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APPARATUS AND METHOD FOR REGISTERING TWO MEDICAL IMAGES

Field of the Invention

The present invention relates to registering two medical images with one another,

especially where the two images are obtained by different imaging techniques.

Background of the Invention

A variety of medical imaging techniques are known, including magnetic resonance
(MR) imaging, X-ray computed tomography (CT), radionuclide imaging, optical imaging, and
ultrasound (US). Other imaging techniques may be developed in the future. These imaging
techniques may produce a two-dimensional (2D) array of pixels (a conventional image) or a
three-dimensional (3D) array of voxels, which conceptually represent slices through a
physical object. Each pixel or voxel is assigned a value or “intensity” related to one or more
physical properties of tissue at a particular point, peculiar to the particular imaging method
used. The term “image” as used herein encompasses both 2D and 3D data sets unless the

context indicates otherwise.

In some situations, it is desirable to be able to perform multimodal image registration,
i.e. aligning images of the same body region but obtained through different imaging
techniques. This is often highly challenging due to the large differences in the intensity
characteristics between images obtained using different imaging techniques. In addition,
fundamental differences between the underlying physics and image formation processes
peculiar to each imaging method may also give rise to modality-specific artefacts. A further
problem is that for a deformable structure, which includes most of the soft tissue organs of the
body, physical deformations and motion with respect to neighbouring structures may occur
between imaging sessions. These effects further complicate the problem of image

registration.

One well-known approach to image registration involves so-called intensity-based
algorithms, such as those which seek to maximise information-theoretic similarity measures.
These techniques implicitly assume a probabilistic relationship between the intensities in one
image and those in the corresponding regions of another image for mapping one intensity map
to another, However, this assumption is often not reliable in a situation where different
imaging methods that exploit different physical properties are used to obtain an image of the

same anatomical region.
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In an alternative approach, commonly referred to as feature-based registration, the
input images are first reduced to simpler geometric representations (such as a set of points or
surfaces) and these geometric representations are then registered with one another. This
approach typically involves identifying corresponding features, such as anatomical landmark
points, tissue boundaries, etc, in each image. The process of extracting features from image
data, known as image segmentation, can be performed using segmentation software and may
in some cases involve little or no user interaction. However, in many other cases, the
segmentation must be performed manually by an expert observer. Therefore, the feature-
based approach to registration is often impractical if available computer-based automatic
segmentation methods are unavailable or fail, or if manual segmentation of at least one of the

images is prohibitively time-consuming and labour-intensive,

The reliance on feature-based image registration is a particular problem in time-
critical applications, such as image-guided surgery, since images obtained during such a
procedure are typically of much poorer quality than those obtained outside the surgical
setting. These image are therefore very often difficult to segment automatically or within a

clinically acceptable timescale (i.e. seconds to a few minutes).

Since ultrasound imaging is safe, non-invasive, inexpensive, portable and widely
available in hospitals, it is used routinely to provide real-time surgical guidance during a wide
range of medical procedures. However, there is currently a pressing clinical need for
multimodal image registration methods that enable ultrasound images to be accurately
registered with other types of image to enable accurate guidance of many procedures by
visually augmenting ultrasound images with anatomical and pathological information derived
from diagnostic quality images (especially MR and X-ray CT images). Such information
includes the location of pathology (e.g. a cancerous tumour) or organs that are not visible in
the ultrasound images obtained during a procedure (for example, because they are poorly
visualised or lie outside the field-of-view of the image) or a representation of a treatment or
biopsy sampling plan that has been defined using information derived from images acquired
specifically for the purposes of disease diagnosis or surgical planning combined with

diagnostic information from other sources.

If multimodal image registration can be performed accurately, the location of a
tumour identified in an MR image, for example, can be displayed superimposed on ultrasound
images ordinarily obtained during a surgical proccdure for the purposes of guiding surgical

instruments. This aids the clinician by providing visual information on the location of the
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tumour relative to the current position of surgical instruments, so that tissue biopsy samples
can be collected from precise locations to confirm a diagnosis, or an intervention to treat the
tumour can be performed with sufficient accuracy that the tissue within a region that encloses
the tumour plus a pre-defined surgical margin are destroyed or removed. However, if the
diagnostic image information is not accurately aligned with intra-procedural images, errors
may be introduced that limit the accuracy of the biopsy as a diagnostic test or that can
severely limit clinical efficacy of the intervention. In practice, such errors include: inaccurate
placement of biopsy needles, failure to remove an adequate margin of tissue surrounding a
tumour such that malignant cancer cells are not completely eradicated from the organ, and
unnecessary damage to healthy tissue with an elevated risk of side-effects related to the

procedure in question.

Unfortunately, standard intensity-based multimodal registration algorithms are known
to perform poorly with ultrasound images, largely due to high levels of noise, relatively poor
soft-tissue contrast and artefacts typically present in clinical ultrasound images. Furthermore,
image segmentation is challenging for the same reasons and therefore the use of many

feature-based registration approaches is precluded for most clinical applications.

Several authors have investigated a hybrid registration technique, variously known as
surface-to-image registration, feature-to-image registration, model-to-image registration, or
model-to-pixel registration. In this approach, a geometric representation of the organs of
interest is generated by segmenting a reference image to extract features, such as surface
boundaries, tubular structures, etc, in the same way as traditional feature-based approaches.
However, unlike the feature-based method, these features are matched directly to the
pixel/voxel intensity values of a second image, which has not been segmented explicitly, but
may have been processed in some wéy, for instance, to enhance certain features, such as
boundaries. This procéss is normally achieved by minimising a mathematical cost function to
determine a transformation that provides the best alignment between the features from the

first image and the intensity values of the second image.

The most extensively investigated example of the above technique is the so-called
active shape mode! developed by Cootes et al. 1995. In this method the geometric model is
represented as a statistical shape model which deforms iteratively to fit to the boundary of an
object in an unseen image. A closely related method is the so-called active appearance
model, see Cootes et al. 1998 and Beichel et al. 2005. In this method, the statistical variation
in the image intensity (or appearance) in the local region of the surface of a statistical shape

model is included into the model at the training phase. This information is then used to match
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the shape model to an object boundary in an unseen image by maximising a measure of the
similarity between the local intensity characteristics in the image around points on the
deforming boundary and the corresponding intensity variation learnt by the active appearance
model. One such measure is the sum-of-squared differences. Both active shape and active
appearance models have been applied successfully to a wide range of image analysis
problems in computer vision and medical imaging, particularly image classification, image
segmentation, and image registration. However, both methods are known not to work well
when the unseen image is corrupted in some way such that object boundaries are occluded or
the intensity characteristics of the unseen image differ substantially from the images used to
train the model. This situation is very common in medical image applications, particularly
during image-guided interventions where (unseen) images obtained during an intervention are
typically noisy, contain artefacts, and include medical instruments introduced into the patient.
There are also many situations where, due to noise, artefacts and variability between patients,
the variation in image intensity around points on the boundary of an object in a reasonably-
sized set of training images is too wide for meaningful parametric statistical measures to be
determined. In this case, the assumptions of the active appearance model method may break

down.

Shao et al. 2006 describe one example of the above technique, which is used for
aligning MR images of the pubic arch with US images obtained via a trans-rectal ultrasound
(TRUS) probe. This technique involves manually identifying a bone surface in an MR image.
A rigid transformation is then identified to align this surface with the US image, based on

image properties such as regions of high intensity or the image intensity gradient.

Aylward et al. 2003 describe a model-to-image method for the registration and
analysis of vascular images. The method includes using centre-line tracking to build a2 model
of a vascular network from a first image, such as an MR image. This model is then subjected
to a rigid transformation to align the model with a second image, such as an US image, on the
assumption that centre-line points in the model correspond to bright lines in the image.

Aylward et al. go on to investigate the impact of non-rigid deformations on this approach.

Wu et al. 2003 describe a model-to-pixel registration approach for prostate biopsy.
The authors use a genetic algorithm (GA) that operates on a statistical model of the prostate
boundary to evolve a population of 2D boundaries for prostate that are then matched to a
gradient map from a US image. Each candidate (individual) in the GA corresponds to a
specific rigid-body transformation and the better the match with the US gradient image, the

higher the fitness of that individual. It is contemplated that the individuals could also include
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parameters to permit deformation (non-rigid transformation), or alternatively such

deformation could be added as a final step onto the best-fit rigid registration.

King et al. 2001 describe the registration of preoperative MR or CT images with an
intraoperative US image for liver treatment. A statistical shape model is derived by
segmenting multiple MR scans and determining a mean surface shape and modes of variation.
The modes of variation are then restricted to a single parameter representative of changes
caused by the breathing cycle. This model was then registered to the US image by way of (i)
a rigid transformation, and (ii) a non-rigid transformation representative of organ deformation
due to breathing. A probabilistic (Bayesian) model is used to perform this registration based

on summing the image intensity over the (transformed) model surface.

Other approaches to US-based registration have been proposed, see especially Roche
etal., 2001; Penney et al., 2004/2006; Zhang et al. 2007; and Wein et al. 2008. However, to
date these have been demonstrated only for a few organs and for specialised applications, and
rely on automatically converting at least one of the images into a form that is more amenable
to performing a registration using established intensity-based methods. However, this
conversion step is not trivial in many circumstances, and these alternative approaches have
yet to be demonstrated for many medically significant applications, such as image-guided
needle biopsy of the prostate gland and image-guided surgical interventions for the treatment

of prostate cancer.

US 2003/015611 describes geometric models which are represented using medial
atoms — a so-called “medial representation” or “m-rep”. A method is described for registering
an m-rep to an image by numerically optimising a local grey level intensity-based similarity

measure, computed in the region of the m-rep surface.

WO 2009/052497, also specific to m-reps, describes a method for non-rigidly
registering an m-rep mode! of an organ, derived from one image, to a second image. As
discussed above, a typical scenario is when the model is derived from an image used for
planning a surgical intervention, whereas the second (target) image is acquired during that
intervention and the organ of interest has deformed between the times when the images were
acquired. Finite element modelling is used to predict soft-tissue deformation and, more
specifically, to provide training data for a statistical shape model. The model-to-image
method is based on active appearance modelling as outlined above. Principal component
analysis is applied to represent the statistical variation in image intensity in the local region of

a model boundary in a linear form and, as in classical active appearance models, this
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information is then used to fit the model surface to the target image. However, this approach
assumes that the intensity variation at corresponding locations across different training images
adopts a Gaussian distribution, which may not be the case, particularly for interventional

images.

Various computational models of organ motion for medical image registration have
been proposed. For example, WO 2003/107275 describes the use of physiological models of
organ motion due to respiration and cardiac motion to predict deformation between organs in
two images that are subsequently registered non-rigidly, with a focus on the problem of
registering PET and CT images. The motion models considered are based on deforming non-
uniform rational B-spline (NURB) representations of organ surfaces and are not statistical in
nature. The geometric model is created by segmenting both of the images to be registered,

which is potentially problematic for surgical applications.

WO/2007/133932 discloses a method for the deformable registration of medical
images for radiation therapy. Again, all input images must be segmented. In this approach,
landmarks are identified in the images prior to registration (rather than performing a direct

model-to-image registration).

A more general deformable image registration method is disclosed in WO
2008/041125, in which variations in the non-rigid behaviour of different parts of an image
(for example, corresponding to different tissue types or mechanical discontinuities between
tissue boundaries) may be accounted for by spatially varying the “flexibility” and/or non-

Gaussian smoothing applied during registration.

Prostate cancer is a major international health problem, particularly affecting men in
the Western World. Traditional treatment strategies involve either radical treatment of the
whole gland - for example, by surgical excision or using radiotherapy — or pursuing an active
surveillance/watchful waiting programme in which intervention is delayed in favour of
monitoring the patient for signs of disease progression. Alternative minimally-invasive
interventions for prostate cancer, such as brachytherapy, cryotherapy, high-intensity focused
US, radiofrequency ablation, and photodynamic therapy are also now available, but the
clinical efficacy of most of these treatment approaches has vet to be fully established through

randomised controlled trials.

Up to 70% of patients treated for prostate cancer experience long term side-effects ~

principally sexual dysfunction and incontinence — caused by damaging the bladder, rectum,
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and/or the neurovascular bundles. Motivated by the potential for a reduced risk of side-
effects compared with conventional treatments, there has recently been growing interest in
techniques which enable the targeted treatment of prostate cancer in an effort to minimise
damage to vulnerable structures, Ahmed et al. 2008. This had lead to interest in alternative
treatment strategies, such as ‘focal therapy’, in which small volumes of the prostate (rather
than the whole gland) are treated. It is anticipated by its clinical proponents that this will lead
to a significant reduction in side-effects without compromising the therapeutic benefits of the
treatment. Treatment costs should also be reduced as treatment times and hospital stays are
much shorter. However, such targeted treatment approaches rely on accurate 3D mapping of
cancer based on histological analysis of tissue samples obtained using needle biopsy and MR

imaging,

Trans-rectal ultrasound (TRUS) imaging remains the most accessible and practical
means for guiding needle biopsy and therapeutic interventions for prostate treatment.
However, conventional (so-called ‘B-mode’) TRUS imaging is two-dimensional and typically
provides very limited information on the spatial location of tumours due to the poor contrast
of tumours with respect to normal prostatic tissue. Although there is some evidence that the
use of microbubble contrast agents can improve the specificity and sensitivity of tumour
detection, this method is not widely used and performing accurate, targeted biopsy and
therapy using TRUS guidance alone is difficult in practice, particularly for the inexperienced
practitioner. An alternative approach is to use preoperative MR images, which are registered
to the TRUS images during a procedure, in order to accurately target tumours. Indeed, recent
advances in functional and structural MR imaging techniques for localising and characterising
prostate cancer have led to sensitivities and specificities that are now sufficiently high to be
clinically useful for targeting localised therapy, Kirkham et al. 2006. However, the ability to
accurately fuse anatomical and pathological information on tumour location, derived from
MR images or a previous biopsy procedure, with TRUS images obtained during a procedure
remains a significant technical challenge, mainly due to the differences in intensity between
MR and TRUS images, which frustrate standard registration methods, as well as the

significant deformation that occurs between the imaging sessions.

Morgan et al. 2007 describe various techniques for the registration of pre-procedure
MR images to intra-procedure US images, especially for guiding minimally-invasive prostrate
interventions. One technique is based on a form of feature registration, in which for both the
MR and US image data, contours of the capsule surface of the prostrate are manually drawn
on a series of slices of the US image, and the apex and base points, which correspond to the

entrance and exit of the urethra at the ends of the prostrate gland, are manually identified. An
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image registration is then performed by finding a rigid transformation that minimises the cost
of mapping from the apex points and the mid-band surface (as represented by a set of points

on the surface) from one image to the apex points and mid-band surface of the other image.

Because of the long time required for contouring the US image during a surgical
procedure, Morgan et al. also utilise a gradient-based, feature-to-image registration procedure.
Using this method, an MR image is first segmented to extract the capsule surface of the
prostate gland. Registration is performed by aligning MR surface normal vectors with
gradient vectors of the TRUS image, calculated using Gaussian derivative filters, such that a
cost function is minimised. However, this approach was found not to produce such accurate
image registration, especially if the prostate gland has deformed significantly between the MR
and US images. Much of this deformation is caused by the presence of the TRUS probe,
which is always inserted into the rectum during US imaging, or an endorectal coil, which is

somnetimes used during MR imaging.

WO 00/14668 describes the construction of a 3D probability map of prostate cancer
location, based on an analysis of computer reconstructions of excised prostate gland
specimens. One intended use of these models is to direct ultrasound-guided prostate biopsy to
maximise the probability of detecting cancer. To achieve this, registration of a geometric
model containing the probability map to ultrasound images acquired during biopsy is
required. A feature-based registration method is proposed, which requires segmentation of
the prostate gland in the target, i.e. ultrasound, image to provide a patient-specific target
model to which the (generic) probabilistic model is then registered by fitting the model

surfaces.

WO 2008/122056 discloses an image-based method for the delivery of photodynamic
therapy (PDT) for the treatment of prostate cancer and uses deformable registration of two
images to deliver, monitor, and evaluate PDT. The registration method involves non-rigidly
registering organ surfaces, segmented from each image, and using a finite element model or |
thin-plate spline model to interpolate the tissue displacement inside the organ. In the case of
the finite element model, the displacement of the surface is used to set the boundary
conditions for a finite element simulation given assumed mechanical properties for tissue,

Again, this approach requires prior segmentation of both input images.

US 5,810,007 discloses a method for registering ultrasound and x-ray images of the
prostate for radiation therapy. This method requires the implantation of spherical fiducial

markers to act as landmarks, which are subsequently rigidly aligned.
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In a recent paper, Xu et al. (2008) state: “Currently, there is no fully automatic algorithm
that is sufficiently robust for MRI/TRUS [Transrectal Ultrasound] image registration of the

prostate”.

Summary

It is an object of the present disclosure to substantially overcome, or at least ameliorate, at

least one disadvantage of present arrangements.

One aspect of the present disclosure provides a method for registering two medical images.
The method comprises obtaining a first medical image including a patient-specific representation
of a biological organ of an individual subject or a representation of a biological organ for a
population and identifying the surface of said organ in said first medical image. The surface can
be used to obtain a geometric model that represents the three-dimensional shape of said organ for
a subject or the representative shape of said organ for a population. The geometric model can
then be used to obtain a motion model which can be used to predict the physical motion and
deformation of said organ. The method further comprises obtaining a second medical image
including a representation of said organ of said subject or another subject. An alignment is
determined between surface normal vectors of said geometric model, which represent a first
vector field, and estimated surface normal vectors of the organ surface derived by filtering said
second medical image, which represent a second vector field. Determining the alignment
includes applying a mathematical transformation to said geometric model to maximise a measure
of orientational alignment between the first and second vector fields. The spatial position,
orientation and shape of said geometric model and of the first vector field are changed in
accordance with said motion model to achieve said alignment. The first and second medical

images can then be registered with one another based on said determined alignment.

Such an approach allows two medical images to be registered with one another. The first
medical image includes a representation of an organ and a physical feature of that organ which
can be identified, and which is also represented in the second medical image. The identified
feature may be a surface that is then used to construct a 3D geometric model of the organ or
some other physical property that provides a convenient representation of the 3D geometry of the
organ. The second medical image includes a representation of the organ. An alignment may be
determined between the first vector field, derived from the geometric model, and the second
vector field, derived automatically by filtering the second medical image. The alignment

accommodates deformation of the geometric model in accordance with a mathematical model of

10872586 (IRN: P025884)
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the physical motion and deformation of the organ/feature. The first and second medical images

can then be registered with one another based on the determined alignment.

The first and second medical images will generally originate from different imaging
methods, which causes the images to have different properties regarding the visibility of various
organs and pathological conditions. For example, the first medical image may be a CT or MR
image obtained before a surgical procedure, from which a detailed diagnosis and surgical plan
can be generated, while the second medical image may be an ultrasound (US) image, obtained
during the surgical procedure when the time available for processing new images is typically
very limited. As a consequence, the processing of the second image, in particular determining
the alignment for registering the first and second medical images, must be performed quickly
with little or no human involvement. The approach described herein for determining the

alignment has been found experimentally to fulfil this requirement.

The approach described herein can be applied to a wide range of anatomical organs. In
some cases, the first and second images may include (at least portions of) multiple organs and
the modelling and alignment may utilise multiple features related to those organs. The approach
is particularly relevant to solid organs that have a clearly identifiable surface which provides a
suitable feature for the described approach, and organs that are deformable —i.e. comprise soft
tissue. The approach described herein has been investigated experimentally with respect to the

prostate gland.

In one aspect, constructing the geometric model includes building a patient-specific finite
element mesh of organ surfaces that have been identified in the first image. The finite element

mesh may be generated from a spherical harmonic representation of the identified surfaces.

In one aspect, a set of simulated deformations of the finite element model of the organ
determined from the first image are performed using computational finite element analysis.
Constructing a finite element model may include the use of solid modelling tools to convert the
geometric surface model into a volumetric, finite element mesh representation of the organ(s) of
interest, and assigning physical material properties, such as Young’s Modulus and Poisson’s
Ratio, that are within the known physiological range of such properties, to elements of the
model. Each simulation calculates the physical deformation of the organ model for particular
material properties and boundary conditions. The boundary conditions specify, for example,
which parts of the model are fixed and how other parts move in accordance with externally
applied forces. A statistical motion model can then be generated by performing principal

component analysis of the displacements of the finite element mesh nodes, calculated by the

10872586 (IRN: P025884)
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simulations. The statistical motion model provides a 3D representation of the motion and
deformation of the finite element model — and hence the motion and deformation of the organ —
as predicted by finite element analysis. The use of the principal component analysis enables a
simpler, low-dimensional representation of the predicted displacement of the node points of the
underlying finite element model, which therefore reduces the processing requirements (and

hence time required) when determining the alignment.

In one aspect, determining the alignment includes initially identifying one or more points
representing anatomical landmarks in the second medical image and matching them to
corresponding points in the geometric model in order to approximately orientate the geometric
model with respect to the second medical image. For example, in the case of the prostate gland,
the anatomical landmarks may comprise the points of entry and exit of the urethra at the base and
apex of the gland. Since the number of points to be identified is generally rather small (often a
handful at most), this can be done within the time constraints of a surgical procedure. The use of
this matching procedure helps to limit the search space when determining the alignment, thus
reducing the time required for finding the alignment and also reducing the chances of not finding

the appropriate alignment.

In one aspect, filtering the second medical image is based on an eigenanalysis of second
order Gaussian derivatives. The feature, derived from the first image, is the surface of a solid
organ and is represented by a 3D vector field comprising a set of 3D point co-ordinates and a set
of 3D vectors. The point co-ordinates define points on the organ surface and the vectors are
surface normal vectors defined at each surface point. The method also includes computing the
eigenvalues of the Hessian at each voxel in the second medical image to classify the local
intensity structure in terms of being locally sheet-like (indicating a surface) or ridge-like
(indicating a tubular structure), and the eigenvectors of the Hessian at each voxel in the second

medical image to determine estimates of the surface normal vectors.

In one aspect, the second vector field, derived by filtering the second medical image, is
considered to be a noise-corrupted version of the first vector field derived from the geometric
model. The alignment is then determined on the basis of maximising the joint probability of the
noise. Other approaches for determining an alignment may be to minimise a cost function or to
use some other form of numerical optimisation technique - e.g gradient-descent, genetic

algorithms, etc.

10872586 (IRN: P025884)
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In one aspect, the alignment is determined using a vector similarity measure that quantifies
the orientational alignment between the first and second vector fields. The vector similarity
measure can account for direction-dependent artefacts in the second medical image when this
second medical image is an ultrasound image. Note that US imaging is particularly susceptible
to such artefacts and the similarity measure therefore provides a robust approach for determining

the alignment in their presence.

In one aspect, the determined alignment corresponds to deforming the geometric model to
provide a best fit to the second medical image. Registering the first and second medical images
with one another based on the determined alignment includes calculating a dense displacement
field comprising displacements that map from the initial geometric model to the deformed
geometric model. The same displacements can then be used to map from the first medical image
(corresponding to the original geometric model) to the second medical image (corresponding to

the deformed geometric model), or vice versa.

Another aspect of the present disclosure provides a computer program for implementing a
method such as described above. The computer program may comprise multiple pieces of
software and may be executed on one or more physical machines. The computer program may
be supplied on a computer readable storage medium, such as a CD, DVD or flash memory, or

made available for download over a network such as the Internet.

Another aspect of the present disclosure provides an apparatus for registering two medical
images. The apparatus comprises an image processing system for identifying a surface of a solid
organ or other feature in a first medical image that includes a representation of that feature. The
apparatus further comprises a modelling system for using the identified surface to construct a 3D
geometric model of the organ feature, the geometric model including a mathematical model of
the expected physical motion and deformation of the organ feature, for example a statistical
shape or motion model. The apparatus further comprises a numerical optimisation system for
determining an alignment between surface normal vectors of said geometric model, which
represent a first vector field, and estimated surface normal vectors of the organ surface derived
by filtering a second medical image that includes a representation of the organ, which represent a
second vector field. Determining the alignment includes applying a mathematical transformation
to the geometric model to optimise a measure of orientational alignment between the first and
second vector fields. The alignment accommodates deformation of the geometric model in
accordance with the motion model specified for the organ feature. The apparatus further

comprises an image registration system for registering the first and second medical images with
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one another based on the determined alignment. The apparatus further comprises a system for
visualising the first and second medical images following registration using the determined

alignment.

Another aspect of the present disclosure provides an apparatus for registering two medical
images, comprising: an image processing system for identifying an organ surface in a first
medical image that includes a representation of the said organ; a modelling system for using the
identified surface to construct a 3D geometric model of said organ surface; a modelling system
for constructing said organ motion model from said 3-D geometric model; an image processing
system for calculating first and second surface normal vector fields from said geometric model
and from said second medical image respectively; a numerical optimisation system for
determining an alignment between said first vector field and said second vector field, wherein
determining said alignment includes applying a mathematical transformation to said geometric
model to maximise a measure of orientational alignment between the first and second vector
fields, and wherein the spatial position, orientation and shape of said geometric model and of
said first vector field are changed in accordance with said motion model to achieve said
alignment, thereby accommodating deformation of the geometric model in accordance with said
motion model; and an image registration system for registering the first and second medical
images with one another based on said determined alignment.

Such an apparatus may be implemented by one or more computer systems, each provided
with one or more suitable processors and memory, plus any other appropriate facilities (such as
data communication links). The apparatus may implement the specified functionality under the
control of suitable software running on the processor(s). Alternatively, some or all of the

functionality may be implemented by special-purpose hardware.

Brief Description of the Drawings

Various embodiments of the invention will now be described in detail by way of example

only with reference to the following drawings:

Figure 1 is a flowchart providing an overview of a method in accordance with one

embodiment of the invention.

Figure 2 is a flowchart illustrating in more detail certain aspects of the method shown in

Figure 1 in accordance with one embodiment of the invention.

10872586 (IRN: P025884)
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Figure 3 is a schematic illustration of certain components from a statistical motion model
for the prostate gland derived using the method of Figure 2 in accordance with one embodiment

of the invention.

Figure 4 is a flowchart illustrating in more detail certain aspects of the method shown in

Figure 1 in accordance with one embodiment of the invention.

Figure 5 illustrates various stages in applying the method of Figure 4 to the prostate gland

in accordance with one embodiment of the invention.

Figure 6 illustrates the alignment of images of the prostate gland obtained by the method of

Figure 1 in accordance with one embodiment of the invention.

Detailed Description

The approach described herein provides a computerised method for automatically
registering, i.e. spatially aligning, two images of the same object by registering a geometric
model of the object, derived from one image, to the other image. The method, referred to herein
as a Model-to-Image Vector Alignment (MIVA) method, has been devised and tested in one
embodiment for registering magnetic resonance (MR) images to transrectal ultrasound (TRUS)

images in order to accurately guide surgical procedures for the diagnosis and
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treatment of prostate cancer. In this case, the geometric model is derived from an MR image
and comprises surface meshes that represent the prostate gland and surrounding organs,
including the rectum, pelvis and bladder. The model describes the shape and size of an
individual’s prostate, the prostate location relative to nearby anatomical structures, and the
location of regions with a high probability of containing tumours (identified by an expert
clinical observer from the MR image combined with previous biopsy results). Such
information is critical for accurately guiding and targeting needle biopsy and minimally-
invasive surgical interventions and augments the very limited information currently provided

by TRUS imaging that is used routinely to guide such procedures.

In contrast to existing methods, the present approach is generally able to use standard
geometric models. These have the advantage that they are widely employed in current
radiological analysis and computer-aided surgical planning applications. Consequently, a
wide range of well-developed solutions exist for producing such geometric models.
Examples of geometric models include triangulated surface meshes and tetrahedral meshes
commonly used for finite element analysis. Note that a geometric model can be either rigid,
indicating no shape change, or deformable. The latter is particularly relevant where changes
in shape may occur between the acquisition of different images or where significant shape
change occurs over a sample population. Examples of deformable models include active
contours and statistical shape models, see McInerney and Terzopoulos, 1996. For the
deformable case, the displacement of structures inside a surface can be predicted using, for
example, a statistical model of deformation based on simulations performed using finite

element analysis software (Hu et al. 2008).

The approach described herein enables a non-rigid registration of MR images and 3D
TRUS images that compensates for gland motion and is sufficiently fast for intraoperative
use. Finite element analysis and statistical shape modeiling are combined to generate a
compact model of the prostate gland motion that arises insertion of when a TRUS probe is
inserted into the rectum (see Mohamed et al., 2002, and Hu et al., 2008). This allows the
construction of patient-specific, biomechanically-informed statistical motion models (SMMs)
from preoperative MR images in order to predict physically realistic deformations, as well as
to provide a well-constrained transformation model for non-rigid registration of MR and

TRUS images.
The approach described herein differs from an “m-rep” approach in that a geometric
model, derived from one image, is registered directly to a second image without using prior

image intensity information from the first image. Consequently, the present approach is
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independent of the intensity differences between the input images, and is therefore more

appropriate for challenging multimodal registration problems.

Figure 1 is a flowchart providing an overview of a method in accordance with one
embodiment of the invention. The method commences with obtaining a first image 110. This
first image will often be obtained using a high-quality imaging method, such as MR or CT
imaging. The first image may also be an atlas image that represents generic anatomy for a

population.

The next operation of Figure 1 is to generate a patient-specific (geometric) model
from the first image 120. For example, if the first image depicts the prostate gland and
neighbouring organs, the model defines the locations and boundaries of these organs. The
model generation may be performed fully automatically or may require manual input from a
human expert, such as to outline the organ boundaries using image segmentation software.
Note that since human input can be performed in advance of any surgical procedure, this does

not usually represent a time-critical operation.

The third operation of Figure 1 is to obtain a second image 130, which is assumed to
have a substantial overlap with the first image. The second image may be obtained using US
during a surgical procedure. The alignment of the second image with the first image is now
performed at operation 140 on the basis of the result of aligning the second image to the

generated model.

In accordance with one embodiment of the invention, the processing of Figure 1 is
implemented as a two-stage scheme for image registration. The first stage, comprising
operations 110 and 120 from Figure 1, occurs before a surgical procedure and can be
considered as a planning stage. During this phase, time is available for an expert observer to
process images by hand if necessary. In addition, many images of diagnostic quality can be

processed efficiently with minimal user-interaction using modern software tools.

As described in more detail below, the planning stage may involve: (i) building a
patient-specific finite element mesh of the prostate gland and surrounding anatomy from a
preoperative MR image; (ii) performing a series of finite element analysis simulations of
gland motion (including deformation) using randomly sampled material properties and
boundary conditions to provide a set of training data for a statistical motion model (SMM);
and (iii) constructing a SMM for the prostate gland by applying principal component analysis
(PCA) to the predicted finite element mesh node displacements. The SMM may be
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considered to be a special case of a statistical shape model which represents patient-specific
variation in prostate gland shape due to deformation predicted by the finite element

simulations.

The second stage, comprising operations 130 and 140 from Figure 1, occurs during a
surgical procedure and can be considered as the registration stage. Note that an image
obtained during this phase may be of somewhat lower quality (e.g. more noise) than a

diagnostic image obtained during the first phase.

As described in more detail below, the registration stage may involve: (i) computing
transrectal ultrasound (TRUS) image feature vectors using second derivatives of the image
intensity; and (ii) iteratively optimising the rigid-body and SMM shape parameters until the

likelihood of a particular set of registration parameters given the TRUS image is maximised.

The flowchart of Figure 2 illustrates one particular embodiment of the invention, in
which operation 110 of Figure 1 involves acquiring an MR image of the prostate gland and
the surrounding organs. The remainder of Figure 2 shows the generation of a statistical
motion model (SMM) from this acquired MR image (corresponding to operation 120 of
Figure 1) in accordance with one embodiment of the invention. Note that the SMM is
generated prior to a surgical procedure and therefore is not subject to such stringent timing

constraints as intra-operative activities.

In operation 221, the diagnostic MR images are manually segmented into regions that
define the geometry of the prostate gland (divided anatomically into the central and peripheral
zones), the pelvic bone, the rectum and the bladder at the base of the prostate gland. The
prostate glénd can be described initially using a spherical harmonic representation, which is
then converted into a triangulated surface mesh. The lower part of the pelvis can also be

meshed.

At operation 222, a reference finite element (FE) mesh is generated by importing the
surfaces into a commercial FE analysis software package ANSYS (ANSYS, Inc.,
Canonsburg, PA, USA). This allows a FE model to be constructed with 50-60,000 tetrahedral
elements using the solid modelling tools provided by the software. Ten-node tetrahedral
elements can be used, as these support non-linear geometries using unstructured meshes. The
mesh can be refined around the region of rectum to allow the TRUS probe to be modelled

directly in simulations without re-meshing. Elements within all regions of interest are
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labetled and each is assigned material properties randomly sampled from a physiological

range.

The above processing produces an finite element model of the prostate as observed in
the MR image. A set of simulations are now performed on this observed model using finite
element analysis to understand how the prostate gland deforms subject to different boundary
conditions and different assigned material properties. In particular, the insertion of a TRUS
probe into the rectum will deform the prostate gland by exerting forces transmitted through

the rectal wall.

In one embodiment, material properties 22 and boundary conditions 23 for each finite
element analysis simulation are determined as follows: The displacement on the surface of
the pelvis is set to zero for all simulations. A random configuration of the TRUS probe in
terms of its pose and the diameter of the water-filled sheath are set for each simulation, Hu et

al., 2008. These represent the boundary conditions 23.

The material properties are determined by assuming that all tissues behave as
isotropic, linear elastic materials. Since the assumption of incompressibility (Poisson’s ratio,
v =0.5) may not be appropriate for organs such as the prostate gland because of gain and loss
of blood and other fluids and the presence of a collapsible urethra, both the Young’s modulus
and the Poisson’s ratio assigned to different materials in the FE model are assumed to be
unknown and are therefore assigned values sampled randomly from an interval that represents

the known physiological range for each variable during each simulation.

After assigning sampled material properties and boundary conditions for each of 500
simulations, the node displacements are computed at operation 223 using the preconditioned
conjugate gradient iterative equation solver implemented in ANSYS to produce a set of
deformed finite element meshes 224. The inherent correspondence between the mesh node
points of the various deformed prostate models then allows a principal component analysis
(PCA) to be applied at operation 225 directly to the 3D displacements of the mesh nodes. In
particular, for each of M (= 500) simulated gland deformations, the displacement of each of N
nodes in the prostate gland mesh can be calculated and combined to form a 3Nx] vector, d, .
which describes the predicted motion of the prostate gland for a given set of material
properties and boundary conditions. The principal modes of variation in d can then be
calculated using PCA. If m, represents the undeformed gland and is a vector containing the
3D coordinates of the nodes of the original finite element model, determined from the MR

image, then a deformed gland is defined by vector m, given by:
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L
m =m0+d+Zc,e,,(1),

i=1
where d is the mean node displacement vector, ¢, is the i eigenvector of the covariance
matrix, and ¢; is a scalar weight. L < M was chosen so that the resulting statistical motion
model 226 covered >99% of variance in the training data; typically, L ~ 15. Additionally, the

normal vectors at the nodes (vertices) of the triangulated surface were computed.

Figure 3 illustrates an example of the shape changes of a prostate model
corresponding to the first three modes of the shape variation resulting from the processing of
Figure 2. In particular, Figure 3 depicts the first 3 modes (PC1, PC2 & PC3) of an SMM
showing the variation in prostate shape with respect to the model parameters (sigma is the
standard deviation of the parameter corresponding to each mode). The surface normal vectors

at the nodes of the triangulated mesh surfaces are indicated by arrows.

PCA in effect produces a reduced number of parameters for describing the shape of
the prostate model. These parameters represent (in a generally complex fashion) the input
boundary conditions and material properties. Having such a reduced number of parameters
helps to make the subsequent image registration procedure, as described below, more efficient
since only these parameters need to be estimated by numerical optimisation during the

registration.

Figure 4 is a flowchart illustrating the use of the SMM to perform multimodal image
alignment in accordance with one embodiment of the invention. The approach involves
model-to-image registration, which is equivalent to the boundary finding problem considered
in Staib and Duncan, 1992. A similar approach to the one described in that paper has
therefore been adopted to provide robust model-to-image registration for the method
described herein. Note that in the context of the example of registering image of the prostate
gland for the purpose of image guidance during a surgical procedure, the model-to-image
registration is normally performed in the intra-operative phase (after TRUS images are
obtained), so it generally has to be performed in real-time with comparatively little human

intervention.

One distinct feature in MR and TRUS images of the prostate gland is the capsule
surface (the capsule is the membrane surrounding the prostate gland). In the image
registration method disclosed herein, vector representations of this surface, computed

independently from the MR-derived model and the 3D TRUS image, are used to align the
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model with the TRUS image by maximising the similarity between these vectors. In this
formulation, the surface of a deformable model, given a set of registration parameters (i.e.,
rigid-body parameters and shape parameters defined by {1, ¢2,..., cL}), is uniquely defined by
the surface normal vector field, u(x), where x is a position vector that defines the 3D co-
ordinates of a point in the model space and u is a 3D vector function that defines the surface
normal at that particular point. By definition, u is zero at all points not lying on the model

surface.

A surface normal vector field, denoted by v, can be estimated for the image using a
multi-scale filtering technique based on second-order Gaussian derivatives. In such
approaches, the Hessian is computed at each voxel for a particular scale that relates directly to
the width of the Gaussian kernel. The relative magnitudes of the eigenvalues of the Hessian
can then be used to classify the local image structure, enhancing blob-, tubular- or sheet-like

structures, see Frangi et al., 1998.

In one embodiment of the present invention, an extension of the sheet-like
enhancement filter proposed by Descoteaux et al. 2007 has been derived to take into account
the non-uniform US image intensity characteristics found at boundaries due to the variable
angle between a boundary surface and the US beam direction. This effect is responsible for
artefacts where, for example, the intensities at a boundary on the lateral sides of the prostate
gland (parallel to the US beam direction) are low compared to those on the inferior and

superior sides of the gland (perpendicular to the US beam direction).

In the original formulation described in Figueiredo and Gomes, 2006, the response of

this type of filter is given by:

R R,)? R.)’
Faea5 2, 2) = exr)(-%)ﬂ-cm(-%))ﬂ —exp(—(z—;l—» .2)
where the ordered eigenvalues, A1, Az, Az (MI<A2l<[Aq]), of the Hessian are computed at point

(1,3,2), Ri=Pa/Asl, B2l gl and Ry=(> A’ +As")™.

For the TRUS data collected using the approach described herein, the response of this
filter was found to be insensitive to the scalar weighting parameters @, # and y. Therefore,
these were set to constant values as suggested in Descoteaux et al. 2007. The width, o, of the

Gaussian kernel used to compute the Hessian was 1mm in all directions.

If the direction of the US beam is defined by the 3D vector, b, the modified filter

response is given by:
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Sorer =(7) 1, 5 (3)
where ns(x,y,2) is the normalised eigenvector corresponding to the largest eigenvalue (1) of
the Hessian, which will be approximately co-linear with the surface normal at the surface.
The first term in this equation reduces the response to noise when the direction of the US

beam is approximately perpendicular to the surface normal.

The surface normal vector field is given by:

NI L if @S frp (%, ¥,2)<band A, >0 4)
. 0, otherwise

where the scalars a and & specify a window in which the filter response is considered to be

significant.

Figure 5 depicts an example of the surface normal vector field estimated from a 3D
TRUS image using the method described above. In particular, Figure 5 shows the following
four images of a prostate gland. From left to right:
a) The first image represents a transverse slice through the original TRUS volume.
b) The second image represents the response of the filter defined above in Equation (3).
¢) The third image represents the extracted vector field v (projected onto the slice) given by
Equation (4).
d) The fourth image provides a zoomed-in view of a region of interest (shown in the third

image) around part of the gland suiface.

Returning to Figure 4, once the second (US) image has been obtained at operation
130, relevant features are extracted from this image at operation 141. In the approach of Staib
and Duncan 1992, a feature extracted from the image, such as the surface normal vector field
described above, may be considered to be a noise-corrupted version of the surface normal
vector field determined from the deformable model. In this formulation, the probability that a
particular image voxel, referenced by the index i in the image space Qinage, has co-ordinates y;
= (x;, ¥, z;) and an estimated surface normal vector v; can be expressed as a probability

mixture model as follows:

InGypv)= Zhjfﬁ(yi;xj)fw(vi;“j) > (5)

J € ot
where #; is a scalar mixing parameter and j is an index to a discrete point in the model space
Qunodat defined by x; = (x;, y;, z;). In addition, fs and fw are probability density functions that

describe Gaussian and bipolar Watson distributions defined as:

Fe(ysx)=(@m) |2, ")  exp(-4(x, -y)"E (%, ~y,) » (6)
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and
Sw(¥isu,)) = C(k)exp(k(u]v,)’) = C(k) exp(kcos’ ) , (7)

respectively.

In Equation (6), a special class of anisotropic Gaussian distributions with two
parameters is used where the covariance matrix X, is expressed as an expansion of a sct of
orthogonal vectors, wy, in a similar way to spectral decomposition. Hence,

L, =X (8)
where w, defines the orientations of the ellipsoid (which defines a surface of constant
probability density) and w; is set to w;. The two independent parameters, p and p ;(=p3),

govern the “capture range” in the surface normal direction and in the tangent plane,

respectively. For the experiments described herein, p ;= 2p,.

In Equation (7), k is a scalar concentration parameter which is varied depending on
the noise level. In one implementation, k was set to a small value 0.1< k< 0.5 in order to
weaken the contribution from a strong local match. The normalising constant, C(k), was
estimated by recursive integration to satisfy the requirements of a probability density
function. The angle @ is the angle between the model surface normal vector, computed at

pointj, and the image surface normal vector, computed at voxel i.

Once a set of image features 142 has been extracted from the second image (and as
shown for example in the third diagram of Figure 5), model-to-image registration is
performed at operation 143. The registration procedure uses the statistical motion model 226
generated using the method of Figure 2 (for example). As previously noted, the SMM is

usually generated in a preoperative phase.

The registration procedure of operation 143 aims to find the optimal transformation
parameters which maximise the joint probability of the noise. Assuming that the noise values
at different voxels are independent (see Staib and Duncan, 1992), we arrive at the following

log-likelihood objective function:

fo; =log(L(m | D) =log [T P(X|m) =log [] /v, v, Im)
[T €y nege (9)
= Y log YA f(ysx) f(viu))

€ mags J et

The expectation maximisation (EM) algorithm provides an efficient way of

maximising a likelihood function in Equation (9), Figueiredo and Gomes, 2006. An EM
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algorithm was implemented using Matlab (The Mathworks, Inc., Natick, MA, USA) which

iteratively optimises the registration parameters in order to maximise Equation (9).

In effect, the registration procedure searches through the multi-dimensional space
defined by the set of parameters of the SMM to find the parameters for which the shape of the
deformed geometric model (derived from the MR image) best fits the surface of prostate
gland as represented in the TRUS image. Each set of values for the SMM parameters
corresponds to a new position and shape of the finite element model. The use of PCA allows
the potential deformations of the model to be investigated in a systematic and efficient
manner. The output of the registration procedure is the set of parameter values that deforms
the model so that the model surface corresponds most closely to the gland surface as observed

in the TRUS image.

Once the best fit deformation has been determined, a set of displacements is produced
to form a dense displacement field (DDF). These displacements map from the original model,
as derived from the MR image, to the deformed model that has been found to fit the TRUS
image best. These same displacements can then be applied to the voxels of the original MR
image in order to align the MR image with the TRUS image. (Conversely, the opposite
displacements could be applied to the TRUS image to align it with the MR image).

The above approach was investigated using data from 7 patients with prostate cancer
(all patients gave written consent to participate). T2-weighted MR image volumes of the
prostate gland were acquired prior to template-guided transperineal needle biopsy under
general anaesthesia. Immediately before needle insertion, 3D TRUS images of the gland
were acquired using a B-K ProFocus scanner from B-K Medical Ltd., UK (see
www.bkmed.com). A set of parallel transverse B-mode images were captured and stored on
the scanner at 2mm intervals using a mechanical stepping device from Tayman Medical Inc.,
of MO, USA, to translate the US probe (B-K 8658T, 5-7.5MHz transducer) axially along the

rectum,

Each US image was first resampled into a volume with an isotropic voxel dimension
of Imm. At each voxel, the Hessian was computed in the frequency domain using an
implementation based on the fast Fourier transform. A quick and simple procedure was used
to initialise the pose of the SMM with respect to the TRUS volume, where two points at the
apex and base of the gland were manually identified. Once registered, dense displacement
fields were computed across the volume of interest by interpolating the final instance of the

SMM with a solid FE mesh using a shape function for tetrahedral elements.
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The accuracy of the image registration obtained from the above procedure was
investigated by identifying manually in both the MR and TRUS volumes corresponding
anatomical landmarks, including cysts, calcifications, the urethra, the puboprostatic ligament,
and the junction between the seminal vesicles, the vas deferens and the midline of the gland.
The 3D co-ordinates of landmarks defined in the MR image were then propagated into TRUS
co-ordinates using the DDF. For each pair of identified and propagated landmarks, a target
registration error (TRE) was calculated, defined as the distance between the manually defined
and propagated landmark points in the co-ordinate system of the TRUS image. The MR
images were also warped using DDF to allow a visual assessment of the registration. Note
that although only the gland surface is registered in this scheme, the use of a deformable

finite-element model enables the displacement of internal structures to be rapidly computed.

The landmark-based TREs calculated for intra-prostatic landmarks are given in Table
1 below. The root-mean-square (RMS) TRE over all 7 cases (26 landmarks) was 2.66mm.
This figure can be considered as representative of the overall accuracy of the image-to-image

registration.

Case No. 1 2 3 4 5 6 7 All
Number of Landmarks 5 3 3 4 4 4 3 26
TRE (mm RMS) 192 367 3.14 186 1.57 323 3.12 2.66
Table 1

Figure 6 illustrates the result of warping MR and target TRUS images using the DDF
computed from an example registration in accordance with one embodiment of the invention.
In particular, Figure 6 shows transverse lmage slices (1* and 3" images) through a TRUS
volume for Case 1 shown with the corresponding warped MR images (2™ and 4™ images)

following deformable registration. The arrows indicate landmarks which were well-aligned.

In the above approach therefore, two images of the same object are provided as input.
One of these images is segmented to produce a geometric model of the object of interest. For
instance, the geometric model of an organ may take the form a surface mesh. A 3D vector
field is then computed for both the geometric model and remaining image. In the case of a
surface mesh, the vector field is the set of local surface normal vectors across that surface. In
the case of a tubular structure (such as a blood vessel), the vector field is the set of vectors

that describe the local direction along the structure. For the image, a corresponding vector
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field is computed directly from the image, for example using a second-order Gaussian image
filter which is tuned to detect surface-like or tubular structures as appropriate. The model is
then registered to the image by aligning the vector fields such that a numerical measure of
vector similarity is minimised. During the registration procedure, the vector field derived
from the geometric model is deformed in accordance with the constraints specified by an
organ motion model (for example, represented by a statistical shape model). Since the spatial
transformation between the geometric model and input image from which it was derived is
known, the registration transformation between the input images can be calculated using the

output of this registration.

The above approach can be used to enable automatic or semi-automatic multimodal
image registration even when conventionally “difficult” images, such as US images, are
involved. Such a method can be used (for example) to register preoperative MR to
intraoperative TRUS images of the prostate gland during needle biopsy and minimally-
invasive interventions, such a radio-, brachy-, cryo-, and photodynamic therapies, and high
intensity focused US and radiofrequency ablation. In one embodiment, a statistical motion
model of the prostate gland is first built using training data provided by biomechanical
simulations of the motion of a patient-specific finite element model derived from a
(preoperative) MR image. The SMM is then registered to a 3D TRUS image by maximising
the likelihood of the shape of an SMM instance given a voxel-intensity-based feature which
represents an estimate of the normal vector at the surface of the prostate gland. Using data
acquired from 7 patients, the accuracy of registering T2 MR to 3D TRUS images has been
evaluated using anatomical landmarks inside the gland. The results from this evaluation
indicated an rms target registration error of 2,66 mm. For the application of registering MR
and ultrasound images of the prostate gland, the approach described herein has therefore been

demonstrated to provide accurate, deformable registration with minimal user interaction.

The model-to-image registration method uses a combined statistical-biomechanical
model built from an MR image. The generation of the model involves manual segmentation
of the MR image and is computationally intensive (the processing time is typically 30-40
hours with current computing facilities). However, since the model generation is performed
between the time of acquisition of MR image and the time of a procedure in which image
registration is required for surgical guidance, it does not significantly impact the clinical
workflow. In contrast, the model-to-image registration (using the already generated model)
can currently be performed within 2 minutes using a desktop PC with a 2.33GHz Intel®
Core™ dual CPU processor and 3GB of RAM. The approach described herein provides
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sufficiently high accuracy to be clinically useful for MR-targeted prostate biopsy and

interventions.

Although the above description has focussed on automatically registering a
deformable 3D model of the prostate gland, derived from a high-resolution MR image, to 3D
TRUS images for image-guided needle biopsy and therapy applications, the approach
described herein is directly applicable to other image registration problems. The approach is
particularly relevant to situations in which the following criteria apply: (a) one image differs
significantly enough from another that an intensity-based registration algorithm cannot be
applied successfully; (b) automatically extracting salient features from one image is
sufficiently difficult that a feature-based registration algorithm is impractical given the time
constraints imposed by the application for which the registration is used; and (c) a geometric
model of an organ, based on a physical feature represented by one, exists or can be obtained
using fully- or semi-automatic segmentation software without significant impact on the
workflow of the overall application. Many applications in the field of image-guided surgery

meet these criteria.
In summary, the above embodiments are provided by way of example only, and the

skilled person will be aware of many potential modifications or variations that remain within

the scope of the present invention as defined by the appended claims.
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Claims

1. A method for registering two medical images, said method comprising:

obtaining a first medical image including a patient-specific representation of a biological
organ of an individual subject or a representation of a biological organ for a population;

identifying the surface of said organ in said first medical image;

using said surface to obtain a geometric model that represents the three-dimensional
shape of said organ for a subject or the representative shape of said organ for a population;

using said geometric model to obtain a motion model which can be used to predict the
physical motion and deformation of said organ;

obtaining a second medical image including a representation of said organ of said subject
or another subject;

determining an alignment between surface normal vectors of said geometric model,
which represent a first vector field, and estimated surface normal vectors of the organ surface
derived by filtering said second medical image, which represent a second vector field, wherein
determining said alignment includes applying a mathematical transformation to said geometric
model to maximise a measure of orientational alignment between the first and second vector
fields, and wherein the spatial position, orientation and shape of said geometric model and of
said first vector field are changed in accordance with said motion model to achieve said
alignment;

and registering the first and second medical images with one another based on said

determined alignment.

2. The method of claim 1, wherein the first medical image is a magnetic resonance (MR)
image.

3. The method of claim 1, wherein the first medical image is an X-ray computed
tomography (CT) image.

4. The method of claim 1, wherein the first medical image is an ultrasound image.

5. The method of claim 1, wherein the first medical image is an atlas image.
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6. The method of any preceding claim, wherein the second medical image is an ultrasound

image.

7. The method of any preceding claim, wherein said biological organ comprises the prostate

gland.

8. The method of any preceding claim, wherein obtaining said first image, said geometric
model and said motion model is performed prior to a time-point in a surgical procedure when
determining the alignment between said first image and said second image of a subject

undergoing such a procedure is required for the purposes of surgical navigation.

9. The method of claim 8, wherein said geometric model is included as part of a plan for a

surgical treatment or a diagnostic test.

10. The method of any preceding claim, wherein said geometric model is derived using

statistical shape modelling techniques.

11.  The method of any preceding claim, wherein said geometric model is a finite element

mesh that describes the surface of said organ.

12. The method of claim 11, wherein said finite element mesh is generated from a spherical

harmonic representation of said identified surface.

13.  The method of any preceding claim, wherein constructing said motion model further
includes using solid modelling tools to generate a volumetric finite element model from said

geometric model

14. The method of claim 13, wherein constructing said motion model further includes using
finite element analysis to determine the displacement of the mesh nodes (vertices) of said finite
element model, and assigning physical material properties to the model in accordance with the

physiological ranges of such properties.
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15. The method of claim 14, further comprising the use of finite element analysis to perform
a set of simulations, said simulations representing various physically plausible deformations of

said organ.

16. The method of claim 15, further comprising performing statistical analysis of the
displacements of said finite element mesh nodes (vertices) calculated by said simulations to

generate the motion model for the organ.

17. The method of any preceding claim, wherein determining the alignment includes an
initialisation step of identifying one or more points corresponding to anatomical landmarks in the
second medical image and matching them to said geometric model in order to approximately

orientate the geometric model with respect to the second medical image.

18.  The method of any preceding claim, wherein said first vector field comprises a three-
dimensional vector field in which each vector has a location corresponding to a point on the
surface of said geometric model and an orientation normal to said surface of said geometric

model.

19.  The method of any preceding claim, wherein said filtering of said second medical image
is based on an eigenanalysis of the second order Gaussian derivatives of the voxel (3D pixel)

intensity values of said image to determine said second vector field of surface normal vectors.

20. The method of any preceding claim, wherein said second vector field, derived by filtering

said second medical image, is considered to be a noise-corrupted version of the first vector field.

21. The method of claim 20, wherein said alignment is determined on the basis of

maximising the joint probability of the noise.

22.  The method of any preceding claim, wherein said alignment is determined using a vector
similarity measure that quantifies the orientational alignment between said first and second
vector fields by calculating a function of the inner product of estimated surface normal vectors in
said second vector field and surface normal vectors in said first vector field after being

transformed into a local co-ordinate system of said second image.
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23. The method of claim 22, wherein said vector similarity measure accounts for the
presence of artefacts dependent on ultrasound beam direction when said image is an ultrasound

image.

24.  The method of any preceding claim, wherein determining said alignment includes re-
positioning and deforming said geometric model such that the final shape and position of the
deformed model provides a best fit to the organ surface in the co-ordinate system of said second

medical image.

25. The method of claim 24, wherein registering the first and second medical images with
one another based on said determined alignment includes calculating a dense displacement field
comprising displacements that map from said geometric model to said deformed geometric

model.

26. A computer program comprising instructions for execution by a processor in an apparatus

for causing the apparatus to implement the method of any preceding claim.

27. Apparatus for registering two medical images, comprising:

an image processing system for identifying an organ surface in a first medical image that
includes a representation of the said organ;

a modelling system for using the identified surface to construct a 3D geometric model of
said organ surface;

a modelling system for constructing said organ motion model from said 3-D geometric
model;

an image processing system for calculating first and second surface normal vector fields
from said geometric model and from said second medical image respectively;

a numerical optimisation system for determining an alignment between said first vector
field and said second vector field, wherein determining said alignment includes applying a
mathematical transformation to said geometric model to maximise a measure of orientational
alignment between the first and second vector fields, and wherein the spatial position, orientation
and shape of said geometric model and of said first vector field are changed in accordance with
said motion model to achieve said alignment, thereby accommodating deformation of the

geometric model in accordance with said motion model; and
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an image registration system for registering the first and second medical images with one

another based on said determined alignment.

28. The apparatus of claim 27, further comprising an image fusion system for visualising the

first and second medical images together based on said determined alignment.
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