewährleistet, dass sich ein gleichmäßiger Materialauftrag auf der Auftragstrommel 53 vollzieht. Vorzugsweise nicht allzu weit von dem Auftragen des Saugmittelmaterials 56 wird über eine erste Zuführung 59 eine erste Lage 60 zur Auftragstrommel 53 geführt und in Kontakt mit dem Saugmittelmaterial gebracht. Durch Anpressrollen 61 wird gewährleistet, dass das Saugmittelmaterial 56 wie auch die erste Lage in ihrer Position verbleiben. Vorzugsweise wird über eine Bindemitteleinrichtung 62 ein Bindemittel auf die erste Lage 60 so aufgetragen, dass das Bindemittel quer zu einer Bewegungsrichtung der ersten Lage 60 zwischen getrennt voneinander angeordneten Saugmittelschichten zum Liegen kommt. In Anschluss hieran wird eine zweite Lage, die hier nicht näher dargestellt ist, auf die erste Lage 60 und das Saugmittelmaterial 56 aufgebracht. Dort, wo über die
Bindemitteleinrichtung 62 ein Bindemittel vorhanden ist, wird eine Querversiegelung der so entstandenen Sauglage erzielt.


Fig. 7 zeigt eine sechste Vorrichtung 68 zur Herstellung einer Sauglage als Laminat, die ein Band 69 einsetzt. Das Band 69 kann eine aufgerauhte Oberfläche aufweisen. Eine Aufrauhung führt dazu, dass das von einer Saugmittelzuführungseinführung 71 zugeführte Saugmittel 72 kontinuierlich oder, wie dargestellt, partiell auf dem Band 69 abgelegt und dort einer guten Haftung unterworfen ist. Desweiteren kann das Band 69 Vertiefungen 70 aufweisen. In diese Vertiefungen wird Saugmittel 72 eingebracht. Überschüssiges Material kann beispielsweise in das Innere des Bandes 69 geführt werden. Dazu kann das Band 69 beispielsweise maschengitterartig aufgebaut sein, so dass Saugmittel 72 nur auf den entsprechend vorgesehenen Flächen sich ablagern kann. Auch besteht die

Fig. 8 zeigt eine bevorzugte Lösung. Dargestellt ist in schematischer Ansicht eine siebte Vorrichtung 80 zur Herstellung einer Sauglage als Laminat, die eine Hohlwalze 81 mit veränderlichen Ansaugöffnungen 82 aufweist. Die Ansaugöffnung 82 verläuft über einen Winkelbereich 83. Dieser Winkelbereich 83 ist einstellbar durch Verschiebung von in der Hohlwalze 81 angebrachten ersten Sperrsegmenten 84 und zweiten Sperrsegmenten 85. Die ersten Sperrsegmente 84 wie auch die zweiten Sperrsegmente 85 sind jeweils untereinander verbunden, so dass in der Hohlwalze 81 ein innerer Zylinder drehbar angeordnet ist. Der innere Zylinder mit Sperr- und Saugsegmenten dreht sich, während die restlichen Elemente vorzugsweise fest stehen. Durch Verstellung der ersten und zweiten Sperrsegmente 84, 85 kann der offene Winkelbereich 83 verändert werden. Entlang des offenen Winkelbereiches 83 wird eine Verbindung zwischen einer Ableitung 86 und einer Ansaugung 87 hergestellt. Darüber ist steuerbar, wieviel Saugmittel 88 von einer ersten Lage 89 abgesaugt wird. Die Art der Absaugung ist beispielsweise weiterhin über den angelegten Druck 90, über eine

Fig. 9 zeigt beispielhaft einen größeren Ausschnitt einer Vorrichtung 97 zur Herstellung einer Sauglage als Laminat. In diese Vorrichtung 97 ist beispielsweise die in Fig. 8 dargestellte siebte Vorrichtung 80 integrierbar. Von einer ersten Abwickelstation 98 wird eine erste Lage 99 und von einer zweiten Abwickelstation 100 eine zweite Lage 101 einer Weiterverarbeitung zugeführt. Weiterhin besteht die Möglichkeit, anstatt einer ersten und zweiten Abwickelstation 98, 100 auch einen In-line-Prozess zur Herstellung der abgewickelten Lagen zu fahren. Das bedeutet, das Material der ersten bzw. zweiten Lage 99, 101 wird direkt vor der Weiterverarbeitung hergestellt. Auf die erste Lage 99 wird über eine Saugmittelzuführereinrichtung 102 eine Saugmittelschicht 10 auf die erste Lage 99 aufgebracht. Die Saugmittelzuführereinrichtung 102 ist an eine Mischeinheit 103 angeschlossen. Die Mischeinheit 103, beispielsweise ein Rotationsmischer, steht wiederum in Verbindung mit Vorratsbehältern 104. In den Vorratsbehältern 104 sind

Nachdem gemäß der Ausgestaltung nach Fig. 9 von der Saugmittelschicht 10 Saugmaterial abgesaugt wurde, wird die erste Lage 99 in eine Heizungsstrecke 107 geführt. Durch die dort auftretende Wärmeübertragung wird beispielsweise bei Zuführung von Polymermaterial im Saugmittel 72 letzteres aufgeweicht, wenn nicht gar zum Schmelzen gebracht. Dadurch kleben die Körner des Saugmaterials untereinander und bilden eine stabile Saugmittelschicht auf der ersten Lage 99 auf. Weiterhin führt eine

Möglichkeit, dass die dritte Bindemitteleinrichtung 111 in ständigem Kontakt mit der zweiten Lage 101 steht.


Fig. 10 zeigt eine schematische Längsansicht durch die Hohlwalze 81 aus Fig. 8. Die Hohlwalze 81 weist für ihren inneren Hohlkern 113, über den ein Unterdruck zur Ansaugung 87 zur Verfügung gestellt wird, eine Lagerung 114 auf. Die Lagerung 114 ist beispielsweise jeweils an der ersten Stirnseite 115 und zweiten Stirnseite 116 angeordnet. Eine Verbindung 117 zur nicht näher dargestellten Unterdruckerzeugungseinheit wird über eine beispielsweise sich mittrehende Drehdurchführung 118 hergestellt. Die Drehdurchführung 118 ist gasdicht ausgeführt, so dass bei der Übertragung des Unterdruckes keinerlei Leckage auftritt. Damit über eine Länge 119 der Hohlwalze überall der gleiche Unterdruck zum gleichen Zeitpunkt anliegt, weist der innere Hohlkern 113 vorzugsweise ventilartige Einbauten auf, so dass ein Mindestunterdruck nach Öffnen der Absaugung und Beginnen des Entfernens von Saugmaterial gleichförmig erfolgt. Auf diese Weise sind Saugmittelschichten 10 herstellbar, die eine beliebige Länge 120 aufweisen können, beispielsweise zwischen 45 mm und 181 mm. Längere Saugmittelschichten sind dabei ohne weiteres herstellbar. Ein
Abstand 121 in Längsrichtung zwischen Saugmittelschichten kann stufenlos eingestellt werden. Er beträgt vorzugsweise zwischen 60 mm und 25 mm. Eine Breite 122 der Saugmittelschichten ist beliebig einstellbar und beträgt beispielsweise zwischen 6 mm und 50 mm. Genaue Abmaße der Saugmittelschichten hängen von verschiedenen Parametern ab. Einfluss hat zum einen der spätere Einsatzzweck im Produkt, die Produktionsgeschwindigkeit, die verwendeten Materialien sowie deren aufzutragenden Dicke. Kontinuierlich lassen sich Saugmittelschichten beispielsweise auf einer Breite 123 der ersten Lage von 100 cm und mehr anordnen. Die angegebenen Dimensionen sind auch mittels der anderen Vorrichtungen und Verfahren erzielbar.

Fig. 11 zeigt eine weitere Ausgestaltung einer Absaugung, wobei ein Absaugkanal 124 verwendet wird, der beispielsweise in einer Vorrichtung gemäß Fig. 9 einsetzbar ist. Der Absaugkanal 124, der beispielsweise eine Länge 125 zwischen 200 mm und 800 mm aufweist, wird über einer ersten Lage angeordnet. Der Absaugkanal 124 ist mit einer Unterdruckzuleitung 126 verbunden. Die Unterdruckleitung 126 weist beispielsweise einen Durchmesser 127 auf. Der Absaugkanal 124 wiederum hat eine Höhe 128. Vorzugsweise ist die Höhe 128 des Absaugkanals 124 um den Faktor 1,5 bis vorzugsweise 4 größer als der Durchmesser 127. Die Länge 125 des Absaugkanals 124 wiederum ist vorzugsweise um den Faktor 1,1, insbesondere um den Faktor 1,3 und mehr, länger als die Breite 129 der verwendeten ersten Lage. Der im Absaugkanal 124 bzw. über die Unterdruckzuleitung 126 herrschende Druck wird ebenfalls über ein Magnetventil gesteuert. Dieses erlaubt ein schnelles Öffnen bzw. Verschließen in einem Bereich von weniger als 0,5 s, insbesondere in einem Bereich zwischen 50 ms und 4 ms.

Fig. 12 zeigt eine schematische Ansicht eines Beispiels einer Ansaugöffnung 130. Bei der dargestellten Ausgestaltung ist über der Saugmittelschicht 10 und damit über der ersten Lage 131 eine Maske 132 angeordnet. Die Maske bildet vorzugsweise eine Blende und verhindert mit ihrem Spalt 133, dass bei einer Absaugung mehr Material der Saugmittelschicht 10 entfernt wird als notwendig. Die Maske erlaubt eine genaue Trennung zwischen abzusaugenden Bereichen und nichtabzusaugenden Bereichen insbesondere dadurch, dass eine Fehlströmung aufgrund von Luftströmung aus der
Umgebung unterbleibt. Weiterhin erlaubt die Maske 132 in einer weiteren Ausgestaltung, dass ein gewisser Druck, beispielsweise ein Unterdruck oder ein mechanischer Druck, auf die Saugmittelschicht 10 ausgeübt wird. Vorzugsweise ist der Spalt 133 etwas kleiner als die Ansaugöffnung 130. Bei anderen Ausgestaltungen kann der Spalt 133 jedoch auch größer sein. Die Ansaugöffnung 130 wiederum kann konisch geformt sein, wobei der Innendurchmesser 134 in Strömungsrichtung zu- oder abnehmen kann. Das hängt davon ab, ob eine hohe oder niedrigere Ansauggeschwindigkeit unmittelbar an der Saugmittelschicht 10 erzielt werden soll.

Der Säuberungseinrichtung 142 nachgeordnet befindet sich eine BindemittelzuführEinrichtung 143. Über diese kann partiell oder vollflächig ein Bindemittel auf die erste Lage 141 aufgetragen werden.


Fig. 16 zeigt in schematischer Ansicht eine Sauglage 165 als Laminat. Die Sauglage 165 weist vier Saugkissen 166 auf, wobei die Saugkissen 166 vorzugsweise einen Aufbau aus einer ersten Lage 167, einer dazwischen angeordneten Saugmittelschicht 168 und einer nachfolgenden zweiten Lage 169 aufweisen. Die Saugkissen 166 können jedoch auch mehrere derartige Aufbauten übereinander aufweisen bzw. mehrere Saugmittelschichten besitzen. Dieses ist beispielsweise durch ein Umwalzen der Sauglage 165 oder ein mehrmaliges Beschichten möglich. Weiterhin sind die Saugkissen 166 mit einer Querversiegelung 170 wie auch mit einer Längsversiegelung 171 versehen. Die Querversiegelung 170 wie auch die Längsversiegelung 171 sind vorzugsweise durchgehend, das heißt kontinuierlich. Gemäß einer Weiterbildung sind die Querversiegelung 170 bzw. die Längsversiegelung 171 einzeln oder gemeinsam teilweise auch an definierten Stellen unterbrochen.

Weiterhin ist in Fig. 16 schematisch eine Detektierungseinheit 172 dargestellt. Ein Sensor 173 ist in der Lage, aktiv oder passiv ein Signal von der Sauglage 165 aufzunehmen, was dann von der Detektierungseinheit 172 auswertbar ist. Das aufgenommene Signal kann zum Beispiel Aufschluss über eine Schnittebene, beispielsweise für einen Querschnitt, wie aber auch für einen Längsschnitt durch die Sauglage zur Trennung der Saugkissen 166 geben. Dazu kann die Sauglage

Weiterhin ermöglicht die Erfindung, die einzelnen Sauglagen getrennt voneinander zu einer Transportform zu verpacken. Die einzelnen Saugkissen können dann in einer Weiterverarbeitungsstation gezielt im oder am Endprodukt eingebaut werden. Beispielsweise besteht im Hygiene- wie Inkontinenzbereich dadurch die Möglichkeit, entsprechend der geschlechtsspezifischen Lage der Genitalien die Saugkissen unterschiedlich beispielsweise in einer Windel zu positionieren.

Das vorgeschlagene Verfahren wie auch die Vorrichtungen und Laminate sind zur Verarbeitung von verschiedensten Materialien geeignet. Als erste wie auch zweite Lage sind beispielsweise Webmaterialien wie auch Papier, Vliesstoff, insbesondere Airlaid-Materialien, Film oder sonstige dünnflächige Materialien sowie ein oder mehrlagige Materialmischungen geeignet. Als Pulver wird beispielsweise Saugmaterial wie
Patentansprüche

1. Verfahren zur kontinuierlichen Herstellung eines Laminats (165) mit zumindest einer Pulverschicht (10), wobei eine erste Lage (167) einer zweiten Lage (165) zugeführt wird und auf die erste Lage zumindest die Pulverschicht (10) aufgetragen wird, dadurch gekennzeichnet, dass vor einem Anordnen der zweiten Lage auf die Pulverschicht (10) und auf die erste Lage ein Teil der Pulverschicht (10) von der ersten Lage entfernt wird, wobei getrennt voneinander angeordnete Pulverschichten erzeugt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Verbindungsmittel (164) zumindest streifenförmig zwischen getrennt voneinander angeordneten Pulverschichten zur Erzeugung einer Querversiegelung (170) des Laminats angeordnet wird.


4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass zu der Querversiegelung (170) kontinuierlich eine Längsversiegelung (171) des Laminats (165) erzeugt wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verbindungsmittel (164) zumindest teilweise diskontinuierlich angeordnet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Versiegelung mechanisch erzeugt wird, wobei das Verbindungsmittel eine mechanisch wirkende Verbindung zwischen der ersten und der zweiten Lage bildet.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Kleber zumindest teilweise auf die zweite Lage aufgebracht wird, die nachfolgend der die Pulverschicht (10) tragenden ersten Lage zugeführt wird.

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass erst nach Erzeugung einer vollständigen Versiegelung der Pulverschicht (10) die erste (167) und die zweite (169) Lage geschnitten werden.


10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vollständig versiegelte und voneinander beabstandete Pulverschichten (10) zusammenhängend gelagert und anschließend einer Weiterverarbeitung zugeführt werden, bei der die versiegelten Pulverschichten (10) zumindest teilweise voneinander getrennt werden.


15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mit der Pulverschicht oder anstatt der Pulverschicht ein Material anderer geometrischer Gestalt auf die erste Lage aufgetragen wird.

16. Vorrichtung (97) zur kontinuierlichen Herstellung eines Laminats (110), wobei die Vorrichtung (97) zumindest eine erste Zuführung zum Zuführen einer ersten Lage (99), eine zweite Zuführung zum Zuführen einer zweiten Lage (101) und eine Pulverzuführung aufweist, um zwischen die erste Lage (99) und die zweite Lage (101) zumindest eine Pulverschicht anzuordnen, dadurch gekennzeichnet, dass eine Materialabtragung, insbesondere eine Absaugung, angeordnet ist, um Pulver an definierten Stellen von der ersten Lage (99) vor dem Zuführen der zweiten Lage auf die erste Lage abzutragen, insbesondere abzusaugen, zur Erzeugung von Unterbrechungen entlang einer Pulverstrecke.

17. Vorrichtung zur kontinuierlichen Herstellung eines Laminats (165), wobei die Vorrichtung zumindest eine erste Zuführung zum Zuführen einer ersten Lage (147), eine zweite Zuführung zum Zuführen einer zweiten Lage und eine Pulverzuführung aufweist, um zwischen die erste Lage und die zweite Lage zumindest eine Pulverschicht (10) anzuordnen, dadurch gekennzeichnet, dass zumindest ein Steg (148) quer zu einer Bewegungsrichtung auf der ersten Lage (147) aufbringbar ist, um eine Begrenzungsfläche für aufzutragendes Pulver zu bilden, wobei der Steg (148) so ausgebildet ist, dass eine Fläche auf
der ersten Lage (147) freigehalten wird, damit die Fläche nachfolgend einen Teil einer Querversiegelung (170) des Laminats bilden kann.

18. Vorrichtung zur kontinuierlichen Herstellung eines Laminats, wobei die Vorrichtung zumindest eine erste Zuführung für eine erste Lage, eine zweite Zuführung für eine zweite Lage und eine Pulverzuführung aufweist, wobei die Pulverzuführung zumindest ein Pulver auf der ersten Lage anordnet, bevor die zweite Zuführung die zweite Lage der ersten Lage zuführt, dadurch gekennzeichnet, dass eine Bindemitteleinrichtung zur Erzeugung einer Querversiegelung zu der zweiten Zuführung derart angeordnet ist, dass ein Bindemittel auf eine Seite der zweiten Lage auftragbar ist, die anschließend mit einer Seite der ersten Lage verbunden wird, auf die eine Pulverschicht aufgetragen ist.

19. Vorrichtung (97) nach Anspruch 16, 17 oder 18, dadurch gekennzeichnet, dass eine Ablegeeinrichtung nachgeschaltet ist, die einzelne oder miteinander verbundene, durch vollständige Versiegelung voneinander getrennte Pulverschichten aufnimmt.

20. Vorrichtung (97) nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass die Vorrichtung, insbesondere eine Ablageeinrichtung, Detektierungsmitteil aufweist, mittels denen Abschnitte des Laminats mit und ohne Pulverschicht unterscheidbar sind.

21. Laminat (165) mit zumindest einer ersten Lage (167), einer zweiten Lage (169) und einer Pulverschicht (168), die zwischen der ersten Lage (167) und der zweiten Lage (169) angeordnet ist, dadurch gekennzeichnet, dass eine Querversiegelung (170) zumindest teilweise ein anderes Bindemittel aufweist als eine Längsversiegelung.

22. Laminat nach Anspruch 21, dadurch gekennzeichnet, dass eine aufzuwendende Kraft zur Zerstörung einer Querversiegelung (170) gegenüber der bei einer Längsversiegelung (171) aufzuwendenden Kraft größer ist oder umgekehrt.
23. Laminat (165) nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass das Laminat ein Markierungsmitte aufweist, anhand dessen eine Schnittlinie detektierbar ist.

24. Laminat hergestellt nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das Laminat ein Saugkissen oder Saugtuch bildet.

25. Laminat hergestellt nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das Laminat ein Duftkissen oder Dufttuch bildet.

26. Laminat hergestellt nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das Laminat ein Waschmittelkissen oder Waschmitteltuch bildet.
**INTERNATIONAL SEARCH REPORT**

**A. CLASSIFICATION OF SUBJECT MATTER**

<table>
<thead>
<tr>
<th>IPC</th>
<th>A61F13/15</th>
<th>B32B31/00</th>
<th>B65B9/02</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>A61F</th>
<th>B32B</th>
<th>B65B</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>DE 100 13 958 A (RUITER ERNEST DE) 27 September 2001 (2001-09-27) the whole document</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>US 4 675 209 A (PEDIGREW COLIN) 23 June 1987 (1987-06-23) claims; figures</td>
<td>1,12,16</td>
</tr>
<tr>
<td>A</td>
<td>column 3, line 33 - line 48</td>
<td>13-15, 17, 18, 24-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4 571 924 A (BAHRANI ABDUL S) 25 February 1986 (1986-02-25) claims; figures</td>
<td>8, 9, 15, 21</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 497 072 A (CELATOSE SA) 5 August 1992 (1992-08-05) claims; figures</td>
<td>1, 12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"S" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"M" document member of the same patent family

Date of the actual completion of the international search

29 August 2002

Date of mailing of the international search report

06/09/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlcaan 2
NL - 2280 HV Rijswijk
Tel: (+31)-70-340-2040, Tx: 31 651 epo nl
Fax: (+31)-70-340-3016

Authorized officer

Mirza, A
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 1220100 A1</td>
<td>07-04-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3267217 D1</td>
<td>12-12-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 58155855 A</td>
<td>16-09-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1299994 A1</td>
<td>05-05-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3573243 D1</td>
<td>02-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0188832 A2</td>
<td>30-07-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2084027 C</td>
<td>23-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7094241 B</td>
<td>11-10-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61190406 A</td>
<td>25-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0497072 A1</td>
<td>05-08-1992</td>
</tr>
</tbody>
</table>
# Internationaler Recherchenbericht

### A. Klassifizierung des Anmeldungsgegenstandes

IPK 7 A61F13/15 B32B31/00 B65B9/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

### B. Recherchierte Gebiete

Recherchiertes Mindestpräzisnps (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A61F B32B B65B

Recherchierte aber nicht zum Mindestpräzisnps gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendeter Suchbegriffe)

EPO-Internal, WPI Data, PAJ

### C. Als wesentlich angesehenen Unterlagen

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Artikelnummer</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Zeile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>DE 100 13 958 A (RUIER ERNEST DE) 27. September 2001 (2001-09-27) das ganze Dokument</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4 571 924 A (BAHRANI ABDUL S) 25. Februar 1986 (1986-02-25) Ansprüche; Abbildungen</td>
<td>8,9,15, 21</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 497 072 A (CELATOSE SA) 5. August 1992 (1992-08-05) Ansprüche; Abbildungen</td>
<td>1,12</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind im Anhang mitgeteilt (siehe Anhang Patentfamilie).


Absenderdatum des internationalen Recherchenberichts: 06/09/2002

Name und Postanschrift der Internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5616 Patentamt 2 NL - 2200 H2 Rijswijk Tel: (+31-70) 340-2300, Fax: 31 651 65 650, Bevoolländigt Bediensteter: Mirza, A
<table>
<thead>
<tr>
<th>Im-Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 1220100 A1</td>
<td>07-04-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3267217 D1</td>
<td>12-12-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 58155855 A</td>
<td>16-09-1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1299994 A1</td>
<td>05-05-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3573243 D1</td>
<td>02-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0188832 A2</td>
<td>30-07-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2084027 C</td>
<td>23-08-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7094241 B</td>
<td>11-10-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61190406 A</td>
<td>25-08-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0497072 A1</td>
<td>05-08-1992</td>
</tr>
</tbody>
</table>