METHODS AND SYSTEMS FOR DISTRIBUTED TESTING OF NETWORK CONFIGURATIONS FOR ZERO-RATING

A server causes a user device configured as a test agent to implement a testing plan for testing a network configuration regarding zero-rating. By causing the test agent to implement the testing plan, the server causes the test agent to send one or more requests to one or more respective predetermined IP addresses. The server receives data indicating results of the one or more requests. The server further uses the data to identify whether the network configuration is potentially misconfigured regarding zero-rating. In response to identifying that the network configuration is potentially misconfigured regarding zero-rating, the server sends a notification of the potential misconfiguration to a network operator.
METHODS AND SYSTEMS FOR DISTRIBUTED TESTING OF NETWORK CONFIGURATIONS FOR ZERO-RATING

TECHNICAL FIELD

[0001] This relates generally to network communications, including but not limited to distributing testing plans for network configuration regarding zero-rating on electronic devices from a server device.

BACKGROUND

[0002] Mobile devices have become an increasingly dominant means through which consumers access, download, and consume electronic content over the Internet.

[0003] Despite substantial advancements in telecommunications technology, however, achievable access to the Internet and data rates for accessing content on the Internet are still limited. Considering the limited availability of Internet access in certain geographic regions, such as developing countries, consumers often have difficulty accessing the Internet and therefore are often left frustrated when using mobile devices. Furthermore, it is difficult to monitor the network configuration on a server system to understand whether the network is properly configured and the services for Internet access are properly provided to respective user devices (e.g., mobile devices).

SUMMARY

[0004] Accordingly, there is a need for methods, devices, and systems for improving network operability.

[0005] Embodiments of the underlying invention addressing this object in particular are set forth in the appended claims and in the following description.

[0006] Embodiments of the invention, in particular set forth in the claims and the following description are directed to methods, devices, and systems for distributing testing of network configuration for zero-rating from a server system to user devices. Zero-rated (e.g., free) access to certain content (e.g., zero-rated content) on the Internet may be provided to users, while non-zero-rated (e.g., paid) access to other content (e.g., non-zero-rated content) on the Internet may also be offered. Zero-rated content thus may be accessed without being charged by a network provider for network access, while accessing non-zero-rated content results in charges being levied by the network provider for network access. The network configuration should be monitored to ensure that the zero-rated content is properly served to
respective user devices for free. Furthermore, the non-zero-rated content should not be provided to any user device without the user device paying for the non-zero-rated access. By distributing testing of network configurations for zero-rating from the server system to respective user devices, the server system can timely monitor whether the network is properly configured and operated to offer zero-rating services to the user devices.

[0007] In accordance with some embodiments, a computer-implemented method may be performed at an electronic device (e.g., a server device) with one or more processors and memory storing instructions for execution by the one or more processors. The method includes causing, e.g. by a server device, a user device configured as a test agent to implement a testing plan for testing a network configuration regarding zero-rating. By causing the user device configured as the test agent to implement the testing plan, the method includes causing the test agent to send one or more requests to one or more respective predetermined IP addresses. The server device may receive first data indicating results of the one or more requests. The server device may further use the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating.

[0008] In accordance with some embodiments, an electronic device (e.g., a server device) may include one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for performing the operations of the method or any embodiment of the method as described herein. In accordance with some embodiments, a non-transitory computer-readable storage medium has stored therein instructions that, when executed by the electronic device, cause the electronic device to perform the operations of the method or any embodiment of the method as described herein.

[0009] In accordance with some embodiments, a computer-implemented method is performed at an electronic device (e.g., a user device) with one or more processors and memory storing instructions for execution by the one or more processors. The method includes receiving, e.g. at a user device, a testing plan, from a server device, for testing a network configuration regarding zero-rating. The testing plan comprises instructions for causing the electronic device to send one or more requests to one or more respective predetermined IP addresses. Upon implementing the testing plan, the electronic device sends the one or more requests to the one or more respective predetermined IP addresses. The electronic device further sends data, to the server device, for identifying whether the network
configuration is potentially misconfigured regarding zero-rating. The data is generated based on the one or more requests and respective responses to the one or more requests.

[0010] In accordance with some embodiments, an electronic device (e.g., a user device) includes one or more processors, memory, and one or more programs; the one or more programs are stored in the memory and configured to be executed by the one or more processors. The one or more programs include instructions for performing the operations of the method or any embodiments of the method directed to the user-side device execution of the method as described herein. In accordance with some embodiments, a non-transitory computer-readable storage medium has stored therein instructions that, when executed by the electronic device, cause the electronic device to perform the operations of the method or any embodiments of the method directed to the user-side device execution of the method as described herein.

[0011] Further embodiments of the invention, in particular embodiments directed to the server-side implementation and/or client-side implementation result from the dependent claims and the following description of exemplary embodiments in connection with the annexed figures.

[0012] Embodiments according to the invention are in particular disclosed in the attached claims, wherein any feature mentioned in one claim category, e.g. method, can be claimed in another claim category, e.g. system or device, as well. The dependencies or references back in the attached claims are chosen for formal reasons only. However any subject matter resulting from a deliberate reference back to any previous claims, in particular multiple dependencies, can be claimed as well, so that any combination of claims and the features thereof shall be considered as being disclosed and suitable for being claimed regardless of the dependencies chosen in the attached claims. The subject-matter which can be claimed comprises not only the combinations of features as set out in the attached claims but also any other combination of features in the claims, wherein each feature mentioned in the claims can be combined with any other feature or combination of other features in the claims. Furthermore, any of the embodiments and features described or depicted herein, in particular in connection with the annexed figures, can be claimed in a separate claim and/or in any combination with any embodiment or feature described or depicted herein or with any of the features of the attached claims.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings. Like reference numerals refer to corresponding parts throughout the figures and description.

[0014] Figure 1 is a block diagram illustrating a network architecture, in accordance with some embodiments.

[0015] Figure 2 is a block diagram illustrating a user device, in accordance with some embodiments.

[0016] Figure 3 is a block diagram illustrating a server system, in accordance with some embodiments.

[0017] Figure 4 is a block diagram illustrating a model used for testing network configuration regarding zero-rating, in accordance with some embodiments.

[0018] Figure 5 is a flow diagram illustrating a method for distributing testing plans, in accordance with some embodiments.

DESCRIPTION OF EMBODIMENTS

[0019] Reference will now be made to embodiments, examples of which are illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide an understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.

[0020] It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are used only to distinguish one element from another. For example, first data could be termed second data, and, similarly, second data could be termed first data, without departing from the scope of the various described embodiments. The first data and the second data are both data, but they are not the same data.

[0021] The terminology used in the description of the various embodiments described herein is for the purpose of describing particular embodiments only and is not intended to be
limiting. As used in the description of the various described embodiments and the appended
claims, the singular forms "a," "an," and "the" are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will also be understood that the term
"and/or" as used herein refers to and encompasses any and all possible combinations of one
or more of the associated listed items. It will be further understood that the terms "includes,"
"including," "comprises," and/or "comprising," when used in this specification, specify the
presence of stated features, integers, steps, operations, elements, and/or components, but do
not preclude the presence or addition of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

[0022] As used herein, the term "if is, optionally, construed to mean "when" or
"upon" or "in response to determining" or "in response to detecting" or "in accordance with a
determination that," depending on the context. Similarly, the phrase "if it is determined" or
"if [a stated condition or event] is detected" is, optionally, construed to mean "upon
determining" or "in response to determining" or "upon detecting [the stated condition or event]"
or "in response to detecting [the stated condition or event]" or "in accordance with a
determination that [a stated condition or event] is detected," depending on the context.

[0023] As used herein, the term "exemplary" is used in the sense of "serving as an
example, instance, or illustration" and not in the sense of "representing the best of its kind."

[0024] Figure 1 illustrates a network architecture 100 in accordance with some
embodiments. The network architecture 100 is used for distributing testing plans to user
devices for checking whether the network, or a network segment, is configured properly. For
example, the network architecture 100 is used for checking whether a configuration for zero-
rating (e.g., free network access to certain Internet content) and/or non-zero-rating (e.g., paid
network access to certain Internet content) is correct. By using zero-rating services, a user
can access one or more IP addresses for free without being charged for network access.
Whereas for non-zero rating services, a user pays service fees to a network operator to access
one or more IP addresses.

[0025] The network architecture 100 includes a number of user devices (also called
"client device," "client systems," "client computers," or "clients") 102-1, 102-2, … 102-n
communicably connected to a server system 104 by one or more networks 112 (e.g., the
Internet, cellular telephone networks, mobile data networks, other wide area networks, local
area networks, metropolitan area networks, and so on). In some embodiments, the one or
more networks 112 include a public communication network (e.g., the Internet and/or a
cellular data network), a private communications network (e.g., a private LAN or leased lines), or a combination of such communication networks.

[0026] The network architecture 100 includes one or more network segments 106-1, 106-2, … 106-m corresponding to one or more base stations 114-1, 114-2, … 114-m respectively. (While each segment is shown corresponding to a single base station, a segment may correspond with multiple base stations.) In some embodiments, the network connection within a network segment is provided by a certain network operator (e.g., a network service provider, a network carrier, or a cellular company) that owns or controls one or more corresponding base stations and related infrastructure for providing network services to the user devices within the network segment. For example, the base station 114 (e.g., 114-1) of a corresponding network segment 106 (e.g., 106-1) communicably connects one or more user devices 102 (e.g., 102-1 and 102-2) to one another and/or to the networks 112.

[0027] In some embodiments, the user devices 102 are mobile devices and/or fixed-location devices. For example, the user devices 102 include computing devices such as feature phones, smart phones, smart watches, personal digital assistants, portable media players, tablet computers, 2D gaming devices, 3D (e.g., virtual reality) gaming devices, laptop computers, desktop computers, televisions with one or more processors embedded therein or coupled thereto, in-vehicle information systems (e.g., an in-car computer system that provides navigation, entertainment, and/or other information), and/or other appropriate computing devices that can be used to communicate with the server system 104. In some embodiments, the server system 104 is a single computing device such as a computer server. In other embodiments, the server system 104 is implemented by multiple computing devices working together to perform the actions of a server system (e.g., cloud computing). The server system 104 is distinct and independent from network operators. In some embodiments, the server system 104 is capable of identifying certain network issues associated with one or more different network operators respectively. For example, the server system 104 can identify network congestion, network error(s), and/or certain network configurations with regard to zero rating and/or other services) associated with a respective network operator for a respective network segment. In some embodiments, the server system 104 can identify certain network issues associated with a network operator without any help from the network operator.

[0028] In some embodiments, user devices 102 are associated with users (not shown) who employ the user devices 102 to access one or more IP addresses (e.g., including zero-
rated IP addresses and/or non-zero-rated IP addresses). In some embodiments, the requests to
access the one or more IP addresses are forwarded to and routed by one or more modules of
the server system 104 or a separate server system (not shown). The user devices 102 execute
web browser applications and/or other applications that can be used to access the one or more
IP addresses.

[0029] In some embodiments, a user interacting with the user devices 102 is provided
with zero-rating services. The zero-rating services may be provided, tested, and monitored
by the server system 104. Alternatively, the zero-rating services are provided by a separate
server system (not shown), but are tested and monitored by the server system 104. In some
embodiments, by using the zero-rating services, the user devices 102 can access one or more
pre-determined IP addresses for free. For example, the user devices 102 can download,
upload, and/or view a webpage or use an application associated with a predetermined IP
address for free, without being charged for network access. Thus these types of
predetermined IP addresses are called zero-rated IP addresses. The content from zero-rated
web pages and/or applications is called zero-rated content. In some embodiments, the user
devices 102 can access one or more IP addresses that are not zero-rated IP addresses by
paying service fees to a network operator. These IP addresses that require paid network
access are called non-zero-rated IP addresses, and the content provided by the non-zero-rated
IP addresses is called non-zero-rated content.

[0030] The network architecture 100 may also include third-party servers 110-1, 110-
2, ... 110-p. In some embodiments, a given third-party server 110 is used to host third-party
websites that provide web pages to user devices 102. In some embodiments, a given third-
party server is used to host third-party applications that are used by client devices 104. As
discussed above, a server system (e.g., the server system 104 or a separate server system)
may route or redirect requests from user devices 102 to respective third-party servers 110. In
some embodiments, the server system (e.g., the server 104) uses inline frames ("iframes") to
nest independent websites within a network session (e.g., a zero-rated or non-zero-rated
session). In some embodiments, the server system (e.g., the server 104) uses iframes to
enable third-party developers to create applications that are hosted separately by a third-party
server 110, but operate within a session of a user and are accessed through the user's profile
in the server system. Exemplary third-party applications include applications for books,
business, communication, contests, education, entertainment, fashion, finance, food and drink,
games, health and fitness, lifestyle, local information, movies, television, music and audio,
news, photos, video, productivity, reference material, security, shopping, sports, travel,
utilities, social networking, and the like. In some embodiments, a given third-party server 110
is used to provide third-party content (e.g., news articles, reviews, message feeds, etc.).

[0031] In some embodiments, the respective IP addresses of one or more third-party
servers 110 are predetermined to be zero-rated IP addresses configured to provide zero-rated
content to the user devices 102. A user device 102 does not need to pay any data usage fee to
a network provider for viewing, downloading, and/or uploading data to the one or more zero-
rated IP addresses. In some embodiments, the respective IP addresses of one or more third-
party servers 110 are non-zero-rated IP addresses that provide non-zero-rated (e.g., paid)
content. A user device 102 pays a data usage fee to a network provider for viewing,
downloading, and/or uploading data to the one or more non-zero-rated IP addresses.

[0032] In some embodiments, a given third-party server 110 is a single computing
device, while in other embodiments, a given third-party server 110 is implemented by
multiple computing devices working together to perform the actions of a server system (e.g.,
cloud computing).

[0033] Optionally, the network architecture 100 further comprises a test element (e.g.,
103-1) located within a network segment (e.g., 106-1) for collecting baseline data related to
the network segment. In some embodiments, the test element 103 is a computing device
including one or more processors, memory, and one or more programs stored in the memory
and configured to be executed by the one or more processors. The one or more programs
include instructions (e.g., test scripts) to be executed by the test element 103 for testing
network connections associated with the network segment. For example, the one or more
programs include Javascript code which, when executed by the one or more processors,
causes the test element 103 to send requests to one or more predetermined IP addresses (e.g.,
including zero-rated IP addresses and/or non-zero-rated IP addresses), collect results of the
requests, and send the collected results to the server system 104. In some embodiments, the
test element 103 is provided entirely by or in conjunction with infrastructure of a third-party
provider. In some embodiments, the test element 103 has a zero-balanced account for
network access, such that the account does not have any credit for network access. The test
element 103 is optional for one or more network segments.

[0034] In some embodiments, the test element 103 is requested to access the one or
more predetermined IP addresses periodically according to a predetermined schedule. For
example, a timestamp associated with a respective request from the test element 103 to a
predetermined IP address is predetermined and known. In some embodiments, the test
element 103 is located at a fixed and known location within the network segment. In some
embodiments, the test element 103 is associated with a fixed and known IP address. In some
embodiments, the test element 103 is associated with a predetermined and known device
identifier. In some embodiments, a network type associated with the test element 103 is
predetermined, fixed, and known.

[0035] The data from the test element 103, along with other types of data such as the
predetermined requested IP addresses, the test element identifier, the location of the test
element 103, the network type associated with the test element 103, and the timestamp
associated with a respective request from the test element 103 to a predetermined IP address,
are used by the server system 104 as baseline data to be analyzed by a statistical model. The
baseline data from the test element 103 may be used as ground-truth data, model training data,
model testing data, and/or data for verifying network configuration of a corresponding
network segment when applying the model to incoming data from user devices 102.

[0036] Figure 2 is a block diagram illustrating an exemplary user device 102 (e.g.,
one of the user devices 102-1 through 102-n, Figure 1) in accordance with some
embodiments. The user device 102 typically includes one or more central processing units
(CPU(s), e.g., processors or cores) 202, one or more network (or other communications)
interfaces 210, memory 212, and one or more communication buses 214 for interconnecting
these components. The communication buses 214 optionally include circuitry (sometimes
called a chipset) that interconnects and controls communications between system components.

[0037] As also shown in Figure 2, the user device 102 includes a user interface 204,
including output device(s) 206 and input device(s) 208. In some embodiments, the input
devices include a keyboard or track pad. Alternatively, or in addition, in some embodiments,
the user interface 204 includes a display device that includes a touch-sensitive surface, in
which case the display device is a touch-sensitive display. In user devices that have a touch-
sensitive display, a physical keyboard is optional (e.g., a soft keyboard may be displayed
when keyboard entry is needed). The output devices (e.g., output device(s) 206) also
optionally include speakers or an audio output connection (i.e., audio jack) connected to
speakers, earphones, or headphones. Furthermore, some user devices 102 use a microphone
and voice recognition device to supplement or replace the keyboard. Optionally, the user
device 102 includes an audio input device (e.g., a microphone) to capture audio (e.g., speech
from a user). Optionally, the user device 102 includes a location-detection device, such as a
GPS (global positioning satellite) or other geo-location receiver, and/or location-detection software for determining the location of the user device 102.

[0038] In some embodiments, the one or more network interfaces 210 include wireless and/or wired interfaces for receiving data from and/or transmitting data to other user devices 102, the server system 104, and/or other devices or systems. In some embodiments, data communications are carried out using any of a variety of custom or standard wireless protocols (e.g., NFC, RFID, IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth, ISA100.1a, WirelessHART, MiWi, etc.). Furthermore, in some embodiments, data communications are carried out using any of a variety of custom or standard wired protocols (e.g., USB, Firewire, Ethernet, etc.). For example, in some embodiments, the one or more network interfaces 210 includes a wireless LAN (WLAN) interface 250 for enabling data communications with other WLAN-compatible devices and/or the server system 104 (via the one or more network(s) 112, Figure 1).

[0039] Memory 212 includes high-speed random-access memory, such as DRAM, SRAM, DDR RAM, or other random-access solid-state memory devices; and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices. Memory 212 may optionally include one or more storage devices remotely located from the CPU(s) 202. Memory 212, or alternately, the non-volatile memory solid-state storage devices within memory 212, includes a non-transitory computer-readable storage medium. In some embodiments, memory 212 or the non-transitory computer-readable storage medium of memory 212 stores the following programs, modules, and data structures, or a subset or superset thereof:

- an operating system 216 that includes procedures for handling various basic system services and for performing hardware dependent tasks;
- network communication module(s) 218 for connecting the user device 102 to other computing devices (e.g., server system 104, user devices 102, and/or other devices) via the one or more network interface(s) 210 (wired or wireless);
- a user interface module 220 that receives commands and/or inputs from a user via the user interface 204 (e.g., from the input devices 208, which may include keyboards, touch screens, microphones, eye tracking components, three-dimensional gesture tracking components, and the like), and provides user interface objects and other
outputs for display on the user interface 204 (e.g., the output devices 206, which may include a display screen, a touchscreen, a speaker, etc.);

- one or more client application modules 222, including the following modules (or sets of instructions), or a subset or superset thereof:

 - a web browser module 224 (e.g., Internet Explorer by Microsoft, Firefox by Mozilla, Safari by Apple, Opera by Opera Software, or Chrome by Google) for accessing, viewing, and interacting with web sites (e.g., zero-rated and/or non-zero rated web sites), which includes zero-rating test scripts 226 provided by the server system 104 (e.g., as embedded in a web page) for testing network configuration regarding zero-rating services when executed by the web browser module 224;

 - a zero-rating application module 230 for providing an interface to a zero-rating service (e.g., a zero-rating service provided by the server system 104) and related features, which includes testing files 232 received from the server system 104. For example, the user device 102 runs a Free Basic Services (FBS) application provided by the server system 104. The zero-rating application module 230 may be a part of the FBS application that provides links directly to the server system 104 but with the end destination being the one or more third-party servers 110-1, 110-2, … 110-p. The server system 104 may act as a proxy and route traffic between the one or more third-party servers 110-1, 110-2, … 110-p and the user device 102; and

 - other optional client application modules 240, such as applications for word processing, calendaring, mapping, weather, stocks, time keeping, virtual digital assistant, presenting, number crunching (spreadsheets), drawing, instant messaging, e-mail, telephony, video conferencing, photo management, video management, a digital music player, a digital video player, 2D gaming, 3D (e.g., virtual reality) gaming, electronic book reader, and/or workout support, which include installation files 242 corresponding to one or more versions of respective optional client application modules 240.

[0040] Each of the above identified modules and applications correspond to a set of executable instructions for performing one or more functions as described above and/or in the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (i.e., sets of instructions)
need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules are, optionally, combined or otherwise re-arranged in various embodiments.

[0041] Figure 3 is a block diagram illustrating an exemplary server system 104 in accordance with some embodiments. The server system 104 typically includes one or more processing units (processors or cores) 302, one or more network or other communications interfaces 304, memory 306, and one or more communication buses 308 for interconnecting these components. The communication buses 308 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. The server system 104 optionally includes a user interface (not shown). The user interface, if provided, may include a display device and optionally includes inputs such as a keyboard, mouse, trackpad, and/or input buttons. Alternatively or in addition, the display device includes a touch-sensitive surface, in which case the display is a touch-sensitive display.

[0042] Memory 306 includes high-speed random-access memory, such as DRAM, SRAM, DDR RAM, or other random-access solid-state memory devices; and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, and/or other non-volatile solid-state storage devices. Memory 306 may optionally include one or more storage devices remotely located from the processor(s) 302. Memory 306, or alternately the non-volatile memory device(s) within memory 306, includes a non-transitory computer-readable storage medium. In some embodiments, memory 306 or the computer-readable storage medium of memory 306 stores the following programs, modules and data structures, or a subset or superset thereof:

• an operating system 310 that includes procedures for handling various basic system services and for performing hardware dependent tasks;

• a network communication module 312 that is used for connecting the server system 104 to other computers via the one or more communication network interfaces 304 (wired or wireless) and one or more communication networks (e.g., the one or more networks 112);

• a zero-rating database 314 for storing data associated with the zero-rating services, which includes:

 o model information 320, which includes model data 322, such as model type information, model format information, and relevant coefficient(s) used for a respective statistic model for checking network configuration regarding zero-
rating services; in some embodiments, the model information 320 includes sets of model data 322 for respective statistic models used for different types of applications (e.g., testing zero-rating network configuration, testing free-data abuse, etc.)

- test case information 330 associated with each test case, including but not limited to:
 - network connection result data 332;
 - IP addresses 334 associated with one or more requests for each test case, including but not limited to one or more predetermined IP addresses (e.g., zero-rated IP addresses and/or non-zero-rated IP addresses) for testing;
 - test device identifiers 336 (e.g., test agent identifiers);
 - location information 338 associated with test devices (e.g., test agents);
 - network type information 340 associated with test devices (e.g., network types and/or network operator information); and
 - timestamps 342 associated with respective requests from the test devices to predetermined IP addresses;

- user management 350, such as user information 352 and/or user device information 354 (e.g., user device type, user device MAC address, user device identifier, etc.); and

- testing plan 356 including testing scripts and/or components to be implemented on a user device (e.g., by using browser module 224 or zero-rating application module 230 on the user device 102, Figure 2);

- a zero-rating server module 360 for providing zero-rating services and related features (e.g., in conjunction with browser module 224 or zero-rating application module 230 on the user device 102, Figure 2), which includes:
 - a testing plan management module 362 for generating and distributing testing plans 356;
 - a model management module 364 for performing model building, model training, model testing, model applying, and/or model updating;
a test agent management module 366 for managing and selecting one or more test agents from among the user devices 102; and

a data analysis module 368 for handling test case data 330 received from respective test agents (and optionally test elements) and analyzing the test case data 330 using the model(s) 320; and

- an installation files database 370 for storing installation files of applications (e.g., for downloading to and installation on client devices 102, Figure 1), which includes:

 - application installation files 372 for installing an application (e.g., zero-rating application module 230, optional client application modules 240, Figure 2), which may include installation files for a plurality of versions of a respective application.

The zero-rating database 314 stores data associated with the zero-rating services in one or more types of databases, such as graph, dimensional, flat, hierarchical, network, object-oriented, relational, and/or XML databases.

User management information 350 includes user information 352, such as user profiles, login information, privacy and other preferences, biographical data, and the like. In some embodiments, for a given user, the user information 352 includes the user's name, profile picture, contact information, birth date, sex, marital status, family status, employment, education background, preferences, interests, and/or other demographic information.

In some embodiments, the zero-rating server module 360 includes web or Hypertext Transfer Protocol (HTTP) servers, File Transfer Protocol (FTP) servers, as well as web pages and applications implemented using Common Gateway Interface (CGI) script, PHP Hyper-text Preprocessor (PHP), Active Server Pages (ASP), Hyper Text Markup Language (HTML), Extensible Markup Language (XML), Java, JavaScript, Asynchronous JavaScript and XML (AJAX), XHP, Javelin, Wireless Universal Resource File (WURFL), and the like.

Figure 4 is a block diagram illustrating an exemplary model 400 used for testing network configuration regarding zero-rating in accordance with some embodiments. In some embodiments, the model 400 is a machine-learning model that is built from example inputs and used for making predictions and/or decisions related to network configuration regarding zero-rating. In some embodiments, the server system 104 provides test case data received from the one or more user devices 102 and the one or more test elements 103 to the model 400 for training, testing, and application to obtain the predictions and/or decisions.
In some embodiments, the model 400 includes model information 320 stored in the memory 306 of the server system 104. In some embodiments, the model 400 includes model information that is stored in another storage space entirely or in conjunction with memory 306, and is retrievable and usable by the server system 104 via networks 112. In some embodiments, the model 400 is managed by the model management module 364 of the system server 104. In some embodiments, the model 400 is managed by one or more modules stored in another storage space entirely or in conjunction with memory 306, and is retrievable and usable by the server system 104 via networks 112.

In some embodiments, input data 410 of the model 400 includes data for a plurality of test cases. In some embodiments, a test case (e.g., test case 1) is received from a zero-rating application module (e.g., zero-rating application module 230, Figure 2) executed on a user device 102. In some embodiments, a test case (e.g., test case 2) is received from a web browser module (e.g., web browser module 224, Figure 2) which executes zero-rating testing scripts (e.g., zero-rating test scripts 226, Figure 2.) In some embodiments, a test case (e.g., test case 3) is received from a test element (e.g., test element 103-1, Figure 1) included in a network segment (e.g., network segment 106-1, Figure 1.) In some embodiments, test case information (e.g., test case information 330, Figure 3) for each test case includes one or more data fields, such as a network connection result, a requested IP address, a test device identifier (e.g., a test agent identifier), a location of the test device, a network type associated with the test device, and/or a timestamp associated with a respective request from the test device to a predetermined IP address.

In some embodiments, input data 410 of the model 400 includes a set of data (e.g., ground-truth data) for training and testing the model 400 prior to applying the model 400 to incoming data from any user devices.

In some embodiments, the ground-truth data is collected from the test element 103 of a respective network segment 106 (e.g., test element 103-1 of network segment 106-1, Figure 1.) In some embodiments, one or more data fields of the test element are known, such as the requested IP address, the test element identifier, the location of the test element, the network type associated with the test element, and the timestamp associated with a respective request from the test element to a predetermined IP address. The test element sends network connection results to the server system 104 and the server system 104 feeds the test element data to the model 400 for training and/or testing purposes.
In some embodiments, the ground-truth data is collected from one or more user devices 102 (e.g., test agents) that satisfy a predefined likelihood of having a zero balance for network access. In one example, based on the test case data, the server system 104 may detect that a user device has successfully accessed zero-rated content, but has failed to access non-zero-rated content. In another example, the server system 104 may detect that a request from a user device for non-zero-rated content resulted in a redirect to a portal for zero-rated content. In yet another example, the server system 104 may receive an indication from a network operator and/or a user device that the user device has (or is likely to have) a zero balance for network access. The server system 104 selects such user devices that are likely to have a zero balance as test agents to collect the ground-truth data. In some alternative embodiments, the ground-truth data is collected from one or more user devices 102 that are randomly selected.

In some embodiments, input data 410 of model 400 includes incoming data from any user devices (e.g., test agents) for testing the network configuration regarding zero-rating. The server system 104 may distribute testing plans to all or a plurality of randomly selected user devices, and the input data 410 of the model 400 is collected from a plurality of user devices 102 that implement the testing plans.

In some embodiments, the input data 410 is collected from one or more user devices 102 (e.g., test agents) that satisfy a predefined likelihood of having a zero balance for network access. The likelihood of a user device having a zero balance for network access may be determined by the server system 104. For example, the server system 104 may detect that a user device has successfully accessed zero-rated content, but has failed to access non-zero-rated content. In another example, the server system 104 may detect that a request from a user device for non-zero-rated content resulted in a redirect to a portal for zero-rated content. Alternatively or in combination, the likelihood of a user device having a zero balance for network access may be determined by the user device and/or a network operator that provides network services to the user device. For example, the server system 104 may receive an indication from a network operator and/or a user device that the user device has (or is likely to have) a zero balance for network access.

In some embodiments, output data 420 of the model 400 includes a probability of having a network misconfiguration regarding zero-rating in a network segment, a probability that the test device has a zero-balanced account (or whether the test device has a zero-balanced account), and/or a probability of having network-connection errors occurred.
within a network segment (or whether network errors occurred within a network segment). The output data 420 may also include a confidence level for potential misconfiguration regarding zero-rating within a network segment.

[0055] Figure 5 is a flow diagram illustrating a method 500 for distributing testing plans, in accordance with some embodiments. The method 500 is performed by a server system 504 (e.g., server system 104, Figures 1 and 3) and a user device 502 (e.g., user device 102-1, Figures 1 and 2). Operations performed in Figure 5 correspond to instructions stored in computer memories (e.g., memories 212 and 306, Figures 2-3) or other computer-readable storage mediums. In some embodiments, the user device 502 can be any user device 102 as explained above with reference to Figures 1-2. For example, the user device 502 may run the testing plan on an application (e.g., Facebook Android app), on a website (e.g., a Facebook website), using a testing tool (e.g., a Facebook Test tool), and/or by a test element (e.g., the test element 103 as explained above with reference to Figure 1).

[0056] In some embodiments, the server system 504 (e.g., Figures 1 and 3) sends (510) a testing plan (e.g., testing plan 356, Figure 3) to the user device 502. The user device 502 receives the testing plan. The testing plan is used for testing a network configuration regarding zero-rating and includes instructions for causing the user device 502 to send one or more requests to one or more respective predetermined IP addresses. In some embodiments, the one or more predetermined IP addresses include one or more zero-rated IP addresses. In some embodiments, the predetermined IP addresses include one or more non-zero-rated IP addresses. The testing plan is sent, for example, over the one or more networks 112 (Figure 1).

[0057] In some embodiments, the server system 504 sends a testing plan to all user devices (e.g., user devices 102-1, 102-2, ..., 102-n, Figure 1.) All the user devices may receive the testing plan. In some embodiments, all the user devices may implement the testing plan (e.g., functioning as test agents). For example, each user device 102 may send one or more requests to one or more predetermined IP addresses.

[0058] Optionally, the server system 504 selects (512) a user device (e.g., user device 502) as a test agent (e.g., test device) to implement the testing plan. In some embodiments, all user devices receive the testing plan from the server system 504, but only the selected one or more test agents implement the testing plan. Alternatively, only the selected test agents receive and implement the testing plan.
In some embodiments, before the user device 502 implements the testing plan, the server system 504 identifies the user device 502 as satisfying a predefined likelihood of having a zero balance for network access, and selects (512) the identified user device as the test agent. For example, the server system 504 identifies that the user device 502 has successfully accessed zero-rated content, but has failed to access non-zero-rated content. In response, the server system 504 selects (512) such identified user device as the test agent. In some embodiments, the server system 504 detects that a request from the user device 502 to non-zero-rated IP addresses for non-zero-rated content resulted in a redirect to a portal for zero-rated content and, in response, selects (512) such user device as the test agent. The portal may be a web page related to zero-rating services. The portal may include information and/or links for a user of the user device 502 to check the account balance. Alternatively or additionally, the portal may include information reminding the user of the attempt to access the non-zero-rated IP addresses and may provide options for the user to buy data plan(s) to be used for accessing non-zero-rated IP addresses in the future.

In some embodiments, the server system 504 selects one or more user devices 502 as respective test agents based on one or more (e.g., multiple) indications including but not limited to previous test results, user device states, network states, account states, and subscriber identification module (SIM) card balance information associated with respective user devices 502. For example, if the network regarding zero rating is properly configured, a user device that has zero balance in a prepaid subscriber identification module (SIM) card coupled to the user device can only access zero-rated IP addresses. By selecting a user device as satisfying a predefined likelihood of having a zero balance for network access as the test agent, the server system 504 can test the network configuration regarding zero rating without integrating with the charging system from any network operator. Thus the system and the method for testing network configuration regarding zero rating can be scalable to any number of network operators with any number of network segments.

In some embodiments, the server system 504 receives an indication from a network operator that the user device 502 has a zero balance for network access. In response, the server system 504 selects (512) the user device as the test agent. In some embodiments, the server system 504 receives an indication from the user device 502 regarding account balance information, such as a zero balance for network access. In response, the server system 504 selects (512) the user device as the test agent. For example, the user device 502 determines whether the user account balance satisfies a predefined likelihood of having a
zero-balance for network access. The user device 502 then reports to the server system 504 a result of the determination (e.g., the user account balance is likely to be a zero balance).

[0062] The user device 502 implements (514) the testing plan received from the server system 504. In some embodiments, the server system 504 causes the user device 502 configured as a test agent to implement the testing plan. The testing plan includes instructions for causing the user device 502 to send one or more requests to one or more respective predetermined IP addresses.

[0063] In some embodiments, the testing plan is implemented on an application (e.g., zero-rating application module 230, Figure 2) running on the user device 502. The user device 502 executes the application (e.g., zero-rating application module 230, Figure 2). The application includes instructions for implementing the test plan. In some embodiments, the testing plan is implemented on another type of application (e.g., other client application modules 240, Figure 2), such as a social-networking application running on the user device 502. Installation of the application on the user device 502 configures the user device 502 as a test agent.

[0064] In some embodiments, the server system 502 provides a web page having test scripts (e.g., in Javascript) for the testing plan to the user device 502. The testing plan is implemented by a browser (e.g., web browser module 224, Figure 2) which executes the test script on the user device 502. The user device 502 renders the web page having the test script for the testing plan using the browser (e.g., web browser module 224, Figure 2). Serving the web page to the user device 502 configures the user device 502 as a test agent.

[0065] By implementing the testing plan, the user device 502 sends one or more requests to the one or more respective predetermined IP addresses. In some embodiments, the one or more requests from the user device 502 may be first forwarded to a server system (e.g., identical with the server system 504 or distinct from the server system 504), and the server system may further route the one or more requests to respective destination IP addresses.

[0066] The user device 502 sends (516) data indicating results of the one or more requests to the server system 504. The server system 504 receives the data indicating the results of the one or more requests. The data may be generated based on the one or more requests and respective responses to the one or more requests. The data is used for identifying whether the network configuration is potentially misconfigured regarding zero-rating. In one example, a misconfiguration regarding zero-rating results in a situation where
a predetermined zero-rated IP address cannot be accessed for free and/or cannot be accessed at all. In another example, a misconfiguration regarding zero-rating results in a situation where a predetermined non-zero-rated IP address can be accessed for free.

[0067] Alternatively or additionally, the data may be used for identifying network connection error(s) within a network segment associated with the user device 502. For example, the data, used individually or in combination with data collected from other test cases and/or other test agents, may indicate whether there is network congestion within the network segment. When there is network congestion within a network segment, the user device within the network segment may encounter Internet access failures due to insufficient network bandwidth (e.g., bits per seconds), excessive network latency, and/or other performance failures of network connections within the network segment.

[0068] In some embodiments, the server system 504 receives data (e.g., test case information 330, Figure 3) indicating the results of the one or more requests from the user device 502. In some alternative embodiments, the server system 504 receives data (e.g., test case information 330, Figure 3) indicating the results of the one or more requests from another entity. For example, the server system 504 may receive the data of the results from the server system used for routing the one or more requests. In another example, the server system 504 may receive the data of the results from a network operator providing network services to the user device 502.

[0069] In some embodiments, the data indicating the results of the one or more requests includes one or more fields such as: a network connection result (e.g., whether the network connection to a requested IP address is successful or denied), a requested IP address, a test agent identifier (e.g., a device identifier associated with the user device 502), a location of the test agent, a network type associated with the test agent, and/or a timestamp associated with a respective request from the test agent to a requested IP address. In some embodiments, the server system 504 may further consolidate the received data of one or more fields before feeding the data to a model.

[0070] The server system 504 provides (518) the data indicating the results of the one or more requests to a model (e.g., the model 400, Figure 4). The model 400 may be a statistical model for determining probabilities of network misconfiguration regarding zero rating. The model 400 may be a machine learning model built for determining probabilities of network misconfiguration regarding zero rating. In some embodiments, the user device 502 (e.g., user device 102-1, Figure 1) is situated in a network segment (e.g., network segment
106-1, Figure 1) and the model identifies potential misconfiguration for zero-rating in the network segment.

[0071] By using the model 400, the server system 504 determines (520) probabilities of network misconfiguration regarding zero rating. In some embodiments, the server system 504 determines one or more probabilities including a probability of misconfiguration regarding zero rating in the network segment, a probability of the test agent has a zero-balanced account, and/or a probability of having network-connection errors occurred within the network segment. In some embodiments, the model 400 outputs a confidence level for potential misconfiguration regarding zero-rating. For example, the confidence level may indicate whether a predication of having a probable misconfiguration regarding zero rating in the network segment is credible or not. The confidence level may be expressed as a percentage number between 0% and 100%. In some embodiments, the model 400 processes the data to update the status of the network configuration in a corresponding network segment based on the determined results of whether there is (or is likely to be) network misconfiguration regarding zero rating.

[0072] In some embodiments, the user device 502 (e.g., the test agent) sends requests to one or more predetermined IP addresses including one or more zero-rated IP addresses. The data received at the server system 504 indicate whether the requests from the user device 502 to the one or more zero-rated IP addresses were successful. If the network is properly configured, and if there is no network connection error, the requests for accessing the zero-rated IP addresses should be granted. In some embodiments, the server system 504 applies this principle in the model 400 to identify whether the network configuration is potentially misconfigured regarding zero-rating based on the data. For example, by using the model 400, the server system 504 identifies a potential misconfiguration based at least in part on denial of a request from the user device 502 to at least one of the one or more zero-rated IP addresses. This identification may be based further on a likelihood that the user device 502 has a zero balance for network access.

[0073] In some embodiments, the user device 502 (e.g., the test agent) sends requests to one or more predetermined IP addresses including one or more non-zero-rated IP addresses. The data received at the server system 504 indicate whether the requests from the user device 502 to the one or more non-zero-rated IP addresses were denied. It is assumed that if the network is properly configured, for zero-balanced users, the requests for accessing the non-zero-rated IP addresses should be denied. In some embodiments, the server system 504
applies this principle in the model 400 to determine whether the network configuration is potentially misconfigured regarding zero-rating based on the data. For example, by using the model 400, the server system 504 determines the likelihood of the user device 502 to have a zero-balanced account. If the user device 502 is determined to be a possible zero-balanced account, the server system 504 may identify a potential misconfiguration based at least in part on successful access to at least one of the one or more non-zero-rated IP addresses. This may be regarded as a network misconfiguration related to free data abuse, where a zero-balanced user account is able to access a non-zero-rated IP address.

[0074] Optionally, a test element 506 (e.g., the test element 103-1, Figure 1) may be used for providing data to the model 400 (e.g., baseline data for training, testing, and using the model 400). The test element 506 may be used in conjunction with other user devices to provide data used by model 400 to determine probabilities regarding network misconfiguration regarding zero-rating. In some embodiments, the test element 506 is a zero-balanced device distinct from the user devices 102. The server system 504 sends (522) a testing plan to the test element 506. The server system 504 causes the test element 506 to send one or more requests to the one or more predetermined IP addresses, including zero-rated IP addresses and/or non-zero-rated IP addresses.

[0075] The test element 506 sends (524) data of the test results to the server system 504. The server system 504 receives the data of the test results from the test element 506. The data of the test results may indicate results of the one or more requests send by the test element 506. The server system 504 provides (526) the received data to the model 400. The model 400 may use the data received from the test element 506, along with the data received from the user device 502 and/or other user devices 102, to identify whether the network configuration is potentially misconfigured regarding zero-rating.

[0076] In some embodiments, in response to identifying that the network configuration is potentially misconfigured regarding zero-rating, the server system 504 sends (528) a notification (e.g., an alarm) of the potential misconfiguration to a network operator. For example, the user device 502 (e.g., the user device 102-1, Figure 1) is situated in a network segment (e.g., network segment 106-1, Figure 1), and the network operator of the network segment 106-1 is notified. In some embodiments, the server system 504 sends one or more notifications (e.g., an alarm and/or a status update) to one or more parties associated with service(s) provided by the server system 504. For example, the server system 504
provides notifications to one or more users (e.g., service subscribers), one or more network operators, and/or one or more third-party servers.

[0077] For situations in which the systems discussed above collect information about user devices (e.g., device identifiers, device locations, account information, and/or results of the request to IP addresses), the users may be provided with an opportunity to opt in/out of programs or features that may collect such information or other types of personal information. In addition, in some embodiments, certain data may be anonymized in one or more ways before it is stored or used, so that personally identifiable information is removed. For example, a user's identity may be anonymized so that the personally identifiable information cannot be determined for or associated with the user.

[0078] Although some of various drawings illustrate a number of logical stages in a particular order, stages which are not order dependent may be reordered and other stages may be combined or broken out. While some reordering or other groupings are specifically mentioned, others will be apparent to those of ordinary skill in the art, so the ordering and groupings presented herein are not an exhaustive list of alternatives. Moreover, it should be recognized that the stages could be implemented in hardware, firmware, software or any combination thereof.

[0079] The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the scope of the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen in order to best explain the principles underlying the claims and their practical applications, to thereby enable others skilled in the art to best use the embodiments with various modifications as are suited to the particular uses contemplated.
What is claimed is:

1. A method for distributing testing plans, comprising:

at a server having one or more processors and memory storing instructions for execution by the one or more processors, wherein the server is coupled to a plurality of user devices:

 causing a user device configured as a test agent to implement a testing plan for testing a network configuration regarding zero-rating, comprising causing the test agent to send one or more requests to one or more respective predetermined IP addresses;

 receiving first data indicating results of the one or more requests; and

 using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating.

2. The method of claim 1, further comprising, before causing the user device configured as the test agent to implement the testing plan:

 identifying the user device as having successfully accessed zero-rated content, but having failed to access non-zero-rated content; and

 selecting the identified user device as the test agent.

3. The method of claim 1, further comprising, before causing the user device configured as the test agent to implement the testing plan:

 identifying the user device as satisfying a predefined likelihood of having a zero balance for network access; and

 selecting the identified user device as the test agent.

4. The method of claim 3, wherein identifying the user device as satisfying the predefined likelihood of having a zero balance comprises detecting that a request from the user device for non-zero-rated content resulted in a redirect to a portal for zero-rated content.

5. The method of claim 1, further comprising, before causing the user device configured as the test agent to implement the testing plan:

 receiving an indication from a network operator that the user device has a zero balance for network access; and

 selecting the user device as the test agent.

6. The method of claim 1, wherein the testing plan is implemented on an application running on the test agent.
7. The method of claim 1, further comprising providing a web page having a test script for the testing plan to the test agent;

wherein the testing plan is implemented by a browser on the test agent that executes the test script.

8. The method of claim 1, wherein:

the one or more predetermined IP addresses include one or more zero-rated IP addresses;

the first data indicate whether requests from the test agent to the one or more zero-rated IP addresses were successful; and

using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating comprises identifying a potential misconfiguration based at least in part on denial of a request from the test agent to at least one of the one or more zero-rated IP addresses.

9. The method of claim 8, wherein:

the one or more predetermined IP addresses further include one or more non-zero-rated IP addresses;

the first data indicate whether requests from the test agent to the one or more non-zero-rated IP addresses were denied; and

using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating comprises identifying a potential misconfiguration based at least in part on successful access by the test agent to at least one of the one or more non-zero-rated IP addresses.

10. The method of claim 1, wherein the first data includes one or more fields selected from the group consisting of (1) a network-connection result, (2) a requested IP address, (3) a test-agent identifier, (4) a location of the test agent, (5) a network type associated with the test agent, and (6) a timestamp associated with a respective request from the test agent to a predetermined IP address.

11. The method of claim 1, wherein the server is further coupled to a test element, wherein the test element is a zero-balanced device distinct from the plurality of user devices, the method further comprising:

causing the test element to send one or more requests to the one or more respective predetermined IP addresses;
receiving second data indicating results of the one or more requests sent by the test element; and
using the second data along with the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating.

12. The method of claim 1, wherein the first data is received from the test agent.

13. The method of claim 1, wherein using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating comprises providing the first data to a statistical model for determining probabilities of network misconfiguration regarding zero rating.

14. The method of claim 13, wherein:
the test agent is situated in a network segment; and
the statistical model determines probabilities of (1) misconfiguration regarding zero rating in the network segment, (2) whether the test agent has a zero-balanced account, and (3) whether network-connection errors occurred within the network segment.

15. The method of claim 13, wherein the statistical model outputs a confidence level for potential misconfiguration regarding zero-rating.

16. The method of claim 1, further comprising:
in response to identifying that the network configuration is potentially misconfigured regarding zero-rating, sending a notification of the potential misconfiguration to a network operator.

17. The method of claim 16, wherein:
the test agent is situated in a network segment; and
the network operator is an operator of the network segment.

18. A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for:
causing a user device configured as a test agent to implement a testing plan for testing a network configuration regarding zero-rating, comprising causing the test agent to send one or more requests to one or more respective predetermined IP addresses;
receiving first data indicating results of the one or more requests; and
using the first data to identify whether the network configuration is potentially
misconfigured regarding zero-rating.

19. A method for implementing testing plans related to zero-rating, comprising:
 at a computing device having one or more processors and memory storing instructions
 for execution by the one or more processors:
 receiving a testing plan, from a server device, for testing a network
 configuration regarding zero-rating, wherein the testing plan comprises instructions for
 causing the computing device to send one or more requests to one or more respective
 predetermined IP addresses;
 sending the one or more requests to the one or more respective predetermined
 IP addresses; and
 sending to the server device data for identifying whether the network
 configuration is potentially misconfigured regarding zero-rating, wherein the data is
 generated based on the one or more requests and respective responses to the one or more
 requests.

20. The method of claim 19, wherein the data includes one or more fields selected from
 the group comprising (1) a network-connection result, (2) a requested IP address, (3) a test-
 agent identifier, (4) a location of the test agent, (5) a network type associated with the test
 agent, and (6) a timestamp associated with a respective request from the test agent to a
 predetermined IP address.

21. The method of claim 19, further comprising executing at the computing device an
 application including instructions for implementing the testing plan.

22. The method of claim 19, further comprising rendering a web page having a test script
 for the testing plan at the computing device, wherein the testing plan is implemented by a
 browser on the computing device that executes the test script.

23. The method of claim 19, further comprising, before sending the one or more requests
 to the one or more respective predetermined IP addresses, determining, at the computing
 device, whether the computing device satisfies a predefined likelihood of having a zero-
 balance for network access.
24. The method of claim 23, before sending the one or more requests to the one or more respective predetermined IP addresses, reporting, to the server device, a result of the determination.

25. A computer-implemented method for distributing testing plans, comprising:
 at a server having one or more processors and memory storing instructions for execution by the one or more processors, wherein the server is coupled to a plurality of user devices:
 causing a user device configured as a test agent to implement a testing plan for testing a network configuration regarding zero-rating, comprising causing the test agent to send one or more requests to one or more respective predetermined IP addresses;
 receiving first data indicating results of the one or more requests; and
 using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating.

26. The computer-implemented method of claim 25, further comprising:
 before causing the user device configured as the test agent to implement the testing plan:
 identifying the user device as having successfully accessed zero-rated content, but having failed to access non-zero-rated content; and
 selecting the identified user device as the test agent;
 and/or the method further comprising:
 identifying the user device as satisfying a predefined likelihood of having a zero balance for network access; and
 selecting the identified user device as the test agent, wherein
 identifying the user device as satisfying the predefined likelihood of having a zero balance optionally comprises detecting that a request from the user device for non-zero-rated content resulted in a redirect to a portal for zero-rated content;
 and/or the method further comprising:
 receiving an indication from a network operator that the user device has a zero balance for network access; and
 selecting the user device as the test agent.

27. The computer-implemented method of claim 25 or 26, wherein:
 the testing plan is implemented on an application running on the test agent;
and/or wherein:
the method further comprises providing a web page having a test script for the testing plan to the test agent; the testing plan optionally being implemented by a browser on the test agent that executes the test script.

28. The computer-implemented method of at least one of claims 25 to 27, wherein:
the one or more predetermined IP addresses include one or more zero-rated IP addresses;
the first data optionally indicate whether requests from the test agent to the one or more zero-rated IP addresses were successful; and
using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating optionally comprises identifying a potential misconfiguration based at least in part on denial of a request from the test agent to at least one of the one or more zero-rated IP addresses.

29. The computer-implemented method of claim 28, wherein:
the one or more predetermined IP addresses further include one or more non-zero-rated IP addresses;
the first data optionally indicate whether requests from the test agent to the one or more non-zero-rated IP addresses were denied; and
using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating optionally comprises identifying a potential misconfiguration based at least in part on successful access by the test agent to at least one of the one or more non-zero-rated IP addresses.

30. The computer-implemented method of one or more of claims 25 to 29, wherein the first data includes one or more fields selected from the group consisting of: a network-connection result, a requested IP address, a test-agent identifier, a location of the test agent, a network type associated with the test agent, and a timestamp associated with a respective request from the test agent to a predetermined IP address.

31. The computer-implemented method of one or more of claims 25 to 30, wherein:
the server is further coupled to a test element, wherein the test element is a zero-balanced device distinct from the plurality of user devices, the method further comprising:
causing the test element to send one or more requests to the one or more respective predetermined IP addresses;
receiving second data indicating results of the one or more requests sent by the test element; and,
using the second data along with the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating.

32. The computer-implemented method of one or more of claims 25 to 31, wherein:
the first data is received from the test agent;
and/or wherein:
using the first data to identify whether the network configuration is potentially misconfigured regarding zero-rating comprises providing the first data to a statistical model for determining probabilities of network misconfiguration regarding zero rating, wherein, optionally, the test agent is situated in a network segment; and the statistical model optionally determines probabilities of misconfiguration regarding zero rating in the network segment, whether the test agent has a zero-balanced account, and/or whether network-connection errors occurred within the network segment, wherein the statistical model optionally outputs a confidence level for potential misconfiguration regarding zero-rating.

33. The computer-implemented method of one or more of claims 25 to 32, further comprising:
in response to identifying that the network configuration is potentially misconfigured regarding zero-rating, sending a notification of the potential misconfiguration to a network operator;
wherein:
the test agent is optionally situated in a network segment; and wherein
the network operator is optionally an operator of the network segment.

34. A computer-implemented method for implementing testing plans related to zero-rating, comprising:
at a computing device having one or more processors and memory storing instructions for execution by the one or more processors:
receiving a testing plan, from a server device, for testing a network configuration regarding zero-rating, wherein the testing plan comprises instructions for causing the computing device to send one or more requests to one or more respective predetermined IP addresses;
sending the one or more requests to the one or more respective predetermined IP addresses; and

sending to the server device data for identifying whether the network configuration is potentially misconfigured regarding zero-rating, wherein the data is generated based on the one or more requests and respective responses to the one or more requests.

35. The computer-implemented method of claim 34, wherein:

the data includes one or more fields selected from the group comprising:

a network-connection result, a requested IP address, a test-agent identifier, a location of the test agent, a network type associated with the test agent, and a timestamp associated with a respective request from the test agent to a predetermined IP address;

and/or the method further comprising:

executing at the computing device an application including instructions for implementing the testing plan.

and/or the method further comprising:

rendering a web page having a test script for the testing plan at the computing device, wherein the testing plan is optionally implemented by a browser on the computing device that executes the test script.

36. The computer-implemented method of claim 34 or 35, further comprising:

before sending the one or more requests to the one or more respective predetermined IP addresses, determining, at the computing device, whether the computing device satisfies a predefined likelihood of having a zero-balance for network access,

and optionally comprising:

before sending the one or more requests to the one or more respective predetermined IP addresses, reporting, to the server device, a result of the determination.

37. A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions which, when executed on at least one of the one or more processors, cause the at least one processor to execute a computer-implemented method according to one or more of claims 25 to 33, and/or a computer-implemented method according to one or more of claims 34 to 36.
38. A computerized system comprising one or more processors; and one or more memories storing instructions that, when executed by at least one of the one or more processors, cause the system to execute a computer-implemented method according to one or more of claims 25 to 33, and/or a computer-implemented method according to one or more of claims 34 to 36.
Figure 2
Output 420
- Misconfiguration regarding zero rating in the network segment;
- Whether the test agent has a zero-balanced account;
- Whether network-connection errors occurred within the network segment;
- A confidence level for potential misconfiguration regarding zero-rating;
...

Input 410
- Test Case 1 (from a zero-rating application test)
- Connection Result
- IP addresses
- Test Device Identifier
- Location Information
- Network Type
- Timestamp
- Test Case 2 (from a web browser test)
- Test Case 3 (from a test element)
...

Figure 4
Send (510) a testing plan for testing a network configuration regarding zero-rating

Select (512) a user device as a test agent

Implement (514) the testing plan, including sending requests to predetermined IP addresses

Send (516) first data indicating results of the requests

Provide (518) the first data to a model

Determine (520) probabilities of network misconfiguration regarding zero rating

Send (522) a testing plan to a test element.

Send (524) second data

Provide (526) the second data to the model; determine probabilities

In response to identifying that the network configuration is potentially misconfigured regarding zero-rating, send (528) a notification

Figure 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H04L 12/803(2013.01)i, H04L 29/10(2006.01)i, H04L 12/915(2013.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04L 12/803; G06Q 30/02; G06F 15/173; G06F 11/28; H04L 12/801; G06F 11/00; H04L 29/10; H04L 12/915

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

eKOMPASS (KIPO internal) & Keywords: distributed, testing, network, configuration, agent, zero-rated, content, user

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2013-0061093 AI (YEON JUN CHOI) 07 March 2013 See paragraphs [0010], [0041], [0054], [0065]; and figures 1, 4-5.</td>
<td>1-38</td>
</tr>
<tr>
<td>A</td>
<td>US 6704883 B1 (CHEN ZHANG et al.) 09 March 2004 See column 3, line 11- column 6, line 46; and figures 1-5.</td>
<td>1-38</td>
</tr>
<tr>
<td>A</td>
<td>US 2005-0107990 AI (JOHN M. MONK et al.) 19 May 2005 See paragraphs [0019]- [0050]; and figures 1-5.</td>
<td>1-38</td>
</tr>
<tr>
<td>A</td>
<td>US 2015-0025976 AI (LOTUSFLARE INC.) 22 January 2015 See paragraphs [0039]- [0057]; and figures 3-5.</td>
<td>1-38</td>
</tr>
<tr>
<td>A</td>
<td>US 2012-0209990 AI (STEPHANE HONORE) 16 August 2012 See paragraphs [0016]- [0035]; and figures 1-3.</td>
<td>1-38</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

"K" document member of the same patent family

Date of the actual completion of the international search 13 December 2016 (13.12.2016)

Date of mailing of the international search report 19 December 2016 (19.12.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea
Facsimile No. +82-42-481-8578

Authorized officer
KIM, Seong Woo
Telephone No. +82-42-481-3348

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KR 10-2013-0026919 A</td>
<td>14/03/2013</td>
</tr>
<tr>
<td>US 6704883 Bl</td>
<td>09/03/2004</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 2005-0107990 Al</td>
<td>19/05/2005</td>
<td>DE 102004048664 Al</td>
<td>30/06/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-149504 A</td>
<td>09/06/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015-009415 Al</td>
<td>22/01/2015</td>
</tr>
<tr>
<td>US 2012-0209990 Al</td>
<td>16/08/2012</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (patent family annex) (January 2015)