(57) Abrégé/Abstract:
The invention relates to ionically and/or non-ionically hydrophilized aqueous polyurethane-polyurea dispersions (PU dispersions) based on polycarbonate polyols and polytetramethylene glycolpolyols, a method for the production thereof and the use thereof as coating agents, especially for the production of very stable high foam coatings in a single coat.
Polyurethane-polyurea dispersions as coating compounds

Abstract

The invention concerns ionically and/or non-ionically hydrophilised, aqueous polyurethane-polyurea dispersions (PU dispersions) based on polycarbonate polyols and polytetramethylene glycol polyols, a process for their production and their use as coating compounds, in particular for the production of very stable thick foam deposits in a single coat.
Polyurethane-polyurea dispersions as coating compounds

The invention concerns novel aqueous polyurethane-polyurea dispersions based on polycarbonate polyols and polytetramethylene glycol polyols, a process for their production and their use as coating compounds, in particular for flexible substrates such as textiles and leather.

In the coating of flexible substrates, in particular textiles and leather, solvent-containing systems are increasingly being superseded by low-solvent or solvent-free aqueous systems. The properties required until now of textile and leather coating systems consist above all in a high resistance to chemicals and water, high mechanical resistance and high tensile strength and extensibility. These requirements are largely fulfilled by polyurethane-polyurea dispersions of the prior art, such as are described for example in DE-A 24 46 440, DE-A 25 51 094, DE-A 26 51 505, DE-A 26 51 506, DE-A 26 59 617 and DE-A 28 16 815. The systems cited therein are self-emulsifying due to hydrophilic groups and can be dispersed in water without the aid of external emulsifiers.

Polyurethane-polyurea dispersions, referred to below as PU dispersions, are used today in a growing number of sectors, which means that the resulting coatings have to satisfy extremely diverse ranges of requirements. Thus for the coating of flexible substrates, for example textiles and leather, in addition to the properties mentioned above, properties such as the attainment of thick deposits in a single coat or the production of stable foams are also desirable. The processing steps in the overall coating process can be rationalised and the associated production costs reduced in this way. Furthermore, properties such as good hydrolysis resistance combined with high folding endurance, scratch resistance and abrasion resistance should also be achieved.
The object of the present invention was therefore to provide alternative PU dispersions as coating compounds for flexible substrates, which meet the requirements of PU dispersions of the prior art but also display the above-mentioned properties.

It has been found that ionically and/or non-ionically hydrophilised, aqueous PU dispersions based on polycarbonate polyols and polytetramethylene glycol polyols allow coatings with the range of properties mentioned above to be produced on substrates. The coatings according to the invention display improved foaming characteristics, high abrasion resistance and extremely high folding endurance, scratch resistance and hydrolysis resistance.

The invention provides ionically and non-ionically hydrophilised, aqueous PU dispersions containing

A1. polyisocyanates,
A2. a mixture of polycarbonate and polytetramethylene glycol polyols,
A3. optionally monoalcohols or monoamines,
A4. polyols, amino polyols or polyamines,
A5. optionally polyoxyalkylene ethers with at least one hydroxyl or amino group and
A6. optionally antioxidants and/or light stabilisers and/or other auxiliary substances and additives.

The PU dispersions according to the invention preferably display ionic and non-ionic hydrophilisation. A particularly preferred embodiment of the PU dispersions according to the invention is anionically and non-ionically hydrophilised.

PU dispersions according to the invention containing

A1. 5 to 30 wt.% polyisocyanates,
A2. 55 to 87 wt.% of a mixture of polycarbonate and polytetramethylene glycol polyols,
A3. 0 to 10 wt.% monoalcohols or monoamines,
A4. 1 to 20 wt.% polyols, aminopolyols or polyamines,
A5. 0 to 10 wt.% polyoxyalkylene ethers with at least one hydroxyl or amino group and
A6. 0 to 10 wt.% antioxidants and/or light stabilisers and/or other auxiliary substances and additives, whereby the sum of the percentages by weight of components A1 to A6 is 100 %,

are preferred.

PU dispersions according to the invention containing

A1. 10 to 25 wt.% polyisocyanates,
A2. 60 to 85 wt.% of a mixture of polycarbonate and polytetramethylene glycol polyols,
A3. 0 to 10 wt.% monoalcohols or monoamines,
A4. 1 to 15 wt.% polyols, aminopolyols or polyamines,
A5. 1 to 10 wt.% polyoxyalkylene ethers with at least one hydroxyl or amino group and
A6. 0.5 to 8 wt.% antioxidants and/or light stabilisers and/or other auxiliary substances and additives, whereby the sum of the percentages by weight of components A1 to A6 is 100 %,

are particularly preferred.

PU dispersions according to the invention containing

A1. 13 to 20 wt.% polyisocyanates,
A2. 70 to 82 wt.% of a mixture of polycarbonate and polytetramethylene glycol polyols,
A3. 0 to 10 wt.% monoalcohols or monoamines,
A4. 1 to 10 wt.% polyols, aminopolyols or polyamines,
A5. 1 to 5 wt.% polyoxyalkylene ethers with at least one hydroxyl or amino group and
A6. 1 to 6 wt.% antioxidants and/or light stabilisers and/or other auxiliary substances and additives, whereby the sum of the percentages by weight of components A1 to A6 is 100 %,

are most particularly preferred.

Suitable diisocyanates (A1) are in principle those from the molecular weight range 140 to 400 with aliphatically, cycloaliphatically, araliphatically and/or aromatically bonded isocyanate groups, such as e.g. 1,4-diisocyanatobutane, 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,3- and 1,4-bis(isocyanatomethyl) cyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl cyclohexane (isophorone diisocyanate, IPDI), 4,4'-diisocyanatodicyclohexyl methane, 1-isocyanato-1-methyl-4(3)isocyanatomethyl cyclohexane, bis(isocyanatomethyl) norbornane, 1,3- and 1,4-bis(2-isocyanatoprop-2-yl) benzene (TMXDI), 2,4- and 2,6-diisocyanatotoluene (TDI), 2,4’- and 4,4’-diisocyanatodiphenyl methane, 1,5-diisocyanatonaphthalene or any blends of such diisocyanates.

They are preferably polyisocyanates or polyisocyanate blends of the stated type with exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups. Most particularly preferred starting components (A1) are polyisocyanates or polyisocyanate blends based on HDI, IPDI and/or 4,4’-diisocyanatodicyclohexyl methane.

The PU dispersions according to the invention contain as component (A2) a mixture of polycarbonate polyols and polytetramethylene glycol polyols. The proportion of polycarbonate polyols in the mixture is between 20 and 80 wt.%, the proportion of polytetramethylene glycol polyols is between 80 and 20 wt.%. A proportion of 30 to 75 wt.% of polytetramethylene glycol polyols and a proportion of 25 to 70 wt.% of polycarbonate polyols is preferred. A proportion of 35 to 70 wt.% of polytetramethylene glycol polyols and a proportion of 30 to 65 wt.% of polycarbonate polyols is particularly preferred, with the proviso in each case that the sum of the percentages by weight of polycarbonate and polytetramethylene glycol polyols is 100 %.

The average molecular weight range of the polymeric polyols (A2) is between 400 and 6000. Suitable polymeric polyols (A2) are for example polyethers, polycarbonates and polyester carbonates displaying an OH functionality of at least 1.8 to 4. Polyols in an average molecular weight range of 600 to 4000 having an OH functionality of 2 to 3 are preferably used. Polyols with average molecular weight ranges of 800 to 2500 are particularly preferred.

Suitable polycarbonates displaying hydroxyl groups can be obtained by reaction of carbonic acid derivatives, e.g. diphenyl carbonate, dimethyl carbonate or phosgene with diols. Suitable examples of such diols are ethylene glycol, 1,2- and 1,3-
propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, 1,4-bishydroxymethyl cyclohexane, 2-methyl-1,3-propanediol, 2,2,4-
trimethyl pentanediol-1,3, dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenol A, tetrabromobisphenol A as well as lactone-modified diols. The diol component preferably contains 40 to 100 wt.%
hexanediol, preferably 1,6-hexanediol and/or hexanediol derivatives, preferably examples that in addition to terminal OH groups display ether or ester groups, e.g.
products obtained by reaction of 1 mol hexanediol with at least 1 mol, preferably 1 to 2 mol caprolactone according to DE-A 1770245, or by etherification of hexanediol with itself to form dihexylene or trihexylene glycol. The production of such derivatives is known from DE-A 15 70 540, for example. The polyether polycarbonate diols described in DE-A 3717060 can also be used.

The hydroxyl polycarbonates should be substantially linear. However, they can optionally be slightly branched by the incorporation of polyfunctional components, in particular low-molecular polyols. Suitable examples include glycerol, trimethylol propane, hexanetriol-1,2,6, butanetriol-1,2,4, trimethylol propane, pentaerythritol, quinitol, mannitol, and sorbitol, methyl glycoside, 1,3,4,6-dianhydrohexites.

Suitable polyether polyols are the polytetramethylene glycol polyethers known per se in polyurethane chemistry, which can be produced e.g. via polymerisation of tetrahydrofuran by cationic ring opening, as described for example in DE-A 741
476.

Monofunctional alcohols (A3) and monoamines can be used for termination of the polyurethane prepolymer. Preferred monoalcohols (A3) are aliphatic monoalcohols with 1 to 18 C atoms, such as e.g. ethanol, n-butanol, ethylene glycol monobutyl ether, 2-ethylhexanol, 1-octanol, 1-dodecanol, or 1-hexadecanol. Preferred monoamines (A3) are aliphatic monoamines, such as e.g. diethylamine, dibutylamine, ethanolamine, N-methyl ethanolamine or N,N-diethanolamine.
The polyols, aminopolyols or aliphatic, cycloaliphatic and araliphatic polyamines (A4) contained in the PU dispersions according to the invention have a molecular weight below 400 and can be used as chain extenders.

Preferred components (A4) are, for example:

a) alkane diols, such as ethanediol, 1,2- and 1,3-propanediol, 1,4- and 2,3-butanediol, 1,5-pentanediol, 1,3-dimethyl propanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane dimethanol, 2-methyl-1,3-propanediol,

b) ether diols, such as diethylene diglycol, triethylene glycol or hydroquinone dihydroxyethyl ether,

c) ester diols having the general formulae (I) and (II),

\[
\begin{align*}
\text{HO-}(\text{CH}_2)_x-\text{CO-O-}(\text{CH}_2)_y-\text{OH} & \quad (I) \\
\text{HO-}(\text{CH}_2)_x-\text{O-CO-R-CO-O}(\text{CH}_2)_y-\text{OH} & \quad (II)
\end{align*}
\]

in which

R is an alkylene or ary lane radical with 1 to 10 C atoms, preferably 2 to 6 C atoms,

\[x \quad \text{is 2 to 6 and}
\]

\[y \quad \text{is 3 to 5,}
\]

such as e.g. δ-hydroxybutyl-ε-hydroxyhexanoic acid ester, ω-hydroxyhexyl-
γ-hydroxybutanoic acid ester, adipic acid-(β-hydroxyethyl) ester and
terephthalic acid bis(β-hydroxyethyl) ester and
polyamines such as ethylene diamine, 1,2- and 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, isophorone diamine, isomer mixture of 2,2,4- and 2,4,4-trimethyl hexamethylene diamine, 2-methyl pentamethylene diamine, diethylene triamine, 1,3- and 1,4-xylylene diamine, \(\alpha,\alpha,\alpha',\alpha' \)-tetramethyl-1,3- and -1,4-xylylene diamine and 4,4-diaminodicyclohexyl methane. Also to be considered as diamines in the sense of the invention are hydrazine, hydrazine hydrate and substituted hydrazines, such as e.g. N-methyl hydrazine, N,N'-dimethyl hydrazine and homologues thereof, as well as acid dihydrazides, adipic acid, \(\beta \)-methyl adipic acid, sebacic acid, hydrazycrylic acid and terephthalic acid, semicarbazidoalkylene hydrazides, such as e.g. \(\beta \)-semicarbatidopropanoic acid hydrazide (DE-A 17 70 591), semicarbazidoalkylene carbazine esters, such as e.g. 2-semicarbazidoethyl carbazine ester (DE-A 19 18504) or aminosemicarbazide compounds, such as e.g. \(\beta \)-aminoethyl semicarbazidocarbonate (DE-A 19 02 931).

Polyether polyols and polyester polyols having an average molecular weight above 400 can also be used as polyols, aminopolyols or aliphatic, cycloaliphatic and araliphatic polyamines (A4).

Suitable polyether polyols are polyethers known per se in polyurethane chemistry, such as e.g. polyols of styrene oxide, propylene oxide, butylene oxides or epichlorohydrin, particularly of propylene oxide, produced using starter molecules.

Examples of suitable polyester polyols are reaction products of polyhydric, preferably dihydric and optionally additionally trihydric alcohols with polybasic, preferably dibasic carboxylic acids. The corresponding polycarboxylic anhydrides or corresponding polycarboxylic acid esters of low alcohols or mixtures thereof can also be used in place of the free polycarboxylic acids to produce the polyesters. The polycarboxylic acids can be of an aliphatic, cycloaliphatic, aromatic and/or
heterocyclic nature and optionally substituted, e.g. by halogen atoms, and/or unsaturated.

The hydroxy components (A3) and (A4) can contain double bonds, which can be derived for example from long-chain aliphatic carboxylic acids or fatty alcohols. A functionalisation with olefinic double bonds is possible, e.g. by the incorporation of allylic groups or acrylic acid or methacrylic acid and esters thereof.

Components (A3) and (A4), which contain an ionic group or are capable of forming an ionic group, such as e.g. dihydroxycarboxylic acids, diaminocarboxylic acids, dihydroxysulfonic acids and diaminosulfonic acids and their salts such as dimethylol propanoic acid, hydroxypropionic acid, 2-(2-aminoethylamino) ethane sulfonic acid, ethylene diamine propyl or butyl sulfonic acid, 1,2- or 1,3-propylene diamine-β-ethyl sulfonic acid, lysine, 3,5-diaminobenzoic acid and alkali and/or ammonium salts thereof; the adduct of sodium bisulfate to butene-2-diol-1,4, polyether sulfonate, the propoxylated adduct of 2-butenediol and NaHSO₃ (DE-A 24 46 440) and structural units capable of conversion to cationic groups, such as N-methyl diethanolamine. Components (A3) and (A4) that are preferably used are those having carboxy or carboxylate and/or sulfonate groups.

PU dispersions according to the invention containing one or more compounds (A3) and/or (A4) that have an ionic group or are capable of forming an ionic group are preferred.

The PU dispersions according to the invention can contain hydrophilic polyoxymethylene ethers (A5) having at least one hydroxyl or amino group in quantities of 0 to 10 wt.% relative to the solids content of the PU dispersion to support the dispersive action. These polyethers contain a high proportion (approx. 30 wt.% to 100 wt.%) of structural elements derived from ethylene oxide, e.g. ethoxylated monohydric alcohols or ethoxylated phenols. Suitable examples include
linear polyethers with a functionality between 1 and 3 but also compounds having the general formula III,

\[
\begin{align*}
\text{HO} & \quad R^3 \\
& \quad R^1 \quad R^2 \\
& \quad \text{OH}
\end{align*}
\]

(III)

in which

5

\(R^1 \) and \(R^2 \) mutually independently denote a divalent aliphatic, cycloaliphatic or aromatic radical having 1 to 18 C atoms, which can be interrupted by oxygen and/or nitrogen atoms, and

10 \(R^3 \) stands for a non-hydroxy-terminated polyester or preferably polyether. \(R^3 \) particularly preferably stands for an alkoxy-terminated polyethylene oxide radical.

All additives that are known for polyurethanes and polyurethane dispersions and are described for example in “Lichtschutzmittel für Lacke” (A. Valet, Vincentz Verlag, Hanover, 1996) and “Stabilization of Polymeric Materials” (H. Zweifel, Springer Verlag, Berlin, 1997) can optionally be used as light stabilisers and antioxidants (A6). Preferred stabilisers are sterically hindered phenols (phenolic antioxidants) and/or sterically hindered amines based on 2,2,6,6-tetramethylene piperidine (hindered amine light stabilisers, HALS light stabilisers). Irganox® 1010 (Ciba Spezialitäten GmbH, Lampertheim, DE) and/or Tinuvin® 765 (Ciba Spezialitäten GmbH, Lampertheim, DE) are particularly preferred. The PU dispersions according to the invention can also contain all auxiliary substances and additives known for PU dispersions, such as e.g. emulsifiers, defoaming agents, thickeners. Finally fillers, plasticisers, pigments, carbon black and silica sols, aluminium, clay and asbestos
dispersions can also be incorporated into the PU dispersions according to the invention.

The solids content of the PU dispersions according to the invention is between 10 and 70 %. They preferably exhibit a solids content of 35 to 70 % and particularly preferably 50 to 60 %.

The invention also provides a process for the production of the ionically and/or non-ionically hydrophilised, aqueous PU dispersions according to the invention, characterised in that components A1 and A2 and optionally components A3 to A6 are first reacted to form a polyurethane prepolymer, then the polyurethane prepolymer is dispersed in or by addition of water and then optionally reacted with A3 to A6.

The aqueous polyurethane dispersions according to the invention can be produced by methods of the prior art (e.g. Houben-Weyl, Erweiterungs- und Folgebände zur 4. Auflage, Vol. E20, H. Bartl and J. Falb, Stuttgart, New York, Thieme 1987, p. 1659-1693 or D. Dieterich, Prog. Org. Coatings 9, 281 (1981)).

The NCO/OH ratio in the production of the prepolymer is between 1.2 and 2.8/1, preferably between 1.4 and 2.5/1, particularly preferably between 1.6 and 2.3/1 and most particularly preferably between 1.7 and 2.2/1.

In the first step of the process according to the invention components A1 and A2 and optionally components A3 to A6 are reacted to a PU dispersion, optionally with the aid of an organic solvent.

Suitable solvents are the conventional paint solvents known per se, such as e.g. ethyl acetate, butyl acetate, 1-methoxypropyl-2-acetate, 3-methoxy-n-butyl acetate, acetone, 2-butanone, 4-methyl-2-pentanone, cyclohexanone, toluene, xylene, chlorobenzene or white spirit. Mixtures containing above all more highly substituted
aromatics, such as e.g. those commercially available under the names solvent naphtha, Solvesso® (Exxon Chemicals, Houston, USA), Cypar® (Shell Chemicals, Eschborn, DE), Cyclo Sol® (Shell Chemicals, Eschborn, DE), Tolu Sol® (Shell Chemicals, Eschborn, DE), Shellsol® (Shell Chemicals, Eschborn, DE), are likewise suitable. Other solvents are for example carbonic acid esters, such as dimethyl carbonate, diethyl carbonate, 1,2-ethylene carbonate and 1,2-propylene carbonate, lactones, such as β-propiolactone, γ-butyrolactone, ε-caprolactone, ε-methyl caprolactone, propylene glycol diacetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl and butyl ether acetate, N-methyl pyrrolidone and N-methyl caprolactam, or any blends of such solvents.

In a further step groups capable of neutralisation are then converted to the salt form and the dispersion produced with water. Depending on the degree of neutralisation and the content of ionic groups, the dispersion can be formulated to have a very fine-particle character, such that it has practically the appearance of a solution. Coarse-particle formulations, which are likewise sufficiently stable, are also possible, however. The solvent that is optionally used can be removed by distillation following dispersion.

All methods known from the prior art, such as emulsifier shear force, acetone, prepolymer mixing, melt emulsification, ketimine and spontaneous solids dispersion methods or derivatives thereof can be used to produce the polyurethane dispersions according to the invention. A summary of these methods can be found in Methoden der organischen Chemie (Houben-Weyl, Erweiterungs- und Folgebände zur 4. Auflage, Vol. E20, H. Bartl and J. Falbe, Stuttgart, New York, Thieme 1987, p. 1671-1682). The melt emulsification and acetone methods are preferred. The acetone method is particularly preferred.

Excess isocyanate groups are reacted by reaction with polyfunctional isocyanate-reactive compounds (chain extension). Water or the polyamines already cited under (A4) are preferably used for this purpose, particularly preferably diamines and
triamines, hydrazine and the sodium salt of 2-(2-aminoethyl amino)ethane sulfonic acid. Termination with a monoamine or monoalcohol (A3) such as e.g. diethyleamine, dibutylamine, ethanolamine, N-methyl ethanolamine or N,N-diethanolamine is also possible.

It is also possible for the PU dispersions according to the invention to be modified using polyacrylates. This is achieved by performing an emulsion polymerisation of olefinically unsaturated monomers, e.g. esters of (meth)acrylic acid and alcohols having 1 to 18 C atoms, styrene, vinyl esters or butadiene, in the presence of the polyurethane dispersion, as described for example in DE-A-1 953 348, EP-A-0 167 188, EP-A-0 189 945 and EP-A-0 308 115. The monomers contain one or more olefinic double bonds. The monomers can also contain functional groups such as hydroxyl, epoxy, methylol or acetoacetoxy groups.

The present invention also provides the use of the hydrophilic, aqueous, PU dispersions according to the invention as coating compounds for the production of coated substrates.

The invention also provides coating compounds containing the PU dispersions according to the invention.

In order to use the PU dispersions according to the invention as coating compounds, the polyurethane dispersions according to the invention can be used either alone or in combination with other aqueous binders. Such aqueous binders can be synthesised from polyester, polyacrylate, polyepoxy or polyurethane polymers, for example. A combination with radiation-curable binders, such as are described e.g. in EP-A-0 753 531, is also possible. It is likewise possible for the PU dispersions according to the invention to be blended with other anionic or non-ionic dispersions, such as e.g. polyvinyl acetate, polyethylene, polystyrene, polybutadiene, polyvinyl chloride, polyacrylate and copolymer dispersions.
The PU dispersions according to the invention are stable, capable of being stored and shipped, and can be processed at any later date. Depending on the chosen chemical composition and content of urethane groups, coatings with varying properties are obtained. Soft, tacky coatings, thermoplastic and rubbery-elastic products with a wide range of degrees of hardness through to glass-hard thermosets can thus be obtained. The hydrophilicity of the products can likewise vary between certain limits. The elastic products are melt processable at elevated temperatures, for example 100 to 180°C, provided that they are not chemically crosslinked.

Compounds containing oligomeric polysiloxane segments and having at least two groups that are reactive towards isocyanates, with molecular weights from 300 to 6000, preferably from 500 to 1500, can be added to the aqueous PU dispersions according to the invention to modify certain properties of the coatings, such as feel and surface smoothness. Difunctional polysiloxanes with organofunctional terminal groups are preferably used. These compounds display for example structural units -O-Si-(R)₂-, where R stands for a C₁-C₄ alkyl radical or a phenyl radical.

The conventional auxiliary substances and additives used in textile coating technology, such as e.g. pigments, flow control agents, UV stabilisers, antioxidants, fillers, plasticisers, carbon black and silica sols, aluminium, clay, asbestos dispersions or thixotropic agents, can also be added to the PU dispersions according to the invention. In this way ready-to-use aqueous coating compounds are obtained that have a virtually unlimited shelf life at room temperature and cure at relatively low temperatures of 120 to 150°C within 2 to 3 minutes to form coatings with in particular very good wet adhesion properties.

Depending on the desired properties and intended use of the coating compounds according to the invention, up to 70 %, relative to total dry solids, of such fillers can be contained in the end product.
By virtue of their excellent foaming characteristics and good abrasion resistance, scratch resistance, folding endurance and hydrolysis resistance, the PU dispersions according to the invention, in particular those having solids contents greater than 50%, are especially suitable for applications in the area of upholstered furniture, industrial safety and car interior trim, and for the production of very stable thick foam deposits in a single coat, such as can otherwise be achieved only with high solids coating compounds.

The invention therefore provides the use of the PU dispersions according to the invention in the area of upholstered furniture, industrial safety and car interior trim and for the production of thick foam deposits in a single coat.

The invention likewise provides coated substrates comprising a substrate displaying on one side a coating containing the PU dispersions according to the invention.

Suitable substrates are for example woven and nonwoven textiles, leather, paper, hard fibre, straw, papery materials, wood, glass, all types of plastics, ceramics, stone, concrete, bitumen, porcelain, metals or glass fibres. Preferred substrates are flexible substrates, with textiles and leather being particularly preferred.

The PU dispersions according to the invention or the pastes produced from them as coating compounds are applied to a porous substrate that subsequently remains bonded to the end product, such as e.g. woven or nonwoven textiles or fibrous mats, felts or bonded fabrics, also paper webs, expanded films or split leathers, the suction from which brings about an immediate solidification of the coating. The coating is then dried at elevated temperature and optionally moulded. Drying can also be performed on smooth porous or non-porous materials, however, e.g. glass, paper, card, ceramic materials, metal, silicone rubber, aluminium foil. The finished flat material is then peeled off and either used as it is or applied to a substrate using the reverse coating method, by gluing, flame lamination or calendering.
The PU dispersions according to the invention can perform various functions, e.g. imparting antistatic and crease-resistant properties, as a binder for bonded fabrics, as adhesives, bonding agents, laminating agents, water repellents, plasticisers, binders, as auxiliary substances in textile printing and in the paper industry, as an additive for polymers, as a size, e.g. for glass fibres and for leather finishing.

The coating compound according to the invention can be applied by spreading it directly onto the substrate using doctor blades, rolls or wire blades. Several layers, but preferably two, are generally applied in succession. The subsequently applied top coat protects the entire composite against mechanical loading and abrasion. Application of the coating composite comprising base coat and top coat can also be performed using the so-called reverse coating method, however. In this method the top coat is first applied to a release backing and dried. After application of a second base coat or anchor coat, the textile substrate is gently pressed into the coat whilst still wet. After it has dried, a permanent composite comprising coating and substrate is formed, which is detached from the release backing and which in terms of its structure largely corresponds to that produced by the direct coating method described above.

The products obtained by various application methods can be dried at room temperature or at elevated temperature. The drying temperature to be chosen in the individual case, which apart from the chemical composition of the material depends primarily on the moisture content, drying time and film thickness, can easily be determined by means of a preliminary test. For a given heating period the drying temperature must always be below the solidification temperature.

The flat material can subsequently be coated with a finish to increase the resistance of its surface. Aqueous dispersions or solutions are preferably also used for this purpose.
Examples

The properties of PU dispersions for textile coating are determined on free films produced as follows:

In a film casting instrument comprising two polished rolls, which can be set to a precise distance apart, a release paper is inserted in front of the rear roll. The distance between the paper and the front roll is adjusted by means of a feeler gauge. This distance corresponds to the (wet) film thickness of the resulting coating, and can be adjusted to the desired deposition for each coat. Coating can also be performed consecutively in several coats.

The individual coats are applied by pouring the products (aqueous formulations are first set to a viscosity of 4500 mPa s by addition of ammonia/polyacrylic acid) onto the gap between the paper and the front roll and pulling the release paper vertically downwards, whereby the corresponding film is formed on the paper. If several coats are to be applied, each individual coat is dried and the paper inserted again.

The modulus at 100 % extension was determined according to DIN 53504 on films of thickness > 100 μm.

The average particle sizes (the number average is stated) of the PU dispersions were determined using laser correlation spectroscopy (instrument: Malvern Zetasizer 1000, Malvern Instr. Limited).

The stated viscosities are flow times, measured according to DIN 53 211 in 4 mm DIN cups.
Starting materials used

Diol I: Polytetramethylene glycol polyol, OH value 112, molecular weight = 1000 g/mol, e.g. PolyTHF 1000 (BASF AG, Ludwigshafen)

Diol II: Polytetramethylene glycol polyol, OH value 62, molecular weight = 1800 g/mol, e.g. PolyTHF 1800 (BASF AG, Ludwigshafen)

Diol III: Polytetramethylene glycol polyol, OH value 56, molecular weight 2000 g/mol, e.g. PolyTHF 2000 (BASF AG, Ludwigshafen)

Diol IV: Polycarbonate based on 1,6-hexanediol, OH value 56, molecular weight 2000 g/mol, e.g. Desmophen 2020 (Bayer AG, Leverkusen)

Diol V: Polypropylene oxide polyether, OH value 56, molecular weight 2000 g/mol, e.g. Desmophen 3600 (Bayer AG, Leverkusen)

Diol VI: Polypropylene oxide polyether, OH value 200, molecular weight 560 g/mol, e.g. Desmophen L400 (Bayer AG, Leverkusen)

EOX polyether:
Monofunctional polyethylene glycol, OH value 25, molecular weight 2250 g/mol, e.g. Desmophen LB 25 (Bayer AG, Leverkusen)

Diaminosulfonate:
NH₂-CH₂CH₂-NH-CH₂CH₂-SO₃Na (45 % in water)

Diaminocarboxylate:
NH₂-CH₂-CH₂-NH-CH₂-CH₂-COOH (40 % in water), e.g. KV 1386 (BASF AG, Ludwigshafen)
Hydrophilising agent:
according to Example 1 in EP-A 916647, page 3.

PU I:
5 Anionic/non-ionic aliphatic C₃ polyether polycarbonate polyurethane dispersion with a solids content of 40 % and the following physical properties: modulus at 100 % (DIN 53504) = 2.4 MPa, tensile strength (DIN 53504) = 25.9 MPa, elongation at break (DIN 53504) = 840 %, flow time at 23°C (4mm cup according to AFAM 2008/1050304-00 D) = 25 ± 15 s, such as e.g. Impranil DLV (Bayer AG, Leverkusen).

PU II:
Anionic aliphatic polyester polyurethane dispersion with a solids content of 50 % and the following physical properties: modulus at 100 % (DIN 53504) = 2.1 MPa, tensile strength (DIN 53504) = 25.0 MPa, elongation at break (DIN 53504) = 600 %, flow time at 23°C (4mm cup according to AFAM 2008/1050304-00 D) ≤ 70 s, such as e.g. Impranil DLS (Bayer AG, Leverkusen).

PU III:
20 Anionic aliphatic polyester polyurethane dispersion with a solids content of 40 % and the following physical properties: modulus at 100 % (DIN 53504) = 2.0 MPa, tensile strength (DIN 53504) = 20.0 MPa, elongation at break (DIN 53504) = 700 %, flow time at 23°C (4mm cup according to AFAM 2008/1050304-00 D) ≤ 70 s, such as e.g. Impranil DLN (Bayer AG, Leverkusen).
Application examples

Example 1

Formulation:

Part 1:
203.3 g diol III
156.0 g diol IV
77.0 g diol I
14.6 g EOX polyether

Part 2:
48.9 g hexane diisocyanate-1,6
64.6 g isophorone diisocyanate

Part 3:
1016.5 g acetone

Part 4:
34.7 g isophorone diamine
6.9 g diaminosulfonate
2.2 g hydrazine hydrate
134.4 g water

Part 5:
298.1 g water

Method:

The mixture of part 1, which has been dehydrated at 120°C, is combined with part 2 at 70°C, heated to 90°C and stirred at 90°C until a constant NCO value is achieved. The prepolymer is dissolved with part 3 at 60°C and stirred for 15 min. Part 4 is added at 48°C over 15 min and stirred for 15 min. Part 5 is added over 10 min, acetone removed by distillation and the solids content adjusted to 60%.
A dispersion with a solids content of 60.4 % and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 27 s is obtained.

Example 2

5

Formulation:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>400.0 g</td>
<td>121.0 g</td>
<td>1451.7 g</td>
<td>5.2 g</td>
<td>1091.9 g</td>
</tr>
<tr>
<td>260.0 g</td>
<td>1451.7 g</td>
<td>1451.7 g</td>
<td>3.0 g</td>
<td>water</td>
</tr>
<tr>
<td>27.0 g</td>
<td>1451.7 g</td>
<td>1451.7 g</td>
<td>24.0 g</td>
<td>water</td>
</tr>
<tr>
<td>8.6 g</td>
<td>1451.7 g</td>
<td>1451.7 g</td>
<td>141.8 g</td>
<td>water</td>
</tr>
</tbody>
</table>

Method: same as for example 1 (solids content 40 %)

A dispersion with a solids content of 41.0 % and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 20 s is obtained.
Example 3

Formulation:

Part 1:
- 311.7 g diol II
- 88.0 g diol IV
- 12.4 g EOX polyether

Part 2:
- 41.4 g hexane diisocyanate-1,6
- 54.7 g isophorone diisocyanate

Part 3:
- 903.5 g acetone

Part 4:
- 30.2 g isophorone diamine
- 5.22 g diaminosulfonate
- 0.75 g hydrazine hydrate
- 137.8 g water

Part 5:
- 249.5 g water

Method: same as for example 1

A dispersion with a solids content of 59.5% and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 29 s is obtained.
Example 4

Formulation:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>130.0 g</td>
<td>200.0 g</td>
<td>13.5 g</td>
<td>4.3 g</td>
<td>60.5 g</td>
<td></td>
<td>2.6 g</td>
<td>25.2 g</td>
<td>101.1 g</td>
</tr>
<tr>
<td></td>
<td>diol III</td>
<td>diol IV</td>
<td>EOX polyether</td>
<td>dimethylpropanoic acid</td>
<td>hexane diisocyanate-1,6</td>
<td>acetone</td>
<td>1,2-ethylene diamine</td>
<td>hydrophilising agent</td>
<td>water</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>512.2 g</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>water</td>
</tr>
</tbody>
</table>

Method: same as for example 1 (solids content 40 %)

A dispersion with a solids content of 40.4 % and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 15 s is obtained.
Example 5

Formulation:

<table>
<thead>
<tr>
<th>Part</th>
<th>Weight</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>30.0 g</td>
<td>diol III</td>
</tr>
<tr>
<td></td>
<td>200.0 g</td>
<td>diol IV</td>
</tr>
<tr>
<td></td>
<td>13.5 g</td>
<td>EOX polyether</td>
</tr>
<tr>
<td></td>
<td>4.3 g</td>
<td>dimethylol propanoic acid</td>
</tr>
<tr>
<td>10</td>
<td>60.5 g</td>
<td>hexane diisocyanate-1,6</td>
</tr>
<tr>
<td>Part 3</td>
<td>725.9 g</td>
<td>acetone</td>
</tr>
<tr>
<td>Part 4</td>
<td>2.6 g</td>
<td>1,2-ethylene diamine</td>
</tr>
<tr>
<td></td>
<td>25.2 g</td>
<td>hydrophilising agent</td>
</tr>
<tr>
<td></td>
<td>1.50 g</td>
<td>hydrazine hydrate</td>
</tr>
<tr>
<td></td>
<td>2.50 g</td>
<td>dimethyl ethanolamine</td>
</tr>
<tr>
<td></td>
<td>109.6 g</td>
<td>water</td>
</tr>
<tr>
<td>20</td>
<td>505.0 g</td>
<td>water</td>
</tr>
</tbody>
</table>

Method: same as for example 1 (solids content 40 %)

A dispersion with a solids content of 40.0 % and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 19 s is obtained.
Example 6

Formulation:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>340.0 g</td>
<td>diol I</td>
<td>149.6 g</td>
<td>hexane diisocyanate-1,6</td>
<td>1502.6 g</td>
<td>acetone</td>
<td>4.9 g</td>
<td>1,2-ethylene diamine</td>
<td>1049.1 g</td>
<td>water</td>
</tr>
<tr>
<td>10</td>
<td>320.0 g</td>
<td>diol IV</td>
<td>53.6 g</td>
<td>hydrophilising agent</td>
<td></td>
<td></td>
<td>3.0 g</td>
<td>hydrazine hydrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.0 g</td>
<td>EOX polyether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.3 g</td>
<td>dimethyl ethanolamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.6 g</td>
<td>dimethyl propanoic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method: same as for example 1 (solids content 40 %)

A dispersion with a solids content of 40.3 % and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 16 s is obtained.
Comparative examples

Example 7

<table>
<thead>
<tr>
<th>Part</th>
<th>Amount (g)</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250.0</td>
<td>diol III</td>
</tr>
<tr>
<td></td>
<td>80.0</td>
<td>diol V</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>EOX polyether</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>dimethylol propanoic acid</td>
</tr>
<tr>
<td>2</td>
<td>67.2</td>
<td>hexane diisocyanate-1,6</td>
</tr>
<tr>
<td>3</td>
<td>737.8</td>
<td>acetone</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>1,2-ethylene diamine</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
<td>diaminosulfonate</td>
</tr>
<tr>
<td></td>
<td>2.65</td>
<td>hydrazine hydrate</td>
</tr>
<tr>
<td></td>
<td>130.9</td>
<td>water</td>
</tr>
<tr>
<td>5</td>
<td>501.6</td>
<td>water</td>
</tr>
</tbody>
</table>

Method: same as for example 1 (solids content 40 %)

A dispersion with a solids content of 40.9 % and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 17 s is obtained.
Example 8

Formulation:

5 Part 1: 250.0 g diol III
 22.0 g diol VI
 13.5 g EOX polyether
 4.3 g dimethylol propanoic acid

10 Part 2: 60.5 g hexane diisocyanate-1,6

Part 3: 622.8 g acetone

Part 4: 2.6 g 1,2-ethylene diamine
 13.0 g diaminosulfonate
 1.50 g hydrazine hydrate
 87.5 g water

Part 5: 444.4 g water

20 Method: same as for example 1 (solids content 40 %)

A dispersion with a solids content of 39.0 % and a flow viscosity at 23°C (4 mm cup according to AFAM 2008/1050304-00 D) of 15 s is obtained.
Test results for application examples 1 to 6 and comparative examples 7 and 8

Table 1: Test results for examples 1-6 according to the invention, comparative examples 7 and 8 and PU dispersions PU I and II.

<table>
<thead>
<tr>
<th></th>
<th>PC polyol content [polymeric PC/THF]</th>
<th>Poly THF content [polymeric PC/THF]</th>
<th>Modulus at 100% [MPa]</th>
<th>Tensile strength [MPa]</th>
<th>Elongation at break [%]</th>
<th>Tensile strength after 10 wks hydrolysis [MPa]</th>
<th>Elongation at break after 10 wks hydrolysis [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU I</td>
<td>Comparative example</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PU II</td>
<td>Comparative example</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 1</td>
<td>35.7</td>
<td>64.3</td>
<td>2.4</td>
<td>25.9</td>
<td>840</td>
<td>16.0</td>
<td>710</td>
</tr>
<tr>
<td>Example 2</td>
<td>60.6</td>
<td>39.4</td>
<td>2.4</td>
<td>23.5</td>
<td>600</td>
<td>14.5</td>
<td>380</td>
</tr>
<tr>
<td>Example 3</td>
<td>22.0</td>
<td>78.0</td>
<td>2.6</td>
<td>8.8</td>
<td>730</td>
<td>27.0</td>
<td>770</td>
</tr>
<tr>
<td>Example 4</td>
<td>60.6</td>
<td>39.4</td>
<td>2.7</td>
<td>19.8</td>
<td>710</td>
<td>8.8</td>
<td>680</td>
</tr>
<tr>
<td>Example 5</td>
<td>60.6</td>
<td>39.4</td>
<td>2.8</td>
<td>8.8</td>
<td>810</td>
<td>22.1</td>
<td>860</td>
</tr>
<tr>
<td>Example 6</td>
<td>48.5</td>
<td>51.5</td>
<td>2.5</td>
<td>19.8</td>
<td>670</td>
<td>19.8</td>
<td>570</td>
</tr>
<tr>
<td>Example 7</td>
<td>Comparative example</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example 8</td>
<td>Comparative example</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The PU dispersions according to the invention from example 1-6 display substantially better hydrolysis resistances than the PU dispersions from the prior art (PU I/II) and the comparative examples 7 and 8.
Example 9 Use of the PU dispersions according to the invention for the production of foams

Starting formulation for fogging-free mechanically blown foams up to a density of 0.4 kg/dm³:

- PU dispersion from example I 1000 g
- Isoversal WL pigments (ISL Chemie) 30 – 100 g
- Levapon TH 5 g
- Stokal SR (Stockhausen) 10 g
- Mirox AM (Stockhausen) 20 g
- Ammonia solution, conc. 5 g
- Acrafix ML 10 g

The mechanically blown foam is produced using commercial foaming units, e.g. Hansa Mix.

Expandable pastes produced from Example 1 by this method of operation can be applied in a single coat to produce foams with a film thickness of at least 2.0 – 2.5 mm, in other words producing solids deposits of almost 800 g/m² and more, depending on the efficiency of the drying unit. Foams produced from PU II under identical conditions produce foam deposits of around 200 – 250 g/m², in other words a film thickness of 0.6 – 0.8 mm. Thicker deposits lead to deep cracks in the surface of the foam.

If PU III is used in place of the PU dispersion from Example 1, foam layers of 0.3 – 0.4 mm with solids deposits of 70 to max. 100 g can be achieved. If these values are exceeded, cracking occurs immediately.
The foam produced from the PU dispersion from Example 1 also displays significantly better scratch and abrasion resistance than the foams made from the conventional PU dispersions (PU II and III) of the prior art.

Example 10 Use of the PU dispersions according to the invention as coating compounds for leather

Materials and formulations used

A) Binders

1) Anionic aliphatic linear PU dispersion with isophorone diisocyanate/butanediol rigid segments, polypropylene oxide soft segments and carboxyl hydrophilisation; solids content 37 %; with the following properties: Shore-A = 85; modulus at 100 % = 18 MPa; tensile strength = 30 MPa; elongation at break = 400 %.

2) Anionic aliphatic branched PU dispersion with polyester soft segments, carbazide rigid segments and sulfonate hydrophilisation; solids content 40 % with the following properties: Shore-A hardness = 95; modulus at 100 % = 20 MPa; tensile strength = 40 MPa; elongation at break = 300 %.

3) Anionic aliphatic linear PU dispersion with polycarbonate soft segments, carbazide and polyurea rigid segments and synergistic polyether/sulfonate/carboxyl hydrophilisation; solids content 40 % with the following properties: Shore-A hardness = 85; modulus at 100 % = 4.1 MPa; tensile strength = 43 MPa; elongation at break = 530 %.

4) PU dispersion according to the invention (Example 1)
5) Commercial blend of an aliphatic polyurethane with an acrylate; solids content 49 % with the following properties: modulus at 100 % = 2.2 MPa; tensile strength = 11.5 MPa; elongation at break = 670 %.

5 B) NCO prepolymer:

80 % solution of a prepolymer in ethyl acetate, produced from a trifunctional polyether (MN = 4800); a linear polyadipate (MN = 1700) and a diphenyl methane-diisocyanate isomer mixture. The NCO content of the product is 3.6 %.

10 C) Hardener for the prepolymer

Formulation of an aliphatic diamine with auxiliary substances and additives in butanone; 400 g of the formulation correspond to 1 gram equivalent of NH₂.

15 D) Other components:

a) Formulation of a hydrophilised HDI trimer in propylene glycol diacetate; content of active ingredient 50 %; NCO content 8.6 %; crosslinking agent for aqueous binders

b) Aqueous carbon black preparation; carbon black content 14 %.

c) Water-miscible formulation of an associative PU thickener; content of active ingredient 8 %.

d) Water-dispersible silicone formulation; stiffening agent.

e) Water-soluble polyether trisiloxane; flow control agent.

Coating of leather

Production of coating on the release backing

30 Top coat
A blend is produced from 330 parts PU 1; 330 parts PU 2; 330 parts PU 3; 20 parts silicone d; 40 parts carbon black preparation (b); 20 parts siloxane (e) and 60 parts PU thickener (c). This blend is spread onto a commercial release paper (ULTRACAST Soave) on an industrial coating plant in such a way (nip 0.08 mm) that a solids deposition of 25 g per square metre is obtained. The coating is dried within 5 min (temperature programme 80 – 150°C).

Intermediate coat

A mixture comprising 1000 parts of binder 4 according to the invention; 40 parts carbon black preparation (b); 15 parts siloxane (e) and 80 parts thickener (c) is produced. This mixture is spread onto the dried top coat in such a way that a solids deposition of 45 g per square metre is obtained (nip 0.12 mm). The intermediate coat is dried in the same way as the top coat.

A release backing provided with a top coat and intermediate coat is obtained in this way. The coating is then bonded with split leather in two different ways. After bonding the release paper is removed and the resulting coated leather is assessed and tested for physical resistance properties.

A) Aqueous bonding

A mixture comprising 1000 parts of blend 5; 50 parts crosslinking agent (a) and 60 parts thickener (c) is produced. This mixture is spread onto the release paper provided with top coat and intermediate coat in such a way that a solids deposition of 50 g per square metre is obtained (nip 0.18 mm). The adhesive layer is only gently dried using a temperature programme of 80 – 105°C so that it is still tacky when it emerges from the drying tunnel. A piece of split leather is placed onto this adhesive layer and pressed down with a roller using moderate pressure. After 15 min the release paper is then removed (leather A).
B) Organic bonding

In an industrial 2-component spraying unit a mixture comprising prepolymer C and hardener D with a mixing ratio of 1000:318 is sprayed onto the release backing provided with top coat and intermediate coat in such a way that a solids deposition of 100 g per square metre is obtained. A piece of split leather is placed into the reacting compound and pressed down with a roller using moderate pressure. It is then dried for 5 min at 80°C and the release paper removed (leather B).

Both leather A and leather B were characterised by good body and coverage of the coating. They were both extremely close-grained.

The physical resistance properties of the two leathers were as follows:

- Dry folding endurance: 100,000 folds without damage
- Wet folding endurance: 100,000 folds without damage
- Folding endurance at –25°C: 30,000 folds without damage
- Adhesion of the coating: dry > 20 N/cm (leather A+B); wet 9 N/cm (leather A); > 5 N/cm (leather B)

After being stored for 7 days at 70°C and 95 % relative humidity, the appearance of both coated leathers remained unchanged; the folding endurance test (dry folding) after this ageing test produced the following results:

- Leather A: 100,000 folds with very slight damage;
- Leather B: 100,000 folds without damage.
Claims

1. Ionically and/or non-ionically hydrophilised, aqueous PU dispersions containing
 A1. polyisocyanates,
 A2. a mixture of polycarbonate and polytetramethylene glycol polyols,
 A3. optionally monoalcohols or monoamines,
 A4. polyols, amino polyols or polyamines,
 A5. optionally polyoxyalkylene ethers with at least one hydroxyl or amino group and
 A6. optionally antioxidants and/or light stabilisers and/or other auxiliary substances and additives.

2. PU dispersions according to claim 1 containing
 A1. 5 to 30 wt.% polyisocyanates,
 A2. 55 to 87 wt.% of a mixture of polycarbonate and polytetramethylene glycol polyols,
 A3. 0 to 10 wt.% monoalcohols or monoamines,
 A4. 1 to 20 wt.% polyols, aminopolyols or polyamines,
 A5. 0 to 10 wt.% polyoxyalkylene ethers with at least one hydroxyl or amino group and
 A6. 0 to 10 wt.% antioxidants and/or light stabilisers and/or other auxiliary substances and additives, whereby the sum of the percentages by weight of components A1 to A6 is 100 %.

3. PU dispersions according to claim 1 containing
 A1. 10 to 25 wt.% polyisocyanates,
 A2. 60 to 85 wt.% of a mixture of polycarbonate and polytetramethylene glycol polyols,
 A3. 0 to 10 wt.% monoalcohols or monoamines,
 A4. 1 to 15 wt.% polyols, aminopolyols or polyamines,
A5. 1 to 10 wt.% polyoxyalkylene ethers with at least one hydroxyl or amino group and

A6. 0.5 to 8 wt.% antioxidants and/or light stabilisers and/or other auxiliary substances and additives, whereby the sum of the percentages by weight of components A1 to A6 is 100 %.

4. PU dispersions according to claim 1 containing
 A1. 13 to 20 wt.% polyisocyanates,
 A2. 70 to 82 wt.% of a mixture of polycarbonate and polytetramethylene glycol polyols,
 A3. 0 to 10 wt.% monoalcohols or monoamines,
 A4. 1 to 10 wt.% polyols, aminopolyols or polyamines,
 A5. 1 to 5 wt.% polyoxyalkylene ethers with at least one hydroxyl or amino group and
 A6. 1 to 6 wt.% antioxidants and/or light stabilisers and/or other auxiliary substances and additives, whereby the sum of the percentages by weight of components A1 to A6 is 100 %.

5. PU dispersions according to claim 1, characterised in that the proportion of polycarbonate polyols in mixture A2 is between 20 and 80 wt.% of polycarbonate and polytetramethylene glycol polyols is between 80 and 20 wt.%, whereby the sum of the percentages by weight of polycarbonate and polytetramethylene glycol polyols is 100 %.

6. PU dispersions according to claim 5, characterised in that the proportion of polycarbonate polyols in mixture A2 is between 25 and 70 wt.%, the proportion of polytetramethylene glycol polyols is between 30 and 75 wt.%, whereby the sum of the percentages by weight of polycarbonate and polytetramethylene glycol polyols is 100 %.
7. PU dispersions according to claim 5, characterised in that the proportion of polycarbonate polyols in mixture A2 is between 30 and 65 wt.%, the proportion of polytetramethylene glycol polyols is between 35 and 70 wt.%, whereby the sum of the percentages by weight of polycarbonate and polytetramethylene glycol polyols is 100%.

8. Process for the production of the PU dispersions according to claim 1, characterised in that components A1 and A2 and optionally components A3 to A6 are first reacted to form a polyurethane prepolymer, then the polyurethane prepolymer is dispersed in or by addition of water and then optionally reacted with A3 to A6.

9. Use of the PU dispersions according to claim 1 as coating compounds for the production of coated substrates.

10. Use of the PU dispersions according to claim 9, characterised in that the substrate is textiles or leather.

11. Use of the PU dispersions according to claim 1 in the area of upholstered furniture, industrial safety and car interior trim.

12. Use of the PU dispersions according to claim 1 for the production of thick foam deposits in a single coat.

13. Coated substrates comprising a substrate displaying on one side a coating containing PU dispersions according to claim 1.

14. Coating compounds containing the PU dispersions according to claim 1.