

US 20170119861A1

(19) **United States**

(12) **Patent Application Publication**
KAKKIS et al.

(10) **Pub. No.: US 2017/0119861 A1**
(43) **Pub. Date: May 4, 2017**

(54) **METHODS AND COMPOSITIONS FOR THE TREATMENT OF AMYLOIDOSIS**

CI2N 9/64 (2006.01)
A61K 45/06 (2006.01)

(71) Applicant: **Ultragenyx Pharmaceutical Inc.**, Novato, CA (US)

(52) **U.S. Cl.**
CPC *A61K 38/488* (2013.01); *A61K 45/06* (2013.01); *CI2N 9/485* (2013.01); *CI2N 9/6472* (2013.01); *CI2N 9/6478* (2013.01); *A61K 38/4813* (2013.01); *A61K 38/4873* (2013.01); *CI2Y 304/16001* (2013.01); *CI2Y 304/22001* (2013.01); *CI2Y 304/23005* (2013.01)

(72) Inventors: **Emil D. KAKKIS**, San Rafael, CA (US); **Michel Claude VELLARD**, San Rafael, CA (US); **Andrzej SWISTOWSKI**, Petaluma, CA (US)

(21) Appl. No.: **15/338,242**

(22) Filed: **Oct. 28, 2016** (57) **ABSTRACT**

Related U.S. Application Data

(60) Provisional application No. 62/248,713, filed on Oct. 30, 2015.

Publication Classification

(51) **Int. Cl.**

A61K 38/48 (2006.01)
CI2N 9/48 (2006.01)

Methods and compositions for the treatment or prevention of amyloidosis are provided. In some embodiments, the methods comprise administering to the subject a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof. Such methods and compositions may be employed to reduce, prevent, degrade and/or eliminate amyloid formation in the lysosome and/or extracellularly.

FIG. 1A

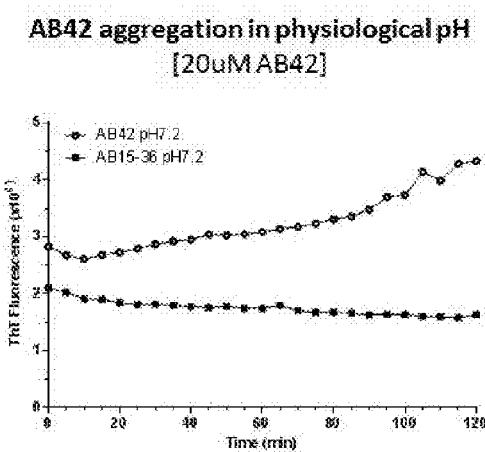
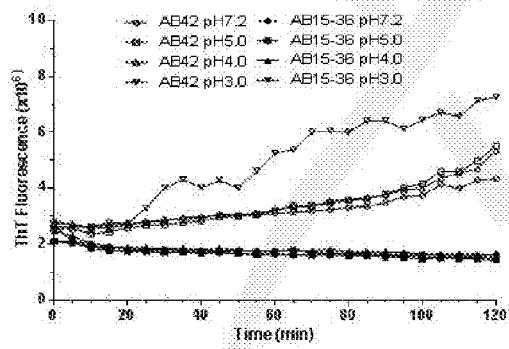
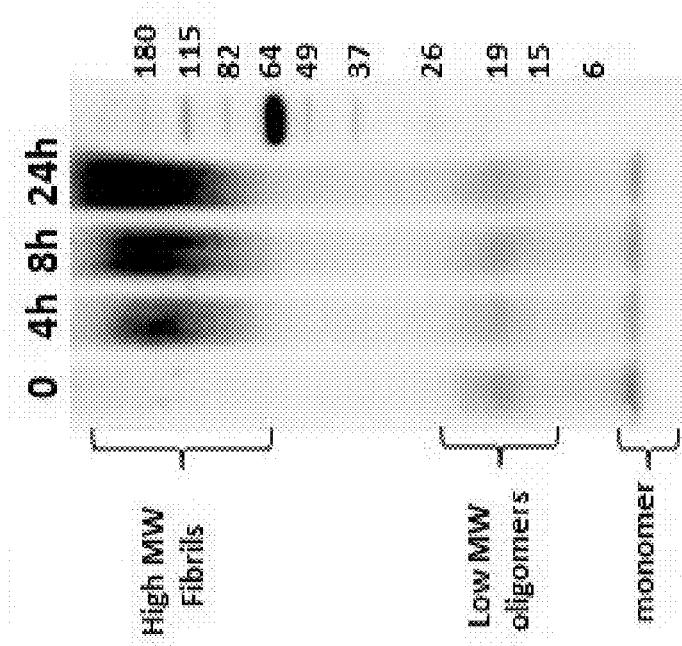


FIG. 1B

**AB42 aggregation in acidic pH
[20uM AB42]**

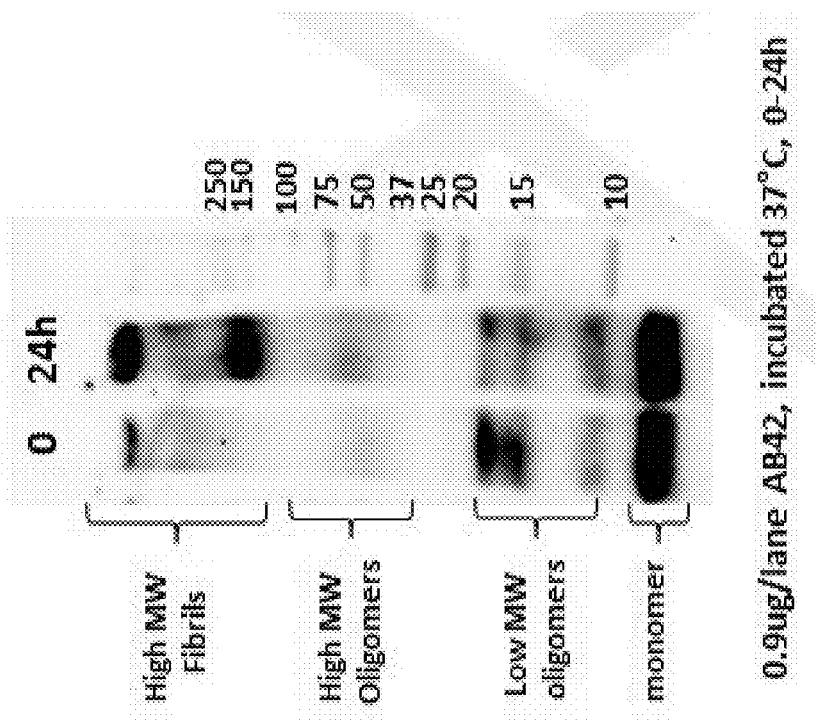

FIG. 1A-B

FIG. 2A

1.2 μ g/lane AB42, incubated 37°C, 0-24h

FIG. 2B

0.9 μ g/lane AB42, incubated 37°C, 0-24h

FIG. 2A-B

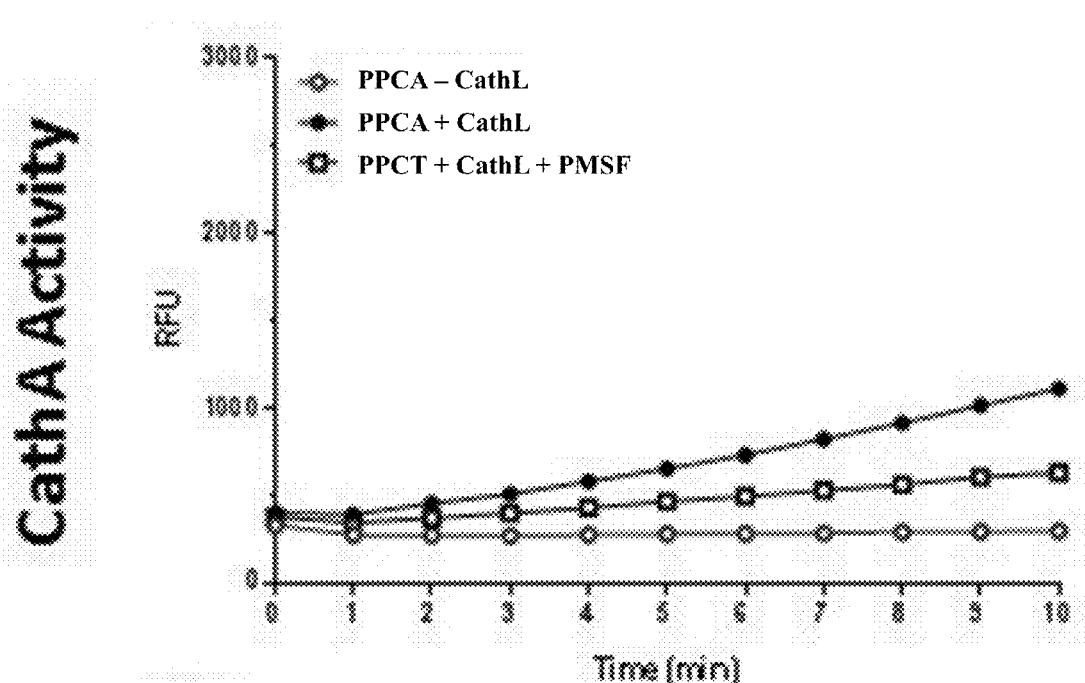


FIG. 3A

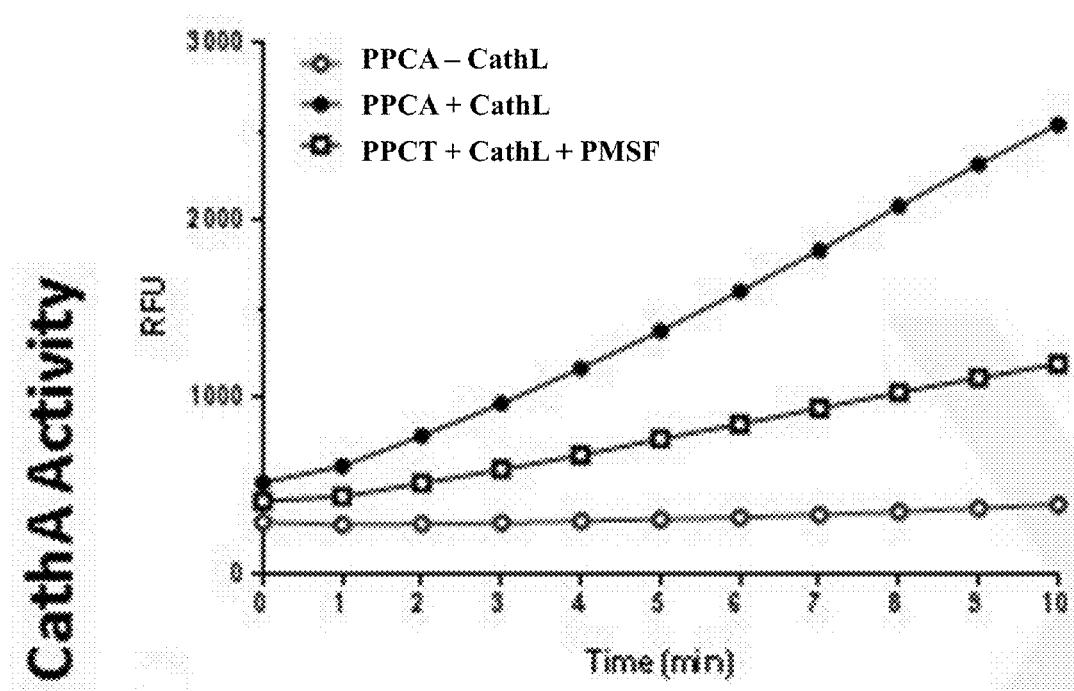


FIG. 3B

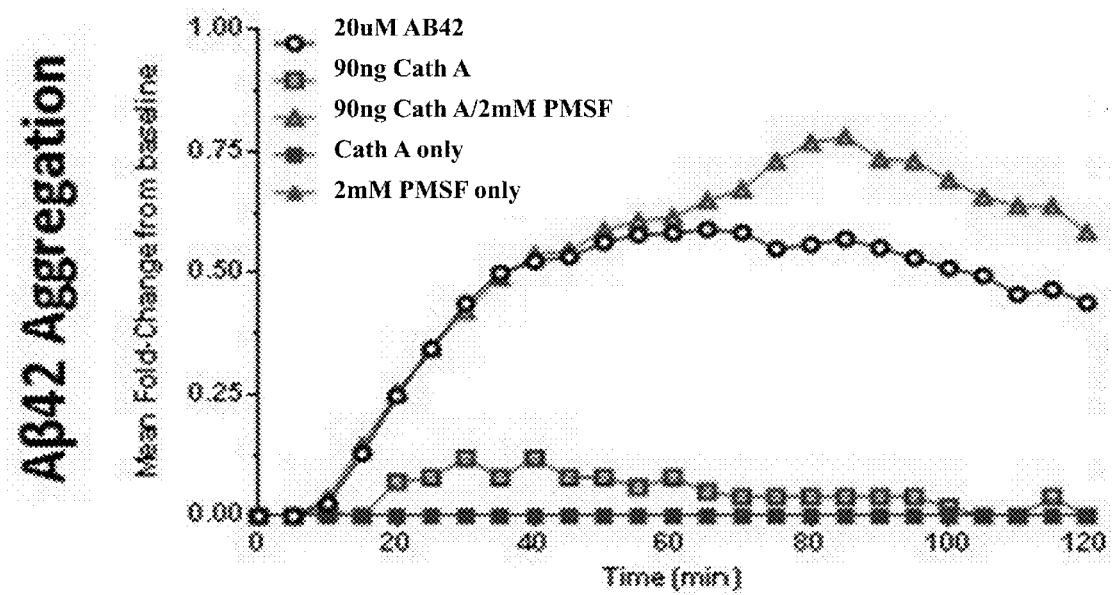
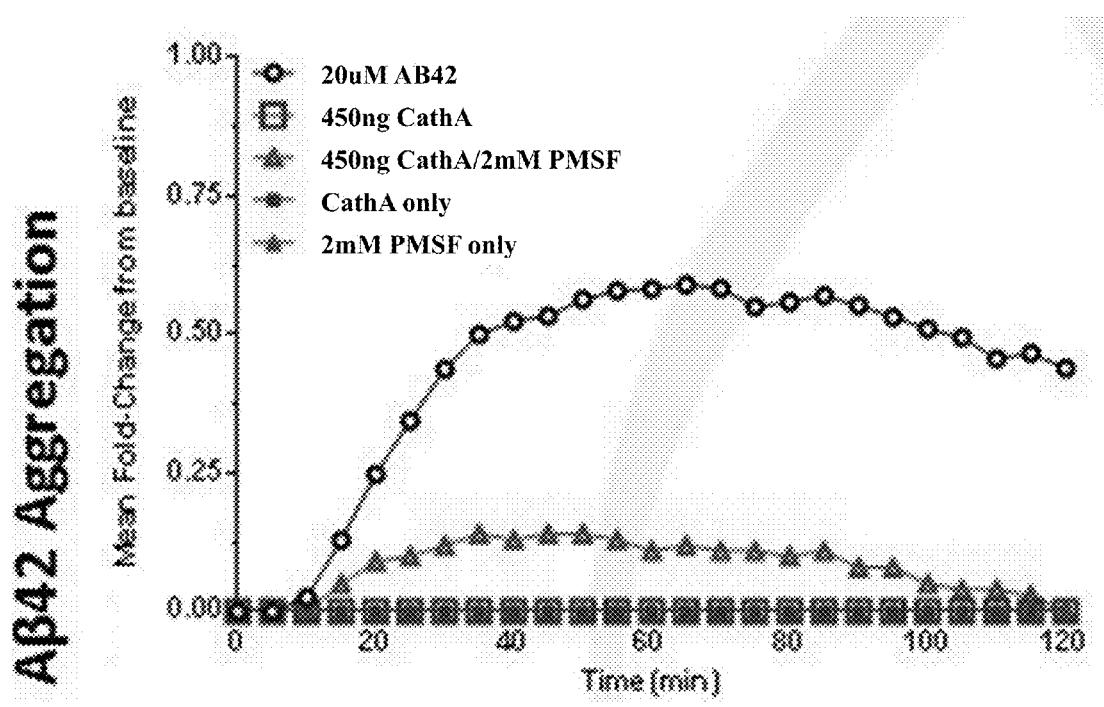



FIG. 3C

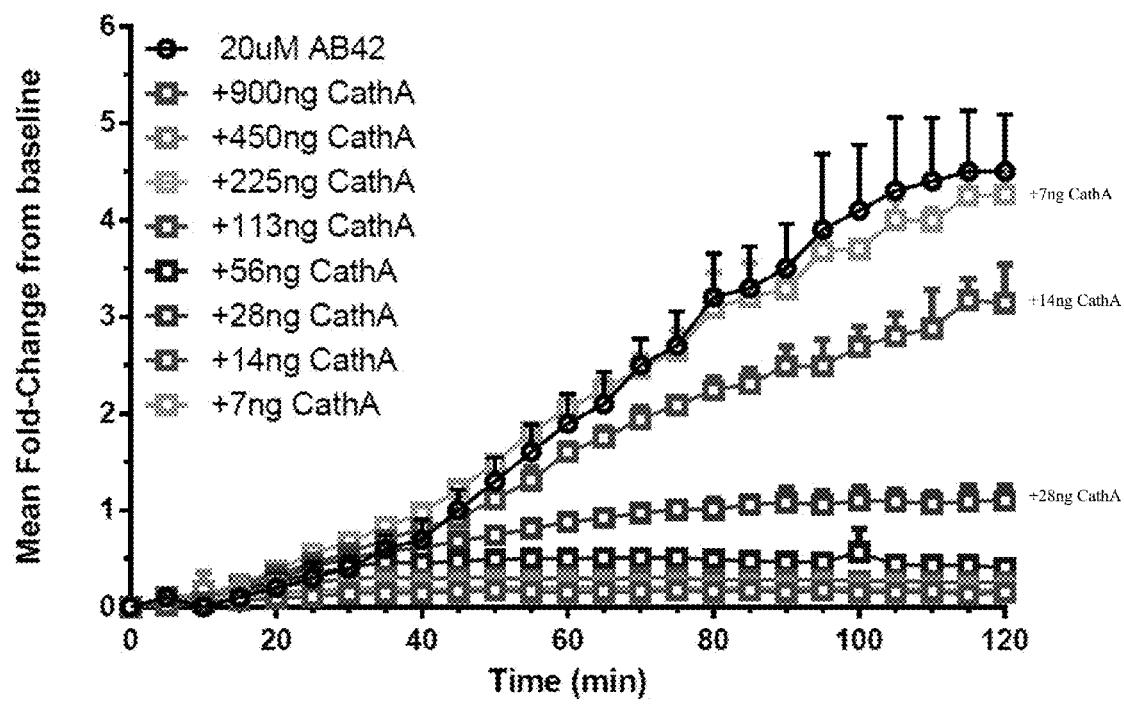


FIG. 4A

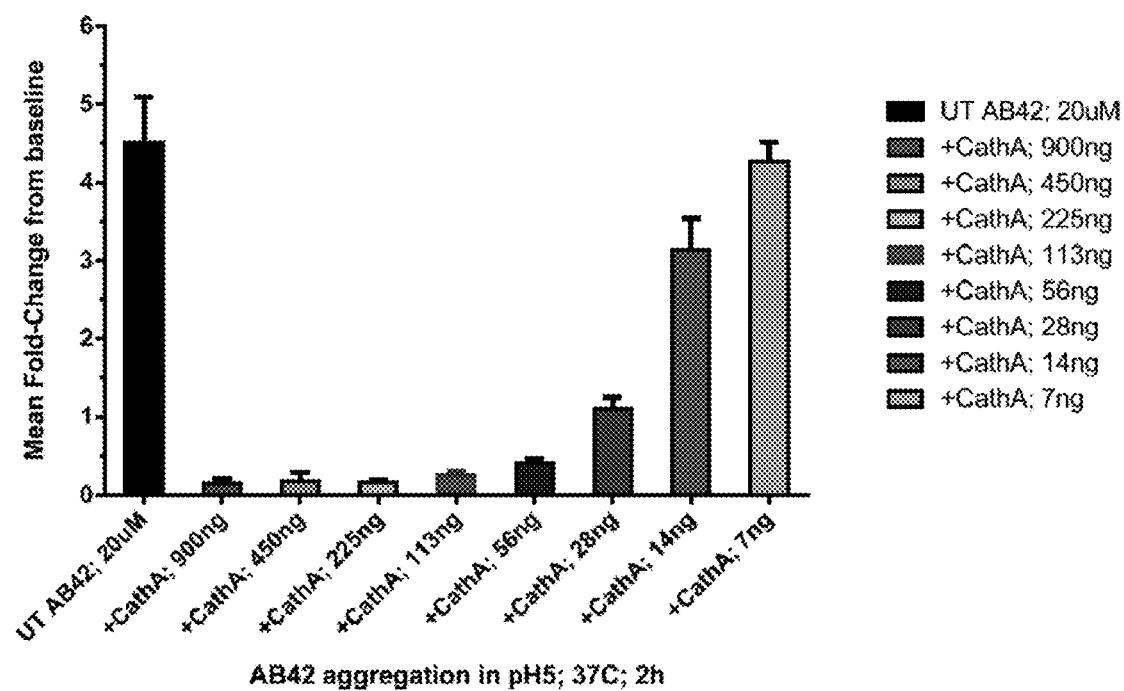


FIG. 4B

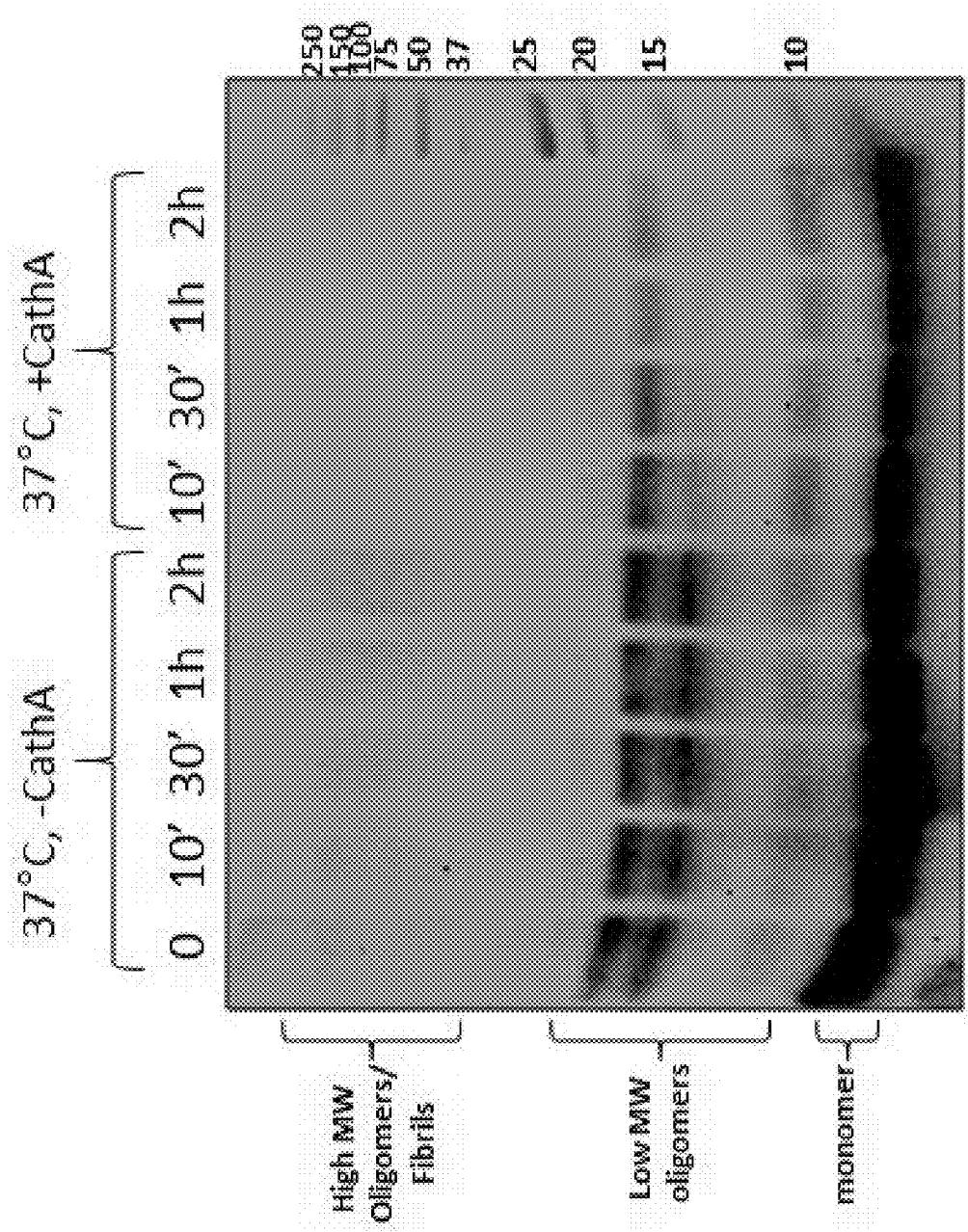


FIG. 5

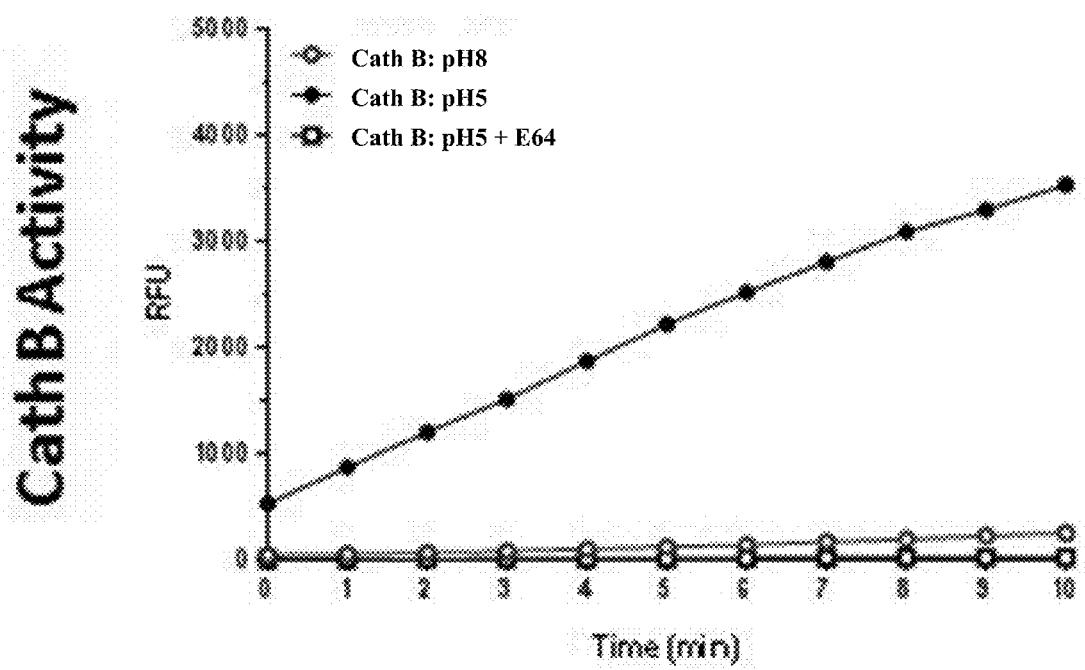


FIG. 6A

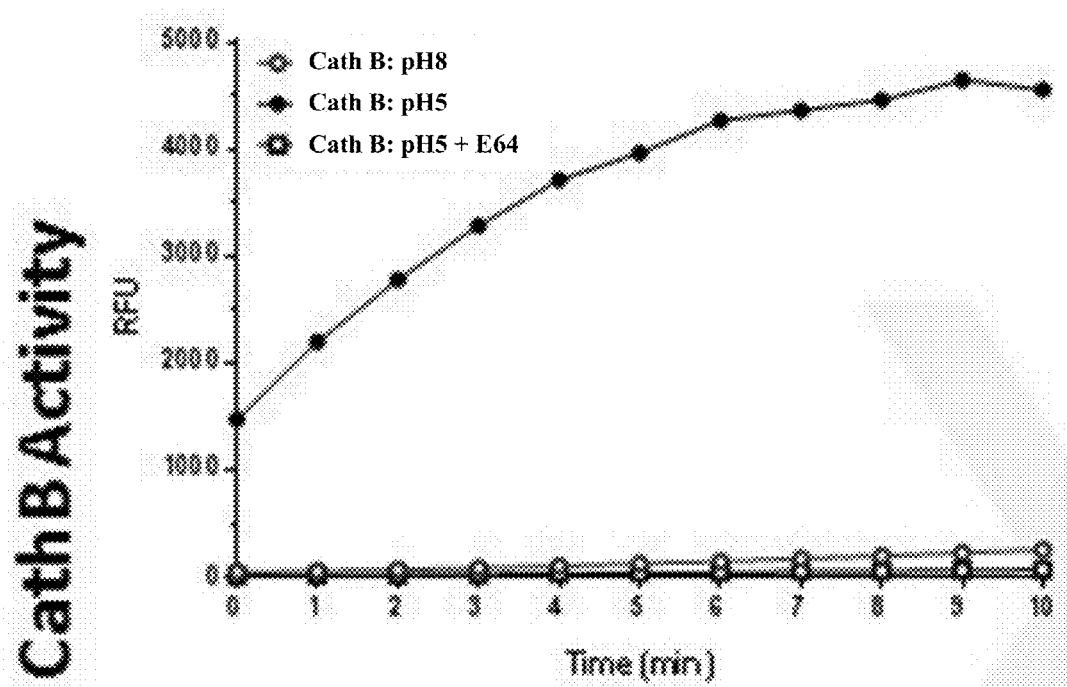


FIG. 6B

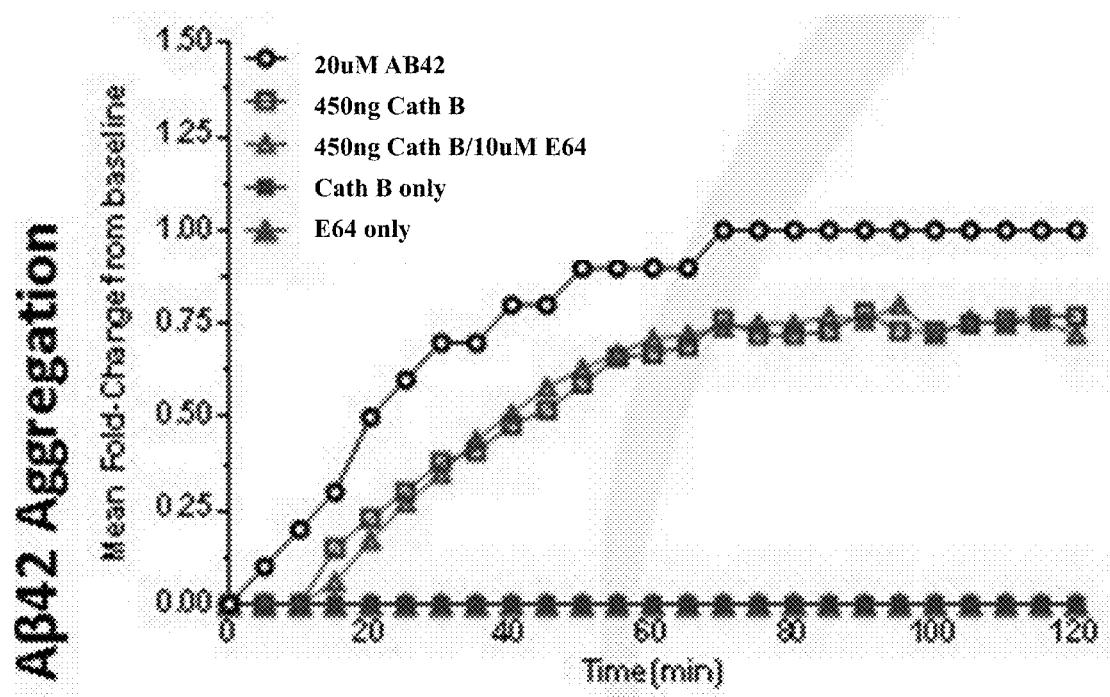


FIG. 6D

FIG. 7A

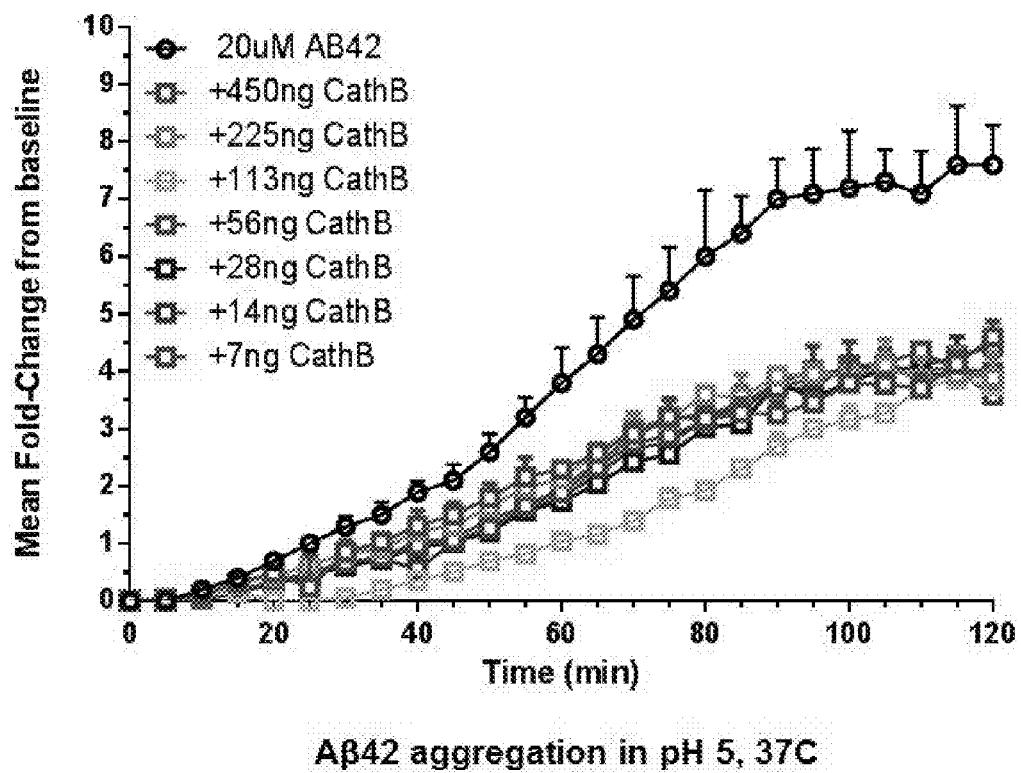


FIG. 7A

FIG. 7B

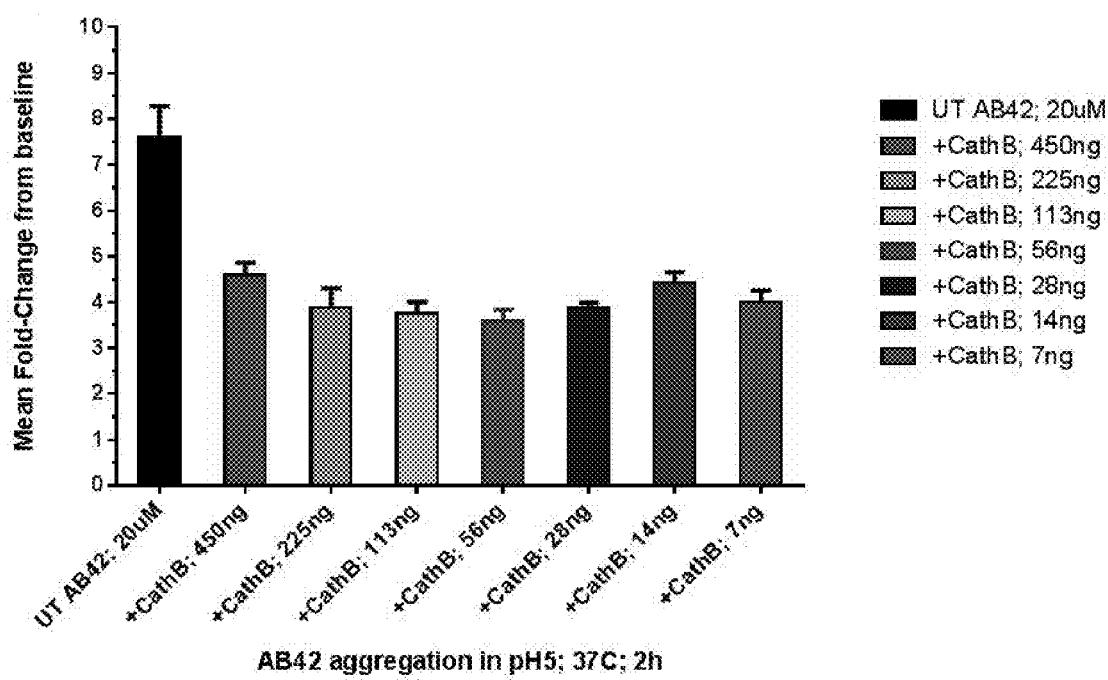


FIG. 7B

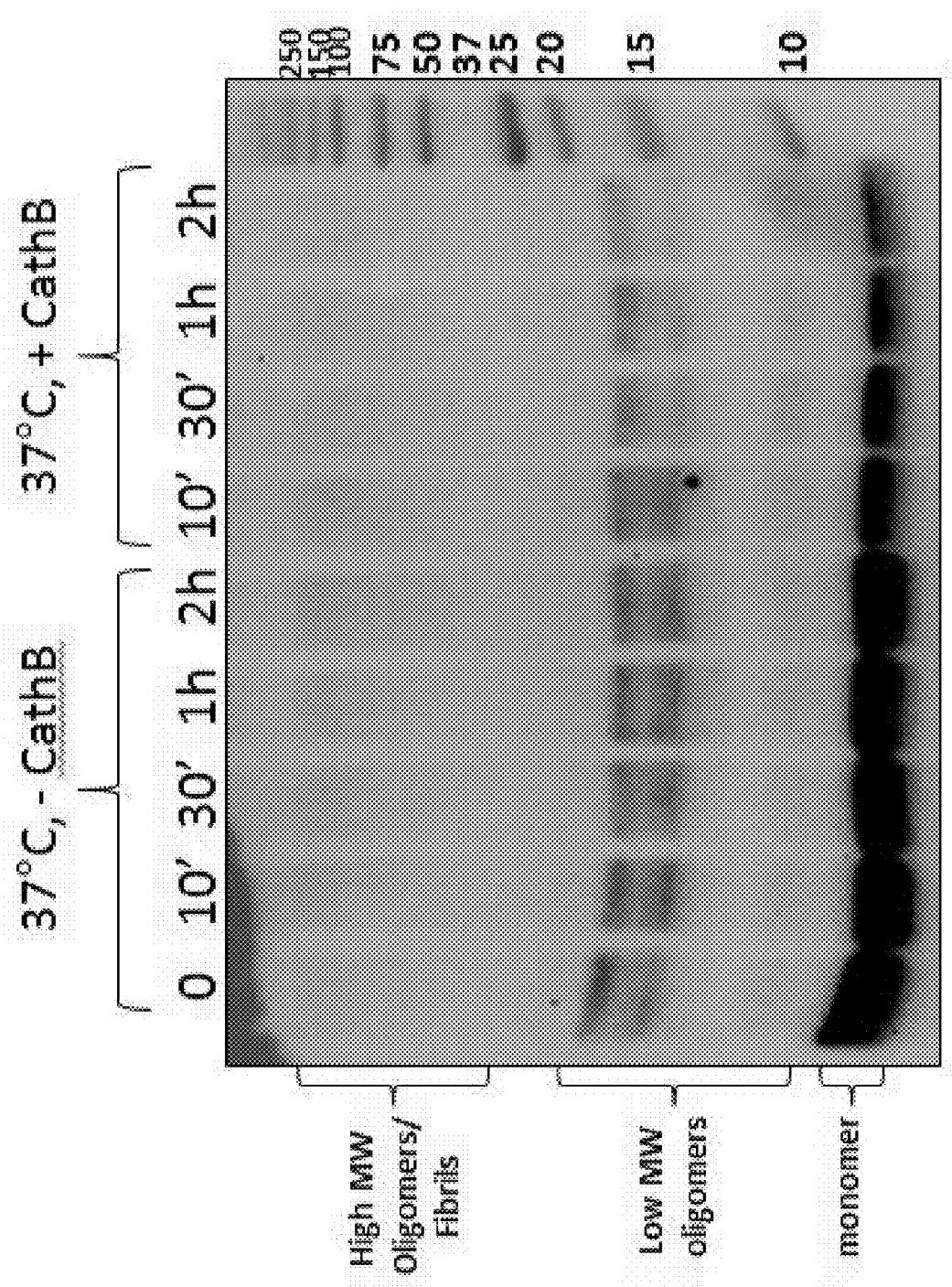


FIG. 8

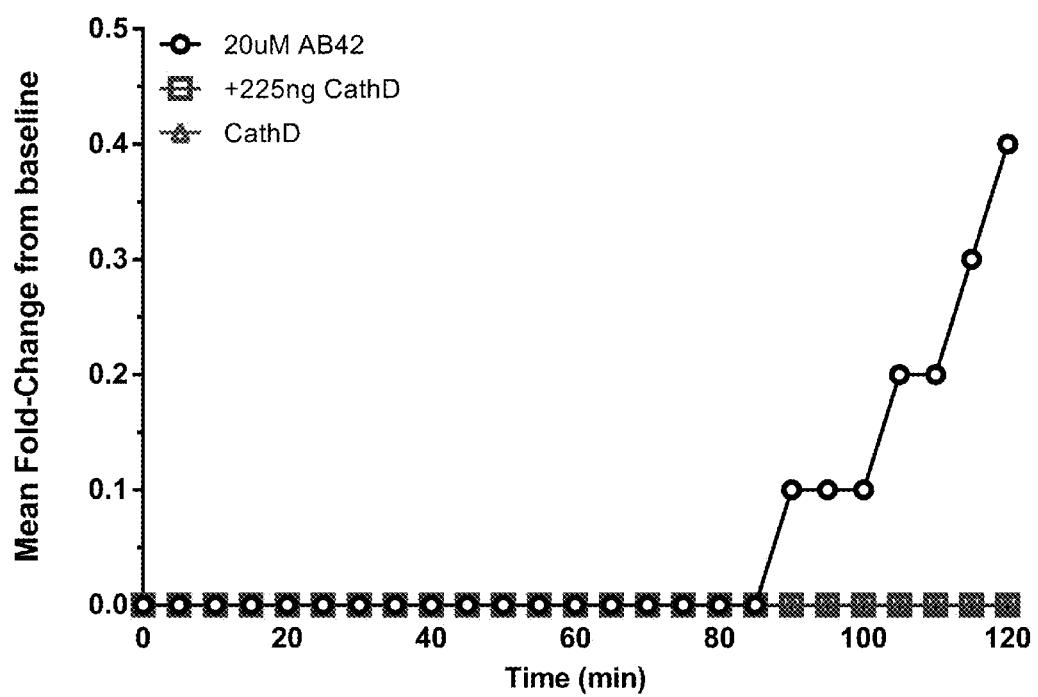


FIG. 9

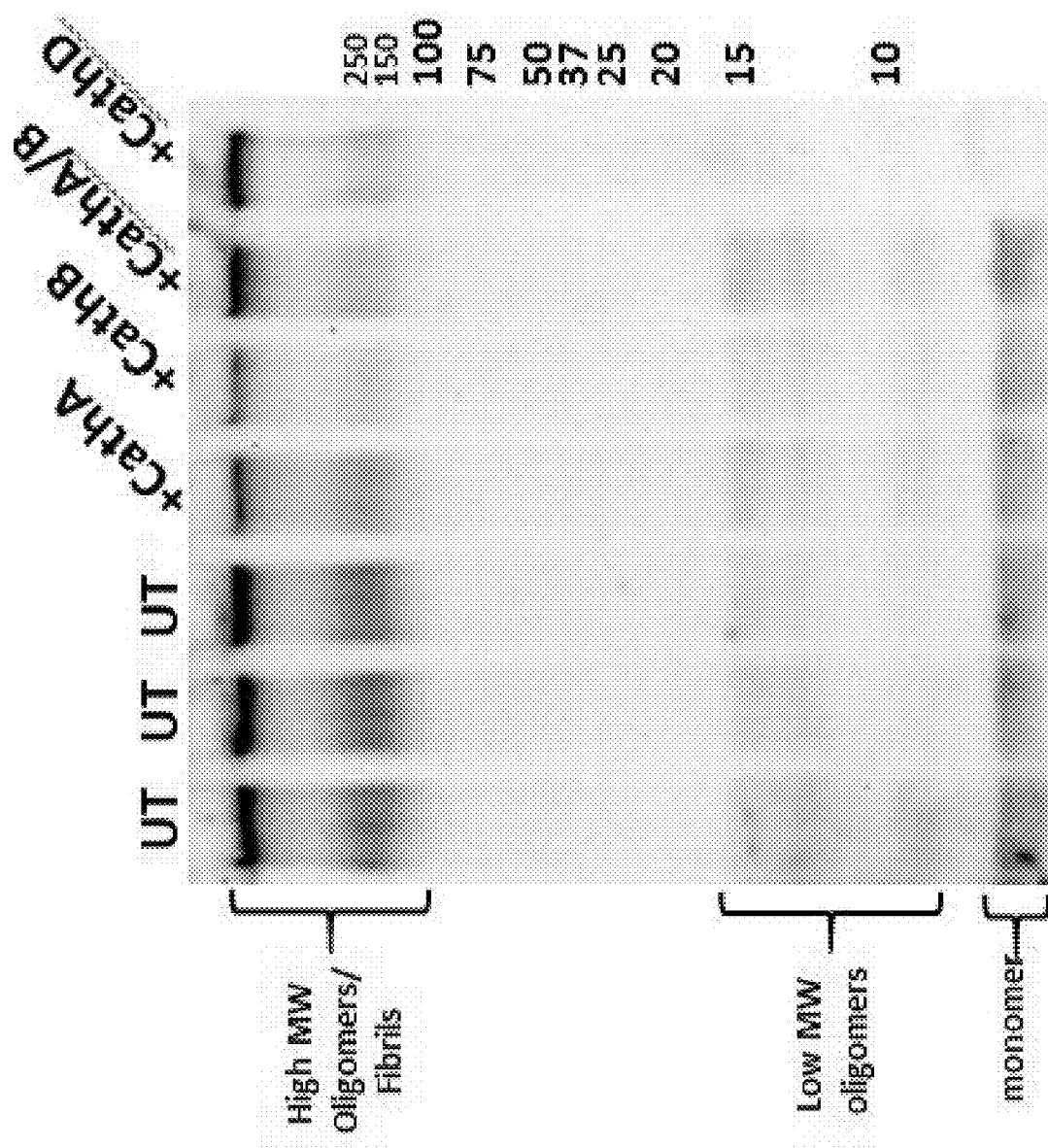


FIG. 10

FIG. 11

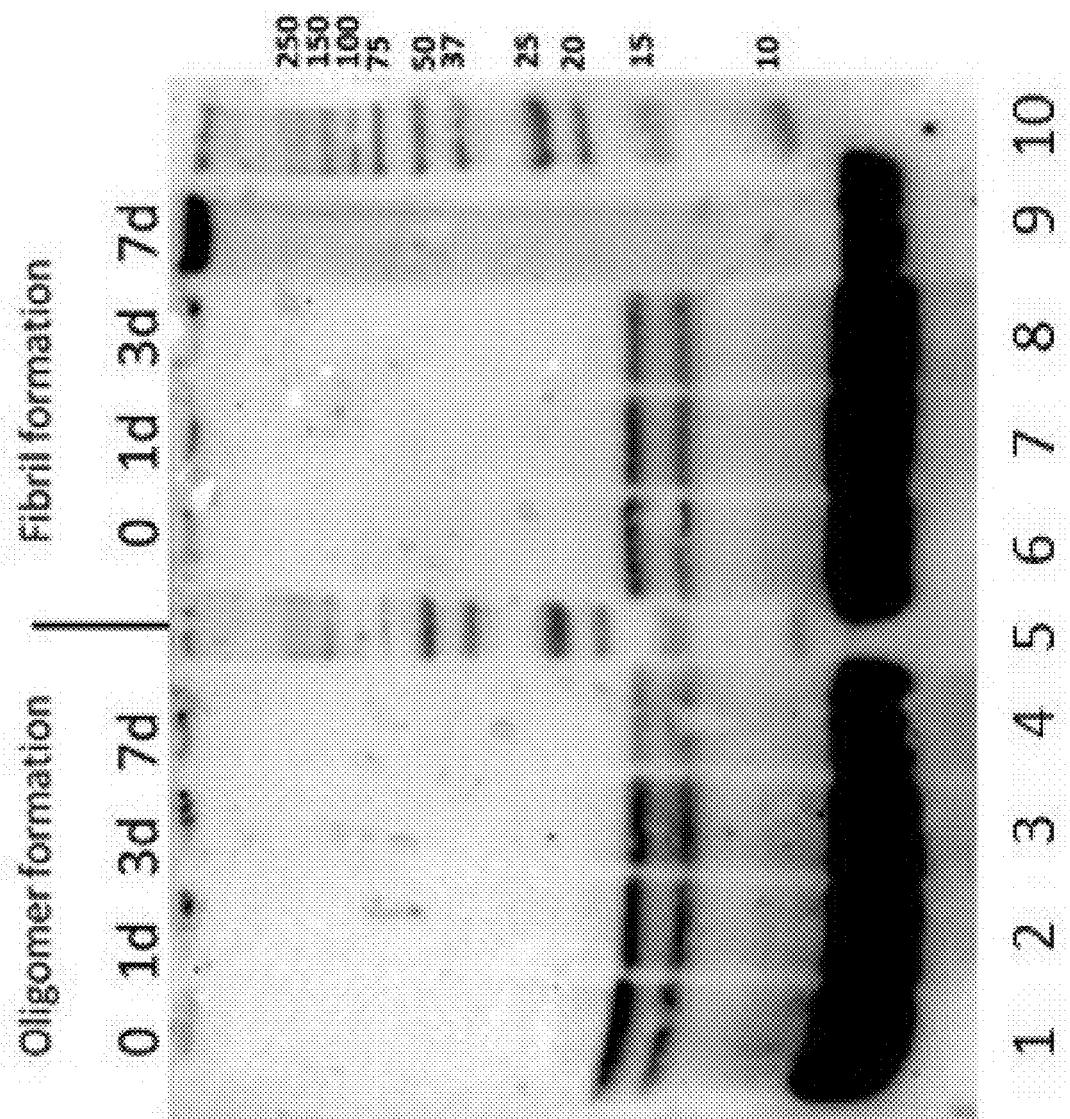


FIG. 12

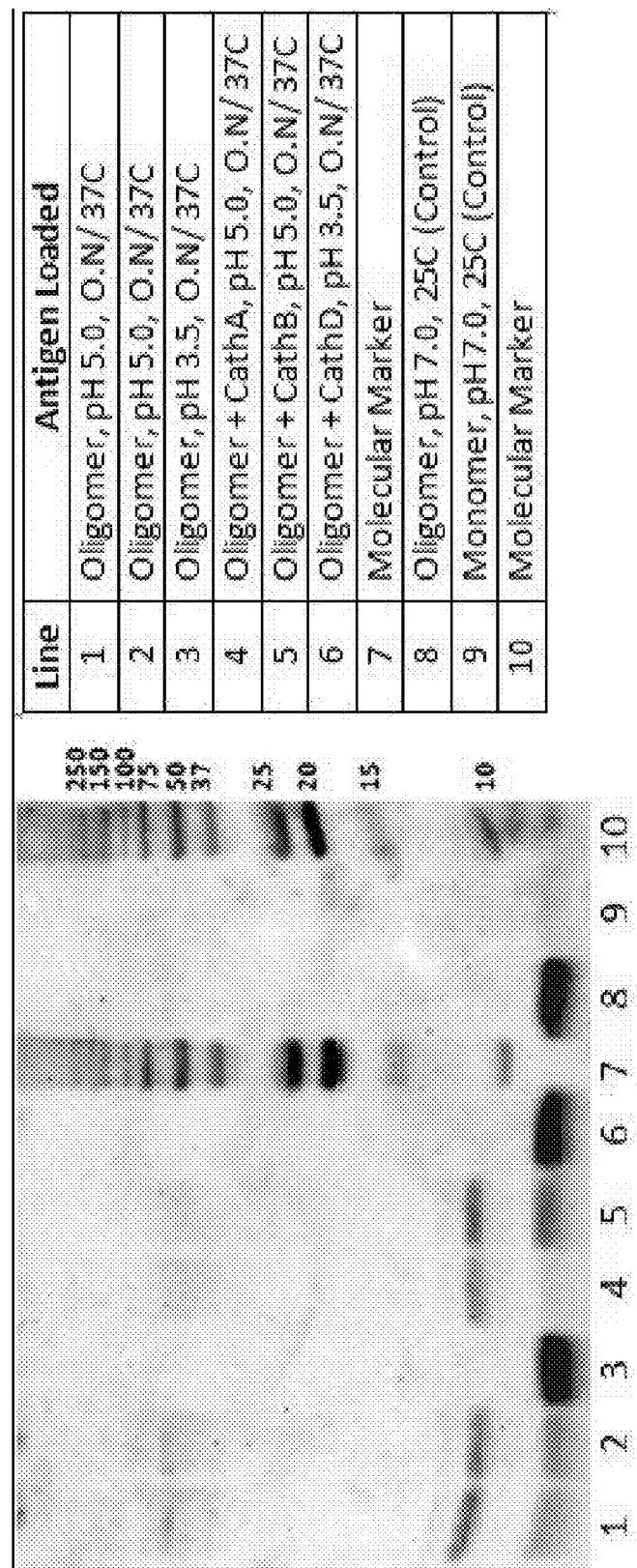


FIG. 13

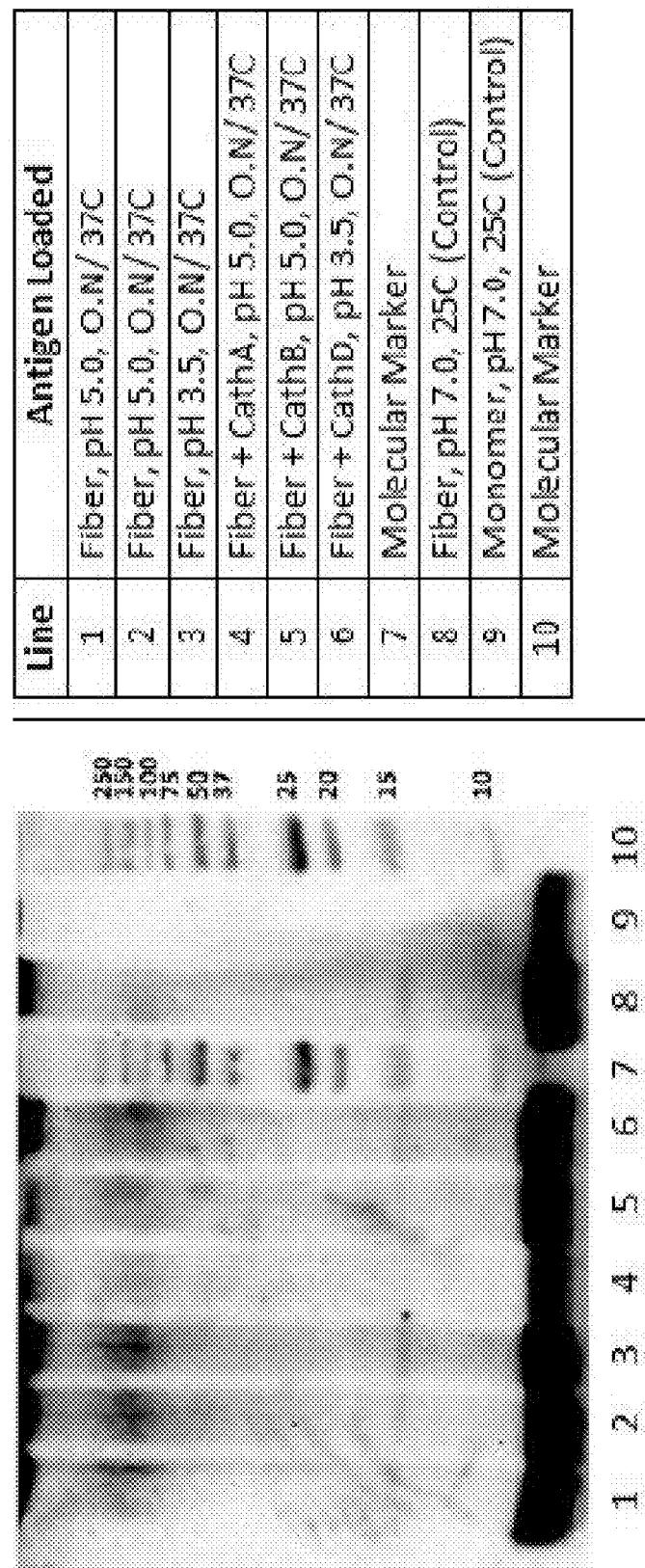


FIG. 14

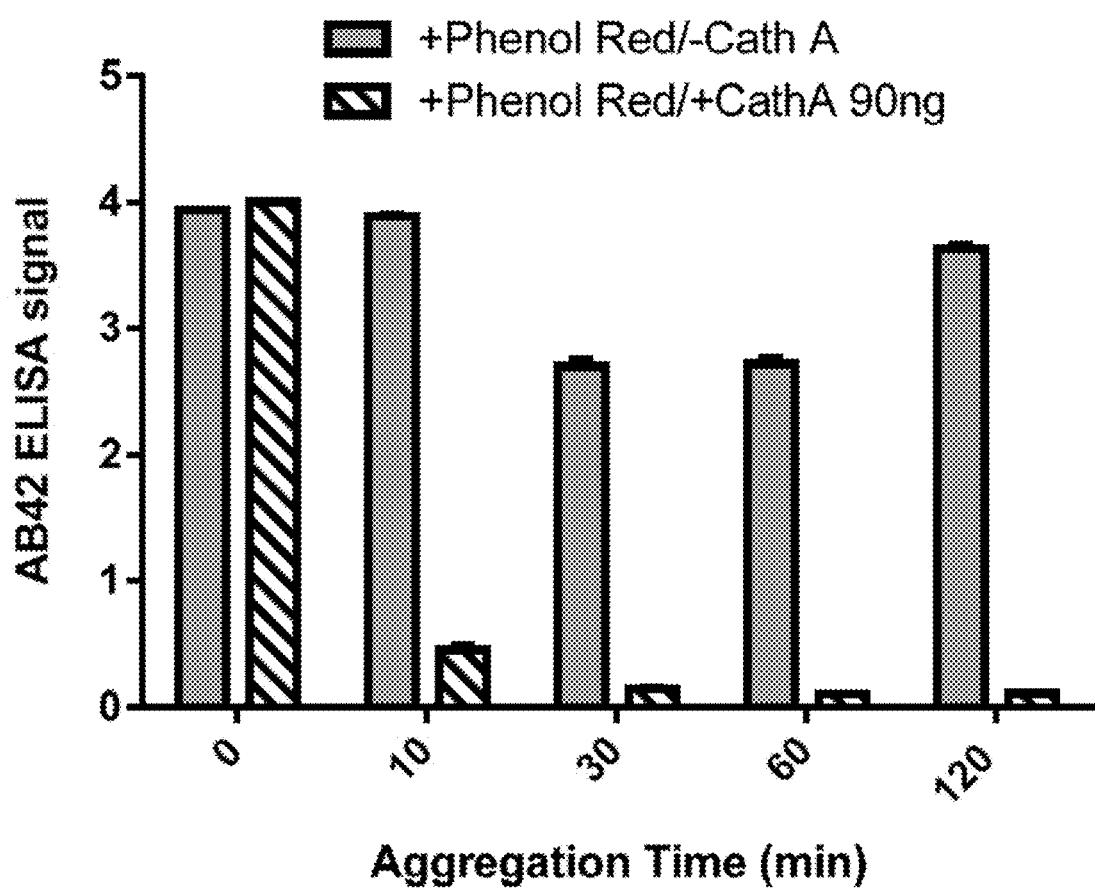


FIG. 15

FIG. 16A

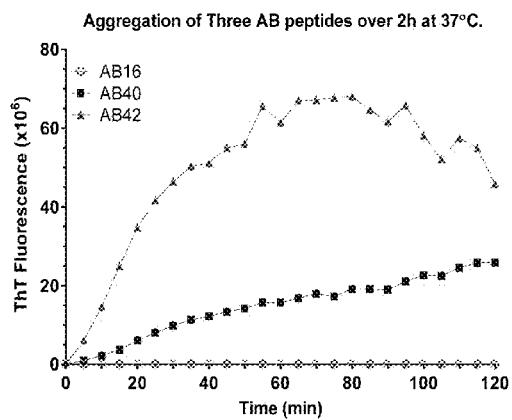


FIG. 16B

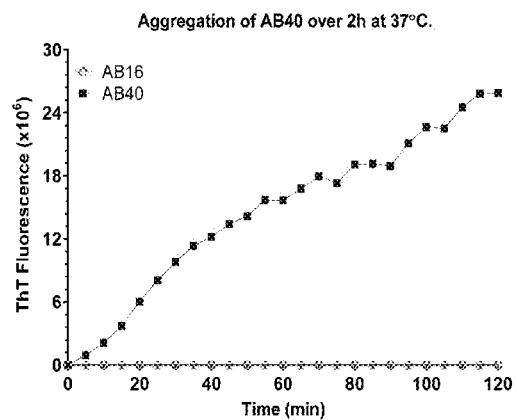


FIG. 16A-B

FIG. 17A

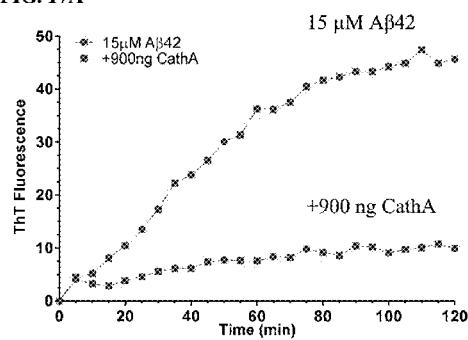


FIG. 17B

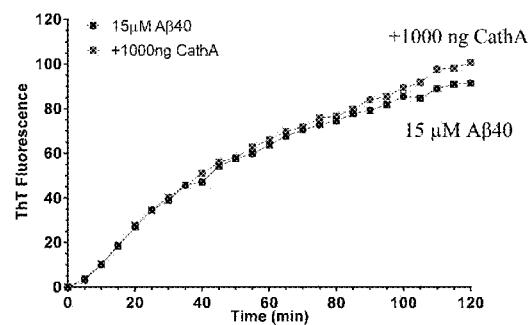


FIG. 17C

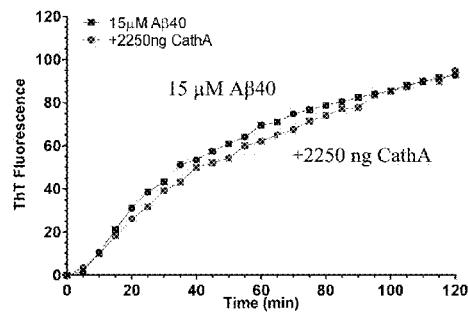


FIG. 17A-C

FIG. 18A

FIG. 18B

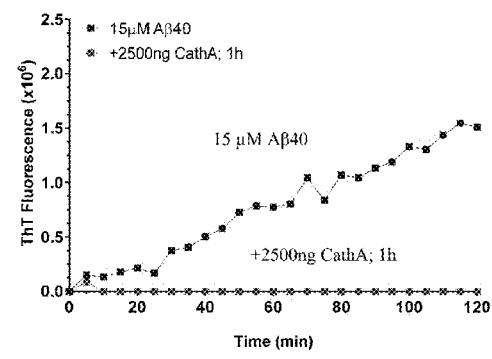


FIG. 18C

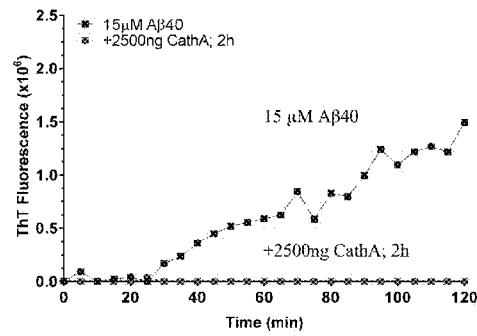
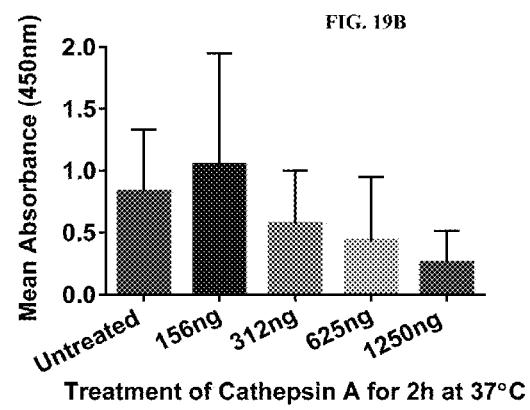
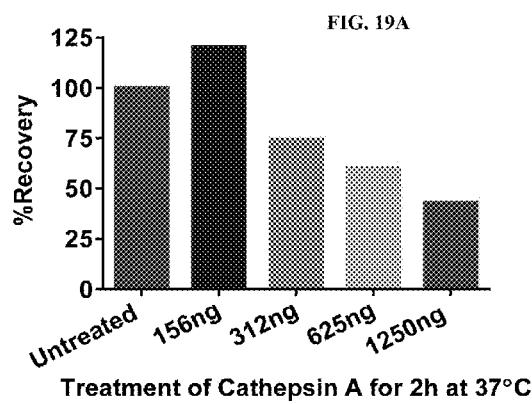




FIG. 18A-C

FIG. 19A-B

FIG. 20A

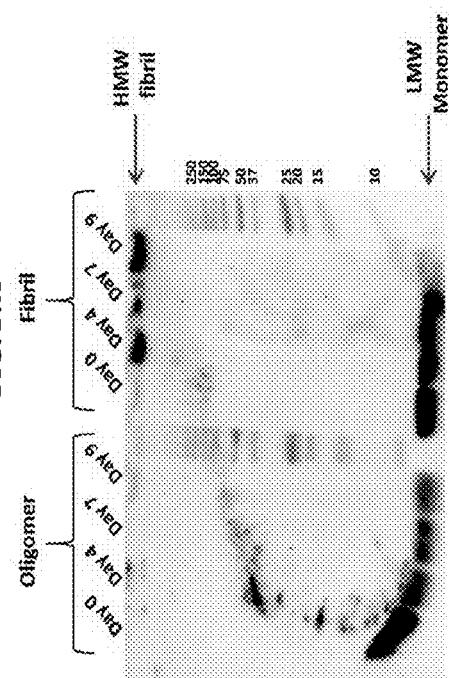


FIG. 20B

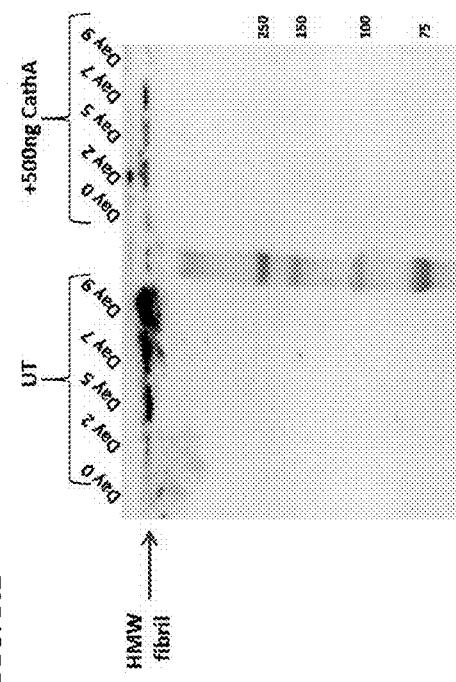


FIG. 20C

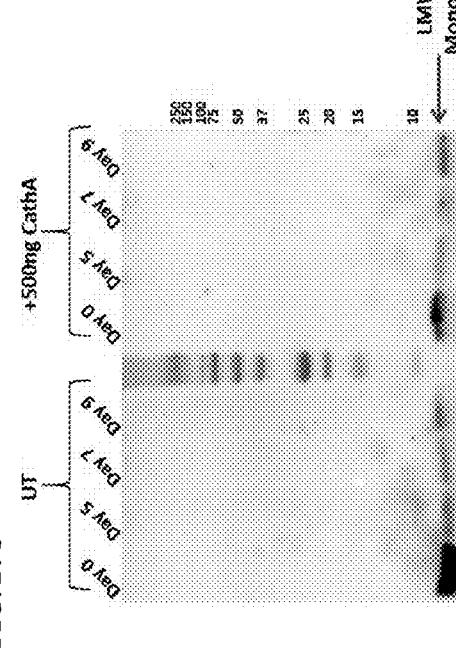


FIG. 20A-C

METHODS AND COMPOSITIONS FOR THE TREATMENT OF AMYLOIDOSIS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application Ser. No. 62/248,713, filed Oct. 30, 2015, which is herein incorporated by reference in its entirety for all purposes.

TECHNICAL FIELD

[0002] The present invention relates to compositions and methods suitable for the prevention or treatment of amyloidosis. For instance, catabolic enzymes are provided to reduce, prevent, or eliminate amyloid formation.

DESCRIPTION OF TEXT FILE SUBMITTED ELECTRONICALLY

[0003] The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: ULPI_034_01US_SeqList_ST25.txt, date recorded: Oct. 21, 2016, file size: 146 kilobytes).

BACKGROUND

[0004] Amyloids are insoluble fibrous protein aggregates sharing specific structural traits, e.g., a beta-pleated sheet. They arise from at least 18 inappropriately folded versions of proteins and polypeptides present naturally in the body. These misfolded structures alter their proper configuration such that they erroneously interact with one another or other cell components forming insoluble amyloid fibrils. They have been associated with the pathology of more than 20 serious human diseases. Abnormal accumulation of these amyloid fibrils in organs may lead to amyloidosis, and may play a role in various neurodegenerative disorders, as well as other disorders.

[0005] The formation of these fibrils involves a passage through the lysosome where the acidic environment allows the formation of the protein aggregates. The amyloids are then released from the cell by exocytosis or by cell lysis.

[0006] Trying to eliminate specific fibrils has been the objective of significant research on amyloidosis but without success. Current treatment of amyloidosis involves chemotherapy agents or steroids, such as melphalan and dexamethasone. However, such treatment is not appropriate for all patients and is not effective in many cases due to its specificity. Therefore, there is a great need for alternatives that may safely and effectively prevent or treat diseases associated with amyloidosis.

[0007] The present invention solves the problem of how to prevent and stop the formation of excessive amyloids which have a very deleterious activity in the body. The present invention also solves the problem of specificity, and is applicable to different sources of amyloids and not restricted to a specific disease. The present invention also helps the degradation of already formed fibrils by keeping the lysosome more functional and ready to digest fibrils through endocytosis.

SUMMARY OF THE INVENTION

[0008] The present invention provides methods of treating or preventing amyloidosis in a subject. In some embodiments, the methods comprise administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof.

[0009] In some embodiments, the catabolic enzyme is selected from the group consisting of protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In some embodiments, the catabolic enzyme acts to prevent the formation of and/or degrade amyloid within the lysosome, i.e., intralysomally. In other embodiments, the catabolic enzyme acts to prevent the formation of and/or degrade amyloid outside the cell, i.e., extracellularly.

[0010] In some embodiments, the catabolic enzyme comprises a PPCA polypeptide, or a biologically active fragment thereof. In some embodiments, the PPCA polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 2, 43, or 45, or a biologically active fragment thereof. In some embodiments, the PPCA polypeptide comprises the amino acid sequence of SEQ ID NO: 2, 43, or 45, or a biologically active fragment thereof.

[0011] In some embodiments, the methods comprise administering a composition comprising a vector, wherein the vector comprises a nucleotide sequence encoding at least one catabolic enzyme of the present invention. In some embodiments, the vector is a viral vector. In some embodiments, the catabolic enzyme is PPCA or a biologically active fragment thereof. In some embodiments, the administration of the PPCA catabolic enzyme comprises administration of a vector encoding a nucleotide sequence having at least 85% identity to SEQ ID NO: 1, 42, or 44. In some embodiments, the nucleotide sequence comprises SEQ ID NO: 1, 42, or 44.

[0012] In some embodiments, the catabolic enzyme comprises a NEU1 polypeptide, or a biologically active fragment thereof. In some embodiments, the NEU1 polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 4, or a biologically active fragment thereof. In some embodiments, the NEU1 polypeptide comprises the amino acid sequence of SEQ ID NO: 4, or a biologically active fragment thereof.

[0013] In some embodiments, the administration of the NEU1 catabolic enzyme comprises administration of a vector encoding a nucleotide sequence having at least 85% identity to SEQ ID NO: 3. In some embodiments, the nucleotide sequence comprises SEQ ID NO: 3.

[0014] In some embodiments, the catabolic enzyme comprises a TPP1 polypeptide, or a biologically active fragment thereof. In some embodiments, the TPP1 polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 6, or a biologically active fragment thereof. In some embodiments, the TPP1 polypeptide comprises the amino acid sequence of SEQ ID NO: 6, or a biologically active fragment thereof.

[0015] In some embodiments, the administration of the TPP1 catabolic enzyme comprises administration of a vector encoding a nucleotide sequence having at least 85% identity to SEQ ID NO: 5. In some embodiments, the nucleotide sequence comprises SEQ ID NO: 5.

[0016] In some embodiments, at least two catabolic enzymes are administered to the subject. In some embodiments,

ments, the at least two catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.

[0017] In some embodiments, the at least two catabolic enzymes comprise PPCA and NEU1.

[0018] In some embodiments, the catabolic enzyme is targeted to the cell lysosome. In other embodiments, the catabolic enzyme is modified to remain outside the cell, i.e., the enzyme is modified to act extracellularly.

[0019] In some embodiments, the catabolic enzyme prevents the accumulation of and/or degrades amyloid in the cell lysosome. In other embodiments, the catabolic enzyme prevents the accumulation of and/or degrades amyloid outside the cell, i.e., extracellularly.

[0020] In some embodiments, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises at least one catabolic enzyme that is targeted to the cell lysosome and at least one catabolic enzyme that remains outside the cell. In some embodiments, the catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In an exemplary embodiment, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises a PPCA catabolic enzyme that is targeted to the cell lysosome and a PPCA catabolic enzyme that remains outside the cell.

[0021] In some embodiments, the methods further comprise the administration of one or more additional drugs for treating or preventing amyloidosis. In some embodiments, the one or more additional drugs is/are selected from melphalan, dexamethasone, prednisone, bortezomib, lenalidomide, vincristine, doxorubicin, and cyclophosphamide.

[0022] In some embodiments, the methods further comprise the administration of one or more drugs that acidifies the lysosome. In some embodiments, the drug that acidifies the lysosome is selected from an acidic nanoparticle, a catecholamine, a β -adrenergic receptor agonist, an adenosine receptor agonist, a dopamine receptor agonist, an activator of the cystic fibrosis transmembrane conductance regulator (CFTR), cyclic adenosine monophosphate (cAMP), a cAMP analog, and an inhibitor of glycogen synthase kinase-3 (GSK-3).

[0023] In some embodiments, the methods further comprise the administration of one or more drugs that modulates the lysosome. In an exemplary embodiment, the drug is Z-phenylalanyl-alanyl-diazomethylketone (PADK) or a PADK analog, or a pharmaceutically acceptable salt or ester thereof. In some embodiments, the PADK analog is selected from Z-L-phenylalanyl-D-alanyl-diazomethylketone (PdADK), Z-D-phenylalanyl-L-alanyl-diazomethylketone (dPADK), and Z-D-phenylalanyl-D-alanyl-diazomethylketone (dPdADK).

[0024] In some embodiments, the methods further comprise the administration of one or more drugs that promotes autophagy. In an exemplary embodiment, the drug is selected from an activator of peroxisome proliferator-activated receptor gamma coactivator 1- α (PGC-1 α), an inhibitor of Lysine (K)-specific demethylase 1A (LSD1), an agonist of Peroxisome proliferator-activated receptor (PPAR), an activator of Transcription factor EB (TFEB), an

inhibitor of mechanistic target of rapamycin (mTOR), and an inhibitor of glycogen synthase kinase-3 (GSK3).

[0025] In some embodiments, the subject is further treated with stem cell transplantation.

[0026] In some embodiments, the administration is parenteral. In some embodiments, the administration is intramuscular, intraperitoneal, or intravenous.

[0027] In some embodiments, any one of the compositions and drugs provided herein comprise a pharmaceutically acceptable carrier.

[0028] In some embodiments, the subject is a mammal. In some embodiments, the subject is a human.

[0029] In some embodiments, the amyloidosis is light-chain (AL) amyloidosis.

[0030] In some embodiments, the AL amyloidosis involves one or more organs selected from the heart, the kidneys, the nervous system, and the gastrointestinal tract.

[0031] In some embodiments, the amyloidosis is amyloid-beta (A β) amyloidosis.

[0032] In some embodiments, the A β amyloidosis involves one or more organs selected from the brain, the nervous system, and/or involves various muscles, e.g., muscles of the arms and legs. In some embodiments, the A β amyloidosis is associated with Alzheimer's disease. In some embodiments, the A β amyloidosis is associated with cerebral amyloid angiopathy. In some embodiments, the A β amyloidosis is associated with Lewy body dementia. In some embodiments, the A β amyloidosis is associated with inclusion body myositis.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG. 1A-B shows the aggregation of synthetic A β 42 peptide and A β 15-36 peptide (negative control) monitored by Thioflavin-T (THT). FIG. 1A. Aggregation at physiological conditions. FIG. 1B. Aggregation at acidic pH.

[0034] FIG. 2A-B shows the aggregation of synthetic A β 42 peptide in vitro over a 24 hour time period as detected by western blot. FIG. 2A. 12% Bis-Tris gel, reducing conditions, probed with 6E10, a commercially available purified anti- β -amyloid antibody that is reactive to amino acid residues 1-16 of beta amyloid. FIG. 2B. 18% Tris-Glycine gel, reducing conditions, probed with 6E10.

[0035] FIG. 3A-D show that cathepsin A (interchangeably referred to herein as Cath A or PPCA) prevents the aggregation of A β 42 amyloid species. FIG. 3A. Activation of 90 ng cathepsin A by cathepsin L (full black circles). FIG. 3B. Activation of 450 ng cathepsin A by cathepsin L. FIG. 3C. Preventive effect of 90 ng PPCA on A β 42 aggregation and the inhibition of PPCA by the serine protease inhibitor, PMSF (phenylmethylsulfonyl fluoride) FIG. 3D Preventive effect of 450 ng PPCA on A β 42 aggregation. A β 42 peptides were aggregated alone (open circles), with two concentrations of Cath A (open squares) and with combination of Cath A+inhibitor PMSF (open triangles). Cath A only (full squares) and inhibitor PMSF only (full triangles) were incubated with THT reagent and served as negative controls.

[0036] FIG. 4A-B shows that Cath A (i.e., PPCA) prevents the aggregation of A β 42 amyloid species in a dose-dependent manner. FIG. 4A. Graph showing A β 42 aggregation over 2 hours at pH 5, 37° C. with varying PPCA concentrations (7 ng to 900 ng) as measured by THT. A β 42 aggregation was measured alone and with serial dilutions of

PPCA. Lines are labeled for clarity. FIG. 4B. Bar graph showing end-point (2 hrs) A β 42 aggregation.

[0037] FIG. 5 shows that Cath A (i.e., PPCA) prevents the aggregation of both high and lower molecular weight species of A β 42 amyloid. Treatment of 0.9 μ g A β 42 monomer with 500 ng PPCA is shown over a time period of 2 hours on an 18% Tris-Glycine gel, under reducing conditions, probed with 6E10.

[0038] FIG. 6A-D show that cathepsin B (Cath B) prevents the aggregation of A β 42 amyloid. FIG. 6A. Activation of 90 ng cathepsin B and its inhibition by the protease inhibitor E64. FIG. 6B. Activation of 450 ng cathepsin B and its inhibition by E64. FIG. 6C. Preventive effect of 90 ng cathepsin B on A β 42 aggregation and the lack inhibition by E64. FIG. 6D. Preventive effect of 450 ng cathepsin B on A β 42 aggregation and the lack inhibition by E64. A β 42 peptides were aggregated alone (open circles), with two concentrations of Cath B (open squares) and with combination of Cath B+inhibitor E64 (open triangles). Cath B only (full squares) and inhibitor E64 only (full triangles) were incubated with THT reagent and served as negative controls.

[0039] FIG. 7A-B shows that cathepsin B moderately prevents the aggregation of A β 42 amyloid species in a dose-dependent manner. FIG. 7A. Graph showing A β 42 aggregation over 2 hours at pH 5, 37° C. with varying cathepsin B concentrations (7 ng to 900 ng) as measured by THT. A β 42 aggregation was measured alone and with serial dilutions of cathepsin B. FIG. 7B. Bar graph showing end-point (2 hrs) A β 42 aggregation.

[0040] FIG. 8 shows that cathepsin B prevents the aggregation of both low molecular weight species of A β 42 amyloid and degrades A β 42 in a time dependent manner. Treatment of 0.9 μ g A β 42 monomer with 200 ng cathepsin B is shown over a time period of 2 hours on an 18% Tris-Glycine gel, under reducing conditions, probed with 6E10.

[0041] FIG. 9 shows that cathepsin D prevents the aggregation of A β 42 amyloid as monitored by THT. A β 42 peptides were aggregated alone (empty circles) and with cathepsin D (empty squares) over period of 2 hours. Cathepsin D alone (triangles) was incubated with THT reagent and served as a negative control.

[0042] FIG. 10 shows a western blot demonstrating that PPCA, cathepsin B, PPCA plus cathepsin B, and cathepsin D degrade high molecular weight oligomers/fibrils of A β 42 amyloid. Cathepsin D degrades low molecular oligomers and completely eliminates A β 42 monomers.

[0043] FIG. 11 shows a western blot demonstrating a comparison in the detection of A β 42 oligomers and fibrils using an oligomer specific A11 antibody. A β 42 peptides were subjected to 7 day aggregation protocols specific for oligomers and fibrils. Reduction of oligomer form in fibril formation (line 9) indicates transition of oligomers into fibril form, which is not detected by oligomer specific A11 antibody.

[0044] FIG. 12 shows a western blot demonstrating a comparison in the detection of A β 42 oligomers and fibrils using an oligomer and fibril specific E610 antibody. A β 42 peptides were subjected to 7 day aggregation protocols specific for oligomers and fibrils. Fibril formation was not detected in the oligomer specific protocol at day 7 (line 4). Reduction of oligomer form and appearance of fibril form (smear on line 9) was detected in the fibril formation protocol.

[0045] FIG. 13 shows a western blot illustrating the enzymatic degradation of A β 42 oligomers as probed by the oligomer specific A11 antibody. Lines 1-6 contain day 9 oligomers aggregated at pH 7.0 at 25° C. and additionally treated overnight at 37° C. in enzyme specific pH. Lines 1-3 are not treated with enzymes. Lines 4-6 represent treatment with 90 ng of cathepsin A, B, and D, respectively. Line 8 contains day 9 oligomers aggregated at pH 7.0 at 25° C. Line 9 contains monomers at pH 7.0. Degradation of oligomers by 90 ng of cathepsin A is shown in line 4. 2 μ g of material was loaded on each line.

[0046] FIG. 14 shows a western blot illustrating the enzymatic degradation of A β 42 fibrils as probed by the oligomer and fibril specific antibody E610. Lines 1-6 contain day 9 fibrils aggregated at pH 7.0 at 25° C. and additionally treated overnight at 37° C. in enzyme specific pH. Lines 1-3 are not treated with enzymes. Lines 4-6 represent treatment with 90 ng of cathepsin A, B, and D, respectively. Line 8 contains day 9 fibers aggregated at pH 7.0 at 25° C. Line 9 contains monomers at pH 7.0. Degradation of fibers and oligomers by 90 ng of cathepsin A is shown in line 4. Degradation of fibers by 90 ng of cathepsin B is shown in line 5. 2 μ g of material was loaded on each line.

[0047] FIG. 15 shows a human A β 42 specific ELISA used to monitor the degradation of A β 42 monomers with cathepsin A. Treatment of A β 42 monomers with 90 ng of cathepsin A (striped bars) showed degradation from the C-terminus at various time points (0, 10, 30, 60, 120 min), which is reflected in loss of C-terminal capture by capturing antibody and in effect loss of fluorescent signal. In contrast, A β 42 monomers not treated with cathepsin A showed lack of C-terminal degradation (solid bars), which is reflected in efficient antibody capture and strong fluorescent signal. An inhibitor of amyloid aggregation, phenol red was used in both cases to prevent peptide aggregation, which could affect capture by the C-terminal antibody in ELISA.

[0048] FIG. 16A-B show aggregation of A β 40 and A β 42 measured by THT assay. A β 40, A β 42, and A β 16 were co-incubated with ThT for 2 h at 37° C. to measure the kinetics of aggregation. A β 42 aggregates more efficiently and faster than A β 40. FIG. 16A. Graphical representation aggregation of A β peptides on a single scale. FIG. 16B. Graphical representation of A β 40 aggregation on a separate scale.

[0049] FIG. 17A-C show that simultaneous incubation of A β 40, Cath A, and THT shows no change in A β 40 aggregation. Increasing concentrations of Cath A were co-incubated with 15 μ M A β 40 and 2 mM ThT for 2 h at 37° C. to measure how Cath A affected the kinetics of A β 40 aggregation. FIG. 17A. 900 ng Cath A was co-incubated with A β 40 and THT. FIG. 17B. 1000 ng Cath A was co-incubated with A β 40 and THT. FIG. 17C. 2250 ng Cath A was co-incubated with A β 40 and THT.

[0050] FIG. 18A-C show that A β 40 pre-incubated with Cath A leads to loss of its aggregation potential as revealed by lack of THT fluorescence. A β 40 and 2500 ng Cath A were first incubated for 30', 1 h, and 2 h at 37° C. (FIGS. 18A, 18B, and 18C, respectively). Reactions were then co-incubated with ThT for 2 h at 37° C. to measure how Cath A affected the kinetics of A β 40 aggregation.

[0051] FIG. 19A-B show detection of cleavage of A β 40 C-terminal end using a C-terminal capture antibody. A β 40 peptide was incubated for 2 h at 37° C. at pH 5 with varying concentrations of Cath A. The reaction was transferred to an

ELISA plate pre-coated with a C-terminal capture antibody and was co-incubated with N-terminal detection antibody overnight at 4° C. Error bars are referring to the standard deviation in the OD values. FIG. 19A. Recovery rate of undigested A β 40 in samples treated with increased concentrations of Cath A. FIG. 19B. Mean absorbance at 450 nm of samples in ELISA wells treated with increased concentrations of Cath A.

[0052] FIG. 20A-C show aggregation and degradation of A β 40 amyloid measured by Western Blot. FIG. 20A. Aggregation into amyloid species. A β 40 was incubated in either Fibril Buffer or Oligomer buffer at RT for 0-9 days. 2 μ g of A β 40 were loaded per lane on an 18% Tris-Glycine gel and transferred to a PVDF membrane. The blot was probed with an Anti-A β 40 C-terminal primary antibody (G2-10). A β 40 incubated with Cath A during fibril formation prevents aggregation. A β 40 was co-incubated with Cath A in fibril buffer at RT for 0-9 days. To observe high molecular weight bands the gel in FIG. 20B was run on a 7.5% Tris-glycine gel and to see the low molecular weight bands gel in FIG. 20C was run on an 18% Tris-glycine gel. 2 μ g of A β 40 were loaded into each lane. Each gel was transferred to a PVDF membrane and probed with an Anti-A β 40 C-terminal primary antibody (G2-10).

DETAILED DESCRIPTION

[0053] As shown herein, the present inventors have discovered that various catabolic enzymes can be used to prevent the formation of and/or degrade various types of amyloid oligomers and fibrils. Because these oligomers and fibrils can contribute to the development of a variety of amyloid-associated diseases and disorders, the present invention is directed to methods and compositions for the treatment or prevention of amyloidosis in a subject.

[0054] Amyloids are insoluble fibrous protein aggregates sharing specific structural traits. The deposition of normally soluble proteins in this insoluble form can lead to cell death and tissue degeneration. To date, 18 different proteins and polypeptides have been identified in disease-associated amyloid deposits. See Westermark et al. ("Nomenclature of amyloid fibril proteins. Report from the meeting of the International Nomenclature Committee on Amyloidosis, Aug. 8-9, 1998. Part 1." *Amyloid*. 1999 March; 6(1):63-6), which is incorporated by reference in its entirety. The amyloid fibrils are long, straight, unbranched filaments about 40-120 Å in diameter, which bind to physiological dyes such as Congo red and thioflavine T and are resistant to protease digestion.

[0055] As used herein, amyloidosis refers to a disease that results from accumulation of amyloids. Such diseases to be treated or prevented by the present invention include, but are not limited to, systemic AL amyloidosis, Alzheimer's Disease, Diabetes mellitus type 2, Parkinson's disease, Transmissible spongiform encephalopathy e.g. Bovine spongiform encephalopathy, Fatal Familial Insomnia, Huntington's Disease, Medullary carcinoma of the thyroid, Cardiac arrhythmias, Atherosclerosis, Rheumatoid arthritis, Aortic medial amyloid, Prolactinomas, Familial amyloid polyneuropathy, Hereditary non-neuropathic systemic amyloidosis, Dialysis related amyloidosis, Finnish amyloidosis, Lattice corneal dystrophy, Cerebral amyloid angiopathy, Cerebral amyloid angiopathy (Icelandic type), Sporadic Inclusion Body Myositis, Amyotrophic lateral sclerosis (ALS), Prion-related or Spongiform encephalopathies, such as Creutzfeld-

Jacob, Dementia with Lewy bodies, Frontotemporal dementia with Parkinsonism, Spinocerebellar ataxias, Spinocerebellar ataxia, Spinal and bulbar muscular atrophy, Hereditary dentatorubral-pallidolysian atrophy, Familial British dementia, Familial Danish dementia, Non-neuropathic localized diseases, such as in Type II diabetes mellitus, Medullary carcinoma of the thyroid, Atrial amyloidosis, Hereditary cerebral haemorrhage with amyloidosis, Pituitary prolactinoma, Injection-localized amyloidosis, Aortic medial amyloidosis, Hereditary lattice corneal dystrophy, Corneal amyloidosis associated with trichiasis, Cataract, Calcifying epithelial odontogenic tumors, Pulmonary alveolar proteinosis, Inclusion-body myositis, Cutaneous lichen amyloidosis, and Non-neuropathic systemic amyloidosis, such as AL amyloidosis, AA amyloidosis, Familial Mediterranean fever, Senile systemic amyloidosis, Familial amyloidotic polyneuropathy, Hemodialysis-related amyloidosis, ApoAI amyloidosis, ApoAI amyloidosis, ApoAIV amyloidosis, Finnish hereditary amyloidosis, Lysozyme amyloidosis, Fibrinogen amyloidosis, Icelandic hereditary cerebral amyloid angiopathy, familial amyloidosis, and systemic amyloidosis which occurs in multiple tissues, such as light-chain amyloidosis, and other various neurodegenerative disorders. In exemplary embodiments, the amyloidosis is light-chain (AL) amyloidosis. In further exemplary embodiments, the AL amyloidosis involves one or more organs selected from the heart, the kidneys, the nervous system, and the gastrointestinal tract.

[0056] In some embodiments, the present invention provides methods and compositions for the treatment or prevention of a disease associated with amyloidosis in a subject, wherein the disease is associated with the formation of amyloid-beta (A β or Abeta) peptides. These peptides result from the amyloid precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield amyloid-beta. In some embodiments, the disease associated with the formation of amyloid-beta is selected from Alzheimer's Disease, cerebral amyloid angiopathy, Lewy body dementia, and inclusion body myositis.

[0057] In alternative embodiments, the present invention provides methods and compositions for the treatment or prevention of a disease associated with amyloidosis in a subject, wherein the disease is not associated with the formation of amyloid beta, i.e., wherein the disease is a disease other than one associated with the formation of amyloid beta, e.g., a disease other than Alzheimer's disease, cerebral amyloid angiopathy, Lewy body dementia, and inclusion body myositis.

[0058] In one embodiment, the disease associated with amyloidosis is light-chain (AL) amyloidosis. In another embodiment, the disease associated with amyloidosis is selected from Parkinson's Disease, Huntington's Disease, Rheumatoid arthritis, and a prion-related disease.

[0059] In some embodiments, the amyloidosis is a systemic amyloidosis. Systemic amyloidosis encompasses a complex group of diseases caused by tissue deposition of misfolded proteins that result in progressive organ damage.

[0060] As noted above, in some embodiments, the amyloidosis is light-chain (AL) amyloidosis (also known as, i.e. a.k.a., primary systemic amyloidosis (PSA) or primary amyloidosis). AL amyloidosis refers to a condition caused when a subject's antibody-producing cells do not function properly and produce abnormal protein fibers made of components of antibodies called light chains. In some embodi-

ments, such light chains form amyloid deposits in one or more different organs which may cause or already caused damage to these organs. In some embodiments, the abnormal light chains are in blood and/or urine. In some embodiments, the abnormal light chains are "Bence Jones proteins". In some embodiments, the AL amyloidosis affects the heart, peripheral nervous system, gastrointestinal tract, blood, lungs and/or skin. Clinical features of AL amyloidosis also may include a constellation of symptoms and organ dysfunction that can include cardiac, renal, and hepatic dysfunction, gastrointestinal involvement, neuropathies and macroglossia.

[0061] In some embodiments, the amyloidosis is AA amyloidosis (a.k.a. secondary amyloidosis, AA), caused by deposited proteins called serum amyloid A protein (SAA). In some embodiments, the SAA protein is mainly deposited in the liver, spleen and/or kidney. In some embodiments, the AA amyloidosis leads to nephrotic syndrome. In some embodiments, the AA amyloidosis is caused by autoimmune diseases (e.g., Rheumatoid arthritis, Ankylosing spondylitis, or Crohn's disease and ulcerative colitis), Chronic infections (e.g., Tuberculosis, Bronchiectasis, or Chronic osteomyelitis), autoinflammatory diseases (e.g., Familial Mediterranean fever (FMF), Muckle-Wells syndrome (MWS), Cancer (e.g., Hodgkin's lymphoma, Renal cell carcinoma), and/or Chronic foreign body reaction (e.g., Silicone-induced granulomatous reaction).

[0062] In some embodiments, the amyloidosis is familial amyloidosis. In some embodiments, the familial amyloidosis is ATTR amyloidosis (a.k.a. or senile systemic amyloidosis) which is due one or more inherited amyloidosis, such as a mutation in the transthyretin (TTR) gene that produces abnormal transthyretin protein. In some embodiments, the familial amyloidosis is caused by one or more mutation in apolipoprotein A-I (AApoAI), apolipoprotein A-II (AApoAII), gelsolin (AGel), fibrinogen (AFib), lysozyme (ALys), and/or Lect2.

[0063] In some embodiments, the amyloidosis is Beta-2 Microglobulin Amyloidosis (Abeta2m). Beta-2 microglobulin amyloidosis is caused by chronic renal failure and often occurs in patients who are on dialysis for many years. Amyloid deposits are made of the beta-2 microglobulin protein that accumulated in tissues, particularly around joints, when it cannot be excreted by the kidney because of renal failure.

[0064] In some embodiments, the amyloidosis is Localized Amyloidosis (ALoc). In some embodiments, localized amyloid deposits in the airway (trachea or bronchus), eye, or urinary bladder. In some embodiments, the ALoc is caused by local production of immunoglobulin light chains not originating in the bone marrow. In some embodiments, the ALoc is associated with endocrine proteins, or proteins produced in the skin, heart, and other sites. These usually do not become systemic.

[0065] In some embodiments, the amyloidosis occurs in the kidney of the subject. In some embodiments, the amyloidosis in the kidney is AA amyloidosis. In some embodiments, the AA amyloidosis leads to nephrotic syndrome. In some embodiments, the amyloidosis in the kidney is AL amyloidosis. In some embodiments, symptoms of kidney disease and renal failure associated with AL amyloidosis include, but are not limited to, fluid retention, swelling, and shortness of breath.

[0066] In some embodiments, the amyloidosis occurs in the heart of the subject. In some embodiments, the amyloidosis in the heart is AL amyloidosis. In some embodiments, the amyloidosis in the heart leads to heart failure and/or irregular heart beat.

[0067] In some embodiments, the amyloidosis occurs in the gastrointestinal tract of the subject. In some embodiments, symptoms of GI amyloidosis include, but are not limited to, esophageal reflux, constipation, nausea, abdominal pain, diarrhea, weight loss, and early satiety. In some embodiments, the amyloidosis occurs in the duodenum, stomach, colo-rectum, and/or esophagus.

[0068] In some embodiments, the treatment methods provided herein alleviate, reduce the severity of, or reduce the occurrence of, one or more of the symptoms associated with amyloidosis. Such symptoms include those symptoms associated with light-chain (AL) amyloidosis (primary systemic amyloidosis) and/or AA amyloidosis (secondary amyloidosis). In some embodiments, the symptoms include, but are not limited to, fluid retention, swelling, shortness of breath, fatigue, irregular heartbeat, numbness of hands and feet, rash, shortness of breath, swallowing difficulties, swollen arms or legs, esophageal reflux, constipation, nausea, abdominal pain, diarrhea, early satiety, stroke, gastrointestinal disorders, enlarged liver, diminished spleen function, diminished function of the adrenal and other endocrine glands, skin color change or growths, lung problems, bleeding and bruising problems, fatigue and weight loss, decreased urine output, diarrhea, hoarseness or changing voice, joint pain, and weakness. In some embodiments, the symptoms are those associated with amyloid-beta (A β) amyloidosis. In some embodiments, the symptoms include, but are not limited to, common symptoms of Alzheimer's disease, including memory loss, confusion, trouble understanding visual images and spatial relationships, and problems speaking or writing.

[0069] According to the methods of the present invention, the term "subject," includes any subject that has, is suspected of having, or is at risk for having a disease or condition. Suitable subjects (or patients) include mammals, such as laboratory animals (e.g., mouse, rat, rabbit, guinea pig), farm animals, and domestic animals or pets (e.g., cat, dog). Non-human primates and human patients are also included. A subject "at risk" may or may not have detectable disease, and may or may not have displayed detectable disease prior to the prevention or treatment methods described herein. "At risk" denotes that a subject has one or more so-called risk factors, which are measurable parameters that correlate with development of any one of the diseases, disorders, conditions, or symptoms described herein. A subject having one or more of these risk factors has a higher probability of developing any one of the diseases, disorders, conditions, or symptoms described herein than a subject without these risk factor(s). In some embodiments, the subject is a mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a human diagnosed as having amyloidosis or disease/symptom caused by or associated with amyloidosis. In some embodiments, the subject is a human suspected to have amyloidosis. In some embodiments, the subject is a human having high risk of developing amyloidosis. In some embodiments, the subject is an amyloidosis patient with one or more diseases/conditions/symptoms as described herein.

[0070] The terms “treating” and “treatment” as used herein refer to an approach for obtaining beneficial or desired results including clinical results, and may include even minimal changes or improvements in one or more measurable markers of the disease or condition being treated. A treatment is usually effective to reduce at least one symptom of a condition, disease, disorder, injury or damage. Exemplary markers of clinical improvement will be apparent to persons skilled in the art. Examples include, but are not limited to, one or more of the following: decreasing the severity and/or frequency one or more symptoms resulting from the disease, diminishing the extent of the disease, stabilizing the disease (e.g., preventing or delaying the worsening of the disease), delay or slowing the progression of the disease, ameliorating the disease state, decreasing the dose of one or more other medications required to treat the disease, and/or increasing the quality of life, etc.

[0071] “Prophylaxis,” “prophylactic treatment,” “prevention,” or “preventive treatment” refers to preventing or reducing the occurrence or severity of one or more symptoms and/or their underlying cause, for example, prevention of a disease or condition in a subject susceptible to developing a disease or condition (e.g., at a higher risk, as a result of genetic predisposition, environmental factors, predisposing diseases or disorders, or the like).

[0072] The present invention provides methods of treating or preventing amyloidosis in a subject. In some embodiments, the methods comprise administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof. In some embodiments, the methods comprise increasing the expression, activity, and/or concentration of at least one catabolic enzyme in the subject. Increasing the expression, activity, and/or concentration of a given catabolic enzyme may be accomplished at the genomic DNA level, transcriptional level, post-transcriptional level, translational level, and/or post-translational level, including but not limited to, increasing the gene copy number, mRNA transcription rate, mRNA abundance, mRNA stability, protein translation rate, protein stability, protein modification, protein activity, protein complex activity, etc. Increasing the concentration of a given catabolic enzyme may further be accomplished by administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof. As used herein, the term catabolic enzyme refers not only to the natural form the enzyme, but also any purified, isolated, synthetic, recombinant, and functional variants, fragments, chimeras, and mutants of the natural enzyme.

[0073] In some embodiments, the at least one catabolic enzyme is selected from the non-limiting group consisting of protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.

[0074] In some embodiments, the at least one catabolic enzyme is PPCA (a.k.a. Protective Protein Cathepsin A, PPGB, Carboxypeptidase C, EC 3.4.16.5, GSL, GLB2, Carboxypeptidase Y-Like Kininase, NGBE, carboxypeptidase-L, Protective Protein For Beta-Galactosidase (Galactosialidosis), deamidase, Beta-Galactosidase, Lysosomal Carboxypeptidase A, Beta-Galactosidase Protective Protein, Lysosomal Protective Protein, Protective Protein For Beta-

Galactosidase, Urinary Kininase, EC 3.4.168, or Carboxypeptidase L) is classified both as a cathepsin and a carboxypeptidase.

[0075] In some embodiments, the at least one catabolic enzyme is PPCA. PPCA is a glycoprotein that associates with the lysosomal enzymes beta-galactosidase and neuraminidase to form a complex of high-molecular-weight multimers. The formation of this complex provides a protective role for stability and activity. It is protective for β -galactosidase and neuraminidase. In some embodiments, the PPCA can be a natural, synthetic, or recombinant protein. In some embodiments, the PPCA polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 2, 43, or 45. In some embodiments, the PPCA polypeptide comprises the amino acid sequence of SEQ ID NO: 2, 43, or 45.

[0076] In some embodiments, the at least one catabolic enzyme is Neuraminidase 1 (NEU1, a.k.a. sialidase 1, lysosomal sialidase, EC 3.2.1.18, Acetylneuraminy Hydrolase, SIAL1, Lysosomal Sialidase, exo-alpha-sialidase, NANH, sialidase-1, or G9 Sialidase) is a lysosomal neuraminidase enzyme. NEU1 is an enzyme that cleaves terminal sialic acid residues from substrates such as glycoproteins and glycolipids. In some embodiments, the NEU1 can be a natural, synthetic, or recombinant protein. In some embodiments, the NEU1 polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 4. In some embodiments, the NEU1 polypeptide comprises the amino acid sequence of SEQ ID NO: 4.

[0077] In some embodiments, the at least one catabolic enzyme is Tripeptidyl peptidase 1 (TPP1, Spinocerebellar Ataxia, Autosomal Recessive 7, CLN2, SCAR7, Growth-Inhibiting Protein 1, Cell Growth-Inhibiting Gene 1 Protein, Lysosomal Pepstatin Insensitive Protease, Tripeptidyl Aminopeptidase, Tripeptidyl-Peptidase 1, LPIC, Lysosomal Pepstatin-Insensitive Protease, or EC 3.4.14.9). TPP1 is an enzyme that cleaves N-terminal tripeptides from substrates and has weaker endopeptidase activity. In some embodiments, the TPP1 can be a natural, synthetic, or recombinant protein. In some embodiments, the TPP1 polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 6. In some embodiments, the TPP1 polypeptide comprises the amino acid sequence of SEQ ID NO: 6.

[0078] In some embodiments, the at least one catabolic enzyme is Cathepsin B (a.k.a. EC 3.4.22.1, CPSB, Amyloid Precursor Protein Secretase, Cysteine Protease, APPS, APP secretase, or EC 3.4.22). Cathepsin B is a lysosomal cysteine protease composed of a dimer of disulfide-linked heavy and light chains, both produced from a single protein precursor. In some embodiments, the Cathepsin B can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin B polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 86.

87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 8, 47, 49, 51, 53, 55, or 57. In some embodiments, the Cathepsin B polypeptide comprises the amino acid sequence of SEQ ID NO: 8, 47, 49, 51, 53, 55, or 57.

[0079] In some embodiments, the at least one catabolic enzyme is Cathepsin D (a.k.a. EC 3.4.23.5, CTSD). Cathepsin D refers is a lysosomal acid protease active in intracellular protein breakdown. In some embodiments, the Cathepsin D can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin D polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 68. In some embodiments, the Cathepsin D polypeptide comprises the amino acid sequence of SEQ ID NO: 68. In some embodiments, the Cathepsin D polypeptide harbors one or more modifications relative to the amino acid sequence of SEQ ID NO: 68. In certain embodiments, the Cathepsin D polypeptide comprises the amino acid sequence of SEQ ID NO: 68, wherein the polypeptide harbors a modification at an amino acid position selected from position 58 (A to V), position 229 (F to I), position 282 (G to R), and position 383 (W to C).

[0080] In some embodiments, the at least one catabolic enzyme is Cathepsin E (a.k.a. EC 3.4.23.34, CTSE). Cathepsin E is a lysosomal aspartyl protease. In some embodiments, the Cathepsin E can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin E polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 69, 70, or 71. In some embodiments, the Cathepsin E polypeptide comprises the amino acid sequence of SEQ ID NO: 69, 70, or 71. In some embodiments, the Cathepsin E polypeptide harbors one or more modifications relative to the amino acid sequence of SEQ ID NO: 69, 70, or 71. In certain embodiments, the Cathepsin E polypeptide comprises the amino acid sequence of SEQ ID NO: 69, wherein the polypeptide harbors a modification at an amino acid position selected from position 82 (I to V) and position 329 (T to I).

[0081] In some embodiments, the at least one catabolic enzyme is Cathepsin K (a.k.a. EC 3.4.22.38, CTSO, Pycnodysostosis, PYCD, Cathepsis O, PKND, Cathepsin X). Cathepsin K is a lysosomal cysteine protease involved in bone remodeling and resorption, defined by its high specificity for kinins. In some embodiments, the Cathepsin K can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin K polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 10. In some embodiments, the Cathepsin K polypeptide comprises the amino acid sequence of SEQ ID NO: 10.

[0082] In some embodiments, the at least one catabolic enzyme is Cathepsin L (a.k.a. MEP, CTSL, EC 3.4.22.15, CATL, Major Excreted Protein). Cathepsin L is a lysosomal endopeptidase enzyme which is involved in the initiation of protein degradation. Its substrates include collagen and

elastin, as well as alpha-1 protease inhibitor, a major controlling element of neutrophil elastase activity. In some embodiments, the Cathepsin L can be a natural, synthetic, or recombinant protein. In some embodiments, the Cathepsin L polypeptide comprises an amino acid sequence with at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more sequence identity to SEQ ID NO: 12, 59, 61, 63, 65, or 67. In some embodiments, the Cathepsin L polypeptide comprises the amino acid sequence of SEQ ID NO: 12, 59, 61, 63, 65, or 67.

[0083] In some embodiments, the administration comprises the administration of a nucleotide sequence encoding at least one catabolic enzyme of the present invention.

[0084] As used herein, the terms “polynucleotide”, “polynucleotide sequence”, “nucleic acid sequence”, “nucleic acid fragment”, “nucleotide sequence,” and “isolated nucleic acid fragment” are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. Nucleotides (usually found in their 5'-monophosphate form) are referred to by a single letter designation as follows: “A” for adenylylate or deoxyadenylylate (for RNA or DNA, respectively), “C” for cytidylylate or deoxycytidylate, “G” for guanylylate or deoxyguanylylate, “U” for uridylylate, “T” for deoxythymidylate, “R” for purines (A or G), “Y” for pyrimidines (C or T), “K” for G or T, “H” for A or C or T, “I” for inosine, and “N” for any nucleotide.

[0085] As used herein, the term “chimeric” or “recombinant” when describing a nucleic acid sequence or a protein sequence refers to a nucleic acid or a protein sequence that links at least two heterologous polynucleotides or two heterologous polypeptides into a single macromolecule, or that re-arranges one or more elements of at least one natural nucleic acid or protein sequence. For example, the term “recombinant” can refer to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques.

[0086] As used herein, a “synthetic nucleotide sequence” or “synthetic polynucleotide sequence” is a nucleotide sequence that is not known to occur in nature or that is not naturally occurring. Generally, such a synthetic nucleotide sequence will comprise at least one nucleotide difference when compared to any other naturally occurring nucleotide sequence. It is recognized that a genetic regulatory element of the present invention comprises a synthetic nucleotide sequence. In some embodiments, the synthetic nucleotide sequence shares little or no extended homology to natural sequences. Extended homology in this context generally refers to 100% sequence identity extending beyond about 25 nucleotides of contiguous sequence. A synthetic genetic regulatory element of the present invention comprises a synthetic nucleotide sequence.

[0087] As used herein, an “isolated” or “purified” nucleic acid molecule or polynucleotide, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the

nucleic acid molecule or polynucleotide as found in its naturally occurring environment. Thus, an isolated or purified nucleic acid molecule or polynucleotide is substantially free of other cellular material or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.

[0088] In some embodiments, the methods comprise administering to the subject a composition comprising an expression vector (interchangeably referred to herein as a vector), wherein the vector comprises a polynucleotide sequence encoding at least one catabolic enzyme. In some embodiments, the methods comprise administering to the subject a composition comprising at least one expression vector comprising an expression cassette of coding genes.

[0089] In some embodiments, the expression vector is a viral vector. Accordingly, in the some embodiments, the methods of the present invention comprise administering to the subject a composition comprising at least one viral vector comprising a polynucleotide sequence encoding at least one catabolic enzyme. In some embodiments, the expression cassette, the expression vector, or the viral vector further comprises one or more nucleotide sequences encoding a signal peptide. In some embodiments, the signal peptide is an intralysosomal localization peptide.

[0090] A nucleotide sequence encoding at least one catabolic enzyme can be delivered to a subject through any suitable delivery system, such as those described by Rolland (Pharmaceutical Gene Delivery Systems, ISBN: 978-0-8247-4235-5, 2003), which is incorporated by reference in its entirety. In some embodiments, the delivery system is a viral system, a physical system, and/or a chemical system.

[0091] In some embodiments, the delivery system to deliver a nucleotide sequence encoding at least one catabolic enzyme is a viral system. In some embodiments, an adenovirus vector is used (see, Thrasher et al., Gene therapy: X-SCID transgene leukaemogenicity. *Nature*. 2006; 443 (7109): E5-E6; Zhang et al., Adenoviral and adeno-associated viral vectors-mediated neuronal gene transfer to cardiovascular control regions of the rat brain. *Int J Med Sci*. 2013; 10(5): 607-616). In some embodiments, an adeno-associated vector is used (see, Teramoto et al., Crisis of adenoviruses in human gene therapy. *Lancet*. 2000; 355 (9218): 1911-1912, Okada et al., Gene transfer targeting mouse vestibule using adenovirus and adeno-associated virus vectors. *Otol Neurotol*. 2012; 33(4): 655-659). In some embodiments, a retroviral vector is used (see, Anson et al., The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. *Genet Vaccines Ther*. 2004; 2(1): 9; Frederic D. Retroviral integration and human gene therapy. *J Clin Invest*. 2007; 117(8): 2083-2086). In some embodiments, a lentivirus vector is used (see, Goss et al., Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. *Gene Ther*. 2001; 8(7): 551-556; Real et al., Improvement of lentiviral transfer vectors using cis-acting regulatory elements for increased gene expression. *Appl Microbiol Biotechnol*. 2011; 91(6): 1581-91.). In some embodiments, a herpes simplex virus vector is used (see, Lachmann R H, Efstathiou S. The use of herpes simplex virus-based vectors for gene delivery to the nervous system. *Mol Med Today*. 1997; 3(9): 404-411; Liu S, Dai M, You L, Zhao Y. Advance in herpes simplex viruses for cancer

therapy. *Sci China Life Sci*. 2013; 56(4): 298-305). In some embodiments, a poxvirus vector is used (see, Moss B. Reflections on the early development of poxvirus vectors. *Vaccine*. 2013; 31(39): 4220-4222). Each of the references is incorporated herein by reference in its entirety.

[0092] In some embodiments, the delivery system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is a physical system. In some embodiments, the physical systems include, but are not limited to jet injection, biolistics, electroporation, hydrodynamic injection, and ultrasound (see, Sirsi et al. Advances in ultrasound mediated gene therapy using microbubble contrast agents. *Theranostics*. 2012; 2(12): 1208-1222.; Naldini et al., In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. *Science*. 1996; 272(5259): 263-267; Panje et al., Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: Effect of DNA and microbubble dose on in vivo transfection efficiency. *Theranostics*. 2012; 2(11): 1078-1091; Gao et al., Cationic liposome-mediated gene transfer. *Gene Ther*. 1995; 2(10): 710-722; Orio et al., Electric field orientation for gene delivery using high-voltage and low-voltage pulses. *J Membr Biol*. 2012; 245(10): 661-666.) Each of the references is incorporated herein by reference in its entirety.

[0093] In some embodiments, the delivery system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is a chemical system. The chemical systems include, but are not limited to calcium phosphate precipitation, liposomes and polymeric carriers. In some embodiments, the chemical system is based on calcium phosphate precipitation, such as calcium phosphate nanocomposite particles encapsulating DNA (see, Nouri et al. Calcium phosphate-mediated gene delivery using simulated body fluid (SBF). *Int J Pharm*. 2012; 434(1-2): 199-208; Bhakta et al. Magnesium phosphate nanoparticles can be efficiently used in vitro and in vivo as non-viral vectors for targeted gene delivery. *J Biomed Nanotechnol*. 2009; 5(1): 106-114).

[0094] In some embodiments, the chemical system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is based on liposomes. In some embodiments, the liposomes are nano-sized. In some embodiments, liposomes conjugated with polyethylene glycol (PEG) and/or other molecules such as ligands and peptides can be used (see, Yang et al. Cationic nucleolipids as efficient siRNA carriers. *Org Biomol Chem*. 2011; 1(9): 291-296).

[0095] In some embodiments, the chemical system to deliver a nucleotide sequence encoding at least one catabolic enzyme of the invention is based on polymeric carriers. In some embodiments, the polymeric carriers are conjugated to the gene to be delivered. In some embodiments, the polymeric carriers include, but are not limited to chitosan, polyethylenimine (PEI), polylysine, polyarginine, polyamino ester, Polyamidoamine Dendrimers (PAMAM), Poly (lactide-co-glycolide), and PLL, such as those described in Choi et al., Enhanced transfection efficiency of PAMAM dendrimer by surface modification with 1-arginine. *J Control Release*. 2004; 3(99): 445-456; Pfeifer et al., Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. *Int J Pharm*. 2005; 304(1-2): 210-219; Anderson et al., Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). *Mol Ther*. 2005; 3(11):

426-434; Hwang et al., Effects of structure of beta-cyclo-dextrin-containing polymers on gene delivery. *Bioconjugate Chem.* 2001; 2(12): 280-290; Kean et al., Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. *J Control Release.* 2005; 3(103): 643-653.

[0096] In some embodiments, administration of a catabolic enzyme comprises the administration of at least one catabolic enzyme polypeptide or fragment thereof of the present invention. As used herein, the terms "polypeptide" and "protein" are used interchangeably herein.

[0097] The invention also envisions and encompasses the use of functional variants or fragments of the intralysosomal catabolic enzyme described herein. As used herein, the phrase "a biologically active variant" or "functional variant" with respect to a protein refers to an amino acid sequence that is altered by one or more amino acids with respect to a reference sequence, while still maintains substantial biological activity of the reference sequence. The variant can have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. The following table shows exemplary conservative amino acid substitutions.

Original Residue	Very Highly - Conserved Substitutions	Highly Conserved Substitutions (from the Blosum90 Matrix)	Conserved Substitutions (from the Blosum65 Matrix)
Ala	Ser	Gly, Ser, Thr	Cys, Gly, Ser, Thr, Val
Arg	Lys	Gln, His, Lys	Asn, Gln, Glu, His, Lys
Asn	Gln; His	Asp, Gln, His, Lys, Ser, Thr	Arg, Asp, Gln, Glu, His, Lys, Ser, Thr
Asp	Glu	Asn, Glu	Asn, Gln, Glu, Ser
Cys	Ser	None	Ala
Gln	Asn	Arg, Asn, Glu, His, Lys, Met	Arg, Asn, Asp, Glu, His, Lys, Met, Ser
Glu	Asp	Asp, Gln, Lys	Arg, Asn, Asp, Gln, His, Lys, Ser
Gly	Pro	Ala	Ala, Ser
His	Asn; Gln	Arg, Asn, Gln, Tyr	Arg, Asn, Gln, Glu, Tyr
Ile	Leu; Val	Leu, Met, Val	Leu, Met, Phe, Val
Leu	Ile; Val	Ile, Met, Phe, Val	Ile, Met, Phe, Val
Lys	Arg; Gln; Glu	Arg, Asn, Gln, Glu	Arg, Asn, Gln, Glu, Ser,
Met	Leu; Ile	Gln, Ile, Leu, Val	Gln, Ile, Leu, Phe, Val
Phe	Met; Leu; Tyr	Leu, Trp, Tyr	Ile, Leu, Met, Trp, Tyr
Ser	Thr	Ala, Asn, Thr	Ala, Asn, Asp, Gln, Glu, Gly, Lys, Thr
Thr	Ser	Ala, Asn, Ser	Ala, Asn, Ser, Val
Trp	Tyr	Phe, Tyr	Phe, Tyr
Tyr	Trp; Phe	His, Phe, Trp	His, Phe, Trp
Val	Ile; Leu	Ile, Leu, Met	Ala, Ile, Leu, Met, Thr

[0098] Alternatively, a variant can have "nonconservative" changes, e.g., replacement of a glycine with a tryptophan. Analogous minor variations can also include amino acid deletion or insertion, or both. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without eliminating biological or immunological activity can be found using computer programs well known in the art, for example, DNASTAR software. For polynucleotides, a variant comprises a polynucleotide having deletions (i.e., truncations) at the 5' and/or 3' end; deletion and/or addition of one or more nucleotides at one or more internal sites in the reference polynucleotide; and/or substitution of one or more nucleotides at one or more sites in the reference polynucleotide. As used herein, a "reference" polynucleotide comprises a nucleotide sequence produced by the methods disclosed herein. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated, for example, by using site directed mutagenesis but which still comprise genetic regulatory element activity.

Generally, variants of a particular polynucleotide or nucleic acid molecule, or polypeptide of the invention will have at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 91.5%, 92%, 92.5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% or more sequence identity to that particular polynucleotide/polypeptides as determined by sequence alignment programs and parameters as described elsewhere herein.

[0099] In some embodiments, a gene that can hybridize with the nucleic acid sequences encoding the catabolic enzymes of the present invention under stringent hybridization conditions can be used. The terms "stringency" or "stringent hybridization conditions" refer to hybridization conditions that affect the stability of hybrids, e.g., temperature, salt concentration, pH, formamide concentration and the like. These conditions are empirically optimized to maximize specific binding and minimize non-specific binding of primer or probe to its target nucleic acid sequence. The terms as used include reference to conditions under which a probe or primer will hybridize to its target sequence, to a detectably greater degree than other sequences (e.g. at

least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe or primer. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na⁺ ion, typically about 0.01 to 1.0 M Na⁺ ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes or primers (e.g. 10 to 50 nucleotides) and at least about 60° C. for long probes or primers (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringent conditions or "conditions of reduced stringency" include hybridization with a

buffer solution of 30% formamide, 1 M NaCl, 1% SDS at 37° C. and a wash in 2×SSC at 40° C. Exemplary high stringency conditions include hybridization in 50% formamide, 1M NaCl, 1% SDS at 37° C., and a wash in 0.1×SSC at 60° C. Hybridization procedures are well known in the art and are described by e.g. Ausubel et al., 1998 and Sambrook et al., 2001. In some embodiments, stringent conditions are hybridization in 0.25 M Na₂HPO₄ buffer (pH 7.2) containing 1 mM Na₂EDTA, 0.5-20% sodium dodecyl sulfate at 45° C., such as 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, followed by a wash in 5×SSC, containing 0.1% (w/v) sodium dodecyl sulfate, at 55° C. to 65° C.

[0100] The definition of each catabolic enzyme includes sequences having high similarity or identity to the nucleic acid sequences and/or polypeptide sequences of the specific catabolic enzymes mentioned herein. As used herein, “sequence identity” or “identity” in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences which differ by such conservative substitutions are said to have “sequence similarity” or “similarity.” Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Meyers and Miller, Computer Applic. Biol. Sci., 4:11-17 (1988).

[0101] The invention also includes biologically active fragments of the catabolic enzymes described herein. These biologically active fragments may comprise at least 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, or more amino acid residues and retain one or more activities associated with the catabolic enzymes described herein. Such fragments may be obtained by deletion mutation, by recombinant techniques that are routine and well-known in the art, or by enzymatic digestion of the catabolic enzyme(s) of interest using any of a number of well-known proteolytic enzymes. The invention further includes nucleic acid molecules which encode the above described variant enzymes and enzyme fragments.

[0102] In some embodiments, the methods comprise administering to the subject a composition comprising a therapeutically effective amount or prophylactically effective amount of at least one catabolic enzyme. The term “therapeutically effective amount” as used herein, refers to the level or amount of one or more catabolic enzymes needed to treat amyloidosis, or reduce or prevent injury or damage, optionally without causing significant negative or

adverse side effects. A “prophylactically effective amount” refers to an amount of a catabolic enzyme sufficient to prevent or reduce severity of a future disease or condition associated with amyloidosis when administered to a subject who is susceptible and/or who may develop amyloidosis or a condition associated with amyloidosis.

[0103] In some embodiments, instead of or in addition to administering a polynucleotide sequence encoding a catabolic enzyme of the present invention, the methods comprise administering a composition comprising a polypeptide comprising a catabolic enzyme of the present invention or a biologically active fragment thereof directly to the subject in need.

[0104] In some embodiments, the catabolic enzyme is targeted to the intralysosomal space. In some embodiments, the catabolic enzyme to be administered comprises one or more signals which help with sorting the polypeptide to lysosome. In some embodiments, the signal can be a lysosomal localization signal polypeptide, a monosaccharide (including derivatives), a polysaccharide, or combinations thereof.

[0105] In some embodiments, the signal is mannose-6 phosphate. A catabolic enzyme comprising a mannose-6 phosphate can be targeted to lysosomes with the help of a mannose-6 phosphate receptor.

[0106] In some embodiments, the signal is not dependent on mannose-6 phosphate. In some embodiments, the signal is a signal peptide. In some embodiments, the signal peptide is located at the N-terminal, the C-terminal, or elsewhere in the intralysosomal catabolic enzyme to be administered. In some embodiments, the signal peptides include, but are not limited to the DXXLL type (SEQ ID NO: 13), [DE]XXXL[LI] type (SEQ ID NO: 14), and YXXO type (SEQ ID NO: 15). See Bonifacino et al., Signals for sorting of transmembrane proteins to endosomes and lysosomes, Annu. Rev. Biochem. 72 (2003) 395-447; and Brualke et al. (Sorting of lysosomal proteins, Biochimica et Biophysica Acta 1793 (2009) 605-614), each of which is incorporated by reference in its entirety.

[0107] In some embodiments, the signal peptides belong to the DXXLL type, such as those identified in MPR300/CI-MPR (SFHDDSDEDLL, SEQ ID NO: 16), MPR46/CD-MPR (EESEERDDHLL, SEQ ID NO: 17), Sortilin (GYHDDSDEDLL, SEQ ID NO: 18), SorLA/SORL1 (ITGFSDDVPMV, SEQ ID NO: 19), GGA1 (1) (ASVSLDDDEL, SEQ ID NO: 20), GGA1 (2) (ASSGLDDLDLL, SEQ ID NO: 21), GGA2 (VQNPSADRNLL, SEQ ID NO: 22), and GGA3 (NALSWLDEELL, SEQ ID NO: 23).

[0108] In some embodiments, the signal peptides belong to the [DE]XXXL[LI] type, such as those identified in LIMP-II (DERAPLI, SEQ ID NO: 24), NPC1 (TERERLL, SEQ ID NO: 25), Mucolipin-1 (SETERLL, SEQ ID NO: 26), Sialin (TDRTPLL, SEQ ID NO: 27), GLUT8 (EETQPLL, SEQ ID NO: 28), Invariant chain (Ii) (1) (DDQRDLI, SEQ ID NO: 29), and Invariant chain (Ii) (2) (NEQLPML, SEQ ID NO: 30).

[0109] In some embodiments, the signal peptides belong to the YXXO type, such as those identified in LAMP-1 (GYQTI, SEQ ID NO: 31), LAMP-2A (GYEQF, SEQ ID NO: 32), LAMP-2B (GYQTL, SEQ ID NO: 33), LAMP-2C (GYQSV, SEQ ID NO: 34), CD63 (GYEV, SEQ ID NO: 35), CD68 (AYQAL, SEQ ID NO: 36), Endolyn (NYHTL, SEQ ID NO: 37), DC-LAMP (GYQRI, SEQ ID

NO: 38), Cytosine (GYDQL, SEQ ID NO: 39), Sugar phosphate exchanger 2 (GYKEI, SEQ ID NO: 40), and acid phosphatase (GYRHV, SEQ ID NO: 41).

[0110] In some embodiments, the catabolic enzyme is targeted to remain outside the cell, i.e., the enzyme is modified to act extracellularly. In some embodiments, the catabolic enzyme to be administered lacks one or more signals that would otherwise target the polypeptide to the lysosome. In some embodiments, the catabolic enzyme lacks one or more mannose-6 phosphate (i.e., M6P) signals, thereby precluding entry of the catabolic enzyme into the cell. In some embodiments, the catabolic enzyme is recombinantly engineered to lack one or more mannose-6 phosphate signal. Not bound by any theory, it is generally understood in the art that reduced M6P content lowers the binding affinity of a recombinant enzyme for M6P receptors and decreases its cellular uptake and thereby allows the enzyme to remain outside the cell.

[0111] Methods for reducing the M6P content of a recombinant protein, e.g., a catabolic enzyme, are known in the art. See, e.g., U.S. Pat. No. 8,354,105, which is herein incorporated by reference in its entirety. In some embodiments, the mannose content of a recombinant catabolic enzyme may be reduced by manipulating the cell culture conditions such that the glycoprotein produced by the cell has low-mannose content. As used herein, the term “low-mannose content” refers to catabolic enzyme composition wherein less than about 20%, less than about 15%, less than about 10%, less than about 8%, less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or any values between any of these preceding ranges, or even at 0% of the enzymes in the composition have more than 4 mannose residues (i.e., are species of M5 or greater).

[0112] In some embodiments, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises at least one catabolic enzyme that is targeted to the cell lysosome and at least one catabolic enzyme that remains outside the cell. In some embodiments, the catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In an exemplary embodiment, the present invention provides a composition comprising at least two catabolic enzymes, wherein the composition comprises a PPCA catabolic enzyme that is targeted to the cell lysosome and a PPCA catabolic enzyme that remains outside the cell. In some embodiments, the ratio of the intralysosomal catabolic enzyme to the extracellular catabolic enzyme on a percentage basis within the composition is at least 5%:95%. In further embodiments, the ratio of the intralysosomal catabolic enzyme to the extracellular catabolic enzyme on a percentage basis within the composition is at least 10%:90%, at least 15%:85%, at least 20%:80%, at least 25%:75%, at least 30%:70%, at least 35%:65%, at least 40%:60%, at least 45%:55%, at least 50%:50%, at least 55%:45%, at least 60%:40%, at least 65%:35%, at least 70%:30%, at least 75%:25%, at least 80%:20%, at least 85%:15%, at least 90%:10%, or at least 95%:5%.

[0113] In some embodiments, the methods of the present invention comprise administering to the subject a composition comprising a therapeutically effective amount of at least two, three, or more catabolic enzymes. In some embodiments, the methods comprise increasing the expression,

activity, and/or concentration of at least two, three, or more catabolic enzymes in the subject. In some embodiments, the methods comprise administering to the subject a composition comprising an expression cassette comprising one or more polynucleotide sequences encoding at least two, three, or more catabolic enzymes. In some embodiments, the methods comprise administering to the subject one or more expression cassettes comprising at least two, three or more polynucleotide sequences encoding at least two, three or more catabolic enzymes. In some embodiments, the methods comprise administering to the subject a therapeutically effective amount of a first catabolic enzyme, and an expression cassette comprising a polynucleotide sequence encoding a second catabolic enzyme. In some embodiments, two or more catabolic enzymes are selected from the group consisting of protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L. In some embodiments, at least two catabolic enzymes are PPCA and NEU1.

[0114] In some embodiments, administration of the at least one catabolic enzyme is employed to prevent the formation of amyloid. In other embodiments, administration of the at least one catabolic enzyme is employed to degrade amyloid that has already formed. In some embodiments, administration of the at least one catabolic enzyme is employed to prevent the formation of one or more amyloid oligomers. In some embodiments, administration of the at least one catabolic enzyme is employed to prevent the formation of one or more amyloid fibrils. In some embodiments, administration of the at least one catabolic enzyme is employed to degrade one or more amyloid oligomers after it has already formed. In some embodiments, administration of the at least one catabolic enzyme is employed to degrade one or more amyloid fibrils after it has already formed.

[0115] In some embodiments, the methods of the present invention provided herein further comprise administering a composition (e.g. a pharmaceutical composition) comprising at least one catabolic enzyme or fragment thereof with at least one additional drug for treating or preventing amyloidosis.

[0116] In some embodiments, the at least one additional drug is a steroid. In some embodiments, the steroid is dexamethasone, cortisone, hydrocortisone, methylprednisolone, prednisolone, prednisone, triamcinolone or any combination thereof.

[0117] In some embodiments, the at least one additional drug is a non-steroid agent. In some embodiments, such non-steroid agent is diclofenac, flufenamic acid, flurbiprofen, diflunisal, detopprofen, diclofenac, etodolac, fenoprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, mefenamic acid, meloxicam, nabumetone, naproxen sodium, oxaprozin, piroxicam, sulindac, tolmetin, celecoxib, rofecoxib, aspirin, choline salicylate, salsalate, and sodium and magnesium salicylate or any combination thereof.

[0118] In some embodiments, the at least one additional drug is a chemotherapy agent. In some embodiments, the chemotherapy agent is selected from the group consisting of cyclophosphamide (e.g., Cytoxan, Neosar) and melphalan (e.g., Alkeran).

[0119] In some embodiments, at least one additional drug is an anti-inflammatory medication, when the subject has inflammatory symptoms.

[0120] In some embodiments, the at least one additional drug is an antibiotic, when the subject has infection symptoms. In some embodiments, the infection is a chronic infection. In some embodiments, the infection is a microbial infection.

[0121] In some embodiments, the at least one additional drug is a Carbonic Anhydrase (CA) enzyme (e.g., CA-I, CA-II, CA-III, CA-IV, CA-V, CA-VI, and CA-VII) and/or agents that can increase the activity of a Carbonic Anhydrase enzyme in the subject.

[0122] In some embodiments, at least one additional drug is a disease modifying antirheumatic drug (DMARD). In some embodiments, the DMARD is cyclosporine, azathioprine, methotrexate, leflunomide, cyclophosphamide, hydroxychloroquine, sulfasalazine, D-penicillamine, minocycline, gold, or any combination thereof.

[0123] In some embodiments, the at least one additional drug is a recombinant protein. In some embodiments, the recombinant protein is ENBREL® (etanercept, a soluble TNF receptor) or REMICADE® (infliximab, a chimeric monoclonal anti-TNF antibody).

[0124] In some embodiments, the one or more additional drugs is/are selected from melphalan, dexamethasone, bortezomib, lenalidomide, vincristine, doxorubicin, cyclophosphamide and pomalidomide.

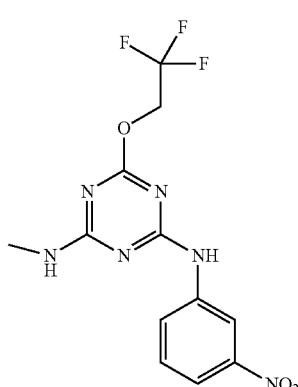
[0125] In some embodiments, the methods of the present invention further comprise the administration of one or more drugs that acidifies the lysosome. As used herein, drugs that acidify the lysosome are drugs capable of lowering the lysosomal pH of a target cell. Accordingly, in some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof, wherein the subject is also administered one or more drugs that acidifies the lysosome. As described herein, when performing a combination therapy, the two or more drugs (e.g., a catabolic enzyme or a biologically active fragment thereof and a drug that acidifies the lysosome) can be administered simultaneously or sequentially in any order.

[0126] In some embodiments, the drug that acidifies the lysosome is selected from an acidic nanoparticle, a catecholamine, a β -adrenergic receptor agonist, an adenosine receptor agonist, a dopamine receptor agonist, an activator of the cystic fibrosis transmembrane conductance regulator (CFTR), cyclic adenosine monophosphate (cAMP), a cAMP analog, and an inhibitor of glycogen synthase kinase-3 (GSK-3).

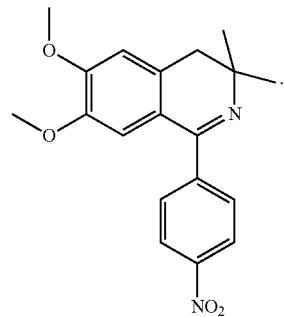
[0127] In some embodiments, the drug that acidifies the lysosome is an acidic nanoparticle. Acidic nanoparticles have been shown to localize to lysosomes and reduce lysosomal pH. See Baltazar et al., 2012, PLoS ONE 7(12): e49635 and Lee et al., 2015, *Cell Rep.* 12(9): 1430-44, both of which are herein incorporated by reference in their entirities. In some embodiments, the acidic nanoparticle is a polymeric acidic nanoparticle. In some embodiments, the polymeric acidic nanoparticle is a poly (DL-lactide-co-glycolide) (PLGA) acidic nanoparticle. In a specific embodiment, the PLGA acidic nanoparticle comprises PLGA Resomer RG 503 H. In some embodiments, the PLGA acidic nanoparticle comprises PLGA Resomer RG 502 H. In other embodiments, the polymeric acidic nanoparticle is a poly (DL-lactide) (PLA) acidic nanoparticle. In a specific

embodiment, the PLA acidic nanoparticle comprises PLA Resomer R 203 S. In some embodiments, the acid number of the acidic nanoparticle is between about 0.5 mg KOH/g to about 8 mg KOH/g. In some embodiments, the acid number of the acidic nanoparticle is between about 1 mg KOH/g to about 6 mg KOH/g. In some embodiments, the acid number of the acidic nanoparticle is selected from about 1 mg KOH/g, about 2 mg KOH/g, about 3 mg KOH/g, about 4 mg KOH/g, about 5 mg KOH/g, or about 6 mg KOH/g. In a specific embodiment, the acid number of the acidic nanoparticle is about 3 mg KOH/g. In some embodiments, the nanoparticle size is about 50 nm to about 800 nm. In some embodiments, the nanoparticle size is about 100 nm to about 600 nm. In a specific embodiment, the nanoparticle size is about 350 nm to about 550 nm. In a further specific embodiment, the nanoparticle size is about 375 nm to about 400 nm. In an exemplary embodiment, the acidic nanoparticle is spherical. In some embodiments, the nanoparticles are targeting a specific transport process in the brain, which enhance drug transport through the blood-brain barrier (BBB). In some embodiments, such transport processes include, but are not limited to: (1) nanoparticles open TJs between endothelial cells or induce local toxic effect which leads to a localized permeabilization of the BBB allowing the penetration of the drug in a free form or conjugated with the nanoparticles; (2) nanoparticles pass through endothelial cell by transcytosis; (3) nanoparticles are transported through endothelial cells by endocytosis, where the content is released into the cell cytoplasm and then exocytosed in the endothelium abluminal side; and (4) a combination of several of the mechanisms. In some embodiments, the receptors targeted by nanoparticles are transferrin and low-density lipo-protein receptors. In some embodiments, the targeting can be achieved by peptides, proteins, or antibodies, which can be physically and/or chemically immobilized on the nanoparticles. In some embodiments, the nanoparticles are coated with one or more apolipoproteins, such as apolipoprotein AII, B, CII, E, and/or J (see, Kreuter et al., (2002, DOI: 10.1080/10611860290031877). For more nanoparticle-mediated brain drug delivery compositions and methods, see Saraiva et al. (*Journal of Controlled Release*, 2016, 235:34-37). Each of the references mentioned herein is incorporated by reference in its entirety.

[0128] In some embodiments, the drug that acidifies the lysosome is a catecholamine. Catecholamines have been shown to reduce lysosomal pH. See Liu et al., 2008, *Invest Ophthalmol Vis Sci.* 49(2): 772-780, which is herein incorporated by reference in its entirety. In some embodiments, the catecholamine is selected from epinephrine, metanephrine, synephrine, norepinephrine, normetanephrine, octopamine or norphenephrine, dopamine, and dopa. In exemplary embodiment, the catecholamine is selected from epinephrine, norepinephrine, and dopamine.


[0129] In some embodiments, the drug that acidifies the lysosome is a β -adrenergic receptor agonist. β -adrenergic receptor agonists have been shown to reduce lysosomal pH. See Liu et al., 2008, *Invest Ophthalmol Vis Sci.* 49(2): 772-780. Examples of β -adrenergic receptor agonists may be found in US Patent Publication No. 2012/0329879, which is herein incorporated by reference in its entirety. In some embodiments, the β -adrenergic receptor agonist is selected from isoproterenol, metaproterenol, formoterol, salmeterol,

salbutamol, albuterol, terbutaline, fenoterol, and vilanterol. In an exemplary embodiment, the β -adrenergic receptor agonist is isoproterenol.


[0130] In some embodiments, the drug that acidifies the lysosome is an adenosine receptor agonist. Adenosine receptor agonists have been shown to reduce lysosomal pH. See Liu et al., 2008, *Invest Ophthalmol Vis Sci.* 49(2): 772-780. In an exemplary embodiment, the adenosine receptor agonist is a non-specific adenosine receptor agonist or an A_{2A} adenosine receptor agonist. Examples of A_{2A} adenosine receptor agonists may be found in US Patent Publication No. 2012/0130481, which is herein incorporated by reference in its entirety. In some embodiments, the adenosine receptor agonist is selected from 5'-N-ethylcarboxamidoadenosine (NECA), CGS21680, 2-phenylaminoadenosine, 2-[para-(2carboxyethyl)phenyl]amino-5'N-ethylcarboxamidoadenosine, SRA-082, 5'-N-cyclopropylcarboxamidoadenosine, 5'N-methylcarboxamidoadenosine and PD-125944.

[0131] In some embodiments, the drug that acidifies the lysosome is a dopamine receptor agonist. Dopamine receptor agonists have been shown to reduce lysosomal pH. See Guha et al., 2014, *Adv Exp Med Biol.* 801: 105-111, which is herein incorporated by reference in its entirety. In some embodiments, the dopamine receptor agonist is selected from A68930, A77636, A86929, SKF81297, SKF82958, SKF38393, SKF89145, SKF89626, dihydrexidine, dinapsoline, diroxidine, doxantridine, fenoldopam, 6-Br-APB, stetholidine, CY-208243, 7,8-Dihydroxy-5-phenyl-octahydrobenzo[h]isoquinoline, cabergoline, and pergolide. In an exemplary embodiment, the dopamine receptor agonist is selected from A68930, A77636, and SKF81297. In a further exemplary embodiment, the dopamine receptor agonist is SKF81297, also known as 6-chloro-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol.

[0132] In some embodiments, the drug that acidifies the lysosome is an activator of the cystic fibrosis transmembrane conductance regulator (CFTR). Activators of CFTR have been shown to reduce lysosomal pH. See Liu et al., 2012, *Am J Physiol Cell Physiol.* 303: C160-9, which is herein incorporated by reference in its entirety. In some embodiments, the CFTR activator is selected from $CFTR_{Act}1$ to $CFTR_{Act}17$. See Ma et al., *J Biol Chem.* 277: 37235-37241. In an exemplary embodiment, the CFTR activator is selected from $CFTR_{Act}11$ and $CFTR_{Act}16$, having the following structures:

 $CFTR_{Act}11$

-continued

 $CFTR_{Act}16$

In some embodiments, the CFTR activator is co-administered with forskolin.

[0133] In some embodiments, the drug that acidifies the lysosome is cAMP or a cAMP analog. cAMP and/or cAMP analogs have been shown to reduce lysosomal pH. See Liu et al., 2008, *Invest Ophthalmol Vis Sci.* 49(2): 772-780. For instance, the cell-permeable analogs chlorophenylthio-cAMP (cpt-cAMP) and 8-bromo-cAMP have the ability to lower lysosomal pH in cells. In some embodiments, cAMP and/or a cAMP analog may be administered in a cocktail comprising 3-isobutyl-1-methylxanthine (IBMX) and forskolin. For example, in one embodiment, a cocktail comprising IBMX, forskolin, and cpt-cAMP may be administered to acidify the lysosome. In some embodiments, the cAMP analog is selected from 9-pCPT-2-O-Me-cAMP, Rp-cAMPS, 8-Cl-cAMP, Dibutyryl cAMP, pCPT-cAMP, N6-monobutyryladenosine 3',5'-cyclic monophosphate, and PDE inhibitors.

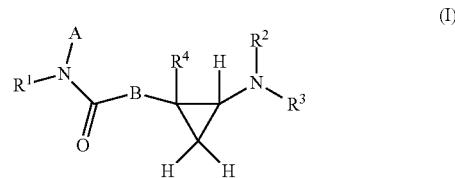
[0134] In some embodiments, the drug that acidifies the lysosome is an inhibitor of glycogen synthase kinase-3 (GSK-3). GSK-3 inhibitors have been shown to be effective in reducing the lysosomal pH. See Avrahami et al., 2013, *Commun Integr Biol.* 6(5): e25179, which is herein incorporated by reference in its entirety. For instance, the competitive GSK-3 inhibitor, L803-mts, has been shown to facilitate acidification of the lysosome by inhibiting GSK-3 activity, which acts to impair lysosomal acidification. Accordingly, in one embodiment, the inhibitor of GSK-3 is the cell permeable peptide, L803-mts (SEQ ID NO: 72). Suitable GSK-3 inhibitors may be found in US Patent Publication Nos. 2013/0303441 and 2015/0004255, which are herein incorporated by reference in their entireties. In some embodiments, the GSK-3 inhibitor is selected from 2'Z,3'E)-6-bromoindirubin-3'-acetoxime, TDZD-8 (4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione), SB216763 (3-(2,4-Dichlorophenyl)-4-(1-methyl-1H-indol-3-yl), NP-103, 2-Thio(3-iodobenzyl)-5-(1-pyridyl)-[1,3,4]-oxadiazole, L803, L803-mts, and GF-109203X (2-[1-(3-Dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide and pharmaceutically acceptable salts and mixtures thereof.

[0135] In some embodiments, the methods of the present invention further comprise the administration of one or more drugs that promotes autophagy. As used herein, drugs that promote autophagy can promote the intracellular degradation system that delivers cytoplasmic constituents to the lysosome. Accordingly, in some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount

of at least one catabolic enzyme or a biologically active fragment thereof, and one or more drugs that promotes autophagy. In some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof, wherein the subject is also administered one or more drugs that acidifies the lysosome and/or endosome, and one or more drugs that promotes autophagy. In some embodiments, the drug that acidifies the lysosome and/or endosome, and the drug that promotes autophagy can be the same drug, or different drugs. As described herein, when performing a combination therapy, the drugs (e.g., a catabolic enzyme or a biologically active fragment thereof, a drug that acidifies the lysosome and/or endosome, and/or a drug that promotes autophagy) can be administered simultaneously or sequentially in any order. Without wishing to be bound by any particular theory, a treatment of therapeutic catabolic enzyme or a biologically active fragment thereof with an agent that can cause lysosome and/or endosome acidification and/or an agent that can promote autophagy is capable of lowering pH to optimal conditions for enzymatic proteolysis, and improving lysosomal proteolysis power.

[0136] In some embodiments, autophagy promoting reagents include, but are not limited to reagents that directly or indirectly promote autophagy such as TFEB activators, PPAR agonists, PGC-1 α activators, LSD1 inhibitors, mTOR inhibitors, GSK3 inhibitors, etc.

[0137] In some embodiments, the drug promotes autophagy via activation of Transcription factor EB (TFEB) pathway. TFEB is a master gene for lysosomal biogenesis. It encodes a transcription factor that coordinates expression of lysosomal hydrolases, membrane proteins and genes involved in autophagy. TFEB overexpression in cultured cells induced lysosomal biogenesis and increased the degradation of complex molecules. TFEB is activated by PGC-1 α and promotes reduction of ht aggregation and neurotoxicity.

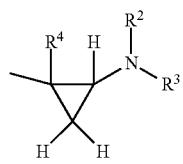

[0138] In some embodiments, the drug that promotes autophagy via activation of TFEB pathway is an activator of TFEB. In some embodiments, such TFEB activator include, but are not limited to C1 (Song et al, 2016, Autophagy, 12(8):1372-1389), and 2-hydroxypropyl- β -cyclodextrin (Kilpatrick et al., 2015, PLOS ONE DOI:10.1371/journal.pone.0120819). Each of the references mentioned herein is incorporated by reference in its entirety.

[0139] In some embodiments, the drug that promotes autophagy via activation of TFEB pathway is an agent that can activate peroxisome proliferator-activated receptor gamma coactivator 1- α (PGC-1 α). In some embodiments, such activators of PGC-1 α include, but are not limited to, pyrroloquinoline quinone, resveratrol, R- α -lipoic acid (ALA), ALA /acetyl-L-carnitine (ALC), flavonoids, isoflavones and derivatives (e.g., quercetin, daidzein, genistein, biochanin A, and formononetin). See, Das and Sharma 2015 (CNS & Neurological Disorders—Drug Targets, 2015, 14, 1024-1030.) Each of the references mentioned herein is incorporated by reference in its entirety.

[0140] In some embodiments, the drug promotes autophagy via activation of peroxisome proliferator-activated receptor gamma coactivator 1- α (PGC-1 α) and/or Forehead box O3 (FOXO3). PGC-1 α is a master regulator of mitochondrial biogenesis. PGC-1 α interacts with the

nuclear receptor PPAR- γ , which permits the interaction of this protein with multiple transcription factors. This protein can interact with, and regulate the activities of, cAMP response element-binding protein (CREB) and nuclear respiratory factors (NRFs). It provides a direct link between external physiological stimuli and the regulation of mitochondrial biogenesis, and is a major factor that regulates muscle fiber type determination. FOXO3 is a transcription factor that can be inhibited and translocated out of the nucleus on phosphorylation by protein such as Akt/PKB in the PI3K signaling pathway.

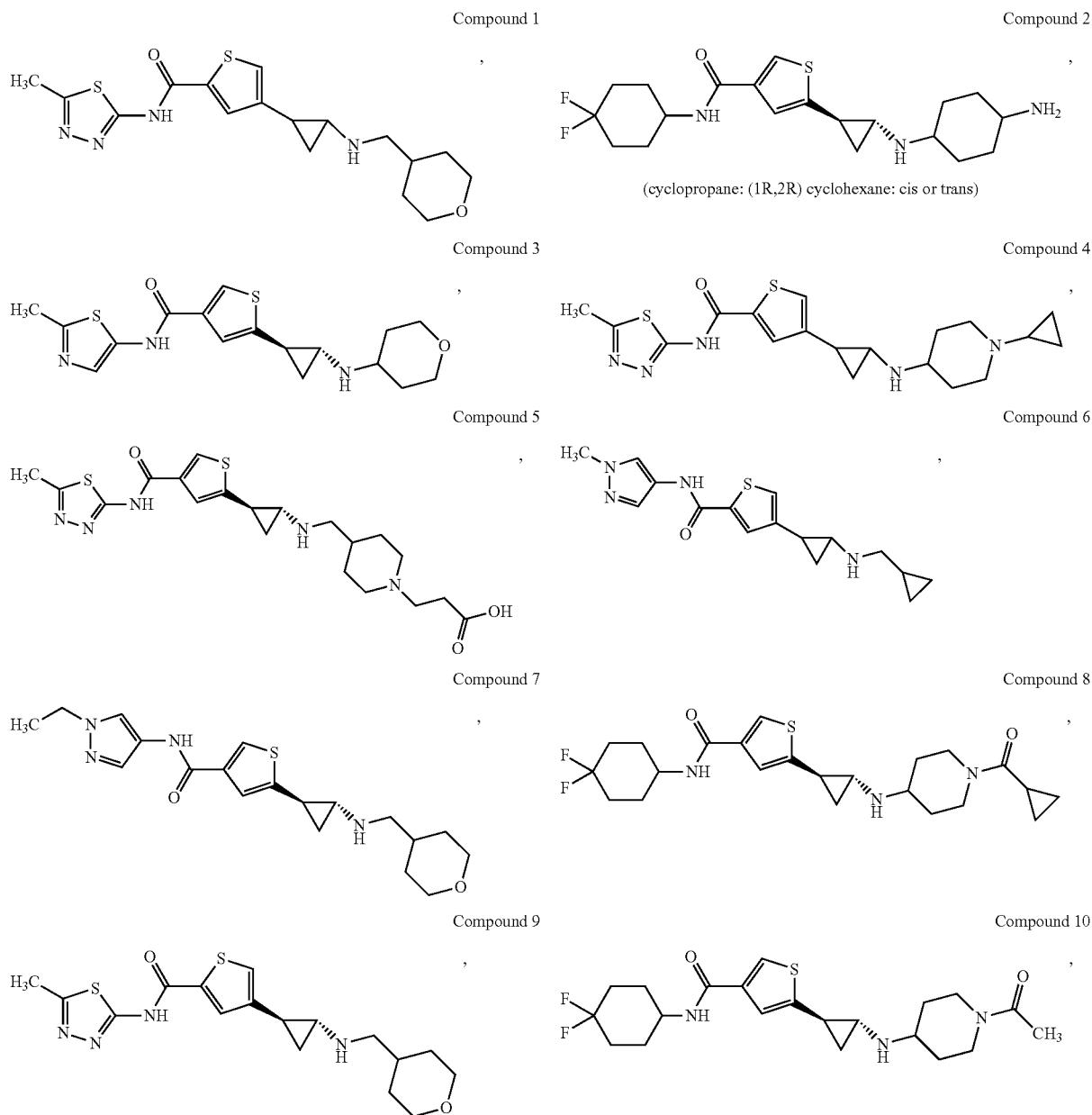
[0141] In some embodiments, a drug that promotes autophagy via PGC-1 α and/or FOXO3 activation is an inhibitor of Lysine (K)-specific demethylase 1A (LSD1). LSD1 is a flavin-dependent monoamine oxidase, which can demethylate mono- and bi-methylated lysines. LSD1 has roles critical in embryogenesis and tissue-specific differentiation. In some embodiments, such LSD1 inhibitors include, but are not limited to, 1-(4-methyl-1-piperazinyl)-2-[(1R*,2S*)-2-[4-phenylmethoxy)phenyl]cyclopropyl]amino]ethanone dihydrochloride (RN-1; Cui et al., 2015, Blood 2015 126:386-396), CBB1001-1009 (Wang et al., 2011, Cancer Res. 2011 Dec. 1; 71(23): 7238-7249.), TCP, Pargyline, CGC-11047, and Namolone (Pieroni et al., 2015, European Journal of Medicinal Chemistry 92 (2015) 377e386), phenelzine analogues (Prusevich et al., ACS Chem. Biol. 2014, 9, 1284-1293), and those described in WO2015156417, which is herein incorporated by reference in its entirety. In some embodiments, one or more LSD1 inhibitors are used. In some embodiments, both RN-1 and a LSD1 inhibitor described in WO2015156417 are used. WO2015156417 describes inhibitors of LSD1 represented by formula I:


wherein, A is an optionally substituted heterocyclic group, or an optionally substituted hydrocarbon group; B is a ring selected from

[0142] (1) a 5- or 6-membered aromatic heterocycle optionally fused with an optionally substituted 5- or 6-membered ring, and

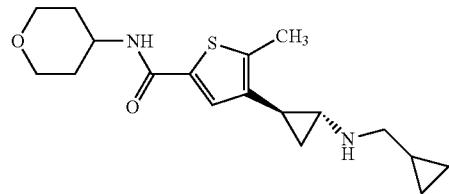
[0143] (2) a benzene ring fused with an optionally substituted 5- or 6-membered ring, wherein the ring represented by B is optionally substituted, and binds, via two adjacent carbon atoms with one atom in between, to a group represented by the formula

and a group represented by the formula

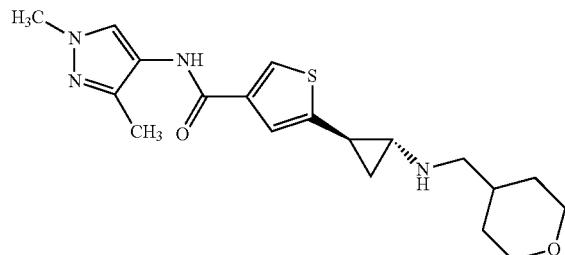

(III)

[0144] R¹, R², R³ and R⁴ are each independently a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group;

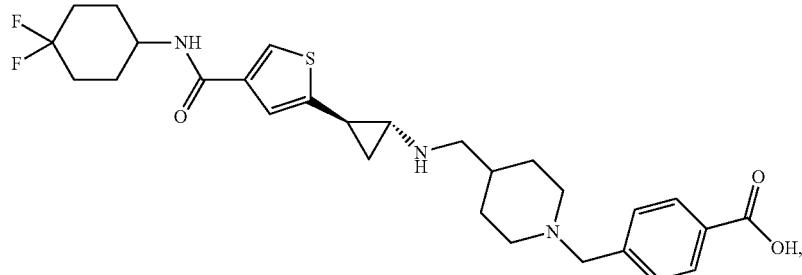
[0145] A and R¹ are optionally bonded with each other to form, together with the adjacent nitrogen atom, an optionally substituted cyclic group; and

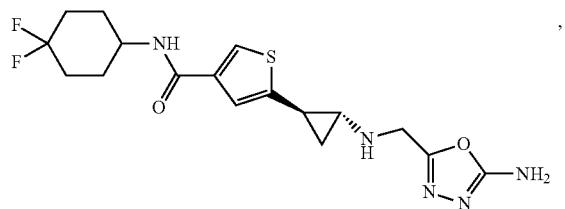

[0146] R² and R³ are optionally bonded with each other to form, together with the adjacent nitrogen atom, an optionally substituted cyclic group, or a salt thereof. Such LSD1 inhibitors are more specific with less side effect and good blood-brain barrier penetration.

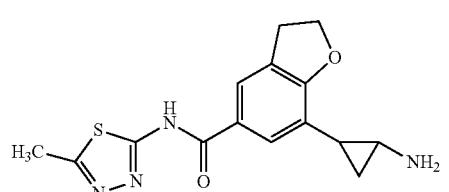
[0147] In some embodiments, the LSD1 inhibitors are selected from the group consisting of the following compounds (compounds 1-30), and salts, stereoisomers, geometric isomers, tautomers, oxynitrides, enantiomers, diastereoisomers, racemates, prodrugs, solvates, metabolites, esters, and mixtures thereof:

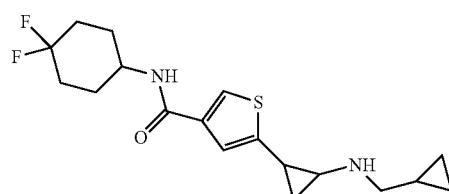


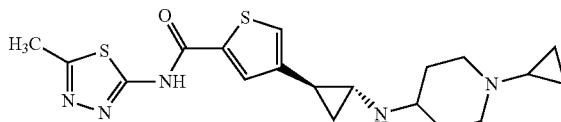
-continued

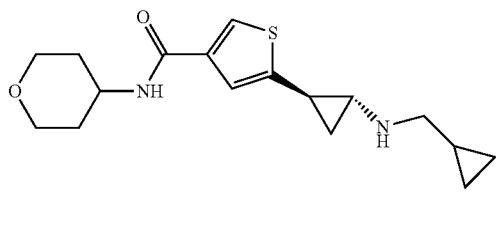

Compound 11

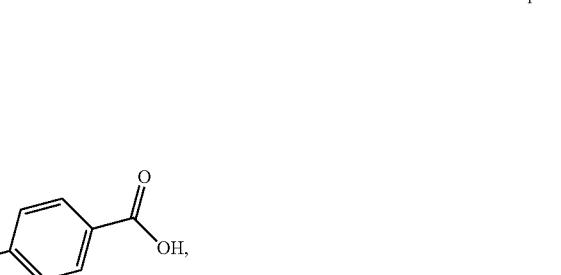

Compound 13

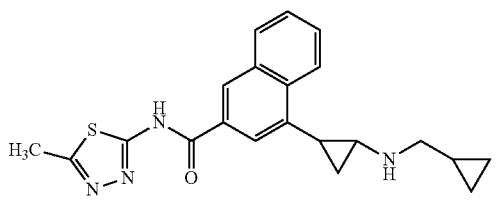

Compound 15

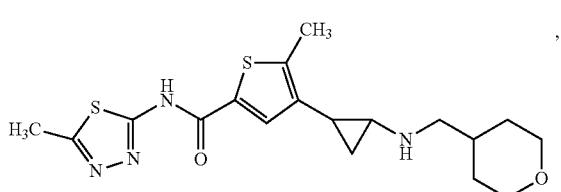

Compound 16

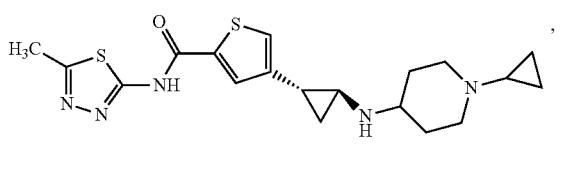

Compound 18

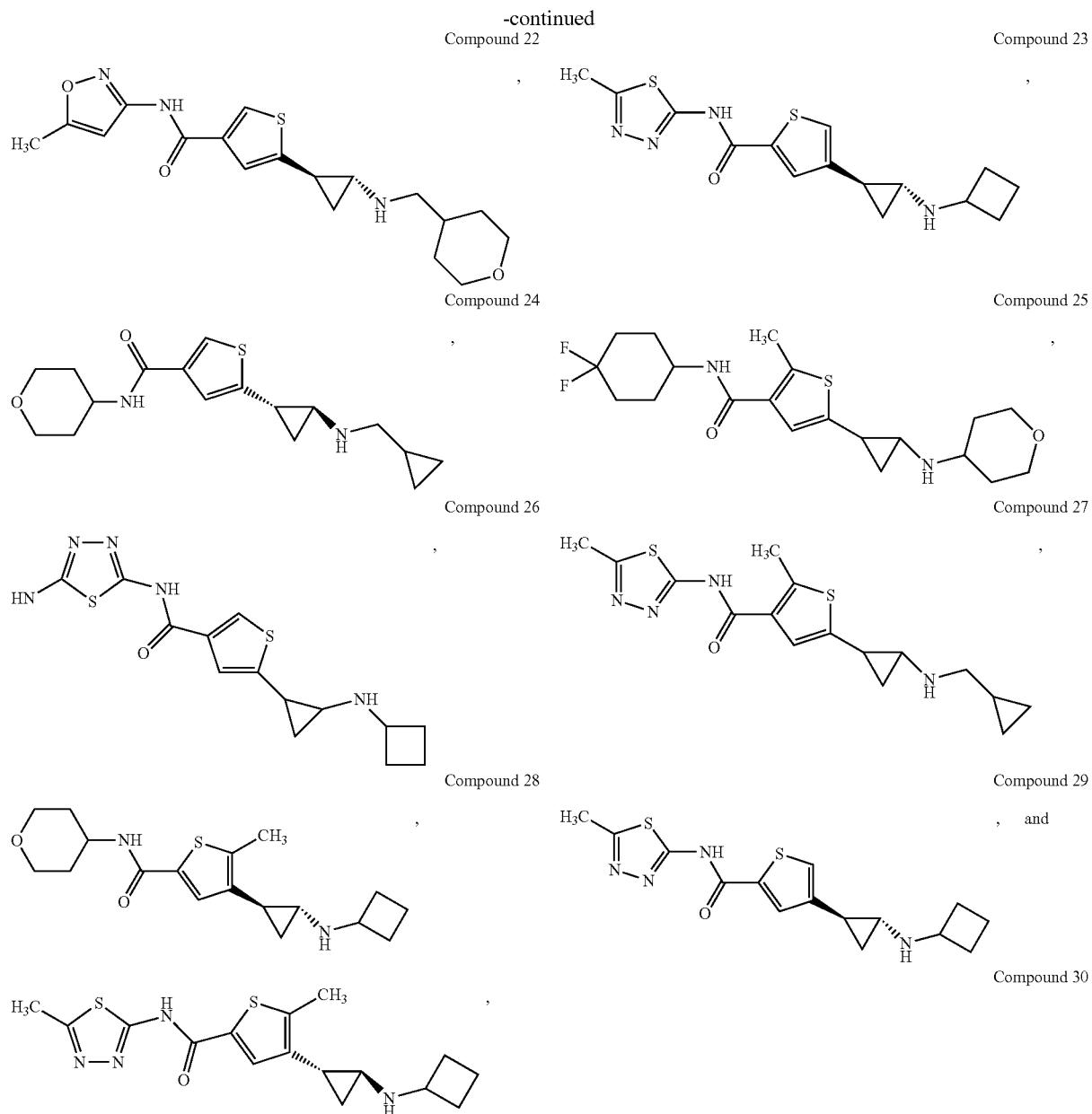

Compound 20


Compound 12


Compound 14


Compound 15


Compound 17



Compound 19

Compound 21

In one embodiment, the LSD1 inhibitor to be co-administered with a catabolic enzyme of the present invention or a biologically active fragment thereof is compound 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or any mixtures thereof.

[0148] In some embodiments, the drug is capable of modifying the activity of a regulator or a co-activator of PGC-1 α . Such regulators or co-activators of PGC-1 α include, but are not limited to, Parkin Interacting Substrate (PARIS), Sirtuin 1 (SIRT1), 5'AMP-activated protein kinase (AMPK), General control of amino acid synthesis protein 5 (GCN5), Nuclear respiratory factor 1, 2(NRF-1,2), Glycogen synthase kinase 3 β (GSK3 β), Peroxisome proliferator-activated receptor- α , β / δ , γ (PPAR- α , β / δ , γ), p38 mitogen-activated protein kinase (p38MAPK), Estrogen-related

receptors (ERRs), myocyte enhancer factor-2 (MEF2), and Thyroid hormone receptor (TR), see Das and Sharma (CNS & Neurological Disorders—Drug Targets, 2015, 14, 1024-1030). Each of the references mentioned herein is incorporated by reference in its entirety.

[0149] In some embodiments, the drug that promotes autophagy is a Peroxisome proliferator-activated receptor (PPAR) agonist. PPARs are nuclear receptor proteins that function as transcription factors regulating the expression of genes. They are critical in the regulation of cellular differentiation, development, and metabolism and tumorigenesis.

[0150] In some embodiments, the PPAR is selected from PPAR α , PPAR β / δ , and PPAR γ . In some embodiments, the PPAR agonist is a PPAR α agonist, including but not limited to amphipathic carboxylic acids (e.g., clofibrate, gemfibro-

zil, ciprofibrate, bezafibrate, and fenofibrate), fibrate, ureidofibrate, oxybenzylglycine, triazolone, agonists containing a 2,4-dihydro-3H-1,2,4 triazole-3-one (triazolone) core (e.g., LY518674), BMS-687453, Wy-14643, GW2331, GW 95798, LY518674, and GW590735.

[0151] In some embodiments, the PPAR agonist is a PPAR β/δ agonist, including but not limited to GW501516 (Brunmair; et al. *Diabetologia*, 49 (11): 2713-22), L-165041, compound 7 (Burdick et al., *Cell Signal* 2006, 18 (1), 9-20), thiazole, bisaryl substituted thiazoles, non-TZD compounds (e.g., L-165041), L-165041, compound 7 (Burdick et al., *Cell Signal* 2006, 18 (1), 9-20), 38c (Johnson et al., *J Steroid Biochem Mol Biol* 1997, 63 (1-3), 1-8), and oxazoles. Each of the references mentioned herein is incorporated by reference in its entirety.

[0152] In some embodiments, the PPAR agonist is a PPAR γ agonist, including but not limited to thiazolidinediones (TZDs or glitazones), glitazar, indenone, NSAIDs, dihydrocinnamate, β -carboxyethyl rhodamine, and those described in Corona and Duchen, 2016 (Free Radical Biology and Medicine, published online Jun. 23, 2016). In some embodiments, the PPAR γ agonist is an endogenous or natural agonist. In some embodiments, the PPAR γ agonist is a synthetic agonist. In some embodiments, the PPAR γ agonist is selected from the group consisting of eicosanoids prostaglandin-A1, cyclopentenone prostaglandin 15-deoxy- $\Delta^{12,14}$ -Prostaglandin J2 (15D-PGJ2), unsaturated fatty acids such as linoleic acid and docosahexaenoic acid, nitroalkenes such as nitrated oleic acid and linoleic acid, oxidized phospholipids such as hexadecyl azelaoyl phosphatidylcholine and lysophosphatidic acid, non-steroidal anti-inflammatory drugs, such as flufenamic acid, ibuprofen, fenoprofen, and indomethacin, pioglitazone, GW0072, ciglitazone, troglitazone, rosiglitazone, isoglitazone, NC-2100 (Liodice et al., *Curr. Top. Med. Chem.* 2011, 11(7):819-39), SB-236636, tesaglitazar, farglitazar, GW1929, compound 14c (Haigh et al., *Bioorg. Med. Chem.* 1999, 7(5):821-30), SP1818, raga-glitazar, metagliidasen, balagliazine, and INT131. Each of the references mentioned herein is incorporated by reference in its entirety.

[0153] In some embodiments, the PPAR agonist binds to PPAR α , PPAR β/δ , and PPAR γ , such as bezafibrate, LY465608, indeglitazar, TIPP-204, GW693085, TIPP-401, and TIPP-703. In some embodiments, the PPAR agonist binds to PPAR α and PPAR γ , such as farglitazar, muragli-tazar, tesaglitazar, GW409544, aleglitazar, MK-767, TAK-559, compound 18 (Kojo et al., *J. Pharmacol Sci* 2003, 93 (3), 347-55), compounds 68, 70, 72, 76 (Felts et al., *J. Med. Chem.* 2008, 51 (16), 4911-9), metagliidasen, and S-2/S-4 (Suh et al., *J. Med. Chem.* 2008, 51 (20), 6318-33). In some embodiments, the PPAR agonist binds to PPAR β and PPAR γ , such as compound 23 (Martin et al., *J. Med. Chem.* 2009, 52(21), 6835-50). More PPARs agonists are described in Nevin et al., 2011 (Current Medicinal Chemistry, 2011, 18, 5598-5623). Each of the references mentioned herein is incorporated by reference in its entirety.

[0154] In some embodiments, the drug that promotes autophagy is an inhibitor of mechanistic target of rapamycin (mTOR). mTOR is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs), see Maiese et al. (*Br J Clin Pharmacol*, 82(5):1245-1266), which is herein incorporated by reference in its entirety. mTOR integrates the input from upstream pathways, including insulin, growth factors (such

as IGF-1 and IGF-2), and amino acids, and also senses cellular nutrient, oxygen, and energy levels. In some embodiments, mTOR inhibitors include, but are not limited to, an antibody of mTOR, rapamycin and its analogs (e.g., temsirolimus (CCI-779), everolimus (RAD001), ridaforolimus (AP-23573), sirolimus, deforolimus), curcumin (Zhang et al., 2016, *Oncotarget*), curcumin analogs (Song et al. 2016, *Autophagy*, 12(8):1372-1389), ATP-competitive mTOR kinase inhibitors, mTOR/PI3K dual inhibitors (dactolisib, BGT226, SF1126, PKI-587 etc.), deptor (Maiese, *Neural Regeneration Research*, 2016; 11(3):372-385), and mTORC1/mTORC2 dual inhibitors (TORCdIs, such as sapanisertib (a.k.a. INK128), AZD8055, and AZD2014). Each of the references mentioned herein is incorporated by reference in its entirety.

[0155] In some embodiments, the drug that promotes autophagy is an inhibitor of Glycogen synthase kinase 3 (GSK3). GSK3 is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. In some embodiments, the GSK3 inhibitor is ATP-competitive. In some embodiments, the GSK3 inhibitor is non-ATP competitive. In some embodiments, GSK3 inhibitors include, but are not limited to, an antibody of GSK3, metal cations (e.g., beryllium, copper, lithium, mercury, and tungsten), marine organism-derived drugs (e.g., 6-BIO, dibromocantharelline, hymenialdesine, indirubins, meridianins, manzamine A, palanine, tricantine), aminopyrimidines (e.g., CT98014, CT98023, CT99021, and TWS119), ketamine, arylindole-maleimide (e.g., SB-216763 and SB-41528), thiazoles (e.g., AR-A014418 and AZD-1080), paullones (e.g., Alsterpaullone, Capzpaullone, Kenpaullone), thiadiazolidindiones (e.g., TDZD-8, NP00111, NP031115, and tideglusib), halomethylketones (e.g., HMK-32), certain peptides (L803-mts), SB415286, SB216763, and CT99021 (Stretton et al., 2015, *Biochem. J.* (2015) 470, 207-221; Marchand et al., 2015, *The Journal of Biological Chemistry*, 290(9):5592-5605). Each of the references mentioned herein is incorporated by reference in its entirety.

[0156] In some embodiments, the methods of the present invention further comprise the administration of one or more drugs that modulates the lysosome. In some embodiments, drugs that modulate the lysosome may be capable of decreasing the level of Rab5a, a marker of early endosomes. Accordingly, in some embodiments, the present invention provides a method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof, wherein the subject is also administered one or more drugs that modulates the lysosome. As described herein, when performing a combination therapy, the two or more drugs (e.g., a catabolic enzyme or a biologically active fragment thereof and a drug that modulates the lysosome) can be administered simultaneously or sequentially in any order.

[0157] In some embodiments, the drug that modulates the lysosome is Z-phenylalanyl-alanyl-diazomethylketone (PADK) or a PADK analog, or a pharmaceutically acceptable salt or ester thereof. In some embodiments, the PADK analog is selected from Z-L-phenylalanyl-D-alanyl-diazomethylketone (PdADK), Z-D-phenylalanyl-L-alanyl-diazomethylketone (dPADK), and Z-D-phenylalanyl-D-alanyl-diazomethylketone (dPdADK). In some embodiments, the

drug that modulates the lysosome is Z-phenylalanyl-phenylalanyl-diazomethylketone (PPDK) or a PPDK analog, or a pharmaceutically acceptable salt or ester thereof. An exemplary listing of suitable lysosome modulators may be found in US Patent Publication No. 2016/0136229, which is herein incorporated by reference in its entirety.

[0158] In some embodiments, when performing a combination therapy, the two or more drugs can be administered simultaneously or sequentially in any order. In some embodiments, when at least two drugs are administered sequentially, the duration between the two administrations can be about 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 2 days, three days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, or more.

[0159] In some embodiments, the methods of the present invention further comprise a surgery to be performed on the subject. In some embodiments, the surgery is stem cell transplantation and/or organ transplantation. In some embodiments, the stem cell transplantation is autologous (e.g., stem cells derived from the subject).

[0160] In some embodiments, the methods further comprise providing a supportive treatment to the subject. In some embodiments, when the heart or kidneys of the subject are affected, the methods comprise taking a diuretic (water excretion pill), restricting the amount of salt in diet, and/or wearing elastic stockings and elevating their legs to help lessen the amount of swelling. In some embodiments, when the gastrointestinal tract is involved, dietary changes and certain medications can be tried to help symptoms of diarrhea and stomach fullness.

[0161] A pharmaceutical composition of the present invention can be administered to a patient by any suitable methods known in the art. In some embodiments, administration of a composition of the present invention may be carried out orally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation, by implantation, by intracavitary or intravesical instillation, intraocularly, intraarterially, intralesionally, transdermally, aerosolically (e.g., inhalation) or by application to mucous membranes.

[0162] In some embodiments, a pharmaceutical composition of the present invention further comprises a pharmaceutically-acceptable carrier. When the term "pharmaceutically acceptable" is used to refer to a pharmaceutical carrier or excipient, it is implied that the carrier or excipient has met the required standards of toxicological and manufacturing testing or that it is included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug administration.

[0163] Compositions intended for oral use may be prepared in either solid or fluid unit dosage forms. Fluid unit dosage form can be prepared according to procedures known in the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. An elixir is prepared by using a hydroalcoholic (e.g., ethanol) vehicle with suitable sweeteners such as sugar and saccharin, together with an aromatic flavoring agent. Suspensions can be prepared with an aqueous vehicle with the aid of a suspending agent such as acacia, tragacanth, methylcellulose and the like.

[0164] Solid formulations such as tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc and other conventional ingredients such as dicalcium phosphate, magnesium aluminum silicate, calcium sulfate, starch, lactose, methylcellulose, and functionally similar materials. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed.

[0165] Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil. Soft gelatin capsules are prepared by machine encapsulation of a slurry of the compound with an acceptable vegetable oil, light liquid petrolatum or other inert oil.

[0166] Aqueous suspensions contain active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methyl cellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example hepta-decaethylenoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl-p-hydroxy benzoate, one or more colouring agents, one or more flavoring agents or one or more sweetening agents, such as sucrose or saccharin.

[0167] Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example peanut oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

[0168] Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already

mentioned above. Additional excipients, for example sweetening, flavoring and colouring agents, may also be present.

[0169] Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oil phase may be a vegetable oil, for example olive oil or peanut oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

[0170] The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to known art using those suitable dispersing or wetting agents and suspending agents that have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or a suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butandiol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables. Adjuvants such as local anaesthetics, preservatives and buffering agents can also be included in the injectable solution or suspension.

[0171] In some embodiments, the delivery systems suitable include time-release, delayed release, sustained release, or controlled release delivery systems. In some embodiments, a composition of the present invention can be delivered in a controlled release system, such as sustained-release matrices. Non-limiting examples of sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., 1981, *J. Biomed. Mater. Res.*, 15:167-277 and Langer, 1982, *Chem. Tech.*, 12:98-105), or poly(vinylalcohol)], polylactides (U.S. Pat. No. 3,773,919; EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., 1983, *Biopolymers*, 22:547-556), non-degradable ethylene-vinyl acetate (Langer et al., *supra*), degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid (EP 133,988). In some embodiments, the composition may be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., *Surgery* 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989). In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity to the therapeutic target, for example liver, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in *Medical Applications of Controlled Release*, *supra*, vol. 2, pp. 115-138 (1984). Other controlled release systems are discussed in the review

by Langer (Science 249:1527-1533 (1990). In some embodiments, the composition may be administered through subcutaneous injection.

[0172] In some embodiments, the release of the composition occurs in bursts. Examples of systems in which release occurs in bursts includes, e.g., systems in which the composition is entrapped in liposomes which are encapsulated in a polymer matrix, the liposomes being sensitive to specific stimuli, e.g., temperature, pH, light or a degrading enzyme and systems in which the composition is encapsulated by an ionically-coated microcapsule with a microcapsule core degrading enzyme.

[0173] In some embodiments, the release of the composition is gradual/continuous. Examples of systems in which release of the inhibitor is gradual and continuous include, e.g., erosional systems in which the composition is contained in a form within a matrix and effusional systems in which the composition is released at a controlled rate, e.g., through a polymer. Such sustained release systems can be e.g., in the form of pellets, or capsules.

[0174] Other embodiments of the compositions administered according to the invention incorporate particulate forms, protective coatings, protease inhibitors or permeation enhancers for various routes of administration, such as parenteral, pulmonary, nasal and oral. Other pharmaceutical compositions and methods of preparing pharmaceutical compositions are known in the art and are described, for example, in "Remington: The Science and Practice of Pharmacy" (formerly "Remingtons Pharmaceutical Sciences"); Gennaro, A., Lippincott, Williams & Wilkins, Philadelphia, Pa. (2000). In some embodiments, the pharmaceutical composition may further include a pharmaceutically acceptable diluent, excipient, carrier, or adjuvant.

[0175] In some embodiments, the dosage to be administered is not subject to defined limits, but it will usually be an effective amount, or a therapeutically/pharmaceutically effective amount. The term "effective amount" refers to the amount of one or more compounds that renders a desired treatment outcome. An effective amount may be comprised within one or more doses, i.e., a single dose or multiple doses may be required to achieve the desired treatment endpoint. The term "therapeutically/pharmaceutically effective amount" as used herein, refers to the level or amount of one or more agents needed to treat a condition, or reduce or prevent injury or damage, optionally without causing significant negative or adverse side effects. It will usually be the equivalent, on a molar basis of the pharmacologically active free form produced from a dosage formulation upon the metabolic release of the active free drug to achieve its desired pharmacological and physiological effects. In some embodiments, the compositions may be formulated in a unit dosage form. The term "unit dosage form" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.

[0176] In some embodiments, dosing regimen of a pharmaceutical composition of the present invention includes, without any limitation, the amount per dose, frequency of dosing, e.g., per day, week, or month, total amount per dosing cycle, dosing interval, dosing variation, pattern or modification per dosing cycle, maximum accumulated dosing, or warm up dosing, or any combination thereof.

[0177] In some embodiments, dosing regimen includes a pre-determined or fixed amount per dose in combination with a frequency of such dose. For example, dosing regimen includes a fixed amount per dose in combination with the frequency of such dose being administered to a subject.

[0178] In some embodiments, the at least one catabolic enzyme (e.g., PPCA, NEU1, TPP1, cathepsin B, cathepsin D, cathepsin E, cathepsin K, and/or cathepsin L) is administered at about 0.1 to 20 mg/kg daily, weekly, biweekly, monthly, or bi-monthly. In some embodiments, the at least one intralysosomal catabolic enzyme is administered at about 0.2 to 15 mg/kg, about 0.5 to 12 mg/kg, about 1 to 10 mg/kg, about 2 to 8 mg/kg, or about 4 to 6 mg/kg daily, weekly, biweekly, monthly, or bi-monthly.

[0179] Based on the suitable dosage, the at least one catabolic enzyme can be provided in various suitable unit dosages. For example, a catabolic enzyme can comprise a unit dosage for administration of one or multiple times per day, for 1-7 days per week, or for 1-31 times per month. Such unit dosages can be provided as a set for daily, weekly and/or monthly administration.

[0180] As will be appreciated by those skilled in the art, the duration of the treatment methods depends on the type of amyloidosis being treated, any underlying diseases associated with amyloidosis, the age and conditions of the subject, how the subject responds to the treatment, etc.

[0181] In some embodiments, a person having risk of developing amyloidosis (e.g., a person who is genetically predisposed or previously had amyloidosis or associated diseases) can also receive prophylactic treatment of the present invention to inhibit or delay the development of amyloidosis and/or associated diseases.

[0182] The pharmaceutical composition of the present invention may also alleviate, reduce the severity of, or reduce the occurrence of, one or more of the symptoms associated with amyloidosis. In some embodiments, the symptoms are those associated with light-chain (AL) amyloidosis (primary systemic amyloidosis) and/or AA amyloidosis (secondary amyloidosis). In some embodiments, the symptoms include, but are not limited to, fluid retention, swelling, shortness of breath, fatigue, irregular heartbeat, numbness of hands and feet, rash, shortness of breath, swallowing difficulties, swollen arms or legs, esophageal reflux, constipation, nausea, abdominal pain, diarrhea, early satiety, stroke, gastrointestinal disorders, enlarged liver, diminished spleen function, diminished function of the adrenal and other endocrine glands, skin color change or growths, lung problems, bleeding and bruising problems, decreased urine output, diarrhea, hoarseness or changing voice, joint pain, and weakness. In some embodiments, the symptoms are those associated with amyloid-beta (A β) amyloidosis. In some embodiments, the symptoms include, but are not limited to, common symptoms of Alzheimer's disease, including memory loss, confusion, trouble understanding visual images and spatial relationships, and problems speaking or writing.

[0183] In some embodiments, the methods further comprise monitoring the response of the subject after administration to avoid severe and/or fatal immune-mediated adverse reactions due to over-dosage. In some embodiments, the administration of a pharmaceutical composition of the present invention is modified, such as reduced, paused or terminated if the patient shows persistent adverse reactions. In some embodiments, the dosage is modified if the patient

fails to respond within about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks or more from administration of first dose.

[0184] In some embodiments, a pharmaceutical composition of the present invention can ameliorate, treat, and/or prevent one or more conditions or associated symptoms described herein in a clinically relevant, statistically significant and/or persistent fashion. In some embodiments, administration of a pharmaceutical composition of the present invention provides statistically significant therapeutic effect for ameliorating, treating, and/or preventing one or more symptoms of amyloidosis. In one embodiment, the statistically significant therapeutic effect is determined based on one or more standards or criteria provided by one or more regulatory agencies in the United States, e.g., FDA or other countries. In some embodiments, the statistically significant therapeutic effect is determined based on results obtained from regulatory agency approved clinical trial set up and/or procedure.

[0185] In some embodiments, the statistically significant therapeutic effect is determined based on a patient population of at least 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or more. In some embodiments, the statistically significant therapeutic effect is determined based on data obtained from randomized and double blinded clinical trial set up. In some embodiments, the statistically significant therapeutic effect is determined based on data with a p value of less than or equal to about 0.05, 0.04, 0.03, 0.02 or 0.01. In some embodiments, the statistically significant therapeutic effect is determined based on data with a confidence interval greater than or equal to 95%, 96%, 97%, 98% or 99%. In some embodiments, the statistically significant therapeutic effect is determined on approval of Phase III clinical trial of the methods provided by the present invention, e.g., by FDA in the US.

[0186] In some embodiment, the statistically significant therapeutic effect is determined by a randomized double blind clinical trial of a patient population of at least 50, 100, 200, 300 or 350; treated with a pharmaceutical composition of the present invention, but not in combination with any other agent. In some embodiment, the statistically significant therapeutic effect is determined by a randomized clinical trial of a patient population of at least 50, 100, 200, 300 or 350 and using any commonly accepted criteria for amyloidosis symptoms assessment.

[0187] In general, statistical analysis can include any suitable method permitted by a regulatory agency, e.g., FDA in the US or China or any other country. In some embodiments, statistical analysis includes non-stratified analysis, log-rank analysis, e.g., from Kaplan-Meier, Jacobson-Truax, Gulliken-Lord-Novick, Edwards-Nunnally, Hageman-Arrindel and Hierarchical Linear Modeling (HLM) and Cox regression analysis.

[0188] The invention also provides packaged pharmaceutical compositions or kits. In some embodiments, the packaged pharmaceutical compositions or kits include a therapeutically effective amount of an intralysosomal catabolic enzyme or a formulation comprising an intralysosomal catabolic enzyme of the present invention described herein. In some embodiments, the compound or formulation can increase the expression, activity, and/or concentration of at least one intralysosomal catabolic enzyme in a subject when the composition is administered to the subject. In some embodiments, the packaged pharmaceutical compositions or

kits further comprise in combination with a label or insert advising that the pharmaceutical compound or formulation be administered in combination with a second agent for treating or preventing amyloidosis described herein.

[0189] In some embodiments, the packaged pharmaceutical compositions or kits further comprise a therapeutically effective amount of a second agent described herein. In some embodiments, the packaged pharmaceutical compositions or kits is packaged in combination with a label or insert advising that the second agent be administered in combination with the intralysosomal catabolic enzyme or the formulation comprising an intralysosomal catabolic enzyme, or the compound or formulation that can increase the expression, activity, and/or concentration of at least one intralysosomal catabolic enzyme in a subject.

[0190] As used herein, the term "label or insert" includes, but is not limited to all written, electronic, or spoken communication with the subject, or with any person substantially responsible for the care of the subject, regarding the administration of the compositions of the present invention. An insert may further include information regarding co-administration of the compositions of the present invention with other compounds or compositions. Additionally, an insert may include instructions regarding administration of the compositions of the present invention before, during, or after a meal, or with/without food.

[0191] The following examples illustrate various aspects of the invention. The examples should, of course, be understood to be merely illustrative of only certain embodiments of the invention and not to constitute limitations upon the scope of the invention.

EXAMPLES

Example 1

Degradative Effects of Intralysosomal Catabolic Enzymes on Synthetic Amyloid Species

[0192] In this example, an in vitro study is performed to illustrate that intralysosomal enzymes such as PPCA (i.e., cathepsin A), cathepsin B, cathepsin D, and/or cocktail mixtures of two or more intralysosomal enzymes can be used for the treatment of amyloidosis. Without being bound by theory, it is hypothesized that delivery of PPCA, cathepsin B, cathepsin D, and other intralysosomal enzymes to lysosomes can assist in the degradation of abnormally accumulated amyloid species, e.g., A β -amyloid species before they can be transported into the extracellular space by exocytosis and be deposited as amyloid plaques.

[0193] This in vitro study shows the degradative effects of PPCA, cathepsin B, and cathepsin D on synthetic A β -amyloid species in a test tube.

[0194] First, in vitro aggregation assays of A β -amyloid species using synthetic A β -peptides is performed via a Thioflavin-T (THT) assay and western blot. FIG. 1 shows the aggregation of synthetic A β 42 peptide and A β 15-36 peptide (negative control) monitored by Thioflavin-T (THT) at physiological conditions (FIG. 1A) or an acidic pH (FIG. 1B). FIG. 2 shows the aggregation of A β 42 amyloid species over time 24 hours as detected by western blot.

[0195] Second, prevention of the aggregation of synthetic A β -amyloid species by proteolytic degradation using PPCA, cathepsin B, and cathepsin D is tested via a Thioflavin-T (THT) assay and western blot. FIG. 3 shows that cathepsin

A (i.e., PPCA) prevents the aggregation of A β 42 amyloid. FIG. 4 shows that PPCA prevents the aggregation of A β 42 amyloid in a dose dependent manner. FIG. 5 shows that PPCA prevents the aggregation of both high and low molecular weight species of A β 42 amyloid. FIG. 6 shows that cathepsin B prevents the aggregation of A β 42 amyloid. FIG. 7 shows that cathepsin B moderately prevents the aggregation of A β 42 amyloid in a dose dependent manner. FIG. 8 shows that cathepsin B prevents the aggregation of low molecular weight species of A β 42 amyloid and degrades A β 42 monomers in a time-dependent manner. FIG. 9 shows that cathepsin B prevents the aggregation of A β 42 amyloid.

[0196] Lastly, the ability of PPCA, cathepsin B, and cathepsin D to degrade pre-formed synthetic A β -amyloid species was tested. FIG. 10 shows that PPCA, cathepsin B, PPCA plus cathepsin B, and cathepsin D degrade high molecular weight oligomers/fibrils of A β 42 amyloid. Cathepsin D degrades low molecular oligomers and completely eliminates A β 42 monomers.

[0197] Example 1 Summary:

[0198] Experiments in Example 1 were designed to determine (1) whether the selected intralysosomal catabolic enzymes can prevent aggregation/formation of A β amyloid species (called prevention) and (2) whether the selected intralysosomal catabolic enzymes can degrade already pre-formed A β amyloid species (called degradation). Example 1 experiments have shown that A β 42 amyloid species can be aggregated in vitro using synthetic A β 42 peptides, and that this process can be monitored by THT assay (FIG. 1) and/or western blot analysis (FIG. 2). The THT assay allows for the monitoring of dynamic changes in A β 42 aggregation upon treatment with degradative enzymes.

[0199] Data obtained from the experiments of Example 1 reveal that PPCA can efficiently prevent formation of A β 42 amyloid species as shown by THT assay (FIG. 3, FIG. 4) and western blot (FIG. 5), as well as degrade already pre-formed amyloid species (FIG. 10). Prevention of amyloid formation and degradation by PPCA was efficient, reproducible and showed concentration dependent dynamics (FIG. 4). Data obtained from experiments with cathepsin B showed moderate reduction in amyloid species formation as measured by THT (FIG. 6). Western blot analysis revealed that cathepsin B prevents aggregation of low molecular weight A β 42 species and degrades A β 42 monomers in a time dependent manner (FIG. 8). Experiments with the use of cathepsin D revealed strong prevention of aggregation of A β 42 species, measured by THT (FIG. 9). Cathepsin D also showed degradation of low molecular oligomers in pre-aggregated amyloid species and complete elimination A β 42 monomers (FIG. 10).

Example 2

Degradation of A β 42 Oligomers and Fibrils by Cathepsin A, B, and D

[0200] In this example, two protocols specific for oligomer and fibril formation were applied to aggregate amyloid material to investigate which forms of A β 42 species can be degraded by cathepsin A (PPCA), cathepsin B and cathepsin D. Aggregated oligomers and fibrils were then subjected to an enzymatic treatment followed by western blot analysis.

[0201] Initially, oligomers and fibrils were aggregated for a period of 7 days and material collected at different time points (days: 0, 1, 3 and 7) was subjected to SDS-PAGE electrophoresis followed by western blot analysis. In FIG. 11, A β 42 oligomers and A β 42 fibrils were probed with oligomer specific antibody (A11), which does not recognize monomeric and fibril A β 42 species. Various forms of oligomers were positively detected on western blot carrying material aggregated using both, oligomer formation and fibril formation protocols. A significant reduction in oligomer forms was observed at day 7 of fibril formation procedure (FIG. 11, line 9), indicating a time dependent transition from oligomers to fibrils, undetectable by A11 antibody. In FIG. 12, the same material as shown in FIG. 11 was probed with E610 antibody, which is specific for both oligomers and fibrils of A β 42. A lack of fibrils at day 7 was observed when oligomer formation protocol was applied (FIG. 12, line 4) and a strong appearance of fibrils at day 7 when fibril formation protocol was applied.

[0202] To study enzymatic degradation of oligomer species, A β 42 oligomers were first aggregated for 9 days at pH 7.0 at 25° C. and then additionally incubated overnight at 37° C. in various pH, optimal for each of enzymes used in the study (pH 5.0 Cathepsin A, B and pH 3.5 Cathepsin D), with and without addition of enzymes. Western blot was probed with oligomer specific A11 antibody (FIG. 13). Additional overnight aggregation of oligomers was observed at pH 5.0 as indicated by presence of higher molecular weight oligomers (lines 1, 2, 4, and 5) when compared to control line 9 (incubation for 9 days at 25° C.). In contrast, this aggregation was not observed for oligomers incubated overnight at pH 3.5. Overnight treatment of oligomers with 90 ng of cathepsin A at pH 5.0 and 37° C. resulted in degradation of the lowest oligomer band (line 4). Treatment of oligomers with 90 ng of cathepsin B and D did not reveal changes in intensity or size of oligomer band (lines 5, 6).

[0203] To study enzymatic degradation of fibril species, A β 42 fibrils were first aggregated for 9 days at pH 7.0 at 25° C. and then additionally incubated overnight at 37° C. in various pH, optimal for each of enzymes used in the study (pH 5.0 cathepsin A, B and pH 3.5 cathepsin D), with and without addition of enzymes. Western blot was probed with oligomer specific E610 antibody (FIG. 14). Additional overnight aggregation of fibrils was observed in all pHs applied, as indicated by the presence of stronger/darker smear (lines 1, 2, 3) when compared to control line 9 (incubation for 9 days at 25° C.). Overnight treatment of fibrils with 90 ng of cathepsin A at pH 5.0 and 37° C. resulted in reduction/degradation of the fibril smear as well as degradation of oligomer species (line 4 compared to line 1). Overnight treatment of fibrils with 90 ng of cathepsin B at pH 5.0 and 37° C. resulted in weak reduction/degradation of the fibril smear (line 5 compared to line 2). Overnight treatment of fibrils with 90 ng of cathepsin D at pH 3.5 and 37° C. did not result in visible reduction/degradation of fibril smear or oligomer bands.

Example 3

Degradation of A β 42 Monomers by Cathepsin A Monitored by ELISA

[0204] The purpose of this example is to assess whether cathepsin A can degrade A β 42 peptides (monomers).

[0205] In this example, an enzymatic treatment of peptides with 90 ng of cathepsin A was carried out for 0-2 hr at 37° C. and pH 5.0. An identical experiment without the addition of cathepsin A was performed in parallel. In both cases, phenol red, an inhibitor of A β aggregation was used to prevent peptide aggregation into higher molecular weight species of amyloid. The effects of supplementation or lack of cathepsin A on A β 42 monomers were measured using commercially available ELISA (SensoLyte® Anti-Human β -Amyloid (1-42) Quantitative ELISA, Colorimetric) at various time points (0, 10, 30, 60, 120 min). Sensolite ELISA consists of two antibodies: C-terminal capture antibody, which recognizes specifically human A β 42 peptide but not A β 40 or A β 41 and N-terminal detection antibody. Because Cathepsin A is a carboxyl peptidase, A β 42 monomers, if degraded, will be degraded from their C-terminus. This degradation would result in a lack of C-terminal amino acid 42 and in consequence lack of capture by C-terminus specific antibody, which should be visualized as a loss of fluorescent signal in ELISA. The ELISA read out for samples treated with cathepsin A revealed a loss of fluorescent signal already within first 10 min of treatment indicating degradation of A β 42 monomers from the C-terminus by cathepsin A (FIG. 15). Samples without supplementation of cathepsin A showed a strong fluorescent signal in ELISA indicating lack of C-terminal degradation in the absence of enzyme and thus efficient capture of A β 42 monomers by C-terminus antibody.

Example 4

Degradation of A β 40 Amyloid Species by Cath A

[0206] Aggregation experiments showed that A β 40 amyloid species can be aggregated in vitro using synthetic A β 40 peptides, and that this process can be monitored by THT assay (FIG. 16). When compared with aggregation of A β 42 peptides, A β 40 showed much slower and less efficient rate of aggregation (FIG. 16A).

[0207] Additional experiments were performed where THT assay was used to monitor dynamic changes in A β 42 & A β 40 aggregation upon treatment with degradative enzyme Cath A (FIG. 17). Initial experiment aimed to measure the effect of Cath A treatment on aggregation of both A β 42 & A β 40 peptides in real time. To achieve this, Cath A was simultaneously incubated with corresponding peptides and THT reagent in separate reactions at conditions optimal for Cath A proteolysis. The above experiment revealed that in contrast to A β 42 (FIG. 17A), aggregation of A β 40 amyloid is not affected by Cath A, in applied experimental settings, even when high concentration of enzyme is used (FIG. 17B, C). Second experiment was carried out to investigate whether the result of the initial experiment is due to lack of proteolysis of A β 40 by Cath A or whether the speed of such proteolysis is slower than the speed of A β 40 aggregation and therefore no changes in THT fluorescence could be observed. In this experiment A β 40 peptide was first incubated with Cath A for up to two hours in conditions optimal for Cath A proteolysis and followed by incubation with THT to measure aggregation. Obtained data revealed that A β 40 peptide did not aggregate after pre-incubation with Cath A, proving its proteolysis (FIG. 18).

[0208] To prove that observed loss of aggregation by A β 40 peptide is caused by carboxypeptidase activity of Cath A, A β 40 peptide was incubated for two hours at 37° C. at pH

5 with varying concentrations of Cath A. Subsequently, the reaction was transferred to an ELISA plate pre-coated with a C-terminal capture antibody, specifically for A β 40 peptide only and was co-incubated with N-terminal detection antibody overnight at 4°. The results have shown progressively reduced binding of A β 40 peptide to C-terminal capture antibody with increasing concentration of Cath A (FIG. 19). This proves that C-terminus of A β 40 peptide was removed by caboxymethyl activity of Cath A.

[0209] Aggregation of A β 40 peptide into amyloid species was also monitored using Western Blot technique (FIG. 20A). We were able to aggregate A β 40 into high molecular weight fibrils but not oligomeric forms using aggregation process taking up to 9 days. An experiment was carried out in which A β 40 was simultaneously incubated Cath A for up to 9 days during the process of fibril formation. Obtained results revealed that Cath A significantly prevents formation of high molecular weight fibrils due to its proteolytic action on A β 40 amyloid (FIG. 20B). Reduction of levels of monomeric A β 40 form was also observed in this experiment (FIG. 20C).

[0210] Unless defined otherwise, all technical and scientific terms herein have the same meaning as commonly

understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials, similar or equivalent to those described herein, can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. All publications, patents, and patent publications cited are incorporated by reference herein in their entirety for all purposes.

[0211] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

[0212] While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and the application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features set forth and as follows in the scope of the appended claims.

SEQUENCE LISTING

SEQ ID NO: 1 Human PPCA mRNA, variant 1 mRNA
 1 agagtgcacc cgaatccacg ggctcgagg cagcggcat ctctcgcca tagggcaggc
 61 cagctggcgc cggggctat ttggggcgc gggcaatgtat ggtgaccgca aggcgcaccc
 121 gttaaggcatt tccccctga ctcccttcc ctagccctcg cccgggggtc cttagcgccgc
 181 ttcttcagcc aatccgccta caacttgcgc gtcacacaaca ggatcatctg atccgcgtcg
 241 cccgggtac gatctgcgc gccgcggac ctggacccgg cattgacccgc caccgcggcc
 301 caggctccgtt gggaccaaag aaggggcggg aggaagactg tcacgtggcg cggagttca
 361 ctgtgactcgat acatctgacttccggggccctc ttggagagcaa ggacgcgggg
 421 gacgacatgtat gatccgcgc gegegcgcgc egtgttctc gtgtgtgtc ctgtgtgtc
 481 tgcgtgttc ctgggggtcc cgaggcgagg cagccccggg ccaggacgag atccagcgcc
 541 tccccgggtt ggccaaagcag cctgtttcc gccagacttc cggctacccaaaggctcg
 601 gtcacaaatca cttccactac ttgtttgttg agtcccaaggaa gatccccggg aacacccctg
 661 tggtgcgttgc gtcataatggg gtcggggcttgc gacgttcaat agatgggtc ctcacagage
 721 atggcccccctt ctgggtccag ccagatgttgc tcaccctggaa gtacaaccccttattcttgg
 781 atctgattgtc caatgttta tacctggagt ccccaagctgg ggtgggcttc ttctactccg
 841 atgacaaggttt ttagtcaact aatgacactg agtgcgcggaa gaccaattttt gaggcccttc
 901 aagatttttcc ccccttccctt ccggatgatca agaacaacaa acttttccctg aacggggaga
 961 gctatgttgc catctacatc cccacccctgg cctgtgtgttgcatgcggat cccagcatga
 1021 accttcagggtt gtcgtgtgttgc gcaatggac tctctctca ttggcagaat gacaactccc
 1081 tggctcaactt tgcctactac catggccttc tggggaaacag gctttggctt tctctccaga
 1141 cccactgttgc tctctcaaaac aagtgttaact tctatgacaa caaagacccgtt gatgcgtgt
 1201 ccaatcttca ggaatggcc cgcacgttgc gcaactctgg cttcaacatc tacaatctt
 1261 atgccccgtt tgctggagggtt gtcggcagec attttaggtt tgagaaggac actgtgtgg
 1321 tccaggatgtt gggcaacatc ttcaatcgcc tggccactcaa gggatgtgg catcaggccac
 1381 tgcgtgcgttcc agggggataaa gtgcgcgttgg acccccccttgc caccacaca acagctgtt
 1441 cccacttactt caacaaccccg tacgtgcggaa agggcccttcaatccggag cagctgcac
 1501 aatgggacat gtgcactttt ctggtaact tacagtaccc cctgttctac cgaagcatga
 1561 actcccaatgtt ttcgaatgtt cttatgttcaacttca gatccatata tataatggag
 1621 atgttagacat ggcctcaat ttcatgggggg atgatgttgc ttgtggatccc ttcaacccaga
 1681 agatggggatggc gacgcgcggg ccctgggttag tgaaatgcgg ggcacgcggg gagcaggat
 1741 cccgcttgcgtt gaaggatgttcc tcccacatcg cttttctcact gatcaaggcc gcccggccaca
 1801 ttggccccatgc gacaaaggccc ctcgcgttgc tcaaccatgtt cttccgcgttctc tggaaacagc
 1861 agccataactgtt atgacccacag caacccatgttgc caegggcccttgcagccccc cccagccct
 1921 cccgcttgcgtt gacccatgttgc tcaaccatgttgc ggcgggttc tggccggccagg
 1981 actgccccctt tcccaatgc cttatgttcaacttca gatccatata tataatggag
 2041 cctggggggca agtttagact ttatccgcg acgatgttccat gatgggggtt gcttggccccc
 2101 ttctctgttcaacttca gatccatata tataatggag
 2161 ctcaggacatc cccacccatgttgc ggcgggttc tggccggccagg
 2221 taatgggtt acatgttcaacttcaaaaaaaa aaaa

SEQ ID NO: 2 Human PPCA Polypeptide, variant 1 protein
 MTSSPRAPPGEQGRGGAEMIRAAPPLFLLLLLLVLWSASRG
 EAAPDQDEIQLRLPGLAKQPSFRQYSGYLKGSGSKHLHYWVESQNDPENSPVVLWLNG
 GPGCSSLGDLTEHGPFLVQPDGVITLEYNPYSWNLLIANVLYLES PAGVGF SYSDDKFY
 AINDTEVAQSNFEALQDFRFLFPEYKNNKLFILIGESYAGIYIPTLAVLVMQDPSMNLQ
 GLAVGNGLSSYEQNDNSVYFAYYHGLLGNRLWSSLQTHCCSQNKCNF YDNKDL ECVT
 NLQEVARIVGNGLNIYNLAYPACAGGVPSHFRYEDVIVVQD LGNIFIRPLKRMWHQ

- continued

SEQUENCE LISTING

ALLRSGDKVRMDPPCINTTAASTYLNPNPVRKALNIPEQLPQWDMCNFLVNLQYRRLY
RSMNSQYLKLLSSQKYQILLYNGDVMACNFMGDEWFVDSLQNKMEVQRRPWLVKYGD
SGEOIAGFVKEFSHIAFLTIKGAGHMVPTDKPLAFTMFSRFLNKQPY

SEQ ID NO: 3 Human NEU1 mRNA

SEQ ID NO: 4 Human NEU1 Polypeptide

10	20	30	40	50	
MTGERPSTAL	PDRRWGPRIL	GFWGGCRVWV	FAAIFLSSL	AASWSKAEND	
60	70	80	90	100	
FGLVQPLVTM	BQLLWVSGRQ	IGSVDTFRIP	LITATPRGTL	LAFAEARKMS	
110	120	130	140	150	
SSDEGAKFIA	LRRSMDQGST	WSPTAFIVND	GDVDPDGLNLG	AVVSDVETGV	
160	170	180	190	200	
VFLFYSLCAH	KAGCQVASTM	LVWSKDDGWS	WSTPRNLSSLD	IGTEVFAPGP	
210	220	230	240	250	
GSGIQKQREP	RKGRLIVCGH	GTLERDGVC	LLSDDHGASW	RYGSGVSGIP	
260	270	280	290	300	
YGQPKQENDF	NPDECQPYEL	PDGSVVINAR	NQNMYHCHCR	IVLRSYDADC	
310	320	330	340	350	
TLRPRDVTDF	PELVDPVVA	GAVVTSSGIV	FFSNPAHPEF	RVNLTLRWSF	
360	370	380	390	400	
SNGTSWRKET	VQLWPGPSGY	SSLATLEGSM	DGEEQAPOLY	VLYEKGGRNHY	
410					

1 ggtggtgaa tatagagctc

```

61 aatgggactc caagcctgcc tccttagggct ctttgcctc atccctctcg gcaaatgcag
121 ttacagcccg gagcccgacc agccggagac gctgccccca ggctgggtgt ccctggggccg
181 tgccgaccct gaggaaagacg tgatgtctcac ctttgcctcg agacagacg atgtggaaag
241 acttcggag ctggtcgggg ctgtgtccggaa tcccagctct cctcaatacg gaaaataatc
301 gacccttagq aatqtggggat atctqtggqag gccatccccca ctqaccctcc acacqgtqc
361 aaaatggctc ttggcagccg gagccccgaa gtgcattct gtgtacacac aggactttct
421 gacttgcgtgg ctgagcatcc gacaaggcaga gctgtgcctc cctggggctg agtttcatca
481 ctatgtggaa ggacatcagg aaacccatgt tgtaaggctc ccacatctcc accagctttcc
541 acaggccttg gccccccatg tggtacttgc gggggggactg caccgtttt ccccaacatc
601 atccctgagg caacgtctcg aagccgaggat gagccccggat gtggggctgc atctgggggt
661 aaccccccctt gtatccgtaa acgcgatacaa cttgacttca caagacgtgg gcttggggcc

```

-continued

SEQUENCE LISTING

721 cagcaataac agccaagcct gtgcccagtt cctggagcac tatttccatg actcagaccc
 781 ggctcagttc atgcgcctct tcggggccaa ctttgcacat caggcatcg tagcccggt
 841 gggtggacaa cagggccggg gcccggccgg gattgaggcc agtctagatg tgcagttac
 901 gatggatgtc ggtggcaaca tctccacatg ggtctacatg agccctggcc ggcattgggg
 961 acaggagcc ttcctcgat ggtctatgtc gtcagtaat gatcagcccc tgcacatgt
 1021 gcatactgtc agctatggag atgtggagg cttccctcagc agggccatca tccaggggt
 1081 caaactgag ctcatgaagg ctggcgctcg gggctcacc ctgtcttcg ctcagggtga
 1141 caatgggggg ggggttgggg ctgtcttcg aagacacccg tttccctcta cttccatgc
 1201 ctccaggcccc tatgtacca cagtgggggg cacatccctt caggaacatt tccatcac
 1261 aaatggaaatt gttgactata tcagttgggg tggttccagc aatgtgttcc caccggcc
 1321 ataccaggag gaagctgtaa cgaatgttccct gagetctagc cccacatgc caccatcc
 1381 ttactcaat gccagttggcc gtgccttaccc agatgtgggt gcacccatgtt atggctactg
 1441 ggtggtcage aacagatgtc ccattccatg ggtgtccggg acctcgccctt ctactccatg
 1501 gtttgggggg atccatcttc tgatcaatgg gcacaggatc cttatgtggcc gccccccct
 1561 tggcttctc aaccggcctc tctaccagca gcattggggca ggactcttgc atgttaacc
 1621 tggctccat gaggcttcgtc tggatgaa ggttagggggc cagggtttctt gctctggcc
 1681 tggctggggat cctgtacac gctggggggac accaaacttc ccaatgttgc tgaagactct
 1741 actcaatccccc tgacccttc ctatcaggag agatgtgttgc tccctgtccc tgaagtgcc
 1801 agttcagttc cttatttgc cctgttggaa gcctgtgtga accctcaactt attgactgt
 1861 gcacacagct tatctccctt accctgaaat gctgtgatc tgcatttttttgc cccaaacc
 1921 ccatgttcca tcatactcgtc gtctcccttac tctgccttta gattccctaa taagatgt
 1981 taactatcat ttttttttttgc ctccttccctt cgcacatcttcat ctttcttctt tcaatcc
 2041 ttttccaaag ggtgttatac agacttgcgt cactatttca cttgatatttccatcc
 2101 tcaactcaag gagacccctca ctgttcccttgc ttttttttttgc atccagaaac
 2161 aatggcccttccatcacttgc ttttttttttgc cttttccatc atagttggcc
 2221 actcccttccttccatcttcgttcccttgc ttttttttttgc gtttttttttgc
 2281 ctcatcaatt tctgttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 2341 gctctcttca tttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 2401 atctcaatcaataaacttgc ttttttttttgc ttttttttttgc ttttttttttgc
 2461 atactcaaca ttttcatgtc cacccttccca accccaaaca attccatcttgc
 2521 ggttaatgtat gctatgttttccatcacttgc ttttttttttgc ttttttttttgc
 2581 ccttcaatca acaaggcccttccatcacttgc ttttttttttgc ttttttttttgc
 2641 ttatcgttcc acaaggcccttccatcacttgc ttttttttttgc ttttttttttgc
 2701 atatcccccac ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 2761 ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 2821 gatggaaaacc cttcaaggat ttttttttttgc ttttttttttgc ttttttttttgc
 2881 atagcttccatcacttgc ttttttttttgc ttttttttttgc ttttttttttgc
 2941 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3001 gatacaacttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3061 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3121 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3181 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3241 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3301 ggaagtttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3361 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3421 ccaaggcccttccatcacttgc ttttttttttgc ttttttttttgc ttttttttttgc
 3481 tccttagtca gggatggcc ttttttttttgc ttttttttttgc ttttttttttgc
 SEQ ID NO: 6 Human TPP1 Polypeptide

10	20	30	40	50
MGLQACLLGL	FALILSGKCS	YSPEPDQRRRT	LPPGVWSLGR	ADPEEELSLT
60	70	80	90	100
FALRQQNVER	LSELVQAVSD	PSSPQYGYKL	TLENVADLVR	PSPLTLHTVQ
110	120	130	140	150
KWLLAAGAQK	CHSVITQDFL	TCWLSIRQAE	LLLPGAEFH	YVGGPTEETHV
160	170	180	190	200
VRSPHPYQLP	QALAPHVDFV	GGLHRFPPTS	SLRQRPEPOV	TGTVGLHLGV
210	220	230	240	250
TPSVIRKRYN	LTSQDVGSQGT	SNNSQACAOF	LEQYFHDSDL	AQFMRLFGGN
260	270	280	290	300
FAHQASVARV	VGQQGRGRAG	IEASLDVQYL	MSAGANISTW	VYSSPGRHEG
310	320	330	340	350
QEPFLQWLML	LSNESALPHV	HTVSYGDDED	SLSSAYIQRV	NTELMAAAR
360	370	380	390	400
GLTLLFASGD	SGAGCWSVSG	RHQFRPTFPA	SSPYVTTVGG	TSFQEPFLIT
410	420	430	440	450
NEIVDYLISGG	GFSNVFPRPS	YQEAVTKFL	SSSPHLPSS	YFNASGRAYP
460	470	480	490	500
DVAALSDGYW	VVSNRVPIPW	VSGTSASTPV	FGGILSLINE	HRILSGRPL
510	520	530	540	550
GFLNPRLYQQ	HGAGLFDVTR	GCHECLDEE	VEGQGFCSGP	GWDPVTGWGT
560				
PNFPALLKTL	LNP			

-continued

SEQUENCE LISTING

SEQ ID NO: 7 Human Cathepsin B mRNA, variant 1

1 ggggcggggc cgggagggtt ctttagggcc gggctggccc aggctacggc ggctgcaggg
 61 ctccggcaac cgctccggca acgccaaccg ctccgctcg cgccaggctgg gctgcaggct
 121 ctccggctca ggcgtgggtt gatcttaggtt ccggcttcca acatgtggca gctctggcc
 181 tccctctgtt ggcgtgggtt gttggccat gcccggagca ggcccttccat ccatccccctg
 241 tccggatgacg tggtaacta tgtaacaaca cggaaataccg cgtggcaggc cgccacaac
 301 ttctacaacg tggacatgag ctacttgaag aggtatgtg gtaccttctt ggggtggccc
 361 aagccacccc agagatgtt tttaaccggc gacgtggacg tgcctgcaag ctccgtgca
 421 cgggaacaat ggccacatgg tccaccatc aaagatgtt gggccaggc ctccgtggc
 481 tccctgtggg cttccgggg tggtaaaggcc atctctgttcc ggtatctgtat ccacaccaat
 541 ggcacgtca ggcgtgggtt gtcgggggg gacctgtca catgtgtgg cagcatgtgt
 601 ggggacggctt gtaatgtggg ctatctgttcc gaaatgtggac aagaaaaaggc
 661 ctggtttctg gtggccatc tgaatccatc gtgggtggc gaccgtactc cccctcc
 721 tggtaaaccg acgtcaacgg ctccggccc ccatgcacgg ggggggggaa taccggca
 781 tggtaaaga tctgtggcc tggatcagcc cggacatcaca aacaggacaa gcaactacgg
 841 tacaattctt acagcgttcc caatagcggg aaggacatca tggccggat gtcacaaaaac
 901 ggccccgtgg aggggggtt ctctgtgtt tggacttcc tggatcttcaaa gtcaggatgt
 961 taccacacgg tccaccggaa gatgtgggtt gggccatgca tccgcatttcc gggctgggg
 1021 gtgggagaatg gcacaccctt ctgggtggcc gcaactctt ggaacactgtt ctgggggt
 1081 aatggcttctt ttaaaaatact cagaggacag gatctgttcc gatctgttcc gaaatgtgg
 1141 gctggaaatc cacggaccgg tcaatgtggg aaaaatgttcc atatctgttcc gggctgtcg
 1201 tggccatctt ggggggggaa tgggggttcc aatgttccat tttttttttt ttcacgttca
 1261 atacaatgtt cagacgggtt ctggatgttcc gatgtggggcc aacatgttcc gtcgttcc
 1321 aggagacca gtcctggctt catccacggc tggatgttcc gttggcggcc gtcggatgt
 1381 ccacccgtcc cagggccatgg cgtgtttccctt cctgttagact atgtggccgtt ggagttt
 1441 ctggcccccggc tggatgtggcc cccctccgtt atccatccat cttccgggggaa caagac
 1501 acggccggaaat gggggggggaa gttccatcaaa ggtggaaatg tcccccattca gttccccc
 1561 taccctccaaat cggggggggaa tgggggttcc tccacatccat tccacggaaaat cgggtgtt
 1621 gagcccttgg gggggggggcc gtcggccatgg cccctgttcc tttttttttt tttttttt
 1681 caaccccttccat gatctgttcc tggatgttcc tttttttttt tttttttttt tttttttt
 1741 ctctgttccat tggatgttcc tggatgttcc tttttttttt tttttttttt tttttttttt
 1801 ttggcccttccat tggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 1861 ctggatgttccat tggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 1921 aaattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 1981 caactgttccat tggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 2041 ctggatgttccat tggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 2101 ctggatgttccat tggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 2161 ccccaattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2221 ctggatgttccat tggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 2281 gagttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2341 gcaatccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2401 gcaatccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2461 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2521 agtggatgttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2581 tccacccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2641 taacccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2701 ggg
 2761 tggatgttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2821 ggg
 2881 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 2941 ggg
 3001 ctggatgttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3061 agccggccgtt cttccgttccat tttttttttt tttttttttt tttttttttt tttttttttt
 3121 tgatgttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3181 aaatccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3241 tgatgttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3301 agtggatgttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3361 aaaaaaaaaaaaaaaa ggg
 3421 ggg
 3481 cccatccatc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3541 tactgg
 3601 cggatgttccat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3661 aaaaaaaaaaaaaaaa ggg
 3721 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 3781 aaa

SEQ ID NO: 8 Human Cathepsin B Polypeptide, variant 1

MWQLWASLCCLLVLANARSRPSPHPLSDELVNVNKRNTTWOAG
 HNFYFNVDMSYSLKRLCGTFLGGPKPPQRVMPTEDLKLPSFDAREQWPQCPTIKEIRDQ
 GSCGSCWAFGAVEAISDRICIHNTNAHSVVEVSAEDLLICCGSMCGDGNCNGGYPAEAWN
 FWIRKGLVSGGLYESHVGCRPYSIPPCCEHHVNNSRPCTGEGDTPKCSKICEPGYSPT
 YKQDKHYGYNYSVSNSEKDIMAIEYKNGPVEGAFSVYSDFLYKSGVYQHVTGEMMG
 GHAIRILGWGVENGTPWLVANSWNIDWGDNGFFKILRGQDHGIESEVVAGIPRIDQ
 YWEKI

- continued

SEQUENCE LISTING

SEQ	ID	NO:	9 Human Cathepsin K mRNA
1		acacatgtcg	catacacacaca
61		ccttccttc	ctcagcattt
121		tcaactggagc	tgatcccgcc
181		cacacttgc	tgccgaaacg
241		caaggctctg	ctgcttacctg
301		ccactgggg	ctatggaga
361		ctctccgggt	ttaatttggg
421		ttctcttgg	gtccatatac
481		agagggtgg	tgaagatga
541		caccctttat	atcccaagaat
601		aggatatgt	actccctgtca
661		tgtgggtgc	ctggaggggc
721		ccagaaccta	gttgattgt
781		tgcccttcaa	atgtgcaga
841		ggcaggagg	gaggtgttgc
901		cagagagatc	cccgaggggg
961		tgtctctgt	gcattgtat
1021		ttatgtat	gatgtgcata
1081		aatccaggaa	ggaaaacaag
1141		caaaggatat	atccctatgg
1201		cagttcccc	aaagatgtgc
1261		cgtatgtgc	gtgttacat
1321		tgtgtgtata	ctgatgtat
1381		tcctacttt	tttctctcca
1441		acagctgtgt	actctttaggc
1501		cagggtgt	gtgttacagg
1561		cgggactagt	tagctttaaa
1621		atgtcccttc	tatatccctca
1681		tattcataag	tctttgtgtac
1741		cttgcactt	ttgttataaa
1801		tacacattca	aaaaaaa

SEQ ID NO: 10 Human Cathepsin K Polypeptide					
10	20	30	40	50	
MWGLKVLLPLV	VVSFALYPEE	ILDTHWELWK	KTHRQYNNK	VDEISRRLIW	
60	70	80	90	100	
EKNLKYSIISI	NLEASLGVT	YELAMNHLDG	MTSEEVVQKM	TGLKVPLSHS	
110	120	130	140	150	
RSNDTLYIPE	WEGRAPDSVD	YRKKGYVTPV	KNQQCGSCW	AFSSVGALEG	
160	170	180	190	200	
QLKKKTGKLL	NLSPQNLVDC	VSENDGCGGG	YMTNAFQYVQ	KNRGIDSEDA	
210	220	230	240	250	
YPYVGQEESC	MYNPTGKA	CRGYREIPEG	NEKALKRAVA	RVGPVSAID	
260	270	280	290	300	
ASLTSFQFYS	KGVYYDESCN	SDNLNHAVA	VGYGIQKGNK	HWIKNSWGE	
310	320				
NWGNKGYILM	ARNKNNACGI	ANLASFPKM			

- continued

SEQUENCE LISTING

1381 gactggggat ggccatgcga tggaggaat tcatccatcg tctaccagcc cccgctgtgt
 1441 cgatcacaca ctcgaatcat tgaatccg agtgcgtttaat gaattctgtg atatttcac
 1501 actggtaat gttacctcta ttttaattac tgcataaaat aggtttat tattgttca
 1561 cttactgact ttgcattttc gttttaaaaa ggatgtataa atttttaccc gtttaataa
 1621 aatataattt caaatgttagt ggtggggctt cttctattt ttgatgcact gaatttttgt
 1681 gtaataaaga acataattgg gctcaagcc ataaaaaaaaaaaaaaa

SEQ ID NO: 12 Human Cathepsin L Polypeptide, variant 1
 MNPTLILAAFLGIASATLIFDHSLEAQWTKWAKMHNRLYGMNE
 EGWRRAVWEKNMKMIELHNQFYREGKHSFTMAMNAFGDMI SEEFRQVMNGFQNRKPRK
 GKVFQEPLFYEAPRSVDWREKGYVTPVKNQGCGSCWAFSATGAGQMFRTGRLIS
 LSEQNLLVDCSGPQGNEGCNGGLMDYAFQYVQDNGGLDSEESYPYATEESCKYNPKYS
 VANDTGFVDIPKQEAKLMAVATVGPISVAIDAGHESFLFYKEGIYFEPDCSSEDMDH
 GVLVVGYGFESTESDNKYWLVKNSWGEEWGMGGVVKMAKDRRNHCGIASAASYPV

SEQ ID NO: 13
 DXXLL

SEQ ID NO: 14
 [DE]XXXL[LI]

SEQ ID NO: 15
 YXXQ'

SEQ ID NO: 16, MPR300/CI-MPR
 SPHDDSDEDLL

SEQ ID NO: 17, MPR46/CD-MPR
 EEESEERDDHLL

SEQ ID NO: 18 Sortilin
 GYHDDSDEDLL

SEQ ID NO: 19 SorLA/SORL1
 ITGFSDDVPMV

SEQ ID NO: 20 GGA1 (1)
 ASVSLLDDEL

SEQ ID NO: 21 GGA1 (2)
 ASSGLDDDLL

SEQ ID NO: 22, GGA2
 VQNPSADRNL

SEQ ID NO: 23, GGA3
 NALSWLDEELL

SEQ ID NO: 24, LIMP-II
 DERAPLI

SEQ ID NO: 25, NPC1
 TERERLL

SEQ ID NO: 26, Mucolipin-1
 SETERLL

SEQ ID NO: 27, Sialin
 TDRTPLL

SEQ ID NO: 28, GLUT8
 EETQPLL

SEQ ID NO: 29, Invariant chain (Ii) (1)
 DDQRDLI

SEQ ID NO: 30, Invariant chain (Ii) (2)
 NEQLPML

SEQ ID NO: 31, LAMP-1
 GYQTI

SEQ ID NO: 32, LAMP-2A
 GYEQF

-continued

SEQUENCE LISTING

SEQ ID NO: 33, LAMP-2B
GYOTL

SEQ ID NO: 34, LAMP-2C
GYOSV

SEQ ID NO: 35, CD63
GYEVM

SEQ ID NO: 36, CD68
AYOAL

SEQ ID NO: 37, Endolyn
NYHTL

SEQ ID NO: 38, DC-LAMP
GYQRI

SEQ ID NO: 39, Cystinosin
GYDQL

GYKEI

SEQ ID NO: 43, Human PPCA, variant 2 protein

10	20	30	40	50
PLF	LLLLLLLLLV	SWASRGEAAP	DQDEIQRLPG	LAKQPSFRQY
60	70	80	90	100

- continued

SEQUENCE LISTING

SGYLGKGS	HLHYWFVESQ	KDPENSPVVL	WLNGPGCCS	LDGLLTHEGP
110	120	130	140	150
FLVQPDGVTL	EYNPYSWNL	ANVLYLESPA	GVGFSYSDDK	FYATNDTEVA
160	170	180	190	200
QSNFEALQDF	FRLFPEYKNN	KLFLTGESYA	GIYIPTLAVL	VMQDPMSNLQ
210	220	230	240	250
GLAVGNGL	YEQNDNSL	FAYYHGLGN	RLWSSLQTHC	CSQNKCNFYD
260	270	280	290	300
NKDLECVNL	QEVARIVGNS	GLNIYNL	CAGGVPSHFR	YEKDTVVVQD
310	320	330	340	350
LGNIFTRPL	KRMWHQALLR	SGDKVMDP	CTNTTAASTY	LNNPYVRKAL
360	370	380	390	400
NIPEQLPQWD	MCNFFLVN	RRLYRSMNSQ	YLKLSSQKY	QILLYNGD
410	420	430	440	450
MACNFMGDE	FVDSLNQKME	VQRRPWLWV	KYGDSGEQIAGF	VKEFSHIAFL
460	470	480		
TIKGAGHM	TDKPLAAFTM	FSRFLNKOPY		

SEQ ID NO: 44, Human PPCA, variant 3 mRNA

SEQ ID NO: 45, Human PPCA, variant 3 protein
MTSSPRAPPGEQGRGGAEMIRAAPPLFLLLLLLVLWSASRG
EAAPDQEID1QRLPLGAKQSFQRQYSGYLKGSSKHLHYWFVESQKDPEPNSPVVLWLNG
GPGCSSLSDLGLTTEHGPFLIANYVLYLESPAVGFGFSYSDDKFYATNDTEVAQSNFEALQD
FFFLPEYKNNKLFLTGEYSAYIGIPTLAVLVMQDPSMNLQGLAVCNGLSSYEQNDNS
LVYFAYYHGGLGNRLLWSSLQTHCCSQNKCNFYDNKDLECVTNLQEVARIVGNSGLNIY
NLYAPCAGGVPSPHRYEKDTVVVQDQLGNIFTRLPLKRMWHQALLRSQDKVRMDPPCTN
TTAASTYNNPVPYRALKN1IPEQLPQWDMCNFLVNLQYRRLYRSMNSQYKLKLSSQKYQ
LTYINGDVMDAACMFNGDWEFVDSLNLQKMEVQRRPWLVKYGDSGEQIAGFVKEFSHIAF
LT1KGAGHVM/PTDKPLAATPTMSEPLNKOQPV

SEQ ID NO: 46 Human Cathepsin B mRNA, variant 2

```

SEQ ID NO: 46 Human Cathepsin B mRNA, variant 2
  1 gggccggggc cggggaggta cttagggccg gggctggccg aggctacggc ggctgcagggg
  61 ctccggcaacc cgctccggca acggcaaccg ctccgctcgcg cgcaggctgg gctgcaggctt
121 ctcggctgcga gggctggggt ggttgtgcagt ggtgcggacca cggcttcacgg cagccctcaggg
181 caccacatgg taacgcatgt gtttgcacc tcagccccc gagtagtgtc ttccaggctt
241 tggaaagacgg ctttcgttggg ctggggcttcg aataccatgt ttggatcatatg gatggccatgg

```

-continued

SEQUENCE LISTING

301 tggatctagg atccgggttc caacatgtgg cagctctggg cttccctctg ctgcctgt
 361 gtgttggcca atgcggcggag cagggcctctt ttcatcccc tgcggatgatgtatgttgcac
 421 tatgtcaaca aacgaaatac caccgtggcag gcccggcaca acttctaaatcgatgtatgttgcac
 481 agtacttgcg agaggatgtatgttgcgatgtatgttgcgatgtatgttgcac
 541 atgttttacccggaggactgatgtatgttgcgatgtatgttgcgatgtatgttgcac
 601 tgcggccatca tcaaaagatcagagaccatgcgatgtatgttgcgatgtatgttgcac
 661 gctgtggaaatccatctgtatgttgcgatgtatgttgcgatgtatgttgcac
 721 tgcggccggaggactgatgtatgttgcgatgtatgttgcgatgtatgttgcac
 781 ggcatactgtatgttgcgatgtatgttgcgatgtatgttgcac
 841 tatgtatcccgtatgttgcgatgtatgttgcgatgtatgttgcac
 901 gggtccggcgc cccatgtatgttgcgatgtatgttgcgatgtatgttgcac
 961 ctgcgtatca gcccggatca taaacaggac aagacttgcgatgtatgttgcac
 1021 tccaaatgcg agaaaggatcatgtatgttgcgatgtatgttgcac
 1081 ttcctgtatgttgcgatgtatgttgcgatgtatgttgcac
 1141 gagatgtgggttgcgatgtatgttgcgatgtatgttgcac
 1201 tactggcttgcgatgtatgttgcgatgtatgttgcac
 1261 ctcaggaggatgtatgttgcgatgtatgttgcac
 1321 gatcgtatgttgcgatgtatgttgcgatgtatgttgcac
 1381 gatcggggta gaaatgcatttttgcgatgtatgttgcac
 1441 gtcgtatgttgcgatgtatgttgcgatgtatgttgcac
 1501 tacatccatgtatgttgcgatgtatgttgcac
 1561 agcgttgcgttgcgatgtatgttgcgatgtatgttgcac
 1621 gccccttcgtatgtatgttgcgatgtatgttgcac
 1681 gagttctaaatgcgatgtatgttgcgatgtatgttgcac
 1741 tttccatgtatgttgcgatgtatgttgcac
 1801 cagtccttgcgatgtatgttgcgatgtatgttgcac
 1861 gtcagcatgtatgttgcgatgtatgttgcac
 1921 tgagccatgtatgttgcgatgtatgttgcac
 1981 gtcgtatgttgcgatgtatgttgcgatgtatgttgcac
 2041 agggaaatgtatgttgcgatgtatgttgcac
 2101 gtcgtatgttgcgatgtatgttgcac
 2161 gatggatcttgcgatgtatgttgcac
 2221 ctcaggatgtatgttgcgatgtatgttgcac
 2281 cttctcgatgtatgttgcgatgtatgttgcac
 2341 catcctcgatgtatgttgcgatgtatgttgcac
 2401 acatagctgtatgtatgttgcgatgtatgttgcac
 2461 caggctggatgtatgttgcgatgtatgttgcac
 2521 gcatggatcttgcgatgtatgttgcgatgtatgttgcac
 2581 gggtaatgtatgtatgtatgttgcgatgtatgttgcac
 2641 aaactccggatgtatgttgcgatgtatgttgcac
 2701 gtggccactgtatgttgcgatgtatgttgcac
 2761 attcgtatgtatgttgcgatgtatgttgcac
 2821 gtggggaaatgtatgttgcgatgtatgttgcac
 2881 gttatcgtatgtatgttgcgatgtatgttgcac
 2941 ctttgcgtatgtatgttgcgatgtatgttgcac
 3001 agaaccatgtatgttgcgatgtatgttgcac
 3061 gaaggatgtatgttgcgatgtatgttgcac
 3121 gaatttagatgtatgttgcgatgtatgttgcac
 3181 aaggatgtatgttgcgatgtatgttgcac
 3241 acgcctcgatgtatgttgcgatgtatgttgcac
 3301 aagaccatgtatgttgcgatgtatgttgcac
 3361 ggcgttgcgtatgttgcgatgtatgttgcac
 3421 tggatgtatgttgcgatgtatgttgcac
 3481 tgacatgtatgttgcgatgtatgttgcac
 3541 gcatggatgtatgttgcgatgtatgttgcac
 3601 ggtcaatgtatgttgcgatgtatgttgcac
 3661 caaaatgtatgttgcgatgtatgttgcac
 3721 acggatgtatgttgcgatgtatgttgcac
 3781 ctccatgtatgttgcgatgtatgttgcac
 3841 atgcttaacaatgtatgttgcgatgtatgttgcac
 3901 gtatgtatgtatgttgcgatgtatgttgcac

SEQ ID NO: 47 Human Cathepsin B Polypeptide, variant 2

MWQLWASLCCLLVLANARSRPSPFHPLSDELVNYYVNKRNTTWOAG
 HNFYNVDMSYLKRLCGTFLGGPKPPQRVMPTEDLKLPASFDAREQWPQCPTIKEIRDQ
 GSCGSCWAFGAVEAISDRICIHNTNAHVSVEVSAEDLLICCGSMCGDGCNGGYPAEAWN
 FWIRKGVLVSGGLYESHVGCRPYSIPPCEHHVNNGSRPPCTGEGDTPKCSKICCEPGYSPT
 YKQDKHYGYNYSVSNSKEDIMAEIYKNGPVEGAFSVYSDFLYKSGVYQHVTGEMMG
 GHAIRILGWGVENGTPYLVANSWNIDWGDNGFFKILRGQDHGIESEVVAGIPRIDQ
 YWEKI

SEQ ID NO: 48 Human Cathepsin B mRNA, variant 3

1 gggcgccggc cggggatgtatgttgcgatgtatgttgcac
 ggg

-continued

SEQUENCE LISTING

61 ctcggcaac cgctccggca acgccaaccg ctccgctcg cgaggctgg gtcgaggct
 121 ctcggctca ggcgtgggt tcttcaaggcc tatggagagc agttgcgtg ggctggcct
 181 gcaatctg gtttgcatacg atgattggca ggtggcagc acggggaaagg acctgtgat
 241 ggccaaactg gttcagggtt atcttggat cggcttccaa catgtggcag ctctggcct
 301 ccctctgtg cctgtgggtt ttgcaatg cccggagcag gccccttcc cttccctgt
 361 cggatgatct ggtcaactat gtcaacaac ggaataaccac gtggcaggcc gggcacaact
 421 tctacaacgt ggacatgagc tacttgaaga ggctatgtgg taccttctg ggtggccca
 481 agccacccca gagatgtt tttaccgggg acctgaagc gctgcaacg ttgcgtgcac
 541 gggacaaatg ggcacactg cccacatca aagagatcg agaccaggcc tctgtggct
 601 cctgtggcc cttccgggtt gtggaaagcc tctctgaccc gatctgcac cacacaatg
 661 cgcacgtcg cgtggagggt tcggggagg acctgtcact atgtgtggc agcatgtgt
 721 gggacggctg taatgggtgc tttctgtgt aagcttggaa cttctggaca aaaaaaggcc
 781 tggttctgg tggctctat gaatcccattt tagggcagc acctgtactcc atccctccct
 841 gtggacccca cgtcaacccgc tcccccggcc catgcacccgg ggaggagat acccccaatg
 901 gtagcaagat ctgtgagcc ggctacagcc cgacactacaa acaggacaag cactacggat
 961 acaatctca cagcgctcc aatagcggaga aggacatcat gggcggatc taaaaaaacg
 1021 gccccctggaa gggggatcc tctgttatt cggacttccct gctctacaag tcaggagtt
 1081 accaaacacgt caccggagat atgatgggtg gccatgcac cccgatctg ggctggggag
 1141 tggagaatgg cacaccctac tggctgggtt ccaactctg gaacactgac tgggggtgaca
 1201 atggcttctt taaaatactc agaggacagg atcactgtgg aatcgaatca gaagtggtgg
 1261 ctggaaattcc acgcacccgt cagtaactggg aaaagatcta atctgcctgtt ggcctgtcg
 1321 gccagtcctg gggggagat atgcattttt ttctttaatg tcacgtaaag
 1381 tacaagtttca agacagggtc tgaaggactg gattggccaa acatcagacc tgcgttccaa
 1441 ggagaccaag tccctggctt atccacggctt gtgggttacag tgcagacagg ccattgtgagc
 1501 caccgtcgcc agcacaaggc gtccttcccc ctgttagacta gtggccgttgg ggtacttgc
 1561 tgccccagct gactgtggcc cccctgtga tccatccatc tccaggaggcc aagacagaga
 1621 cggaggaaatg gaaaggccggat ttcttaacacg gatggaaatgt ccccccattcg ttccccccatg
 1681 accttcaacgt aagtatgtttt ccacattttt cacagaaatc agggagagaa cgggtgtgg
 1741 agccctttgg agaaacccgt tccctggccccc tccctgcattc tatecgatgtt gcaatgtcac
 1801 aaccctctgtg atcttgcgtt cagatgtt ctttaataga agttttttttt ttcgtgcac
 1861 tctgtcaatc atgtgggtga gccagtgaa cagcggggaga cctgtgttag ttttacagat
 1921 tgcctccatc tgacggcgtt caaaaggaaa ccaagtggttcc agggatgtttt tctgaccac
 1981 tgatctctac taccacaaagg aaaaatgtt agggaaaacc agtttttact gtttttgaaa
 2041 aattacagct tcaccctgtc aagtttacaaa ggaatgccttgc tgccataaaa agtttttcc
 2101 aacttgaatg ctactctgtt gggatcttgc atcccttgc actgcctata gacttgttagc
 2161 tgctgtctt ctgttgcctt gcaagaaatc acgttctggaa actgcatttgc ttgcgactc
 2221 ttggggacttcttcaatcctt ctcgtggcc cggccatgtt ttcacccatg gatccctcc
 2281 cccaaatttttgc tccctgtcat ctcgtcaac ctctctgttca agtgcctgtt aagcttgc
 2341 ttgcttaaga actcaaaaca tagtgcgttgc ctatttttt ttgtgttgc tgactgtacag
 2401 agtggatcc cgtctcccgat gtcgggttgc agtggcgctt ttcagtcac ctgcaccc
 2461 cagcccttca gattcaaggc atctctctgc ttccacccctc cggatgttgc ggtatgacagg
 2521 cactcacaatc tatggctggg ttatttttgtt attttttttgc acatcagggaa ttccacccatg
 2581 ttggccaggc tagtttcaaa ctccggccctt cagggtgttgc gcttgcctca gctcccaaa
 2641 ttgtgggat tacaggcgtt gccaactggg ccctgcctgtt attttttgc acggcacaat
 2701 ccacaaatc gtcggggatc cacttcataa aacaggcttgc ttgtcttgc gatctccat
 2761 aaccaatc ttcacccgtt gggaaaccaca tcccccggccatc tccctccatg cttgggttgc
 2821 ggtggggatc agggccgttca ttcacccatg ttttttttttttttttttttttttttttttttt
 2881 ggttcggggatc ttcacccatg ttt
 2941 gatataatc aacttgcgtt gtcacccatg ttttttttttttttttttttttttttttttttttt
 3001 tactccctt cccaaatc gtcggggatc gtcacccatg ttttttttttttttttttttttttttt
 3061 gtttctgttca ttcacccatg ttt
 3121 tgagaaatc ttcacccatg ttt
 3181 gcccggccgttca gtcggccatg ttt
 3241 gacaatccatg ttt
 3301 aatccaaatc ttcacccatg ttt
 3361 gaggcaggatc ttcacccatg ttt
 3421 gtcacttca gtcggccatg ttt
 3481 aaaaaaaaaaaatc gtcggccatg ttttttttttttttttttttttttttttttttttttttt
 3541 gcccggccatg ttt
 3601 catctctact aaaaaaaaaaaatc gtcggccatg ttttttttttttttttttttttttttt
 3661 actccggggatc ttcacccatg ttttttttttttttttttttttttttttttttttttttt
 3721 gatataatc aacttgcgtt gtcacccatg ttttttttttttttttttttttttttttttt
 3781 aaaaaaaaaaaatc gtcggccatg ttttttttttttttttttttttttttttttttttttt
 3841 ttcacccatg ttt
 3901 aa

SEQ ID NO: 49 Human Cathepsin B Polypeptide, variant 3

MWQLWASLCCLVLANARSPSFHPLSDELVNYYVNKRNTTWWAG

HNFYNNVDMMSYLKRLCGTFLGGPKPPQRVMPTEDLKLPLASFDAREQWPQCPTIKEIRDQ

GSCGSCWAFGAVEAISDRICHTAHNAHSVEVSAEDLLICCGSMCGDGCNGGYPAEAWN

FWIRKGLVSGGLYESHVGCRPYSIPPCCEHHVNNSRPCTGEGDTPKCSK1CEPGYSP

YKQDKHYGYNSYSVSNSEKDIMAEIYKNGPVEGAFSVYSDFLYKSGVYQHVTGEMMG

GHAIRILGWGVENGTPYWLVANSWNIDWGDNGFFKILRGQDHCGIESEVVAGIPRIDQ

YWEKI

-continued

SEQUENCE LISTING

SEQ ID NO: 50 Human Cathepsin B mRNA, variant 4

1 ggggcggggc cgggagggtt ctttagggccg gggctggccc aggctacggc ggctgcaggg
 61 ctccggcaac cgctccggca acggcaaccg ctccggctcg cgaggctgg gctgcaggct
 121 ctccggctgca ggcgcggcgt ggtgcgcgtt gggtgcgcacca cggctcacgg cagcctcagc
 181 caccggatgt taaggcgatgt ggttccacc tcaagctccc gatgtgttgg gatgtgttgg
 241 gggttccaaac atgtggcagc tctggccctt cctctgtcg cttgtgtgtt tggccatgc
 301 ccggagcagg ccctcttcc atccctgtc ggtatgagct gtcaactatg tcaacaaacg
 361 gaataccacg tggcaggccg ggcacaactt ctacaacatgc gacatgagct acttgaagag
 421 gctatgtgtt accttctgg gtggggccaa ggcacccccc agatgtatgt ttaccggaga
 481 cctgaatgtt ctgcgaatgtc tgcgtgcacg ggaacaatgg ccacagtgtc ccacatcaa
 541 agagatcaga gaccagggtt cctgtggctc ctgtggggcc ttcggggctg tggaaagccat
 601 ctctgaccgg atctgcatttcc acacaatgc gcacgtcagc gtggagggtgtt cggcggagga
 661 cctgtccaca tgctgtggca gcatgtgtgg ggacgggtgtt aatgggtgtt atctgtgt
 721 agcttggaaac ttctggacaa gaaaaggccgtt ggttctgtt ggccctatgt aatccatgt
 781 aggggtgcaga cctgtacttca tccctccctg tgacgaccac gtcaacggctt cccggcccc
 841 atgcacgggg gaggagata ccccaaaatgt tagcaagatgt tggtgagctgtt gatcagcccc
 901 gacatcacaatc cggacaatgc actacggata caatttccatc agcgttccaa atagcgagaa
 961 ggacatcatg gccggatgtt acaaaaacgg cccctggag ggagcttttctt ctgtgttattc
 1021 ggacttcgtt ctctacaatgtt caggagtgta ccaacacatgc acggagagata tgatgggtgg
 1081 ccatggccatc cgcacatctgg gctggggagt ggaaatggc acaccctactt ggctgggttgc
 1141 caactctggg aacatgtactt ggggtgtacaa tggttctttt aaaaataactca gaggacaggaa
 1201 tcactgtgttgc atcaatcgatgtt ggttgcgttca cgcacccgtatc agtactgggg
 1261 aaagatctaa tctggcgttgc gctgtgtgttcc cctgtgttgg gggcgagatc ggggtgaaaa
 1321 tgcattttat tcttttaatgtt cacgttataatgtt acaatgttca gacagggttgc tggaaatgtt
 1381 atttggccaaatc catcgacatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 1441 tggttacatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 1501 tgtagacttagt tgccgttaggg agtactgttgc gcccggatgttgc actgtggggcc cttccgtat
 1561 ccatccatctt ccaggggatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 1621 atgaaatgtt cccatcgatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 1681 acagaaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 1741 cccgtccatctt atcgatgttgc caatgttcaatgtt gtcgttcaatgttccatc
 1801 tttatagaa gttttttttt ttcgtgtactt ctgtgttcaatgtt gtcgttcaatgttccatc
 1861 agcggggatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 1921 caatgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 1981 ggaaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2041 gaatggctgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2101 tccctgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2161 cgtctggatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2221 agccatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2281 ttctctgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2341 tttttttttt ttcgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2401 gtggccctt ctcgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2461 tcacgttccatc gtcgttcaatgtt gtcgttcaatgttccatc
 2521 tttttttttt ttcgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2581 aggtgtgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2641 ctcgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2701 acagggttgc gtcgttcaatgtt gtcgttcaatgttccatc
 2761 cccctggatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2821 gaattttgtt gtcgttcaatgtt gtcgttcaatgttccatc
 2881 gttttttttt ttcgttcaatgtt gtcgttcaatgttccatc
 2941 ttccatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3001 ctatgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3061 gatgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3121 atctttttt gtcgttcaatgtt gtcgttcaatgttccatc
 3181 agcactttttt gtcgttcaatgtt gtcgttcaatgttccatc
 3241 caacatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3301 tggctgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3361 ggagggtt gtcgttcaatgtt gtcgttcaatgttccatc
 3421 tccgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3481 ctgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3541 agatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3601 catgttcaatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3661 aacctggatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3721 acaagatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3781 ttaccataatgtt gtcgttcaatgtt gtcgttcaatgttccatc
 3841 taacatgtt gtcgttcaatgtt gtcgttcaatgttccatc

SEQ ID NO: 51 Human Cathepsin B Polypeptide, variant 4

MWQLWASLCCLVLANARSRSRPSFHPLSDELVNVNKRNTTWWAG
 HNFYNVDMSYSLKRLCGTFLGGPKPPQRVMFTEDLKLPSFADREQWPQCPTIKEIRDQ
 GSCGSCWAFGAVEAISDRICIHNTNAHVSVEVSAEDLLICCGSMCGDGCNGGYPAEAWN
 HWIRKGLVSGGLYESHVGCRPYSIPPCEHHVNNGSRPPCTGEGLDTPKCSKICEPGYSPT
 YKQDKHYGYNYSVSNSKEKDIMAIEIYKNGPVEGAFSVYSDFLYKSGVYQHVTGEMMG

- continued

SEQUENCE LISTING

GHAIRILGWGVENGTPYWLVANSWNIDWGDNGFFKILRGQDHCGIESEVVAGIPRIDQ
YWEKI

SEQ ID NO: 52 Human Cathepsin B mRNA, variant 5

1 gggggggggc cgggagggtt ctttagggccg gggttggccc aggctacggc ggctgcaggg
61 ctccggcaac cgctccggca acggcaacccg ctccgctcg cgccaggctgg gctgcaggt
121 ctccggctgc gcgcgtgggt tcttcaggcc tatggagacg agtttgcgtt ggctggcc
181 gcagttactg gtttgcatac atgttggccat ggttggatcta ggatccggct tccaacatgt
241 ggcaaggctgg ggcctccctt tgcgtccctgt tgggttggca caatggccgg agcaggccct
301 cttdccatcc ctgcgtggat gaggttggca actatgtcaa caaaacggaaat accacgtggc
361 aggccggggca caacttctac aacgttggaca tgacttactaa gaagaggctt tttgttgc
421 tccctgggtgg gcccaagggca ccccaagagat ttatgttttcc cgaggacccg aagctgcctt
481 caagtttgc tgcacggggaa caatggccac aatgttcccaat catcaaaagag atcagagacc
541 agggttctgg tggcttgc tgggttggat gggctgttggaa agccatctt gaccggatct
601 gcatccacac caatggccac gtcaaggctgg aggttgcggc ggaggacccg ctcacatgt
661 gtggcagcat gtgtggggac ggctgttaatgtt gttgttgc tttttttttt tttttttttt
721 ggacaaagaaa aggctgggtt tctgttggcc tctatgttgc ccatgttgggg tttttttttt
781 actccatccc tccctgttgc caccacgttca acgggttccgg gccccatgc acgggggggg
841 gagataccatcc caagtgttgc aagatctgtt ggggttggca cagggccggc tttttttttt
901 acaaggacta cggatataat tccatcagcg ttcataatgtt cggggaaaat atcatggcc
961 agatcttacaa aaacggccccc gtggggggat ctttcttgc tttttttttt tttttttttt
1021 acaaggctgg agtgttccaa caccgttccgg ggggttggatgtt ggggttggccat gccatccgca
1081 tccctgggtt ggggttggatgtt aatggccacac cttacttggat ggggttggccat tccatggcc
1141 ctgacttgggg tgacaatggc ttctttttttaa tacttccaggaa acaggatcac tttttttttt
1201 aatcagaatgg ggttggctgtt aatccacgcg cccatgttca ctggggaaaat atctaatctt
1261 ccgtggggctt gtcgttgcgg tccctggggcc gggatggggat tttttttttt tttttttttt
1321 taagttcacg taatgttacaa gtttccatcgg ggggttggatgtt ggggttggccat tttttttttt
1381 agacctgttcc tccatggggaa ccaatggccatc gtttccatcgg ggggttggccat tttttttttt
1441 acaggccatg tgacggccatc ctggccggac acaggatcac tttttttttt tttttttttt
1501 gtggggatgtt ctgcgttgcgg caccgttgcgtt ggggttggccat tttttttttt tttttttttt
1561 gggggggggcc agagggccggc gtttccatcgg ggggttggccat tttttttttt tttttttttt
1621 atcagggtttcc cccatgttgcgtt ggggttggccat tttttttttt tttttttttt tttttttttt
1681 agagggccggc gtttccatcgg ggggttggccat tttttttttt tttttttttt tttttttttt
1741 agtttgcattt gtcacaaatctt ctgttgcattt gtttccatcgg tttttttttt tttttttttt
1801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1861 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1921 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1981 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2041 ataaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2101 ctatagactt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2161 atgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2221 ccatgttgcgtt ggggttggccat tttttttttt tttttttttt tttttttttt tttttttttt
2281 ctggatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2341 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2401 gtttccatcgg gtttccatcgg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2461 agtggggatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2521 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2581 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2641 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2761 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2821 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2881 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2941 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3061 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3121 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3181 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3241 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3361 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3421 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3481 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3541 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3661 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3721 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3781 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
3841 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

SEQ ID NO: 53 Human Cathepsin B Polypeptide, variant 5

MWQLWASLCCLLVLANARSRSPSFHPLSDELVNVNKRNTTWOAG
HNFYNVDMSSYLKRLCGTFLGGPKPPQRVMFTEDLKLPSDFAREQWPQCPTIKEIRDQ
GSCGSCWAFGAVEAISDRICIHNTNAHVSVEVSAEDLLICCGSMCGDGCNGGYPAEAWN
FWIRKGLVSGGLYESHVGRPYSIPPCEHHVNGSRPPCTGEGDTPKCSKICEPGYSP

-continued

SEQUENCE LISTING

YKQDKHYGYNSYSVSNEKDIMAEIFYKNGPVEGAFSVYSDFLYKSGVYQHVTGEMMG
GHAIRILGWGVENGTPYWLVANSWNIDWGDNGFFKILRGQDHCGIESEVVAGIPRIDQ
YWEKI

SEQ ID NO: 54 Human Cathepsin B mRNA, variant 6

1 agggccgggg ctggccagg ctacggcgc tgcaaggc cggcaacccg tccggcaacg
 61 ccaaccgtc cgctgcgcg aggctggct gcaggctc ggctgcagcg ctgggctgg
 121 gtgcagtggt ggcacccacg ctcaacggcg cctcagccac ccagatgtaa cgcatctgg
 181 tcccaactca gacccggag tagataacttc tggaaaataga aatgtatgact ctggatgca
 241 aacgttgct gtcctatgta taaggagatg gctttcagc cttccagtgta ctgaggaaatg
 301 ttctccaga tggcgtgtctg ctgagctgg tgcaagggtgg atctaggatc cggcttccaa
 361 catgtggcag ctctggccct ccctctgtg cctgtgtgtt tgcccaatg cccggagcag
 421 gcccttccat ccccccgtt cggatgatgtt ccgtcaactat gtcaacaacaa ggaataccac
 481 gtgcggccg gggccaaact tctacaacgtt ggcacatgtt gtttggatgaa ggcataatgg
 541 taccttcgtt ggtggggccca agccacccca gagagttatg tttaccgggg acctgtaaatg
 601 gctctcaacg ttcgtatgcac gggaaacaatg gccacatgtt cccaccatca aagagatcag
 661 agacggggcgtt cttctgtggc cttctgtgtg tgcccaatg tttttttttt
 721 gatctgtatc cccacccatg cgcacgttccat cttttttttt
 781 atgctgtggc agcatgtgtt gggacggctg taatgggttc tttttttttt
 841 ctctggaca agaaaaaggcc tgggttctgg tggctctat gaaatccatg taggggtcag
 901 acctgtactt atcccccctt gtgacccatc cttttttttt
 961 ggaggggat accccaatg tttttttttt
 1021 acaggacaag cactacggat acaatccata cttttttttt
 1081 ggcggagatc taaaaaaacg gcccgttgg gggacggatc tttttttttt
 1141 gctctcaacgtt tttttttttt
 1201 cccatcttcgtt ggtgggggg tggggatgtt cttttttttt
 1261 gaaacactgtatc tttttttttt
 1321 aatcgaaatca gaaatgggtgg tttttttttt
 1381 atctcggtt ggcacgttccat cttttttttt
 1441 ttctttttttt
 1501 acatcagacc tttttttttt
 1561 tgcagacagg ccatgttgcac cttttttttt
 1621 gtgccttggg gttttttttt
 1681 tccaggggcgtt gttttttttt
 1741 ccccccattttt
 1801 agggagaga cttttttttt
 1861 tttttttttt
 1921 agttttttttt
 1981 cttttttttt
 2041 agggatgtt tttttttttt
 2101 agttttttttt
 2161 tttttttttt
 2221 actgcctata tttttttttt
 2281 actgcattt tttttttttt
 2341 ttcaaccatg tttttttttt
 2401 agttttttttt
 2461 gttttttttt
 2521 tttttttttt
 2581 tttttttttt
 2641 acatacaggat tttttttttt
 2701 gttttttttt
 2761 tttttttttt
 2821 tttttttttt
 2881 tttttttttt
 2941 tttttttttt
 3001 acatgttata tttttttttt
 3061 cttttttttt
 3121 tttttttttt
 3181 tttttttttt
 3241 tttttttttt
 3301 tttttttttt
 3361 tttttttttt
 3421 tttttttttt
 3481 tttttttttt
 3541 tttttttttt
 3601 tttttttttt
 3661 tttttttttt
 3721 tttttttttt
 3781 tttttttttt
 3841 tttttttttt
 3901 tttttttttt
 3961 tttttttttt

- continued

SEQUENCE LISTING

SEQ ID NO: 55 Human Cathepsin B Polypeptide, variant 6
M₁W₂L₃W₄S₅L₆C₇L₈V₉A₁₀N₁₁R₁₂S₁₃P₁₄R₁₅S₁₆P₁₇H₁₈L₁₉P₂₀D₂₁L₂₂V₂₃E₂₄N₂₅V₂₆N₂₇K₂₈R₂₉T₃₀T₃₁W₃₂Q₃₃G₃₄
H₃₅N₃₆V₃₇D₃₈M₃₉S₄₀Y₄₁L₄₂K₄₃R₄₄C₄₅T₄₆G₄₇P₄₈K₄₉P₅₀Q₅₁R₅₂V₅₃F₅₄E₅₅A₅₆Q₅₇P₅₈C₅₉T₆₀I₆₁K₆₂R₆₃D₆₄Q₆₅
G₆₆C₆₇G₆₈S₆₉C₇₀W₇₁A₇₂F₇₃P₇₄G₇₅A₇₆V₇₇E₇₈A₇₉I₈₀S₈₁D₈₂R₈₃I₈₄C₈₅T₈₆H₈₇N₈₈V₈₉S₉₀E₉₁V₉₂A₉₃S₉₄D₉₅L₉₆L₉₇C₉₈G₉₉S₁₀₀M₁₀₁G₁₀₂D₁₀₃G₁₀₄C₁₀₅G₁₀₆N₁₀₇G₁₀₈G₁₀₉P₁₁₀A₁₁₁E₁₁₂W₁₁₃A₁₁₄N₁₁₅W₁₁₆
F₁₁₇W₁₁₈I₁₁₉R₁₂₀K₁₂₁G₁₂₂L₁₂₃S₁₂₄G₁₂₅G₁₂₆G₁₂₇G₁₂₈G₁₂₉G₁₃₀G₁₃₁G₁₃₂G₁₃₃G₁₃₄G₁₃₅G₁₃₆G₁₃₇G₁₃₈G₁₃₉G₁₄₀G₁₄₁G₁₄₂G₁₄₃G₁₄₄G₁₄₅G₁₄₆G₁₄₇G₁₄₈G₁₄₉G₁₅₀G₁₅₁G₁₅₂G₁₅₃G₁₅₄G₁₅₅G₁₅₆G₁₅₇G₁₅₈G₁₅₉G₁₆₀G₁₆₁G₁₆₂G₁₆₃G₁₆₄G₁₆₅G₁₆₆G₁₆₇G₁₆₈G₁₆₉G₁₇₀G₁₇₁G₁₇₂G₁₇₃G₁₇₄G₁₇₅G₁₇₆G₁₇₇G₁₇₈G₁₇₉G₁₈₀G₁₈₁G₁₈₂G₁₈₃G₁₈₄G₁₈₅G₁₈₆G₁₈₇G₁₈₈G₁₈₉G₁₉₀G₁₉₁G₁₉₂G₁₉₃G₁₉₄G₁₉₅G₁₉₆G₁₉₇G₁₉₈G₁₉₉G₂₀₀G₂₀₁G₂₀₂G₂₀₃G₂₀₄G₂₀₅G₂₀₆G₂₀₇G₂₀₈G₂₀₉G₂₁₀G₂₁₁G₂₁₂G₂₁₃G₂₁₄G₂₁₅G₂₁₆G₂₁₇G₂₁₈G₂₁₉G₂₂₀G₂₂₁G₂₂₂G₂₂₃G₂₂₄G₂₂₅G₂₂₆G₂₂₇G₂₂₈G₂₂₉G₂₃₀G₂₃₁G₂₃₂G₂₃₃G₂₃₄G₂₃₅G₂₃₆G₂₃₇G₂₃₈G₂₃₉G₂₄₀G₂₄₁G₂₄₂G₂₄₃G₂₄₄G₂₄₅G₂₄₆G₂₄₇G₂₄₈G₂₄₉G₂₅₀G₂₅₁G₂₅₂G₂₅₃G₂₅₄G₂₅₅G₂₅₆G₂₅₇G₂₅₈G₂₅₉G₂₆₀G₂₆₁G₂₆₂G₂₆₃G₂₆₄G₂₆₅G₂₆₆G₂₆₇G₂₆₈G₂₆₉G₂₇₀G₂₇₁G₂₇₂G₂₇₃G₂₇₄G₂₇₅G₂₇₆G₂₇₇G₂₇₈G₂₇₉G₂₈₀G₂₈₁G₂₈₂G₂₈₃G₂₈₄G₂₈₅G₂₈₆G₂₈₇G₂₈₈G₂₈₉G₂₉₀G₂₉₁G₂₉₂G₂₉₃G₂₉₄G₂₉₅G₂₉₆G₂₉₇G₂₉₈G₂₉₉G₃₀₀G₃₀₁G₃₀₂G₃₀₃G₃₀₄G₃₀₅G₃₀₆G₃₀₇G₃₀₈G₃₀₉G₃₁₀G₃₁₁G₃₁₂G₃₁₃G₃₁₄G₃₁₅G₃₁₆G₃₁₇G₃₁₈G₃₁₉G₃₂₀G₃₂₁G₃₂₂G₃₂₃G₃₂₄G₃₂₅G₃₂₆G₃₂₇G₃₂₈G₃₂₉G₃₃₀G₃₃₁G₃₃₂G₃₃₃G₃₃₄G₃₃₅G₃₃₆G₃₃₇G₃₃₈G₃₃₉G₃₄₀G₃₄₁G₃₄₂G₃₄₃G₃₄₄G₃₄₅G₃₄₆G₃₄₇G₃₄₈G₃₄₉G₃₅₀G₃₅₁G₃₅₂G₃₅₃G₃₅₄G₃₅₅G₃₅₆G₃₅₇G₃₅₈G₃₅₉G₃₆₀G₃₆₁G₃₆₂G₃₆₃G₃₆₄G₃₆₅G₃₆₆G₃₆₇G₃₆₈G₃₆₉G₃₇₀G₃₇₁G₃₇₂G₃₇₃G₃₇₄G₃₇₅G₃₇₆G₃₇₇G₃₇₈G₃₇₉G₃₈₀G₃₈₁G₃₈₂G₃₈₃G₃₈₄G₃₈₅G₃₈₆G₃₈₇G₃₈₈G₃₈₉G₃₉₀G₃₉₁G₃₉₂G₃₉₃G₃₉₄G₃₉₅G₃₉₆G₃₉₇G₃₉₈G₃₉₉G₄₀₀G₄₀₁G₄₀₂G₄₀₃G₄₀₄G₄₀₅G₄₀₆G₄₀₇G₄₀₈G₄₀₉G₄₁₀G₄₁₁G₄₁₂G₄₁₃G₄₁₄G₄₁₅G₄₁₆G₄₁₇G₄₁₈G₄₁₉G₄₂₀G₄₂₁G₄₂₂G₄₂₃G₄₂₄G₄₂₅G₄₂₆G₄₂₇G₄₂₈G₄₂₉G₄₃₀G₄₃₁G₄₃₂G₄₃₃G₄₃₄G₄₃₅G₄₃₆G₄₃₇G₄₃₈G₄₃₉G₄₄₀G₄₄₁G₄₄₂G₄₄₃G₄₄₄G₄₄₅G₄₄₆G₄₄₇G₄₄₈G₄₄₉G₄₅₀G₄₅₁G₄₅₂G₄₅₃G₄₅₄G₄₅₅G₄₅₆G₄₅₇G₄₅₈G₄₅₉G₄₆₀G₄₆₁G₄₆₂G₄₆₃G₄₆₄G₄₆₅G₄₆₆G₄₆₇G₄₆₈G₄₆₉G₄₇₀G₄₇₁G₄₇₂G₄₇₃G₄₇₄G₄₇₅G₄₇₆G₄₇₇G₄₇₈G₄₇₉G₄₈₀G₄₈₁G₄₈₂G₄₈₃G₄₈₄G₄₈₅G₄₈₆G₄₈₇G₄₈₈G₄₈₉G₄₉₀G₄₉₁G₄₉₂G₄₉₃G₄₉₄G₄₉₅G₄₉₆G₄₉₇G₄₉₈G₄₉₉G₅₀₀G₅₀₁G₅₀₂G₅₀₃G₅₀₄G₅₀₅G₅₀₆G₅₀₇G₅₀₈G₅₀₉G₅₁₀G₅₁₁G₅₁₂G₅₁₃G₅₁₄G₅₁₅G₅₁₆G₅₁₇G₅₁₈G₅₁₉G₅₂₀G₅₂₁G₅₂₂G₅₂₃G₅₂₄G₅₂₅G₅₂₆G₅₂₇G₅₂₈G₅₂₉G₅₃₀G₅₃₁G₅₃₂G₅₃₃G₅₃₄G₅₃₅G₅₃₆G₅₃₇G₅₃₈G₅₃₉G₅₄₀G₅₄₁G₅₄₂G₅₄₃G₅₄₄G₅₄₅G₅₄₆G₅₄₇G₅₄₈G₅₄₉G₅₅₀G₅₅₁G₅₅₂G₅₅₃G₅₅₄G₅₅₅G₅₅₆G₅₅₇G₅₅₈G₅₅₉G₅₆₀G₅₆₁G₅₆₂G₅₆₃G₅₆₄G₅₆₅G₅₆₆G₅₆₇G₅₆₈G₅₆₉G₅₇₀G₅₇₁G₅₇₂G₅₇₃G₅₇₄G₅₇₅G₅₇₆G₅₇₇G₅₇₈G₅₇₉G₅₈₀G₅₈₁G₅₈₂G₅₈₃G₅₈₄G₅₈₅G₅₈₆G₅₈₇G₅₈₈G₅₈₉G₅₉₀G₅₉₁G₅₉₂G₅₉₃G₅₉₄G₅₉₅G₅₉₆G₅₉₇G₅₉₈G₅₉₉G₆₀₀G₆₀₁G₆₀₂G₆₀₃G₆₀₄G₆₀₅G₆₀₆G₆₀₇G₆₀₈G₆₀₉G₆₁₀G₆₁₁G₆₁₂G₆₁₃G₆₁₄G₆₁₅G₆₁₆G₆₁₇G₆₁₈G₆₁₉G₆₂₀G₆₂₁G₆₂₂G₆₂₃G₆₂₄G₆₂₅G₆₂₆G₆₂₇G₆₂₈G₆₂₉G₆₃₀G₆₃₁G₆₃₂G₆₃₃G₆₃₄G₆₃₅G₆₃₆G₆₃₇G₆₃₈G₆₃₉G₆₄₀G₆₄₁G₆₄₂G₆₄₃G₆₄₄G₆₄₅G₆₄₆G₆₄₇G₆₄₈G₆₄₉G₆₅₀G₆₅₁G₆₅₂G₆₅₃G₆₅₄G₆₅₅G₆₅₆G₆₅₇G₆₅₈G₆₅₉G₆₆₀G₆₆₁G₆₆₂G₆₆₃G₆₆₄G₆₆₅G₆₆₆G₆₆₇G₆₆₈G₆₆₉G₆₇₀G₆₇₁G₆₇₂G₆₇₃G₆₇₄G₆₇₅G₆₇₆G₆₇₇G₆₇₈G₆₇₉G₆₈₀G₆₈₁G₆₈₂G₆₈₃G₆₈₄G₆₈₅G₆₈₆G₆₈₇G₆₈₈G₆₈₉G₆₉₀G₆₉₁G₆₉₂G₆₉₃G₆₉₄G₆₉₅G₆₉₆G₆₉₇G₆₉₈G₆₉₉G₇₀₀G₇₀₁G₇₀₂G₇₀₃G₇₀₄G₇₀₅G₇₀₆G₇₀₇G₇₀₈G₇₀₉G₇₁₀G₇₁₁G₇₁₂G₇₁₃G₇₁₄G₇₁₅G₇₁₆G₇₁₇G₇₁₈G₇₁₉G₇₂₀G₇₂₁G₇₂₂G₇₂₃G₇₂₄G₇₂₅G₇₂₆G₇₂₇G₇₂₈G₇₂₉G₇₃₀G₇₃₁G₇₃₂G₇₃₃G₇₃₄G₇₃₅G₇₃₆G₇₃₇G₇₃₈G₇₃₉G₇₄₀G₇₄₁G₇₄₂G₇₄₃G₇₄₄G₇₄₅G₇₄₆G₇₄₇G₇₄₈G₇₄₉G₇₅₀G₇₅₁G₇₅₂G₇₅₃G₇₅₄G₇₅₅G₇₅₆G₇₅₇G₇₅₈G₇₅₉G₇₆₀G₇₆₁G₇₆₂G₇₆₃G₇₆₄G₇₆₅G₇₆₆G₇₆₇G₇₆₈G₇₆₉G₇₇₀G₇₇₁G₇₇₂G₇₇₃G₇₇₄G₇₇₅G₇₇₆G₇₇₇G₇₇₈G₇₇₉G₇₈₀G₇₈₁G₇₈₂G₇₈₃G₇₈₄G₇₈₅G₇₈₆G₇₈₇G₇₈₈G₇₈₉G₇₉₀G₇₉₁G₇₉₂G₇₉₃G₇₉₄G₇₉₅G₇₉₆G₇₉₇G₇₉₈G₇₉₉G₈₀₀G₈₀₁G₈₀₂G₈₀₃G₈₀₄G₈₀₅G₈₀₆G₈₀₇G₈₀₈G₈₀₉G₈₁₀G₈₁₁G₈₁₂G₈₁₃G₈₁₄G₈₁₅G₈₁₆G₈₁₇G₈₁₈G₈₁₉G₈₂₀G₈₂₁G₈₂₂G₈₂₃G₈₂₄G₈₂₅G₈₂₆G₈₂₇G₈₂₈G₈₂₉G₈₃₀G₈₃₁G₈₃₂G₈₃₃G₈₃₄G₈₃₅G₈₃₆G₈₃₇G₈₃₈G₈₃₉G₈₄₀G₈₄₁G₈₄₂G₈₄₃G₈₄₄G₈₄₅G₈₄₆G₈₄₇G₈₄₈G₈₄₉G₈₅₀G₈₅₁G₈₅₂G₈₅₃G₈₅₄G₈₅₅G₈₅₆G₈₅₇G₈₅₈G₈₅₉G₈₆₀G₈₆₁G₈₆₂G₈₆₃G₈₆₄G₈₆₅G₈₆₆G₈₆₇G₈₆₈G₈₆₉G₈₇₀G₈₇₁G₈₇₂G₈₇₃G₈₇₄G₈₇₅G₈₇₆G₈₇₇G₈₇₈G₈₇₉G₈₈₀G₈₈₁G₈₈₂G₈₈₃G₈₈₄G₈₈₅G₈₈₆G₈₈₇G₈₈₈G₈₈₉G₈₉₀G₈₉₁G₈₉₂G₈₉₃G₈₉₄G₈₉₅G₈₉₆G₈₉₇G₈₉₈G₈₉₉G₉₀₀G₉₀₁G₉₀₂G₉₀₃G₉₀₄G₉₀₅G₉₀₆G₉₀₇G₉₀₈G₉₀₉G₉₁₀G₉₁₁G₉₁₂G₉₁₃G₉₁₄G₉₁₅G₉₁₆G₉₁₇G₉₁₈G₉₁₉G₉₂₀G₉₂₁G₉₂₂G₉₂₃G₉₂₄G₉₂₅G₉₂₆G₉₂₇G₉₂₈G₉₂₉G₉₃₀G₉₃₁G₉₃₂G₉₃₃G₉₃₄G₉₃₅G₉₃₆G₉₃₇G₉₃₈G₉₃₉G₉₄₀G₉₄₁G₉₄₂G₉₄₃G₉₄₄G₉₄₅G₉₄₆G₉₄₇G₉₄₈G₉₄₉G₉₅₀G₉₅₁G₉₅₂G₉₅₃G₉₅₄G₉₅₅G₉₅₆G₉₅₇G₉₅₈G₉₅₉G₉₆₀G₉₆₁G₉₆₂G₉₆₃G₉₆₄G₉₆₅G₉₆₆G₉₆₇G₉₆₈G₉₆₉G₉₇₀G₉₇₁G₉₇₂G₉₇₃G₉₇₄G₉₇₅G₉₇₆G₉₇₇G₉₇₈G₉₇₉G₉₈₀G₉₈₁G₉₈₂G₉₈₃G₉₈₄G₉₈₅G₉₈₆G₉₈₇G₉₈₈G₉₈₉G₉₉₀G₉₉₁G₉₉₂G₉₉₃G₉₉₄G₉₉₅G₉₉₆G₉₉₇G₉₉₈G₉₉₉G₁₀₀₀G₁₀₀₁G₁₀₀₂G₁₀₀₃G₁₀₀₄G₁₀₀₅G₁₀₀₆G₁₀₀₇G₁₀₀₈G₁₀₀₉G₁₀₁₀G₁₀₁₁G₁₀₁₂G₁₀₁₃G₁₀₁₄G₁₀₁₅G₁₀₁₆G₁₀₁₇G₁₀₁₈G₁₀₁₉G₁₀₂₀G₁₀₂₁G₁₀₂₂G₁₀₂₃G₁₀₂₄G₁₀₂₅G₁₀₂₆G₁₀₂₇G₁₀₂₈G₁₀₂₉G₁₀₃₀G₁₀₃₁G₁₀₃₂G₁₀₃₃G₁₀₃₄G₁₀₃₅G₁₀₃₆G₁₀₃₇G₁₀₃₈G₁₀₃₉G₁₀₄₀G₁₀₄₁G₁₀₄₂G₁₀₄₃G₁₀₄₄G₁₀₄₅G₁₀₄₆G₁₀₄₇G₁₀₄₈G₁₀₄₉G₁₀₅₀G₁₀₅₁G₁₀₅₂G₁₀₅₃G₁₀₅₄G₁₀₅₅G₁₀₅₆G₁₀₅₇G₁₀₅₈G₁₀₅₉G₁₀₆₀G₁₀₆₁G₁₀₆₂G₁₀₆₃G₁₀₆₄G₁₀₆₅G₁₀₆₆G₁₀₆₇G₁₀₆₈G₁₀₆₉G₁₀₇₀G₁₀₇₁G₁₀₇₂G₁₀₇₃G₁₀₇₄G₁₀₇₅G₁₀₇₆G₁₀₇₇G₁₀₇₈G₁₀₇₉G₁₀₈₀G₁₀₈₁G₁₀₈₂G₁₀₈₃G₁₀₈₄G₁₀₈₅G₁₀₈₆G₁₀₈₇G₁₀₈₈G₁₀₈₉G₁₀₉₀G₁₀₉₁G₁₀₉₂G₁₀₉₃G₁₀₉₄G₁₀₉₅G₁₀₉₆G₁₀₉₇G₁₀₉₈G₁₀₉₉G₁₁₀₀G₁₁₀₁G₁₁₀₂G₁₁₀₃G₁₁₀₄G₁₁₀₅G₁₁₀₆G₁₁₀₇G₁₁₀₈G₁₁₀₉G₁₁₁₀G₁₁₁₁G₁₁₁₂G₁₁₁₃G₁₁₁₄G₁₁₁₅G₁₁₁₆G₁₁₁₇G₁₁₁₈G₁₁₁₉G₁₁₂₀G₁₁₂₁G₁₁₂₂G₁₁₂₃G₁₁₂₄G₁₁₂₅G₁₁₂₆G₁₁₂₇G₁₁₂₈G₁₁₂₉G₁₁₃₀G₁₁₃₁G₁₁₃₂G₁₁₃₃G₁₁₃₄G₁₁₃₅G₁₁₃₆G₁₁₃₇G₁₁₃₈G₁₁₃₉G₁₁₄₀G₁₁₄₁G₁₁₄₂G₁₁₄₃G₁₁₄₄G₁₁₄₅G₁₁₄₆G₁₁₄₇G₁₁₄₈G₁₁₄₉G₁₁₅₀G₁₁₅₁G₁₁₅₂G₁₁₅₃G₁₁₅₄G₁₁₅₅G₁₁₅₆G₁₁₅₇G₁₁₅₈G₁₁₅₉G₁₁₆₀G₁₁₆₁G₁₁₆₂G₁₁₆₃G₁₁₆₄G₁₁₆₅G₁₁₆₆G₁₁₆₇G₁₁₆₈G₁₁₆₉G₁₁₇₀G₁₁₇₁G₁₁₇₂G₁₁₇₃G₁₁₇₄G₁₁₇₅G₁₁₇₆G₁₁₇₇G₁₁₇₈G₁₁₇₉G₁₁₈₀G₁₁₈₁G₁₁₈₂G₁₁₈₃G₁₁₈₄G₁₁₈₅G₁₁₈₆G₁₁₈₇G₁₁₈₈G₁₁₈₉G₁₁₉₀G₁₁₉₁G₁₁₉₂G₁₁₉₃G₁₁₉₄G₁₁₉₅G₁₁₉₆G₁₁₉₇G₁₁₉₈G₁₁₉₉G₁₂₀₀G₁₂₀₁G₁₂₀₂G₁₂₀₃G₁₂₀₄G₁₂₀₅G₁₂₀₆G₁₂₀₇G₁₂₀₈G₁₂₀₉G₁₂₁₀G₁₂₁₁G₁₂₁₂G₁₂₁₃G₁₂₁₄G₁₂₁₅G₁₂₁₆G₁₂₁₇G₁₂₁₈G₁₂₁₉G₁₂₂₀G₁₂₂₁G₁₂₂₂G₁₂₂₃G₁₂₂₄G₁₂₂₅G₁₂₂₆G₁₂₂₇G₁₂₂₈G₁₂₂₉G₁₂₃₀G₁₂₃₁G₁₂₃₂G₁₂₃₃G₁₂₃₄G₁₂₃₅G₁₂₃₆G₁₂₃₇G₁₂₃₈G₁₂₃₉G₁₂₄₀G₁₂₄₁G₁₂₄₂G₁₂₄₃G₁₂₄₄G₁₂₄₅G₁₂₄₆G₁₂₄₇G₁₂₄₈G₁₂₄₉G₁₂₅₀G₁₂₅₁G₁₂₅₂G₁₂₅₃G₁₂₅₄G₁₂₅₅G₁₂₅₆G₁₂₅₇G₁₂₅₈G₁₂₅₉G₁₂₆₀G₁₂₆₁G₁₂₆₂G₁₂₆₃G₁₂₆₄G₁₂₆₅G₁₂₆₆G₁₂₆₇G₁₂₆₈G₁₂₆₉G₁₂₇₀G₁₂₇₁G₁₂₇₂G₁₂₇₃G₁₂₇₄G₁₂₇₅G₁₂₇₆G₁₂₇₇G₁₂₇₈G₁₂₇₉G₁₂₈₀G₁₂₈₁G₁₂₈₂G₁₂₈₃G₁₂₈₄G₁₂₈₅G₁₂₈₆G₁₂₈₇G₁₂₈₈G₁₂₈₉G₁₂₉₀G₁₂₉₁G₁₂₉₂G₁₂₉₃G₁₂₉₄G₁₂₉₅G₁₂₉₆G₁₂₉₇G₁₂₉₈G₁₂₉₉G₁₃₀₀G₁₃₀₁G₁₃₀₂G₁₃₀₃G₁₃₀₄G₁₃₀₅G₁₃₀₆G₁₃₀₇G₁₃₀₈G₁₃₀₉G₁₃₁₀G₁₃₁₁G₁₃₁₂G₁₃₁₃G₁₃₁₄G₁₃₁₅G₁₃₁₆G₁₃₁₇G₁₃₁₈G₁₃₁₉G₁₃₂₀G₁₃₂₁G₁₃₂₂G₁₃₂₃G₁₃₂₄G₁₃₂₅G₁₃₂₆G₁₃₂₇G₁₃₂₈G₁₃₂₉G₁₃₃₀G₁₃₃₁G₁₃₃₂G₁₃₃₃G₁₃₃₄G₁₃₃₅G₁₃₃₆G₁₃₃₇G₁₃₃₈G₁₃₃₉G₁₃₄₀G₁₃₄₁G_{1342</sub}

SEQ ID NO: 56 Human Cathepsin B mRNA, variant 7

- continued

SEQUENCE LISTING

```
3901 agccgagatc acgcattgc actccagct gggggacaag agtgaatctg tgtctccaaaa  
3961 aaaaaaaaaa gaaaaaaaat gatgttttacaa aaagggttaccataagccacaaattccataaa  
4021 cacttatcttccatgtttca agtagaaatattccataacc tcaataaaagt tctccctgtctt  
4081 cccaaa
```

SEQ ID NO: 57 Human Cathepsin B Polypeptide, variant 7
M₁W₂L₃W₄A₅S₆L₇C₈L₉V₁₀A₁₁N₁₂R₁₃S₁₄P₁₅R₁₆S₁₇P₁₈H₁₉L₂₀V₂₁E₂₂N₂₃V₂₄N₂₅K₂₆R₂₇W₂₈Q₂₉G₃₀
H₃₁N₃₂F₃₃V₃₄D₃₅M₃₆S₃₇Y₃₈L₃₉K₄₀R₄₁C₄₂T₄₃L₄₄K₄₅P₄₆A₄₇S₄₈T₄₉F₅₀A₅₁R₅₂Q₅₃E₅₄W₅₅P₅₆C₅₇O₅₈P₅₉C₆₀T₆₁K₆₂I₆₃E₆₄R₆₅D₆₆Q₆₇F₆₈P₆₉C₇₀T₇₁I₇₂E₇₃R₇₄D₇₅Q₇₆F₇₇K₇₈I₇₉R₈₀G₈₁D₈₂C₈₃G₈₄M₈₅C₈₆G₈₇D₈₈G₈₉C₉₀G₉₁Y₉₂P₉₃A₉₄E₉₅W₉₆N₉₇A₉₈W₉₉N₁₀₀M₁₀₁W₁₀₂R₁₀₃F₁₀₄I₁₀₅G₁₀₆C₁₀₇G₁₀₈D₁₀₉G₁₁₀C₁₁₁G₁₁₂N₁₁₃G₁₁₄Y₁₁₅P₁₁₆A₁₁₇E₁₁₈W₁₁₉N₁₂₀A₁₂₁W₁₂₂N₁₂₃F₁₂₄W₁₂₅I₁₂₆R₁₂₇G₁₂₈V₁₂₉E₁₃₀H₁₃₁S₁₃₂V₁₃₃E₁₃₄A₁₃₅S₁₃₆D₁₃₇R₁₃₈I₁₃₉T₁₄₀H₁₄₁N₁₄₂S₁₄₃V₁₄₄E₁₄₅A₁₄₆V₁₄₇E₁₄₈A₁₄₉I₁₅₀T₁₅₁H₁₅₂N₁₅₃S₁₅₄V₁₅₅E₁₅₆A₁₅₇S₁₅₈D₁₅₉A₁₆₀E₁₆₁W₁₆₂N₁₆₃A₁₆₄W₁₆₅N₁₆₆F₁₆₇W₁₆₈I₁₆₉G₁₇₀R₁₇₁D₁₇₂H₁₇₃C₁₇₄G₁₇₅I₁₇₆E₁₇₇S₁₇₈V₁₇₉E₁₈₀V₁₈₁A₁₈₂G₁₈₃I₁₈₄P₁₈₅E₁₈₆S₁₈₇T₁₈₈P₁₈₉E₁₉₀Y₁₉₁K₁₉₂D₁₉₃H₁₉₄Y₁₉₅G₁₉₆N₁₉₇S₁₉₈V₁₉₉S₂₀₀N₂₀₁E₂₀₂D₂₀₃I₂₀₄M₂₀₅A₂₀₆E₂₀₇I₂₀₈Y₂₀₉K₂₁₀N₂₁₁G₂₁₂P₂₁₃V₂₁₄E₂₁₅G₂₁₆A₂₁₇F₂₁₈E₂₁₉S₂₂₀V₂₂₁P₂₂₂C₂₂₃H₂₂₄E₂₂₅V₂₂₆I₂₂₇N₂₂₈R₂₂₉D₂₃₀G₂₃₁N₂₃₂F₂₃₃I₂₃₄R₂₃₅G₂₃₆D₂₃₇C₂₃₈G₂₃₉D₂₄₀G₂₄₁C₂₄₂G₂₄₃N₂₄₄G₂₄₅Y₂₄₆P₂₄₇A₂₄₈E₂₄₉W₂₅₀N₂₅₁A₂₅₂W₂₅₃N₂₅₄F₂₅₅W₂₅₆I₂₅₇R₂₅₈G₂₅₉V₂₆₀E₂₆₁H₂₆₂S₂₆₃V₂₆₄E₂₆₅A₂₆₆S₂₆₇D₂₆₈R₂₆₉I₂₇₀T₂₇₁H₂₇₂N₂₇₃S₂₇₄V₂₇₅E₂₇₆A₂₇₇W₂₇₈N₂₇₉F₂₈₀W₂₈₁I₂₈₂R₂₈₃G₂₈₄V₂₈₅E₂₈₆H₂₈₇S₂₈₈V₂₈₉E₂₉₀A₂₉₁W₂₉₂N₂₉₃A₂₉₄W₂₉₅N₂₉₆F₂₉₇W₂₉₈I₂₉₉R₃₀₀G₃₀₁D₃₀₂C₃₀₃G₃₀₄D₃₀₅G₃₀₆C₃₀₇G₃₀₈N₃₀₉G₃₁₀Y₃₁₁P₃₁₂A₃₁₃E₃₁₄W₃₁₅N₃₁₆A₃₁₇W₃₁₈N₃₁₉F₃₂₀W₃₂₁I₃₂₂R₃₂₃G₃₂₄V₃₂₅E₃₂₆H₃₂₇S₃₂₈V₃₂₉E₃₃₀A₃₃₁S₃₃₂D₃₃₃R₃₃₄I₃₃₅T₃₃₆H₃₃₇N₃₃₈S₃₃₉V₃₄₀E₃₄₁A₃₄₂W₃₄₃N₃₄₄A₃₄₅W₃₄₆N₃₄₇F₃₄₈W₃₄₉I₃₅₀R₃₅₁G₃₅₂V₃₅₃E₃₅₄H₃₅₅S₃₅₆V₃₅₇E₃₅₈A₃₅₉S₃₆₀D₃₆₁R₃₆₂I₃₆₃T₃₆₄H₃₆₅N₃₆₆S₃₆₇V₃₆₈E₃₆₉A₃₇₀W₃₇₁N₃₇₂A₃₇₃W₃₇₄N₃₇₅F₃₇₆W₃₇₇I₃₇₈R₃₇₉G₃₈₀V₃₈₁E₃₈₂H₃₈₃S₃₈₄V₃₈₅E₃₈₆A₃₈₇S₃₈₈D₃₈₉R₃₉₀I₃₉₁T₃₉₂H₃₉₃N₃₉₄S₃₉₅V₃₉₆E₃₉₇A₃₉₈W₃₉₉N₄₀₀A₄₀₁W₄₀₂N₄₀₃F₄₀₄W₄₀₅I₄₀₆R₄₀₇G₄₀₈V₄₀₉E₄₁₀H₄₁₁S₄₁₂V₄₁₃E₄₁₄A₄₁₅S₄₁₆D₄₁₇R₄₁₈I₄₁₉T₄₂₀H₄₂₁N₄₂₂S₄₂₃V₄₂₄E₄₂₅A₄₂₆W₄₂₇N₄₂₈A₄₂₉W₄₃₀N₄₃₁F₄₃₂W₄₃₃I₄₃₄R₄₃₅G₄₃₆V₄₃₇E₄₃₈H₄₃₉S₄₄₀V₄₄₁E₄₄₂A₄₄₃S₄₄₄D₄₄₅R₄₄₆I₄₄₇T₄₄₈H₄₄₉N₄₅₀S₄₅₁V₄₅₂E₄₅₃A₄₅₄W₄₅₅N₄₅₆A₄₅₇W₄₅₈N₄₅₉F₄₆₀W₄₆₁I₄₆₂R₄₆₃G₄₆₄V₄₆₅E₄₆₆H₄₆₇S₄₆₈V₄₆₉E₄₇₀A₄₇₁S₄₇₂D₄₇₃R₄₇₄I₄₇₅T₄₇₆H₄₇₇N₄₇₈S₄₇₉V₄₈₀E₄₈₁A₄₈₂W₄₈₃N₄₈₄A₄₈₅W₄₈₆N₄₈₇F₄₈₈W₄₈₉I₄₉₀R₄₉₁G₄₉₂V₄₉₃E₄₉₄H₄₉₅S₄₉₆V₄₉₇E₄₉₈A₄₉₉S₅₀₀D₅₀₁R₅₀₂I₅₀₃T₅₀₄H₅₀₅N₅₀₆S₅₀₇V₅₀₈E₅₀₉A₅₁₀W₅₁₁N₅₁₂A₅₁₃W₅₁₄N₅₁₅F₅₁₆W₅₁₇I₅₁₈R₅₁₉G₅₂₀V₅₂₁E₅₂₂H₅₂₃S₅₂₄V₅₂₅E₅₂₆A₅₂₇S₅₂₈D₅₂₉R₅₃₀I₅₃₁T₅₃₂H₅₃₃N₅₃₄S₅₃₅V₅₃₆E₅₃₇A₅₃₈W₅₃₉N₅₄₀A₅₄₁W₅₄₂N₅₄₃F₅₄₄W₅₄₅I₅₄₆R₅₄₇G₅₄₈V₅₄₉E₅₅₀H₅₅₁S₅₅₂V₅₅₃E₅₅₄A₅₅₅S₅₅₆D₅₅₇R₅₅₈I₅₅₉T₅₆₀H₅₆₁N₅₆₂S₅₆₃V₅₆₄E₅₆₅A₅₆₆W₅₆₇N₅₆₈A₅₆₉W₅₇₀N₅₇₁F₅₇₂W₅₇₃I₅₇₄R₅₇₅G₅₇₆V₅₇₇E₅₇₈H₅₇₉S₅₈₀V₅₈₁E₅₈₂A₅₈₃S₅₈₄D₅₈₅R₅₈₆I₅₈₇T₅₈₈H₅₈₉N₅₉₀S₅₉₁V₅₉₂E₅₉₃A₅₉₄W₅₉₅N₅₉₆A₅₉₇W₅₉₈N₅₉₉F₆₀₀W₆₀₁I₆₀₂R₆₀₃G₆₀₄V₆₀₅E₆₀₆H₆₀₇S₆₀₈V₆₀₉E₆₁₀A₆₁₁S₆₁₂D₆₁₃R₆₁₄I₆₁₅T₆₁₆H₆₁₇N₆₁₈S₆₁₉V₆₂₀E₆₂₁A₆₂₂W₆₂₃N₆₂₄A₆₂₅W₆₂₆N₆₂₇F₆₂₈W₆₂₉I₆₃₀R₆₃₁G₆₃₂V₆₃₃E₆₃₄H₆₃₅S₆₃₆V₆₃₇E₆₃₈A₆₃₉S₆₄₀D₆₄₁R₆₄₂I₆₄₃T₆₄₄H₆₄₅N₆₄₆S₆₄₇V₆₄₈E₆₄₉A₆₅₀W₆₅₁N₆₅₂A₆₅₃W₆₅₄N₆₅₅F₆₅₆W₆₅₇I₆₅₈R₆₅₉G₆₆₀V₆₆₁E₆₆₂H₆₆₃S₆₆₄V₆₆₅E₆₆₆A₆₆₇S₆₆₈D₆₆₉R₆₇₀I₆₇₁T₆₇₂H₆₇₃N₆₇₄S₆₇₅V₆₇₆E₆₇₇A₆₇₈W₆₇₉N₆₈₀A₆₈₁W₆₈₂N₆₈₃F₆₈₄W₆₈₅I₆₈₆R₆₈₇G₆₈₈V₆₈₉E₆₉₀H₆₉₁S₆₉₂V₆₉₃E₆₉₄A₆₉₅S₆₉₆D₆₉₇R₆₉₈I₆₉₉T₇₀₀H₇₀₁N₇₀₂S₇₀₃V₇₀₄E₇₀₅A₇₀₆W₇₀₇N₇₀₈A₇₀₉W₇₁₀N₇₁₁F₇₁₂W₇₁₃I₇₁₄R₇₁₅G₇₁₆V₇₁₇E₇₁₈H₇₁₉S₇₂₀V₇₂₁E₇₂₂A₇₂₃S₇₂₄D₇₂₅R₇₂₆I₇₂₇T₇₂₈H₇₂₉N₇₃₀S₇₃₁V₇₃₂E₇₃₃A₇₃₄W₇₃₅N₇₃₆A₇₃₇W₇₃₈N₇₃₉F₇₄₀W₇₄₁I₇₄₂R₇₄₃G₇₄₄V₇₄₅E₇₄₆H₇₄₇S₇₄₈V₇₄₉E₇₅₀A₇₅₁S₇₅₂D₇₅₃R₇₅₄I₇₅₅T₇₅₆H₇₅₇N₇₅₈S₇₅₉V₇₆₀E₇₆₁A₇₆₂W₇₆₃N₇₆₄A₇₆₅W₇₆₆N₇₆₇F₇₆₈W₇₆₉I₇₇₀R₇₇₁G₇₇₂V₇₇₃E₇₇₄H₇₇₅S₇₇₆V₇₇₇E₇₇₈A₇₇₉S₇₈₀D₇₈₁R₇₈₂I₇₈₃T₇₈₄H₇₈₅N₇₈₆S₇₈₇V₇₈₈E₇₈₉A₇₉₀W₇₉₁N₇₉₂A₇₉₃W₇₉₄N₇₉₅F₇₉₆W₇₉₇I₇₉₈R₇₉₉G₈₀₀V₈₀₁E₈₀₂H₈₀₃S₈₀₄V₈₀₅E₈₀₆A₈₀₇S₈₀₈D₈₀₉R₈₁₀I₈₁₁T₈₁₂H₈₁₃N₈₁₄S₈₁₅V₈₁₆E₈₁₇A₈₁₈W₈₁₉N₈₂₀A₈₂₁W₈₂₂N₈₂₃F₈₂₄W₈₂₅I₈₂₆R₈₂₇G₈₂₈V₈₂₉E₈₃₀H₈₃₁S₈₃₂V₈₃₃E₈₃₄A₈₃₅S₈₃₆D₈₃₇R₈₃₈I₈₃₉T₈₄₀H₈₄₁N₈₄₂S₈₄₃V₈₄₄E₈₄₅A₈₄₆W₈₄₇N₈₄₈A₈₄₉W₈₅₀N₈₅₁F₈₅₂W₈₅₃I₈₅₄R₈₅₅G₈₅₆V₈₅₇E₈₅₈H₈₅₉S₈₆₀V₈₆₁E₈₆₂A₈₆₃S₈₆₄D₈₆₅R₈₆₆I₈₆₇T₈₆₈H₈₆₉N₈₇₀S₈₇₁V₈₇₂E₈₇₃A₈₇₄W₈₇₅N₈₇₆A₈₇₇W₈₇₈N₈₇₉F₈₈₀W₈₈₁I₈₈₂R₈₈₃G₈₈₄V₈₈₅E₈₈₆H₈₈₇S₈₈₈V₈₈₉E₈₉₀A₈₉₁S₈₉₂D₈₉₃R₈₉₄I₈₉₅T₈₉₆H₈₉₇N₈₉₈S₈₉₉V₉₀₀E₉₀₁A₉₀₂W₉₀₃N₉₀₄A₉₀₅W₉₀₆N₉₀₇F₉₀₈W₉₀₉I₉₁₀R₉₁₁G₉₁₂V₉₁₃E₉₁₄H₉₁₅S₉₁₆V₉₁₇E₉₁₈A₉₁₉S₉₂₀D₉₂₁R₉₂₂I₉₂₃T₉₂₄H₉₂₅N₉₂₆S₉₂₇V₉₂₈E₉₂₉A₉₃₀W₉₃₁N₉₃₂A₉₃₃W₉₃₄N₉₃₅F₉₃₆W₉₃₇I₉₃₈R₉₃₉G₉₄₀V₉₄₁E₉₄₂H₉₄₃S₉₄₄V₉₄₅E₉₄₆A₉₄₇S₉₄₈D₉₄₉R₉₅₀I₉₅₁T₉₅₂H₉₅₃N₉₅₄S₉₅₅V₉₅₆E₉₅₇A₉₅₈W₉₅₉N₉₆₀A₉₆₁W₉₆₂N₉₆₃F₉₆₄W₉₆₅I₉₆₆R₉₆₇G₉₆₈V₉₆₉E₉₇₀H₉₇₁S₉₇₂V₉₇₃E₉₇₄A₉₇₅S₉₇₆D₉₇₇R₉₇₈I₉₇₉T₉₈₀H₉₈₁N₉₈₂S₉₈₃V₉₈₄E₉₈₅A₉₈₆W₉₈₇N₉₈₈A₉₈₉W₉₉₀N₉₉₁F₉₉₂W₉₉₃I₉₉₄R₉₉₅G₉₉₆V₉₉₇E₉₉₈H₉₉₉S₁₀₀₀V₁₀₀₁E₁₀₀₂A₁₀₀₃S₁₀₀₄D₁₀₀₅R₁₀₀₆I₁₀₀₇T₁₀₀₈H₁₀₀₉N₁₀₁₀S₁₀₁₁V₁₀₁₂E₁₀₁₃A₁₀₁₄W₁₀₁₅N₁₀₁₆A₁₀₁₇W₁₀₁₈N₁₀₁₉F₁₀₂₀W₁₀₂₁I₁₀₂₂R₁₀₂₃G₁₀₂₄V₁₀₂₅E₁₀₂₆H₁₀₂₇S₁₀₂₈V₁₀₂₉E₁₀₃₀A₁₀₃₁S₁₀₃₂D₁₀₃₃R₁₀₃₄I₁₀₃₅T₁₀₃₆H₁₀₃₇N₁₀₃₈S₁₀₃₉V₁₀₄₀E₁₀₄₁A₁₀₄₂W₁₀₄₃N₁₀₄₄A₁₀₄₅W₁₀₄₆N₁₀₄₇F₁₀₄₈W₁₀₄₉I₁₀₅₀R₁₀₅₁G₁₀₅₂V₁₀₅₃E₁₀₅₄H₁₀₅₅S₁₀₅₆V₁₀₅₇E₁₀₅₈A₁₀₅₉S₁₀₆₀D₁₀₆₁R₁₀₆₂I₁₀₆₃T₁₀₆₄H₁₀₆₅N₁₀₆₆S₁₀₆₇V₁₀₆₈E₁₀₆₉A₁₀₇₀W₁₀₇₁N₁₀₇₂A₁₀₇₃W₁₀₇₄N₁₀₇₅F₁₀₇₆W₁₀₇₇I₁₀₇₈R₁₀₇₉G₁₀₈₀V₁₀₈₁E₁₀₈₂H₁₀₈₃S₁₀₈₄V₁₀₈₅E₁₀₈₆A₁₀₈₇S₁₀₈₈D₁₀₈₉R₁₀₉₀I₁₀₉₁T₁₀₉₂H₁₀₉₃N₁₀₉₄S₁₀₉₅V₁₀₉₆E₁₀₉₇A₁₀₉₈W₁₀₉₉N₁₁₀₀A₁₁₀₁W₁₁₀₂N₁₁₀₃F₁₁₀₄W₁₁₀₅I₁₁₀₆R₁₁₀₇G₁₁₀₈V₁₁₀₉E₁₁₁₀H₁₁₁₁S₁₁₁₂V₁₁₁₃E₁₁₁₄A₁₁₁₅S₁₁₁₆D₁₁₁₇R₁₁₁₈I₁₁₁₉T₁₁₂₀H₁₁₂₁N₁₁₂₂S₁₁₂₃V₁₁₂₄E₁₁₂₅A₁₁₂₆W₁₁₂₇N₁₁₂₈A₁₁₂₉W₁₁₃₀N₁₁₃₁F₁₁₃₂W₁₁₃₃I₁₁₃₄R₁₁₃₅G₁₁₃₆V₁₁₃₇E₁₁₃₈H₁₁₃₉S₁₁₄₀V₁₁₄₁E₁₁₄₂A₁₁₄₃S₁₁₄₄D₁₁₄₅R₁₁₄₆I₁₁₄₇T₁₁₄₈H₁₁₄₉N₁₁₅₀S₁₁₅₁V₁₁₅₂E₁₁₅₃A₁₁₅₄W₁₁₅₅N₁₁₅₆A₁₁₅₇W₁₁₅₈N₁₁₅₉F₁₁₆₀W₁₁₆₁I₁₁₆₂R₁₁₆₃G₁₁₆₄V₁₁₆₅E₁₁₆₆H₁₁₆₇S₁₁₆₈V₁₁₆₉E₁₁₇₀A₁₁₇₁S₁₁₇₂D₁₁₇₃R₁₁₇₄I₁₁₇₅T₁₁₇₆H₁₁₇₇N₁₁₇₈S₁₁₇₉V₁₁₈₀E₁₁₈₁A₁₁₈₂W₁₁₈₃N₁₁₈₄A₁₁₈₅W₁₁₈₆N₁₁₈₇F₁₁₈₈W₁₁₈₉I₁₁₉₀R₁₁₉₁G₁₁₉₂V₁₁₉₃E₁₁₉₄H₁₁₉₅S₁₁₉₆V₁₁₉₇E₁₁₉₈A₁₁₉₉S₁₂₀₀D₁₂₀₁R₁₂₀₂I₁₂₀₃T₁₂₀₄H₁₂₀₅N₁₂₀₆S₁₂₀₇V₁₂₀₈E₁₂₀₉A₁₂₁₀W₁₂₁₁N₁₂₁₂A₁₂₁₃W₁₂₁₄N₁₂₁₅F₁₂₁₆W₁₂₁₇I₁₂₁₈R₁₂₁₉G₁₂₂₀V₁₂₂₁E₁₂₂₂H₁₂₂₃S₁₂₂₄V₁₂₂₅E₁₂₂₆A₁₂₂₇S₁₂₂₈D₁₂₂₉R₁₂₃₀I₁₂₃₁T₁₂₃₂H₁₂₃₃N₁₂₃₄S₁₂₃₅V₁₂₃₆E₁₂₃₇A₁₂₃₈W₁₂₃₉N₁₂₄₀A₁₂₄₁W₁₂₄₂N₁₂₄₃F₁₂₄₄W₁₂₄₅I₁₂₄₆R₁₂₄₇G₁₂₄₈V₁₂₄₉E₁₂₅₀H₁₂₅₁S₁₂₅₂V₁₂₅₃E₁₂₅₄A₁₂₅₅S₁₂₅₆D₁₂₅₇R₁₂₅₈I₁₂₅₉T₁₂₆₀H₁₂₆₁N₁₂₆₂S₁₂₆₃V₁₂₆₄E₁₂₆₅A₁₂₆₆W₁₂₆₇N₁₂₆₈A₁₂₆₉W₁₂₇₀N₁₂₇₁F₁₂₇₂W₁₂₇₃I₁₂₇₄R₁₂₇₅G₁₂₇₆V₁₂₇₇E₁₂₇₈H₁₂₇₉S₁₂₈₀V₁₂₈₁E₁₂₈₂A₁₂₈₃S₁₂₈₄D₁₂₈₅R₁₂₈₆I₁₂₈₇T₁₂₈₈H₁₂₈₉N₁₂₉₀S₁₂₉₁V₁₂₉₂E₁₂₉₃A₁₂₉₄W₁₂₉₅N₁₂₉₆A₁₂₉₇W₁₂₉₈N₁₂₉₉F₁₃₀₀W₁₃₀₁I₁₃₀₂R₁₃₀₃G₁₃₀₄V₁₃₀₅E₁₃₀₆H₁₃₀₇S₁₃₀₈V₁₃₀₉E₁₃₁₀A₁₃₁₁S₁₃₁₂D₁₃₁₃R₁₃₁₄I₁₃₁₅T₁₃₁₆H₁₃₁₇N₁₃₁₈S₁₃₁₉V₁₃₂₀E₁₃₂₁A₁₃₂₂W₁₃₂₃N₁₃₂₄A₁₃₂₅W₁₃₂₆N₁₃₂₇F₁₃₂₈W₁₃₂₉I

SEQ ID NO: 58 Human Cathepsin L mRNA, variant 2

SEQ ID NO: 59 Human Cathepsin L Polypeptide, variant 2
MNPTLLIAAFLCGLIASATLTFDHSLEAQPTWKVAKMHNRLGMMNE
EGWRRARWKEVKNMKMIELHNQYEGRKGHSFTMAMNAGFDMTSEEFQRMNGFQNRKPRK
GKVFQEPLFYEAPERSVDWREKGTVYPTPKNQGQCGSCWAFSATGALEGQMFRTKTGRLIS
LSEQNNLVDCSGPQNEGNCNGGLMDYAFVQYQDNGNGLDSEESYPYBATEESCKYNPKVY
VANDFTGVDTPKQEAKLMAKAVATVGPISVADAGHESFLFYKEGIYFEPDCSSEDMHDH
GVLVVGYGFESTEDNNNKYWLKVNSWGEWGMGGVYKMAKDRRNHCIGIASAASYPTV

- continued

SEQUENCE LISTING

1381 agtgtgattt gaattctgtg atatttcac actggtaat gttacacctata ttttaattac
 1441 tgcataataat aggtttatata tattgattca cttactgact ttgcattttc gtttttaaaa
 1501 ggatgtataa atttttactt gttaaataa aatthaattt caaatgtagt ggtggggctt
 1561 ctttcattt ttgatgact gaattttgt gtaataaaga acataattgg gctctaagcc
 1621 ataaaaa

SEQ ID NO: 61 Human Cathepsin L Polypeptide, variant 3
 MNPTLILAAFLCLGIASATLTPDHSLEAQWTKWAKAMHNRLYGMNE
 EGWRRRAVWEKNMKMIELHNQEYREGKHSFTMAMNAFGDMTSEEFQVMNGFQNRKPRK
 GKVFQEPLFYEAPRSVWDREKGYVTPVKNQCGCGSWAFSATGALEGQMFRKTGRLIS
 LSEQNLLVDCSGPQGNEGCNGGLMDYAFQYVQDNGLDSEESYPYEATEESCKYNPKYS
 VANDTGFVDIPKQEKAALMKAVATVGPISVAIDAGHESFLFYKEGIYFEPDCSSEDMDH
 GVLVVGYGFESTESDNNKYWLVKNSWGEEWGMGGYVKMAKDRRNHCGIASASYPTV

SEQ ID NO: 62 Human Cathepsin L mRNA, variant 4
 1 ggccgtgcgg gccgaaccca gacccgagggt tttagaagca gagtccggcg aagctggggcc
 61 agaacccgca cctccgcac acggccgcg atccgtggag tgccgtcg cagctacgac
 121 cgcacggaa aacgcggccg ggcacggccc agctgtggcc ggacaggagac tggaaagagag
 181 gacgcggctcg agttttaaa catgaatcc acactcatcc ttgcgtcctt ttgcctggaa
 241 attgcctcag ctactctaacttattgatcac agtttagagg cacagtggac caagtggaaag
 301 cgcgcacca acagattata cggcatgaat gaagaaggat ggaggagac agtggggag
 361 aagaacatgaa agatgttgcg atcgcacaaat cggaaatata gggaaaggaa acacatcc
 421 acaatggccca tgaacgcctt tggagacatg accagtgaag aattcaggca ggtgtatgaa
 481 ggcttcaaa accgtaaagcc cggaaagggg aaagtgttcc aggaacccctt gttttatgag
 541 gccccccatgttggatggatggagaaatggatccatgttggatggatggatccatgttggatggat
 601 cagtgtgtt ctgtgtggc tttttgtgtt actgtgtgtt cttttgtgtt gatgttccgg
 661 aaaactggaa ggcttatctc actgatgtgtt cagaatctgg tagactgtgtt tgccctca
 721 gcaatgttgcg gctgtgttgcg tggcataatgg tttttgtgtt tccatgtgtt tcaggataat
 781 ggaggccgtt actctgtgttgcg atctatccatgttgcg cagaagaatccatgttgcg
 841 aatcccaatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 901 gcccgtatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 961 gactccatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 1021 atggatcatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 1081 aatatttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 1141 atggccaaatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 1201 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 1261 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 1321 gactccatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 1381 ctgtatataatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 1441 aggtgtataatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 1501 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 1561 ataaaaa

SEQ ID NO: 63 Human Cathepsin L Polypeptide, variant 4
 MNPTLILAAFLCLGIASATLTPDHSLEAQWTKWAKAMHNRLYGMNE
 EGWRRRAVWEKNMKMIELHNQEYREGKHSFTMAMNAFGDMTSEEFQVMNGFQNRKPRK
 GKVFQEPLFYEAPRSVWDREKGYVTPVKNQCGCGSWAFSATGALEGQMFRKTGRLIS
 LSEQNLLVDCSGPQGNEGCNGGLMDYAFQYVQDNGLDSEESYPYEATEESCKYNPKYS
 VANDTGFVDIPKQEKAALMKAVATVGPISVAIDAGHESFLFYKEGIYFEPDCSSEDMDH
 GVLVVGYGFESTESDNNKYWLVKNSWGEEWGMGGYVKMAKDRRNHCGIASASYPTV

SEQ ID NO: 64 Human Cathepsin L mRNA, variant 5
 1 ggccgtgcgg gccgaaccca gacccgagggt tttagaagca gagtccggcg aagctggggcc
 61 agaacccgca cctccgcac acggccgcg atccgtggag tgccgtcg cagctacgac
 121 cgcacggaa aacgcggccg ggcacggccc agctgtggcc ggacaggagac tggaaagagag
 181 gacgcggctcg agttgtgtt aacatgttgcg tccatgttgcg atctatccatgttgcg
 241 gggaaatgttgcg tccatgttgcg tccatgttgcg atctatccatgttgcg
 301 gaaaggctca atggcgttgcg aatggattatgttgcg atctatccatgttgcg
 361 ctggactctg aggaatccatgttgcg tccatgttgcg atctatccatgttgcg
 421 aagtatttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 481 atggccaaatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 541 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 601 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 661 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 721 aaaaatgttgcg tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg
 781 ggtggacgggtt gatgtgtgttgcg gacttgcgttgcg atctatccatgttgcg
 841 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 901 gttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 961 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 1021 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 1081 tttttgtgttgcg atctatccatgttgcg cttttgtgttgcg atctatccatgttgcg
 1141 a

- continued

SEQUENCE LISTING

SEQ ID NO: 65 Human Cathepsin L Polypeptide, variant 5
MDYAFQYVQDNGGLSEESVYPTEAESCKYNPKYSVANDTGFW
DIPKQEKLAMKAVATVGPISVAIDAGHESFLKYKEGIFYEPFDCSSEDMHGVLVVGYG
FESTESDDNNKYLVLKNSWGEEGMGGYVKAQDRRNHGCIASAASYPTV

SEQ ID NO: 66 Human Cathepsin L mRNA, variant 6

SEQ ID NO: 68 Human Cathepsin D Polypeptide
MQPSSLLPLALCLLAAPASALVRIPRLHKFTSIRRTMSEVGGSVEDLIAKGPVSKYSQAVP
AVTEGKIPVEVLKNYMDAQYGEIGTPQQCFTVVFDTGSNSLWVPSIHCKLLDIAWCIH
HYKNSKCSSTVYKNGTSFDHYGSGSLSGYLSQDTVSPCQSOASSASALGGVKERVQPG
EATKQPGITFIAAKEDGILGMAYPRISVNNVLPVEDNLMQQLVDQNIFSFYLSRDPDAQ
PGGEMLMLGGTDSKYYKGSLSYLNVTRKAYQVHLDQVEVASGLTLCKECEAIVDTGTSL
MVGVPDVEVRLEQKAAYGAVPLIQGEYMPICKEVSTLPAITLKGKGGYKLSKSPEDYTLVKVSQ
AGTKLTLCSGFQGMMIPTTGGPLWLILCGDFVIGRYTVTFDRDNRRVGFEEAARL

SEQ ID NO: 69 Human Cathepsin E Polypeptide, Isoform 3
 MKTLTLLLLVLLLEGEAQGSSLHRVPLRRHESLKKLRLARSQLSEFWKSNSHNLDMIQFTESC
 SMDQSAKEPLINYLDMYEFGFTISIGSPPQNFVTFVDTGSSNNLWVPVSVTCSPTACKTSRHS
 PQSQSSTYSPQGFSIYQGTGSGLSIIGADQGSAFATQEVGELTVGQOFGEVSEVTPGOT
 FVDAEFSDTGILGLGYPPLAVGGVTPVFDNMMAQNLVLDLPMFSVYMSNPPEGAGSELIFGG
 YDHSHFSGSLSNWVPPVTKQAWQIAALDNIQVGGTVMPFCSEGCQAIVDTGTSLITGPSDKI
 KQLQNAIGAAPVGDGEYAVECANLNVPMDVFTTINGVPUYVTPATYTLDDFVDMQFCSSGF
 QGLDHHPPGFLWLIGDFVTRQFYSVFDGRNQVRGLAPAVP

SEQ ID NO: 70 Human Cathepsin E Polypeptide, Isoform 1
MKTLLLLVLLLEGEAQGSLLHRVPLRRLHESLKKLRLARSQLSEFWKSNSHNLDMIQFTESC
SMDQSAKEPLINYLDMYEFGFTISIGSPPQNFVTFVDTGSSNLLWPSVSYCTSPACKTSRHS
PQSOSSTYTSQPGQSFIQYGTGSLSIQAGADVSVEGLTVVGGQFGEVSITPEVQGTFVDAE
FDGILGLGYPVSLAVGGVTPVFDNMMAQNVLDPMPFSVYMSNPEGGAGSELIPEGYDHSH
FSGSLNWVPTVKQAYQIALDNIQVGGTVMPCSEGCQAIVTGTSLITGFSDKIKQLQNA
IGAAPVDGEYAVECANLNVPMDVFTTINGVPYTLSPTAYTLLDFVDGMQFCSSGFQGLDI
HPPGALWLIDGVFIRFOYSVFDGRNNVRGLPAPV

SEQ ID NO: 71 Human Cathepsin E Polypeptide, Isoform 2
MKTLLLLLLVLLLELGEAQGSLLHRVPLRRLHESLKKLRLARSQLSFPEWKSQHNLDMIQFTESC
SMDQSAKEPLINYLDMEYFTGTSISGSPQNPQNTVFIYDFTGSSNLWVPSVSYCTSPACKTHSR
PQSQSSTSYSPQGQFSIYQGTGQSLSIQAGDQVSVEGLTVVGGQFGEVSIEPTVPEGQFTGVDAE
FDGIGLGLGYPVSLAVGGVTPVFDNMMAQNLVLDLPMFSVYMSNPNEGGAGSELIPFGYDHSH
PFGSLNWWPVTKQAYQIALDNMLWSVPTLTSRCRSPSPLTESIPSAQLPTVYWTWSME
CSSAAVAFKDLTSTLQLGPSSGWSGMSSFDSTQSLTVGITVWDWPQOSPKEGPCVCACLS
DRP

-continued

SEQUENCE LISTING

SEQ ID NO: 72 cell permeable peptide, L803-mts
GKEAPPAPPQSP

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 72

<210> SEQ ID NO 1
<211> LENGTH: 2254
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

agagtgcacc	cgaatccacg	ggctcgagg	cagcagccat	ctctcgcca	tagggcaggc	60
cagctggcgc	cggggctat	tttggggcgc	gggcaatgat	ggtgcacgc	aggcgacatt	120
gttaaggcatt	tccccctga	ctccccctccc	cgagcctctg	cccgggggtc	ctagcgccgc	180
tttctcagcc	atcccgcta	caacttagcc	gtccacaaca	ggatcatctg	atcgctgtcg	240
cccgggctac	gatctgcgag	gcccgcggac	cttgaccgg	cattgaccgc	caccgcffff	300
cagggtccgt	gggaccaaag	aaggggcggg	aggaagact	tcacgtggcg	ccggagttca	360
cgtgactcgt	acacatgact	tccagtcccc	ggcgccctcc	tggagagcaa	ggacgcgggg	420
gagcagagat	gatccgagcc	gcccgcggc	cgctgttcc	gtgtgtgtcg	ctgtgtgtcg	480
tgtctagtgtc	ctgggggtcc	cgaggcggagg	cagcccccg	ccaggaggag	atccagcgcc	540
tccccgggct	ggccaagcag	ccgtctttcc	gccagttactc	cggttaccc	aaaggctccg	600
gttccaagca	cctccactac	tggtttgtgg	agtcccagaa	ggatcccgg	aacagccctg	660
tggtgctttg	gctcaatggg	ggtccggct	gcagctact	agatgggctc	ctcacagagc	720
atggccccctt	cctggtccag	ccagatggtg	tcaccctgg	gtacaacccc	tatttttgg	780
atctgattgc	caatgtgtt	tacctggagt	ccccagctgg	ggtgggcttc	tcctactccg	840
atgacaagtt	ttatgcaact	aatgacactg	aggtcgccca	gagcaatttt	gaggcccttc	900
aagatttctt	ccgcctcttt	ccggagttaca	agaacaacaa	actttccctg	accggggaga	960
gctatgtgg	catctacatc	cccacccctgg	ccgtgtgtgt	catgcaggat	cccagcatga	1020
accttcagggg	gctggctgtg	ggcaatggac	tctccctcta	tgagcagaat	gacaactccc	1080
tggtctactt	tgcctactac	catggcccttc	tggggaaacag	gtttgggtct	tctctccaga	1140
cccaactgtg	ctctcaaaac	aagtgttaact	tctatgacaa	caaagacctg	gaatgcgtga	1200
ccaaatctca	ggaagtggcc	cgcacgtgg	gcaactctgg	cctcaacatc	tacaatctct	1260
atgccccgtg	tgctggaggg	gtgcccagec	attttaggtt	tgagaaggac	actgttgtgg	1320
tccaggattt	gggcaacatc	ttcaactcgcc	tgccactcaa	gccccatgtgg	catcaggcac	1380
tgctgcgtc	aggggataaa	gtgcgcgtgg	accccccctg	caccaacaca	acagctgttt	1440
ccacacct	caacaaccccg	tacgtgcgg	aggccctcaa	catccggag	cagctgccac	1500
aatgggacat	gtgcaacttt	ctggtaaaact	tacagtaccg	ccgttctctac	cgaagcatga	1560
actcccaga	tctgaagctg	cttagctcac	agaaataccca	gatccttatta	tataatggag	1620
atgtagacat	ggcctgcaat	ttcatggggg	atgagtggtt	tgtggattcc	ctcaaccaga	1680

-continued

agatggaggt gcagcgccgg ccctgggttag tgaagtacgg ggacagcggg gagcagattg	1740
ccggcttcgt gaaggagttc tcccacatcg ccttctcac gatcaaggc gccggccaca	1800
tggttcccac cgacaagccc ctgcgtgcct tcaccatgtt ctcccgcttc ctgaacaagc	1860
agccatactg atgaccacag caaccagctc cacggcctga tgcagccct cccagctct	1920
cccgcttagga gagtcctctt ctaagcaaag tgccctgca ggccgggttc tgccgcccagg	1980
actgccccct tccagagcc ctgtacatecc cagactggc ccagggctc ccatagacag	2040
cctggggca agtagcaact ttatcccgc agcagttctt gaatggggtg gcctggcccc	2100
ttctctgctt aaagaatgcc ctatgtatg cactgattcc atcccaggaa cccaacagag	2160
ctcaggacag cccacagggg ggtgggtggac ggactgtaat tgatagatg attatggaaat	2220
taaattgggt acagcttcaa aaaaaaaaaa aaaa	2254

<210> SEQ ID NO 2

<211> LENGTH: 498

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

Met Thr Ser Ser Pro Arg Ala Pro Pro Gly Glu Gln Gly Arg Gly Gly	
1 5 10 15	

Ala Glu Met Ile Arg Ala Ala Pro Pro Pro Leu Phe Leu Leu Leu Leu	
20 25 30	

Leu Leu Leu Leu Val Ser Trp Ala Ser Arg Gly Glu Ala Ala Pro	
35 40 45	

Asp Gln Asp Glu Ile Gln Arg Leu Pro Gly Leu Ala Lys Gln Pro Ser	
50 55 60	

Phe Arg Gln Tyr Ser Gly Tyr Leu Lys Gly Ser Gly Ser Lys His Leu	
65 70 75 80	

His Tyr Trp Phe Val Glu Ser Gln Lys Asp Pro Glu Asn Ser Pro Val	
85 90 95	

Val Leu Trp Leu Asn Gly Gly Pro Gly Cys Ser Ser Leu Asp Gly Leu	
100 105 110	

Leu Thr Glu His Gly Pro Phe Leu Val Gln Pro Asp Gly Val Thr Leu	
115 120 125	

Glu Tyr Asn Pro Tyr Ser Trp Asn Leu Ile Ala Asn Val Leu Tyr Leu	
130 135 140	

Glu Ser Pro Ala Gly Val Gly Phe Ser Tyr Ser Asp Asp Lys Phe Tyr	
145 150 155 160	

Ala Thr Asn Asp Thr Glu Val Ala Gln Ser Asn Phe Glu Ala Leu Gln	
165 170 175	

Asp Phe Phe Arg Leu Phe Pro Glu Tyr Lys Asn Asn Lys Leu Phe Leu	
180 185 190	

Thr Gly Glu Ser Tyr Ala Gly Ile Tyr Ile Pro Thr Leu Ala Val Leu	
195 200 205	

Val Met Gln Asp Pro Ser Met Asn Leu Gln Gly Leu Ala Val Gly Asn	
210 215 220	

Gly Leu Ser Ser Tyr Glu Gln Asn Asp Asn Ser Leu Val Tyr Phe Ala	
225 230 235 240	

Tyr Tyr His Gly Leu Leu Gly Asn Arg Leu Trp Ser Ser Leu Gln Thr	
245 250 255	

-continued

His	Cys	Cys	Ser	Gln	Asn	Lys	Cys	Asn	Phe	Tyr	Asp	Asn	Lys	Asp	Leu
260							265						270		
Glu	Cys	Val	Thr	Asn	Leu	Gln	Glu	Val	Ala	Arg	Ile	Val	Gly	Asn	Ser
275							280						285		
Gly	Leu	Asn	Ile	Tyr	Asn	Leu	Tyr	Ala	Pro	Cys	Ala	Gly	Gly	Val	Pro
290							295					300			
Ser	His	Phe	Arg	Tyr	Glu	Lys	Asp	Thr	Val	Val	Val	Gln	Asp	Leu	Gly
305							310					315			320
Asn	Ile	Phe	Thr	Arg	Leu	Pro	Leu	Lys	Arg	Met	Trp	His	Gln	Ala	Leu
325							330					335			
Leu	Arg	Ser	Gly	Asp	Lys	Val	Arg	Met	Asp	Pro	Pro	Cys	Thr	Asn	Thr
340							345					350			
Thr	Ala	Ala	Ser	Thr	Tyr	Leu	Asn	Asn	Pro	Tyr	Val	Arg	Lys	Ala	Leu
355							360					365			
Asn	Ile	Pro	Glu	Gln	Leu	Pro	Gln	Trp	Asp	Met	Cys	Asn	Phe	Leu	Val
370							375					380			
Asn	Leu	Gln	Tyr	Arg	Arg	Leu	Tyr	Arg	Ser	Met	Asn	Ser	Gln	Tyr	Leu
385							390					395			400
Lys	Leu	Leu	Ser	Ser	Gln	Lys	Tyr	Gln	Ile	Leu	Leu	Tyr	Asn	Gly	Asp
405							410					415			
Val	Asp	Met	Ala	Cys	Asn	Phe	Met	Gly	Asp	Glu	Trp	Phe	Val	Asp	Ser
420							425					430			
Leu	Asn	Gln	Lys	Met	Glu	Val	Gln	Arg	Arg	Pro	Trp	Leu	Val	Lys	Tyr
435							440					445			
Gly	Asp	Ser	Gly	Glu	Gln	Ile	Ala	Gly	Phe	Val	Lys	Glu	Phe	Ser	His
450							455					460			
Ile	Ala	Phe	Leu	Thr	Ile	Lys	Gly	Ala	Gly	His	Met	Val	Pro	Thr	Asp
465							470					475			480
Lys	Pro	Leu	Ala	Ala	Phe	Thr	Met	Phe	Ser	Arg	Phe	Leu	Asn	Lys	Gln
485							490					495			
Pro	Tyr														

<210> SEQ_ID NO 3
<211> LENGTH: 2088
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 3

gagctacttg	aagaccaatt	agagtccggg	aagcgcggcg	gggcctccag	accggggcgg	60
gcttaagggt	gacatctgcg	ctttaaggg	tccgggtcag	ctgactcccg	actctgtgga	120
gtcttagtgc	cagggtcgcg	gcagctgcgg	ggagagatga	ctggggagcg	acccagcacg	180
gctctcccg	acagacgctg	ggggccgcgg	attctggct	tctggggagg	ctgttagggtt	240
tgggttgg	ccgcgatctt	cctgtgtcg	tctctggcag	cctcctggc	caaggctgag	300
aacgacttcg	gtctggtgca	gcccgtgggt	accatggagc	aactgtgtg	ggtgagcggg	360
agacagatcg	gctcagtgg	cacccgtcc	atcccgctca	tcacagccac	tccgcggggc	420
actcttcgc	cctttgtga	ggcgaggaaa	atgtcctcat	ccgatgaggg	ggccaagttc	480
atcgccctgc	ggaggtccat	ggaccaggc	agcacatgg	ctcctacagc	gttcattgtc	540
aatgatgggg	atgtccccga	tgggctgaac	cttggggcag	tagtgagcga	tgttgagaca	600
ggagtagtat	ttctttctta	ctccctttgt	gctcacaagg	ccggctgc	gggtggccct	660

-continued

<210> SEQ ID NO 4

<211> LENGTH: 415

<212> TYPE: PRT

<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 4

Met	Thr	Gly	Glu	Arg	Pro	Ser	Thr	Ala	Leu	Pro	Asp	Arg	Arg	Trp	Gly
1			5					10						15	

Pro Arg Ile Leu Gly Phe Trp Gly Gly Cys Arg Val Trp Val Phe Ala
20 25 30

Ala Ile Phe Leu Leu Leu Ser Leu Ala Ala Ser Trp Ser Lys Ala Glu
35 40 45

Asn Asp Phe Gly Leu Val Gln Pro Leu Val Thr Met Glu Gln Leu Leu
50 55 60

Trp Val Ser Gly Arg Gln Ile Gly Ser Val Asp Thr Phe Arg Ile Pro
65 70 75 80

Leu Ile Thr Ala Thr Pro Arg Gly Thr Leu Leu Ala Phe Ala Glu Ala
85 90 95

Arg Lys Met Ser Ser Ser Asp Glu Gly Ala Lys Phe Ile Ala Leu Arg

-continued

100	105	110	
Arg Ser Met Asp Gln Gly Ser Thr Trp Ser Pro Thr Ala Phe Ile Val			
115	120	125	
Asn Asp Gly Asp Val Pro Asp Gly Leu Asn Leu Gly Ala Val Val Ser			
130	135	140	
Asp Val Glu Thr Gly Val Val Phe Leu Phe Tyr Ser Leu Cys Ala His			
145	150	155	160
Lys Ala Gly Cys Gln Val Ala Ser Thr Met Leu Val Trp Ser Lys Asp			
165	170	175	
Asp Gly Val Ser Trp Ser Thr Pro Arg Asn Leu Ser Leu Asp Ile Gly			
180	185	190	
Thr Glu Val Phe Ala Pro Gly Pro Gly Ser Gly Ile Gln Lys Gln Arg			
195	200	205	
Glu Pro Arg Lys Gly Arg Leu Ile Val Cys Gly His Gly Thr Leu Glu			
210	215	220	
Arg Asp Gly Val Phe Cys Leu Leu Ser Asp Asp His Gly Ala Ser Trp			
225	230	235	240
Arg Tyr Gly Ser Gly Val Ser Gly Ile Pro Tyr Gly Gln Pro Lys Gln			
245	250	255	
Glu Asn Asp Phe Asn Pro Asp Glu Cys Gln Pro Tyr Glu Leu Pro Asp			
260	265	270	
Gly Ser Val Val Ile Asn Ala Arg Asn Gln Asn Asn Tyr His Cys His			
275	280	285	
Cys Arg Ile Val Leu Arg Ser Tyr Asp Ala Cys Asp Thr Leu Arg Pro			
290	295	300	
Arg Asp Val Thr Phe Asp Pro Glu Leu Val Asp Pro Val Val Ala Ala			
305	310	315	320
Gly Ala Val Val Thr Ser Ser Gly Ile Val Phe Phe Ser Asn Pro Ala			
325	330	335	
His Pro Glu Phe Arg Val Asn Leu Thr Leu Arg Trp Ser Phe Ser Asn			
340	345	350	
Gly Thr Ser Trp Arg Lys Glu Thr Val Gln Leu Trp Pro Gly Pro Ser			
355	360	365	
Gly Tyr Ser Ser Leu Ala Thr Leu Glu Gly Ser Met Asp Gly Glu Glu			
370	375	380	
Gln Ala Pro Gln Leu Tyr Val Leu Tyr Glu Lys Gly Arg Asn His Tyr			
385	390	395	400
Thr Glu Ser Ile Ser Val Ala Lys Ile Ser Val Tyr Gly Thr Leu			
405	410	415	

<210> SEQ ID NO 5
<211> LENGTH: 3540
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 5

ggtgttgtggaa tatagagctc atgtgatccg tcacatgaca gcagatccgc ggaaggcag	60
aatgggactc caagcctgcc tccttagggct ctttgcctc atcctctctg gcaaatgcag	120
ttacagcccg gagcccgacc agcggaggac gctgccccca ggctgggtgt ccctggcccg	180
tgcggaccct gaggaagagc tgagtctcac ctttgcctg agacagcaga atgtggaaag	240
actctcggag ctggtgccagg ctgtgtcgga tcccagctct cctcaatacg gaaaataacct	300

-continued

gaccctagag aatgtggctg atctggtag gccatccccca ctgaccctcc acacgggtca	360
aaaatggctc ttggcagccg gagcccgaaa gtgcattct gtgatcacac aggacttct	420
gacttgcgg ctgagcatcc gacaagcaga gctgctgtcc cctggggctg agtttcatca	480
ctatgtggaa ggacctacgg aaacccatgt tgtaaggctc ccacatccct accagctcc	540
acagggcttg gccccccatg tggactttgt ggggggactg caccgttttc ccccaacatc	600
atccctgagg caacgtctg agccgcagggt gacagggact gtaggcgtgc atctgggggt	660
aaccccccctgt gtgatccgta agcgatacaa ctgcacatca caagacgtgg gctctggcac	720
cagcaataac agccaagcct gtgcccagtt cctggagcag tatttccatg actcagacact	780
ggctcagttc atgcgcctct tcggtggcaa cttgcacat caggcatcag tagcccggt	840
ggttggacaa caggggccgg gccggggccgg gattgaggcc agtctagatg tgcaagtacct	900
gatgagtgtc ggtgcacaca tctccacatgg ggtctacagt agccctggcc ggcatgaggg	960
acaggagccc ttcctgcagt ggctcatgtc gctcagtaat gagtcagccc tgccacatgt	1020
gcatactgtg agctatggag atgatgagga ctccctcagc agcgcctaca tccagcgggt	1080
caacactgag ctcatgaagg ctgcccgtcg gggcttcacc ctgctttcg cctcagggtga	1140
cagtggggcc ggggtttgggt ctgtctctgg aagacaccag ttccgcctta cttccctgc	1200
ctccagccccc tatgtcacca cagtgggagg cacatccttc caggaacctt tcctcatcac	1260
aaatgaaatt gttgactata tcagttgggg tggcttcagc aatgtgttcc cacggccctc	1320
ataccaggag gaagctgtaa cgaagttcct gagctctagc ccccacatgc caccatccag	1380
ttacttcaat gccagtggcc gtgcctaccc agatgtggct gcactttctg atggctactg	1440
ggtgttcagc aacagagtgc ccattccatg ggtgtccggaa acctcggcct ctactccagt	1500
gtttgggggg atccatccct tcatatcga gcacaggatc cttagtgccc gccccctct	1560
tggctttctc aaccaaggc tctaccagca gcatggggca ggacttttg atgtaacccg	1620
tggctgcatt gaggctgtc tggatgaaga ggttagaggcc cagggtttct gctctggcc	1680
tggctggat cctgtAACAG gctggggAAC acccaacttc ccagcttgc tgaagactct	1740
actcaaaaaaa tgacccttcc ctatcaggag agatggcttg tccctgcctt tgaagctggc	1800
agttcagttcc ttattctgc cctgtggaa gcccgtctga accctcaact attgactgt	1860
gcagacagct tatctcccta accctgaaat gctgtgagct tgacttgcact cccaaaccctt	1920
ccatgtccca tcatatcag gtctccctac tccgcctta gattcctcaa taagatgt	1980
taacttagcat ttttgaatg cctctccctc cgcattctcat ctttctctt tcaatcaggc	2040
ttttccaaag ggttgtatac agactctgtg cactattca cttgatattc attcccaat	2100
tcactgcaag gagacctcta ctgtcaccgt ttactcttc ctaccctgac atccagaaac	2160
atggcctcc agtgcataact tctcaatctt tgctttatgg ctttccatc atagttggcc	2220
actccctctc ctatcttagc ttccaggctt taacttctc gactactctt gtctccctct	2280
ctcatcaatt tctgtttctt catggaatgc tgaccttcat tgctccattt gtagatttt	2340
gctttctca gtttactcat tgcctccctgg aacaaatcac tgacatctac aaccattacc	2400
atctcaacttataaactt ctatccaata atgattgata cctcaaatgt aagatgcgtg	2460
atactcaaca ttcatcgcc caccctccca accccaaaca attccatctc gtttcttctt	2520
ggtaaatgt gctatgcttt ttccaaacca gccagaaacc tgcgtcatct tttcacccttca	2580

-continued

ccttcataa cacaaggccctc aatcaacaag tcctactgac tgcacatctt aaatataatct 2640
 ttatcgtcc acaaggccctt ccaattatata ttcccaagta tatctagaac ttatccactt 2700
 atatccccac tgctactacc tttagtttagg gctatattct cttgaaaaaa agtgcctta 2760
 cttcctgcctt atccccaaatc catcttccag agtaaaaatgc aaatccccatc aggccacttg 2820
 gatgaaaacc cttcaaggat tactggatag aattcaggct ttccctcca gcccccaatc 2880
 atagctcaca aacccctt gctatttgtt cttaaataaa aaatcattt tcctccccc 2940
 tccccaaacc ccaaggaact ctcactctt ctcaagctgt tccgtccctt taccaccct 3000
 gatacaactg ccaggtaat ttccagaatt ctgcagac tcaagttcaga agtcaccc 3060
 ttcgtgaat gttttgattc cctgaggcta ctttattttg gtagggctga aaaatccat 3120
 attttctaaa caaaacctgt ttgaatctt gttctgatat ggactaggag agagactggg 3180
 tcaagtaagc ttatccctt gaggctgtt ctcgtctgt taagtgtgaa tatcaatacc 3240
 tgccttcat aatcaccagg gaataaagtg gaataatgtt gataacagtg ctggcacct 3300
 ggaagttaggt ggcagatgtt aacgccttc ctcccttgc ctgcgcctt tgcctacc 3360
 tcttagcattt taacgaccac gtagtattga aatggccagt ttacttgctt gcctccctt 3420
 ccaagaccgt tggtgccctag aggactagaa tgcgtgcctt tttactttg tggccctagg 3480
 tcctagctca ggagttggca aataagaatt aaatgtctgc tacaccgaaa accaaaaaaa 3540

<210> SEQ_ID NO 6

<211> LENGTH: 563

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 6

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu Ser
 1 5 10 15

Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr Leu Pro
 20 25 30

Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu Leu Ser
 35 40 45

Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg Leu Ser Glu Leu
 50 55 60

Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln Tyr Gly Lys Tyr Leu
 65 70 75 80

Thr Leu Glu Asn Val Ala Asp Leu Val Arg Pro Ser Pro Leu Thr Leu
 85 90 95

His Thr Val Gln Lys Trp Leu Leu Ala Ala Gly Ala Gln Lys Cys His
 100 105 110

Ser Val Ile Thr Gln Asp Phe Leu Thr Cys Trp Leu Ser Ile Arg Gln
 115 120 125

Ala Glu Leu Leu Pro Gly Ala Glu Phe His His Tyr Val Gly Gly
 130 135 140

Pro Thr Glu Thr His Val Val Arg Ser Pro His Pro Tyr Gln Leu Pro
 145 150 155 160

Gln Ala Leu Ala Pro His Val Asp Phe Val Gly Gly Leu His Arg Phe
 165 170 175

Pro Pro Thr Ser Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly
 180 185 190

-continued

Thr Val Gly Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg
 195 200 205
 Tyr Asn Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser
 210 215 220
 Gln Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu
 225 230 235 240
 Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala Ser
 245 250 255
 Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly Ile Glu
 260 265 270
 Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala Asn Ile Ser
 275 280 285
 Thr Trp Val Tyr Ser Ser Pro Gly Arg His Glu Gly Gln Glu Pro Phe
 290 295 300
 Leu Gln Trp Leu Met Leu Leu Ser Asn Glu Ser Ala Leu Pro His Val
 305 310 315 320
 His Thr Val Ser Tyr Gly Asp Asp Glu Asp Ser Leu Ser Ser Ala Tyr
 325 330 335
 Ile Gln Arg Val Asn Thr Glu Leu Met Lys Ala Ala Ala Arg Gly Leu
 340 345 350
 Thr Leu Leu Phe Ala Ser Gly Asp Ser Gly Ala Gly Cys Trp Ser Val
 355 360 365
 Ser Gly Arg His Gln Phe Arg Pro Thr Phe Pro Ala Ser Ser Pro Tyr
 370 375 380
 Val Thr Thr Val Gly Gly Thr Ser Phe Gln Glu Pro Phe Leu Ile Thr
 385 390 395 400
 Asn Glu Ile Val Asp Tyr Ile Ser Gly Gly Phe Ser Asn Val Phe
 405 410 415
 Pro Arg Pro Ser Tyr Gln Glu Ala Val Thr Lys Phe Leu Ser Ser
 420 425 430
 Ser Pro His Leu Pro Pro Ser Ser Tyr Phe Asn Ala Ser Gly Arg Ala
 435 440 445
 Tyr Pro Asp Val Ala Ala Leu Ser Asp Gly Tyr Trp Val Val Ser Asn
 450 455 460
 Arg Val Pro Ile Pro Trp Val Ser Gly Thr Ser Ala Ser Thr Pro Val
 465 470 475 480
 Phe Gly Gly Ile Leu Ser Leu Ile Asn Glu His Arg Ile Leu Ser Gly
 485 490 495
 Arg Pro Pro Leu Gly Phe Leu Asn Pro Arg Leu Tyr Gln Gln His Gly
 500 505 510
 Ala Gly Leu Phe Asp Val Thr Arg Gly Cys His Glu Ser Cys Leu Asp
 515 520 525
 Glu Glu Val Glu Gly Gln Gly Phe Cys Ser Gly Pro Gly Trp Asp Pro
 530 535 540
 Val Thr Gly Trp Gly Thr Pro Asn Phe Pro Ala Leu Leu Lys Thr Leu
 545 550 555 560
 Leu Asn Pro

<210> SEQ ID NO 7
 <211> LENGTH: 3783
 <212> TYPE: DNA

-continued

<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 7

-continued

ccccaaattag ttccctgtca tcctcgtaa ccttcttgt aagtgcctgg taagcttgcc	2220
cttgcttaag aactcaaaaac atagctgtgc tctatttttt tgggtttttt gtgactgaca	2280
gagttagattt ccgtctccca ggctggagtg cagtgccgc ttctcagctc actgcaaccc	2340
gcagcctcct agattcaagc gatttcctcg ctccagcctt ccgagtagct gggatgacag	2400
gcactcacca atatgcctgg gtaatttttt tttttttttt tacatacagg atttcaccat	2460
gttggccagg ctagttcaa actcccgcc tcaggtggtc tgccctgcctc agcctccaa	2520
agtgttggaa ttacaggcgt gagccactgg gcccctgcctt tttttttttt cagccacaaa	2580
tccagcaaca agctgaggat tcagtcata aaacaggcgtt ggtgtttttt tgatctcaca	2640
taaccaagat gctacccgtt ggggaaccac atccccctgg atgccttcca gccttggttt	2700
gggctggagt cagggcctgtt atacagtattt ttgaattttt atgcccactgg tttgcattgc	2760
tggtcagaa ctctagtgtt ttgcataatcc ctggtttaga aacatgttat agcagttttt	2820
ggtatagagc aaactagaag aaccagcaat cattccactg tccgtccaaag gtacacccca	2880
gtactccccc tcccaactga agtggatgtt ggcctgtctt ttccaaagtc attcaagttt	2940
ggcttcgtt gtgactcaga atttaggaac cagatgttagt atcaaataag ctctgaaaat	3000
ctgaggaaca ttgttagaaaa gggttggtaa gcatcttta agtgcataatcc tgagcataaac	3060
agccggccgtt cgtggctcac gcctgtatcc ccagcaattt gggaggccaa ggtgggagga	3120
tgacaaggcgc aggaggtaa gaccagccgtt gccaacatgc tgaaacccctca cctctactaa	3180
aaataaaaaa attagctggg catggtgca catgcctgtt atcccaactt cttgggaggc	3240
tgaggcagga gaatcgctt aacccgggag ggggggtttt cagtgccatgc agacagtgcc	3300
agtgcactcc agcctcggtt acagcgcaag gctccgtctt aataattttt aaaaaaaaaaa	3360
aaaaaaaaaa ggccggccgc agtggctaa gcctgtatcc ccagcaattt gggaggctga	3420
ggcggggcaga tcacctgggg tcaggagttt tgagatcagg ctggcaaca cggtaaaacc	3480
ccatctctac taaaataca aaattagccaa agcatgtgg cacatgcctt taatccagc	3540
tactcgggag gctgaggtac gagaatcgctt tgaacccctggg aggcagagga tgcagtggc	3600
cgagatcacg ccattgcactt ccagcctggg ggacaagagt gaatctgtgtt ctcaccaaaa	3660
aaaaaaaaaaaaaa aaagaaagat gcttaacaaa ggtaaccata agccacaaat tcataaccac	3720
ttatccttcc agttcaagt agaatatatt cataacccatca ataaagtctt ccctgcctcc	3780
aaa	3783

<210> SEQ_ID NO 8

<211> LENGTH: 339

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 8

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn			
1	5	10	15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn		
20	25	30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr		
35	40	45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly		
50	55	60

-continued

Gly	Pro	Lys	Pro	Pro	Gln	Arg	Val	Met	Phe	Thr	Glu	Asp	Leu	Lys	Leu
65															80
Pro	Ala	Ser	Phe	Asp	Ala	Arg	Glu	Gln	Trp	Pro	Gln	Cys	Pro	Thr	Ile
															85
															90
															95
Lys	Glu	Ile	Arg	Asp	Gln	Gly	Ser	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Gly
															100
															105
															110
Ala	Val	Glu	Ala	Ile	Ser	Asp	Arg	Ile	Cys	Ile	His	Thr	Asn	Ala	His
															115
															120
															125
Val	Ser	Val	Glu	Val	Ser	Ala	Glu	Asp	Leu	Leu	Thr	Cys	Cys	Gly	Ser
															130
															135
															140
Met	Cys	Gly	Asp	Gly	Cys	Asn	Gly	Gly	Tyr	Pro	Ala	Glu	Ala	Trp	Asn
															145
															150
															155
															160
Phe	Trp	Thr	Arg	Lys	Gly	Leu	Val	Ser	Gly	Gly	Leu	Tyr	Glu	Ser	His
															165
															170
															175
Val	Gly	Cys	Arg	Pro	Tyr	Ser	Ile	Pro	Pro	Cys	Glu	His	His	Val	Asn
															180
															185
															190
Gly	Ser	Arg	Pro	Pro	Cys	Thr	Gly	Glu	Gly	Asp	Thr	Pro	Lys	Cys	Ser
															195
															200
															205
Lys	Ile	Cys	Glu	Pro	Gly	Tyr	Ser	Pro	Thr	Tyr	Lys	Gln	Asp	Lys	His
															210
															215
															220
Tyr	Gly	Tyr	Asn	Ser	Tyr	Ser	Val	Ser	Asn	Ser	Glu	Lys	Asp	Ile	Met
															225
															230
															235
															240
Ala	Glu	Ile	Tyr	Lys	Asn	Gly	Pro	Val	Glu	Gly	Ala	Phe	Ser	Val	Tyr
															245
															250
															255
Ser	Asp	Phe	Leu	Leu	Tyr	Lys	Ser	Gly	Val	Tyr	Gln	His	His	Val	Gly
															260
															265
															270
Glu	Met	Met	Gly	Gly	His	Ala	Ile	Arg	Ile	Leu	Gly	Trp	Gly	Val	Glu
															275
															280
															285
Asn	Gly	Thr	Pro	Tyr	Trp	Leu	Val	Ala	Asn	Ser	Trp	Asn	Thr	Asp	Trp
															290
															295
															300
Gly	Asp	Asn	Gly	Phe	Phe	Lys	Ile	Leu	Arg	Gly	Gln	Asp	His	Cys	Gly
															305
															310
															315
															320
Ile	Glu	Ser	Glu	Val	Val	Ala	Gly	Ile	Pro	Arg	Thr	Asp	Gln	Tyr	Trp
															325
															330
															335
Glu	Lys	Ile													

<210> SEQ ID NO 9
<211> LENGTH: 1825
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 9

```

acacatgctg catacacaca gaaacactgc aaatccactg ctccttccc tctccctac      60
ccttccttct ctcagcattt ctatccccgc ctccttcttctt taccctaaatt ttccagccga    120
tcactggagc tgacttccgc aatcccgatg gaataaatctt agcaccctgt atgggtgtgcc    180
cacactttgc tgccgaaacg aagccagaca acagatttcc atcagcagga tggggggctt      240
caagggttctg ctgcttacgtt tggtgagctt tgctctgtac cctgaggaga tactggacac    300
caactggggat ctatggaaaga agacccacag gaagcaat aacaacaagg tggatgaaat      360
ctctcggcgt ttaatttggg aaaaaaaactt gaagttatattt tccatccata accttgaggc     420
ttctcttgggt gtccatacat atgaaactggc tatgaaccac ctgggggaca tgaccagtg     480

```

-continued

agaggtggtt cagaagatga ctggactcaa agtacccctg tctcattccc gcagtaatga	540
caccctttat atcccagaat gggaaaggtag agccccagac tctgtcgact atcgaaaagaa	600
aggatatgtt actcctgtca aaaatcaggg tcagtgtgg tcctgtggg ctttagctc	660
tgtgggtgcc ctggagggcc aactcaagaa gaaaactggc aaactcttaa atctgagtc	720
ccagaaccta gtggattgtg tgtctgagaa tgatggctgt ggagggggct acatgaccaa	780
tgcccttcaa tatgtcaga agaaccgggg tattgactct gaagatgcct acccatatgt	840
gggacaggaa gagagttgta tgtacaaccc aacaggcaag gcagctaaat gcagaggta	900
cagagagatc cccgaggggaa atgagaaagc cctgaagagg gcagtgccgc gagtggacc	960
tgtctctgtg gccattgtatc caagcctgac ctccctccag ttttacagca aagggtgtta	1020
ttatgtgaa agctgcaata gcgataatct gaaccatgctg gtttggcag tggatatgg	1080
aatccagaag ggaaacaagc actggataat taaaaacagc tggggagaaa actggggaaa	1140
caaaggat atccctatgg ctcgaaataa gaacaacgc tggcatgc ccaacctggc	1200
cagctcccc aagatgtgac tccagccago caaatccatc ctgctttcc atttttcca	1260
cgatggtgca gtgttaacgat gcactttgga agggagttgg tggctatatt ttgaagcaga	1320
tgtgggtata ctgagattgt ctgttcagtt tccccatgg tttgtgttc aatgtatcc	1380
tcctactttt cttctctcca cccatgaccc ttttactgtt ggcacatcagg actttccctg	1440
acagctgtgt actcttaggc taagagatgt gactacagcc tgccctgac tgggtgtcc	1500
cagggctgtat gctgtacagg tacaggctgg agatttcac ataggttaga ttctcattca	1560
cgggactagt tagcttaag cacccttagag gactaggta atctgacttc tcacttcata	1620
agttcccttc tatatcctca aggttagaaat gtctatgttt tctactccaa ttcataaattc	1680
tattcataag tctttggta aagtttacat gataaaaaga aatgtgattt gtctccctt	1740
ctttgcactt ttgaaataaa gtatttatct cctgtctaca gtttaataaa tagcatctag	1800
tacacattca aaaaaaaaaaaaaaaa	1825

<210> SEQ ID NO 10

<211> LENGTH: 329

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 10

Met Trp Gly Leu Lys Val Leu Leu Leu Pro Val Val Ser Phe Ala Leu			
1	5	10	15

Tyr Pro Glu Glu Ile Leu Asp Thr His Trp Glu Leu Trp Lys Lys Thr		
20	25	30

His Arg Lys Gln Tyr Asn Asn Lys Val Asp Glu Ile Ser Arg Arg Leu		
35	40	45

Ile Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala		
50	55	60

Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Asn His Leu Gly Asp			
65	70	75	80

Met Thr Ser Glu Glu Val Val Gln Lys Met Thr Gly Leu Lys Val Pro		
85	90	95

Leu Ser His Ser Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu		
100	105	110

-continued

Gly Arg Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr
 115 120 125
 Pro Val Lys Asn Gln Gly Gln Cys Gly Ser Cys Trp Ala Phe Ser Ser
 130 135 140
 Val Gly Ala Leu Glu Gly Gln Leu Lys Lys Thr Gly Lys Leu Leu
 145 150 155 160
 Asn Leu Ser Pro Gln Asn Leu Val Asp Cys Val Ser Glu Asn Asp Gly
 165 170 175
 Cys Gly Gly Tyr Met Thr Asn Ala Phe Gln Tyr Val Gln Lys Asn
 180 185 190
 Arg Gly Ile Asp Ser Glu Asp Ala Tyr Pro Tyr Val Gly Gln Glu Glu
 195 200 205
 Ser Cys Met Tyr Asn Pro Thr Gly Lys Ala Ala Lys Cys Arg Gly Tyr
 210 215 220
 Arg Glu Ile Pro Glu Gly Asn Glu Lys Ala Leu Lys Arg Ala Val Ala
 225 230 235 240
 Arg Val Gly Pro Val Ser Val Ala Ile Asp Ala Ser Leu Thr Ser Phe
 245 250 255
 Gln Phe Tyr Ser Lys Gly Val Tyr Asp Glu Ser Cys Asn Ser Asp
 260 265 270
 Asn Leu Asn His Ala Val Leu Ala Val Gly Tyr Ile Gln Lys Gly
 275 280 285
 Asn Lys His Trp Ile Ile Lys Asn Ser Trp Gly Glu Asn Trp Gly Asn
 290 295 300
 Lys Gly Tyr Ile Leu Met Ala Arg Asn Lys Asn Asn Ala Cys Gly Ile
 305 310 315 320
 Ala Asn Leu Ala Ser Phe Pro Lys Met
 325

<210> SEQ ID NO 11
 <211> LENGTH: 1730
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 11

```

ggcgggtgccg gcccgaaccca gacccgaggt tttagaagca gagtcaggcg aagctggcc 60
agaaccgcga cctccgcaac cttgagcgcc atccgtggag tgcgcctgcg cagctacgac 120
cgcagcagga aagcgccgccc ggccaggccc agctgtggcc ggacagggac tggaaagagag 180
gacgcggctcg agtaggtgtc caccagccct ggcaacgaga gcgtctaccc cgaactctgc 240
tggcctttagt gttggggaaaggc cggggagggc agttgaggac cccgcggagg cgcgtactg 300
gttgagcggg caggccagcc tccgagccgg gtggacacag gttttaaaac atgaatccta 360
cactcatcct tgctgccttt tgcctggaa ttgcctcagc tactctaaca tttgtatcaca 420
gttttagaggc acagtggacc aagtggaggc cgatgcacaa cagattatac ggcataatg 480
aagaaggatg gaggagagca gtgtggaga agaacatgaa gatgattgaa ctgcacaatc 540
agaaatacag ggaaggggaaa cacagctca caatggccat gaacgcctt ggagacatga 600
ccagtgaaga attcaggcag gtgtatgaaatg gctttcaaaa ccgtaaagccc aggaagggg 660
aagtgttcca ggaacctctg ttttatgagg ccccccagatc tgtggattgg agagagaaaag 720
gtacacgtgac tcctgtgaag aatcagggtc agtgtggttc ttgtgggtt ttttagtgcta 780
  
```

-continued

ctgggtgtct	tgaaggacag	atgttccgga	aaactggag	gcttatctca	ctgagtgagc	840
agaatctggt	agactgctct	gggcctcaag	gcaatgaagg	ctgcaatgg	ggcctaattgg	900
attatgtttt	ccagtatgtt	caggataatg	gaggcctgga	ctctgaggaa	tcctatccat	960
atgaggcaac	agaagaatcc	tgtaagtaca	atcccaagta	ttctgttgct	aatgacacccg	1020
gctttgtgga	catccctaag	caggagaagg	ccctgatgaa	ggcagttgca	actgtggggc	1080
ccatttctgt	tgctattgtat	gcaggtcatg	agtccttcct	gttctataaa	gaaggcattt	1140
attttgagcc	agactgttagc	agtgaagaca	tggatcatgg	tgtgctgggt	gttggctacg	1200
gatttgaag	cacagaatca	gataacaata	aatattggct	ggtgaagaac	agctggggtg	1260
aagaatgggg	catgggtggc	tacgtaaaga	tggccaaaga	cggagaaac	cattgtggaa	1320
ttgcctcagc	agccagctac	cccactgtgt	gagctgggtgg	acggtgatga	ggaaggactt	1380
gactggggat	ggcgcgtgca	tggggagaat	tcatcttcag	tctaccagcc	cccgtgtgt	1440
cggatacaca	ctcgaatcat	tgaagatccg	agtgtgattt	gaattctgtg	atatttcac	1500
actggtaaat	gttacctcta	ttttaattac	tgctataat	aggtttat	tattgattca	1560
cttaactgact	ttgcatttcc	gttttaaaaa	ggatgtataa	attttacct	gtttaataaa	1620
aatttaattt	caaatgttagt	ggtggggctt	ctttctattt	ttgatgca	act gaattttgt	1680
gtaataaaga	acataattgg	gctctaagcc	ataaaaaaaa	aaaaaaa	aaaaaaa	1730

<210> SEQ ID NO 12

<211> LENGTH: 333

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 12

Met	Asn	Pro	Thr	Leu	Ile	Leu	Ala	Ala	Phe	Cys	Leu	Gly	Ile	Ala	Ser
1				5			10				15				

Ala	Thr	Leu	Thr	Phe	Asp	His	Ser	Leu	Glu	Ala	Gln	Trp	Thr	Lys	Trp
				20			25				30				

Lys	Ala	Met	His	Asn	Arg	Leu	Tyr	Gly	Met	Asn	Glu	Glu	Gly	Trp	Arg
				35			40				45				

Arg	Ala	Val	Trp	Glu	Lys	Asn	Met	Lys	Met	Ile	Glu	Leu	His	Asn	Gln
				50			55				60				

Glu	Tyr	Arg	Glu	Gly	Lys	His	Ser	Phe	Thr	Met	Ala	Met	Asn	Ala	Phe
65				70			75				80				

Gly	Asp	Met	Thr	Ser	Glu	Glu	Phe	Arg	Gln	Val	Met	Asn	Gly	Phe	Gln
				85			90				95				

Asn	Arg	Lys	Pro	Arg	Lys	Gly	Lys	Val	Phe	Gln	Glu	Pro	Leu	Phe	Tyr
				100			105				110				

Glu	Ala	Pro	Arg	Ser	Val	Asp	Trp	Arg	Glu	Lys	Gly	Tyr	Val	Thr	Pro
				115			120				125				

Val	Lys	Asn	Gln	Gly	Gln	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Ser	Ala	Thr
				130			135				140				

Gly	Ala	Leu	Glu	Gly	Gln	Met	Phe	Arg	Lys	Thr	Gly	Arg	Leu	Ile	Ser
145				150				155				160			

Leu	Ser	Glu	Gln	Asn	Leu	Val	Asp	Cys	Ser	Gly	Pro	Gln	Gly	Asn	Glu
				165			170				175				

Gly	Cys	Asn	Gly	Gly	Leu	Met	Asp	Tyr	Ala	Phe	Gln	Tyr	Val	Gln	Asp
				180			185				190				

-continued

Asn	Gly	Gly	Leu	Asp	Ser	Glu	Glu	Ser	Tyr	Pro	Tyr	Glu	Ala	Thr	Glu
195						200						205			

Glu	Ser	Cys	Lys	Tyr	Asn	Pro	Lys	Tyr	Ser	Val	Ala	Asn	Asp	Thr	Gly
210						215						220			

Phe	Val	Asp	Ile	Pro	Lys	Gln	Glu	Lys	Ala	Leu	Met	Lys	Ala	Val	Ala
225						230					235			240	

Thr	Val	Gly	Pro	Ile	Ser	Val	Ala	Ile	Asp	Ala	Gly	His	Glu	Ser	Phe
245						250					255				

Leu	Phe	Tyr	Lys	Glu	Gly	Ile	Tyr	Phe	Glu	Pro	Asp	Cys	Ser	Ser	Glu
260						265					270				

Asp	Met	Asp	His	Gly	Val	Leu	Val	Val	Gly	Tyr	Gly	Phe	Glu	Ser	Thr
275						280					285				

Glu	Ser	Asp	Asn	Asn	Lys	Tyr	Trp	Leu	Val	Lys	Asn	Ser	Trp	Gly	Glu
290						295					300				

Glu	Trp	Gly	Met	Gly	Gly	Tyr	Val	Lys	Met	Ala	Lys	Asp	Arg	Arg	Asn
305						310				315			320		

His	Cys	Gly	Ile	Ala	Ser	Ala	Ala	Ser	Tyr	Pro	Thr	Val			
325						330									

```

<210> SEQ ID NO 13
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

```

```
<400> SEQUENCE: 13
```

```
Asp Xaa Xaa Leu Leu
1 5
```

```

<210> SEQ ID NO 14
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3)..(5)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

```

```
<400> SEQUENCE: 14
```

```
Asp Glu Xaa Xaa Xaa Leu Leu Ile
1 5
```

```

<210> SEQ ID NO 15
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (2)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa may be an amino acid with a bulky

```

-continued

hydrophobic side chain, such as Ile, Phe, Leu, Val, and Met

<400> SEQUENCE: 15

Tyr Xaa Xaa Xaa
1

<210> SEQ ID NO 16
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 16

Ser Phe His Asp Asp Ser Asp Glu Asp Leu Leu
1 5 10

<210> SEQ ID NO 17
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 17

Glu Glu Ser Glu Glu Arg Asp Asp His Leu Leu
1 5 10

<210> SEQ ID NO 18
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 18

Gly Tyr His Asp Asp Ser Asp Glu Asp Leu Leu
1 5 10

<210> SEQ ID NO 19
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 19

Ile Thr Gly Phe Ser Asp Asp Val Pro Met Val
1 5 10

<210> SEQ ID NO 20
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 20

Ala Ser Val Ser Leu Leu Asp Asp Glu Leu Met
1 5 10

<210> SEQ ID NO 21
<211> LENGTH: 11
<212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 21

Ala Ser Ser Gly Leu Asp Asp Leu Asp Leu Leu
1 5 10

<210> SEQ ID NO 22
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 22

Val Gln Asn Pro Ser Ala Asp Arg Asn Leu Leu
1 5 10

<210> SEQ ID NO 23
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 23

Asn Ala Leu Ser Trp Leu Asp Glu Glu Leu Leu
1 5 10

<210> SEQ ID NO 24
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 24

Asp Glu Arg Ala Pro Leu Ile
1 5

<210> SEQ ID NO 25
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 25

Thr Glu Arg Glu Arg Leu Leu
1 5

<210> SEQ ID NO 26
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 26

Ser Glu Thr Glu Arg Leu Leu
1 5

<210> SEQ ID NO 27

-continued

<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 27

Thr Asp Arg Thr Pro Leu Leu
1 5

<210> SEQ ID NO 28
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 28

Glu Glu Thr Gln Pro Leu Leu
1 5

<210> SEQ ID NO 29
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 29

Asp Asp Gln Arg Asp Leu Ile
1 5

<210> SEQ ID NO 30
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 30

Asn Glu Gln Leu Pro Met Leu
1 5

<210> SEQ ID NO 31
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 31

Gly Tyr Gln Thr Ile
1 5

<210> SEQ ID NO 32
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 32

Gly Tyr Glu Gln Phe
1 5

-continued

<210> SEQ ID NO 33
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 33

Gly Tyr Gln Thr Leu
1 5

<210> SEQ ID NO 34
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 34

Gly Tyr Gln Ser Val
1 5

<210> SEQ ID NO 35
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 35

Gly Tyr Glu Val Met
1 5

<210> SEQ ID NO 36
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 36

Ala Tyr Gln Ala Leu
1 5

<210> SEQ ID NO 37
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 37

Asn Tyr His Thr Leu
1 5

<210> SEQ ID NO 38
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 38

Gly Tyr Gln Arg Ile

-continued

1 5

<210> SEQ ID NO 39
 <211> LENGTH: 5
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 39

Gly Tyr Asp Gln Leu
 1 5

<210> SEQ ID NO 40
 <211> LENGTH: 5
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 40

Gly Tyr Lys Glu Ile
 1 5

<210> SEQ ID NO 41
 <211> LENGTH: 5
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: signal peptide

<400> SEQUENCE: 41

Gly Tyr Arg His Val
 1 5

<210> SEQ ID NO 42
 <211> LENGTH: 2300
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 42

agagtgcacc cgaatccacg ggctcgagg cagcagccat ctctcgcca tagggcaggc	60
cagctggcgc cggggctat tttggcgcc gggcaatgat ggtgaccgca aggcgacatt	120
gttaaggcatt tccccctga ctccccccc cgagcctctg cccgggggtc ctagegcgc	180
tttctcagcc atcccgctta caacttagcc gtccacaaca ggatcatctg atcgcgtgc	240
cccgggctac gatctgcgag gcccggac cttgaccgg cattgaccgc caccgcccc	300
caggtccgta gggaccaaag aaggggcgagg aggaagactg tcacgtggcg ccggagttca	360
cgtgactcgat acacatgact tccagtcctt cggcgccctcc tggagagcaa ggacgcgggg	420
gagcagaggt gagctggcac cggaggctgg aggggatccc cgagccggg atcgatgatc	480
c gagccgcgc cggccgcgt gttctgtcg ctgctgtgc tgctgtgtc agtgtccctgg	540
gcgtccccag gcgaggcagc ccccgaccag gacgagatcc agcgccctcc cgggctggcc	600
aaggcagccgt cttccgcca gtactccggc tacctcaaag gtcggcgtc caagcaccc	660
cactactgtt tttggagtc ccagaaggat cccgagaaca gcccgtgtgt gctttggctc	720
aatgggggtc cggcgtgcag ctcacttagat gggctccctca cagagcatgg ccccttcctg	780
gtccagccag atgggtgcac cttggagttac aaccctatt cttggatct gattgccaat	840

-continued

gtgttatacc	tggagtcccc	agctgggtg	ggcttctcct	actccgatga	caagtttat	900
gcaactaatg	acactgaggt	cgcccagac	aattttgagg	cccttcaaga	tttctccgc	960
ctctttccgg	agtacaagaa	caacaaactt	ttcctgaccg	gggagagcta	tgctggcatc	1020
tacatecccc	ccctggccgt	gctggatcg	caggatccca	gcatgaacct	tcagggctg	1080
gctgtgggca	atggactctc	ctcctatgag	cagaatgaca	actccctggt	ctactttgcc	1140
tactaccatg	gccttctggg	gaacaggctt	tggcttctc	tccagacc	ctgctgctct	1200
caaaaacaagt	gtaaacttcta	tgacaacaaa	gacctgaaat	gcgtgacca	tcttcaggaa	1260
gtggcccgca	tcgtggccaa	ctctggcctc	aacatctaca	atctctatgc	cccggtgct	1320
ggaggggtgc	ccagccattt	taggtatgag	aaggacactg	ttgtggtcca	ggatttggc	1380
aacatcttca	ctcgccctgcc	actcaagcgg	atgtggcatc	aggcactgct	gcgctcaggg	1440
gataaaagtgc	gcatggaccc	cccctgcacc	aacacaacag	ctgcttccac	ctaccta	1500
aacccgtacg	tgcggaaggc	cctcaacatc	ccggagcgc	tgccacaatg	ggacatgtgc	1560
aactttctgg	taaacttaca	gtaccggcgt	ctctaccgaa	gcatgaactc	ccagtatctg	1620
aagctgctta	gctcacagaa	ataccagatc	ctattatata	atggagatgt	agacatggcc	1680
tgcaatttca	tggggatga	gtgggttgt	gattccctca	accagaagat	ggaggtgcag	1740
cgcggccct	ggttagtcaa	gtacggggac	agcggggagc	agattgccc	cttcgtgaag	1800
gagttctccc	acatcgcc	tctcacgatc	aaggcgcc	gccacatggt	tcccaccc	1860
aagccctcg	ctgccttcac	catgttctcc	cgcttcctga	acaaggagcc	atactgatga	1920
ccacagcaac	cagctccacg	gcctgatc	gcccctccca	gcctctcc	ctaggagat	1980
cctcttctaa	gcaaaagtgc	cctgcaggcc	gggttctgc	gccaggactg	cccccttccc	2040
agagccctgt	acatcccaga	ctgggcccag	ggtctccat	agacagcctg	ggggcaagtt	2100
agcactttat	tcccgcagca	gttccctgaat	ggggtggct	ggccccttct	ctgcttaaag	2160
aatgcctttt	atgatgcact	gattccatcc	caggaaccc	acagagctca	ggacagccca	2220
caggaggtg	gtggacggac	tgtaattgat	agattgatta	tggaaattaaa	ttgggtacag	2280
cttcaaaaaa	aaaaaaaaaa					2300

<210> SEQ ID NO 43

<211> LENGTH: 480

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 43

Met	Ile	Arg	Ala	Ala	Pro	Pro	Leu	Phe	Leu	Leu	Leu	Leu	Leu
1					5			10			15		

Leu	Leu	Leu	Val	Ser	Trp	Ala	Ser	Arg	Gly	Glu	Ala	Ala	Pro	Asp	Gln
			20			25							30		

Asp	Glu	Ile	Gln	Arg	Leu	Pro	Gly	Leu	Ala	Lys	Gln	Pro	Ser	Phe	Arg
		35				40				45					

Gln	Tyr	Ser	Gly	Tyr	Leu	Lys	Gly	Ser	Gly	Ser	Lys	His	Leu	His	Tyr
	50				55				60						

Trp	Phe	Val	Glu	Ser	Gln	Lys	Asp	Pro	Glu	Asn	Ser	Pro	Val	Val	Leu
65					70				75			80			

Trp	Leu	Asn	Gly	Gly	Pro	Gly	Cys	Ser	Ser	Leu	Asp	Gly	Leu	Leu	Thr
					85			90			95				

-continued

Glu His Gly Pro Phe Leu Val Gln Pro Asp Gly Val Thr Leu Glu Tyr
 100 105 110
 Asn Pro Tyr Ser Trp Asn Leu Ile Ala Asn Val Leu Tyr Leu Glu Ser
 115 120 125
 Pro Ala Gly Val Gly Phe Ser Tyr Ser Asp Asp Lys Phe Tyr Ala Thr
 130 135 140
 Asn Asp Thr Glu Val Ala Gln Ser Asn Phe Glu Ala Leu Gln Asp Phe
 145 150 155 160
 Phe Arg Leu Phe Pro Glu Tyr Lys Asn Asn Lys Leu Phe Leu Thr Gly
 165 170 175
 Glu Ser Tyr Ala Gly Ile Tyr Ile Pro Thr Leu Ala Val Leu Val Met
 180 185 190
 Gln Asp Pro Ser Met Asn Leu Gln Gly Leu Ala Val Gly Asn Gly Leu
 195 200 205
 Ser Ser Tyr Glu Gln Asn Asp Asn Ser Leu Val Tyr Phe Ala Tyr Tyr
 210 215 220
 His Gly Leu Leu Gly Asn Arg Leu Trp Ser Ser Leu Gln Thr His Cys
 225 230 235 240
 Cys Ser Gln Asn Lys Cys Asn Phe Tyr Asp Asn Lys Asp Leu Glu Cys
 245 250 255
 Val Thr Asn Leu Gln Glu Val Ala Arg Ile Val Gly Asn Ser Gly Leu
 260 265 270
 Asn Ile Tyr Asn Leu Tyr Ala Pro Cys Ala Gly Gly Val Pro Ser His
 275 280 285
 Phe Arg Tyr Glu Lys Asp Thr Val Val Val Gln Asp Leu Gly Asn Ile
 290 295 300
 Phe Thr Arg Leu Pro Leu Lys Arg Met Trp His Gln Ala Leu Leu Arg
 305 310 315 320
 Ser Gly Asp Lys Val Arg Met Asp Pro Pro Cys Thr Asn Thr Thr Ala
 325 330 335
 Ala Ser Thr Tyr Leu Asn Asn Pro Tyr Val Arg Lys Ala Leu Asn Ile
 340 345 350
 Pro Glu Gln Leu Pro Gln Trp Asp Met Cys Asn Phe Leu Val Asn Leu
 355 360 365
 Gln Tyr Arg Arg Leu Tyr Arg Ser Met Asn Ser Gln Tyr Leu Lys Leu
 370 375 380
 Leu Ser Ser Gln Lys Tyr Gln Ile Leu Leu Tyr Asn Gly Asp Val Asp
 385 390 395 400
 Met Ala Cys Asn Phe Met Gly Asp Glu Trp Phe Val Asp Ser Leu Asn
 405 410 415
 Gln Lys Met Glu Val Gln Arg Arg Pro Trp Leu Val Lys Tyr Gly Asp
 420 425 430
 Ser Gly Glu Gln Ile Ala Gly Phe Val Lys Glu Phe Ser His Ile Ala
 435 440 445
 Phe Leu Thr Ile Lys Gly Ala Gly His Met Val Pro Thr Asp Lys Pro
 450 455 460
 Leu Ala Ala Phe Thr Met Phe Ser Arg Phe Leu Asn Lys Gln Pro Tyr
 465 470 475 480

-continued

```

<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 44

agagtgcacc cgaatccacg ggctcgagg cagcagccat ctctggcca tagggcaggc      60
cagctggcgc cgggggctat tttggggcgc gggcaatgat ggtgaccgca aggccacatt      120
gtaaggcatt tccccctga ctccccccc cggccctctg cccgggggtc ctggcgcgc      180
tttctcagcc atcccccta caacttagcc gtccacaaca ggatcatctg atcgctgtcg      240
cccggttac gatctgcgag gcccgcggac cttgaccgg cattgaccgc caccgcggcc      300
cagggtccgtg gggaccaaag aaggggcggg aggaagactg tcacgtggcg ccggagttca      360
cgtgactcgt acacatgact tccagttccc gggcgctcc tggagagcaa ggacgcgggg      420
gagcagagat gatccgagcc gcccgcggc cgctgttccct gctgctgctg ctgctgctgc      480
tgcctagtgcc ctgggggtcc cgaggcgagg cagcccccgaa ccaggacgag atccagcgcc      540
tccccgggtt ggcacaaagcag ccgtctttcc gccagttactc cggctacccctc aaaggctccg      600
gttccaaagca cctccactac tggtttgtgg agtcccagaa ggatcccggag aacagccctg      660
tgggtgtttt gctcaatggg ggtccggct gcaagtcact agatgggctc ctcacagagc      720
atggccctt cctgattgcc aatgtgttat acctggagtc cccagctggg gtgggtttct      780
cctactccgaa tgacaagttt tatcaacta atgacactga ggtcgcccgag agcaattttg      840
aggcccttca agatttcttc cgccttttc cggagttacaa gaacaacaaa cttttctga      900
ccggggagag ctatgtggc atctacatcc ccaccctggc cgtgctggc atgcaggatc      960
ccagcatgaa ctttcagggg ctggctgtgg gcaatggact ctccctctat gagcagaatg      1020
acaactccctt ggtctacttt gcctactacc atggccttct ggggaacagg ctttggtctt      1080
ctctccagac ccactgtgc tctcaaaaca agtgttaactt ctatgacaaac aaagacctgg      1140
aatgcgtgac caatcttca gaaatggccc gcatcgtggg caactctggc ctcaacatct      1200
acaatctcta tgccccgtgt gctggggggg tgcccaagccca ttttaggtat gagaaggaca      1260
ctgttgtgtt ccaggatttg ggcaacatct tcaactgcctt gcaactcaag cggatgtggc      1320
atcaggcaact gctgcgtca ggggataaaag tgcgcatggaa ccccccctgc accaaacacaa      1380
cagctgttcc caccctaccc aacaacccgt acgtgcggaa ggcctcaac atccggagc      1440
agctgccaca atgggacatg tgcaactttc tggtaaactt acagttccgc cgtctctacc      1500
gaagcatgaa ctcccagttt ctgaagctgc ttagctcaca gaaataccag atcctattat      1560
ataatggaga ttagacatg gcctgcaatt tcatggggaa tgagttttt gtggattttcc      1620
tcaaccagaa gatggaggtg cagcgcggc cctggtagt gaaatgggg gacagcgggg      1680
agcagattgc cggcttcgtg aaggagttctt cccacatcgcc ctttctcacc atcaaggcg      1740
ccggccacat gttccacc gacaagcccc tcgctgcctt caccatgttc tcccgctcc      1800
tgaacaacgca gccatactga tgaccacagc aaccagtc acggcctgtat gcaagccctc      1860
ccagcctctc cccgttaggag agtccctttc taagcaaaatg gcccctgcag gcccgggttct      1920
gccgcacca gttccacc cccagagccc tggatccc agactggggc cagggtctcc      1980
catagacagc ctgggggcaaa gtttagactt tattcccgca gcaatgggttctt aatgggggtgg      2040
ctggccctt tctctgttta aagaatgccc tttatgtgc actgattcca tcccaggaaac      2100
ccaacacagac tcaggacagc ccacaggag gttggggacg gactgttaatt gatagatgtg      2160

```

-continued

ttatggatt aaattgggta cagttcaaa aaaaaaaaaa aaaaaaaaa
 2208
 <210> SEQ ID NO 45
 <211> LENGTH: 481
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 45

 Met Thr Ser Ser Pro Arg Ala Pro Pro Gly Glu Gln Gly Arg Gly Gly
 1 5 10 15

 Ala Glu Met Ile Arg Ala Ala Pro Pro Pro Leu Phe Leu Leu Leu Leu
 20 25 30

 Leu Leu Leu Leu Val Ser Trp Ala Ser Arg Gly Glu Ala Ala Pro
 35 40 45

 Asp Gln Asp Glu Ile Gln Arg Leu Pro Gly Leu Ala Lys Gln Pro Ser
 50 55 60

 Phe Arg Gln Tyr Ser Gly Tyr Leu Lys Gly Ser Gly Ser Lys His Leu
 65 70 75 80

 His Tyr Trp Phe Val Glu Ser Gln Lys Asp Pro Glu Asn Ser Pro Val
 85 90 95

 Val Leu Trp Leu Asn Gly Gly Pro Gly Cys Ser Ser Leu Asp Gly Leu
 100 105 110

 Leu Thr Glu His Gly Pro Phe Leu Ile Ala Asn Val Leu Tyr Leu Glu
 115 120 125

 Ser Pro Ala Gly Val Gly Phe Ser Tyr Ser Asp Asp Lys Phe Tyr Ala
 130 135 140

 Thr Asn Asp Thr Glu Val Ala Gln Ser Asn Phe Glu Ala Leu Gln Asp
 145 150 155 160

 Phe Phe Arg Leu Phe Pro Glu Tyr Lys Asn Asn Lys Leu Phe Leu Thr
 165 170 175

 Gly Glu Ser Tyr Ala Gly Ile Tyr Ile Pro Thr Leu Ala Val Leu Val
 180 185 190

 Met Gln Asp Pro Ser Met Asn Leu Gln Gly Leu Ala Val Gly Asn Gly
 195 200 205

 Leu Ser Ser Tyr Glu Gln Asn Asp Asn Ser Leu Val Tyr Phe Ala Tyr
 210 215 220

 Tyr His Gly Leu Leu Gly Asn Arg Leu Trp Ser Ser Leu Gln Thr His
 225 230 235 240

 Cys Cys Ser Gln Asn Lys Cys Asn Phe Tyr Asp Asn Lys Asp Leu Glu
 245 250 255

 Cys Val Thr Asn Leu Gln Glu Val Ala Arg Ile Val Gly Asn Ser Gly
 260 265 270

 Leu Asn Ile Tyr Asn Leu Tyr Ala Pro Cys Ala Gly Gly Val Pro Ser
 275 280 285

 His Phe Arg Tyr Glu Lys Asp Thr Val Val Val Gln Asp Leu Gly Asn
 290 295 300

 Ile Phe Thr Arg Leu Pro Leu Lys Arg Met Trp His Gln Ala Leu Leu
 305 310 315 320

 Arg Ser Gly Asp Lys Val Arg Met Asp Pro Pro Cys Thr Asn Thr Thr
 325 330 335

 Ala Ala Ser Thr Tyr Leu Asn Asn Pro Tyr Val Arg Lys Ala Leu Asn
 340 345 350

-continued

Ile Pro Glu Gln Leu Pro Gln Trp Asp Met Cys Asn Phe Leu Val Asn
 355 360 365

Leu Gln Tyr Arg Arg Leu Tyr Arg Ser Met Asn Ser Gln Tyr Leu Lys
 370 375 380

Leu Leu Ser Ser Gln Lys Tyr Gln Ile Leu Leu Tyr Asn Gly Asp Val
 385 390 395 400

Asp Met Ala Cys Asn Phe Met Gly Asp Glu Trp Phe Val Asp Ser Leu
 405 410 415

Asn Gln Lys Met Glu Val Gln Arg Arg Pro Trp Leu Val Lys Tyr Gly
 420 425 430

Asp Ser Gly Glu Gln Ile Ala Gly Phe Val Lys Glu Phe Ser His Ile
 435 440 445

Ala Phe Leu Thr Ile Lys Gly Ala Gly His Met Val Pro Thr Asp Lys
 450 455 460

Pro Leu Ala Ala Phe Thr Met Phe Ser Arg Phe Leu Asn Lys Gln Pro
 465 470 475 480

Tyr

<210> SEQ ID NO 46

<211> LENGTH: 3945

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 46

ggggcgccgc	cgggagggtt	cttagggccg	gggctggccc	aggctacggc	ggctgcaggg	60
ctccggcaac	cgctccggca	acgccaaccc	ctccgctcg	cgcaggctgg	gctgcaggct	120
ctcggctgca	gctctggct	ggtgtgcagt	ggtgtcgacca	cggtcacgg	cagcctcagc	180
cacccagatg	taagcgatct	ggttccacc	tcagcctccc	gagtagtg	ttcaggccta	240
tggagagcag	cttgcgtgg	ctggcctgc	agtacctgg	ttgcata	gattggcagg	300
tggatctagg	atccggcttc	caacatgtgg	cagctctgg	cctccctctg	ctgcctgctg	360
gtgttggcca	atgccccgg	caggccctct	ttccatcccc	tgtcgatga	gctggtaac	420
tatgtcaaca	aacgaaatac	cacgtggcag	gccgggacaa	acttctacaa	cgtggacatg	480
agctacttga	agaggctatg	tggtaccttc	ctgggtggc	ccaagccacc	ccagagagtt	540
atgtttaccg	aggacctgaa	gctgcctgca	agttcgtatg	cacggaaaca	atggccacag	600
tgtccacca	tcaaagagat	cagagaccag	ggtcctgtg	gttcctgtg	ggccttcgg	660
gtgttggaa	ccatctctg	ccggatctgc	atccacacca	atgcgcacgt	cagcgtggag	720
gtgtcgccgg	aggacctgt	cacatgtgt	ggcagcatgt	gtggggacgg	ctgtatgg	780
ggctatctgt	gtgaagcttg	gaacttctgg	acaagaaaag	gctggtttc	tggtggcctc	840
tatgaatccc	atgttaggtt	cagaccgtac	tccatccctc	cctgtgagca	ccacgtcaac	900
ggctccggc	ccccatgcac	gggggaggga	gataccccca	agtgtagcaa	gatctgtgag	960
cctggctaca	ccccgaccta	caaacaggac	aagcactacg	gatacaattc	ctacagcgtc	1020
tccaatagcg	agaaggacat	catggccgag	atctacaaaa	acggccccgt	ggagggagct	1080
ttctctgtgt	attcgactt	cctgtctac	aagtccggag	tgtaccaaca	cgtcaccgga	1140
gagatgatgg	gtggccatgc	catccgcata	ctgggtctgg	gagtgagaa	tggcacaccc	1200
tactggctgg	ttgccaactc	ctgaaacact	gactgggtt	acaatggctt	ctttaaaaata	1260

-continued

ctcagaggac	aggatcaactg	tggaatcgaa	tcagaagtgg	tggctggaat	tccacgcacc	1320
gatcagtaact	gggaaaagat	ctaatctgcc	gtgggcctgt	cgtgccagtc	ctggggcga	1380
gatcggggta	gaaatgcatt	ttattctta	agttcacgtta	agatacaagt	ttcagacagg	1440
gtctgaagga	ctggattggc	caaacatcg	acctgttcc	caaggagacc	aagtctggc	1500
tacatcccag	cctgtggta	cagtgcagac	aggccatgtg	agccaccgct	gccagcacag	1560
agcgcttc	ccccctgtaga	ctagtgccgt	agggagttacc	tgctgcccc	gctgactgtg	1620
gccccctccg	tgatccatcc	atctccagg	agcaagacag	agacgcagg	atggaaagcg	1680
gagttctaa	caggatgaaa	gttccccat	cagttcccc	agtacatcca	agcaagttagc	1740
tttccacatt	tgtcacagaa	atcagaggag	agacgggtgt	gggagccctt	tggagaacgc	1800
cagtctccca	ggccccctgc	atctatcgag	tttgcataatgt	cacaacctct	ctgatcttgt	1860
gctcagcatg	attcttaat	agaagttta	tttttctgtg	cactctgcata	atcatgtggg	1920
tgagccagtg	gaacagcggg	agacctgtgc	tagtttaca	gattgcctcc	ttatgacgc	1980
gctcaaaagg	aaaccaagt	gtcaggagtt	gttctgacc	cactgatctc	tactaccaca	2040
aggaaaatag	tttaggagaa	accagcttt	actgttttg	aaaaattaca	gcttcaccc	2100
gtcaagttaa	caaggaatgc	ctgtgccaat	aaaagtttc	tccaacttga	agtctactct	2160
gatggatct	cagatcctt	gtcaactgcct	atagacttg	agctgctgtc	tctctttgtc	2220
cctgcagaga	atcacgtcct	ggaactgcat	gttcttgca	ctcttggac	ttcatctta	2280
cttctcgctg	ccccagccat	gtttcaacc	atggcatccc	tccccaatt	agttccctgt	2340
catcctcgtc	aacctctct	gtaaagtgcct	ggtaagctt	cccttgcata	agaactcaa	2400
acatagctgt	gtctatttt	tttggttgtt	ttgtgactga	cagagtgaga	ttccgtctcc	2460
caggctggag	tgcagtggcg	ccttcage	tcactgcaac	ctgcagcc	ctagattcaa	2520
gcgattctcc	tgcttcagcc	ttccgagtag	ctggatgac	aggcactcac	caatatgcct	2580
gggtaatttt	tgtatttta	agtacataca	ggatttcacc	atgtggcca	ggctagttc	2640
aaactcccg	cctcaggtgg	tctgcctgc	tcagcctccc	aaagtgttg	gattacaggc	2700
gtgagccact	gggcctgcc	tgtattttt	atcagccaca	aatccagcaa	caagctgagg	2760
attcagctca	taaaacaggc	ttgggtgttt	ggtgatctca	cataaccaag	atgctacccc	2820
gtggggaaacc	acatccccct	ggatgcctc	cagccttgg	ttgggtgg	gtcaggcc	2880
gtatacagta	ttttgaattt	gtatgccact	ggtttgcatt	gtgggtcagg	aactctagtg	2940
cttgcata	ccctggttta	gaaacatgtt	atagcagttc	ttggtataga	gcaaactaga	3000
agaaccagca	atcattccac	tgtctgc	aggtacac	cagtactccc	cttcccaact	3060
gaagtggat	gaggctagct	cttccaaaa	gcattcaagt	ttggcttgc	atgtgactca	3120
gaatttagga	accagatgt	agatcaaata	agctctgaaa	atctgaggaa	cattgttagga	3180
aaggtttgg	aagcatctct	taagtgc	gatgagcata	acagccggcc	gtcgtggctc	3240
acgcctgtaa	tcccagcact	ttgggaggcc	aagggtggag	gatgacaagg	tcaggagttc	3300
aagaccagcc	tggcaacat	gctgaaac	cacctctact	aaaaatacaa	aaattagctg	3360
ggcatggtg	cacatgcctg	taatccc	tacttggag	gtgaggcag	gagaatcgct	3420
tgaaccgggg	aggcggaggt	tgcagtgagc	caagacagt	ccagtgact	ccagcctcg	3480
tgacagcgca	aggctccg	tcaataatta	aaaaaaaaaa	aaaaaaaaaa	aaggccggc	3540

-continued

gcagtggctc aagcctgtaa tcccagcact ttgggaggct gaggcgggca gatcacctga	3600
ggtcaggagt tttgagatca gccttggcaa cacggtaaa ccccatctct actaaaaata	3660
caaaattagc caagcatgct ggcacatgcc tgtaatccca gctactcggg aggctgaggt	3720
acgagaatcg cttgaacctg ggaggcagag gatgcagtga gccgagatca cggcattgca	3780
ctccagcctg ggggacaaga gtgaatctgt gtctcaccaa aaaaaaaaag aaaaagaaaag	3840
atgcttaaca aaggttacca taagccacaa attcataacc acttattcctt ccagttcaa	3900
gtagaatata ttcataacct caataaagtt ctccctgctc ccaaa	3945

<210> SEQ_ID NO 47

<211> LENGTH: 339

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 47

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn			
1	5	10	15
10	15		

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn			
20	25	30	
30			

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr			
35	40	45	
45			

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly			
50	55	60	
60			

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu			
65	70	75	80
75	80		

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile			
85	90	95	
95			

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly			
100	105	110	
110			

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His			
115	120	125	
125			

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser			
130	135	140	
140			

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn			
145	150	155	160
155	160		

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His			
165	170	175	
175			

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn			
180	185	190	
190			

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser			
195	200	205	
205			

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His			
210	215	220	
220			

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met			
225	230	235	240
235	240		

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr			
245	250	255	
255			

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly			
260	265	270	
270			

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu			
275	280	285	
285			

-continued

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Gln Asp His Cys Gly
305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Gln Tyr Trp
325 330 335

Glu Lys Ile

<210> SEQ ID NO 48

<211> LENGTH: 3902

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 48

ggggcggggc	cgggagggt	cttagggccg	ggctggccc	aggctacggc	ggctgcaggg	60
ctccggcaac	cgctccggca	acgccaacccg	ctccgctgcg	cgcaggctgg	gctgcaggct	120
ctcggtgc	gcgctgggt	tcttcaggcc	tatggagagc	agcttgctgt	ggctgggcct	180
gcagtaacct	gtttgcata	atgattggca	ggtgggcagc	acggggaaagg	acctgtgagt	240
ggccaaacct	gttcagggt	atctaggatc	cggttccaa	catgtggcag	ctctgggcct	300
ccctctgt	cctgtggt	ttggccaatg	cccgagcag	gcccctttc	catcccctgt	360
cgatgagct	ggtcaactat	gtcaacaaac	gaaataccac	gtggcaggcc	ggccacaact	420
tctacaacgt	ggacatgagc	tacttgaaga	ggctatgtgg	taccttctg	ggtgggccta	480
agccacccca	gagagtatg	tttaccgagg	acctgaagct	gcctgcaagc	ttcgatgcac	540
ggaaacaatg	gccacagtgt	cccaccatca	aagagatcag	agaccaggc	tcctgtggct	600
cctgctggc	cttcgggct	gttgaagcca	tctctgaccg	gatctgcata	cacaccaatg	660
cgcacgtcag	cgtggaggt	tccggagg	acctgctcac	atgctgtggc	agcatgtgt	720
ggacggct	taatggtggc	tatctgtct	aagcttggaa	cttctggaca	agaaaaggcc	780
tggtttctgg	tggctctat	gaatcccatt	tagggtgcag	accgtactcc	atccctccct	840
gtgagcacca	cgtcaacggc	tccggcccc	catgcaegg	ggagggagat	accccaagt	900
gtagcaagat	ctgtgagcct	ggctacagec	cgacactacaa	acaggacaag	cactacggat	960
acaattccta	cagcgtctcc	aatagcgaga	aggacatcat	ggccgagatc	tacaaaaacg	1020
ccccctgga	gggagcttcc	tctgtgtatt	cgacttccct	gctctacaag	tcaggagtg	1080
accaacacgt	cacccggagag	atgatgggt	gccatgccc	ccgcatactg	ggctggggag	1140
tggagaatgg	cacccctac	tggctgggt	ccaactctg	gaacactgac	tgggtgaca	1200
atggcttctt	taaaaactc	agaggacagg	atcaactgtgg	aatcgaatca	gaagtgggt	1260
cttggaaattcc	acgcaccgat	cagtactggg	aaaagatcta	atctgcccgt	ggcctgtcgt	1320
gccagtcctg	ggggcgagat	cggggtagaa	atgcatttta	ttctttaagt	tcacgtaaga	1380
tacaagtttc	agacagggtc	tgaaggactg	gattggccaa	acatcagacc	tgtctccaa	1440
ggagaccaag	tcctggctac	atcccagct	gtggttacag	tgcagacagg	ccatgtgagc	1500
caccgctgcc	agcacagagc	gtccttcccc	ctgttagact	gtgccgtagg	gagtacctgc	1560
tgcctccagct	gactgtggcc	ccctccgt	tccatccatc	tccaggggagc	aagacagaga	1620
cgcaggaatg	gaaagcgag	ttcctaacag	gatgaaagt	ccccatcag	ttccccact	1680

-continued

-continued

```

<210> SEQ ID NO 49
<211> LENGTH: 339
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 49

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn
20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr
35 40 45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly
50 55 60

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu
65 70 75 80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile
85 90 95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly
100 105 110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His
115 120 125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser
130 135 140

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn
145 150 155 160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His
165 170 175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn
180 185 190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
195 200 205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His
210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly
260 265 270

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu
275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Gln Asp His Cys Gly
305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Gln Tyr Trp
325 330 335

Glu Lys Ile

```

<210> SEQ ID NO 50
<211> LENGTH: 3871

-continued

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 50

ggggcggggc	cgggagggt	a	cttagggcg	gggctggcc	aggctacggc	ggctgcagg	60
ctccggcaac	cgctccggca	acgcaacccg	ctccgctgcg	cgcaggctgg	gctgcaggct	120	
ctcggtgc	g	cgctgggt	gtgtgcagt	gtgtgcacca	cggtcacgg	cagcctcagc	180
cacccagat	taagegatct	gttcccacc	tcagcctccc	gagtagtgga	tctaggatcc	240	
ggcttccaac	atgtggcagc	tctgggcctc	cctctgtgc	ctgctgggt	tggccaatgc	300	
ccggagcagg	ccctttcc	atccccgtc	ggatgagctg	gtcaactatg	tcaacaaacg	360	
gaataccacg	tggcaggccg	ggcacaactt	ctacaacgtg	gacatgagct	acttgaagag	420	
gctatgttgt	accttctgg	gtggggccaa	gccaccccg	agagttatgt	ttaccgagga	480	
cctgaagct	cctgcaagct	tcgatgcacg	ggaacaatgg	ccacagtgtc	ccaccatcaa	540	
agagatcaga	gaccagggt	cctgtggctc	ctgctgggt	tccggggctg	tggaaagccat	600	
ctctgaccgg	atctgcatcc	acaccaatgc	gcacgtcagc	gtggaggtgt	cggcggagga	660	
cctgctaca	tgctgtggca	gcatgtgtgg	ggacggctgt	aatggtggt	atcctgctga	720	
agcttggaa	ctctggacaa	gaaaaggcct	ggtttctgtt	ggcctctatg	aatccatgt	780	
agggtgcaga	ccgtactcca	tccctccctg	tgagcaccac	gtcaacggct	cccgcccccc	840	
atgcacgggg	gagggagata	cccccaagtg	tagcaagatc	tgtgagcctg	gctacagccc	900	
gacctacaaa	caggacaagc	actacggata	caattcctac	agcgtctcca	atagcgagaa	960	
ggacatcatg	gccgagatct	acaaaaacgg	ccccgtggag	ggagcttct	ctgtgtattc	1020	
ggacttcctg	ctctacaagt	caggagtgt	ccaacacgtc	accggagaga	tgtgggtgg	1080	
ccatgccatc	cgcatcctgg	gctggggagt	ggagaatggc	acaccctact	ggctgggtgc	1140	
caactcctgg	aacactgact	ggggtgacaa	tggtttctt	aaaatactca	gaggacagga	1200	
tcaactgtgg	atcgaatcag	aagtgggtgc	tggattcca	cgcaccgatc	agtactggga	1260	
aaagatctaa	tctgcgtgg	gcctgtcg	ccagtcctgg	gggcgagatc	ggggtagaaaa	1320	
tgcattttat	tctttaagtt	cacgtaaat	acaagttca	gacagggtct	gaaggactgg	1380	
attggccaaa	catcagaccc	gtcttccaag	gagaccaagt	cctggctaca	tcccagcctg	1440	
tggttacagt	gcagacaggc	catgtgagcc	accgtctcca	gcacagagcg	tccccc	1500	
tgttagactg	tgccgttaggg	agtacctgt	gccccagctg	actgtggccc	cctccgtgt	1560	
ccatccatct	ccagggagca	agacagagac	gcaggaatgg	aaagcggagt	tccataacagg	1620	
atgaaagtcc	ccccatcagt	tccccagta	cctccaagca	agtagcttc	cacatttgc	1680	
acagaaaatca	gaggagagac	ggtgtggga	gccccttgg	gaacgcagg	ctcccaggcc	1740	
ccctgcac	atcgagttt	caatgtcaca	acctctctg	tcttgcgtc	agcatgattc	1800	
tttaatagaa	gttttattt	ttcgtgcact	ctgctaata	tgtgggtgag	ccagtggaa	1860	
agcgggagac	ctgtgttagt	tttacagatt	gcctcctt	gacgcggctc	aaaaggaaac	1920	
caagtggtca	ggagttgttt	ctgacccact	gatctctact	accacaagga	aaatagttt	1980	
ggagaaaacca	gttttactg	ttttgtaaaa	attacagott	caccctgtca	agttacaag	2040	
gaatgcctgt	gccaataaaa	gttttctcca	acttgaagtc	tactctgtat	ggatctcaga	2100	
tcctttgtca	ctgcctatag	actttagct	gtgtctctc	tttgcctctg	cagagaatca	2160	

-continued

cgtcctggaa	ctgcgttgc	ttgctgactt	tggacttca	tcttaacttc	tcgctgcccc	2220
agccatgttt	tcaaccatgg	cattccccc	ccaatttagt	ccctgtcatc	ctcgtaacc	2280
ttctctgtaa	gtgcctggta	agcttgcct	tgcttaagaa	ctcaaaacat	agctgtgtc	2340
tatTTTTT	ttgttgtt	gtactgacaga	gtgagattcc	gtctcccagg	ctggagtgc	2400
gtggcgcc	ctcagctcac	tgcaacactc	agectcttag	attcaagcga	ttctctgtct	2460
tcagcctcc	gagtagctgg	gatgacaggc	actcaccaat	atgcctgggt	aattttgtta	2520
tTTTTAAGTA	catacaggat	ttcaccatgt	tggccaggct	agtttcaaac	tccggcctc	2580
aggtggctc	cctgcctcag	cctcccaaag	tgttggatt	acaggcgtga	gccactggc	2640
cctgcctgta	tTTTTATCA	gccacaaatc	cagcaacaag	ctgaggatc	agtcataaa	2700
acaggcttgg	tgtcttgg	atctcacata	accaagatgc	taccccttgg	ggaaccacat	2760
ccccctggat	gccctccagc	cttgggttgg	gctggagtca	gggcctgtat	acagtttttt	2820
gaattttgtat	gccactgggt	tgcattgtct	gtcaggaact	ctagtgttt	gcatagccct	2880
gttttagaaa	catgttata	cagttcttgg	tatagagcaa	actagaagaa	ccagcaatca	2940
ttccactgtc	ctgccaagg	acacccatgt	actccccc	ccaactgaag	ttgttatgagg	3000
ctagctctt	ccaaagcat	tcaagtttgg	cttctgtatgt	gactcagaat	ttaggaacca	3060
gtatgtat	caaataagct	ctgaaaatct	gaggaacatt	gtatggaaagg	tttggtaagc	3120
atctcttaag	tgcattgtat	agcataacag	ccggccgtcg	tggctcacgc	ctgtatccc	3180
agcactttgg	gaggccaagg	tgggaggatg	acaaggcag	gagttcaaga	ccagccttgc	3240
caacatgtct	aaacccatcc	tctactaaaa	atacaaaaat	tagctggca	tggggcaca	3300
tgcctgtat	cccagactact	tgggaggctg	aggcaggaga	atcgcttga	cccgggaggc	3360
ggagggttgc	gtgagccaag	acagtgcag	tgcactccag	cctcggtgac	agcgcacagg	3420
tccgtctcaa	taattaaaaa	aaaaaaaaaa	aaaaaaaagg	ccggggcgcag	tggctcaagc	3480
ctgtatccc	agcactttgg	gaggctgagg	ccggcagatc	acctgagg	tcaggatttt	3540
agatcagcct	tggcaacacg	gtgaaacccc	atctctacta	aaaataaaaa	attagccaag	3600
catgtggca	catgcctgt	atcccaagta	ctcgggaggc	tgaggtacga	gaatcgctt	3660
aacctgggag	gcagaggatg	cagttagccg	agatcacg	attgcactcc	agcctgggg	3720
acaagagtga	atctgtgtct	caccaaaaaa	aaaaagaaaa	agaaagatgc	ttaacaagg	3780
ttaccataag	ccacaaattc	ataaccactt	atccttccag	tttcaagtag	aatatattca	3840
taacctcaat	aaagttctcc	ctgctccaa	a			3871

<210> SEQ ID NO 51
 <211> LENGTH: 339
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 51

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
 1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn
 20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr
 35 40 45

-continued

Asn	Val	Asp	Met	Ser	Tyr	Leu	Lys	Arg	Leu	Cys	Gly	Thr	Phe	Leu	Gly
50						55			60						
Gly	Pro	Lys	Pro	Pro	Gln	Arg	Val	Met	Phe	Thr	Glu	Asp	Leu	Lys	Leu
65					70			75						80	
Pro	Ala	Ser	Phe	Asp	Ala	Arg	Glu	Gln	Trp	Pro	Gln	Cys	Pro	Thr	Ile
	85					90				95					
Lys	Glu	Ile	Arg	Asp	Gln	Gly	Ser	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Gly
	100					105				110					
Ala	Val	Glu	Ala	Ile	Ser	Asp	Arg	Ile	Cys	Ile	His	Thr	Asn	Ala	His
	115					120			125						
Val	Ser	Val	Glu	Val	Ser	Ala	Glu	Asp	Leu	Leu	Thr	Cys	Cys	Gly	Ser
	130					135			140						
Met	Cys	Gly	Asp	Gly	Cys	Asn	Gly	Gly	Tyr	Pro	Ala	Glu	Ala	Trp	Asn
145					150			155			160				
Phe	Trp	Thr	Arg	Lys	Gly	Leu	Val	Ser	Gly	Gly	Leu	Tyr	Glu	Ser	His
	165					170			175						
Val	Gly	Cys	Arg	Pro	Tyr	Ser	Ile	Pro	Pro	Cys	Glu	His	His	Val	Asn
	180					185			190						
Gly	Ser	Arg	Pro	Pro	Cys	Thr	Gly	Glu	Gly	Asp	Thr	Pro	Lys	Cys	Ser
	195					200			205						
Lys	Ile	Cys	Glu	Pro	Gly	Tyr	Ser	Pro	Thr	Tyr	Lys	Gln	Asp	Lys	His
	210					215			220						
Tyr	Gly	Tyr	Asn	Ser	Tyr	Ser	Val	Ser	Asn	Ser	Glu	Lys	Asp	Ile	Met
225						230			235			240			
Ala	Glu	Ile	Tyr	Lys	Asn	Gly	Pro	Val	Glu	Gly	Ala	Phe	Ser	Val	Tyr
	245						250			255					
Ser	Asp	Phe	Leu	Leu	Tyr	Lys	Ser	Gly	Val	Tyr	Gln	His	Val	Thr	Gly
	260					265			270						
Glu	Met	Met	Gly	Gly	His	Ala	Ile	Arg	Ile	Leu	Gly	Trp	Gly	Val	Glu
	275					280			285						
Asn	Gly	Thr	Pro	Tyr	Trp	Leu	Val	Ala	Asn	Ser	Trp	Asn	Thr	Asp	Trp
	290					295			300						
Gly	Asp	Asn	Gly	Phe	Phe	Lys	Ile	Leu	Arg	Gly	Gln	Asp	His	Cys	Gly
305					310			315			320				
Ile	Glu	Ser	Glu	Val	Val	Ala	Gly	Ile	Pro	Arg	Thr	Asp	Gln	Tyr	Trp
	325					330			335						
Glu	Lys	Ile													

```

<210> SEQ_ID NO 52
<211> LENGTH: 3857
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 52
ggggcggggc cgggagggtt cttaggggcc gggctggccc aggctacggc ggctgcaggg 60
ctccggcaac cgctccggca acgccaaccc ctccgctgcg cgcaggctgg gctgcaggct 120
ctcggctgca gcgctgggtt tcttcaggcc tatggagagc agcttgcgtt ggctggccct 180
gcagttacctt gtttgcatacg atgattggca ggtggatcta ggatccggct tccaaatgtt 240
ggcagctctt ggcctccctt tgctgccttc tgggtgttggc caatgcgggg agcaggccct 300
cttccatcc cctgtcggtt gagctggta actatgtcaa caaacggaaat accacgtggc 360

```

-continued

aggccgggca caacttctac aacgtggaca ttagctactt gaagaggccta tgggtaccc	420
tccctgggtgg gcccaagccca ccccaagagag ttatgtttac cgaggacccctg aagctgcctg	480
caagcttcga tgcacgggaa caatggccac agtgtccacat catcaaagag atcagagacc	540
agggctctg tggctctgc tgggccttcg gggctgtggaa agccatctct gaccggatct	600
gcatccacac caatgcgcac gtcagcgtgg aggtgtccggc ggaggacccctg ctcacatgt	660
gtggcagcat gtgtggggac ggctgttaatg gtggctatcc tgctgaagct tggaaacttct	720
ggacaagaaa aggccctggtt tctgtggcc tctatgaatc ccatgttaggg tgcagacccgt	780
actccatccc tccctgtgag caccacgtca acggctcccg gccccatgc acgggggagg	840
gagataccccc caagtgttagc aagatctgtg agcctggctca cagccccacc tacaaacagg	900
acaagcacta cggatacaat tcctacagcg tctccaatag cgagaaggac atcatggccg	960
agatctacaa aaacggcccc gtggggggag ctttctctgt gtattcggac ttccctgtct	1020
acaagtcagg agtgtaccaa cacgtcacccg gagagatgtt ggggtggccat gccatccgca	1080
tcctggctg gggagtggag aatggcacac cctactggct ggttgcacac tcctggaaaca	1140
ctgactgggg tgacaatggc ttctttaaaa tactcagagg acaggatcac tggaaatcg	1200
aatcagaagt ggtggctgga atccacgca ccgatcgtt ctggggaaag atctaattctg	1260
ccgtggccct gtcgtgccag tcctgggggc gagatcgggg tagaaatgca ttttatttt	1320
taagttcacg taagatacaa gttcagaca gggtctgtt gactggattt gccaaacatc	1380
agacctgtct tccaggaga ccaagtcctg gctacatccc agcctgtgtt tacagtgcag	1440
acaggccatg tgagccaccc ctggcagcac agagcgtccct tccccctgtt gactagtgc	1500
gtagggagta cctgtgtccc cagtgactg tggcccccctc cgtgtatccat ccatctccag	1560
ggagcaagac agagacgcag gaatggaaag cggagttctt aacaggatga aagttccccc	1620
atcagttccc ccgttaccc caagcaagttt gctttccaca ttgttacagaaatcagagg	1680
agagacgggtt ttggggcccccc tttggagaac gccagttccctt caggccccctt gcatctatcg	1740
agtttcaat gtcacaacctt ctctgtatctt gtgttcgttca tgatttttta atagaagttt	1800
tatTTTTCTG tgcactctgc taatcatgtt ggtgagccatc tggaaacagcg ggagacccgt	1860
gttagttttta cagattgcctt ctttatgtt cggctcaaaa ggaaaccaag tggtcaggag	1920
ttgtttctgtt cccactgtatc tctactacca caaggaaaat agtttaggg aaaccagctt	1980
ttactgtttt tggaaaattt cagtttaccctt ctgtcaagttt aacaaggaaat gctgtgttca	2040
ataaaagttt tctccaactt gaagtctactt ctgtatggat ctcagatccctt ttgttactgc	2100
ctatagacccctt gtagtgcgtt tctctcttttgc tccctgcaga gaatcacgtt ctggaaactgc	2160
atgtttttgtt gacttctggg acttcatctt aacttctcgcc tggcccccagcc atgttttcaa	2220
ccatggccatc cctccccccaa tttagttccctt gtcatcccttgc tcaaccccttctt ctgttactgc	2280
ctggtaagct tggcccttgc taagaactca aaacatagctt gtgttctatttttgggtgtt	2340
tgttgtactt gacagagtgtt gattccgttccccc cccaggctgg agtgcgttgg cgccttctca	2400
gctcaactgcac ccctgcagcc tccttagattt aagcgattctt cctgttccatc ccttccggat	2460
agctggatgttccccc acaggccatc accaaatatgc ctgggttattttttaatgttacata	2520
caggattttca ccatgttggc caggcttagttt tcaaaactccc ggcctcagggtt ggtctgcctg	2580
cctcagccctc ccaaagtgtt gggattacag gctgtgagccca ctggccctg cctgtatctt	2640

-continued

ttatcagcca	caaatccagc	aacaagctga	ggattcagct	cataaaacag	gcttgggtgc	2700	
tttgtatct	cacataacca	agatgctacc	ccgtggggaa	ccacatcccc	ctggatgccc	2760	
tccagccttg	gtttgggctg	gagtcaggc	ctgtatacag	tatttgaat	ttgtatgcca	2820	
ctggtttgc	ttgctggtca	ggaactctag	tgcttgc	agccctgg	tttagaaacatg	2880	
ttatagcagt	tcttggtata	gagcaaacta	gaagaaccag	caatcattcc	actgtcctgc	2940	
caaggtcac	ctcagactc	cccttccaa	ctgaagtgg	atgaggctag	ctcttccaa	3000	
aagcattcaa	gtttggctc	tgatgtgact	cagaatttag	gaaccagatg	ctagatcaa	3060	
taagctctga	aaatctgagg	aacattgtag	gaaaggttg	ttaagcatct	cttaagtgc	3120	
atgatgagca	taacagccgg	ccgtcg	tcacgcctgt	aatccagca	ctttgggagg	3180	
ccaaggtgg	aggatgacaa	ggtcagg	tcaagaccag	cctggccaa	atgctgaaac	3240	
ctcacctcta	ctaaaaatac	aaaattagc	tgggc	ggcacatg	cttaatccca	3300	
gctacttgg	aggctgaggc	aggagaatcg	cttgaacccg	ggaggcgg	gttgc	3360	
gccaagacag	tgccagtgca	ctccagc	ggtgacagcg	caagg	ctccg	3420	
aaaaaaaaaa	aaaaaaaaaa	aaaaggccgg	g	gc	caagg	ctgt	3480
ctttgggagg	ctgaggc	ggc	ag	gt	gg	at	3540
aacacgg	tga	acccat	ctact	aaaa	at	ttcaata	3600
cctgtatcc	cagctactcg	ggagg	ctgag	gtac	gaga	at	3660
aggatgcagt	gagcc	gagat	cac	ccat	tg	ggaggc	3720
gtgtctcacc	aaaaaaa	aaaaaa	agaaaa	agat	gttac	cata	3780
aaattcataa	ccactt	atcc	ttc	ca	aggat	ataa	3840
ttctccctqc	ccccaa	aa	aa	aa	aa	aa	3857

<210> SEQ ID NO 53
<211> LENGTH: 339
<212> TYPE: PRT
<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 53

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn
1 5 10 15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn
20 25 30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr
35 40 45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly
50 55 60

Gly	Pro	Lys	Pro	Pro	Gln	Arg	Val	Met	Phe	Thr	Glu	Asp	Leu	Lys	Leu
65					70					75					80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile
85 90 95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly
 100 105 110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His
115 120 125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser
 130 135 140

-continued

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn
 145 150 155 160
 Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His
 165 170 175
 Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn
 180 185 190
 Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser
 195 200 205
 Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His
 210 215 220
 Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
 225 230 235 240
 Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
 245 250 255
 Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly
 260 265 270
 Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu
 275 280 285
 Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
 290 295 300
 Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Gln Asp His Cys Gly
 305 310 315 320
 Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Gln Tyr Trp
 325 330 335
 Glu Lys Ile

<210> SEQ_ID NO 54
 <211> LENGTH: 3982
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

 <400> SEQUENCE: 54

```

ggggccgggg ctggcccaagg ctacggccggc tgcagggctc cggcaaccgc tccggcaacg 60
ccaaccgctc cgctgcgcgc aggctggctc gcaggctctc ggctgcagcg ctgggctgg 120
gtgcagtggc ggcaccacgg ctcacggcag cctcagccac ccagatgtaa gcatctgg 180
tcccaccta gcctcccgag tagatacttc tggaaataga aatgtatgact ctgggatgca 240
aacgttggct gtcctatgtta taaggagatg gctttcactc ctcccactgta ctgaggaagt 300
ttctcccaaga tggcgctgtt ctgagcctgg tgcaggggtgg atcttaggatc cggcttccaa 360
catgtggcag ctctggccct ccctctgtcgt cctgctggcgtt tggccaaatg cccggagcag 420
gcctcttttca catccccgtt cggatgagct ggtcaactat gtcaacaaac ggaataaccac 480
gtggcaggcc gggcacaact tctacaacgt ggacatgagc tacttgaaga ggctatgtgg 540
taccttccttgc ggtggccca agccacccca gagagttatg tttaccgagg acctgaagct 600
gcctgcaagc ttcgatgcac gggacaatg gccacagtgt cccaccatca aagagatcag 660
agaccaggcc tcctgtggct cctgctggc cttcgccgtt gtggaaagccatg tctctgaccg 720
gatctgcacatc cacaccaatg cgcacgtcgt cgtggaggtt tggcgccagg acctgctcac 780
atgctgtggc agcatgtgtt gggacggctg taatgggtggc tttccctgtt aagcttggaa 840
cttctggaca agaaaaggcc tggtttctgg tggcccttatg gaatcccatg taggggtcag 900
  
```

-continued

acggtaactcc atccctccct gtgagcacca cgtcaacggc tcccgcccc catcacggg 960
ggagggagat accccaagt gtgcaagat ctgtgagct ggctacagcc cgaccataa 1020
acaggacaag cactacggat acaattccta cagcgtctcc aatagcqaga aggacatcat 1080
ggccgagatc tacaaaaacg gccccgtgga gggagcttc tctgtgtatt cggacttcct 1140
gtctacaag tcaggagtgt accaacaegt caccggagag atgatgggtg gccatgccat 1200
ccgcatactg ggctggggag tggagaatgg cacaccctac tggctgttgc ccaacttcctg 1260
gaacactgac tgggggtgaca atggcttctt taaaatactc agaggacagg atcactgtgg 1320
aatcgaatca gaagtgggtgg ctggaattcc acgcaccgat cagtaactggg aaaagatcta 1380
atctgcccgtg ggcctgtcgt gcccgtcctg gggcgagat cggggtagaa atgcatttt 1440
ttctttaagt tcacgtaaaga tacaagtttc agacagggtc tgaaggactg gattggccaa 1500
acatcagacc tgcgttccaa ggagaccaag tcctggctac atcccagcct gtgggtacag 1560
tgcagacagg ccatgtgagc caccgtctcc agcacagagc gtccttcccc ctgtagacta 1620
gtgccgttagg gagtacctgc tgccccagct gactgtggcc cccctccgtga tccatccatc 1680
tccaggggagc aagacagaga cgcaggaaatg gaaagcggag ttccctaaacag gatgaaaattt 1740
cccccatcaag ttcccccaagt acctccaaagc aagtagctt ccacatttgc cacagaaatc 1800
agaggagaga cggtgttggg agccctttgg agaacggccag tctcccaaggc cccctgcatac 1860
tatcgagttt gcaatgtcac aacctctctg atcttggtcgt cagcatgatt cttaataga 1920
agttttattt ttctgtgcac tctgttaatc atgtgggtgaa gccagtgaa cagcgggaga 1980
cttgtgttag ttttacagat tgcccttta tgacggggct caaaaggaaa ccaagtggtc 2040
aggagttgtt tctgacccac tgatctctac taccacaagg aaaatagttt aggagaaacc 2100
agcttttact gttttgaaa aattacagct tcaccctgtc aagttaaaca ggaatgcctg 2160
tgccataaaa agtttctcc aacttgaagt ctactctgtat gggatcttag atcccttgc 2220
actgcctata gacttgttagc tgctgtctct cttgtccct gcagagaatc acgtctgg 2280
actgcgttgtt ctgcgtactc ttggacttc atcttaactt ctgcgtcccc cagccatgtt 2340
ttcaaccatg gcatccctcc cccaaatttgc tccctgtcat ctcgtcaac cttctctgt 2400
agtgcctggt aagcttgccc ttgcttaaga actcaaaaaca tagctgtgtct ctatttttt 2460
gttgttggtag tgaactgacag agttagatgc cgtctcccgag gctggagtgc agtggcgcct 2520
tctcagctca ctgcaaccctg cagccttca gattcaagcg attctccctgc ttcaaccctc 2580
cgagtagctg ggatgacagg cactcacca tatgcctggg taattttgtt attttaagt 2640
acatacagga ttccaccatg ttggccaggc tagttcaaa ctccggccct caggtggct 2700
gcctgcctca gcctcccaaa gtgttggat tacaggcgtg agccactggg ccctgcctgt 2760
atttttatc agccacaaaat ccagcaacaa gctgaggatt cagctataa aacaggctt 2820
gtgtcttggat gatctcacat aaccaagatg ctacccctgt gggaaaccaca tcccccgtt 2880
tgccctccatg cttgttggtag ggctggagtc agggcctgtac tacagtattt tgaatttgc 2940
tgccactgtt ttgcattgtc ggtcaggaaac tctagtgttt tgcatagcccc tggtttagaa 3000
acatgttata gcagttcttg gtatagagca aactagaaga accagaaatc attccactgt 3060
ctgccaagg tacacccatg tactccctt cccaaactgaa gtggatgag gctagcttt 3120
tccaaaaaqca ttcaaqtttq qcttctqatq tqaactcaqaa tttaqqaacc aqatqctqaq 3180

-continued

tcaaataagc tctgaaaatc tgaggaacat tggagaaag gtttgttaag catctctaa	3240
gtgccatgtat gacgataaca gcccggccgtc gtggctcacg cctgtaatcc cagcacttg	3300
ggaggcgaag gtgggaggat gacaagggtca ggagttcaag accagcctgg ccaacatgct	3360
gaaacacctac ctctactaaa aatacaaaaa tttagctggc atgggtggcac atgcctgtaa	3420
tcccagctac ttgggaggct gaggcaggag aatcgcttga acccgggagg cgaggttgc	3480
agtgagccaa gacagtgccttca gtgcacttca gcctcggtga cagcgcagg ctccgtctca	3540
ataattaaaa aaaaaaaaaa aaaaaaaaaa gcccggccca gtggctcaag cctgtaatcc	3600
cagcactttg ggaggctgag gcgggcagat cacctgaggat caggagttt gagatcagcc	3660
ttggcaacac ggtgaaaccc catctctact aaaaatacaa aattagccaa gcatgctggc	3720
acatgcctgt aatcccagct actcgggagg ctgaggtacg agaatcgctt gaacctggaa	3780
ggcagaggat gcagtgagcc gagatcacgc cattgcactc cagcctggg gacaagagt	3840
aatctgtgtc tcaccaaaaa aaaaaagaaa aagaaagatg cttacaacaag gttaccataa	3900
gccacaaaatt cataaccact tatttttcca gtttcaagta gaatataatc ataacctcaa	3960
taaagttctc cctgctccca aa	3982

<210> SEQ ID NO 55

<211> LENGTH: 339

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 55

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn			
1	5	10	15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn		
20	25	30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr		
35	40	45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly		
50	55	60

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu			
65	70	75	80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile		
85	90	95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly		
100	105	110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His		
115	120	125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser		
130	135	140

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn			
145	150	155	160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His		
165	170	175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn		
180	185	190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser		
195	200	205

-continued

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His
 210 215 220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met
 225 230 235 240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr
 245 250 255

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly
 260 265 270

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu
 275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
 290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Gln Asp His Cys Gly
 305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Gln Tyr Trp
 325 330 335

Glu Lys Ile

<210> SEQ ID NO 56
 <211> LENGTH: 4086
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 56

caggaccgccc gagggaggcg cctgcgagga agagctcgcc cgggtccgga gactgctgcc 60
 tgggaccgcg ctcccgccgc ctgggcctcg gtgtctccgg gccaaactgc cgacataatc 120
 gcatctgccc gcatcttattt tcggtttattt tccccctcat tgcgaaggat ttgcctggcc 180
 aactttctgc gcaagatccc acgcaattcc tgggacccca gaagacaggt cctgttgaag 240
 aacaggaatc tggcactggg tggctgggg aggaagccgc acgggtttaa atccataaac 300
 aggaagagaa accagacagc gaaaccaaga ggcgaatggg cgattggatg cgggtgggaa 360
 gaagggccggg ggcgcacccct gctcctggac tccagtaaag ggagggccggg cagagtccct 420
 ggggcgcac ctccccctcg gtggatctag gatccggctt ccaacatgtg gcagctctgg 480
 gctccctct gctgectgct ggtgttggcc aatgcccggg gcagggccctc tttccatccc 540
 ctgtcggatg agctggtaa ctatgtcaac aaacggaata ccacgtggca ggccgggac 600
 aacttctaca acgtggacat gagctacttg aagaggctat gtggcacctt cctgggtggg 660
 cccaagccac cccagagagt tatgtttacc gaggacctga agctgcctgc aagcttcgat 720
 gcacgggaaac aatggccaca gtgtcccacc atcaaagaga tcagagacca gggctcctgt 780
 ggctcctgct gggccttcgg ggctgtggaa gccatctctg accggatctg catccacacc 840
 aatgcgcacg tcagcgtgga ggtgtcggcg gaggacctgc tcacatgctg tggcagcatg 900
 tggggggacg gctgtaatgg tggctatctt gctgaagctt ggaacttctg gacaagaaaa 960
 ggctctggttt ctgggtggctt ctatgtatcc catgttaggtt gcagacgctt ctccatccct 1020
 ccctgtgagc accacgtcaa cggctcccg ccccatgca cggggggagg agatacccc 1080
 aagtgttagca agatctgtga gcctggctac agcccgaccc tacaacagga caagcactac 1140
 ggataacaattt cctacagcgtt ctccaatagc gagaaggaca tcatggccga gatctacaaa 1200
 aacggccccc tggagggagc tttctctgtt tattcggactt tcctgtctta caagtcagga 1260

-continued

gtgttaccaac acgtcacccgg agagatgatg ggtggccatg ccatccgcat cctgggctgg	1320
ggagtgggaga atggcacacc ctactggctg gttgccaact cctggAACAC tgactggggt	1380
gacaatggct tctttaaaat actcagagga caggatcaact gtggaatcga atcagaagtg	1440
gtggctggaa ttccacgcac cgatcagtagc tggaaaaga tctaatctgc cgtggcctg	1500
tcgtgcctgt cctggggcg agatcgggtt agaaatgcattt ttattctt aagttcacgt	1560
aagatacaag tttcagacag ggtctgaagg actggattgg ccaaACATCA gacctgtctt	1620
ccaaggagac caagtccctgg ctacatccca gctgtgggtt acagtgcaga cagggcatgt	1680
gagccaccgc tgccagcaca gagegtcctt cccctgttag actagtgcgg tagggagtag	1740
ctgctgcccc agctgactgt ggccccctcc gtatccatc catctccagg gagcaagaca	1800
gagacgcagg aatggaaagc ggagttctta acaggatgaa agttccccca tcagttcccc	1860
cagtacotcc aagcaagtag ctttccacat ttgtcacaga aatcagagga gagacgggtgt	1920
tgggagccct ttggagaacg ccagtctccc agggcccttg catctatcga gtttcaatg	1980
tcacaacctc tctgtatctt tgctcagcat gattctttaa tagaagttt atttttcgt	2040
gcactctgt aatcatgtgg gtgagccagt ggaacagcgg gagacctgtg ctgttttac	2100
agattgcctc cttatgacgc ggctcaaaag gaaaccaagt ggtcaggagt tgttctgac	2160
ccactgatct ctactaccac aaggaaaata gtttaggaga aaccagctt tactgtttt	2220
aaaaaaattac agcttcaccc tgtcaagttt acaaggaatg cctgtccaa taaaagttt	2280
ctccaaactt aagtctactc tgatggatc tcagatcctt tgtcaactgcc tatagactt	2340
tagctgtgt ctctttttgt ccctgcagag aatcactgtcc tggaactgca tggtttgcg	2400
actcttggga cttcatcttta acttctcgct gccccagcca tgtttcaac catggcatcc	2460
ctccccaaat tagttccctg tcacccctgtt caaccccttc tgtaagtgcc tggttaagctt	2520
gcccttgctt aagaactcaa aacatagtg tgctctattt ttttgtgtt gtttgactg	2580
acagagttagt atcccgcttc ccaggctgga gtgcagtggc gccttctcg ctcactgca	2640
cctgcagcct cctagattca agcgattctc ctgcttcagc cttccagata gctgggatga	2700
caggcactca ccaatatgcc tgggttaattt ttgttattttt aagtagatc acaggatcc	2760
catgttggcc aggctagttt caaaactcccg gcctcagggtg gtctgcctgc ctcagccctcc	2820
caaagggttg ggattacagg cgtgagccac tggccctgc ctgttattttt tattcagccac	2880
aaatccagca acaagctgag gattcagctc ataaaacagg cttgggtgtct tggtgatctc	2940
acataaccaaa gatgttaccc cgtggggAACAC cacatcccccc tggatgcctt ccagccctgg	3000
tttgggtgg agtcaggggcc tggatcacgtt atttgtatgtt tgatgcac tgggttgcatt	3060
tgctggctcg gaactcttagt gcttgcata gcccgggtt agaaacatgt tattcagatgtt	3120
cttgggtatag agcaaaacttag aagaaccgc aatcattcca ctgtccctgcc aaggtacacc	3180
tcagtagtcc cttcccaac tgaagtggta tgaggctagc tctttccaaa agcattcaag	3240
tttggctctt gatgttactc agaattttagg aaccagatgc tagatcaa atagctctgaa	3300
aatctgagga acatgttagg aaagggtttgt taagcatctc ttaagtgcac tgatgagcat	3360
acacggccgc cgtcggtggct cacgcctgtta atcccgacac tttggggagcc caaggtggaa	3420
ggatgacaag gtcaggagtt caagaccgc ctggccaaaca tgctgaaacc tcacccctac	3480
aaaaaaataca aaaatttagct gggcatggta gcacatgcct gtaatccag ctacttggaa	3540

-continued

ggctgaggca ggagaatcgc ttgaacccgg gaggcggagg ttgcagttag ccaagacagt	3600
gccagtgcac tccagctcg gtgacagcgc aaggctccgt ctcaataatt aaaaaaaaaa	3660
aaaaaaaaaa aaaggccggg cgcaatggct caaggctgtatccacacggc	3720
tgaggcgggc agatcacctg aggtcaggag tttttagatc agccttggca acacggtaa	3780
accccatctc tactaaaaat acaaaattag ccaagcatgc tggcacatgc ctgtaatccc	3840
agctactcg gaggctgagg tacgagaatc gcttgaacct gggaggcaga ggatgcagt	3900
agccgagatc acgcattgc actccagcct gggggacaag agtgaatctg tgcaccca	3960
aaaaaaaaaa gaaaaagaaa gatgcttaac aaaggtaacc ataaggccaca aattcataac	4020
cacttaccc tccagttca agttagatattcataacc tcaataaagt tctccctgct	4080
cccaaa	4086

<210> SEQ ID NO 57

<211> LENGTH: 339

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 57

Met Trp Gln Leu Trp Ala Ser Leu Cys Cys Leu Leu Val Leu Ala Asn			
1	5	10	15

Ala Arg Ser Arg Pro Ser Phe His Pro Leu Ser Asp Glu Leu Val Asn		
20	25	30

Tyr Val Asn Lys Arg Asn Thr Thr Trp Gln Ala Gly His Asn Phe Tyr		
35	40	45

Asn Val Asp Met Ser Tyr Leu Lys Arg Leu Cys Gly Thr Phe Leu Gly		
50	55	60

Gly Pro Lys Pro Pro Gln Arg Val Met Phe Thr Glu Asp Leu Lys Leu			
65	70	75	80

Pro Ala Ser Phe Asp Ala Arg Glu Gln Trp Pro Gln Cys Pro Thr Ile		
85	90	95

Lys Glu Ile Arg Asp Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Gly		
100	105	110

Ala Val Glu Ala Ile Ser Asp Arg Ile Cys Ile His Thr Asn Ala His		
115	120	125

Val Ser Val Glu Val Ser Ala Glu Asp Leu Leu Thr Cys Cys Gly Ser		
130	135	140

Met Cys Gly Asp Gly Cys Asn Gly Gly Tyr Pro Ala Glu Ala Trp Asn			
145	150	155	160

Phe Trp Thr Arg Lys Gly Leu Val Ser Gly Gly Leu Tyr Glu Ser His		
165	170	175

Val Gly Cys Arg Pro Tyr Ser Ile Pro Pro Cys Glu His His Val Asn		
180	185	190

Gly Ser Arg Pro Pro Cys Thr Gly Glu Gly Asp Thr Pro Lys Cys Ser		
195	200	205

Lys Ile Cys Glu Pro Gly Tyr Ser Pro Thr Tyr Lys Gln Asp Lys His		
210	215	220

Tyr Gly Tyr Asn Ser Tyr Ser Val Ser Asn Ser Glu Lys Asp Ile Met			
225	230	235	240

Ala Glu Ile Tyr Lys Asn Gly Pro Val Glu Gly Ala Phe Ser Val Tyr		
245	250	255

-continued

Ser Asp Phe Leu Leu Tyr Lys Ser Gly Val Tyr Gln His Val Thr Gly
 260 265 270

Glu Met Met Gly Gly His Ala Ile Arg Ile Leu Gly Trp Gly Val Glu
 275 280 285

Asn Gly Thr Pro Tyr Trp Leu Val Ala Asn Ser Trp Asn Thr Asp Trp
 290 295 300

Gly Asp Asn Gly Phe Phe Lys Ile Leu Arg Gly Gln Asp His Cys Gly
 305 310 315 320

Ile Glu Ser Glu Val Val Ala Gly Ile Pro Arg Thr Asp Gln Tyr Trp
 325 330 335

Glu Lys Ile

<210> SEQ_ID NO 58

<211> LENGTH: 1587

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 58

ggcgggtgccg	gcccgaaccca	gaccggaggt	tttagaaagca	gagtcaggcg	aagctgggcc	60
agaaccgcga	cctccgcaac	cttggcgcc	atccgtggag	tgcgcctgcg	cagctacgac	120
cgcagcggaa	aagcgccgccc	ggccaggccc	agctgtggcc	ggacaggac	tggaaagagag	180
gacgcggctcg	agttaggtttt	aaaacatgaa	tcctacactc	atccctgctg	cctttgcct	240
gggaattgcc	tcaagctactc	taacatggaa	tcacagtttta	gaggcacagt	ggaccaagtg	300
gaaggcgatg	cacaacagat	tatacgccat	gaatgaagaa	ggatggagga	gagcagtgtg	360
ggagaagaac	atgaagatga	ttgaaactgca	caatcaggaa	tacaggaaag	ggaaacacag	420
cttcacaatg	gccatgaacg	ccttggaga	catgaccagt	gaagaattca	ggcaggtgat	480
gaatggcttt	aaaaaccgta	agcccaggaa	ggggaaagtg	ttccaggaac	ctctgtttta	540
tgaggcccc	agatctgtgg	attggagaga	gaaaggctac	gtgactcctg	tgaagaatca	600
gggtcagtgt	ggttcttgc	gggttttag	tgctactgtt	gtcttgc	gacagatgtt	660
ccggaaaact	gggaggctta	tctcaactgag	tgaggcagaat	ctggtagact	gctctggcc	720
tcaaggcaat	gaaggctgca	atggggcct	aatggattat	gtttccagt	atgttcagga	780
taatggaggc	ctggactctg	aggaatccta	tccatatgag	gcaacagaag	aatcctgtaa	840
gtacaatccc	aaagtattctg	ttgctaattga	caccggcttt	gtggacatcc	ctaagcagga	900
gaaggccctg	atgaaggcag	ttgcaactgt	ggggccatt	tctgttgcta	ttgatgcagg	960
tcatgagtc	tccctgttct	ataaaaagg	catttatttt	gagccagact	gtagcagtga	1020
agacatggat	atgggtgtgc	ttgggtgtgg	ctacggattt	gaaagcacag	aatcagataa	1080
caataaaat	tggctgtga	agaacagctg	gggtgaagaa	tggggcatgg	gtggctacgt	1140
aaagatggcc	aaagaccgga	gaaaccattg	tggaaattgcc	tcagcagcga	gctacccac	1200
tgtgtgagct	ggtggacggt	gatgaggaag	gacttgcact	gggatggcgc	atgcattgg	1260
ggaattcatac	ttcagtctac	cagccccccc	tgtgtcggt	acacactcga	atcattgaag	1320
atccgagtg	gatttgaatt	ctgtgatatt	ttcacactgg	taaatgttac	ctctatttt	1380
attactgcta	taaataagg	tatattattt	attcaactac	tgactttgca	ttttcggttt	1440
taaaaaggat	tataaatttt	tacctgttta	aataaaattt	aatttcaat	gtagtggtgg	1500
ggcttcttcc	tattttgat	gcactgaatt	tttgtgtat	aaagaacata	attgggcct	1560

-continued

aagccataaa	aaaaaaaaaa	aaaaaaaa	1587																
<210> SEQ ID NO 59																			
<211> LENGTH: 333																			
<212> TYPE: PRT																			
<213> ORGANISM: Homo sapiens																			
<400> SEQUENCE: 59																			
Met	Asn	Pro	Thr	Leu	Ile	Leu	Ala	Ala	Phe	Cys	Leu	Gly	Ile	Ala	Ser	1	5	10	15
Ala	Thr	Leu	Thr	Phe	Asp	His	Ser	Leu	Glu	Ala	Gln	Trp	Thr	Lys	Trp	20	25	30	
Lys	Ala	Met	His	Asn	Arg	Leu	Tyr	Gly	Met	Asn	Glu	Gly	Trp	Arg	35	40	45		
Arg	Ala	Val	Trp	Glu	Lys	Asn	Met	Lys	Met	Ile	Glu	Leu	His	Asn	Gln	50	55	60	
Glu	Tyr	Arg	Glu	Gly	Lys	His	Ser	Phe	Thr	Met	Ala	Met	Asn	Ala	Phe	65	70	75	80
Gly	Asp	Met	Thr	Ser	Glu	Glu	Phe	Arg	Gln	Val	Met	Asn	Gly	Phe	Gln	85	90	95	
Asn	Arg	Lys	Pro	Arg	Lys	Gly	Lys	Val	Phe	Gln	Glu	Pro	Leu	Phe	Tyr	100	105	110	
Glu	Ala	Pro	Arg	Ser	Val	Asp	Trp	Arg	Glu	Lys	Gly	Tyr	Val	Thr	Pro	115	120	125	
Val	Lys	Asn	Gln	Gly	Gln	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Ser	Ala	Thr	130	135	140	
Gly	Ala	Leu	Glu	Gly	Gln	Met	Phe	Arg	Lys	Thr	Gly	Arg	Leu	Ile	Ser	145	150	155	160
Leu	Ser	Glu	Gln	Asn	Leu	Val	Asp	Cys	Ser	Gly	Pro	Gln	Gly	Asn	Glu	165	170	175	
Gly	Cys	Asn	Gly	Gly	Leu	Met	Asp	Tyr	Ala	Phe	Gln	Tyr	Val	Gln	Asp	180	185	190	
Asn	Gly	Gly	Leu	Asp	Ser	Glu	Glu	Ser	Tyr	Pro	Tyr	Glu	Ala	Thr	Glu	195	200	205	
Glu	Ser	Cys	Lys	Tyr	Asn	Pro	Lys	Tyr	Ser	Val	Ala	Asn	Asp	Thr	Gly	210	215	220	
Phe	Val	Asp	Ile	Pro	Lys	Gln	Glu	Lys	Ala	Leu	Met	Lys	Ala	Val	Ala	225	230	235	240
Thr	Val	Gly	Pro	Ile	Ser	Val	Ala	Ile	Asp	Ala	Gly	His	Glu	Ser	Phe	245	250	255	
Leu	Phe	Tyr	Lys	Glu	Gly	Ile	Tyr	Phe	Glu	Pro	Asp	Cys	Ser	Ser	Glu	260	265	270	
Asp	Met	Asp	His	Gly	Val	Leu	Val	Val	Gly	Tyr	Gly	Phe	Glu	Ser	Thr	275	280	285	
Glu	Ser	Asp	Asn	Asn	Lys	Tyr	Trp	Leu	Val	Lys	Asn	Ser	Trp	Gly	Glu	290	295	300	
Glu	Trp	Gly	Met	Gly	Gly	Tyr	Val	Lys	Met	Ala	Lys	Asp	Arg	Arg	Asn	305	310	315	320
His	Cys	Gly	Ile	Ala	Ser	Ala	Ala	Ser	Tyr	Pro	Thr	Val	325	330					

<210> SEQ ID NO 60

-continued

```

<211> LENGTH: 1626
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 60
ggcggtgccg gccgaaccca gacccgaggt tttagaagca gagtcaggcg aagctggcc 60
agaaccgcga cctccgcaac cttgagcggc atccgtggag tgccgcctgcg cagctacgac 120
cgcagcagga aagegcgcgc ggcaggccc agctgtggcc ggacagggac tggaaagagag 180
gacgcggctcg agtaggtgtg caccagccct ggcaacgaga ggcgtctaccc cgaactctgc 240
tggccttgag gttttaaaac atgaatccta cactcatect tgcgtgcctt tgcctggaa 300
ttgcctcagc tactctaaca tttgtatcaca gtttagggc acagtggacc aagtggagg 360
cgatgcacaa cagattatac ggcatgaatg aagaaggatg gaggagagca gtgtgggaga 420
agaacatgaa gatgattgaa ctgcacaatc aggaatacag ggaaggggaaa cacagcttca 480
caatggccat gaacgcctt ggagacatga ccagtgaaga attcaggcag gtgtatgaaatg 540
gtttcaaaa ccgtaaagccc aggaaggggaa aagtgttcca ggaacctctg ttttatgagg 600
ccccccagatc tggatggattgg agagagaaaag gctacgtgac tctgtgaag aatcagggtc 660
agtgtggttc ttgttggct ttttagtgta ctgggtgtct tgaaggacag atgttccgga 720
aaactgggag gcttatctca ctgagtgagc agaatctggt agactgtct gggcctcaag 780
gcaatgaagg ctgcaatggg ggcataatgg attatgttt ccagtatgtt caggataatg 840
gaggcctgga ctctgaggaa tcctatccat atgaggcaac agaagaatcc tgtaagtaca 900
atcccaagta ttctgttgct aatgacacccg gctttgtggaa catccctaag caggagaagg 960
ccctgatgaa ggcagttgca actgtggggc ccatttctgt tgctattgtat gcaggtcatg 1020
agtcccttcgttctataaa gaaggcattt attttgagcc agactgttagc agtgaagaca 1080
tggatcatgg tggatggatgg gttggctacg gatttgaag cacagaatca gataacaata 1140
aatatggct ggtgaagaac agctgggggt aagaatgggg catgggtggc tacgtaaaga 1200
tggccaaaga cccggagaaac cattgtggaa ttgcctcagc agccagctac cccactgtgt 1260
gagctggatgg acgggtatgaa ggaaggactt gactggggat ggcgcgtgca tggggaggaaat 1320
tcatcttcag tctaccagcc cccgctgtgt cggatacaca ctcgaatcat tgaagatccg 1380
agtgtgttattt gaatttctgtt atatttcac actggtaat gttacatcta ttttaattttac 1440
tgctataat aggtttatattt tattgattca cttactgact ttgcattttc gtttttaaaa 1500
ggatgtataa atttttaccc gtttaataa aatttaattt caaatgttagt ggtggggctt 1560
ctttcttattt ttgtatgcact gaattttgtt gtaataaaga acataattgg gctctaagcc 1620
ataaaaaa 1626

```

```

<210> SEQ ID NO 61
<211> LENGTH: 333
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 61
Met Asn Pro Thr Leu Ile Leu Ala Ala Phe Cys Leu Gly Ile Ala Ser
1 5 10 15

```

```

Ala Thr Leu Thr Phe Asp His Ser Leu Glu Ala Gln Trp Thr Lys Trp
20 25 30

```

-continued

Lys Ala Met His Asn Arg Leu Tyr Gly Met Asn Glu Glu Gly Trp Arg
 35 40 45

Arg Ala Val Trp Glu Lys Asn Met Lys Met Ile Glu Leu His Asn Gln
 50 55 60

Glu Tyr Arg Glu Gly Lys His Ser Phe Thr Met Ala Met Asn Ala Phe
 65 70 75 80

Gly Asp Met Thr Ser Glu Glu Phe Arg Gln Val Met Asn Gly Phe Gln
 85 90 95

Asn Arg Lys Pro Arg Lys Gly Lys Val Phe Gln Glu Pro Leu Phe Tyr
 100 105 110

Glu Ala Pro Arg Ser Val Asp Trp Arg Glu Lys Gly Tyr Val Thr Pro
 115 120 125

Val Lys Asn Gln Gly Gln Cys Gly Ser Cys Trp Ala Phe Ser Ala Thr
 130 135 140

Gly Ala Leu Glu Gly Gln Met Phe Arg Lys Thr Gly Arg Leu Ile Ser
 145 150 155 160

Leu Ser Glu Gln Asn Leu Val Asp Cys Ser Gly Pro Gln Gly Asn Glu
 165 170 175

Gly Cys Asn Gly Leu Met Asp Tyr Ala Phe Gln Tyr Val Gln Asp
 180 185 190

Asn Gly Gly Leu Asp Ser Glu Glu Ser Tyr Pro Tyr Glu Ala Thr Glu
 195 200 205

Glu Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Ala Asn Asp Thr Gly
 210 215 220

Phe Val Asp Ile Pro Lys Gln Glu Lys Ala Leu Met Lys Ala Val Ala
 225 230 235 240

Thr Val Gly Pro Ile Ser Val Ala Ile Asp Ala Gly His Glu Ser Phe
 245 250 255

Leu Phe Tyr Lys Glu Gly Ile Tyr Phe Glu Pro Asp Cys Ser Ser Glu
 260 265 270

Asp Met Asp His Gly Val Leu Val Val Gly Tyr Gly Phe Glu Ser Thr
 275 280 285

Glu Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser Trp Gly Glu
 290 295 300

Glu Trp Gly Met Gly Gly Tyr Val Lys Met Ala Lys Asp Arg Arg Asn
 305 310 315 320

His Cys Gly Ile Ala Ser Ala Ala Ser Tyr Pro Thr Val
 325 330

<210> SEQ ID NO 62

<211> LENGTH: 1567

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 62

ggcgggtgccg gccgaaccca gacccgaggt tttagaagca gagtcaggcg aagctgggcc 60
 agaaccgcga cctccgcaac cttgagcggc atccgtggag tgcgcctgcg cagctacgac 120
 cgcagcagga aagcgccgccc ggccaggccc agctgtggcc ggacaggagc tggaaagagag 180
 gacgcggctcg agtttaaaa catgaatctt acactcatcc ttgcgtgcctt ttgcctggga 240
 attgcctcag ctactctaactt gatcagtttgcggc cacagtggac caagtggaaag 300
 gcgatgcaca acagattata cggcatgaat gaagaaggat ggaggagagc agtgtggag 360

-continued

aagaacatga	agatgattga	actgcacaat	caggaataca	gggaaggaa	acacagttc	420
acaatggcca	tgaacgcctt	tggagacatg	accagtgaag	aattcaggca	ggtgatgaat	480
ggctttcaaa	accgtaagcc	caggaagggg	aaagtgtcc	aggaacctct	gttttatgag	540
gcccccaagat	ctgtggattg	gagagagaaa	ggctacgtga	ctcctgtgaa	gaatcagggt	600
cagtgtggtt	cttggggc	tttttagtgc	actgggtc	ttgaaggaca	gatgtccgg	660
aaaactggga	ggcttatctc	actgagtgag	cagaatctgg	tagactgctc	tgggcctcaa	720
ggcaatgaag	gtgcataatgg	ttgcttaatg	gattatgtt	tccagttatgt	tcaggataat	780
ggaggcctgg	actctgagga	atcctatcca	tatgaggcaa	cagaagaatc	ctgttaagtac	840
aatccccaaagt	attctgttgc	taatgacacc	ggttttgtgg	acatccctaa	gcaggagaag	900
gcctgtatga	aggcagttgc	aactgtgggg	cccatttctg	ttgctattga	tgcaggtcat	960
gagtccttcc	tgttctataa	agaaggcatt	tattttgagc	cagactgttag	cagtgaaagac	1020
atggatcatg	gtgtgtgtgt	ggttggctac	ggatttggaa	gcacagaatc	agataacaat	1080
aaatattggc	tggtaagaa	cagctgggt	gaagaatggg	gcatgggtgg	ctacgtaaag	1140
atggccaaag	accggagaaa	ccatttggta	attgccttag	cagccagcta	ccccactgt	1200
tgagctgggt	gacggtgatg	aggaaggact	tgactgggg	ttggcgatgc	atgggaggaa	1260
ttcatcttca	gtctaccagc	ccccgctgt	tcggatacac	actcgaatca	ttgaagatcc	1320
gagtgatgtt	tgaattctgt	gatatttca	cactggtaaa	tgttacctct	attttaattt	1380
ctgctataaa	taggtttata	ttattgattc	acttactgac	tttgcatttt	cgtttttaaa	1440
aggatgtata	aatttttacc	tgtttaata	aaatthaatt	tcaaatgtag	tggtggggct	1500
tctttctatt	tttgatgcac	tgaattttt	tgtataaaag	aacataattg	ggctctaagc	1560
cataaaa						1567

<210> SEQ ID NO 63
<211> LENGTH: 333
<212> TYPE: PRT
<213> ORGANISM: *Homo sapiens*

<400> SEQUENCE: 63

Met	Asn	Pro	Thr	Leu	Ile	Leu	Ala	Ala	Phe	Cys	Leu	Gly	Ile	Ala	Ser
1				5					10				15		
Ala	Thr	Leu	Thr	Phe	Asp	His	Ser	Leu	Glu	Ala	Gln	Trp	Thr	Lys	Trp
				20				25				30			
Lys	Ala	Met	His	Asn	Arg	Leu	Tyr	Gly	Met	Asn	Glu	Glu	Gly	Trp	Arg
				35			40				45				
Arg	Ala	Val	Trp	Glu	Lys	Asn	Met	Lys	Met	Ile	Glu	Leu	His	Asn	Gln
				50			55			60					
Glu	Tyr	Arg	Glu	Gly	Lys	His	Ser	Phe	Thr	Met	Ala	Met	Asn	Ala	Phe
65				70					75				80		
Gly	Asp	Met	Thr	Ser	Glu	Glu	Phe	Arg	Gln	Val	Met	Asn	Gly	Phe	Gln
				85				90					95		
Asn	Arg	Lys	Pro	Arg	Lys	Gly	Lys	Val	Phe	Gln	Glu	Pro	Leu	Phe	Tyr
				100				105				110			
Glu	Ala	Pro	Arg	Ser	Val	Asp	Trp	Arg	Glu	Lys	Gly	Tyr	Val	Thr	Pro
				115			120				125				
Val	Lys	Asn	Gln	Gly	Gln	Cys	Gly	Ser	Cys	Trp	Ala	Phe	Ser	Ala	Thr

-continued

130	135	140
Gly Ala Leu Glu Gly Gln Met Phe Arg Lys Thr Gly Arg	Leu Ile Ser	
145 150 155 160		
Leu Ser Glu Gln Asn Leu Val Asp Cys Ser Gly Pro Gln	Gly Asn Glu	
165 170 175		
Gly Cys Asn Gly Gly Leu Met Asp Tyr Ala Phe Gln Tyr	Val Gln Asp	
180 185 190		
Asn Gly Gly Leu Asp Ser Glu Glu Ser Tyr Pro Tyr	Glu Ala Thr Glu	
195 200 205		
Glu Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Ala Asn	Asp Thr Gly	
210 215 220		
Phe Val Asp Ile Pro Lys Gln Glu Lys Ala Leu Met Lys	Ala Val Ala	
225 230 235 240		
Thr Val Gly Pro Ile Ser Val Ala Ile Asp Ala Gly His	Glu Ser Phe	
245 250 255		
Leu Phe Tyr Lys Glu Gly Ile Tyr Phe Glu Pro Asp Cys	Ser Ser Glu	
260 265 270		
Asp Met Asp His Gly Val Leu Val Val Gly Tyr Gly Phe	Glu Ser Thr	
275 280 285		
Glu Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser	Trp Gly Glu	
290 295 300		
Glu Trp Gly Met Gly Gly Tyr Val Lys Met Ala Lys Asp	Arg Arg Asn	
305 310 315 320		
His Cys Gly Ile Ala Ser Ala Ala Ser Tyr Pro Thr Val		
325 330		

<210> SEQ ID NO 64
 <211> LENGTH: 1141
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 64

ggcggtgccg	gccgaaccca	gacccgaggt	tttagaagca	gagtcaggcg	aagctgggcc	60
agaacccgcg	cctccgcaac	cttgcggc	atccgtggag	tgcgcctgcg	cagctacgac	120
cgcagcagga	aagcgcgc	ggccaggccc	agctgtggcc	ggacaggcac	tggaaagagag	180
gacgcggctcg	agttagtttt	aaaacatgaa	tcctacactc	atccctgtcg	cctttgcct	240
gggaattgcc	tcaactactc	taacatttga	tcacagtttta	gaggcacagt	ggaccaagt	300
gaaggctgca	atggtgccct	aatggattat	gcttccagt	atgttcagga	taatggaggc	360
ctggactctg	aggaatccta	tccatatgag	gcaacagaag	aatcctgtaa	gtacaatccc	420
aagtattctg	ttgctaatga	caccggctt	gtggacatcc	ctaagcagga	gaaggccctg	480
atgaaggcag	ttgcaactgt	ggggcccatt	tctgttgcta	ttgatgcagg	tcatgagtc	540
ttcctgttct	ataaagaagg	catttatttt	gagccagact	gtagcagtga	agacatggat	600
catgggtgtc	ttgtggttgg	ctacggattt	gaaagcagac	aatcagataa	caataaatat	660
tggctggcga	agaacagctg	gggtgaagaa	tggggcatgg	gtggctacgt	aaagatggcc	720
aaagaccgg	gaaaccattt	ttgaaattgcc	tcagcagcc	gctacccac	tgtgtgagct	780
ggtggacgg	gtgaggaag	gacttgactg	gggatggcgc	atgcatggg	ggaattcatc	840
ttcagtctac	cagccccgc	tgtgtcgat	acacactcga	atcattgaag	atccgagtgt	900

-continued

gat	tttgaatt	ctgtgatatt	ttcacactgg	taaatgttac	ctctatttta	attactgcta	960
taa	ataggtt	tatattattt	attcacttac	tgactttgca	tttcgtttt	taaaaggatg	1020
tataa	atattt	tacctgttta	aataaaat	aatttcaaat	gtagtgggg	ggcttcttc	1080
tat	tttgcatt	gcactgaatt	tttgcataat	aaagaacata	attgggcct	aagccataaa	1140
a							1141

<210> SEQ ID NO 65
<211> LENGTH: 151
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 65

Met	Asp	Tyr	Ala	Phe	Gln	Tyr	Val	Gln	Asp	Asn	Gly	Gly	Leu	Asp	Ser
1				5			10		15						
Glu	Glu	Ser	Tyr	Pro	Tyr	Glu	Ala	Thr	Glu	Glu	Ser	Cys	Lys	Tyr	Asn
			20			25			30						
Pro	Lys	Tyr	Ser	Val	Ala	Asn	Asp	Thr	Gly	Phe	Val	Asp	Ile	Pro	Lys
	35				40			45							
Gln	Glu	Lys	Ala	Leu	Met	Lys	Ala	Val	Ala	Thr	Val	Gly	Pro	Ile	Ser
	50			55		60									
Val	Ala	Ile	Asp	Ala	Gly	His	Glu	Ser	Phe	Leu	Phe	Tyr	Lys	Glu	Gly
	65			70		75			80						
Ile	Tyr	Phe	Glu	Pro	Asp	Cys	Ser	Ser	Glu	Asp	Met	Asp	His	Gly	Val
		85			90			95							
Leu	Val	Val	Gly	Tyr	Gly	Phe	Glu	Ser	Thr	Glu	Ser	Asp	Asn	Asn	Lys
		100			105			110							
Tyr	Trp	Leu	Val	Lys	Asn	Ser	Trp	Gly	Glu	Glu	Trp	Gly	Met	Gly	Gly
	115			120		125									
Tyr	Val	Lys	Met	Ala	Lys	Asp	Arg	Arg	Asn	His	Cys	Gly	Ile	Ala	Ser
	130			135		140									
Ala	Ala	Ser	Tyr	Pro	Thr	Val									
	145			150											

<210> SEQ ID NO 66
<211> LENGTH: 1401
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 66

acagctctgg	acaggctgct	tttcattttgc	gtgagtcatt	ccagttaccc	cacgtgcct	60
gtttttctcc	aggcacatcc	ttggccttcc	ccacagtcct	tgggtttaa	aacatgaatc	120
ctacactcat	ccttgctgcc	ttttgcctgg	gaattgcctc	agctactcta	acatttgatc	180
acagtttaga	ggcacagtg	accaagtg	aggcgatgca	caacagat	tacggcatga	240
atgaagaagg	atggaggaga	gcagtgtgg	agaagaacat	gaagatgatt	gaactgcaca	300
atcaggaaata	caggaaagggg	aaacacagct	tcacaatggc	catgaacgcc	tttggagaca	360
tgaccagtga	agaatttcagg	cagggtatga	atggcttca	aaaccgt	cccaggaaagg	420
ggaaagtgtt	ccaggaacct	ctgtttatgc	aggccccag	atctgtggat	tggagagaga	480
aaggctacgt	gactcctgt	aagaatcagg	gtcagtgtgg	ttcttgcgtt	gcttttagt	540
ctactgggtgc	tcttgaagga	cagatgttcc	ggaaaactgg	gaggcttac	tcactgagtg	600

-continued

agcagaatct ggttagactgc tctgggcctc aaggcaatga aggctgcaat ggtggcctaa	660
tggattatgc tttccagttat gttcaggata atggaggcct ggactctgag gaatcctatc	720
catatgaggc aacagaagaa tcctgttaat acaatcccaa gtattctgtt gctaatgaca	780
ccggctttgt ggacatccct aaggcaggaga aggcctgat gaaggcagtt gcaactgtgg	840
ggcccatatc tgggtctatt gatgcaggc atgagtcctt cctgttctat aaagaaggca	900
tttattttga gccagactgt agcagtgaag acatggatca tgggtgtctg gtggttggct	960
acggatttga aagcacagaa tcagataaca ataaatattt gctggtaag aacagctggg	1020
gtgaagaatg gggcatgggt ggctacgtaa agatggccaa agaccggaga aaccattgtg	1080
gaattgcctc agcagccagc tacccactg tggagctgg tggacggta tgaggaagga	1140
cttgactggg gatggcgcat gcatgggagg aattcatctt cagtctacca gcccccgctg	1200
tgtcggatac acactcgaat cattgaagat ccgagttgtga tttgaattt gtgatattt	1260
cacactggta aatgttaccc tcttttaat tactgctata aataggttta tattattgat	1320
tcacttaactg actttgcatt ttcgtttta aaaggatgtaa taaattttt cctgtttaaa	1380
taaaatttaa tttcaatgt a	1401

<210> SEQ ID NO 67

<211> LENGTH: 333

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 67

Met Asn Pro Thr Leu Ile Leu Ala Ala Phe Cys Leu Gly Ile Ala Ser	
1	5
	10
	15

Ala Thr Leu Thr Phe Asp His Ser Leu Glu Ala Gln Trp Thr Lys Trp	
20	25
	30

Lys Ala Met His Asn Arg Leu Tyr Gly Met Asn Glu Glu Gly Trp Arg	
35	40
	45

Arg Ala Val Trp Glu Lys Asn Met Lys Met Ile Glu Leu His Asn Gln	
50	55
	60

Glu Tyr Arg Glu Gly Lys His Ser Phe Thr Met Ala Met Asn Ala Phe	
65	70
	75
	80

Gly Asp Met Thr Ser Glu Glu Phe Arg Gln Val Met Asn Gly Phe Gln	
85	90
	95

Asn Arg Lys Pro Arg Lys Gly Lys Val Phe Gln Glu Pro Leu Phe Tyr	
100	105
	110

Glu Ala Pro Arg Ser Val Asp Trp Arg Glu Lys Gly Tyr Val Thr Pro	
115	120
	125

Val Lys Asn Gln Gly Gln Cys Gly Ser Cys Trp Ala Phe Ser Ala Thr	
130	135
	140

Gly Ala Leu Glu Gly Gln Met Phe Arg Lys Thr Gly Arg Leu Ile Ser	
145	150
	155
	160

Leu Ser Glu Gln Asn Leu Val Asp Cys Ser Gly Pro Gln Gly Asn Glu	
165	170
	175

Gly Cys Asn Gly Gly Leu Met Asp Tyr Ala Phe Gln Tyr Val Gln Asp	
180	185
	190

Asn Gly Gly Leu Asp Ser Glu Glu Ser Tyr Pro Tyr Glu Ala Thr Glu	
195	200
	205

Glu Ser Cys Lys Tyr Asn Pro Lys Tyr Ser Val Ala Asn Asp Thr Gly	
---	--

-continued

210	215	220
Phe Val Asp Ile Pro Lys Gln Glu Lys Ala	Leu Met Lys Ala Val Ala	
225 230	235	240
Thr Val Gly Pro Ile Ser Val Ala Ile Asp Ala Gly His Glu Ser Phe		
245	250	255
Leu Phe Tyr Lys Glu Gly Ile Tyr Phe Glu Pro Asp Cys Ser Ser Glu		
260	265	270
Asp Met Asp His Gly Val Leu Val Val Gly Tyr Gly Phe Glu Ser Thr		
275	280	285
Glu Ser Asp Asn Asn Lys Tyr Trp Leu Val Lys Asn Ser Trp Gly Glu		
290 295	300	
Glu Trp Gly Met Gly Gly Tyr Val Lys Met Ala Lys Asp Arg Arg Asn		
305 310	315	320
His Cys Gly Ile Ala Ser Ala Ala Ser Tyr Pro Thr Val		
325	330	

<210> SEQ_ID NO 68
 <211> LENGTH: 412
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 68

Met Gln Pro Ser Ser Leu Leu Pro Leu Ala Leu Cys Leu Leu Ala Ala	1	5 10 15
Pro Ala Ser Ala Leu Val Arg Ile Pro Leu His Lys Phe Thr Ser Ile		
20 25 30		
Arg Arg Thr Met Ser Glu Val Gly Gly Ser Val Glu Asp Leu Ile Ala		
35 40 45		
Lys Gly Pro Val Ser Lys Tyr Ser Gln Ala Val Pro Ala Val Thr Glu		
50 55 60		
Gly Pro Ile Pro Glu Val Leu Lys Asn Tyr Met Asp Ala Gln Tyr Tyr		
65 70 75 80		
Gly Glu Ile Gly Ile Gly Thr Pro Pro Gln Cys Phe Thr Val Val Phe		
85 90 95		
Asp Thr Gly Ser Ser Asn Leu Trp Val Pro Ser Ile His Cys Lys Leu		
100 105 110		
Leu Asp Ile Ala Cys Trp Ile His His Lys Tyr Asn Ser Asp Lys Ser		
115 120 125		
Ser Thr Tyr Val Lys Asn Gly Thr Ser Phe Asp Ile His Tyr Gly Ser		
130 135 140		
Gly Ser Leu Ser Gly Tyr Leu Ser Gln Asp Thr Val Ser Val Pro Cys		
145 150 155 160		
Gln Ser Ala Ser Ser Ala Ser Ala Leu Gly Gly Val Lys Val Glu Arg		
165 170 175		
Gln Val Phe Gly Glu Ala Thr Lys Gln Pro Gly Ile Thr Phe Ile Ala		
180 185 190		
Ala Lys Phe Asp Gly Ile Leu Gly Met Ala Tyr Pro Arg Ile Ser Val		
195 200 205		
Asn Asn Val Leu Pro Val Phe Asp Asn Leu Met Gln Gln Lys Leu Val		
210 215 220		
Asp Gln Asn Ile Phe Ser Phe Tyr Leu Ser Arg Asp Pro Asp Ala Gln		
225 230 235 240		

-continued

Pro Gly Gly Glu Leu Met Leu Gly Gly Thr Asp Ser Lys Tyr Tyr Lys
 245 250 255

Gly Ser Leu Ser Tyr Leu Asn Val Thr Arg Lys Ala Tyr Trp Gln Val
 260 265 270

His Leu Asp Gln Val Glu Val Ala Ser Gly Leu Thr Leu Cys Lys Glu
 275 280 285

Gly Cys Glu Ala Ile Val Asp Thr Gly Thr Ser Leu Met Val Gly Pro
 290 295 300

Val Asp Glu Val Arg Glu Leu Gln Lys Ala Ile Gly Ala Val Pro Leu
 305 310 315 320

Ile Gln Gly Glu Tyr Met Ile Pro Cys Glu Lys Val Ser Thr Leu Pro
 325 330 335

Ala Ile Thr Leu Lys Leu Gly Gly Lys Gly Tyr Lys Leu Ser Pro Glu
 340 345 350

Asp Tyr Thr Leu Lys Val Ser Gln Ala Gly Lys Thr Leu Cys Leu Ser
 355 360 365

Gly Phe Met Gly Met Asp Ile Pro Pro Pro Ser Gly Pro Leu Trp Ile
 370 375 380

Leu Gly Asp Val Phe Ile Gly Arg Tyr Tyr Thr Val Phe Asp Arg Asp
 385 390 395 400

Asn Asn Arg Val Gly Phe Ala Glu Ala Ala Arg Leu
 405 410

<210> SEQ ID NO 69
 <211> LENGTH: 401
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 69

Met Lys Thr Leu Leu Leu Leu Leu Val Leu Leu Glu Leu Gly Glu
 1 5 10 15

Ala Gln Gly Ser Leu His Arg Val Pro Leu Arg Arg His Pro Ser Leu
 20 25 30

Lys Lys Lys Leu Arg Ala Arg Ser Gln Leu Ser Glu Phe Trp Lys Ser
 35 40 45

His Asn Leu Asp Met Ile Gln Phe Thr Glu Ser Cys Ser Met Asp Gln
 50 55 60

Ser Ala Lys Glu Pro Leu Ile Asn Tyr Leu Asp Met Glu Tyr Phe Gly
 65 70 75 80

Thr Ile Ser Ile Gly Ser Pro Pro Gln Asn Phe Thr Val Ile Phe Asp
 85 90 95

Thr Gly Ser Ser Asn Leu Trp Val Pro Ser Val Tyr Cys Thr Ser Pro
 100 105 110

Ala Cys Lys Thr His Ser Arg Phe Gln Pro Ser Gln Ser Ser Thr Tyr
 115 120 125

Ser Gln Pro Gly Gln Ser Phe Ser Ile Gln Tyr Gly Thr Gly Ser Leu
 130 135 140

Ser Gly Ile Ile Gly Ala Asp Gln Val Ser Ala Phe Ala Thr Gln Val
 145 150 155 160

Glu Gly Leu Thr Val Val Gly Gln Gln Phe Gly Glu Ser Val Thr Glu
 165 170 175

Pro Gly Gln Thr Phe Val Asp Ala Glu Phe Asp Gly Ile Leu Gly Leu
 180 185 190

-continued

Gly Tyr Pro Ser Leu Ala Val Gly Gly Val Thr Pro Val Phe Asp Asn
 195 200 205

Met Met Ala Gln Asn Leu Val Asp Leu Pro Met Phe Ser Val Tyr Met
 210 215 220

Ser Ser Asn Pro Glu Gly Gly Ala Gly Ser Glu Leu Ile Phe Gly Gly
 225 230 235 240

Tyr Asp His Ser His Phe Ser Gly Ser Leu Asn Trp Val Pro Val Thr
 245 250 255

Lys Gln Ala Tyr Trp Gln Ile Ala Leu Asp Asn Ile Gln Val Gly Gly
 260 265 270

Thr Val Met Phe Cys Ser Glu Gly Cys Gln Ala Ile Val Asp Thr Gly
 275 280 285

Thr Ser Leu Ile Thr Gly Pro Ser Asp Lys Ile Lys Gln Leu Gln Asn
 290 295 300

Ala Ile Gly Ala Ala Pro Val Asp Gly Glu Tyr Ala Val Glu Cys Ala
 305 310 315 320

Asn Leu Asn Val Met Pro Asp Val Thr Phe Thr Ile Asn Gly Val Pro
 325 330 335

Tyr Thr Leu Ser Pro Thr Ala Tyr Thr Leu Leu Asp Phe Val Asp Gly
 340 345 350

Met Gln Phe Cys Ser Ser Gly Phe Gln Gly Leu Asp Ile His Pro Pro
 355 360 365

Ala Gly Pro Leu Trp Ile Leu Gly Asp Val Phe Ile Arg Gln Phe Tyr
 370 375 380

Ser Val Phe Asp Arg Gly Asn Asn Arg Val Gly Leu Ala Pro Ala Val
 385 390 395 400

Pro

<210> SEQ ID NO 70
 <211> LENGTH: 396
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 70

Met Lys Thr Leu Leu Leu Leu Val Leu Leu Glu Leu Gly Glu
 1 5 10 15

Ala Gln Gly Ser Leu His Arg Val Pro Leu Arg Arg His Pro Ser Leu
 20 25 30

Lys Lys Lys Leu Arg Ala Arg Ser Gln Leu Ser Glu Phe Trp Lys Ser
 35 40 45

His Asn Leu Asp Met Ile Gln Phe Thr Glu Ser Cys Ser Met Asp Gln
 50 55 60

Ser Ala Lys Glu Pro Leu Ile Asn Tyr Leu Asp Met Glu Tyr Phe Gly
 65 70 75 80

Thr Ile Ser Ile Gly Ser Pro Pro Gln Asn Phe Thr Val Ile Phe Asp
 85 90 95

Thr Gly Ser Ser Asn Leu Trp Val Pro Ser Val Tyr Cys Thr Ser Pro
 100 105 110

Ala Cys Lys Thr His Ser Arg Phe Gln Pro Ser Gln Ser Ser Thr Tyr
 115 120 125

Ser Gln Pro Gly Gln Ser Phe Ser Ile Gln Tyr Gly Thr Gly Ser Leu
 130 135 140

-continued

Ser Gly Ile Ile Gly Ala Asp Gln Val Ser Val Glu Gly Leu Thr Val
 145 150 155 160
 Val Gly Gln Gln Phe Gly Glu Ser Val Thr Glu Pro Gly Gln Thr Phe
 165 170 175
 Val Asp Ala Glu Phe Asp Gly Ile Leu Gly Leu Gly Tyr Pro Ser Leu
 180 185 190
 Ala Val Gly Gly Val Thr Pro Val Phe Asp Asn Met Met Ala Gln Asn
 195 200 205
 Leu Val Asp Leu Pro Met Phe Ser Val Tyr Met Ser Ser Asn Pro Glu
 210 215 220
 Gly Gly Ala Gly Ser Glu Leu Ile Phe Gly Gly Tyr Asp His Ser His
 225 230 235 240
 Phe Ser Gly Ser Leu Asn Trp Val Pro Val Thr Lys Gln Ala Tyr Trp
 245 250 255
 Gln Ile Ala Leu Asp Asn Ile Gln Val Gly Gly Thr Val Met Phe Cys
 260 265 270
 Ser Glu Gly Cys Gln Ala Ile Val Asp Thr Gly Thr Ser Leu Ile Thr
 275 280 285
 Gly Pro Ser Asp Lys Ile Lys Gln Leu Gln Asn Ala Ile Gly Ala Ala
 290 295 300
 Pro Val Asp Gly Glu Tyr Ala Val Glu Cys Ala Asn Leu Asn Val Met
 305 310 315 320
 Pro Asp Val Thr Phe Thr Ile Asn Gly Val Pro Tyr Thr Leu Ser Pro
 325 330 335
 Thr Ala Tyr Thr Leu Leu Asp Phe Val Asp Gly Met Gln Phe Cys Ser
 340 345 350
 Ser Gly Phe Gln Gly Leu Asp Ile His Pro Pro Ala Gly Pro Leu Trp
 355 360 365
 Ile Leu Gly Asp Val Phe Ile Arg Gln Phe Tyr Ser Val Phe Asp Arg
 370 375 380
 Gly Asn Asn Arg Val Gly Leu Ala Pro Ala Val Pro
 385 390 395

 <210> SEQ ID NO 71
 <211> LENGTH: 363
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

 <400> SEQUENCE: 71

 Met Lys Thr Leu Leu Leu Leu Val Leu Leu Glu Leu Gly Glu
 1 5 10 15
 Ala Gln Gly Ser Leu His Arg Val Pro Leu Arg Arg His Pro Ser Leu
 20 25 30
 Lys Lys Lys Leu Arg Ala Arg Ser Gln Leu Ser Glu Phe Trp Lys Ser
 35 40 45
 His Asn Leu Asp Met Ile Gln Phe Thr Glu Ser Cys Ser Met Asp Gln
 50 55 60
 Ser Ala Lys Glu Pro Leu Ile Asn Tyr Leu Asp Met Glu Tyr Phe Gly
 65 70 75 80
 Thr Ile Ser Ile Gly Ser Pro Pro Gln Asn Phe Thr Val Ile Phe Asp
 85 90 95
 Thr Gly Ser Ser Asn Leu Trp Val Pro Ser Val Tyr Cys Thr Ser Pro

-continued

100	105	110	
Ala Cys Lys Thr His Ser Arg Phe Gln Pro Ser Gln Ser Ser Thr Tyr			
115	120	125	
Ser Gln Pro Gly Gln Ser Phe Ser Ile Gln Tyr Gly Thr Gly Ser Leu			
130	135	140	
Ser Gly Ile Ile Gly Ala Asp Gln Val Ser Val Glu Gly Leu Thr Val			
145	150	155	160
Val Gly Gln Gln Phe Gly Glu Ser Val Thr Glu Pro Gly Gln Thr Phe			
165	170	175	
Val Asp Ala Glu Phe Asp Gly Ile Leu Gly Leu Gly Tyr Pro Ser Leu			
180	185	190	
Ala Val Gly Gly Val Thr Pro Val Phe Asp Asn Met Met Ala Gln Asn			
195	200	205	
Leu Val Asp Leu Pro Met Phe Ser Val Tyr Met Ser Ser Asn Pro Glu			
210	215	220	
Gly Gly Ala Gly Ser Glu Leu Ile Phe Gly Gly Tyr Asp His Ser His			
225	230	235	240
Phe Ser Gly Ser Leu Asn Trp Val Pro Val Thr Lys Gln Ala Tyr Trp			
245	250	255	
Gln Ile Ala Leu Asp Asn Met Leu Trp Ser Val Pro Thr Leu Thr Ser			
260	265	270	
Cys Arg Met Ser Pro Ser Pro Leu Thr Glu Ser Pro Ile Pro Ser Ala			
275	280	285	
Gln Leu Pro Thr Pro Tyr Trp Thr Ser Trp Met Glu Cys Ser Ser Ala			
290	295	300	
Ala Val Ala Phe Lys Asp Leu Thr Ser Thr Leu Gln Leu Gly Pro Ser			
305	310	315	320
Gly Ser Trp Gly Met Ser Ser Phe Asp Ser Phe Thr Gln Ser Leu Thr			
325	330	335	
Val Gly Ile Thr Val Trp Asp Trp Pro Gln Gln Ser Pro Lys Glu Gly			
340	345	350	
Pro Cys Val Cys Ala Cys Leu Ser Asp Arg Pro			
355	360		

```

<210> SEQ_ID NO 72
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Substrate competitive inhibitor, L803-mts
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)...(11)
<223> OTHER INFORMATION: May be N-terminally myristoylated
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)...(11)
<223> OTHER INFORMATION: May be a phosphorylated residue

```

<400> SEQUENCE: 72

Gly Lys Glu Ala Pro Pro Ala Pro Pro Gln Ser Pro
 1 5 10

1. A method of treating or preventing amyloidosis in a subject comprising administering to the subject a composition comprising a therapeutically effective amount of at least one catabolic enzyme or a biologically active fragment thereof.
2. The method of claim 1, wherein the catabolic enzyme is selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.
3. The method of claim 2, wherein the catabolic enzyme is PPCA, or a biologically active fragment thereof.
4. The method of claim 3, wherein the PPCA polypeptide comprises an amino acid sequence with at least 85% sequence identity to SEQ ID NO: 2, 43, or 45, or a biologically active fragment thereof.
5. The method of claim 4, wherein administration of the PPCA polypeptide comprises administration of a viral vector comprising a nucleotide sequence having at least 85% identity to SEQ ID NO: 1, 42, or 44.
- 6.13. (canceled)
14. The method of claim 1, wherein at least two catabolic enzymes are administered.
15. The method of claim 14, wherein the catabolic enzymes are selected from protective protein/cathepsin A (PPCA), neuraminidase 1 (NEU1), tripeptidyl peptidase 1 (TPP1), cathepsin B, cathepsin D, cathepsin E, cathepsin K, and cathepsin L.
16. The method of claim 15, wherein the catabolic enzymes are PPCA and NEU1.
17. (canceled)
18. The method of claim 1, wherein the catabolic enzyme acts to prevent the formation of and/or degrade amyloid within the lysosome.
19. The method of claim 1, wherein the catabolic enzyme is targeted to the cell lysosome.
20. The method of claim 1, wherein the catabolic enzyme acts to prevent the accumulation of and/or degrade amyloid outside the cell.
- 21.-24. (canceled)
25. The method of claim 1, wherein the subject is a human.
- 26-27. (canceled)
28. The method of claim 1, wherein the amyloidosis is light-chain (AL) amyloidosis.
29. The method of claim 28, wherein the AL amyloidosis involves one or more organs selected from the heart, the kidneys, the nervous system, and the gastrointestinal tract.
30. The method of claim 1, wherein the amyloidosis is amyloid-beta (A β) amyloidosis.
31. The method of claim 30, wherein the A β amyloidosis is associated one or more diseases selected from Alzheimer's disease, cerebral amyloid angiopathy, Lewy body dementia, and inclusion body myositis.
32. The method of claim 1, further comprising the administration of one or more additional drugs for treating or preventing amyloidosis.
33. The method of claim 32, wherein the one or more additional drugs is selected from melphalan, dexamethasone, prednisone, bortezomib, lenalidomide, vincristine, doxorubicin, and cyclophosphamide.
34. The method of claim 1, further comprising the administration of one or more drugs that acidifies the lysosome.
35. The method of claim 34, wherein the drug that acidifies the lysosome is selected from an acidic nanoparticle, a catecholamine, a β -adrenergic receptor agonist, an adenosine receptor agonist, a dopamine receptor agonist, an activator of the cystic fibrosis transmembrane conductance regulator (CFTR), cyclic adenosine monophosphate (cAMP), a cAMP analog, and an inhibitor of glycogen synthase kinase-3 (GSK-3).
- 36.-48. (canceled)

* * * * *