
(19) United States
US 20120226972A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0226972 A1
Fainberg et al. (43) Pub. Date: Sep. 6, 2012

(54) SYSTEMS AND METHODS THERETO FOR
ACCELERATION OF WEB PAGES ACCESS
USING NEXT PAGE OPTIMIZATION,
CACHING AND PRE-FETCHING
TECHNIQUE

(75) Inventors: Leonid Fainberg, Tel Aviv (IL);
Ofir Ehrlich, Tel Aviv (IL); Gil
Shai, Tel Aviv (IL): Ofer Gadish,
Tel Aviv (IL); Amitay Dobo, Tel
Aviv (IL); Ori Berger, Tel Aviv
(IL)

(73) Assignee: Limelight Networks, Inc., Tempe,
AZ (US)

(21) Appl. No.: 13/471,230

(22) Filed: May 14, 2012

Related U.S. Application Data

(62) Division of application No. 12/848,611, filed on Aug.
2, 2010.

(60) Provisional application No. 61/308.951, filed on Feb.
28, 2010, provisional application No. 61/213,959,
filed on Aug. 3, 2009.

Publication Classification

(51) Int. Cl.
G06F 7700 (2006.01)

(52) U.S. Cl. .. 71.5/234

(57) ABSTRACT

A method and system for acceleration of access to a web page
using next page optimization, caching and pre-fetching tech
niques. The method comprises receiving a web page respon
sive to a request by a user; analyzing the received web page
for possible acceleration improvements of the web page
access; generating a modified web page of the received web
page using at least one of a plurality of pre-fetching tech
niques; providing the modified web page to the user, wherein
the user experiences an accelerated access to the modified
web page resulting from execution of the at least one of a
plurality of pre-fetching techniques; and storing the modified
web page for use responsive to future user requests.

Web Page - 44 42 146- User
Scrws: r Noise

Server ---

$3ak o
E& -a-

- 20- cachel Cacie S{-}i
s acaw (FEC)

Sever
48

Patent Application Publication

Web Page
Serye

3

Web Page
Scrys

-t:

Web Page
Seyer

US 2012/0226972 A1 Sep. 6, 2012 Sheet 1 of 5

Nestwar

Wei Page Access
Accelesator

&

FG,

344 is: 46 iser
Node

... Serve:

$3ack Front
Ef Eri ()

Cache Cacie -130-m
d (FEC)Y (SEC) s Y

48

G 2

Patent Application Publication Sep. 6, 2012 Sheet 2 of 5

G. 3

SAR

/ Receive page

A
S3

S32
Cache received web page in

the back-end cacie

A:alyze page for passisie
acceleration introvenients

Rproverests - No
- a s ---

Apply acceleration
incihods to a modified
web page of the received

rarayagrassess

royidic sodified
page to user node

areaseae

Store (modified) web page in
front-end cache

Most pages?

EN)

US 2012/0226972 A1

Patent Application Publication Sep. 6, 2012 Sheet 3 of 5 US 2012/0226972 A1

Seceive & q'ssery

iktermine a sitnišar oid
page (page

Create six inter is tie
rew page (page-3)

easana

Set a gy inter to ke
beginning f age-3

Poisier
(28&iec tie et:
&f page-2

ES

N - *

O Saš is
re

Compate the disad . .'' . . ' r S47
3.8 & list &f Sir Sg d alien: sists: S: list

timatching data tskicks ef non-matching data
isiisks. www.sixas

S48

Adv8tack pixte:

Patent Application Publication

B

s Axxixe tie cotiaix: 3
tick on the st

xxx-xx-ra

Akivac is tire 3ext & Firy
i: i list
r

Sep. 6, 2012 Sheet 4 of 5

START

Fe:ccise a fist of
saxia-ikichig data

his:

{reate at &sixty contaises
is psge-2

-
Statist is xiii:g

of the saiysi list

St.

acci &
six (fi:

its:

s

No

SS5

Does the entry of
ise list cesex
a blockii gagg

N Ys

FS, 43

(sist is: ecstaires

US 2012/0226972 A1

Ap;&Eidt & crisixt
fitte izia irst tie tick

Patent Application Publication Sep. 6, 2012 Sheet 5 of 5 US 2012/0226972 A1

Block index i Block type Block Content

FG. 5A

Block index Biock type Start Position Eric Posities:
Oidata mium

Fig. 5B

w rrrrrrrrrrrrrter-re-re-rever-----------aaalaaaaaaaaaaaassassassassaxxxaasaaaaaaaa Block index I Block type End position
Old Data

F.G. SC

US 2012/0226972 A1

SYSTEMIS AND METHODS THERETO FOR
ACCELERATION OF WEB PAGES ACCESS

USING NEXT PAGE OPTIMIZATION,
CACHING AND PRE-FETCHING

TECHNIQUE

CROSS-REFERENCES TO RELATED
APPLICATIONS

0001. This patent application is a divisional application of
U.S. patent application Ser. No. 12/848,611, filed Aug. 2,
2010, which is a non-provisional application claiming the
benefit and priority under 35 U.S.C. S119(3) of U.S. Provi
sional Patent Application 61/213.959, filed Aug. 3, 2009, and
U.S. Provisional Patent Application 61/308.951, filed Feb.
28, 2010. The entire disclosure of each of the three above
listed applications is incorporated herein by reference for all
purposes.

FIELD OF THE INVENTION

0002 The present invention relates generally to accesses
to web pages, and more specifically to the acceleration of
access to Such web pages from the user's experience perspec
tive.

BACKGROUND OF THE INVENTION

0003. The traffic over the world-wide-web (WWW) using
the Internet is growing rapidly as well as the complexity and
size of the information moved from sources of information to
users of such information. Bottlenecks in the movement of
data from web servers of the content suppliers to the users,
delays the passing of information and decreases the quality of
the user's experience. Traffic is still expected to increase
faster than the ability to resolve data transfers over the Inter
net

0004 Prior art suggests a variety of ways in an attempt to
accelerate web page content delivery from a Supplier of the
content to the users. However, there are various deficiencies
in the prior art still waiting to be overcome. It would be
therefore advantageous to overcome these limitations, as it
would result in a better user experience and reduction of
traffic load throughout the WWW. It would be further advan
tageous that Such solutions be applicable with at least all
popular web browsers and/or require neither a plug-in nor a
specific browser configuration.

BRIEF SUMMARY OF THE INVENTION

0005 Certain embodiments of the invention include a sys
tem for acceleration of access to web pages. The system
comprises a network interface enabling communication of
one or more user nodes with one or more web servers over a
network for accessing web pages stored in the one or more
web servers; an acceleration server coupled to the network
interface for accelerating access to the webpages to the one or
more user nodes using at least one pre-fetching technique; a
first cache connected to the acceleration server and the one or
more user nodes and operative to cache information associ
ated with requests directed from the one or more the user
nodes to the acceleration server; a second cache connected to
the acceleration server and the one or more web servers and
operative to cache information associated with requests
directed from the one or more web servers to the acceleration

Sep. 6, 2012

server; and a memory coupled to the acceleration server and
containing a plurality of instructions respective of the at least
one pre-fetching technique.
0006 Certain embodiments of the invention further
include a method for acceleration of access to a webpage. The
method comprises receiving a web page responsive to a
request by a user; analyzing the received web page for pos
sible acceleration improvements of the web page access; gen
erating a modified web page of the received web page using at
least one of a plurality of pre-fetching techniques; providing
the modified web page to the user, wherein the user experi
ences an accelerated access to the modified web page result
ing from execution of the at least one of a plurality of pre
fetching techniques; and storing the modified web page for
use responsive to future user requests.
0007 Certain embodiments of the invention also include a
method for acceleration of access to a web page. The method
comprises receiving a request to access a web page; generat
ing a query that includes at least a URL of the requested web
site and one more URLs of web pages similar to the requested
web page; generating a list of non-matching data blocks
between the requested web page and at least one of the similar
web pages; and generating a web page respective of the
requested web page by combining common data blocks with
non-matching data blocks, wherein the common blocks are
retrieved from the at least one similar web page and the
non-matching blocks are retrieved from the requested web
page.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. The subject matter that is regarded as the invention
is particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention will be
apparent from the following detailed description taken in
conjunction with the accompanying drawings.
0009 FIG. 1 is a schematic block diagram of a system for
acceleration of web pages access;
0010 FIG. 2 is a schematic diagram of the data flow in a
system for acceleration of web pages access;
0011 FIG.3 is a flowchart of the processing performed for
the purpose of generating web pages that accelerate access;
0012 FIGS. 4A and 4B are flowcharts illustrating the
operation one of the perfecting acceleration technique in
accordance with an embodiment of the invention; and
(0013 FIGS.5A, 5B, and 5C illustrate an exemplary data
structure created by the technique shown in FIGS. 4A and 4B.

DETAILED DESCRIPTION OF THE INVENTION

0014. The embodiments disclosed by the invention are
only examples of the many possible advantageous uses and
implementations of the innovative teachings presented
herein. In general, statements made in the specification of the
present application do not necessarily limit any of the various
claimed inventions. Moreover, Some statements may apply to
Some inventive features but not to others. In general, unless
otherwise indicated, singular elements may be in plural and
Vice versa with no loss of generality. In the drawings, like
numerals refer to like parts through several views.
0015. In an exemplary but non-limiting embodiment of the
invention, a web access acceleration system is placed in the
path between the user nodes and the web servers and is

US 2012/0226972 A1

responsible for integrating the acceleration mechanisms to
the web pages selected for acceleration.
0016 FIG. 1 depicts an exemplary and non-limiting sche
matic block diagram of a system 100 for acceleration of web
pages access in accordance with an embodiment of the inven
tion. A network 110 is connected to one or more web page
servers 120, each providing content typically using formatted
documents using, for example, the hypertext markup lan
guage (HTML). The network may be a local area network
(LAN), a wide area network (WAN), a metro area network
(MAN), the Internet, the world-wide-web (WWW), the like,
and any combination thereof. One or more user nodes 130
that are viewers of such web pages content are also connected
to the network 110. A user of a user node 130 typically
browses the content using a web browser that is enabled to
display the web pages. By using, for example but not by way
of limitation, a uniform resource locator (URL) the browser is
capable of accessing a desired web page.
0017. The network 110 is also connected a web page
access accelerator (WPAA) 140. In accordance with the
invention instead of providing web page content directly from
a web page server, for example, a web page server 120-1, to a
user node, for example, a user node 130-1, traffic is directed
through the WPAA 140, when applicable, i.e., when config
ured for accelerated access. Accordingly, a request for web
page content is directed through WPAA 140 that is equipped
with various acceleration mechanisms as further detailed
herein below. In one embodiment of the disclosed invention,
the web servers 120 are part of a server farm (not shown). In
a further embodiment thereof, the WPAA 140 is provided as
part of the server farm. In yet another embodiment of the
invention, the WPAA 140 is integrated as an integral part of a
web page server 120.
0018 FIG. 2 shows an exemplary and non-limiting sche
matic diagram of the data flow in a system for acceleration of
web pages access in accordance with an embodiment of the
invention is shown. In addition, the details of the structure of
the WPAA 140 are also shown. For simplicity reasons the
network interface is removed, however, a network type inter
face is the typical way for Such components to communicate
with each other. The WPAA 140 comprises of an acceleration
server 142 that is coupled to storage 148. The storage 148
typically holds instructions for the execution of one or more
acceleration techniques, described herein below in more
detail, that result in accelerating the transfer of web pages
content to a user wishing to access such content. Under the
control of the acceleration server 142, there is a back-end
cache (BEC) 144, connected to the acceleration server 142
and to the one or more web page servers 120-1 through 120-n.
The BEC 144 handles requests directed from the acceleration
server 142 to the one or more web page servers 120. By
caching information in BEC 144, overall access to web page
content is accelerated. Under the control of acceleration
server 142 there is a front-end cache (FEC) 146, connected to
the acceleration server 142 and to the one or more user nodes
130-1 through 130-m. The FEC 146 handles requests directed
from the one or more user nodes 130 to the acceleration server
142. By caching information in FEC 146, the overall access to
web page content is further accelerated.
0019 FIG. 3 shows an exemplary and non-limiting flow
chart 300 of the processing performed for the purpose of
generating web pages that accelerate access in accordance
with an embodiment of the invention. In S310, a page is
received, for example by the WPAA 140, in response to a

Sep. 6, 2012

request to receive a web page from, for example, web page
server 120. Optionally in S320, the received web page is
stored in a cache, for example, the BEC 144. In S330, the
received web page is analyzed by acceleration server 142
using one or more acceleration and perfecting techniques
(methods), to determine whether acceleration improvements
may be achieved. In S340, it is checked whether improve
ments were determined to be achievable, and if so execution
continues with S350; otherwise, execution continues with
S360. In S350, the received web page is modified into a
modified web page that contains one or more acceleration
techniques discussed herein below in more detail. In S360,
the modified or the received web page is provided to the user
node 130 that requested the web page. Optionally in S370, the
modified web page or the received web page, as may be
appropriate, is stored in a cache, for example FEC 146. In
S380, it is checked whether additional pages are to be handled
and if so execution continues with S310; otherwise, execution
terminates.
0020 While reference is made hereinabove to web pages,

it can equally refer to portions of web pages, resources of a
web page, and the like, without departing from the scope of
the invention. Resources of a HTML web page include, but
are not limited to, stylesheet files, JavaScript and other script
files, images, video and any other parts of the pages which are
not embedded in the HTML.
0021. The method disclosed above may be performed by
the WPAA 140, but without limitations. May be used in other
web acceleration embodiments of the invention, including,
integration in a web page server Such as a web page server
120.
0022 While the description hereinabove was made with
respect to one particular system, other systems may be
deployed to benefit from the teachings hereinabove and
herein below. In one exemplary and non-limiting embodi
ment of the invention, a system that works as a plug-in/filter/
extension to one or more web servers is used. The flow of data
through the system is the same as described with respect of
the system in FIG. 1, however, it may also utilize knowledge
about the data stored on the web site, such as but not limited
to, page template and images. In yet another exemplary and
non-limiting embodiment, the disclosed pre-fetching accel
eration techniques may be implemented in whole or in part as
one or more plugins of a web site integrated development
environment (IDE). Using a plugin, the inventions herein are
integrated into the web site during its development. The plu
gin therefore enables at “compilation” or “build” process of
the IDE, changes to the web site coding made by the user of
the web site developer according to the inventions. This may
take place during development or automatically implemented
during development. In yet another exemplary and non-lim
iting embodiment of the invention, a utility containing, for
example and without limitation, a command line component,
a user interface (UI) component or any other interface, is run
on the designed web site code after it is ready, and/or in one or
more points-in-time during the development thereof, to trans
form the web site code by employing the inventions herein.
0023. Following are descriptions of acceleration tech
niques used with respect to, for example, S350, discussed
above. However, the use of such techniques may be a part of
other embodiments which are specifically included herein.
I. Web-Site and Browser Transparent Pre-Fetching
0024 Conventional pre-fetching of resources in web
pages may be implemented in one of the following ways: a)

US 2012/0226972 A1

installing a browser plug-in or any other desktop Software
which fetches resources and pages in the background using its
own algorithms; b) introducing new tags and syntax into the
HTML, HTTP and Javascript to provide “hints' to the
browser regarding a potential pre-fetch, however, modern
popular browsers do not provide any kind of Support to Such
"hint language'; and c) designing, as a part of the website, a
mechanism which pre-fetches resources with a mechanism
that the browsers support, however, this puts a burden on the
designer of the website to write and maintain this pre-fetch
code.
0.025 Inaccordance with an embodiment of the invention,
the pre-fetching is performed by deploying the WPAA 140 in
the communication path between the web page server 120 and
the client or user node 130. In other embodiments of the
invention, pre-fetching of web-pages resources can be done
using a proxy, which is a component running on the same
machine as the web server 120 or any other appropriate solu
tions capable of achieving the teachings below. Neither the
web page server 120 nor the browser on the user node 130 is
ware that this component exists, i.e., the WPAA 140 is trans
parent to the operation of web page servers 120 and user
nodes 130. The WPAA 140 analyzes the pages going through
it and changes the web page to contain the pre-fetch code that
may be created using methods and mechanisms described
herein. The definition of which resources to pre-fetch and
where on the page to locate the code may be defined in
configuration, reached by Static analysis of pages or dynamic
analysis of pages and traffic, determined using changing sta
tistics, or other applicable techniques as well as any combi
nation of thereof. The code generated instead of the original
code of the web page is designed to be understood and pro
cessed by modern browsers and does not require any addi
tions to it.
0026. One advantage over prior art, is that even if the web
site has not changed, the same page can contain code to
pre-fetch different resources every time. This may be advan
tageous, for example, if or when the usage pattern of a web
page changes. Moreover, the fact that neither the user 120 nor
the web page server 130 needs to be aware of the existence of
the WPAA 140 between them.
0027. In one embodiment, the WPAA 140 intercepts the
web page and parses it prior to sending it out to a user node
130. The original web page may reside in the BEC 144. The
acceleration server 142 based on instructions contained in
storage 148 parses the web page in accordance with the inven
tion described above and provides a modified web page,
which may also be stored in the FEC 146 for future use by
other user nodes 130.

II. Pre-Fetching Resources of Subsequent or Other Pages
0028. Today's pre-fetch techniques, pre-fetch either
whole pages or the HTML part of the web page. This is
problematic if when the exact next pages are not necessarily
known. For example, if the web page has a dynamic compo
nent it may change between accesses to the web page.
0029. According to the principles of the invention there is
performed pre-fetching of the resources of other or subse
quent pages, with or without the HTML page itself. As many
of the resources are common to several or all the pages that
may be fetched and therefore pre-fetching such resources is
likely to save fetching them for other pages.
0030. In one embodiment, the WPAA 140 intercepts the
web page and parses it prior to sending it out to the user. The

Sep. 6, 2012

original web page may reside in the BEC 144. The accelera
tion server 142 based on instructions contained in the storage
148 parses the web page in accordance with the invention
described above and provides a modified web page, which
may also be stored in the FEC 146 for future use by other user
nodes 130.

III. Fetching Linked Pages on Demand Prior to Link Access

0031. In some cases, after browsing a site for a while,
Some of the new pages load very quickly. Most of their
resources are already in the browser's cache, so the only
non-cached items are the HTML itself and a few resources
which have not been seen on previous pages yet. In Such
cases, loading the HTML from the network is a big percent
age of loading the entire web page, even when the HTML is
loaded very quickly.
0032. According to the principles of the invention there is
added a script, for example, JavaScript, which detects the
mouse presence over a link, a button, or any other means
pointing by means of a URL, or other applicable means, to
another page. This script may be further enabled to detect
whether the focus is on the link, the button, or otherwise point
of entry to another URL, which is particularly relevant to
cases when the navigation is done using the keyboard and not
the mouse. After the detection, the script, might or might not
wait a while to reduce the number of false positives, before it
pre-fetches the relevant page. If, during this time, the mouse
moved from location of a URL, or has otherwise lost its focus
of the web page, the pre-fetch is canceled. If the page pointed
to by the link is Small and the server is fast, many times it is
possible to bring the page to the browsers cache before the
link is actually clicked, thus Substantially reducing the load
time of that page as it appears to the user.
0033. In one embodiment of the invention, a post-process
ing tool parses a web page prepared by a developer for adding
a detection Script implementing the principle described
above. In another embodiment, the WPAA 140 intercepts the
web page and parses it prior to sending it out to the user. The
original web page may reside in the BEC 144. The accelera
tion server 142 based on instructions contained in storage 148
parses the web page in accordance with the invention
described above and provides the web page with the detection
Script implementation. The modified web page may also be
stored in the FEC 146 for future use by other user nodes 130.

IV. A Path Dependent Web Page Delivery to a User

0034. On the same web site, many pages have common
resources. Thus, it is important to know on a page whether the
resources are already in the browser's cache or not. For
example, different optimizations should be applied on the
page to load it faster.
0035. As for most web sites the resources in the cache
typically expire within several hours, it is usually correct to
assume that if the page was reached from a different page in
the same web site, the common resources will be in the
browser's cache and if not, most of them will not. Thus,
according to an embodiment of the invention, a web page is
processed differently for a case where it was reached from
within the web site and for the case it was reached from
without the web site. The conclusion about where the page
was reached is determined according, for example but with

US 2012/0226972 A1

out limitation, the HTTP headers of the web page, a special
cookie, the existence of a “referrer header, a configuration or
any other technique.
0036. In one embodiment, the WPAA 140 intercepts the
web page and sends the user a different version thereof. The
original web page may reside in the BEC 144. The accelera
tion server 142 based on instructions contained in storage 148
parses the web page in accordance with the invention
described above and provides the web page with the detection
Script implementation. The modified web page may also be
stored in the FEC 146 for future use by other user nodes 130.
Other implementations may include, without limitations,
having a component as part of the web page server 120
enabled to perform this acceleration technique, or installing a
software utility on the user node 130, enabled to transform the
web page differently according to its origin.

V. Caching of Dynamic Data

0037. There are several levels of server-side caching that a
web server (e.g., a server 120) can use to increase its perfor
mance. If the web page is generated every time it is requested,
one of this cache levels can be, and many times is, to keep a
generated version of the page and serve it every time, re
creating it only when the content of the page is changed. If the
HTML content of the page contains a part which differs
between several instances of the page, and the number of such
different instances is great, it is impossible to keep a cache of
the described type as on the HTML level, every different bit
means a different page. Some web sites solve it by putting all
the dynamic data, which changes between the instances, into
a separate HTML page and load it as a “subpage'. However,
many sites have this type of data embedded into their HTML
document, thus cannot maintaina cache of the described type.
0038 According to an embodiment of the invention, cach
ing of dynamic data includes separating the static parts of the
HTML page from the dynamic parts. This can be performed
by configurations, for example, “marking' parts of the
HTML as static or dynamic, or automatically, by studying
instances of the same page and deducing which parts are
common. Once the static and dynamic parts of the page have
been marked, this information can be used in two ways: a) the
static part can be processed, for example, to achieve optimi
Zations using, for example, techniques discussed in this docu
ment or otherwise, and the processed data kept in cache. Once
a request for the page is accepted, the original page is
requested and then the dynamic parts of it are “applied on the
processed Static parts. The resulting page is then sent to a user
node 130; and b) the static part, processed or not, is sent to a
user node 130 from the cache, without a request to the web
server to obtain the original page. However, a code is injected
into the page which directs the browser, without any need of
additional Support, to asynchronously send additional one or
more requests to retrieve the dynamic data (see, for example,
techniques to read resources into the cache). When the addi
tion data is retrieved, it is injected into the DOM to the
relevant places. In a preferred embodiment, this technique
can be utilized web pages in which the dynamic part is rela
tively small, for example, the dynamic part includes fields
where the username of a user is entered. In Such web page, the
entire page is first read from the server-side cache (e.g., BEC
144) and only the username's value is read from the web
server (e.g., one of web servers 120) and is displayed later in

Sep. 6, 2012

the page. As the dynamic data is brought in an asynchronous
way, this technique does not delay the loading of the common
data.
0039. In one embodiment of the invention, a post-process
ing tool parses a web page prepared by a developer for sepa
rating static and dynamic parts of the HTML page in accor
dance with the principle described above. In another
embodiment, the WPAA 140 intercepts the web page and
parses it prior to sending the page out to a user node 130. The
original web page may reside in the BEC 144. The accelera
tion server 142 based on instructions contained in storage 148
parses the web page in accordance with the invention
described above and separating static and dynamic parts of
the HTML page for the modified web page. The modified web
page may also be stored in the FEC 146 for future use by other
user nodes 130.

VI. Intelligent Caching of Resources
0040. The cache in browsers operates in two ways. In a

first aspect of operation, once a resource is loaded to the
browser, the resource may include a header which instructs
the browser how long it should be in its cache (either a period
of time of the time of the expiry of the cache). While this
resource is in the browser's cache, every time the browser
needs it, the browser reads the resource from the cache and
does not send a request for this resource. One the cache
expires, the resource is deleted from the cache and the next
time the browser needs the resource, the browser sends a
request to get the resource. Any file type, such as but not
limited to, HTML, Javascript, images, and CSS, may be
affected therefrom. In a second aspect of operation, once a
resource's time in the browser's cache is expired, and the
browser needs the resource, the browser sends a request to the
web server along with some information about the resource
that it has in its cache, for example, its last modification time.
Then the server may return, instead of the content of the
request a message confirming that the existing resource that is
up to date and may be used.
0041. A severe limitation is that once a resource is in a
browser's cache, it cannot be invalidated, except for explicitly
doing so by the user by clicking “clear cache' in the browser.
As for this resource, requests to the web server (e.g., one of
web servers 120) are not sent, and furthermore, the server
cannot even send a message indicating that the resource is not
up to date. Thus, a web server cannot set too long of an
expiration time as the resource may change and the browser
will not be cognizant of it. On the other hand, any request,
even when resulting with the server sending a message indi
cating that the resource is up to date, is time consuming and
often delays the loading time of the web page, thus setting too
short an expiration period hurts performance.
0042. In accordance with the invention, every resource is
equipped with a version indication and this version is
increased every time when the resource is changed. Every
whole web page, i.e., a web page along with all its resources,
also has a version. This version is a tuple, or otherwise a
combination of the versions of all its resources, including the
HTML page itself In one example, a hash function may be
used to change the resource's version every time any resource
is changed. The version of the page, oran identifier that stands
for this version, is sent to the user along with the web page
every time it is requested. If the user has already accessed that
page once or more, the version of the page the user has, or an
identifier which stand for this version, is sent with the request.

US 2012/0226972 A1

In one embodiment, this is achieved by means of cookies. All
the resources are sent with a very long expiration time. Thus,
when the browser encounters these resources it will take them
from the browser cache.

0043. Once the web server (e.g., one of web servers 120)
receives a request for web page, the WPAA 140 intercepts the
request and checks the difference between the user's version
and the current version of a resource in the requested web
page. All the resources that have not changed are referenced
“as is and the references to resources which have changed
are rewritten to point to the new references. This is done by
changing the filename of the pointed resource or its query
string. For example, but not by way of limitation, changing
the reference of “image.1.jpg” to point to “image.2.jpg
which is the newer version or changing the reference of
“image.jpg?ver-1 to point to “image.jpg?ver-2. This way
requests are made to the new versions of the changed
SOUCS.

0044) The disclosed technique can also be applied to parts
of resources. For example, if the difference between the new
version of the HTML and the version the user has is only one
line and the HTML is big, the browser can request only this
one line and run a client-side code which applies this line into
the cached data. In order to use this technique on HTML
pages, a stub can be used in the following sequence: a) the
browser requests a file. This file is very small and the web
server directs the browser never to cache it. Along with the
request the version of the web page is sent, and, b) the server
then directs the browser (can be used in a number of ways: a
response “redirect’ header or a code embedded in the
response which forces the browser to request a new page or to
bring the difference and apply it). The redirected page
depends on the version and may be cached.

VII. Processing Links in the Background

0045. When prior to serving a page a web server (e.g., one
of web servers 120), or aproxy, has to do some processing, for
example, generate or optimize the page. Such processing
delays the loading of the page. In some cases, processing of a
page can be performed in the background, but there are web
sites with a huge amount of pages, for example, results of
different queries, and they cannot be all processed in the
background in a reasonable time.
0046 When a page is served by a web server or proxy, the
pages which are candidates for being the next pages to be
server for the same user nodes are also processed. The can
didate web pages can be deduced either statically from ana
lyzing the current page, for example, by looking at all the
links, or by collecting statistics and choosing accordingly, by
a configuration or a combination, for example, checking if
there are many links and the order of their processing is
defined by the statistics. This can be done recursively to any
depth and repeating the process on all the chosen pages.

VIII. Sending the Common Part of a Plurality of Web Pages
Once

0047. Typically, pages of a particular web site contain
common data. This is done mostly to keep a consistent look
and feel to the web site. This is notable for pages derived from
the same template, but also in the case of pages from different
templates. Every time a browser requests a page, the response
contains the entire page, including the common parts. This is
repeated over and over again and of course burdens the band

Sep. 6, 2012

width requirements and slows it unnecessarily as no new data
is in fact transferred to the viewer. According to an embodi
ment of the invention, the common data between pages is sent
only once.
0048. Therefore, in accordance with the principles of the
invention only the non-common data of a page is sent to the
user every time that the user requests the page, while the
common data is sent only once. This requires a server side
component, or a proxy in the pathway between the user node
(e.g., a user node 130) and a web server (e.g., one of the web
servers 120). In an embodiment of the invention, this accel
eration technique is performed by the WPAA 140.
0049 Specifically, the WPAA 140 computes the differ
ences (also referred to herein as “diff) between the requested
pages and sends only such differences to a browser of a user
130. In addition, only for the first time that the page was
requested the common portions are sent as well. A client side
component (e.g., a user node 13) receives the common parts
once, and then creates the entire data item using the common
parts and differences for a specific page. It should be noted
that either item itself or its representation, for example, in
DOM format, may be sent.
0050. The diff can be created in various levels and using a
variety of algorithms. The diff can be created from the text of
the web pages, or from any logical representations thereof, for
example and without limitation, the DOM of the page can be
used to create a diff, when the pages are compared on the
DOM elements level. One example of creating a diff is using
a “rsync’-like algorithm. The diff of a page the user navigates
to, or for that matter any other page, can be calculated using
the current page the user is at or any other pages the algorithm
recognizes or can assume that the user has. This way a page
for which the diff is the smallest can be chosen. The diff can
be applied by loading the non-common part using a synchro
nous connection and then applying the diff, or using asyn
chronous communication Such as AJAX and then when the
diff is ready, adding the diff to the web page.
0051 FIGS. 4A and 4B are non-limiting and exemplary
flowcharts illustrating the operation of the “sending the com
mon part of a plurality of web pages once acceleration tech
nique in accordance with an embodiment of the invention.
This technique is performed by a client side which may be one
of the use nodes 130 and a server side which may be the
WPAA 140.
0.052 The processing of a web page according to this
technique is initiated once a user clicks on a link. The link
may be in a form of a URL directing to another page. Accord
ing to this embodiment, the user action (i.e., clicking on the
linking) invokes an AJAX query to the serverside. The query
contains the current URL, the URL that the user wants to
navigate to, and information about which additional URLs
from the same website the user's browser cache contains.
0053. The AJAX query initiates the process performed by
the server side and further depicted in FIG. 4A. In S411, the
serverside receives the AJAX query. At S412, it is determined
which of the URLs that the user already accessed, has the
smallest diff from the requested URL. The (old) page that
corresponds to the URL is marked as “page-1 and the page
that corresponds to the URL that the user navigates to is
marked as “page-2. Thereafter, a pointer is created and fur
ther pointed to the beginning of page-2 (S413 and S414). The
pointer is used for sequentially scanning of page-2 when the
diff is computed. Once the pointer reaches the end of page-2,
the process terminates (S415 and S418).

US 2012/0226972 A1

0054. At S416, the diff between page-1 and page-2 is
computed to create a list of non-matching data blocks and
their positions in-page 1. In exemplary embodiment of the
invention, S416 can be performed using any rsync-like algo
rithms. One with ordinary skill in the art would be familiar
with the operation of such algorithms. At S417, the serverside
sends to the client side the created list and the URL of page-1.
0055. The client side, upon receiving the list of non
matching data blocks, applies the diff to page-1 to create the
modified page which should is identical to page-2. That is, the
nee page to be viewed is a combination of the content of
page-1 and the diff as contained in the received list. The client
side can use a rsync mechanism to combine the received diff
and page-1. It should be noted that page-1 is stored in the
client side's cache.
0056 FIG. 4B shows a non-limiting and exemplary flow
chart illustrating the process performed by the client side
(e.g., a user node 130) in accordance with an embodiment of
the invention. The process creates a modified page-2 that
contains the content of page-1 and non-matching blocks. In
S421, a list of non-matching block as computed by the server
side (e.g., WPAA 140) is received. In S422, an empty con
tainer for the modified page-2 is created. The process scans
the received list from its beginning unit its end when filling
the container (S423, S424 and S428). In S425 it is checked if
a current selected entry is the received list describes a data
block in page-1, if so, in S426, the respective data block from
page-1 is append to the container; otherwise, in S427, the
respective data block from the received list is appended to the
container. At S429, once all entries in the created list have
been checked, the container including the contents of the
modified page-2 is output.
0057 This acceleration technique can be used in combi
nation with the use of the browser's cache, with resource
combining, or in-lining. When resources are being in-lined
inside an HTML page, or for that matter any other container,
the cache of the browser is less efficient than when the
resources are taken from external files. However, using the
described technique, when the same resource is in-lined in
two or more different pages, it is not loaded from the server
twice, as the “rsync' algorithm, or another appropriate algo
rithm, compresses it to several bytes only.
0058. Following is a non-limiting example describing this
acceleration technique as applied on resources contained in a
web page. In this example, an old resource (resource-1) con
tains the data “Zabcd 1234 and a new resource contains (re
source-2) the data “yxabc34. The process for creating a list
of non-matching data blocks (e.g., as shown in FIG. 4A)
outputs the listina form of a data structure illustrated in FIGS.
5A through FIG. 5C.
0059. The process, as described with reference to FIG.4B,
uses that created list and resource-1 (containing
“zabcd 1234) to generate a modified resource-2 as follows:
after processing block 0, the modified resource-2 container
contains “yx', after processing block 1, the modified
resource-2 container includes “yxabc', where the new data
added being “abc' as it is the data which is located between
positions 1 and 3 of resource-1. Then, upon processing of
block 2, the modified resource-2 container includes
“yxabc123, where the new data being added is “123 located
between positions 5 and 7 of the resource-1. As can be noticed
the container include the content of the resource-2.

0060. It should be noted that this process accelerates the
access to the new page/resource (page-2/resource-2) as

Sep. 6, 2012

instead of loading the new page only differences should be
retrieved from the server-side as the content of the old page/
resource (page-1/resource-1) is cached at the client side.

IX. A Technique for Measuring the Load Time of a Web Page

0061 The load sequence of a typical web page consists of
many different resources. Some of the resources are visible
while others are not. Some of the visible resources are part of
the viewport and others are not. Additionally, the speed a web
page loads, is that which is perceived by a user once the
viewport is complete. It is close to impossible to deduce when
the page has finished loading from the user's point of view
based merely upon network analysis. Current measurement
techniques either calculate Such time once all the components
of the page have finished loading, including those that are
invisible, or check the "onload' event of the HTML docu
ment, which also has only a small correlation to the actual
user perceived load time.
0062. In most websites, the last item to be loaded in the
viewport is a graphic item, such as an image of a Flash object.
This happens because the size of graphic items is big and
takes time to load. Furthermore, graphic items are often
loaded later than the textual, i.e., HTML, JavaScript, CSS,
etc., elements. Using this assumption, the following accelera
tion techniques measures the actual perceived load time of a
web page:

0.063 For every background image, the server creates
invisible dummy images that are marked as loaded when
the background image finishes loading.

0064. The time the page starts loading is saved in
memory.

0065. Once every predefined time interval, that can be
set to different values, depending on the desires granu
larity of the result, the following is performed:
0.066 All the graphical elements in the web page are
checked, for example, by scouting the DOM of the
web page, by lists exported by the browser, Such as
document images, or by any other means. The ele
ments can be images, Flash objects, or any other type
of element.

0067 For every element found, its position is cal
culated, for example, by using all the elements
starting from the desired elements and finishing at
the root of the DOM tree, or by any other way.

0068. If the element's position is in the viewport, it
is added to the known viewport element list.

0069 Save to storage, persistent or not, a graphical
Snapshot of the screen that may contain only the
browser, or any other part of the screen, along with the
elapsed time passed since the start load time. These
Snapshots can be later analyzed to determine the exact
time the viewport has finished rendering.

0070 Repeat the process for all the known element
lists previously created.
0071. If any of the elements has not finished load
ing yet, which can be determined by a readyState
property or any other way, then wait for the next
iteration.

0072. If all the elements are loaded, check if
enough time has passed since the last element in the
list was loaded and since the list was last changed.
If enough time passed, where "enough time’ can be

US 2012/0226972 A1

defined to be any suitable value, the time the last
resource in the list was loaded is marked as the time
the page ended loading.

0073. Return, display, or otherwise store in memory the
load time which is the end of loading time minus the start
of loading time, in addition to marking the Snapshot
corresponding to the time the document perceived to be
fully loaded.

X. Using Versioning to Cache Combined Files

0074. One technique to reduce latency when reading mul
tiple resources is to combine resources files, and thereby
reducing the overall latency. When creating combined
resource files, one loses the advantage of the browser cache.
Thus, the same resource which is part of two or more files now
combined will not be cached between these different files.

0075) Every resource from a combined file is assigned a
unique identifier which includes its version. This can be any
unique number and it can be any hash function of the content
or the name or URL of the file. For example, the popular hash
function MD5 can be used to assign a unique identifier to a
hash function. Either the use node 130 or the web server 120
holds in their internal storage the identifiers of the resources
already read and have in the respective cache. In case of a user
node 130, the identifiers may be stored in a browser cache, a
Flash storage, a local storage, or any other storage type. In
case the server holds this data, it holds it for every client,
either in memory, or in storage such as a disk or any other
location. In this case, every user is uniquely identified (for
example using an identification cookie), thus this data can be
saved for any user separately.
0076. In the case where the user node 130 (or client) stores
the resources data, the web server 120 adds a script at the
beginning of every web page that performs the following
actions:

0.077
0078 Check if this resource, including version, is
present in the storage.
0079 If it exists, replace the URL of the resource
pointed to by the cached inline file, and as may be
applicable to a position in it.

0080. If it does not exist, add its path to the list of
missing resources and replace the URL of the
resource pointed to by a new combined file which
contains all the missing resources, and as may be
applicable to a position in it.

For every relevant resource on the page:

I0081. Send the list of all the missing resources as part of
a request to the server. This request asks for an inlined
file with all the missing resources. The names or identi
fiers of the missing resources may be passed in the query
string or in any other way.

This way all the resources which were already seen by the
browser in previous combined files are taken from there and
all the resources which were not previously seen by the
browser will arrive in a new single combined file. Another
way to implement this is to save all the information about
every user in the sever side. This way the page which is served
by the server already contains the correct URL's (whether
those which are already in the cache or new ones) and it needs
not to be replaced by a client-side script.

Sep. 6, 2012

0082 In the case where the web server 120 stores the
resources data, the server 120 performs the following action
of the web page before sending it to the user:

0.083 Identify the user (for example using a cookie).
0084. If the user was not found, assume that the user
does not have any resource in the browser's cache.

0085. If the user is identified, get from the storage (ei
ther memory, or disk or any other storage) the resources
that the user has in the browser's cache and the names of
the container that have these resources in them.

I0086 Create one or more empty containers, which will
be used for the resources the user does not already have.

0.087 Scan the web page for resources and for each
resource performs the following:
I0088. If the user already has it in the browser's cache,

replace the reference to the resource by the reference
of the resource in the container the user already has.

0089. If the user does not have the resource in the
browser's cache, add the resource to one of the pre
pared containers and change the reference to the
resource to point to the resource in the container.

0090. At the end of the process all the resources the user
already has will be referenced to containers the user has
in its cache and the new resources will be referenced to
the resources in the new containers. Thus only the new
resources will be downloaded by the client, combined in
the prepared one or more containers.

I0091. In one embodiment of the invention, the tasks per
formed by the web server 120 when combining resources can
be performed by the WPAA 140. According to this embodi
ment, the WPAA 140 intercepts the page before sending to the
user node 130, determines where the resources data resides,
and modifies the web page based on the location of the
resources data.

0092. The principles of the invention and embodiments
thereto are implemented as hardware, firmware, software or
any combination thereof. Moreover, the software is prefer
ably implemented as an application program tangibly embod
ied in a program storage unit, a non-transitory computer
readable medium or a non-transitory machine-readable Stor
age medium that can be in a form of a digital circuit, an
analogy circuit, a magnetic medium, or combination thereof.
The application program may be uploaded to, and executed
by, a machine comprising any Suitable architecture. Prefer
ably, the machine is implemented on a computer platform
having hardware such as one or more central processing units
(“CPUs), a memory, and input/output interfaces. The com
puter platform may also include an operating system and
microinstruction code. The various processes and functions
described herein may be either part of the microinstruction
code or part of the application program, or any combination
thereof, which may be executed by a CPU, whether or not
Such computer or processor is explicitly shown. In addition,
various other peripheral units may be connected to the com
puter platform such as an additional data storage unit and a
printing unit.
0093. The foregoing detailed description has set forth a
few of the many forms that the invention can take. It is
intended that the foregoing detailed description be under
stood as an illustration of selected forms that the invention can
take and not as a limitation to the definition of the invention.
It is only the claims, including all equivalents that are
intended to define the scope of this invention.

US 2012/0226972 A1

What is claimed is:
1. A method for acceleration of access to a web page,

comprising:
receiving a request to access a web page;
generating a query that includes at least a uniform resource

locator (URL) of the requested web page and one or
more URLs of web pages similar to the requested web
page.

generating a list of non-matching data blocks between the
requested web page and at least one of the similar web
pages; and

generating a web page respective of the requested web
page by combining common data blocks with non
matching data blocks, wherein the common blocks are
retrieved from the at least one similar web page and the
non-matching blocks are retrieved from the requested
web page.

2. The method for acceleration of access to the web page as
recited in claim 1, wherein the web page and the at least one
similar web page are each pages of a same web site.

3. The method for acceleration of access to the web page as
recited in claim 1, wherein another request to access the at
least one similar web page was received prior to receipt of the
request.

4. The method for acceleration of access to the web page as
recited in claim 1, wherein the at least one similar web page
includes a web page in a browser cache.

5. The method for acceleration of access to the web page as
recited in claim 1, wherein the one or more URLs of web
pages similar to the requested web page includes a plurality of
URLs of web pages similar to the requested web page, the
method further comprising:

determining a difference between the URL of the requested
web page each URL of the plurality of URLs of web
pages similar to the requested web page; and

determining that the difference between the URL of the
requested web page and the URL of the at least one
similar web page is smaller than the difference between
the URL of the requested web page and the URL of
another similar web page.

6. The method for acceleration of access to the web page as
recited in claim 1, wherein generating the list of non-match
ing data blocks between the requested web page and the at
least one of the similar web pages comprises using a pointer
to sequentially scan a URL of the at least one of the similar
web pages.

7. The method for acceleration of access to the web page as
recited in claim 1, wherein generating the web page respec
tive of the requested web page by combining common data
blocks with non-matching data blocks comprises: creating a
container that includes the common blocks and the non
matching data blocks.

8. A non-transitory, machine-readable medium that stores
machine-readable instructions that, when executed by one or
more central processing units (CPUs), cause the one or more
CPUS to:

receive a request to access a web page;
generate a query that includes at least a URL of the

requested web page and one or more URLs of web pages
similar to the requested web page;

access a list of non-matching data blocks between the
requested web page and at least one of the similar web
pages; and

Sep. 6, 2012

generate a web page respective of the requested web page
by combining common data blocks with non-matching
data blocks, wherein the common blocks are retrieved
from the at least one similar web page and the non
matching blocks are retrieved from the requested web
page.

9. The non-transitory, machine-readable medium that
stores machine-readable instructions as recited in claim 8.
wherein the web page and the at least one similar web page
are each pages of a same web site.

10. The non-transitory, machine-readable medium that
stores machine-readable instructions as recited in claim 8.
wherein another request to access the at least one similar web
page was received prior to receipt of the request.

11. The non-transitory, machine-readable medium that
stores machine-readable instructions as recited in claim 8.
wherein the at least one similar web page includes a web page
in a browser cache.

12. The non-transitory, machine-readable medium that
stores machine-readable instructions as recited in claim 8.
wherein the one or more URLs of web pages similar to the
requested web page includes a plurality of URLs of web
pages similar to the requested web page, wherein the
machine-readable instructions, when executed by the one or
more CPUs, further cause the one or more CPUs to:

determine a difference between the URL of the requested
web page each URL of the plurality of URLs of web
pages similar to the requested web page; and

determine that the difference between the URL of the
requested web page and the URL of the at least one
similar web page is smaller than the difference between
the URL of the requested web page and the URL of
another similar web page.

13. The non-transitory, machine-readable medium that
stores machine-readable instructions as recited in claim 8.
wherein the machine-readable instructions, when executed
by the one or more CPUs, further cause the one or more CPUs
to generate the list of non-matching data blocks between the
requested web page and the at least one of the similar web
pages by using a pointer to sequentially scan a URL of the at
least one of the similar web pages.

14. The non-transitory, machine-readable medium that
stores machine-readable instructions as recited in claim 8.
wherein generating the web page respective of the requested
web page by combining common data blocks with non
matching data blocks comprises: creating a container that
includes the common blocks and the non-matching data
blocks.

15. A method for acceleration of access to a web page,
comprising:

receiving, at a server, a query that includes at least a first
URL of a first web page and a second URL of a second
web page similar to the first web page, the first web page
being a web page requested by a client device, and the
second web page being a web page previously or cur
rently accessed at the client device;

comparing the first URL of the first web page to the second
URL of the second web page:

identifying, based on the comparison, non-matching data
blocks between the first web page and the second web
page; and

responding to the query, the response identifying the non
matching data blocks.

US 2012/0226972 A1

16. The method for acceleration of access to the web page
as recited in claim 15, wherein the first web page and the
second web page are each pages of a same web site.

17. The method for acceleration of access to the web page
as recited in claim 15, wherein the second web page is stored
in a browser cache at the client device.

18. The method for acceleration of access to the web page
as recited in claim 15, wherein the query indicates a plurality
of second web pages, each second web page similar to the first
web page, and each second web page including a web page
previously or currently accessed at the client device.

Sep. 6, 2012

19. The method for acceleration of access to the web page
as recited in claim 15, further comprising determining that a
difference between the URL of the first web page and the
URL of the second web page is smaller than a difference
between the URL of the first web page and a URL of another
web page identified in the query.

20. The method for acceleration of access to the web page
as recited in claim 15, wherein comparing the first URL of the
first web page to the second URL of the second web page
comprises comparing a document object model (DOM) of the
first web page to a DOM of the second web page.

c c c c c

