

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2017372731 B2

- (54) Title
Compositions and methods for enhancing gene expression
- (51) International Patent Classification(s)
C12N 15/86 (2006.01)
- (21) Application No: **2017372731** (22) Date of Filing: **2017.12.04**
- (87) WIPO No: **WO18/106615**
- (30) Priority Data
- (31) Number (32) Date (33) Country
62/486,361 **2017.04.17** **US**
62/587,954 **2017.11.17** **US**
62/430,250 **2016.12.05** **US**
- (43) Publication Date: **2018.06.14**
(44) Accepted Journal Date: **2024.05.23**
- (71) Applicant(s)
Janssen Pharmaceuticals, Inc.
- (72) Inventor(s)
Kamrud, Kurt Iver; Win, Maung Nyan; Wang, Nathaniel Stephen; Dehart, Jason
- (74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU
- (56) Related Art
SJÖBERG, E. M. et al., "A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene.", 1994. BIOTECHNOLOGY, VOL.12, pages 1127-31.
WO 2005/026316 A2
WO 95/31565 A1
FROLOV, I. et al., "TRANSLATION OF SINDBIS VIRUS mRNA: ANALYSIS OF SEQUENCES DOWNSTREAM OF THE INITIATING AUG CODON THAT ENHANCE TRANSLATION", 1996. JOURNAL OF VIROLOGY, Vol.70, No.2, pages 1182-1190.
VENTOSO, I. et al., "Translational resistance of late alphavirus mRNA to eIF2 phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR", 2006. GENES AND DEVELOPMENT, Vol.20, No.1, pages 87-100.
ATKINS, G.J. et al., "Therapeutic and prophylactic applications of alphavirus vectors", 2008. EXPERT REVIEWS IN MOLECULAR MEDICINE, Vol.10, No.1, pages e33/1-18.
US 2014/0079734 A1
WO 2004/055161 A2
KELLEY, B.J. et al., "Potential of alphavirus vectors in the treatment of advanced solid tumors", 2007. RECENT PATENTS ON ANTI-CANCER DRUG DISCOVERY, Vol.2, No.2, pages 159-166.
KIM, D.Y. et al., "Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs", 2014. PNAS, Vol.111, No.29, pages 10708-10713.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(10) International Publication Number

WO 2018/106615 A3

(43) International Publication Date
14 June 2018 (14.06.2018)(51) International Patent Classification:
C12N 15/86 (2006.01)Road, La Jolla CA 92037 (US). **DEHART, Jason**; 11149
North Torrey Pines Road, La Jolla, CA 92037 (US).(21) International Application Number:
PCT/US2017/064561(74) Agent: **MALLON, Joseph, J.**; Knobbe, Martens, Olson &
Bear, LLP, 2040 Main Street, 14th Floor, Irvine, CA 92614
(US).(22) International Filing Date:
04 December 2017 (04.12.2017)(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(26) Publication Language: English

(30) Priority Data:
62/430,250 05 December 2016 (05.12.2016) US
62/486,361 17 April 2017 (17.04.2017) US
62/587,954 17 November 2017 (17.11.2017) US(71) Applicant: **SYNTHETIC GENOMICS, INC.** [US/US];
11149 North Torrey Pines Road, La Jolla, CA 92037 (US).(72) Inventors: **KAMRUD, Kurt, Iver**; 11149 North Torrey
Pines Road, La Jolla, CA 92037 (US). **WIN, Maung, Nyan**;
11149 North Torrey Pines Road, La Jolla, CA 92037 (US).
WANG, Nathaniel, Stephen; 11149 North Torrey Pines

(54) Title: COMPOSITIONS AND METHODS FOR ENHANCING GENE EXPRESSION

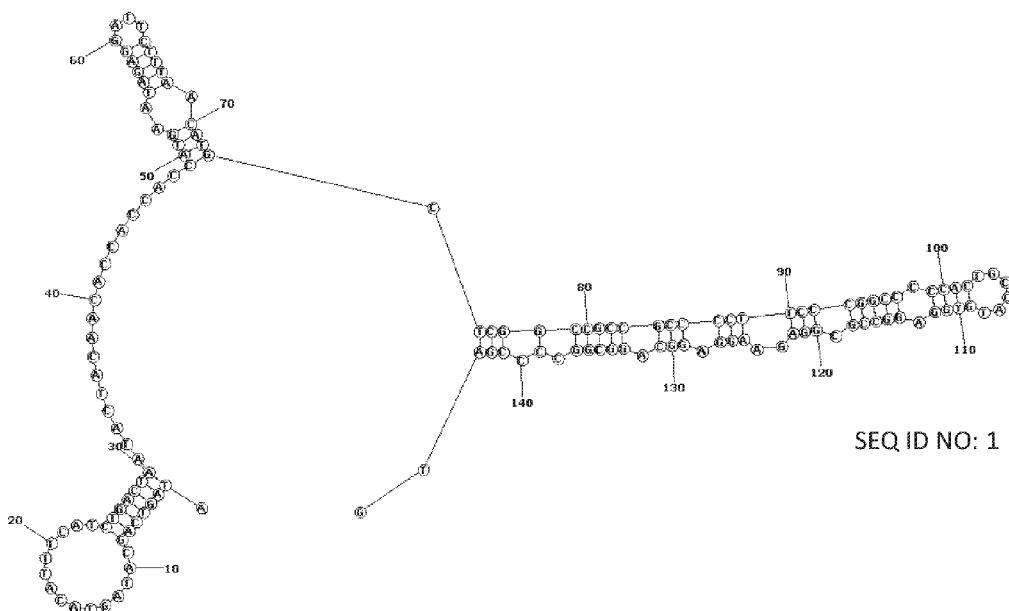


FIG 1

(57) Abstract: The present disclosure generally relates to nucleic acid molecules for use in regulating gene expression. Disclosed herein include nucleic acid molecules containing one or more structural elements of the viral capsid enhancer operably linked to a coding sequence of a gene of interest. In some embodiments, the viral capsid enhancer comprises a Downstream Loop (DLP) from a viral capsid protein, or a variant of the DLP.

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

(88) Date of publication of the international search report:

09 August 2018 (09.08.2018)

COMPOSITIONS AND METHODS FOR ENHANCING GENE EXPRESSION

RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Provisional Application Serial No. 62/430,250, filed on December 5, 2016; U.S. Provisional Application Serial No. 62/486,361, filed on April 17, 2017; and U.S. Provisional Application Serial No. 62/587,954, filed on November 17, 2017. The contents of the above-referenced applications are hereby expressly incorporated by reference in their entireties.

INCORPORATION OF THE SEQUENCE LISTING

[0002] The material in the accompanying sequence listing is hereby incorporated by reference into this application. The accompanying sequence listing text file, named SGI012WO_SeqListing.txt, was created on December 4, 2017 and is 169 KB.

FIELD

[0003] The present disclosure relates to the field of molecular biology and genetic engineering, including nucleic acid molecules useful for regulating gene expression, and the use of the nucleic acid molecules for, for example, production of desired products in suitable host cells in cell culture or in a subject, and for conferring beneficial characteristics to the host cells or subjects.

BACKGROUND

[0004] Advances in biotechnology and molecular biology have offered many opportunities to develop recombinant cells and organisms with commercially desirable characteristics or traits. In particular, modern genetic engineering techniques have greatly accelerated the introduction of genes and hence new traits into recombinant cells and organisms. Proper expression level of a desirable gene in, for example, a host cell or a transgenic organism is helpful to achieve this goal.

[0005] However, despite the availability of many molecular tools, genetic modifications of host cells and organisms are often constrained by insufficient expression

level or uncontrolled expression of the gene of interest. Thus, there is still a need for regulatory elements capable of enhancing transgene expression in host cells and organisms. The identification of novel molecular tools including regulatory elements, expression vector, and expression systems that function in various types of organisms can be useful in developing genetically enhanced cells and organisms.

[0005a] Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

[0005b] Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.

SUMMARY

[0006] This section provides a general summary of the present application, and is not comprehensive of its full scope or all of its features.

[0007] The present disclosure relates generally to methods and compositions useful for regulating, for example increasing, gene expression *in vitro*, *ex vivo*, or *in vivo*. The gene expression can be, for example, in animal cells and other eukaryotic cells. The gene can be, for example, a heterologous gene encoding a protein of interest.

[0007a] In one aspect, the present disclosure provides a nucleic acid molecule, comprising a modified viral RNA replicon, wherein the modified viral RNA replicon comprises: a first nucleic acid sequence encoding a viral capsid enhancer; and a second nucleic acid sequence encoding at least one nonstructural viral protein encoding a replicase, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence, wherein the modified viral RNA replicon is derived from a virus species belonging to the Togaviridae family or from a virus species belonging to the Arterivirus genus of the Arteriviridae family; and the viral capsid enhancer comprises a nucleotide sequence having a sequence identity of at least 80% to RNA corresponding to any one of SEQ ID Nos: 1 and 46-52.

[0007b] In another aspect, the present disclosure provides a nucleic acid molecule comprising a modified viral RNA replicon, wherein the modified viral RNA replicon comprises, ordered from the 5'- to 3'-end, (1) a 5' untranslated region (5'-UTR), (2) a nucleotide sequence encoding an amino-terminal fragment of the nsp1 of the VEEV, (3) a downstream loop (DLP) motif derived from Sindbis virus (SINV), (4) a nucleotide sequence encoding a 2A protease sequence (P2A), and (5) a nucleotide sequence encoding a polyprotein comprising the sequences of at least one of the non-structural proteins nsp1, nsp2, nsp3 and nsp4 of the VEEV.

[0007c] In another aspect, the present disclosure provides nucleic acid molecule comprising a nucleic acid sequence encoding the modified viral RNA replicon as described herein.

[0007d] In another aspect, the present disclosure provides a recombinant cell comprising a nucleic acid molecule of the invention.

[0007e] In another aspect, the present disclosure provides a method for producing a polypeptide of interest in a cell, comprising introducing a nucleic acid molecule of the invention into the cell, thereby producing the polypeptide encoded by at least the first GOI in the cell.

[0007f] In another aspect, the present disclosure provides a composition, comprising a nucleic acid molecule of the invention and a pharmaceutically acceptable carrier.

[0007g] In another aspect, the present disclosure provides a method for producing a polypeptide of interest in a subject, comprising administering to the subject a nucleic acid molecule of the invention.

[0008] In another aspect, some embodiments disclosed herein relate to a nucleic acid molecule, including (i) a first nucleic acid sequence encoding one or more RNA stem-loops of a viral capsid enhancer or a variant thereof; and (ii) a second nucleic acid sequence operably linked to the first nucleic acid sequence, wherein the second nucleic acid sequence comprises a coding sequence for a gene of interest (GOI).

[0009] Implementations of embodiments of the nucleic acid molecule according to the present disclosure can include one or more of the following features. In some embodiments, the first nucleic acid sequence is operably linked upstream to the coding

sequence for the GOI. In some embodiments, the nucleic acid molecule further includes a promoter operably linked upstream to the first nucleic acid sequence. In some embodiments, the nucleic acid molecule further includes a 5' UTR sequence operably linked upstream to the first nucleic acid sequence. In some embodiments, the 5' UTR sequence is operably linked downstream to the promoter and upstream to the first nucleic acid sequence. In some embodiments, the nucleic acid molecule further includes a coding sequence for an autoprotease peptide operably linked upstream to the second nucleic acid sequence. In some embodiments, the coding sequence for the autoprotease peptide is operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid

sequence . In some embodiments, the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and a combination thereof. In some embodiments, the nucleic acid molecule further includes a 3' UTR sequence operably linked downstream to the second sequence nucleic acid sequence.

[0010] In some embodiments, the viral capsid enhancer is derived from a capsid gene of a virus species belonging to the *Togaviridae* family. In some embodiments, the virus species belongs to the *Alphavirus* genus of the *Togaviridae* family. In some embodiments, the alphavirus species is Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O'Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyma virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), Salmonid alphavirus (SAV), or Buggy Creek virus. In some embodiments, the viral capsid enhancer comprises a downstream loop (DLP) motif of the virus species, and wherein the DLP motif comprises at least one of the one or more RNA stem-loops. In some embodiments, the viral capsid enhancer comprises a nucleic acid sequence exhibiting at least 80% sequence identity to at least one of SEQ ID NOs: 1 and 46-52. In some embodiments, the nucleic acid sequence exhibits at least 95% sequence identity to at least one of SEQ ID NOs: 1 and 46-52.

[0011] In some embodiments, the coding sequence for the GOI encodes a polypeptide. In some embodiments, the polypeptide is a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or a combination thereof. In some embodiments, the

polypeptide is an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or a combination thereof.

[0012] In some embodiments, the nucleic acid molecule of the disclosure further includes a third nucleic acid sequence encoding one or more RNA stem-loops of a second viral capsid enhancer or a variant thereof; and a fourth nucleic acid sequence operably linked to the third nucleic acid sequence, wherein the fourth nucleic acid sequence comprises a coding sequence for a second gene of interest (GOI). In some embodiments, the nucleic acid molecule further includes a coding sequence for a second autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the fourth nucleic acid sequence.

[0013] In some embodiments, the nucleic acid molecule of the disclosure is an mRNA molecule or an RNA replicon. In some embodiments, the nucleic acid molecule is an expression vector or a transcription vector. In some embodiments, the expression vector or a transcription vector further includes one or more additional transcription regulatory sequences. In some embodiments, the expression vector or a transcription vector further includes one or more additional transcription regulatory sequences. In some embodiments, the expression vector or a transcription vector further includes one or more additional translation regulatory sequences. In some embodiments, the nucleic acid molecule is a plasmid, a bacteriophage vector, a cosmid, a fosmid, a viral replicon, a shuttle vector, or a combination thereof. In some embodiments, the nucleic acid molecule is a prokaryotic vector or a eukaryotic vector. In some embodiments, the nucleic acid molecule is produced via de novo synthesis.

[0014] Also disclosed in some embodiments include a method for producing a polypeptide of interest in a cell, which includes introducing a nucleic acid molecule of according to the present disclosure into a cell, thereby producing a polypeptide encoded by the GOI in the cell. In yet another related aspect, some embodiments disclosed herein related to a method for producing a polypeptide of interest in a cell, which includes introducing a RNA molecule into the cell, wherein the RNA molecule comprises one or more RNA stem-loops of a viral capsid enhancer or a variant thereof, and a coding sequence for the polypeptide of interest, thereby producing the polypeptide of interest in the cell.

[0015] In some embodiments, the RNA molecule is a messenger RNA (mRNA) molecule or a replicon RNA molecule. In some embodiments, the RNA molecule is produced via *de novo* synthesis and/or *in vitro* transcription before being introduced into the cell. In some embodiments, the RNA molecule comprises a downstream loop (DLP) motif of a virus species, and wherein the DLP motif comprises at least one of the one or more RNA stem-loops of the viral capsid enhancer. In some embodiments, the RNA molecule further comprises a coding sequence for an autoprotease peptide downstream to at least one of the one or more RNA stem-loops and upstream to the coding sequence for the polypeptide of interest. In some embodiments, the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and a combination thereof. In some embodiments, the polypeptide is a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or a combination thereof. In some embodiments, the polypeptide is an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or a combination thereof. In some embodiments, the cell is present in a tissue, an organ, or a subject. In some embodiments, the subject is human, horse, pig, primate, mouse, ferret, rat, cotton rat, cattle, swine, sheep, rabbit, cat, dog, bird, fish, goat, donkey, hamster, or buffalo.

[0016] Some embodiments disclose a method for producing a messenger RNA (mRNA) in a cell. The method, in some embodiments, includes administering to the cell a nucleic acid molecule comprising a first nucleic acid sequence encoding one or more RNA stem-loops of a viral capsid enhancer or a variant thereof, and a second nucleic acid sequence operably linked to the first nucleic acid sequence, wherein the second nucleic acid sequence comprises a coding sequence for a gene of interest (GOI), thereby producing a mRNA of the GOI.

[0017] In some embodiments, the first nucleic acid sequence is operably linked upstream to the coding sequence for the GOI. In some embodiments, the nucleic acid molecule further includes a promoter operably linked upstream to the first nucleic acid

sequence. In some embodiments, the nucleic acid molecule further includes a 5' UTR sequence operably linked upstream to the first nucleic acid sequence. In some embodiments, the 5' UTR sequence is operably linked downstream to the promoter and upstream to the first nucleic acid sequence. In some embodiments, the nucleic acid molecule further includes a coding sequence for an autoprotease peptide operably linked upstream to the second nucleic acid sequence. In some embodiments, the coding sequence for the autoprotease peptide is operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence. In some embodiments, the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and a combination thereof. In some embodiments, the nucleic acid molecule further includes a 3' UTR sequence operably linked downstream to the second sequence nucleic acid sequence.

[0018] In some embodiments disclosed herein, the viral capsid enhancer is derived from a capsid gene of a virus species belonging to the *Togaviridae* family. In some embodiments, the virus species belongs to the *Alphavirus* genus of the *Togaviridae* family. In some embodiments, the alphavirus species is Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O'Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyma virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), Salmonid alphavirus (SAV), or Buggy Creek virus. In some embodiments, the viral capsid enhancer comprises a downstream loop (DLP) motif of the virus species, and wherein the DLP motif comprises at least one of the one or more RNA stem-loops. In some embodiments, the viral capsid enhancer comprises a nucleic acid sequence exhibiting at least 80% sequence identity to at least one of SEQ ID NOs: 1 and 46-

52. In some embodiments, the nucleic acid sequence exhibits at least 95% sequence identity to at least one of SEQ ID NOS: 1 and 46-52.

[0019] In some embodiments disclosed herein, the coding sequence for the GOI encodes a polypeptide. In some embodiments, the polypeptide is selected from the group consisting of a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, and a combination thereof. In some embodiments, the polypeptide is an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or a combination thereof. In some embodiments of the method for producing a messenger RNA (mRNA) according to the present disclosure, the nucleic acid molecule further includes a third nucleic acid sequence encoding one or more RNA stem-loops of a second viral capsid enhancer or a variant thereof; and a fourth nucleic acid sequence operably linked to the third nucleic acid sequence, wherein the fourth nucleic acid sequence comprises a coding sequence for a second gene of interest (GOI). In some embodiments, the nucleic acid molecule further includes a coding sequence for a second autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the fourth nucleic acid sequence.

[0020] The nucleic acid molecule of the present disclosure can be, in some embodiments, an RNA replicon. In some embodiments, the nucleic acid molecule is an expression vector or a transcription vector. In some embodiments, the nucleic acid molecule further comprises one or more additional transcription regulatory sequences. In some embodiments, the nucleic acid molecule further comprises . In some embodiments, one or more additional translation regulatory sequences. In some embodiments, the nucleic acid molecule is an expression vector selected from the group consisting of a plasmid, a bacteriophage vector, a cosmid, a fosmid, a viral replicon, a shuttle vector, and a combination thereof. In some embodiments, the nucleic acid molecule is a prokaryotic expression vector or a eukaryotic expression vector. In some embodiments, the cell is present in a tissue, an organ, or a subject. In some embodiments, the subject is human, horse, pig, primate, mouse, ferret, rat, cotton rat, cattle, swine, sheep, rabbit, cat, dog, bird, fish, goat, donkey, hamster, or buffalo. In some embodiments of the method for producing a messenger RNA (mRNA) according to the present disclosure further includes producing a polypeptide encoded by the

mRNA of the GOI in the cell. In some embodiments, the method further includes obtaining the produced mRNA of the GOI and introducing the obtained mRNA into a second cell for expression of a polypeptide encoded by the mRNA of the GOI in the second cell.

[0021] In one aspect, some embodiments of the disclosure relate to nucleic acid molecule comprising a nucleic acid sequence encoding a modified viral RNA replicon, wherein the modified viral RNA replicon comprises (i) a first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer or a variant thereof, wherein the viral capsid enhancer is heterologous to the viral RNA replicon, and (ii) a second nucleic acid sequence encoding at least one nonstructural viral protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence.

[0022] In some embodiments, at least one of the one or more structural elements of the viral capsid enhancer comprises one or more RNA stem-loops. In some embodiments, the viral capsid enhancer is derived from a capsid gene of a virus species belonging to the *Togaviridae* family. In some embodiments, the virus species belongs to the *Alphavirus* genus of the *Togaviridae* family. In some embodiments, the alphavirus species Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O’Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiymama virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), or Buggy Creek virus. In some embodiments, the viral capsid enhancer comprises a downstream loop (DLP) motif of the virus species, and wherein the DLP motif comprises at least one of the one or more RNA stem-loops. In some embodiments, the viral capsid enhancer comprises a nucleic acid sequence exhibiting at least 80% sequence identity to at least one of SEQ ID NOs: 1 and 46-52. In some embodiments, the nucleic acid sequence exhibits at least 95% sequence identity to at least one of SEQ ID NOs: 1 and 46-52.

[0023] In some embodiments, the nucleic acid sequence encoding the modified viral RNA replicon further comprising a coding sequence for an autoprotease peptide operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence. In some embodiments, the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), or a combination thereof. In some embodiments, the first nucleic acid sequence is operably positioned within a region of about 1 to 1000 nucleotides downstream of the 5'-terminus of the modified viral RNA replicon. the second nucleic acid sequence comprises substantially all the coding sequence for the native viral nonstructural proteins of the corresponding unmodified viral RNA replicon.

[0024] In some embodiments disclosed herein, the modified viral RNA replicon comprises a modified RNA replicon derived from a virus species belonging to the *Alphavirus* genus of the *Togaviridae* family or to the *Arterivirus* genus of the *Arteriviridae* family.

[0025] In some embodiments, the arterivirus virus species is Equine arteritis virus (EAV), Porcine respiratory and reproductive syndrome virus (PRRSV), Lactate dehydrogenase elevating virus (LDV), or Simian hemorrhagic fever virus (SHFV). In some embodiments, the first nucleic acid sequence is operably positioned upstream to a second nucleic acid sequence encoding a portion or the entire pp1ab nonstructural protein of the modified arterivirus RNA replicon. In some embodiments, the nucleic acid sequence encoding the modified arterivirus RNA replicon further comprising one or more expression cassettes, wherein at least one of the one or more expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the modified arterivirus RNA replicon comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of the second nucleic acid sequence encoding a portion or the entire pp1ab nonstructural protein of the modified arterivirus RNA replicon. In some embodiments, at least one of the one or more expression cassettes is operably positioned downstream to a transcriptional regulatory sequence (TRS) of the modified arterivirus RNA

replicon, wherein the TRS is TRS1, TRS2, TRS3, TRS4, TRS5, TRS6, or TRS7. In some embodiments, at least one of the one or more expression cassettes further comprises a third nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer, wherein the third nucleic acid sequence is operably linked upstream to the coding sequence for the GOI.

[0026] In some embodiments, the nucleic acid sequence encoding the modified arterivirus RNA replicon further comprises a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI. In some embodiments, the coding sequence for the GOI encodes a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or any combination thereof. In some embodiments, the coding sequence for the GOI encodes an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or any combination thereof.

[0027] In some embodiments, the modified viral RNA replicon comprises a modified RNA replicon derived from an alphavirus virus species selected from the group consisting of Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O’Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyma virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), Salmonid alphavirus (SAV), and Buggy Creek virus. In some embodiments, the first nucleic acid sequence is operably positioned upstream to a second nucleic acid sequence encoding one or more nonstructural proteins nspl-4 or a portion thereof of the modified alphavirus RNA replicon. In some embodiments, the nucleic acid sequence encoding the modified alphavirus RNA replicon further comprises one or more expression cassettes, wherein each of the expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the modified alphavirus RNA replicon comprises at least two,

three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of a nucleic acid sequence encoding one or more nonstructural proteins nsp1-4 or a portion thereof of the modified alphavirus RNA replicon. In some embodiments, at least one of the one or more expression cassettes further comprises a third nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer, wherein the third nucleic acid sequence is operably linked upstream of the coding sequence for the GOI. In some embodiments, the nucleic acid sequence encoding the modified alphavirus RNA replicon further comprises a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI. In some embodiments, the coding sequence for the GOI encodes a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or a combination thereof. In some embodiments, the coding sequence for the GOI encodes an antibody, an antigen, an immune modulator, an enzyme, a cytokine, or a combination thereof.

[0028] In one aspect, some embodiments of the disclosure relate to nucleic acid molecule comprising a nucleic acid sequence encoding a modified non-alphavirus RNA replicon, wherein the modified non-alphavirus RNA replicon comprising a first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer or a variant thereof. In some embodiments, the nucleic acid sequence encoding the modified non-alphavirus RNA replicon further comprises a second nucleic acid sequence encoding at least one nonstructural viral protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence. In some embodiments, nucleic acid sequence encoding the modified non-alphavirus RNA replicon further comprises a coding sequence for an autoprotease peptide operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence. In some embodiments, the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), or a combination thereof. In some embodiments, the nucleic acid sequence encoding the modified non-

alphavirus RNA replicon comprises a modified RNA replicon derived from a positive-strand RNA virus. In some embodiments, the positive-strand RNA virus is a virus species belonging to a family selected from the group consisting of *Togaviridae* family, *Flaviviridae* family, *Orthomyxoviridae* family, Rhabdoviridae family, and *Paramyxoviridae* family. In some embodiments, the positive-strand RNA virus is a virus species belonging to the *Arterivirus* genus of the *Arteriviridae* family.

[0029] In some embodiments disclosed herein, the nucleic acid sequence encoding the modified non-alphavirus RNA replicon further comprising one or more expression cassettes, wherein each of the expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the modified non-alphavirus RNA replicon comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of the second nucleic acid sequence encoding the at least one nonstructural viral protein or a portion thereof. In some embodiments, at least one of the one or more expression cassettes further comprises a third nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer, wherein the third nucleic acid sequence is operably linked upstream to the coding sequence for the GOI. In some embodiments, the nucleic acid sequence encoding the modified non-alphavirus RNA replicon further comprising a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI. In some embodiments, the nucleic acid molecule is produced via *de novo* synthesis.

[0030] In one aspect, some embodiments disclosed herein relate to a recombinant cell including a nucleic acid molecule as disclosed herein. In some embodiments, the recombinant cell is a prokaryotic cell or a eukaryotic cell. In some embodiments, the recombinant cell is an animal cell. In some embodiments, the nucleic acid molecule comprises a nucleic acid sequence encoding a modified RNA replicon, and wherein expression of the modified replicon RNA confers a resistance to innate immune response in the recombinant cell. In a related aspect, some embodiments disclosed herein relate to a cell culture which includes at least one recombinant cell as disclosed herein.

[0031] In some aspects, some embodiments disclosed herein relate to a method for conferring a resistance to the innate immune system in a subject which includes administering to the subject a nucleic acid molecule comprising a nucleic acid sequence which encodes a modified viral RNA replicon, wherein the modified viral RNA replicon comprises (i) a first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer or a variant thereof, wherein the viral capsid enhancer is heterologous to the viral RNA replicon, and (ii) a second nucleic acid sequence encoding at least one nonstructural protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence, and wherein expression of the modified replicon RNA encoded by the nucleic acid molecule confers a resistance to innate immune response in the subject. In some embodiments, the subject is selected from the group consisting of human, horse, pig, primate, mouse, ferret, rat, cotton rat, cattle, swine, sheep, rabbit, cat, dog, bird, fish, goat, donkey, hamster, and buffalo

[0032] In some aspect, some embodiments disclosed herein relate to a method for producing a polypeptide of interest in a subject which includes administering to the subject a nucleic acid molecule comprising a nucleic acid sequence which encodes a modified viral RNA replicon, wherein the modified viral RNA replicon comprises (i) a first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer or a variant thereof, wherein the viral capsid enhancer is heterologous to the viral RNA replicon, and (ii) a second nucleic acid sequence encoding at least one nonstructural protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence. In some embodiments, the subject is human, horse, pig, primate, mouse, ferret, rat, cotton rat, cattle, swine, sheep, rabbit, cat, dog, bird, fish, goat, donkey, hamster, or buffalo.

[0033] In some aspect, some embodiments disclosed herein relate to a method for producing a polypeptide of interest, which includes ulturing a host cell comprising a nucleic acid molecule which comprises a nucleic acid sequence encoding a modified viral RNA replicon, wherein the modified viral RNA replicon comprises (i) a first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer or a variant thereof, wherein the viral capsid enhancer is heterologous to the viral RNA replicon, and (ii) a second

nucleic acid sequence encoding at least one nonstructural protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence.

[0034] In some embodiments of the method for producing a polypeptide of interest according to the present disclosure, the subject is selected from the group consisting of human, horse, pig, primate, mouse, ferret, rat, cotton rat, cattle, swine, sheep, rabbit, cat, dog, bird, fish, goat, donkey, hamster, and buffalo. In some embodiments, at least one of the one or more structural elements of the viral capsid enhancer comprises one or more RNA stem-loops. In some embodiments, the viral capsid enhancer is derived from a capsid gene of a virus species belonging to the *Togaviridae* family. In some embodiments, the virus species belongs to the *Alphavirus* genus of the *Togaviridae* family. In some embodiments, the alphavirus species is Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O’Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyma virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), or Buggy Creek virus. In some embodiments, the viral capsid enhancer comprises a downstream loop (DLP) motif of the virus species, and wherein the DLP motif comprises at least one of the one or more RNA stem-loops. In some embodiments, the viral capsid enhancer comprises a nucleic acid sequence exhibiting at least 80% sequence identity to at least one of SEQ ID NOs: 1 and 46-52. In some embodiments, the nucleic acid sequence exhibits at least 95% sequence identity to at least one of SEQ ID NOs: 1 and 46-52.

[0035] In some embodiments disclosed herein, the nucleic acid sequence encoding the modified viral RNA replicon further comprising a coding sequence for an autoprotease peptide operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence. In some embodiments, the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine

teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a *Thosea asigna* virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), or a combination thereof. In some embodiments, the first nucleic acid sequence is operably positioned within a region of about 1 to 1000 nucleotides downstream of the 5'-terminus of the modified viral RNA replicon. the second nucleic acid sequence comprises substantially all the coding sequence for the native viral nonstructural proteins of the corresponding unmodified viral RNA replicon.

[0036] In some embodiments, the modified viral RNA replicon comprises a modified RNA replicon derived from a virus species belonging to the *Alphavirus* genus of the *Togaviridae* family or to the *Arterivirus* genus of the *Arteriviridae* family. In some embodiments, the arterivirus virus species is Equine arteritis virus (EAV), Porcine respiratory and reproductive syndrome virus (PRRSV), Lactate dehydrogenase elevating virus (LDV), or Simian hemorrhagic fever virus (SHFV).

[0037] In some embodiments disclosed herein, the nucleic acid sequence encoding the modified arterivirus RNA replicon further comprises one or more expression cassettes, and wherein at least one of the expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the virus species is an arterivirus, and wherein the first nucleic acid sequence is operably positioned upstream to a nucleic acid sequence encoding a portion or the entire pp1ab nonstructural protein of the modified arterivirus RNA replicon. In some embodiments, the modified arterivirus RNA replicon further comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of the second nucleic acid sequence encoding a portion or the entire pp1ab nonstructural protein of the modified arterivirus RNA replicon. In some embodiments, at least one of the one or more expression cassettes is operably positioned downstream to a transcriptional regulatory sequence (TRS) of the modified arterivirus RNA replicon, wherein the TRS is TRS1, TRS2, TRS3, TRS4, TRS5, TRS6, or TRS7. In some embodiments, at least one of the one or more expression cassettes further comprises a third nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer,

wherein the third nucleic acid sequence is operably linked upstream to the coding sequence for the GOI. In some embodiments, the nucleic acid sequence encoding the modified arterivirus RNA replicon further comprising a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI. In some embodiments, the coding sequence for the GOI encodes a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or any combination thereof. In some embodiments, the coding sequence for the GOI encodes an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or any combination thereof.

[0038] In some embodiments, the modified viral RNA replicon comprises a modified RNA replicon derived from an alphavirus virus species selected from the group consisting of Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O’Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyama virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), Salmonid alphavirus (SAV), and Buggy Creek virus. In some embodiments, the first nucleic acid sequence is operably positioned upstream to a nucleic acid sequence encoding one or more nonstructural proteins nspl-4 or a portion thereof of the modified alphavirus RNA replicon.

[0039] In some embodiments, the nucleic acid sequence encoding the modified alphavirus RNA replicon further comprises one or more expression cassettes, wherein each of the expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the modified alphavirus RNA replicon comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of a nucleic acid sequence encoding one or more nonstructural proteins nspl-4 or a portion thereof of the modified alphavirus RNA replicon. In some embodiments, at least one of the one or more

expression cassettes further comprises a third nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer, wherein the third nucleic acid sequence is operably linked upstream of the coding sequence for the GOI. In some embodiments, the modified alphavirus RNA replicon further comprising a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI. In some embodiments, the coding sequence for the GOI encodes a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or any combination thereof. In some embodiments, the coding sequence for the GOI encodes an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or any combination thereof.

[0040] In another aspect, some embodiments disclosed herein relate to a method for conferring a resistance to the innate immune system in a subject, comprising administering to the subject a nucleic acid molecule comprising a nucleic acid sequence encoding a modified non-alphavirus RNA replicon, wherein the modified non-alphavirus RNA replicon comprises a first nucleic acid sequence encoding one or more structural elements of an alphavirus capsid enhancer and wherein expression of the modified non-alphavirus RNA replicon encoded by the nucleic acid molecule confers a resistance to innate immune response in the subject. In some embodiments, the subject is selected from the group consisting of human, horse, pig, primate, mouse, ferret, rat, cotton rat, cattle, swine, sheep, rabbit, cat, dog, bird, fish, goat, donkey, hamster, and buffalo.

[0041] Also disclosed herein include a method for producing a polypeptide of interest in a subject, where the method comprises administering to the subject a nucleic acid molecule comprising a nucleic acid sequence encoding a modified non-alphavirus RNA replicon, wherein the modified non-alphavirus RNA replicon comprises a first nucleic acid sequence encoding one or more structural elements of an alphavirus capsid enhancer. In some embodiments, the subject is human, horse, pig, primate, mouse, ferret, rat, cotton rat, cattle, swine, sheep, rabbit, cat, dog, bird, fish, goat, donkey, hamster, or buffalo.

[0042] Some embodiments disclosed herein relate to a method for producing a polypeptide of interest, where the method comprises culturing a host cell comprising a nucleic acid molecule which comprises a nucleic acid sequence encoding a modified non-

alphavirus RNA replicon, wherein the modified non-alphavirus RNA replicon comprises a first nucleic acid sequence encoding one or more structural elements of an alphavirus capsid enhancer.

[0043] In some embodiments according to the above aspects of the disclosure, the modified non-alphavirus RNA replicon further comprising a second nucleic acid sequence encoding at least one nonstructural viral protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence. In some embodiments, the modified non-alphavirus RNA replicon further comprises a coding sequence for an autoprotease peptide operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence. In some embodiments the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and a combination thereof. In some embodiments, the modified non-alphavirus RNA replicon comprises a modified RNA replicon derived from a positive-strand RNA virus. In some embodiments, the modified non-alphavirus RNA replicon comprises a modified RNA replicon derived from a virus species belonging to *Togaviridae* family, *Flaviviridae* family, *Orthomyxoviridae* family, *Rhabdoviridae* family, or *Paramyxoviridae* family. In some embodiments, the modified non-alphavirus RNA replicon comprises a modified RNA replicon derived from a virus species belonging to the *Arterivirus* genus of the *Arteriviridae* family. In some embodiments, the sequence encoding the non-alphavirus modified RNA replicon further comprising one or more expression cassettes, wherein each of the expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the modified non-alphavirus RNA replicon comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of the second nucleic acid sequence encoding the at least one nonstructural viral protein or a portion thereof of the modified non-alphavirus RNA replicon. In some embodiments, at least one of the one or more expression cassettes further comprises a third nucleic acid sequence encoding one or more structural

elements of an alphavirus capsid enhancer, wherein the third nucleic acid sequence is operably linked upstream to the coding sequence for the GOI. In some embodiments, the modified non-alphavirus RNA replicon further comprises a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI.

[0044] In some aspects, some embodiments disclosed herein relate to recombinant polypeptides produced by a method in accordance with one or more embodiments described herein.

[0045] Some embodiments disclosed herein relate to a composition including a recombinant polypeptide as described herein and a pharmaceutically acceptable carrier.

[0046] Some embodiments disclosed herein relate to a composition including a nucleic acid molecule as disclosed herein and a pharmaceutically acceptable carrier.

[0047] In some embodiments, one or more of the compositions and/or molecules of the present application, *e.g.* nucleic acid molecules, RNA replicons, and polypeptides, is further formulated into a pharmaceutical formulation. In some embodiments, one or more of the compositions and/or molecules of the present application is formulated into a pharmaceutical formulation with covalent compounds, non-covalent compounds, physical compositions, or pharmaceutically acceptable buffers.

[0048] In some embodiments disclosed herein, one or more of the compositions and/or molecules of the present application, *e.g.* nucleic acid molecules, RNA replicons, and polypeptides, is further formulated for use as a protective composition (*e.g.*, vaccine) or therapeutic composition. In particular, protective compositions made in accordance with the present disclosure have a variety of uses including, but not limited to, use as vaccines and other therapeutic agents, use as diagnostic agents and use as antigens in the production of polyclonal or monoclonal antibodies.

[0049] The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative embodiments and features described herein, further aspects, embodiments, objects and features of the application will become fully apparent from the drawings and the detailed description and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0050] **FIGURE 1** is a graphical illustration of a non-limiting exemplary stem-loop RNA structure of an alphavirus capsid enhancer.

[0051] **FIGURES 2A-2D** are graphical representations of four non-limiting exemplary nucleic acid molecules of the present disclosure, where each of the nucleic acid molecules comprises a coding sequence for an alphavirus capsid enhancer (e.g., DLP motif) and a coding sequence for a gene of interest (GOI), e.g., a red Firefly (rFF) reporter gene. **FIG. 2A:** rEx-DLP-rFF; **FIG. 2B:** rEx-DLP-pp1ab-rFF; **FIG. 2C:** rEx-DLP-2A-pp1ab-rFF; and **FIG. 2D:** rEx-DLP-2A-pp1ab-DLP-rFF. DLP: Downstream Loop sequence; 2A: autoprotease peptide; pp1ab: nonstructural polypeptide sequence; and rFF: coding sequence for red Firefly reporter gene.

[0052] **FIGURES 3A-3D** are graphical illustrations of four non-limiting exemplary nucleic acid molecules of the present disclosure, where each of the nucleic acid molecules comprises a coding sequence for an alphavirus capsid enhancer (e.g., a DLP motif) and a coding sequence for a gene of interest (GOI), e.g., a red Firefly (rFF) reporter gene. **FIG. 3A:** Alpha-R-rFF; **FIG. 3B:** Alpha-R-DLP-rFF; **FIG. 3C:** Alpha-R-DLP-2A-nsp-rFF; and **FIG. 3D:** Alpha-R-DLP-2A-nsp-DLP-rFF. DLP: Downstream Loop sequence; 2A: autoprotease peptide; nsp1-4: nonstructural polypeptide sequence; and rFF: coding sequence for red Firefly reporter gene.

[0053] **FIGURES 4A-4B** are graphical illustrations of two other non-limiting exemplary nucleic acid molecules of the present disclosure, where each of the nucleic acid molecules comprises encoding coding sequence for an alphavirus capsid enhancer (e.g., a DLP motif) and a coding sequence for a gene of interest (GOI), e.g., a red Firefly (rFF) reporter gene. **FIG. 4A:** Alpha-R-DLP-2A-rFF; and **FIG. 4B:** Alpha-R-DLP-2A-nsp-DLP-2A-rFF. DLP: Downstream Loop sequence; 2A: autoprotease peptide; nsp1-4: nonstructural polypeptide sequence; and rFF: coding sequence for red Firefly reporter gene.

[0054] **FIGURES 5A-5B** graphically summarizes the results of flow cytometry analysis and bulk luciferase analyses performed to demonstrate that incorporating a DLP motif upstream of nucleic acid sequence encoding either EAV nonstructural protein genes or a gene of interest positioned in the subgenomic RNA, i.e. rFF reporter gene, did not

negatively impact genomic RNA replication. In these experiments, FACS analysis (**FIG. 5A**) and bulk-cell luciferase assays (**FIG. 5B**) were carried out on electroporated cells.

[0055] **FIGURES 6A-B** graphically summarize the results of another exemplary flow cytometry analysis and bulk luciferase analysis performed to demonstrate that modified arterivirus replicon RNAs with a DLP motif incorporated upstream of the sequence encoding nonstructural protein genes can replicate and express efficiently in host cells that had been treated with IFN to induce the cellular innate immune system. In these experiments, FACS analysis (**FIG. 6A**) and bulk-cell luciferase assays (**FIG. 6B**) were carried out on electroporated cells. IFN was added to cell culture media five hours post electroporation. Samples were collected in triplicate eighteen hours post electroporation for analysis.

[0056] **FIGURES 7A-C** graphically summarizes the results of another exemplary bulk luciferase analysis performed to demonstrate that modified alphavirus replicon RNAs with a DLP motif incorporated upstream of the sequence encoding nonstructural protein genes can replicate and express efficiently in host cells that had been treated with IFN to induce the cellular innate immune system. In these experiments, bulk-cell luciferase assays were carried out on electroporated cells. IFN was added to cell culture media immediately after electroporation or three hours post electroporation. Samples were collected in triplicate eighteen hours post electroporation for analysis. **FIG. 7A:** α -rFF versus alpha-R-rFF construct; **FIG. 7B:** α -rFF versus α -DLP-2A-nsp-rFF; and **FIG. 7C:** α -rFF versus alpha-R-DLP-2A-nsp-rFF construct.

[0057] **FIGURE 8** graphically summarizes the results of exemplary *in vivo* experiments performed to demonstrate that modified alphavirus replicon RNAs with a DLP motif incorporated upstream of the sequence encoding nonstructural protein genes can replicate and express efficiently in Balb/c mice. In these experiments, whole body imaging of animals that had been injected with a modified alphavirus replicon RNA was conducted. Each animal received 7.5 μ g of replicon RNA injected intramuscularly. Individual animals were imaged on day 1, day 3, and day 7. Original: mice injected with the alpha-R-rFF construct; DLP: mice injected with the alpha-R-DLP-2A-nsp-rFF construct.

[0058] **FIGURE 9** schematically depicts a non-limiting exemplary alphavirus genomic structure and genome expression (adapted from Strauss *et al.*, *Microbiological*

Reviews, pp. 491-562, September 1994). Genome organization of a Sindbis virus (SINV) is shown. The names of the nonstructural genes and structural protein genes are given. Referenced to the nomenclature of the genes and proteins can be found in Strauss *et al.*, supra, 1994. The 49S genomic RNA is illustrated schematically in the center, with its translated ORF shown as an open box. Small black boxes are conserved sequence elements; the open diamond denotes the leaky opal termination codon. The nonstructural polyproteins and their processed products are shown above. Termination at the opal codon produces P123, whose major function in replication is believed to be as a proteinase that acts in trans to process the polyproteins in active RNA replicases; this proteinase domain is found in the nsP2 region. Read-through of the opal stop codon produces P1234, which can form an active replicase. The 26S subgenomic mRNA is expanded below to show the structural ORF and its translation products. Polypeptides present in the virion are shaded. vcRNA is the minus-strand complement of the genomic RNA.

[0059] **FIGURE 10** schematically depicts EAV genomic structure and genome expression strategy. The names of the replicase gene and structural protein genes are given (references to the nomenclature of genes and proteins can be found in Snijder *et al.*, 2005). Below the genome organization, the structural relationships of the genome and sg mRNAs are depicted. The leader sequence and TRSs found at the 5' end of the EAV mRNAs are indicated as blue and orange boxes, respectively. The ribosomal frameshifting element (RFS) found in the genome-length mRNA1 is indicated and the translated region of each mRNA is highlighted by a green line, whereas translationally silent regions are indicated by a red line. Only the translated open reading frames are indicated for each mRNA. The right-hand panels show a typical pattern of EAV mRNAs isolated from infected cells, visualized by hybridization to a probe complementary to the 3' end of the genome and therefore recognizing all viral mRNA species.

[0060] **FIGURES 11A-B** schematically show the predicted stem-loop RNA structure of the 5' CDS region of alphavirus mRNA 26S with a valley-peak topology. Two dimensional (2D) models of RNA structure based for the first 70–140 nucleotides of the CDS from seven representative Alphavirus mRNAs (SINV, SFV, RRV, SAGV, GETV, MIDV, UNAV, BEBV, MAYV and AURAV). The sequences were numbered from the initiation

codon (AUGi), with A being the +1 position. The predicted structures are constructed based on SHAPE (selective 2'-hydroxyl acylation and primer extension) data (Toribio *et al.*, 2016).

[0061] **FIGURES 12A-C** graphically summarize the results of exemplary *in vivo* experiments performed to demonstrate that modified alphavirus replicon RNAs with a DLP motif effect on immunogenicity in Balb/c mice. In this experiment, 6-8 week old BALB/c animals were primed at Days 0 and 42 using varying doses of the replicon RNA. Spleens and serum were collected on Day 56, and (a) flow cytometry for HA-specific T cell memory ($CD8^+CD44^+CD62L^{Lo}KLRG-1^{Lo}IL-7Ra^{Hi}CXCR3^{Hi}$) using Dextramers for detection (H-2 Kd [IYSTVASSL; SEQ ID NO: 44]) and (b,c) IFN- γ ELISpot to quantify $CD8^+$ and $CD4^+$ T cell effector responses. Statistics were one using multiple comparisons between matched doses using an ordinary one-way analysis of variance (ANOVA). **FIG. 12A:** A significant increase in memory precursor effector cells (MPECs) was observed in constructs containing the DLP motif compared with each comparable dose of unmodified replicon. **FIG. 12B:** Effector T cell responses were measured by the number of antigen-specific HA cells that were secreting IFN- γ following stimulation with a $CD8^+$ T cell peptide. **FIG.12C:** Effector T cell responses were measured by the number of antigen-specific HA cells that were secreting IFN- γ following stimulation with a $CD4^+$ T cell peptide.

[0062] **FIGURE 13** graphically summarizes the results of exemplary *in vivo* experiments performed to demonstrate that modified alphavirus replicon RNAs with a DLP motif incorporated upstream of the sequence encoding nonstructural protein genes effectively prevent suppression of immune response upon pre-treatment with agents that simulate viral infection in Balb/c mice. 6-8 week old BALB/c animals were pre-treated with 20 μ g of Poly(I:C) or saline administered via hydrodynamic tail vein injection 24 hours before vaccination to simulate an ongoing viral infection. Mice were then primed at Day 0 and boosted at Day 28 using a 1.5 μ g dose of RNA replicon encoding HA. Serum was collected on Day 42, and HA-specific antibodies were measured in the serum. Serum antibody concentrations were calculated by interpolation of dilution versus optical density on a four-parametric logistic regression and using the 8D2 HA-specific monoclonal antibody as a standard. Statistics between individual groups were conducted using a Mann-Whitney (non-parametric) test.

[0063] **FIGURES 14A-14C** graphically summarize the results of *in vivo* experiments performed to demonstrate that the DLP-containing replicons according to the present disclosure are compatible with LNP (cationic lipid nanoparticle) formulations. In this experiment, 6-8 week old BALB/c animals were primed at Days 0 and boosted at Day 28 using varying doses of an RNA replicon encoding HA. Spleens and serum were collected on Day 42. **FIG. 14A:** HA-specific antibodies were measured in the serum. Serum antibody titer is the inverse of the EC20% and was calculated by interpolation of dilution versus optical density on a four-parametric logistic regression. **FIG. 14B:** IFN- γ ELISpot used to quantify CD8+ cell effector responses. For detection of antigen-specific CD8+ T cells, splenocytes were incubated with the H-2 Kd (IYSTVASSL; SEQ ID NO: 44) peptide. **FIG. 14C:** IFN- γ ELISpot used to quantify CD4+ T cell effector responses. For detection of antigen-specific CD4+ T cells, splenocytes were incubated with H2-D restricted CD4 T cell epitope KSSFFRNVVWLKKN (SEQ ID NO: 45). Statistics between individual groups were conducted using a Mann-Whitney (non-parametric) test.

[0064] **FIGURE 15** graphically illustrates of a non-limiting exemplary configuration of DLP-containing mRNA, in which a Sindbis virus DLP element is placed upstream of a coding sequence for a gene of interest (GOI; dsGFP), and a 5' UTR sequence is placed immediately downstream of a T7 promoter and upstream of the Sindbis virus DLP sequence. The coding sequence for dsGFP is linked to the DLP element via a P2A signal, which is an autocatalytic self-cleaving peptide (e.g., autoprotease peptide) derived from the porcine teschovirus-1. Also shown at the bottom portion of the figure is another non-limiting exemplary configuration of DLP-containing mRNA, in which a coding sequence for a destabilized form of EGFP reporter gene (dsGFP) used as a GOI is operably linked to the proteolytic PEST degradation signal derived from a mouse ornithine decarboxylase gene (MODC).

[0065] **FIGURES 16A-D** graphically summarize the results of experiments performed to demonstrate that DLP-containing modified mRNAs can confer interferon resistance. **FIG. 16A:** inclusion of DLP in mRNA results in a statistically significant increase in the frequency of GFP positive cells in the presence of IFN. Mean with 95% confidence intervals in Kruskai-Wallist test (non-parametric). **FIG. 16B:** unmodified mRNA is sensitive

to IFN treatment (mean with 95% confidence intervals in 2-way ANOVA. Interaction: p=0.0083. Row: p=<0.0001. Column: p=0.0273. Sidak's multiple comparison test with * p=0.0217 and # p=<0.0241). **FIG. 16C:** DLP modified mRNA yields a statistically significant 30% increase in protein production per cell compared to unmodified mRNA in the presence of IFN (mean with 95% confidence intervals in 2-way ANOVA: p=<0.0001. Sidak's multiple comparison test with *** p=<0.0002 and **** p=<0.0001). **FIG. 16D:** DLP modified mRNA in the presence of IFN produces an equivalent amount of protein compared to unmodified mRNA in the absence of IFN treatment (mean with 95% confidence intervals in 2-way ANOVA. Interaction: p=<0.0001. Row: p=<0.0001. Column: p=0.0023. Sidak's multiple comparison test with **** p=<0.0001 and ** p=<0.0023).

[0066] The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are not to be considered limiting of its scope; the disclosure will be described with additional specificity and detail through use of the accompanying drawings.

DETAILED DESCRIPTION OF THE DISCLOSURE

[0067] The present disclosure generally relates to compositions and methods for use in regulating gene expression in cells. Some embodiments of the disclosure relate to expression systems, such as viral-based expression systems, with superior expression potential which are suitable for expressing heterologous molecules such as, for example, vaccines and therapeutic polypeptides, in recombinant cells. For example, some embodiments of the disclosure relate to nucleic acid molecules containing one or more structural elements of a viral capsid enhancer or a variant thereof. In some embodiments, at least one of the one or more structural elements comprises a RNA stem-loop. In some embodiments, at least one of the one or more structural elements is operably linked to a coding sequence of a gene of interest. Some embodiments of the disclosure relate to nucleic acid molecules such as transcription and/or expression constructs and vectors, containing a nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer.

Also disclosed herein in some embodiments are transcription vectors and expression vectors, such as viral-based vectors, comprising a coding sequence of a gene of interest. In some embodiments, the nucleic acid molecules of the present disclosure, e.g., messenger (mRNA) and RNA replicon, are generated via *de novo* synthesis and/or in vitro transcription. Recombinant cells that are genetically modified to include one or more of the nucleic acid molecules disclosed herein, as well as biomaterials and recombinant products derived from such cells are also within the scope of the application. Further provided herein are compositions and kits that include one or more of the nucleic acid molecules and/or recombinant cells disclosed herein, as well as methods for conferring a resistance to the innate immune system in a host cell.

[0068] In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative alternatives described in the detailed description, drawings, and claims are not meant to be limiting. Other alternatives may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of the present application.

[0069] Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this application pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced herein are well understood and commonly employed using conventional methodology by those skilled in the art.

Some Definitions

[0070] The singular form "a", "an", and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a cell" includes one or more cells, comprising mixtures thereof.

[0071] The term "about", as used herein, has its ordinary meaning of approximately. If the degree of approximation is not otherwise clear from the context, "about" means either within plus or minus 10% of the provided value, or rounded to the nearest significant figure, in all cases inclusive of the provided value. Where ranges are provided, they are inclusive of the boundary values.

[0072] The terms, "cells", "cell cultures", "cell line", "recombinant host cells", "recipient cells" and "host cells" as used herein, include the primary subject cells and any progeny thereof, without regard to the number of transfers. In some situations, a progeny is not exactly identical to the parental cell (due to deliberate or inadvertent mutations or differences in environment); however, such altered progeny is included in these terms, so long as the progeny retain the same or substantially similar functionality as that of the originally transformed cell.

[0073] As used herein, the term "construct" is intended to mean any recombinant nucleic acid molecule such as an expression cassette, plasmid, cosmid, fosmid, viral replicon, shuttle vector, autonomously replicating polynucleotide molecule, bacteriophage, or linear or circular, single-stranded or double-stranded, DNA or RNA polynucleotide molecule, derived from any source, capable of genomic integration or autonomous replication, comprising a nucleic acid molecule where nucleic acid sequences are linked in a functionally operative manner, *e.g.* operably linked.

[0074] The term "derived from" used herein refers to an origin or source, and may include naturally-occurring, recombinant, unpurified or purified molecules. The molecules of the present disclosure may be derived from viral or non-viral molecules. A protein or polypeptide derived from an original protein or polypeptide may include the original protein or polypeptide, in part or in whole, and may be a fragment or variant of the original protein or polypeptide.

[0075] The term "gene" is used broadly to refer to any segment of nucleic acid molecule that encodes a protein or that can be transcribed into a functional RNA. Genes may

include sequences that are transcribed but are not part of a final, mature, and/or functional RNA transcript, and genes that encode proteins may further comprise sequences that are transcribed but not translated, for example, 5' untranslated regions, 3' untranslated regions, introns, *etc.* Further, genes may optionally further comprise regulatory sequences required for their expression, and such sequences may be, for example, sequences that are not transcribed or translated. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.

[0076] The term "native" is used herein to refer to nucleic acid sequences or amino acid sequences as they naturally occur in the host. The term "non-native" is used herein to refer to nucleic acid sequences or amino acid sequences that do not occur naturally in the host, or are not configured as they are naturally configured in the host. A nucleic acid sequence or amino acid sequence that has been removed from a host cell, subjected to laboratory manipulation, and introduced or reintroduced into a host cell is considered "non-native." Synthetic genes or partially synthetic genes introduced into a host cell or organism are "non-native." Non-native genes further include genes endogenous to the host cell operably linked to one or more heterologous regulatory sequences that have been recombined into the host genome, or genes endogenous to the host cell or organism that are in a locus of the genome other than that where they naturally occur.

[0077] The terms "naturally-occurring" and "wild-type", as used herein, refer to a form found in nature. For example, a naturally-occurring or wild-type nucleic acid molecule, nucleic acid sequence or protein may be present in and isolated from a natural source, and is not intentionally modified by human manipulation. As described in detail below, the nucleic acid molecules according to some embodiments of the present disclosure are non-naturally occurring nucleic acid molecules.

[0078] The term "heterologous" when used in reference to a polynucleotide, a gene, or a nucleic acid molecule refers to a polynucleotide, gene, or a nucleic acid molecule that is not derived from the host species. For example, "heterologous gene" or "heterologous nucleic acid sequence" as used herein, refers to a gene or nucleic acid sequence from a different species than the species of the host organism it is introduced into. When referring

to a gene regulatory sequence such as, for example, an enhancer sequence, or to an auxiliary nucleic acid sequence used for manipulating expression of a gene sequence (e.g. a 5' untranslated region, 3' untranslated region, poly A addition sequence, *etc.*) or to a nucleic acid sequence encoding a protein domain or protein localization sequence, "heterologous" means that the regulatory or auxiliary sequence or sequence encoding a protein domain or localization sequence is from a different source than the gene with which the regulatory or auxiliary nucleic acid sequence or nucleic acid sequence encoding a protein domain or localization sequence is juxtaposed in a genome. Thus, a promoter operably linked to a gene to which it is not operably linked to in its natural state (for example, in the genome of a non-genetically engineered organism) is referred to herein as a "heterologous promoter," even though the promoter may be derived from the same species (or, in some cases, the same organism) as the gene to which it is linked. For example, in some embodiments disclosed herein, a coding sequence of a heterologous gene of interest (GOI) is not linked to the recombinant RNA replicon sequence in its natural state. In some embodiments, the coding GOI sequence is derived from another organism, such as another virus, bacteria, fungi, human cell (tumor Ag), parasite (malaria), *etc.*)

[0079] The terms "nucleic acid molecule" and "polynucleotide" are used interchangeably herein, and refer to both RNA and DNA molecules, including nucleic acid molecules comprising cDNA, genomic DNA, synthetic DNA, and DNA or RNA molecules containing nucleic acid analogs. Nucleic acid molecules can have any three-dimensional structure. A nucleic acid molecule can be double-stranded or single-stranded (e.g., a sense strand or an antisense strand). Non-limiting examples of nucleic acid molecules include genes, gene fragments, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, siRNA, micro-RNA, tracrRNAs, crRNAs, guide RNAs, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, nucleic acid probes and nucleic acid primers. A nucleic acid molecule may contain unconventional or modified nucleotides. The terms "polynucleotide sequence" and "nucleic acid sequence" as used herein interchangeably refer to the sequence of a polynucleotide molecule. The nomenclature for nucleotide bases as set forth in 37 CFR §1.822 is used herein. The nucleic acid molecules of the present disclosure can be synthesized *ex vitro* by any means known in the art, for example, using one

or more chemical or enzymatic techniques (for example, by use of chemical nucleic acid synthesis, or by use of enzymes for the replication, polymerization, exonucleolytic digestion, endonucleolytic digestion, ligation, reverse transcription, transcription, base modification (including, e.g., methylation), or recombination (including homologous and site-specific recombination) of nucleic acid molecules. In some embodiments, the nucleic acid molecules of the present disclosure are generated from *de novo* synthesis. In some embodiments, nucleic acid molecules can be synthesized *de novo* in whole or in part, using known chemical methods, known enzymatic techniques, or any combination thereof. For example, the component nucleic acid sequences can be synthesized by solid phase techniques, removed from the resin, and purified by preparative high performance liquid chromatography followed by chemical linkage and/or enzymatic ligation to form a chimeric nucleic acid molecule. The composition of the synthetic nucleic acid molecules may be confirmed by nucleic acid analysis or sequencing. In some embodiments, the nucleic acid molecules of the present disclosure can be enzymatically assembled from chemically synthesized oligonucleotides using techniques known in the art.

[0080] Nucleic acid molecules of the present disclosure can be nucleic acid molecules of any length, for example between about 0.5 Kb and about 1000 Kb, between about 0.5 Kb and about 500 Kb, between about 1 Kb and about 100 Kb, between about 2 Kb and about 50 Kb, or between about 5 Kb and about 20 Kb. In some embodiments, the nucleic acid molecule is, or is about, 0.5 Kb, 1 Kb, 2 Kb, 3 Kb, 4 Kb, 5 Kb, 6 Kb, 7 Kb, 8 Kb, 9 Kb, 10 Kb, 15 Kb, 20 Kb, 25 Kb, 30 Kb, 40 Kb, 50 Kb, 100 Kb, 200 Kb, 500 Kb, 1 Mb, or more, or a range between any two of these values.

[0081] The polynucleotides of the present disclosure can be “biologically active” with respect to either a structural attribute, such as the capacity of a nucleic acid to hybridize to another nucleic acid, or the ability of a polynucleotide sequence to be recognized and bound by one or more of a transcription factor, a ribosome, and a nucleic acid polymerase.

[0082] The term “recombinant” or “engineered” nucleic acid molecule as used herein, refers to a nucleic acid molecule that has been altered through human intervention. As non-limiting examples, a cDNA is a recombinant DNA molecule, as is any nucleic acid molecule that has been generated by *ex vitro* polymerase reaction(s), or to which linkers have

been attached, or that has been integrated into a vector, such as a cloning vector or expression vector. As non-limiting examples, a recombinant nucleic acid molecule: 1) has been synthesized or modified *ex vitro*, for example, using chemical or enzymatic techniques (for example, by use of chemical nucleic acid synthesis, or by use of enzymes for the replication, polymerization, exonucleolytic digestion, endonucleolytic digestion, ligation, reverse transcription, transcription, base modification (including, e.g., methylation), or recombination (including homologous and site-specific recombination) of nucleic acid molecules; 2) includes conjoined nucleotide sequences that are not conjoined in nature, 3) has been engineered using molecular cloning techniques such that it lacks one or more nucleotides with respect to the naturally-occurring nucleic acid molecule sequence, and/or 4) has been manipulated using molecular cloning techniques such that it has one or more sequence changes or rearrangements with respect to the naturally-occurring nucleic acid sequence. As non-limiting examples, a cDNA is a recombinant DNA molecule, as is any nucleic acid molecule that has been generated by *ex vitro* polymerase reaction(s), or to which linkers have been attached, or that has been integrated into a vector, such as a cloning vector or expression vector. In some embodiments disclosed herein, the recombinant nucleic acid molecules of the present application are generated from *de novo* synthesis.

[0083] The term "variant" of a protein used herein refers to a polypeptide having an amino acid sequence that is the same or essentially the same as that of the reference protein except having at least one amino acid modified, for example, deleted, inserted, or replaced, respectively. The amino acid replacement may be a conservative amino acid substitution, preferably at a non-essential amino acid residue in the protein. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains are known in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non-polar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g. , threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). A variant of a

protein may have an amino acid sequence at least about 80%, 90%, 95%, or 99%, preferably at least about 90%, more preferably at least about 95%, identical to the amino acid sequence of the protein. Preferably, a variant is a functional variant of a protein that retains the same function as the protein. The terms "variant", when used in reference to a nucleic acid sequence, refer to a nucleic acid sequence that differs by one or more nucleotides from another, usually related nucleotide acid sequence. As such, the term "variant" can refer to a change of one or more nucleotides of a reference nucleic acid which includes the insertion of one or more new nucleotides, deletion of one or more nucleotides, and substitution of one or more existing nucleotides. A "variation" is a difference between two different nucleotide sequences; typically, one sequence is a reference sequence. Broadly, the term "nucleotide variation" as used herein includes point mutation, multiple mutation, single nucleotide polymorphism (SNP), deletion, insertion, and translocation. The term "reference nucleic acid" is used herein to describe a nucleotide sequence having a known reference sequence of interest.

[0084] As used herein, the terms, "identical" or percent "identity", in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence over a comparison window. Unless otherwise specified, the comparison window for a selected sequence, *e.g.*, "SEQ ID NO: X" is the entire length of SEQ ID NO: X, and, *e.g.*, the comparison window for "100 bp of SEQ ID NO: X" is the stated 100 bp. The degree of amino acid or nucleic acid sequence identity can be determined by various computer programs for aligning the sequences to be compared based on designated program parameters. For example, sequences can be aligned and compared using the local homology algorithm of Smith & Waterman *Adv. Appl. Math.* 2:482-89, 1981, the homology alignment algorithm of Needleman & Wunsch *J. Mol. Biol.* 48:443-53, 1970, or the search for similarity method of Pearson & Lipman *Proc. Nat'l. Acad. Sci. USA* 85:2444-48, 1988, and can be aligned and compared based on visual inspection or can use computer programs for the analysis (for example, GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI).

[0085] In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, *Proc. Nat'l. Acad. Sci. USA* 90:5873-87, 1993). The smallest sum probability (P(N)), provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, preferably less than about 0.01, and more preferably less than about 0.001.

[0086] As used herein, the term "vector" refers to a recombinant polynucleotide construct designed for transfer to a host cell, or between host cells, and that may be used for the purpose of transformation, e.g. the introduction of heterologous DNA into a host cell. A vector can be, for example a replicon, such as a plasmid, bacteriophage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Generally, a vector is capable of replication when associated with the proper control elements. The term "vector" includes cloning vectors and expression vectors, as well as viral vectors and integrating vectors. An "expression vector" is a vector that includes a regulatory region, thereby capable of expressing DNA sequences and fragments, for example *ex vitro*, *ex vivo*, and *in vivo*. In some embodiments, the vector is a plasmid, a bacteriophage vector, a cosmid, a fosmid, a viral replicon, or a combination thereof. In some embodiments, the vector is a eukaryotic vector, a prokaryotic vector (e.g., a bacterial plasmid), or a shuttle vector. An expression system can be, for example, an expression vector or an expression cassette. In some embodiments, the vector is a transcription vector. The term "transcription vector" refers to a vector capable of being transcribed but not translated. For example, transcription vectors can be used to amplify their insert.

[0087] Virus-based "replicon" expression vectors can be used as, for example, vaccines and therapeutic compositions. Replicon vectors may be utilized in several formats, including DNA, RNA, and recombinant viral particles. A wide body of literature has now demonstrated efficacy of viral replicon vectors for applications such as vaccines. Moreover, these terms may be referred to collectively as vectors, vector constructs or gene delivery vectors.

[0088] As will be understood by one having ordinary skill in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible sub-ranges and combinations of sub-ranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, *etc.* As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, *etc.* As will also be understood by one skilled in the art all language such as “up to,” “at least,” “greater than,” “less than,” and the like include the number recited and refer to ranges which can be subsequently broken down into sub-ranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 articles refers to groups having 1, 2, or 3 articles. Similarly, a group having 1-5 articles refers to groups having 1, 2, 3, 4, or 5 articles, and so forth.

Viral Capsid Enhancers

[0089] Some viruses have sequences capable of forming one or more stem-loop structures which regulate, for example increase, capsid gene expression. The term “viral capsid enhancer” is used herein to refer to a regulatory element comprising sequences capable of forming such stem-loop structures. In some examples, the stem-loop structures are formed by sequences within the coding sequence of a capsid protein and named Downstream Loop (DLP) sequence. As disclosed herein, these stem-loop structures or variants thereof can be used to regulate, for example increase, expression level of genes of interest. For example, these stem-loop structures or variants thereof can be used in a recombinant vector (*e.g.*, in a heterologous viral genome) for enhancing transcription and/or translation of coding sequence operably linked downstream thereto. As an example, members of the *Alphavirus* genus can resist the activation of antiviral RNA-activated protein kinase (PKR) by means of a prominent RNA structure present within in viral 26S transcripts, which allows an eIF2-independent translation initiation of these mRNAs. This structure, called the downstream loop (DLP), is located downstream from the AUG in SINV 26S mRNA and in other members of the *Alphavirus* genus. In the case of Sindbis virus, the DLP motif is found in the first ~150 nt of the Sindbis subgenomic RNA. The hairpin is located downstream of the

Sindbis capsid AUG initiation codon (AUG is collated at nt 50 of the Sindbis subgenomic RNA). Previous studies of sequence comparisons and structural RNA analysis revealed the evolutionary conservation of DLP in SINV and predicted the existence of equivalent DLP structures in many members of the *Alphavirus* genus (see e.g., Ventoso, *J. Virol.* 9484-9494, Vol. 86, Sept. 2012).

[0090] PKR phosphorylates the eukaryotic translation initiation factor 2 α (eIF2 α). Phosphorylation of eIF2 α blocks translation initiation of mRNA and in doing so keeps viruses from completing a productive replication cycle. PKR is activated by interferon and double stranded RNA. Alphavirus replication in host cells is known to induce the double-stranded RNA-dependent protein kinase (PKR). For example, Sindbis virus infection of cells induces PKR that results in phosphorylation of eIF2 α yet the viral subgenomic mRNA is efficiently translated while translation of all other cellular mRNAs is restricted. The subgenomic mRNA of Sindbis virus has a stable RNA hairpin loop located downstream of the wild type AUG initiator codon for the virus capsid protein (e.g., capsid enhancer). This hairpin loop, also called stem-loop, RNA structure is often referred to as the Downstream Loop structure (or DLP motif). It has been reported that the DLP structure can stall a ribosome on the wild type AUG and this supports translation of the subgenomic mRNA without the requirement for functional eIF2 α . Thus, subgenomic mRNAs of Sindbis virus (SINV) as well as of other alphaviruses are efficiently translated even in cells that have highly active PKR resulting in complete phosphorylation of eIF2 α .

Structure of Alphavirus DLPs

[0091] The DLP structure was first characterized in Sindbis virus (SINV) 26S mRNA and also detected in Semliki Forest virus (SFV). Similar DLP structures have been reported to be present in at least 14 other members of the Alphavirus genus including New World (for example, MAYV, UNAV, EEEV (NA), EEEV (SA), AURAV) and Old World (SV, SFV, BEBV, RRV, SAG, GETV, MIDV, CHIKV, and ONNV) members. The predicted structures of these Alphavirus 26S mRNAs were constructed based on SHAPE (selective 2'-hydroxyl acylation and primer extension) data (Toribio *et al.*, *Nucleic Acids Res.* May 19; 44(9):4368-80, 2016), the content of which is hereby incorporated by reference). Stable stem-loop structures were detected in all cases except for CHIKV and ONNV, whereas

MAYV and EEEV showed DLPs of lower stability (see FIGS. 11A-B and Toribio *et al.*, 2016 *supra*). The highest DLP activities were reported for those Alphaviruses that contained the most stable DLP structures. In some instances, DLP activity depends on the distance between the DLP motif and the initiation codon AUG (AUGi). The AUG-DLP spacing in Alphavirus 26S mRNAs is tuned to the topology of the ES6S region of the ribosomal 18S rRNA in a way that allows the placement of the AUGi in the P site of the 40S subunit stalled by the DLP, allowing the incorporation of Met-tRNA without the participation of eIF2. Two main topologies were detected: a compact and stable structure in the SFV clade, and a more extended structure in the SINV group. In both cases, it was observed that DLP structures were preceded by a region of intense SHAPE reactivity, suggesting a single stranded conformation for the AUG-DLP stretch. Accordingly, this region showed a high content of A and a low content of G that resulted in a low propensity to form secondary structures when compared with equivalent positions in whole mouse mRNA transcriptome or in those Alphavirus mRNAs lacking DLPs. These results reported by Toribio *et al.* (2016, *supra*) suggest that the occurrence of DLPs in Alphavirus is probably linked to a flattening of the preceding region, resulting in a valley-peak topology for this region of mRNA.

[0092] In the case of Sindbis virus, the DLP motif is found in the first ~150 nt of the Sindbis subgenomic RNA. The hairpin is located downstream of the Sindbis capsid AUG initiation codon (AUG at nt 50 of the Sindbis subgenomic RNA) and results in stalling a ribosome such that the correct capsid gene AUG is used to initiate translation. This is because the hairpin causes ribosomes to pause eIF2 α is not required to support translation initiation. Without being bound by any particular theory, it is believed that placing the DLP motif upstream of a coding sequence for any GOI typically results in a fusion-protein of N-terminal capsid amino acids that are encoded in the hairpin region to the GOI encoded protein because initiation occurs on the capsid AUG not the GOI AUG. In some embodiments disclosed herein, a porcine teschovirus-1 2A (P2A) peptide sequence was engineered in-frame immediately after the DLP sequence and in-frame immediately upstream of all GOI. The incorporation of the P2A peptide in the modified viral RNA replicons of the present disclosure allows release of a nearly pristine GOI protein from the capsid-GOI fusion; a single proline residue is added to all GOI proteins.

[0093] Without being bound by any particular theory, it is believed that the DLP allows translation to occur in an eIF2 α independent manner, nucleic acid molecules and expression vectors (e.g., RNA replicon vectors) engineered to use it to initiate translation of non-structural proteins have increased functionality in cells that are innate immune system activated. Therefore, it is contemplated that DLP-engineered nucleic acid molecules and expression vectors (e.g., RNA replicon vectors) also function with more uniformity in different cells, individuals or populations of individuals because differences in the level of innate immune activation in each will naturally cause variability. In some embodiments, the DLP can assist in removing that variability because translation and replication of RNA replicon vectors (as well as GOI expression) can be less impacted by pre-existing innate immune responses. One of the significant values of the compositions and methods disclosed herein is that vaccine efficacy can be increased in individuals that are in a chronic or acute state of immune activation. Causes of chronic or acute immune activation could be found in individuals suffering from a subclinical or clinical infection or individuals undergoing medical treatments for cancer or other maladies (e.g., diabetes, malnutrition, high blood pressure, heart disease, Crohn's disease, muscular sclerosis, etc.).

[0094] As described herein, DLP-containing nucleic acid molecules (for example, transcription and expression vectors (e.g., RNA viral replicons)) disclosed herein can be useful in conferring a resistance to the innate immune system in a subject. Unmodified RNA replicons are sensitive to the initial innate immune system state of cells they are introduced into. If the cells/individuals are in a highly active innate immune system state, the RNA replicon performance (e.g., replication and expression of a GOI) can be negatively impacted. By engineering a DLP to control initiation of protein translation, particularly of non-structural proteins, the impact of the pre-existing activation state of the innate immune system to influence efficient RNA replicon replication is removed or lessened. The result is more uniform and/or enhanced expression of a GOI that can impact vaccine efficacy or therapeutic impact of a treatment.

Arteriviruses

[0095] The arteriviruses (Family *Arteriviridae*, Genus *Arterivirus*) encompass an important group of enveloped, single-stranded, positive-sense RNA viruses which infect

domestic and wild animals. *Arteriviruses* share a similar genome organization and replication strategy to that of members of the family *Coronaviridae* (genera *Coronavirus* and *Torovirus*), but differ considerably in their genetic complexity, genome length, biophysical properties, size, architecture, and structural protein composition of the viral particles (e.g., virion). Currently, the *Arterivirus* genus is considered to include equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), lactate dehydrogenase-elevating virus (LDV) of mice, simian hemorrhagic fever virus (SHFV), and wobbly possum disease virus (WPDV).

[0096] A typical arterivirus genome varies between 12.7 and 15.7 kb in length but their genome organization is relatively consistent with some minor variations. Exemplary genome organization and virion architecture of an arterivirus is shown in **FIG. 10**. The arterivirus genome is a polycistronic +RNA, with 5' and 3' non-translated regions (NTRs) that flank an array of 10–15 known ORFs. The large replicase ORFs 1a and 1b occupy the 5'-proximal three-quarters of the genome, with the size of ORF1a being much more variable than that of ORF1b. Translation of ORF1a produces replicase polyprotein (pp) 1a, whereas ORF1b is expressed by +1 programmed ribosomal frameshifting (PRF), which C-terminally extends pp1a into pp1ab. In addition, a short transframe ORF has been reported to overlap the nsp2-coding region of ORF1a in the +1 frame and to be expressed by +2 PRF. The 3'-proximal genome part has a compact organization and contains 8 to 12 relatively small genes, most of which overlap with neighboring genes. These ORFs encode structural proteins and are expressed from a 3'-co-terminal nested set of sg mRNAs. The organization of these ORFs is conserved, but downstream of ORF1b, SHFV and all recently identified SHFV-like viruses contain three or four additional ORFs (~1.6 kb) that may be derived from an ancient duplication of ORFs 2–4. Together with the size variation in ORF1a, this presumed duplication explains the genome size differences among arteriviruses.

[0097] With regard to equine arteritis virus (EAV), the wild-type EAV genome is approximately 12.7 Kb in size. The 5' three fourths of the genome codes for two large replicase proteins 1a and 1ab; the amino acid sequences of the two proteins are N-terminally identical but due to a ribosomal frameshift the amino acid sequence of the C-terminal region of 1ab is unique. The 3' one quarter of the EAV genome codes for the virus's structural

protein genes, all of which are expressed from subgenomic RNAs. The subgenomic RNAs form a nested set of 3' co-terminal RNAs that are generated via a discontinuous transcriptional mechanism. The subgenomic RNAs are made up of sequences that are not contiguous with the genomic RNA. All of the EAV subgenomic RNAs share a common 5' leader sequence (156 to 221 nt in length) that is identical to the genomic 5' sequence. The leader and body parts of the subgenomic RNAs are connected by a conserved sequence termed a transcriptional-regulatory sequence (TRS). The TRS is found on the 3' end of the leader (leader TRS) as well as in the subgenomic promoter regions located upstream of each structural protein gene (body TRS). Subgenomic RNAs are generated as the negative strand replication intermediate RNA is transcribed. As transcription occurs the replication complex pauses as it comes to each body TRS and then the nascent negative strand RNA become associated with the complementary positive strand leader TRS where negative strand RNA transcription continues. This discontinuous transcription mechanism results in subgenomic RNA with both 5' and 3' EAV conserved sequences. The negative strand subgenomic RNAs then become the template for production of the subgenomic positive sense mRNA.

[0098] Infectious cDNA clones, representing the entire genome of EAV, have been reported and they have been used to study EAV RNA replication and transcription for nearly two decades. In addition, infectious clones have been generated that contain the chloramphenicol acetyltransferase (CAT) gene inserted in place of ORF2 and ORF7, and CAT protein was shown to be expressed in cells electroporated with those RNAs. Modifications of the infectious clone via site directed mutagenesis and deletion of the structural protein gene regions has been used to determine the requirement for each structural gene in support of RNA replication (Molenkamp 2000). The study reported by Molenkamp 2000 concluded that the structural genes are not required to support RNA replication. Analysis of sequence homology requirements for TRS activity in subgenomic RNA production was conducted and used to better define how discontinuous transcription mechanistically occurs (van Marle 1999, Pasternak 2000, Pasternak 2001, Pasternak 2003, van den Born 2005) and defective interfering RNAs have been used to understand the minimal genomic sequences required for replication and packaging of RNA into virus particles (Molenkamp 2000a).

Alphaviruses

[0099] *Alphavirus* is a genus of genetically, structurally, and serologically related viruses of the group IV *Togaviridae* family which includes at least 30 members, each having single stranded RNA genomes of positive polarity enclosed in a nucleocapsid surrounded by an envelope containing viral spike proteins. Currently, the alphavirus genus comprises among others the Sindbis virus (SIN), the Semliki Forest virus (SFV), the Ross River virus (RRV), Venezuelan equine encephalitis virus (VEEV), and Eastern equine encephalitis virus (EEEV), which are all closely related and are able to infect various vertebrates such as mammal, rodents, fish, avian species, and larger mammals such as humans and horses as well as invertebrates such as insects. Transmission between species and individuals occurs mainly via mosquitoes making the alphaviruses a contributor to the collection of Arboviruses – or Arthropod-Borne Viruses. In particular, the Sindbis and the Semliki Forest viruses have been widely studied and, therefore, the life cycle, mode of replication, *etc.*, of these viruses are well characterized. In particular, alphaviruses have been shown to replicate very efficiently in animal cells which makes them valuable as vectors for production of protein and nucleic acids in such cells.

[0100] Alphavirus particles are enveloped, have a 70 nm diameter, tend to be spherical (although slightly pleomorphic), and have an approximately 40 nm isometric nucleocapsid. **FIG. 9** depicts a typical alphavirus genomic structure and genome expression. *Alphavirus* genome is single-stranded RNA of positive polarity of approximately 11- 12 kb in length, comprising a 5' cap, a 3' poly-A tail, and two open reading frames with a first frame encoding the nonstructural proteins with enzymatic function and a second frame encoding the viral structural proteins (*e.g.*, the capsid protein C, E1 glycoprotein, E2 glycoprotein, E3 protein and 6K protein).

[0101] The 5' two-thirds of the alphavirus genome encodes a number of nonstructural proteins necessary for transcription and replication of viral RNA. These proteins are translated directly from the RNA and together with cellular proteins form the RNA-dependent RNA polymerase essential for viral genome replication and transcription of subgenomic RNA. Four nonstructural proteins (nsP1-4) are produced as a single polyprotein which constitutes the virus' replication machinery. The processing of the polyprotein occurs

in a highly regulated manner, with cleavage at the P2/3 junction influencing RNA template use during genome replication. This site is located at the base of a narrow cleft and is not readily accessible. Once cleaved, nsP3 creates a ring structure that encircles nsP2. These two proteins have an extensive interface. Mutations in nsP2 that produce noncytopathic viruses or a temperature sensitive phenotypes cluster at the P2/P3 interface region. P3 mutations opposite the location of the nsP2 noncytopathic mutations prevent efficient cleavage of P2/3. This in turn can affect RNA infectivity altering viral RNA production levels.

[0102] The 3' one-third of the genome comprises subgenomic RNA which serves as a template for translation of all the structural proteins required for forming viral particles: the core nucleocapsid protein C, and the envelope proteins P62 and E1 that associate as a heterodimer. The viral membrane-anchored surface glycoproteins are responsible for receptor recognition and entry into target cells through membrane fusion. The subgenomic RNA is transcribed from the p26S subgenomic promoter present at the 3' end of the RNA sequence encoding the nsp4 protein. The proteolytic maturation of P62 into E2 and E3 causes a change in the viral surface. Together the E1, E2, and sometimes E3, glycoprotein "spikes" form an E1/E2 dimer or an E1/E2/E3 trimer, where E2 extends from the center to the vertices, E1 fills the space between the vertices, and E3, if present, is at the distal end of the spike. Upon exposure of the virus to the acidity of the endosome, E1 dissociates from E2 to form an E1 homotrimer, which is necessary for the fusion step to drive the cellular and viral membranes together. The alphaviral glycoprotein E1 is a class II viral fusion protein, which is structurally different from the class I fusion proteins found in influenza virus and HIV. The E2 glycoprotein functions to interact with the nucleocapsid through its cytoplasmic domain, while its ectodomain is responsible for binding a cellular receptor. Most alphaviruses lose the peripheral protein E3, while in Semliki viruses it remains associated with the viral surface.

[0103] Alphavirus replication has been reported to take place on membranous surface within the host cell. In the first step of the infectious cycle, the 5' end of the genomic RNA is translated into a polyprotein (nsP1-4) with RNA polymerase activity that produces a negative strand complementary to the genomic RNA. In a second step, the negative strand is

used as a template for the production of two RNAs, respectively: (1) a positive genomic RNA corresponding to the genome of the secondary viruses producing, by translation, other nsp proteins and acting as a genome for the virus; and (2) subgenomic RNA encoding the structural proteins of the virus forming the infectious particles. The positive genomic RNA/subgenomic RNA ratio is regulated by proteolytic autocleavage of the polyprotein to nsp 1, nsp 2, nsp 3 and nsp 4. In practice, the viral gene expression takes place in two phases. In a first phase, there is main synthesis of positive genomic strands and of negative strands. During the second phase, the synthesis of subgenomic RNA is virtually exclusive, thus resulting in the production of large amount of structural protein.

Innate Immunity

[0104] Since innate immune activation can occur due to many different stimuli, vaccine approaches that rely on self-amplifying RNA replicons to express antigen or therapeutic GOI can be negatively impacted by the global host protein shutdown associated with PKR phosphorylation of eIF2 α . Engineering RNA replicons to function in a cellular environment where host protein translation is repressed would provide those systems with a significant advantage over standard RNA replicon systems.

[0105] Accordingly, RNA replicon systems that are negatively impacted by innate immune responses, such as systems derived from alphaviruses and arteriviruses, can be more effective at expressing their encoded GOI when engineered to contain a DLP motif. The DLP motif confers efficient mRNA translation in cellular environments where cellular mRNA translation is inhibited. When a DLP is linked with translation of a replicon vectors non-structural protein genes the replicase and transcriptase proteins are capable of initiating functional replication in PKR activated cellular environments. When a DLP is linked with translation of subgenomic mRNAs robust GOI expression is possible even when cellular mRNA is restricted due to innate immune activation. Accordingly, engineering replicons that contain DLP structures to help drive translation of both non-structural protein genes and subgenomic mRNAs provides yet another powerful way to overcome innate immune activation.

[0106] Some embodiments of the disclosure relate to DLP structures that have been engineered to support translation of viral non-structural genes of replicon vectors

derived from two different viruses, Venezuelan equine encephalitis virus (VEEV) and equine arteritis virus (EAV), thus conveying innate immune response evasion to the systems. As described in greater detail below, incorporation of the DLP structures into the replicon vectors made them both resistant to interferon (IFN) treatment and unexpectedly also resulted in an overall increase in GOI expression potential. The combination of IFN resistance and superior protein expression potential imparted by engineering a DLP into the RNA replicon systems make them suitable for use in individuals or populations where innate immune activation is acutely or chronically present.

Nucleic Acid Molecules of the Disclosure

[0107] Some aspects of the present disclosure relate to nucleic acid molecules, such as synthetic or recombinant nucleic acid molecules, that include one or more DLP motifs, a coding sequence for one or more DLP motifs, or a combination thereof. In some embodiments, the nucleic acid molecules of the disclosure can include a coding sequence for a gene of interest (GOI) operably linked to DLP motif(s) and/or the coding sequence for the DLP motifs.

[0108] In one aspect, disclosed herein is a nucleic acid molecule, comprising (i) a first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer or a variant thereof; and (ii) a second nucleic acid sequence operably linked to the first nucleic acid sequence, wherein the second nucleic acid sequence comprises a coding sequence for a gene of interest (GOI). In some embodiments, at least one of the one or more structural elements of the viral capsid enhancer comprises one or more RNA stem-loops. In some embodiments, at least one of the one or more RNA stem-loops is comprised by a DLP motif present in the first nucleic acid sequence. In some embodiments, at least one of the one or more structural elements of the viral capsid enhancer does not comprise any RNA stem-loop.

[0109] As described above, a viral capsid enhancer comprises sequences within the 5' non-coding and/or 5' coding sequences (preferably, the 5' coding sequences) of that enhance expression (e.g., transcription and/or translation) of sequences operably linked therewith. In some embodiments of the present disclosure, the one or more structural elements of the viral capsid enhancer include one or two RNA stem-loops of the viral capsid

enhancer. In some embodiments, the viral capsid enhancer of the present disclosure includes the sequences containing the 26S subgenomic promoter. In some embodiments, the viral capsid enhancer of the disclosure contains the 5' coding sequences at about nucleotides 20 to 250, about nucleotides 20 to 200, about nucleotides 20 to 150, about nucleotides 20 to 100, or about nucleotides 50 to 250, about nucleotides 100 to 250, about nucleotides 50 to 200, about nucleotides 75 to 250, about nucleotides 75 to 200, about nucleotides 75 to 150, about nucleotides 77 to 139, or about nucleotides 100 to 250, about nucleotides 150 to 250, about nucleotides 100 to 150, about nucleotides 100 to 200 of the viral 26S RNA, which is capable of forming a hairpin structure. In some embodiments, the first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer that are important for enhancing expression of a heterologous sequence operably linked thereto. In some embodiments, the first nucleic acid sequence includes encoding sequence for one or more RNA stem-loops of a viral capsid enhancer. In some embodiments, the first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer that are important for enhancing translation of a heterologous sequence operably linked thereto. In some embodiments, the first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer that are important for enhancing transcription of a heterologous sequence operably linked thereto.

[0110] In some embodiments, the first nucleic acid sequence of the nucleic acid molecule includes at least about 50, about 75, about 100, about 150, about 200, about 300, or more nucleotides from the 5' coding sequence for a viral capsid protein. In some embodiments, the first nucleic acid sequence of the nucleic acid molecule includes about 50, about 75, about 100, about 150, about 200, about 300, or more, or a range between any two of these values, nucleotides from the 5' coding sequence for a viral capsid protein. In some embodiments, the viral capsid enhancer is derived from a capsid gene of an alphavirus species selected from the group consisting of Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O'Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyma virus (SAGV), Bebaru virus

(BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), and Buggy Creek virus. In some embodiments, the viral capsid enhancer is derived from a capsid gene of a Sindbis virus species or a Semliki Forest virus species. In some particular embodiments, the viral capsid enhancer is derived from a capsid gene of a Sindbis virus species. Additionally, one of ordinary skill in the art will appreciate that modifications may be made in the 5' coding sequences from the viral capsid protein without substantially reducing its enhancing activities. More information in this regard can be found in, *e.g.*, Frolov *et al.*, *J. Virology* 70:1182, 1994; Frolov *et al.*, *J. Virology* 68:8111, 1994. In some embodiments, it can be advantage for such mutations to substantially preserve the RNA hairpin structure formed by the 5' capsid coding sequences.

[0111] In some embodiments, the viral capsid enhancer disclosed herein does not contain one or more, or all, of the 5' coding sequences of the capsid protein that are upstream of the hairpin structure. In some embodiments, the viral capsid enhancer disclosed herein does not contain all of the 5' coding sequences of the viral capsid protein that are upstream of the hairpin structure. In some embodiments, the viral capsid enhancer sequence may encode all or part of the capsid protein. Accordingly, in some embodiments disclosed herein, the capsid enhancer region will not encode the entire viral capsid protein. In some embodiments, the viral capsid enhancer sequence encodes an amino terminal fragment from the viral capsid protein. In those embodiments in which an otherwise functional capsid protein is encoded by the capsid enhancer sequence, it may be desirable to ablate the capsid autoprotease activity. Capsid mutations that reduce or ablate the autoprotease activity of the capsid protein are known in the art (see *e.g.*, WO1996/37616). In addition or alternatively, one or more of amino acid residues in the capsid protein may be altered to reduce capsid protease activity.

[0112] As indicated above, previous studies of sequence comparisons and structural RNA analysis revealed the evolutionary conservation of DLP motifs in many members of the *Alphavirus* genus (see *e.g.*, Ventoso, 2012 *supra*). Accordingly, in some further embodiments, the viral capsid enhancer sequence of the present disclosure can be of any other variant sequence such as, for example, a synthetic sequence or a heterologous

sequence, that can form an RNA hairpin functionally or structurally equivalent to one or more of the RNA stem-loops predicted for a viral capsid enhancer and which can act to enhance translation of RNA sequences operably linked downstream thereto (e.g., coding sequence for a gene of interest). Non-limiting examples of RNA stem-loops which can act as a transcriptional and/or translational enhancer include those shown in **FIGS. 11A-B**. In some embodiments, the nucleic acid molecule of the disclosure includes an alphavirus capsid enhancer as derived from Sindbis virus (SINV; NC 001547.1), Aura virus (AURAV; AF126284), Chikungunya virus (CHIKV; NC 004162), O’Nyong-Nyong virus (ONNV; NC 001512), Eastern Equine Encephalitis virus (EEEV(SA); AF159559 and EEEV (NA); U01558), Mayaro virus (MAYV; DQ001069), Semliki Forest virus (SFV; NC 003215), Ross River virus (RRV; DQ226993 and Sagiyma virus (SAGV; AB032553), Getah virus (GETV; NC 006558), Middelburg virus (MIDV; EF536323), Una virus (UNAV; AF33948), or Bebaru virus (BEBV; AF339480) as described in Toribio *et al.*, 2016 *supra*, the content of which is hereby incorporated by reference in its entirety, or a variant thereof.

[0113] Nucleic acid molecules having a high degree of sequence identity (e.g., at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity) to the coding sequence for a viral capsid enhancer disclosed herein can be identified and/or isolated by using the sequence described herein (e.g., SEQ ID NO: 1) or any others alphavirus capsid protein as they are known in the art, for example, by using the sequences of Sindbis virus (SINV; NC 001547.1), Aura virus (AURAV; AF126284), Chikungunya virus (CHIKV; NC 004162), O’Nyong-Nyong virus (ONNV; NC 001512), Eastern Equine Encephalitis virus (EEEV(SA); AF159559 and EEEV (NA); U01558), Mayaro virus (MAYV; DQ001069), Semliki Forest virus (SFV; NC 003215), Ross River virus (RRV; DQ226993 and Sagiyma virus (SAGV; AB032553), Getah virus (GETV; NC 006558), Middelburg virus (MIDV; EF536323), Una virus (UNAV; AF33948), and Bebaru virus (BEBV; AF339480), by genome sequence analysis, hybridization, and/or PCR with degenerate primers or gene-specific primers from sequences identified in the respective alphavirus genome. For example, the viral capsid enhancer can comprise, or consist of, a DLP motif from a virus species belonging to the *Togaviridae* family, for example an alphavirus species or a rubivirus species. In some embodiments, the nucleic acid molecule of

the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the 5' CDS portion of an alphavirus capsid protein. In some embodiments, the 5' CDS portion of an alphavirus capsid protein comprises at least the first 25, 50, 75, 80, 100, 150, or 200 nucleotides of the coding sequence for the alphavirus capsid protein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the nucleic acid sequence of any one of SEQ ID NOs: 1 and 46-52. In some embodiments, the nucleic acid molecule comprises a viral capsid enhancer having a nucleic acid sequence that exhibits 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or a range between any two of these values, sequence identity to the nucleic acid sequence of any one of SEQ ID NOs: 1 and 46-52. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence of SEQ ID NO: 1 disclosed herein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to any one of the sequences described in FIGS. 11A-B and/or Figure 1A in the publication by Toribio *et al.* (2016 *supra*), the content of which is hereby incorporated by reference in its entirety.

[0114] Accordingly, in some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence of any one of SEQ ID NOS: 46-52 disclosed herein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence set forth at SEQ ID NO: 46 disclosed herein. In

some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence set forth at SEQ ID NO: 47 disclosed herein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence set forth at SEQ ID NO: 48 disclosed herein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence set forth at SEQ ID NO: 49 disclosed herein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence set forth at SEQ ID NO: 50 disclosed herein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence set forth at SEQ ID NO: 51 disclosed herein. In some embodiments, the nucleic acid molecule of the disclosure includes a viral capsid enhancer having a nucleic acid sequence that exhibits at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence set forth at SEQ ID NO: 52 disclosed herein.

[0115] In the nucleic acid molecule according to some embodiments of the present disclosure, the one or more RNA stem-loops are operably positioned upstream of the coding sequence for the GOI of the second nucleic acid sequence. In some embodiments, the one or more RNA stem-loops are operably positioned from about 1 to about 50 nucleotides, from about 10 to about 75 nucleotides, from about 30 to about 100 nucleotides, from about 40 to about 150 nucleotides, from about 50 to about 200 nucleotides, from about 60 to about 250 nucleotides, from about 100 to about 300 nucleotides, or from about 150 to about 500

nucleotides upstream of the coding sequence for the GOI. In some embodiments, the one or more RNA stem-loops are operably positioned from about 1, about 2, about 5, about 10, about 15, about 20, about 25, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 200, about 300, about 400, about 500, or a range between any two of these values, nucleotides upstream of the coding sequence for the GOI. In some embodiments, the one or more RNA stem-loops are operably positioned immediately upstream of the coding sequence for the GOI.

[0116] In some embodiments, the nucleic acid molecule further includes a 5'-untranslated region (5'-UTR) sequence operably positioned upstream to the first nucleic acid sequence. In some embodiments, the 5'-UTR sequence is operably positioned from about 1 to about 50, from about 10 to about 75, from about 30 to about 100, from about 40 to about 150, from about 50 to about 200, from about 60 to about 250, from about 100 to about 300, or from about 150 to about 500 nucleotides upstream of the first nucleic acid sequence. In some embodiments, the 5'-UTR sequence is operably positioned from about 1, about 2, about 5, about 10, about 15, about 20, about 25, about 30, about 40, about 50, about 60, about 70, about 80, about 90, or 100 nucleotides upstream of the first nucleic acid sequence. In some embodiments, the 5'-UTR sequence is operably positioned immediately upstream of the first nucleic acid sequence.

[0117] In some embodiments, the 5' UTR sequence is operably positioned downstream to the promoter. In some embodiments, the 5'-UTR sequence is operably positioned from about 1 to about 50, from about 10 to about 75, from about 30 to about 100, from about 40 to about 150, from about 50 to about 200, from about 60 to about 250, from about 100 to about 300, or from about 150 to about 500 nucleotides downstream of the promoter sequence. In some embodiments, the 5' UTR sequence is operably positioned from about 1, about 2, about 5, about 10, about 15, about 20, about 25, about 30, about 40, about 50, about 60, about 70, about 80, about 90, or 100 nucleotides downstream of the promoter sequence. In some embodiments, the 5' UTR sequence is operably positioned immediately downstream to the promoter sequence. In some embodiments, the 5' UTR sequence is operably positioned downstream to the promoter and upstream to the first nucleic acid sequence.

[0118] In some embodiments, the nucleic acid molecule comprises a 3' untranslated region (3' UTR) sequence operably positioned downstream of the second nucleic acid sequence. In some embodiments, the 3' UTR sequence is operably positioned from about 1 to about 50 nucleotides, from about 10 to about 75 nucleotides, from about 30 to about 100 nucleotides, from about 40 to about 150 nucleotides, from about 50 to about 200 nucleotides, from about 60 to about 250 nucleotides, from about 100 to about 300 nucleotides, or from about 150 to about 500 nucleotides downstream of the second sequence nucleic acid sequence. In some embodiments, the 3' UTR sequence is operably positioned from about 1, about 2, about 5, about 10, about 15, about 20, about 25, about 30, about 40, about 50, about 60, about 70, about 80, about 90, about 100, about 200, about 300, about 400, about 500, or a range between any two of these values, nucleotides downstream of the second nucleic acid sequence. In some embodiments, the 3' UTR sequence is operably positioned immediately downstream of the second nucleic acid sequence.

[0119] In some embodiments disclosed herein, the coding sequence for the GOI is transcribed into a messenger RNA (mRNA) or part of an mRNA. As used herein, the term “mRNA” or “messenger RNA” refers to a single stranded RNA molecule that is synthesized during transcription, is complementary to one of the strands of double-stranded DNA, and serves to transmit the genetic information contained in DNA to the ribosomes for protein synthesis. The mRNA may be spliced, partially spliced or unspliced, and may be eukaryotic or prokaryotic mRNA. As discussed above, mRNA molecules according to some embodiments of the disclosure can be produced via *de novo* synthesis. In some embodiments disclosed herein, the coding sequence for the GOI encodes a polypeptide. In some embodiments, the polypeptide is a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or any combination thereof. In some embodiments, the polypeptide is an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or any combination thereof.

[0120] In some embodiments, the nucleic acid molecule of the disclosure further includes a coding sequence for an autoprotease peptide (e.g., autocatalytic self-cleaving peptide), where the coding sequence for the autoprotease is optionally operably linked

upstream to the second nucleic acid sequence. Generally, any proteolytic cleavage site known in the art can be incorporated into the nucleic acid molecules of the disclosure and can be, for example, proteolytic cleavage sequences that are cleaved post-production by a protease. Further suitable proteolytic cleavage sites also include proteolytic cleavage sequences that can be cleaved following addition of an external protease. As used herein the term "autoprotease" refers to a "self-cleaving" peptide that possesses autoproteolytic activity and is capable of cleaving itself from a larger polypeptide moiety. First identified in the foot-and-mouth disease virus (FMDV), a member of the picornavirus group, several autoproteases have been subsequently identified such as, for example, "2A like" peptides from equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), and their activities in proteolytic cleavage have been shown in various *ex vitro* and *in vivo* eukaryotic systems. As such, the concept of autoproteases is available to one of skill in the art with many naturally-occurring autoprotease systems have been identified. Well studied autoprotease systems are *e.g.* viral proteases, developmental proteins (*e.g.* HetR, Hedgehog proteins), RumA autoprotease domain, UmuD, *etc.*). Non-limiting examples of autoprotease peptides suitable for the compositions and methods of the present disclosure include the peptide sequences from porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), or a combination thereof.

[0121] In some embodiments, the coding sequence for an autoprotease peptide is operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence. In some embodiments, the autoprotease peptide comprises, or consists of, a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and a combination thereof. In some embodiments, the autoprotease peptide includes a peptide sequence of porcine teschovirus-1 2A (P2A).

[0122] One of skill in the art will appreciate that different configurations of the viral capsid enhancer sequence, the sequence encoding the autoprotease peptide, and the sequence encoding the gene of interest can be employed as long as the capsid enhancer sequence enhances expression of the heterologous nucleic acid sequence(s), *e.g.* a coding sequence for a GOI, as compared with the level seen in the absence of the capsid enhancer sequence. These sequences will typically be configured so that the polypeptide encoded by the gene of interest can be released from the protease and any capsid protein sequence after cleavage by the autoprotease.

[0123] A non-limiting list of exemplary combinations of autoprotease peptides described herein (such as P2A, F2A, E2A, T2A, BmCPV2A, and BmIFV2A) with one or more viral capsid enhancer sequences described herein are provided in Tables 1 and 2. Table 1 provides a shorthand name for each viral capsid enhancer (*e.g.*, “CE01”) and a shorthand name for each autoprotease peptide (*e.g.*, “AP01”). Each numbered ‘X’ peptide in Table 2 has a corresponding autoprotease peptide provided in Table 1. Likewise, each numbered ‘Y’ enhancer in Table 2 has a corresponding viral capsid enhancer provided in Table 1. Therefore, each “X:Y” entry in Table 2 provides an example of a combination of a viral capsid enhancer and an autoprotease peptide that can be used in the molecules, compositions, and methods of the present disclosure. For example, the combination designated as “AP01:CE16” in Table 2 provides a combination of viral capsid enhancer derived from Sindbis virus (SINV) and an autoprotease peptide from porcine teschovirus-1 2A (P2A).

TABLE 1: Exemplary viral capsid enhancers and autoprotease peptides of the disclosure

Viral Capsid Enhancer (Y)	Autoprotease Peptide (X)
Eastern equine encephalitis virus (EEEV) (CE01)	porcine teschovirus-1 2A (P2A) (AP01)
Venezuelan equine encephalitis virus (VEEV) (CE02)	foot-and-mouth disease virus (FMDV) 2A (F2A) (AP02)
Everglades virus (EVEV) (CE03)	Equine Rhinitis A Virus (ERAV) 2A (E2A) (AP03)
Mucambo virus (MUCV)	Thosca asigna virus 2A (T2A) (AP04)
Semliki forest virus (SFV) (CE04)	cytoplasmic polyhedrosis virus 2A (BmCPV2A) (AP05)
Pixuna virus (PIXV) (CE05)	Flacherie Virus 2A (BmIFV2A) (AP06)
Middleburg virus (MIDV) (CE06)	
Chikungunya virus (CHIKV) (CE07)	
O’Nyong-Nyong virus (ONNV) (CE08)	
Ross River virus (RRV) (CE09)	
Barmah Forest virus (BF) (CE10)	

Viral Capsid Enhancer (Y)	Autoprotease Peptide (X)
Getah virus (GET)	(CE11)
Sagiyama virus (SAGV)	(CE12)
Bebanu virus (BEBV)	(CE13)
Mayaro virus (MAYV)	(CE14)
Una virus (UNAV)	(CE15)
Sindbis virus (SINV)	(CE16)
Aura virus (AURAV)	(CE17)
Whataroa virus (WHAV)	(CE18)
Babanki virus (BABV)	(CE19)
Kyzylagach virus (KYZV)	(CE20)
Western equine encephalitis virus (WEEV)	(CE21)
Highland J virus (HJV)	(CE22)
Fort Morgan virus (FMV)	(CE23)
Ndumu (NDUV)	(CE24)
Salmonid alphavirus (SAV)	(CE25)
Buggy Creek virus	(CE26)

TABLE 2:

X : Y	X : Y	X : Y	X : Y	X : Y	X : Y
AP01 : CE01	AP02 : CE01	AP03 : CE01	AP04 : CE01	AP05 : CE01	AP06 : CE01
AP01 : CE02	AP02 : CE02	AP03 : CE02	AP04 : CE02	AP05 : CE02	AP06 : CE02
AP01 : CE03	AP02 : CE03	AP03 : CE03	AP04 : CE03	AP05 : CE03	AP06 : CE03
AP01 : CE04	AP02 : CE04	AP03 : CE04	AP04 : CE04	AP05 : CE04	AP06 : CE04
AP01 : CE05	AP02 : CE05	AP03 : CE05	AP04 : CE05	AP05 : CE05	AP06 : CE05
AP01 : CE06	AP02 : CE06	AP03 : CE06	AP04 : CE06	AP05 : CE06	AP06 : CE06
AP01 : CE07	AP02 : CE07	AP03 : CE07	AP04 : CE07	AP05 : CE07	AP06 : CE07
AP01 : CE08	AP02 : CE08	AP03 : CE08	AP04 : CE08	AP05 : CE08	AP06 : CE08
AP01 : CE09	AP02 : CE09	AP03 : CE09	AP04 : CE09	AP05 : CE09	AP06 : CE09
AP01 : CE10	AP02 : CE10	AP03 : CE10	AP04 : CE10	AP05 : CE10	AP06 : CE10
AP01 : CE11	AP02 : CE11	AP03 : CE11	AP04 : CE11	AP05 : CE11	AP06 : CE11
AP01 : CE12	AP02 : CE12	AP03 : CE12	AP04 : CE12	AP05 : CE12	AP06 : CE12
AP01 : CE13	AP02 : CE13	AP03 : CE13	AP04 : CE13	AP05 : CE13	AP06 : CE13
AP01 : CE14	AP02 : CE14	AP03 : CE14	AP04 : CE14	AP05 : CE14	AP06 : CE14
AP01 : CE15	AP02 : CE15	AP03 : CE15	AP04 : CE15	AP05 : CE15	AP06 : CE15
AP01 : CE16	AP02 : CE16	AP03 : CE16	AP04 : CE16	AP05 : CE16	AP06 : CE16
AP01 : CE17	AP02 : CE17	AP03 : CE17	AP04 : CE17	AP05 : CE17	AP06 : CE17
AP01 : CE18	AP02 : CE18	AP03 : CE18	AP04 : CE18	AP05 : CE18	AP06 : CE18
AP01 : CE19	AP02 : CE19	AP03 : CE19	AP04 : CE19	AP05 : CE19	AP06 : CE19
AP01 : CE20	AP02 : CE20	AP03 : CE20	AP04 : CE20	AP05 : CE20	AP06 : CE20
AP01 : CE21	AP02 : CE21	AP03 : CE21	AP04 : CE21	AP05 : CE21	AP06 : CE21
AP01 : CE22	AP02 : CE22	AP03 : CE22	AP04 : CE22	AP05 : CE22	AP06 : CE22
AP01 : CE23	AP02 : CE23	AP03 : CE23	AP04 : CE23	AP05 : CE23	AP06 : CE23
AP01 : CE24	AP02 : CE24	AP03 : CE24	AP04 : CE24	AP05 : CE24	AP06 : CE24
AP01 : CE25	AP02 : CE25	AP03 : CE25	AP04 : CE25	AP05 : CE25	AP06 : CE25
AP01 : CE26	AP02 : CE26	AP03 : CE26	AP04 : CE26	AP05 : CE26	AP06 : CE26

[0124] In one aspect, disclosed herein are novel nucleic acid molecules which include a nucleic acid sequence encoding a modified viral RNA replicon, wherein the modified viral RNA replicon includes a first nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer (e.g., a DLP motif) or a variant thereof, wherein the viral capsid enhancer is heterologous to the viral RNA replicon, and a second nucleic acid sequence encoding at least one nonstructural viral protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence.

[0125] The terms “replicon RNA” and “RNA replicon” used interchangeably herein, refers to RNA which contains all of the genetic information required for directing its own amplification or self-replication within a permissive cell. To direct its own replication, the RNA molecule 1) encodes polymerase, replicase, or other proteins which may interact

with viral or host cell-derived proteins, nucleic acids or ribonucleoproteins to catalyze the RNA amplification process; and 2) contain *cis*-acting RNA sequences required for replication and transcription of the subgenomic replicon-encoded RNA. These sequences may be bound during the process of replication to its self-encoded proteins, or non-self-encoded cell-derived proteins, nucleic acids or ribonucleoproteins, or complexes between any of these components. In some embodiments of the present disclosure, a modified viral replicon RNA molecule typically contains the following ordered elements: 5' viral or defective-interfering RNA sequence(s) required in *cis* for replication, sequences coding for biologically active nonstructural proteins, promoter for the subgenomic RNA, 3' viral sequences required in *cis* for replication, and a polyadenylate tract. Further, the term replicon RNA generally refers to a molecule of positive polarity, or “message” sense, and the replicon RNA may be of length different from that of any known, naturally-occurring RNA viruses. In some embodiments of the present disclosure, the replicon RNA does not contain coding sequences for at least one of the structural viral proteins. In these instances, the sequences encoding structural genes can be substituted with one or more heterologous sequences such as, for example, a coding sequence for a gene of interest (GOI). In those instances where the replicon RNA is to be packaged into a recombinant alphavirus particle, it must contain one or more sequences, so-called packaging signals, which serve to initiate interactions with alphavirus structural proteins that lead to particle formation.

[0126] As used herein, “subgenomic RNA” refers to a RNA molecule of a length or size which is smaller than the genomic RNA from which it was derived. The viral subgenomic RNA should be transcribed from an internal promoter, whose sequences reside within the genomic RNA or its complement. Transcription of a subgenomic RNA may be mediated by viral-encoded polymerase(s) associated with host cell-encoded proteins, ribonucleoprotein(s), or a combination thereof. In some embodiments of the present disclosure, the subgenomic RNA is produced from a modified replicon RNA as disclosed herein and encodes or expresses one or more gene of interest (GOI). Instead of the native subgenomic promoter, the subgenomic RNA can be placed under control of internal ribosome entry site (IRES) derived from encephalomyocarditis viruses (EMCV), Bovine Viral Diarrhea

Viruses (BVDV), polioviruses, Foot-and-mouth disease viruses (FMD), enterovirus 71, or hepatitis C viruses.

[0127] In some embodiments, the second nucleic acid sequence of the modified viral RNA replicon includes the coding sequence for at least one, at least two, at least three, or at least four nonstructural viral proteins. In some embodiments, the second nucleic acid sequence of the modified viral RNA replicon includes the coding sequence for a portion of the at least one nonstructural viral protein. For example, the second nucleic acid sequence of the modified viral RNA replicon can include about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, or a range between any two of these values, of the encoding sequence for the at least one nonstructural viral protein. In some embodiments, the second nucleic acid sequence of the modified viral RNA replicon can include the coding sequence for a substantial portion of the at least one nonstructural viral protein. As used herein, a “substantial portion” of a nucleic acid sequence encoding a nonstructural viral protein comprises enough of the nucleic acid sequence encoding the nonstructural viral protein to afford putative identification of that protein, either by manual evaluation of the sequence by one skilled in the art, or by computer-automated sequence comparison and identification using algorithms such as BLAST (see, for example, in “Basic Local Alignment Search Tool”; Altschul SF *et al.*, *J. Mol. Biol.* 215:403-410, 1993). In some embodiments, the second nucleic acid sequence of the modified viral RNA replicon can include the entire coding sequence for the at least one nonstructural protein. In some embodiments, the second nucleic acid sequence comprises substantially all the coding sequence for the native viral nonstructural proteins.

[0128] The molecular techniques and methods by which these new nucleic acid molecules were constructed and characterized are described more fully in the Examples herein of the present application. As non-limiting examples, in the Examples section, the Venezuelan equine encephalitis virus (VEEV) and Equine arteritis virus (EAV) have been used to illustrate the compositions and methods disclosed herein.

[0129] In some embodiments, the nucleic acid molecules disclosed herein are recombinant nucleic acid molecules. As used herein, the term recombinant means any molecule (e.g. DNA, RNA, *etc.*), that is, or results, however indirect, from human

manipulation of a polynucleotide. As non-limiting examples, a cDNA is a recombinant DNA molecule, as is any nucleic acid molecule that has been generated by *ex vitro* polymerase reaction(s), or to which linkers have been attached, or that has been integrated into a vector, such as a cloning vector or expression vector. As non-limiting examples, a recombinant nucleic acid molecule: 1) has been synthesized or modified *ex vitro*, for example, using chemical or enzymatic techniques (for example, by use of chemical nucleic acid synthesis, or by use of enzymes for the replication, polymerization, exonucleolytic digestion, endonucleolytic digestion, ligation, reverse transcription, transcription, base modification (including, *e.g.*, methylation), or recombination (including homologous and site-specific recombination) of nucleic acid molecules; 2) includes conjoined nucleotide sequences that are not conjoined in nature; 3) has been engineered using molecular cloning techniques such that it lacks one or more nucleotides with respect to the naturally-occurring nucleic acid sequence; and/or 4) has been manipulated using molecular cloning techniques such that it has one or more sequence changes or rearrangements with respect to the naturally-occurring nucleic acid sequence.

[0130] A nucleic acid molecule, including a variant of a naturally-occurring nucleic acid sequence, can be produced using a number of methods known to those skilled in the art. The sequence of a nucleic acid molecule can be modified with respect to a naturally-occurring sequence from which it is derived using a variety of techniques including, but not limited to, classic mutagenesis techniques and recombinant DNA techniques, such as but not limited to site-directed mutagenesis, chemical treatment of a nucleic acid molecule to induce mutations, restriction enzyme cleavage of a nucleic acid fragment, ligation of nucleic acid fragments, PCR amplification and/or mutagenesis of selected regions of a nucleic acid sequence, recombinational cloning, and chemical synthesis, including chemical synthesis of oligonucleotide mixtures and ligation of mixture groups to "build" a mixture of nucleic acid molecules, and combinations thereof. Nucleic acid molecule homologs can be selected from a mixture of modified nucleic acid molecules by screening for the function of the protein or the replicon encoded by the nucleic acid molecule and/or by hybridization with a wild-type gene or fragment thereof, or by PCR using primers having homology to a target or wild-type nucleic acid molecule or sequence.

[0131] In various embodiments disclosed herein, the nucleic acid molecule disclosed herein can include one or more of the following features.

[0132] In some embodiments, the modified viral RNA replicon includes a modified RNA replicon derived from a virus species belonging to the *Alphavirus* genus of the *Togaviridae* family or to the *Arterivirus* genus of the *Arteriviridae* family. Suitable arterivirus species includes Equine arteritis virus (EAV), Porcine respiratory and reproductive syndrome virus (PRRSV), Lactate dehydrogenase elevating virus (LDV), Simian hemorrhagic fever virus (SHFV), and wobbly possum disease virus (WPDV). Virulent and avirulent arterivirus strains are both suitable. Non-limiting examples of preferred arterivirus strains include, but not limited to, EAV-virulent Bucyrus strain (VBS), LDV-Plagemann, LDV-C, PRRSV-type 1, and PRRSV-type 2. Exemplary preferred EAV strains include, but not limited to, EAV VB53, EAV ATCC VR-796, EAV HK25, EAV HK116, EAV ARVAC MLV, EAV Bucyrus strain (Ohio), modified EAV Bucyrus, avirulent strain CA95, Red Mile (Kentucky), 84KY-A1 (Kentucky), Wroclaw-2 (Poland), Bibuna (Switzerland), and Vienna (Australia). Non-limiting preferred examples of PRRSV strains include PRRSV LV4.2.1, PRRSV 16244B, PRRSV HB-1(sh)/2002, PRRSV HB-2(sh)/2002, PRRSV HN1, PRRSV SD 01-08, PRRSV SD0802, PRRSV SD0803, PRRSV, and VR2332. Non-limiting preferred examples of SHFV strains and variants include SHFV variants SHFV-krtg1a and -krtg1b (SHFV-krtg1a/b), SHFVkrtg2a/b (GenBank accession # JX473847 to JX473850), SHFV-LVR, the SHFV prototype variant LVR 42-0/M6941 (NC_003092); SHFV-krc1 and SHFVkrc2 from Kibale red colobus (HQ845737 and HQ845738, respectively). Other non-limiting examples of preferred arteriviruses include PRRSV-Lelystad, the European (type 1) type strain (M96262); PRRSVVR2332, the North American (type 2) type strain (U87392); EAV-Bucyrus (NC_002532); EAV-s3685 (GQ903794); LDV-P, the Plagemann strain (U15146); and LDV-C, the neurovirulent type C strain (L13298).

[0133] In some embodiments, the first nucleic acid sequence is positioned upstream to a nucleic acid sequence encoding a portion or the entire pp1ab nonstructural protein of the modified arterivirus RNA replicon. In some embodiments, the first nucleic acid sequence is operably positioned within a region of about 1 to 1000 nucleotides downstream of the 5'-terminus of the modified viral RNA replicon. In some embodiments,

the first nucleic acid sequence is operably positioned within a region of about 1 to 25, about 1 to 40, about 10 to 25, 10 to 50, about 10 to 100, about 20 to 50, about 20 to 75, about 25 to 100, about 25 to 100 nucleotides downstream of the 5'-terminus of the modified viral RNA replicon. In some embodiments, the first nucleic acid sequence is operably positioned within a region of about 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 200, 250, 300, or more, or a range between any two of these values, nucleotides downstream of the 5'-terminus of the modified viral RNA replicon. In some embodiments, the first nucleic acid sequence is operably positioned within a region of about 1 to 100, about 1 to 500, about 25 to 800, about 50 to 900, about 50 to 300, about 25 to 200, about 25 to 100, about 50 to 400, about 100 to 500, about 100 to 300, about 100 to 200, about 200 to 500, about 200 to 600, about 200 to 400, about 150 to 700, about 150 to 400, or about 500 to 1000 nucleotides downstream of the 5'-terminus of the modified viral RNA replicon.

[0134] Without being bound by any particular theory, it is believed that translational enhancing activity of a viral DLP motif can depend, in some embodiments, on the distance between the viral DLP motif and the initiation AUGi codon (Toribio *et al.*, 2016 *supra*). Accordingly, in some embodiments, the first nucleic acid sequence is operably positioned a region of about 10 to 100 nucleotides downstream of the initiation codon AUGi of the modified viral RNA replicon. In some embodiments, the first nucleic acid sequence is operably positioned within a region of about 10 to 75, about 10 to 50, about 10 to 25, 15 to 75, about 15 to 50, about 15 to 25, about 25 to 75, about 25 to 50, about 25 to 100 nucleotides downstream of the initiation codon AUGi of the modified viral RNA replicon. In some embodiments, the first nucleic acid sequence is operably positioned within a region of about 25, 28, 31, 34, 37, 37, 40, 43, 46, 49, 50, or a range between any two of these values, nucleotides downstream of the initiation codon AUGi of the modified viral RNA replicon.

[0135] In some embodiments, the sequence encoding the modified viral RNA replicon further comprising one or more expression cassettes, wherein each of the expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). As used herein, the term “expression cassette” refers to a construct of genetic material that contains coding sequences and enough regulatory information to direct proper transcription and/or translation of the coding sequences in a recipient cell, *in vivo* and/or *ex*

vivo. The expression cassette may be inserted into a vector for targeting to a desired host cell and/or into a subject. Further, the term expression cassette may be used interchangeably with the term “expression construct”. The term “expression cassette” as used herein, refers to a nucleic acid construct that encodes a protein or functional RNA operably linked to expression control elements, such as a promoter, and optionally, any or a combination of other nucleic acid sequences that affect the transcription or translation of the gene.

[0136] The term “operably linked”, as used herein, denotes a functional linkage between two or more sequences. For example, an operably linkage between a polynucleotide of interest and a regulatory sequence (for example, a promoter) is functional link that allows for expression of the polynucleotide of interest. In this sense, the term “operably linked” refers to the positioning of a regulatory region and a coding sequence to be transcribed so that the regulatory region is effective for regulating transcription or translation of the coding sequence of interest. In some embodiments disclosed herein, the term “operably linked” denotes a configuration in which a regulatory sequence is placed at an appropriate position relative to a sequence that encodes a polypeptide or functional RNA such that the control sequence directs or regulates the expression or cellular localization of the mRNA encoding the polypeptide, the polypeptide, and/or the functional RNA. Thus, a promoter is in operable linkage with a nucleic acid sequence if it can mediate transcription of the nucleic acid sequence. Operably linked elements may be contiguous or non-contiguous.

[0137] The basic techniques for operably linking two or more sequences of DNA together are familiar to one of ordinary skill in the art, and such methods have been described in many books for standard molecular biological manipulation (see, for example, Maniatis *et al.*, “*Molecular Cloning: A Laboratory Manual*” 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; and Gibson *et al.*, *Nature Methods* 6:343-45, 2009).

[0138] In some embodiments disclosed herein, the nucleic acid molecules disclosed herein can include more than one expression cassette. In principle, the nucleic acid molecules disclosed herein can generally include any number of expression cassettes. In some particular embodiments, the modified viral RNA replicon comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably positioned downstream to a transcriptional regulatory

sequence (TRS) of the modified arterivirus RNA replicon, wherein the TRS can be TRS1, TRS2, TRS3, TRS4, TRS5, TRS6, TRS7, or a combination thereof. In some particular embodiments, at least one of the one or more expression cassettes is operably positioned downstream of the TRS7 of the modified arterivirus RNA replicon.

[0139] The nucleic acid molecules as provided herein can find use, for example, as an expression or transcription vector that, when operably linked to a heterologous nucleic acid sequence such as, for example, a coding sequence of a gene of interest (GOI), can affect expression of the GOI. In some embodiments, the coding sequence of the GOI is optimized for expression at a level higher than the expression level of a reference coding sequence. In some embodiments, the reference coding sequence is not codon-optimized. In some embodiments, the GOI coding sequence comprises codon optimization. With respect to codon-optimization of nucleic acid sequences, degeneracy of the genetic code provides the possibility to substitute at least one base of the protein encoding sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. Hence, the nucleic acid molecules of the present disclosure may also have one or more nucleotide substitutions in accordance with degeneracy of the genetic code. References describing codon usage are readily publicly available. In some further embodiments of the disclosure, polynucleotide sequence variants can be produced for a variety of reasons, *e.g.*, to optimize codon expression for a particular host (*e.g.*, changing codons in the arterivirus mRNA to those preferred by other organisms such as human, hamster, mice, or monkey).

[0140] In some embodiments disclosed herein, the sequence of the GOI encode a polypeptide. The type of the polypeptide can vary depending on specific applications. For example, the polypeptide can be a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or any combination thereof. In some embodiments, the polypeptide is an antibody, an antigen, an immune modulator, a cytokine, an enzyme, or a combination thereof.

[0141] In some embodiments, the nucleic acid molecule as disclosed herein can further comprise a third nucleic acid sequence encoding one or more structural elements of a second viral capsid enhancer (*e.g.*, a DLP motif), wherein the third nucleic acid sequence is

operably linked upstream to the coding sequence for the GOI. The second DLP motif may be the same or may be different from the first DLP motif positioned upstream of the coding sequence for the nonstructural proteins. Accordingly, in some embodiments, the second DLP motif is the same as the first DLP motif positioned upstream of the coding sequence for the nonstructural proteins. In some embodiments, the second DLP motif is different from the first DLP motif positioned upstream of the coding sequence for the nonstructural proteins.

[0142] In some embodiments, the sequence encoding the modified viral RNA replicon further comprising a coding sequence for a proteolytic cleavage site operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI. Generally, any proteolytic cleavage site known in the art can be incorporated into the nucleic acid molecules of the disclosure and can be, for example, proteolytic cleavage sequences that are cleaved post-production by a protease. Further suitable proteolytic cleavage sites also include proteolytic cleavage sequences that can be cleaved following addition of an external protease. In some embodiments, the sequence encoding the modified viral RNA replicon further comprising a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI. In some embodiments, the autoprotease peptide includes a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and a combination thereof. In some embodiments, the autoprotease peptide includes a peptide sequence from porcine teschovirus-1 2A (P2A).

[0143] One of skill in the art will appreciate that different configurations of the viral capsid enhancer sequence, the coding sequence for the nonstructural proteins, the sequence encoding the autoprotease peptide, and the sequence encoding the gene of interest can be employed as long as the capsid enhancer sequence augments expression of the heterologous nucleic acid sequence(s), as compared with the level seen in the absence of the capsid enhancer sequence. These sequences will typically be configured so that the polypeptide encoded by the gene of interest can be released from the protease and any capsid protein sequence after cleavage by the autoprotease.

[0144] In some embodiments, the sequence of the nucleic acid molecule as disclosed herein includes a modified RNA replicon of an alphavirus virus species. In some embodiments, the modified alphavirus RNA replicon is of an alphavirus belonging to the VEEV/EEEV group, or the SF group, or the SIN group. Non-limiting examples of SF group alphaviruses include Semliki Forest virus, O'Nyong-Nyong virus, Ross River virus, Middelburg virus, Chikungunya virus, Barmah Forest virus, Getah virus, Mayaro virus, Sagiyma virus, Bebaru virus, and Una virus. Non-limiting examples of SIN group alphaviruses include Sindbis virus, Girdwood S.A. virus, South African Arbovirus No. 86, Ockelbo virus, Aura virus, Babanki virus, Whataroa virus, and Kyzylagach virus. Non-limiting examples of VEEV/EEEV group alphaviruses include Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O'Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyma virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), and Una virus (UNAV).

[0145] Non-limiting examples of alphavirus species include Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semliki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MIDV), Chikungunya virus (CHIKV), O'Nyong-Nyong virus (ONNV), Ross River virus (RRV), Barmah Forest virus (BF), Getah virus (GET), Sagiyma virus (SAGV), Bebaru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzylagach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), and Buggy Creek virus. Virulent and avirulent alphavirus strains are both suitable. In some embodiments, the modified alphavirus RNA replicon is of a Sindbis virus (SIN), a Semliki Forest virus (SFV), a Ross River virus (RRV), a Venezuelan equine encephalitis virus (VEEV), or an Eastern equine encephalitis virus (EEEV). In some embodiments, the modified alphavirus RNA replicon is of a Venezuelan equine encephalitis virus (VEEV).

[0146] In some instances where the nucleic acid molecule as disclosed herein includes a modified RNA replicon of an alphavirus virus species, the first nucleic acid sequence is positioned upstream to a nucleic acid sequence encoding one or more nonstructural proteins nsp1-4 or a portion thereof of the modified alphavirus RNA replicon. Accordingly, in some embodiments, the first nucleic acid sequence is positioned upstream to a nucleic acid sequence encoding the nonstructural proteins nsp1, nsp1-2, nsp1-3, nsp1-4, nsp2-4, nsp3-4, nsp2-3, nsp2, nsp3, nsp4, or a portion thereof of the modified alphavirus RNA replicon. In some embodiments, the sequence encoding the modified alphavirus RNA replicon further includes one or more expression cassettes, wherein each of the expression cassettes includes a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the modified alphavirus RNA replicon comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of a nucleic acid sequence encoding one or more nonstructural proteins nsp1-4 or a portion thereof of the modified alphavirus RNA replicon. Accordingly, in some embodiments, at least one of the one or more expression cassettes is operably linked downstream of a nucleic acid sequence encoding the nonstructural proteins nsp1, nsp1-2, nsp1-3, nsp1-4, nsp2-4, nsp3-4, nsp2-3, nsp2, nsp3, nsp4, or a portion thereof, of the modified alphavirus RNA replicon.

[0147] In some embodiments, at least one of the one or more expression cassettes further comprises a third nucleic acid sequence encoding one or more structural elements of a second viral capsid enhancer (e.g., a DLP motif), wherein the third nucleic acid sequence is operably linked upstream to the coding sequence for the GOI. The second DLP motif may be the same or may be different from the first DLP motif positioned upstream of the coding sequence for at least of the nonstructural proteins nspl-4 or a portion thereof. Accordingly, in some embodiments, the second DLP motif is the same as the first DLP motif positioned upstream of the coding sequence for the nonstructural proteins. In some embodiments, the second DLP motif is different from the first DLP motif positioned upstream of the coding sequence for the nonstructural proteins.

[0148] In some embodiments, the nucleic acid sequence of the present disclosure further comprises a coding sequence for an autoprotease peptide operably linked downstream

to the third nucleic acid sequence and upstream to the coding sequence for the GOI. The autoprotease peptide can generally be any autoprotease peptide known in the art. Non-limiting examples of autoprotease peptides include the peptide sequences from porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a *Thosea asigna* virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and any combinations thereof.

[0149] In a further aspect, some embodiments disclosed herein relate to a nucleic acid molecule including a nucleic acid sequence encoding a modified non-alphavirus RNA replicon, wherein the modified non-alphavirus RNA replicon comprising a first nucleic acid sequence encoding a viral capsid enhancer (e.g., a DLP motif). In some embodiments, the modified non-alphavirus RNA replicon further comprising a second nucleic acid sequence encoding at least one nonstructural viral protein or a portion thereof, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence.

[0150] In some embodiments, the modified non-alphavirus RNA replicon further comprising a coding sequence for an autoprotease peptide operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence. In some embodiments, the modified non-alphavirus RNA replicon includes a modified RNA replicon of a positive-strand RNA virus. In some embodiments, the modified non-alphavirus RNA replicon includes a modified RNA replicon of a negative-strand RNA virus.

[0151] Non-limiting examples of modified non-alphavirus RNA replicons include modified RNA replicons of virus species belonging to *Togaviridae* family, *Flaviviridae* family, *Orthomyxoviridae* family, *Rhabdoviridae* family, or *Paramyxoviridae* family. Accordingly, in some embodiments, the modified non-alphavirus RNA replicon includes a modified RNA replicon of a negative-strand RNA virus. Suitable negative-strand RNA virus species include, but are not limited to viral species of the families *Orthomyxoviridae*, *Rhabdoviridae*, and *Paramyxoviridae*. In some embodiments, the modified non-alphavirus RNA replicon includes a modified RNA replicon of a positive-strand virus species belonging to the *Togaviridae* family or *Flaviviridae* family. In some embodiments, the modified non-alphavirus RNA replicon includes a modified RNA replicon of a positive-strand virus species

belonging to the *Arterivirus* genus of the *Arteriviridae* family. Suitable arterivirus species include, but are not limited to, species of Equine arteritis virus (EAV), Porcine respiratory and reproductive syndrome virus (PRRSV), Lactate dehydrogenase elevating virus (LDV), Simian hemorrhagic fever virus (SHFV), and wobbly possum disease virus (WPDV).

[0152] In some embodiments, the sequence encoding the non-alphavirus modified RNA replicon further includes one or more expression cassettes, wherein each of the expression cassettes comprises a promoter operably linked to a coding sequence for a gene of interest (GOI). In some embodiments, the modified non-alphavirus RNA replicon comprises at least two, three, four, five, or six expression cassettes. In some embodiments, at least one of the one or more expression cassettes is operably linked downstream of the second nucleic acid sequence encoding the at least one nonstructural viral protein or a portion thereof. In some embodiments, at least one of the one or more expression cassettes further comprises a third nucleic acid sequence encoding one or more structural elements of a viral capsid enhancer, wherein the third nucleic acid sequence is operably linked upstream to the coding sequence for the GOI. In some embodiments, the modified non-alphavirus RNA replicon further includes a coding sequence for an autoprotease peptide operably linked downstream to the third nucleic acid sequence and upstream to the coding sequence for the GOI.

[0153] Some embodiments of the disclosure relate to a nucleic acid molecule including a nucleic acid sequence encoding a modified viral RNA replicon which includes in 5'–>3' direction a first nucleic acid sequence encoding a capsid enhancer from a Sindbis virus, a second nucleic acid sequence encoding an autoprotease peptide, and a third nucleic acid sequence encoding all of the viral nonstructural proteins. Some embodiments of the disclosure relate to a nucleic acid molecule including a nucleic acid sequence which encodes a modified viral RNA replicon, wherein the modified viral RNA replicon comprises a viral capsid enhancer and wherein the sequence of the modified viral RNA replicon exhibits at least 80% sequence identity to the sequence of at least one of SEQ ID NOs: 15-18 and 27-29.

[0154] Contemplated within the scope of the present disclosure are variants of the polynucleotides provided herein. Such variants may be naturally-occurring, including homologous polynucleotides from the same or a different species, or may be non-natural variants, for example polynucleotides synthesized using chemical synthesis methods, or

generated using recombinant DNA techniques. With respect to nucleic acid sequences, degeneracy of the genetic code provides the possibility to substitute at least one base of the protein encoding sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. Hence, the nucleic acid molecules of the present disclosure may also have any base sequence that has been changed from any polynucleotide sequence disclosed herein by substitution in accordance with degeneracy of the genetic code. References describing codon usage are readily publicly available. In further embodiments, polynucleotide sequence variants can be produced for a variety of reasons, *e.g.*, to optimize codon expression for a particular host (*e.g.*, changing codons in the viral mRNA to those preferred by other organisms such as mammals or fish species).

[0155] In some embodiments, the nucleic acid molecules of the present disclosure comprises in 5'→3'direction a nucleic acid sequence encoding a capsid enhancer from a Sindbis virus, a nucleic acid sequence encoding an autoprotease peptide, and a nucleic acid sequence encoding all of the viral nonstructural proteins of a modified viral RNA replicon. In some embodiments, the nucleic acid molecule comprises in 5'→3'direction a 5'-UTR sequence, a first capsid enhancer from a Sindbis virus, an autoprotease peptide, a sequence encoding all of the viral nonstructural proteins of a modified viral RNA replicon, one or more expression cassettes, and a 3'-UTR sequence, wherein at least one of the one or more expression cassettes comprises a second capsid enhancer from a Sindbis virus operably linked upstream of a coding sequence for a gene of interest (GOI).

[0156] Accordingly, in some embodiments, the nucleic acid molecule of the present disclosure includes a nucleic acid sequence which encodes a modified viral RNA replicon, wherein the sequence exhibits at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity to the sequence of at least one of SEQ ID NOS: 15-18 and 27-29.

[0157] In some embodiments, the nucleic acid molecule of the disclosure is an expression vector. In some embodiments, the expression vector further includes one or more additional regulatory sequences, which can be a transcriptional regulatory element or a translational regulatory element. The terms "regulatory element" and "regulatory region", as

used interchangeably in the present disclosure, refer to a nucleic acid sequence that influences transcription or translation initiation and rate, and stability and/or mobility of a transcription or translation product. Such regulatory elements need not be of naturally-occurring sequences. Regulatory sequences include but are not limited to promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5' and 3' untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, introns, and combinations thereof. In some embodiments, the expression vector of the disclosure further includes one or more of the following: an origin of replication, one or more sequences for promoting integration of the expression cassette into the host genome, a terminator sequence.

[0158] In some embodiments, the expression vector comprises at least one origin of replication (“ORI”) sequence for replication in a cell. The vectors may further optionally comprise one or more selectable markers under the control of one or more eukaryotic promoters, one or more selectable markers under the control of one or more prokaryotic promoters, and/or one or more sequences that mediate recombination of an exogenous nucleic acid sequence into the target cell’s genome.

[0159] An ORI is the sequence in a DNA molecule at which replication begins. The ORI serves as a base of assembly for the pre-replication complex. Depending on the ORI, such replication can proceed uni-directionally or bi-directionally. An expression vector as provided herein can include an ORI for replication of the expression vector in a cloning host, such as *E. coli* or yeast, and/or can include an ORI for replication of the expression vector in a target cell, which can be, for example, a mammalian cell. The structural biology of ORIs is widely conserved among prokaryotes, eukaryotes, and viruses. Most ORIs possess simple tri-, tetra-, or higher nucleotide repetition patterns. Most are AT-rich and contain inverted repeats. Those skilled in the art will be familiar with the more common ORIs, such as P15A and the pUC’s ORI.

[0160] The expression vector can also, in some embodiments, carry a selectable marker. By way of example, a vector that includes an expression cassette may include, as a selectable marker, a gene conferring resistance to a poisonous substance, such as an antibiotic, a herbicide, or some other toxin, so that transformants can be selected by exposing

the cells to the poison and selecting those cells which survive the encounter. In some embodiments, the selectable marker may be under the control of a promoter. In some embodiments, the promoter regulating expression of the selectable marker may be conditional or inducible. In some embodiments, the promoter regulating expression of the selectable marker may be preferably constitutive, and can be, for example, any promoter described herein or another promoter.

[0161] In some embodiments, the expression vector is a plasmid, a bacteriophage vector, a cosmid, a fosmid, a viral replicon, a shuttle vector, or a combination thereof. In some embodiments, the expression vector is an RNA replicon. In some embodiments, the expression vector is a prokaryotic expression vector. In some embodiments, the expression vector is a eukaryotic expression vector. In some embodiments, the nucleic acid molecule of the disclosure is produced via *de novo* synthesis. In some embodiments of the disclosure, *de novo* synthesis can be used to generate a synthetic mRNA molecule.

Recombinant Cells

[0162] In one aspect, some embodiments disclosed herein relate to a method of transforming a cell that includes introducing into a host cell, such as an animal cell, a nucleic acid molecule as provided herein, and selecting or screening for a transformed cell. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. In some embodiments, the nucleic acid molecule is introduced into a host cell by an electroporation procedure or a biolistic procedure.

[0163] In a related aspect, some embodiments relate to recombinant host cells, for example, recombinant animal cells that include a nucleic acid molecule described herein. The nucleic acid molecule can be stably integrated in the host genome, or can be episomally replicating, or present in the recombinant host cell as a mini-circle expression vector for a stable or transient expression. Accordingly, in some embodiments disclosed herein, the nucleic acid molecule is maintained and replicated in the recombinant host cell as an

episomal unit. In some embodiments, the nucleic acid molecule is stably integrated into the genome of the recombinant cell. Stable integration can be completed using classical random genomic recombination techniques or with more precise genome editing techniques such as using guide RNA directed CRISPR/Cas9, or DNA-guided endonuclease genome editing NgAgo (*Natronobacterium gregoryi* Argonaute), or TALEN genome editing (transcription activator-like effector nucleases). In some embodiments, the nucleic acid molecule present in the recombinant host cell as a mini-circle expression vector for a stable or transient expression.

[0164] In some embodiments, host cells can be genetically engineered (e.g. transduced or transformed or transfected) with, for example, a vector construct of the present application that can be, for example, a vector for homologous recombination that includes nucleic acid sequences homologous to a portion of the genome of the host cell, or can be an expression vector for the expression of any or a combination of the genes of interest. The vector can be, for example, in the form of a plasmid, a viral particle, a phage, *etc.* In some embodiments, a vector for expression of a polypeptide of interest can also be designed for integration into the host, *e.g.*, by homologous recombination. The vector containing a polynucleotide sequence as described herein, *e.g.*, nucleic acid molecule comprising a modified alphavirus genome or replicon RNA, as well as, optionally, a selectable marker or reporter gene, can be employed to transform an appropriate host cell.

[0165] The methods and compositions disclosed herein may be deployed for genetic engineering of any species, including, but not limited to, prokaryotic and eukaryotic species. Suitable host cells to be modified using the compositions and methods according to the present disclosure can include, but not limited to, algal cells, bacterial cells, heterokonts, fungal cells, chytrid cells, microfungi, microalgae, and animal cells. In some embodiments, the animal cells are invertebrate animal cells. In some embodiments, the vertebrate animal cells are mammals cells. Host cells can be either untransformed cells or cells that have already been transfected with at least one nucleic acid molecule.

[0166] The methods and compositions disclosed herein can be used, for example, with subject and/or host cells that are important or interesting for aquaculture, agriculture, animal husbandry, and/or for therapeutic and medical applications, including production of

polypeptides used in the manufacturing of vaccines, pharmaceutical products, industrial products, chemicals, and the like. In some embodiments, the compositions and methods disclosed herein can be used with host cells from species that are natural hosts of alphaviruses, such as rodents, mice, fish, birds, and larger mammals such as humans, horses, pig, monkey, and apes as well as invertebrates. Particularly preferred species, in some embodiments of the application, are vertebrate animal species and invertebrate animal species. In principle, any animal species can be generally used and can be, for example, human, dog, bird, fish, horse, pig, primate, mouse, cotton rat, ferret, cattle, swine, sheep, rabbit, cat, goat, donkey, hamster, or buffalo. Non-limiting examples of suitable bird species include chicken, duck, goose, turkey, ostrich, emu, swan, peafowl, pheasant, partridge, and guinea fowl. In some particular embodiments, the fish is any species in the Salmonidae family. Primary mammalian cells and continuous/immortalized cells types are also suitable. Non-limiting examples of suitable animal host cells include, but not limited to, pulmonary equine artery endothelial cell, equine dermis cell, baby hamster kidney (BHK) cell, rabbit kidney cell, mouse muscle cell, mouse connective tissue cell, human cervix cell, human epidermoid larynx cell, Chinese hamster ovary cell (CHO), human HEK-293 cell, mouse 3T3 cell, Vero cell, Madin-Darby Canine Kidney Epithelial Cell (MDCK), primary chicken fibroblast cell, a HuT78 cell, A549 lung cell, HeLa cell, PER.C6® cell, WI-38 cell, MRC-5 cell, FRhL-2, and CEM T-cell. In some embodiments, the host cell is baby hamster kidney cell. In some embodiments, the baby hamster kidney cell is a BHK-21 cell.

[0167] Techniques for transforming a wide variety of the above-mentioned host cells and species are known in the art and described in the technical and scientific literature. Accordingly, cell cultures including at least one recombinant cell as disclosed herein are also within the scope of this application. Methods and systems suitable for generating and maintaining cell cultures are known in the art.

Heterologous Nucleic Acid Sequences

[0168] In accordance of some embodiments of the present disclosure, a wide variety of nucleic acid sequences can be carried by the nucleic acid molecules of the present disclosure. In some embodiments, nucleic acid molecules as described herein does not contain any additional heterologous nucleic acid sequence. In some embodiments, the

nucleic acid molecules of the present disclosure contains one or more additional heterologous or foreign nucleic acid sequences. In some embodiments, the one or more additional heterologous or foreign nucleic acid sequences include a coding sequence for a gene of interest (GOI). In some embodiments disclosed herein, the coding sequence for the GOI encodes a polypeptide or a functional RNA. In some embodiments, the coding sequence for the GOI encodes a functional RNA selected from a ribosomal RNA, a tRNA, a ribozyme, a transactivating (tr) RNA of a CRISPR system, a crispr (cr) RNA of a CRISPR system, a chimeric guide RNA of a CRISPR system, a micro RNA, an interfering RNA (RNAi) molecule, a short hairpin (sh) RNA, or an antisense RNA molecule. In some embodiments, the coding sequence for the GOI encodes a polypeptide selected from the group consisting of a therapeutic polypeptide, a prophylactic polypeptide, a diagnostic polypeptide, a nutraceutical polypeptide, an industrial enzyme, a reporter polypeptide, or any combination thereof. In some embodiments, the coding sequence for the GOI encodes a polypeptide is selected from the group consisting of an antibody, an antigen, an immune modulator, and a cytokine.

[0169] In some embodiments, the heterologous nucleic acid sequence comprises a heterologous nucleic acid sequence of at least about 100 bases, 2 kb, 3.5 kb, 5 kb, 7 kb, or 8 kb. The heterologous RNA or heterologous nucleic acid sequence can be chosen from a wide variety of sequences derived from viruses, prokaryotes or eukaryotes. Examples of categories of heterologous sequences include, but are not limited to, immunogens (including native, modified or synthetic antigenic proteins, peptides, epitopes or immunogenic fragments), cytokines, toxins, therapeutic proteins, enzymes, antisense sequences, and immune response modulators.

[0170] A wide variety of GOI can be included in the nucleic acid molecules of the present disclosure to express a polypeptide of the GOI, including but not limited to, cytokines, toxins, prodrugs, antigens which stimulate an immune response, ribozymes, and proteins which assist or inhibit an immune response, as well as antisense sequences (or sense sequences for "antisense applications"). As noted above, within various embodiments of the disclosure the modified RNA replicon provided herein may contain the coding region of (and express, in some embodiments) two or more polypeptides of interest.

1) Cytokines

[0171] In some embodiments disclosed herein, the GOI encodes a cytokine. Generally, cytokines act to proliferate, activate, and/or differentiate immune effector cells. Examples of cytokines include, but are not limited to macrophages, B lymphocytes, T lymphocytes, endothelial cells, fibroblasts, lymphokines like gamma interferon, tumor necrosis factor, interleukin, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, GM-CSF, CSF-1 and G-CSF.

[0172] In some related embodiments, the GOI encodes an immunomodulatory cofactor. As utilized within the context of the present disclosure, "immunomodulatory cofactor" refers to factors which, when manufactured by one or more of the cells involved in an immune response, or when added exogenously to the cells, cause the immune response to be different in quality or potency from that which would have occurred in the absence of the cofactor. The quality or potency of a response may be measured by a variety of assays known to one of skill in the art including, for example, *ex vitro* assays which measure cellular proliferation (e.g., ³H thymidine uptake), and *ex vitro* cytotoxic assays (e.g., which measure ⁵¹Cr release) (see *Warner et al.*, AIDS Res. and Human Retroviruses 7:645-655, 1991).

[0173] Examples of immunomodulatory co-factors include, but are not limited, alpha interferon, gamma interferons, G-CSF, GM-CSF, TNFs, Interleukin-2 (IL-2), IL-4, IL-6, IL-12, IL-15, ICAM-1, ICAM-2, LFA-1, LFA-3, MHC class I molecules, MHC class II molecules, 2'-microglobulin, chaperones, CD3, B7/BB 1, MHC linked transporter proteins, and analogues thereof.

[0174] The choice of which immunomodulatory cofactor to include within the nucleic acid molecules of the present disclosure may be based upon known therapeutic effects of the cofactor, or experimentally determined. For example, in chronic hepatitis B infections alpha interferon has been found to be efficacious in compensating a patient's immunological deficit and thereby assisting recovery from the disease. In some situations, a suitable immunomodulatory cofactor may be experimentally determined. Briefly, blood samples are first taken from patients with a hepatic disease. Peripheral blood lymphocytes (PBLs) are restimulated *ex vitro* with autologous or HLA-matched cells (e.g., EBV transformed cells), and transduced with modified arterivirus genome or replicon RNA of the

present disclosure which directs the expression of an immunogenic portion of a hepatitis antigen and the immunomodulatory cofactor. Stimulated PBLs are used as effectors in a CTL assay with the BLA-matched transduced cells as targets. An increase in CTL response over that seen in the same assay performed using HLA-matched stimulator and target cells transduced with a vector encoding the antigen alone, indicates a useful immunomodulatory cofactor. In some embodiments, the immunomodulatory cofactor gamma interferon is particularly preferred.

[0175] Another non-limiting example of an immunomodulatory cofactor is the B7/BB1 costimulatory factor. Activation of the full functional activity of T cells requires two signals. One signal is provided by interaction of the antigen-specific T cell receptor with peptides which are bound to major histocompatibility complex (MHC) molecules, and the second signal, referred to as costimulation, is delivered to the T cell by antigen-presenting cells. The second signal is required for interleukin-2 (IL-2) production by T cells and appears to involve interaction of the B7/BB 1 molecule on antigen-presenting cells with CD28 and CTLA-4 receptors on T lymphocytes. In some embodiments, B7/BB 1 may be introduced into tumor cells in order to cause costimulation of CD8+T cells, such that the CD8+T cells produce enough IL-2 to expand and become fully activated. These CD8+T cells can kill tumor cells that are not expressing B7 because costimulation is no longer required for further CTL function. Vectors that express both the costimulatory B7/BB1 factor and, for example, an immunogenic HBV core protein, may be constructed utilizing methods which are described herein. Cells transduced with these vectors will become more effective antigen-presenting cells. The HBV core-specific CTL response will be augmented from the fully activated CD8+T cell via the costimulatory ligand B7/BB 1.

2) Toxins

[0176] In some embodiments disclosed herein, the GOI encodes a toxin. In some embodiments, toxins act to directly inhibit the growth of a cell. Examples of toxins include, but are not limited to, ricin, abrin, diphtheria toxin, cholera toxin, gelonin, pokeweed, antiviral protein, tritin, Shigella toxin, *Pseudomonas* exotoxin A, herpes simplex virus thymidine kinase (HSVTK), and *E. coli* guanine phosphoribosyl transferase.

3) Pro-drugs

[0177] In some embodiments disclosed herein, the GOI encodes a "pro-drug". As utilized within the context of the present disclosure, "pro-drug" refers to a gene product that activates a compound with little or no cytotoxicity into a toxic product. Representative examples of such gene products include HSVTK and VZVTK (as well as analogues and derivatives thereof), which selectively monophosphorylate certain purine arabinosides and substituted pyrimidine compounds, converting them to cytotoxic or cytostatic metabolites. More specifically, exposure of the drugs ganciclovir, acyclovir, or any of their analogues (e.g., FIAU, FIAC, and DHPG) to HSVTK phosphorylates the drug into its corresponding active nucleotide triphosphate form.

[0178] Non-limiting examples of pro-drugs which may be utilized within the context of the present disclosure include: *E. coli* guanine phosphoribosyl transferase which converts thioxanthine into toxic thioxanthine monophosphate; alkaline phosphatase, which will convert inactive phosphorylated compounds such as mitomycin phosphate and doxorubicin-phosphate to toxic dephosphorylated compounds; fungal (e.g., *Fusarium oxysporum*) and bacterial cytosine deaminase, which can convert 5-fluorocytosine to the toxic compound 5-fluorouracil; carboxypeptidase G2, which will cleave the glutamic acid from para-N-bis (2-chloroethyl) aminobenzoyl glutamic acid, thereby creating a toxic benzoic acid mustard; and Penicillin-V amidase, which will convert phenoxyacetabide derivatives of doxorubicin and melphalan to toxic compounds.

4) Antisense Sequence

[0179] In some embodiments disclosed herein, the coding sequence for the GOI is an antisense sequence. Antisense sequences are designed to bind to RNA transcripts, and thereby prevent cellular synthesis of a particular protein or prevent use of that RNA sequence by the cell. Non-limiting examples of such sequences include antisense thymidine kinase, antisense dihydrofolate reductase, antisense HER2, antisense ABL, antisense Myc, antisense ras, as well as antisense sequences which block any of the enzymes in the nucleotide biosynthetic pathway. In addition, in accordance with some embodiments disclosed herein, antisense sequences to interferon and 2 microglobulin may be utilized in order to decrease immune response.

[0180] In some embodiments, antisense RNA may be utilized as an anti-tumor agent in order to induce a potent Class I restricted response. In addition to binding RNA and thereby preventing translation of a specific mRNA, high levels of specific antisense sequences are believed to induce the increased expression of interferons (including gamma-interferon) due to the formation of large quantities of double-stranded RNA. The increased expression of gamma interferon, in turn, boosts the expression of MHC Class I antigens. Preferred antisense sequences for use in this regard include actin RNA, myosin RNA, and histone RNA. Antisense RNA which forms a mismatch with actin RNA is particularly preferred.

5) Ribozymes

[0181] In some embodiments disclosed herein, nucleic acid molecules comprising one or more RNA stem-loop structures are provided which produce ribozymes upon infection of a host cell. Ribozymes are used to cleave specific RNAs and are designed such that it can only affect one specific RNA sequence. Generally, the substrate binding sequence of a ribozyme is between 10 and 20 nucleotides long. The length of this sequence is sufficient to allow a hybridization with target RNA and disassociation of the ribozyme from the cleaved RNA. Representative examples for creating ribozymes include those described in U.S. Pat. Nos. 5,116,742; 5,225,337 and 5,246,921.

6) Proteins and Other Cellular Constituents

[0182] In some embodiments disclosed herein, a wide variety of proteins or other cellular constituents can be carried by the nucleic acid molecules of the present disclosure. Non-limiting examples of such proteins include native or altered cellular components, as well as foreign proteins or cellular constituents, found in for example, viruses, bacteria, parasites, fungus or animal such as mammalian.

Methods for Producing Polypeptides

[0183] The host cells of the present disclosure, such as a prokaryotic or eukaryotic host cell, can be used to produce (e.g., express) a molecule of interest such as, e.g., a polypeptide, encoded in an open reading frame of a gene of interest (GOI) as disclosed herein. Thus, the present application further provides methods for producing a molecule of

interest such as, *e.g.*, a polypeptide, using the host cells and/or the nucleic acid molecules of the present disclosure. The host cells can be, for example, isolated cells, cells in cell culture, cells in a living body, or a combination thereof.

[0184] Some embodiments disclosed herein provides methods for producing a polypeptide of interest. The method can include the introduction of a nucleic acid molecule according to any one of the aspects and embodiments of the present disclosure into a host cell, thereby producing a polypeptide encoded by the GOI in the host cell. In some embodiments where the introduced nucleic acid molecule is a RNA molecule, for example an mRNA molecule or a RNA replicon. The RNA molecule can be generated by any method known in the art, for example by *de novo* synthesis in whole or in part. For example, the RNA molecules, including but not limited to mRNA molecules and RNA replicons, can be produced using chemical methods, enzymatic techniques, or any combination thereof, for example, by chemical synthesis through *de novo* assembly (such as with oligonucleotides) or *in vitro* transcription reactions (using appropriate enzymes, buffers, nucleotides, etc.). In some instances where the introduced nucleic acid molecule is an mRNA, the mRNA can be directly delivered to cells *in vivo* for producing a polypeptide of interest (*e.g.*, drug, antigen, *etc.*) in cells. The cells can be isolated cells; cells in cell cultures; cells in an tissue, an organ, and/or a subject; or any combination thereof. In some embodiments, no new mRNA copies are made in the cells. As disclosed herein, the incorporation of one or more RNA stem-loops from a viral capsid enhancer (*e.g.*, DLP motifs) into the chemically synthesized RNA can confer the intended enhancement of gene expression once the DLP-containing mRNA is introduced into the cells.

[0185] In some embodiments where the introduced nucleic acid molecule is a vector such as, for example, an RNA replicon, new mRNA copies may be generated which includes coding sequence for a gene of interest operably linked to one or more DLP motifs. The incorporation the one or more DLP motifs into the vector, *e.g.*, RNA replicon, can then confer the intended enhancement of gene expression once the DLP-containing vector or replicon is introduced into the cells.

[0186] Some embodiments disclosed herein provides methods for producing a polypeptide of interest in a host cell. Such method includes the cultivation of a recombinant

host cell, including a nucleic acid molecule according to any one of the aspects and embodiments of the present disclosure. In some embodiments, the methods include culturing the host cell of present disclosure (into which a recombinant expression vector encoding the molecule of interest has been introduced) in a suitable medium such that the molecule of interest is produced. In some embodiments, the methods further include isolating the molecule of interest from the medium or the host cell.

[0187] Also disclosed are methods for producing a polypeptide of interest in a subject, including administering to the subject a nucleic acid molecule according to any one of the aspects and embodiments.

[0188] Suitable host cells and/or subjects for use in the methods and compositions disclosed herein include, but are not limited to, prokaryotic and eukaryotic species. Suitable host cells to be modified using the compositions and methods according to the present disclosure can include, but not limited to, algal cells, bacterial cells, heterokonts, fungal cells, chytrid cells, microfungi, microalgae, and animal cells. In some embodiments, the animal cells are invertebrate animal cells. In some embodiments, the vertebrate animal cells are mammals cells. Host cells can be either untransformed cells or cells that have already been transfected with at least one nucleic acid molecule. Accordingly, biological samples, biomass, and progeny of a recombinant cell according to any one of the aspects and embodiments are also within the scope of the present application. Thus, as discussed in more detail below, polypeptides produced by a method according to this aspect of the application are also within the scope of this application.

[0189] In some embodiments, the recombinant cell is an animal cell. Therapeutic protein production in small and large scale is important field of development in pharmaceutical industry, because proteins produced in animal cells are believed to generally have proper processing, post-translational modification and therefore have adequate activity for treatment of the physiological condition. In principle, any animal species can be generally used and can be, for example, human, dog, bird, fish, horse, pig, primate, mouse, cotton rat, ferret, cattle, swine, sheep, rabbit, cat, goat, donkey, hamster, or buffalo. Non-limiting examples of suitable bird species include chicken, duck, goose, turkey, ostrich, emu, swan, peafowl, pheasant, partridge, and guinea fowl. In some particular embodiments, the fish is

any species in the Salmonidae family. Primary mammalian cells and continuous/immortalized cells types are also suitable. Non-limiting examples of suitable animal host cells include, but not limited to, pulmonary equine artery endothelial cell, equine dermis cell, baby hamster kidney (BHK) cell, rabbit kidney cell, mouse muscle cell, mouse connective tissue cell, human cervix cell, human epidermoid larynx cell, Chinese hamster ovary cell (CHO), human HEK-293 cell, mouse 3T3 cell, Vero cell, Madin-Darby Canine Kidney Epithelial Cell (MDCK), primary chicken fibroblast cell, a HuT78 cell, A549 lung cell, HeLa cell, PER.C6® cell, WI-38 cell, MRC-5 cell, FRhL-2, and CEM T-cell. In some embodiments, the host cell is baby hamster kidney cell. In some embodiments, the baby hamster kidney cell is a BHK-21 cell.

Recombinant Polypeptides

[0190] Some embodiments disclosed herein relate to recombinant polypeptides produced by a method in accordance with one or more embodiments described herein. The recombinant polypeptides of the present application generally can be any recombinant polypeptides and can be, for example, one or more of therapeutic polypeptides, prophylactic polypeptides, diagnostic polypeptides, nutraceutical polypeptides, industrial enzymes, and reporter polypeptides. In some embodiments, the recombinant polypeptides can be one or more of antibodies, antigens, immune modulators, and cytokines. In some embodiments, the polypeptide of interest may have therapeutic or prophylactic activity.

Compositions and Formulations

[0191] Some embodiments disclosed herein relate to a composition comprising any of the recombinant polypeptides described herein. The composition can be, for example, a nutraceutical composition, a prophylactic composition, a pharmaceutical composition comprising a pharmaceutically acceptable carrier, or a mixture thereof. In some embodiments, the compositions of the present application can be used as a vaccine.

[0192] Some embodiments disclosed herein relate to a composition including any of the nucleic acid molecules (*e.g.*, expression vectors) described herein. The composition can be, for example, a nutraceutical composition, a prophylactic composition, a pharmaceutical composition comprising a pharmaceutically acceptable carrier, or a mixture

thereof. In some embodiments, the compositions of the present application can be used as a vaccine.

[0193] Some embodiments disclosed herein relate to a composition including any of the recombinant cells described herein. The composition can be, for example, a nutraceutical composition, a prophylactic composition, a pharmaceutical composition comprising a pharmaceutically acceptable carrier, or a mixture thereof. In some embodiments, the compositions of the present application can be used as a vaccine.

[0194] As used herein, the term “pharmaceutically-acceptable carrier” means a carrier that is useful in preparing a pharmaceutical composition or formulation that is generally safe, non-toxic, and neither biologically nor otherwise undesirable, and includes a carrier that is acceptable for veterinary use as well as human pharmaceutical use. In some embodiments, a pharmaceutically acceptable carrier is as simple as water, but it can also include, for example, a solution of physiological salt concentration. In some embodiments, a pharmaceutically acceptable carrier can be, or may include, stabilizers, diluents and buffers. Suitable stabilizers are for example SPGA, carbohydrates (such as dried milk, serum albumin or casein) or degradation products thereof. Suitable buffers are for example alkali metal phosphates. Diluents include water, aqueous buffers (such as buffered saline), alcohols and polyols (such as glycerol). For administration to animals or humans, the composition according to the present application can be given by any enteral or parenteral route, which includes *inter alia* intranasally, by spraying, intradermally, subcutaneously, orally, by aerosol, intramuscularly, or any combination thereof.

[0195] In some embodiments, the nucleic acid molecules (e.g., mRNAs and/or expression vectors), protein molecules, and/or compositions of the disclosure are in suitable formulations, for example pharmaceutical formulations. Provided herein include pharmaceutical formulations containing one or more of the molecules and/or compositions disclosed herein in a pharmaceutically acceptable vehicle. Some embodiments of the disclosure relate to pharmaceutical formulations comprising one or more of the expression vectors disclosed herein. Some embodiments of the disclosure relate to pharmaceutical formulations containing one or more of the nucleic acid molecules disclosed herein. Some embodiments of the disclosure relate to pharmaceutical formulations containing one or more

of the polypeptides disclosed herein. Some embodiments of the disclosure relate to pharmaceutical formulations containing one or more of the recombinant cells disclosed herein.

[0196] The molecules (e.g., protein and nucleic acid molecules) and compositions disclosed herein can be in various formulations, for example pharmaceutical formulations. For example, the nucleic acid molecules (e.g., replicons, mRNAs and expression vectors), protein molecules, and/or compositions of the disclosure can be formulated, for example into a pharmaceutical formulation, with one or more covalent compounds (e.g., via direct linkage), non-covalent compounds (e.g., via charged based associations from LNPs or cationic nano-emulsions), physical compositions (e.g., vault proteins, non-charged lipid encapsulations), pharmaceutically acceptable buffers (e.g., saline, lactated Ringer's), and any combinations thereof. Many methods, reagents, and systems suitable for generating the foregoing pharmaceutical formulations are known in the art.

[0197] In some embodiments, molecules and/or compositions disclosed herein is formulated in a saline or a lipid formulation. The lipid formulation can be selected from, but is not limited to, liposomes, lipoplexes, copolymers such as PLGA, and lipid nanoparticles.

Particles and Nanoparticles

[0198] In some embodiments, one or more of the nucleic acid molecules, polypeptide molecules, and/or compositions disclosed herein can be incorporated into particles or nanoparticles. Particles comprising one or more of the molecules and compositions disclosed herein can be polymeric particles, lipid particles, solid lipid particles, self-assembled particles, composite nanoparticles of conjugate phospholipids, surfactants, proteins, polyaminoacids, inorganic particles, or combinations thereof (e.g., lipid stabilized polymeric particles). In some embodiments, the molecules and/or compositions disclosed herein are substantially encapsulated or partially encapsulated in the particles. In some embodiments, the molecules and/or compositions disclosed herein are deposited and/or absorbed on the surface of the particles. In some embodiments, the molecules and/or compositions disclosed herein are incorporated in the particles. In some embodiments, the molecules and/or compositions disclosed herein are part of or a component of the particle. The molecules and/or compositions of the disclosure can be, in some embodiments, attached

to the surface of the particles with covalent bonds, or non-covalent interactions. In some embodiments, the molecules and/or compositions of the disclosure self-assemble into a particle.

[0199] As used herein, the term “encapsulate” means to enclose, surround or encase. As it relates to the formulation of the molecules and/or compositions of the present disclosure, encapsulation may be substantial, complete or partial. The term “substantially encapsulated” means that at least greater than 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, 99.99%, or 99.999% of the molecules and/or compositions of the present disclosure may be enclosed, surrounded or encased within the particle. “Partially encapsulation” means that less than 10%, 15%, 20%, 30%, 40%, 50% of the molecules and/or compositions of the present disclosure may be enclosed, surrounded or encased within the particle. For example, at least 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, 99.99%, or 99.999% of the molecules and/or compositions of the present disclosure are encapsulated in the particle. Encapsulation may be determined by any known method.

[0200] In some embodiments, the particles are polymeric particles or contain a polymeric matrix. The particles can generally contain any of the polymers known in the art. The particles will generally contain one or more biocompatible polymers. The polymers can be biodegradable polymers. The polymers can be hydrophobic polymers, hydrophilic polymers, or amphiphilic polymers. In some embodiments, the particles contain one or more polymers having an additional targeting moiety attached thereto. In some embodiments, the particles are inorganic particles, such as but not limited to, gold nanoparticles and iron oxide nanoparticles.

[0201] The size of the particles can be adjusted for the intended application. The particles can be nanoparticles or microparticles. The particle can have a diameter of about 10 nm to about 10 microns, about 10 nm to about 1 micron, about 10 nm to about 500 nm, about 20 nm to about 500 nm, or about 25 nm to about 250 nm. In some embodiments the particle is a nanoparticle having a diameter from about 25 nm to about 250 nm. In some embodiments, the particle is a nanoparticle having a diameter from about 50 nm to about 150 nm. In some embodiments, the particle is a nanoparticle having a diameter from about 70 nm

to about 130 nm. In some embodiments, the particle is a nanoparticle having a diameter of about 100 nm. It is understood by those in the art that a plurality of particles will have a range of sizes and the diameter is understood to be the median diameter of the particle size distribution.

[0202] In some embodiments, the molecules and/or compositions disclosed herein may be incorporated into particles that are responsive to temperature, pH, and ionic conditions. For example, the particles may comprise an ionizable network of covalently cross-linked homopolymeric ionizable monomers wherein the ionizable network is covalently attached to a single terminal region of an amphiphilic copolymer to form a plurality of “dangling chains” and wherein the “dangling chains” of amphiphilic copolymer form immobile intra-network aggregates in aqueous solution, as disclosed in U.S. Pat. No. 7,204,997.

Liposomes, Lipoplexes, and Lipid Nanoparticles (LNPs)

[0203] The molecules and/or compositions of the disclosure can be formulated using one or more liposomes, lipoplexes, and/or lipid nanoparticles. In one embodiment, pharmaceutical formulations of the molecules and/or compositions of the disclosure include liposomes. Liposomes are artificially-prepared vesicles which may primarily be composed of a lipid bilayer and may be used as a delivery vehicle for the administration of nutrients and pharmaceutical formulations. Liposomes can be of different sizes such as, but not limited to, a multilamellar vesicle (MLV) which may be hundreds of nanometers in diameter and may contain a series of concentric bilayers separated by narrow aqueous compartments, a small unicellular vesicle (SUV) which may be smaller than 50 nm in diameter, and a large unilamellar vesicle (LUV) which may be between 50 and 500 nm in diameter. Liposome design may include, but is not limited to, opsonins or ligands in order to improve the attachment of liposomes to unhealthy tissue or to activate events such as, but not limited to, endocytosis. Liposomes may contain a low or a high pH in order to improve the delivery of the pharmaceutical formulations.

[0204] The formation of liposomes may depend on the physicochemical characteristics such as, but not limited to, the pharmaceutical formulation entrapped and the liposomal ingredients, the nature of the medium in which the lipid vesicles are dispersed, the

effective concentration of the entrapped substance and its potential toxicity, any additional processes involved during the application and/or delivery of the vesicles, the optimization size, polydispersity and the shelf-life of the vesicles for the intended application, and the batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal products.

[0205] In some embodiments, the molecules and/or compositions of the disclosure may be formulated in a lipid vesicle which may have crosslinks between functionalized lipid bilayers. In some embodiments, the molecules and/or compositions of the disclosure may be formulated in a lipid-polycation complex. The formation of the lipid-polycation complex may be accomplished by methods known in the art. As a non-limiting example, the polycation may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine and the cationic peptides. In some embodiments, the nucleic acid molecules and/or compositions disclosed herein may be formulated in a lipid-polycation complex which may further include a neutral lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE). The liposome formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size.

[0206] In some embodiments, the ratio of PEG in the lipid nanoparticle (LNP) formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the LNP formulations. As a non-limiting example, LNP formulations may contain 1-5% of the lipid molar ratio of PEG-c-DOMG as compared to the cationic lipid, DSPC and cholesterol. In another embodiment, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol) or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200, and DLin-KC2-DMA.

[0207] In some embodiments, LNP formulations described herein may comprise a polycationic composition. In some embodiments, the LNP formulations comprising a

polycationic composition may be used for the delivery of the modified RNA described herein *in vivo* and/or *ex vitro*. In some embodiments, the LNP formulations described herein may additionally comprise a permeability enhancer molecule. The nanoparticle formulations may be a carbohydrate nanoparticle comprising a carbohydrate carrier and a modified nucleic acid molecule (e.g., mRNA). As a non-limiting example, the carbohydrate carrier may include, but is not limited to, an anhydride-modified phytoglycogen or glycogen-type material, phytoglycogen octenyl succinate, phytoglycogen beta-dextrin, and anhydride-modified phytoglycogen beta-dextrin.

[0208] Lipid nanoparticle formulations may be improved by replacing the cationic lipid with a biodegradable cationic lipid which is known as a rapidly eliminated lipid nanoparticle (reLNP). Ionizable cationic lipids, such as, but not limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-DMA, have been shown to accumulate in plasma and tissues over time and may be a potential source of toxicity. The rapid metabolism of the rapidly eliminated lipids can improve the tolerability and therapeutic index of the lipid nanoparticles by an order of magnitude from a 1 mg/kg dose to a 10 mg/kg dose in rat. Inclusion of an enzymatically degraded ester linkage can improve the degradation and metabolism profile of the cationic component, while still maintaining the activity of the reLNP formulation. The ester linkage can be internally located within the lipid chain or it may be terminally located at the terminal end of the lipid chain. The internal ester linkage may replace any carbon in the lipid chain.

[0209] Additional information regarding cationic lipids suitable for LNP formulations can be found in, for example, U.S. Publication No. US2017/0151339, which is herein incorporated by reference in its entirety.

[0210] The molecules and/or compositions of the disclosure can also be formulated as a nanoparticle using a combination of polymers, lipids, and/or other biodegradable agents, such as, but not limited to, calcium phosphate. Components may be combined in a core-shell, hybrid, and/or layer-by-layer architecture, to allow for fine-tuning of the nanoparticle so that delivery of the molecules and/or compositions of the disclosure may be enhanced.

[0211] Pharmaceutical formulations of the present disclosure may additionally comprise one or more pharmaceutically acceptable excipients, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening and emulsifying agents, preservatives, solid binders, lubricants, and the like, as suited to the particular dosage form desired. More information in this regard can be found in Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, Md., 2006) which discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional excipient medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure.

EXAMPLES

[0212] Additional alternatives are disclosed in further detail in the following examples, which are not in any way intended to limit the scope of the claims.

EXAMPLE 1

General Experimental Procedure

DNA Template Preparation

[0213] Plasmid DNA templates were purified (Qiagen Cat. no. 12163) from 300 mL of saturated *E. coli* TransforMax Epi300 (Epicentre Cat. no. EC300105) cultures grown in LB broth media (Teknova Cat. no. L8000 06) supplemented with 50ng/ml carbamicilin (Teknova Cat. no. NC9730116). Plasmid DNA was linearized by *Not*-I digestion (New England Biolabs NEB cat. no. R3189S) for one hour at 37°C. Linearized template DNA was then re-purified (Zymo Cat. no. D4003), and analyzed by 0.8% agarose gel (Life Technologies Cat. no. G5018-08) against a commercial 2-log DNA ladder (New England Biolabs, NEB Cat. no. N3200S). The presence of a single band was confirmed in each sample, corresponding to the expected fragment size of the linear DNA template, prior to proceeding with *ex vitro* transcription.

Ex vitro transcription

[0214] *Ex vitro* transcription (IVT) reactions were performed using 1 μ g of DNA template prepared as described above, in a 20 μ l reaction over a one hour incubation at 37°C (NEB cat. no. E2065S). 1 Unit of DNase I, provided by the supplier was then added directly to the IVT reaction, and incubated at 37°C for an additional 15 mins. Reactions were then placed on ice, and purified using the manufactures suggested method (Qiagen Cat. no. 74104). Purified RNA was then quantified using a NanoDrop 2000c UV-Vis Spectrophotometer. RNA was visualized by electrophoresis through 0.8% Agarose gels (Life Technologies Cat. no. G5018-08) and compared with Millennium RNA Marker (Ambion Cat. No. AM7150), prior to proceeding with electroporation.

Transfection and analysis

[0215] In a typical cell transfection experiment, replicon RNA was introduced into BHK-21 cells by electroporation using the SF Cell Line Nucleofector™ kit for the 4D-Nucleofector™ System (Lonza). BHK-21 cells were harvested using 0.25% trypsin and washed once with cold PBS. Cells were resuspended in SF Buffer at a cell density of 1×10^6 cells per 20 μ L electroporation reaction. Three micrograms of RNA was electroporated into cells in triplicate in a 16-well cuvette strip and incubated at room temperature for 10 minutes. Electroporated cells were recovered into plates containing Dulbecco's Modified Eagle Medium containing 10% fetal bovine serum, followed by incubation for 16 – 18 h at standard cell culture conditions.

[0216] Intracellular analyses of replicon transfection efficiency and protein production were performed by flow cytometry. In these assays, transfected BHK-21 cells were fixed and permeabilized using fix/perm concentrate and permeabilization buffer (eBioscience). Cells were then incubated with antibodies for double-stranded RNA production (J2 anti-dsRNA IgG2A monoclonal antibody, English & Scientific Company) conjugated with R-Phycoerythrin (Innova Biosciences). Antigen production was assessed by additional incubation with antigen-specific antibodies conjugated with PE-Cy5 (Innova Biosciences) (e.g. antibodies for red Firefly, green Renilla, HA, or RSV-F0 (Abcam)). Cells were then washed once and analyzed using a FACSaria™ Fusion Cell Sorter (BD Biosciences) or FACSaria™ II Cell Sorter (BD Biosciences). Transfected BHK-21 cells

stained with single colors for compensation controls were run prior to sample collection. Data was collected using FACSDiva (BD Biosciences) and further analyzed using FlowJo software. Initial gating was performed to exclude dead cells and debris using forward and side scatter plots. Further gating was conducted to identify cell populations that were positive for both dsRNA (R-PE-positive) and protein expression (PE-Cy5-positive or FITC-positive for GFP expression). Frequencies and mean fluorescence intensities were collected and utilized for construct comparison and optimization.

EXAMPLE 2

Construction of DLP-containing EAV Replicon Designs

[0217] This Example describes the generation of a number of arterivirus RNA replicon-based expression vectors with a DLP motif operably positioned upstream of the polyprotein/non-structural protein genes and/or a reporter gene. These arterivirus RNA replicon-based expression vectors were subsequently characterized and analyzed in the flow cytometry analysis and bulk luciferase analyses described in EXAMPLE 4.

A. Design

[0218] The respective design features of four EAV-based DLP replicon constructs are described below.

(1) rEX-DLP-rFF

[0219] In this construct, a DLP motif as placed immediately upstream of rFF and downstream of the TRS7 driving the transcription of rFF.

(2) rEX-DLP-pplab-rFF

[0220] In this construct, a DLP motif was placed immediately upstream of the pplab genes with a few careful design modifications described below to maintain the stem loop structure in the 5'UTR of the replicon known to be essential for replication and subgenomic mRNA transcription.

[0221] (i) The first 79 nucleotides of the nonstructural viral gene 1a is duplicated with its start codon mutated from ATG to TAG, denoted as “ATG-shifting region” (bold in the sequence of SEQ ID NO: 2 below).

[0222] (ii) The corresponding nucleotides, located upstream of the 1a gene, base-pairing with its start codon ATG and forming the stem, were also changed accordingly from CAT to CTA (underlined in the sequence of SEQ ID NO: 2 below).

[0223] (iii) DLP (italicized in the sequence below) was placed immediately downstream of the “ATG-shifting region” and upstream of the polyprotein 1ab genes (start codon ATG shown in the sequence of SEQ ID NO: 2 below).

SEQ ID NO: 2 (partial sequence)

```
CGAAGTGTGTATGGTGCATATACGGCTCACCAACCATAACACTGCAAGAATTACTATTCTTGTTGGGCCCTCTCGTAAATCCTAGAGGGCTTCCTCTCGTTATTGCGAGATTGTCGTTAGATAACGGCAAGTTCCCTTCTTACTATCCTATTTCATCTTGTGGCTTGACGGGTCACTGCCTACGTCGTCGATCTCTATCAACTACCCTGCGACTAGGCAACCTTCTCCGCTACTGGATTGGAGGGAGTTTGTAGGGACTGGTCCCTGGACTTACCCGACGCTTGTGAGCATAGTCAGCATAGTACATTTCACTGACTAATACTACAACACCACCACCATGAATAGAGGATTCTTAACATGCTGGCCGCCCTTCCGGCCCCACTGCCATGTGGAGGCCCGGA  
GAAGGAGGCAGGCGGCCCGATGATGGCAACCTTCTCGACTGGATTGGAGG...
```

[0224] This construct was essentially identical to the second construct, where DLP was placed following the same three design modifications, except that a 2A protease sequence (SEQ ID NO: 3) was added immediately at the 3' end of DLP such that, when translated, the polyproteins could be released from the DLP-derived peptide through a selective cleavage by the protease. A comparative analysis of performances by replicon Construct 2 (described above) and Construct 3 would provide information on whether the 2A protease was needed for a functional replicon (see EXAMPLE 4 below).

SEQ ID NO: 3

```
GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAACCCTGGACCT
```

(4) rEX-DLP-2A-pp1ab-DLP-rFF

[0225] This construct was essentially identical to the third construct described above, except that another DLP was placed immediately upstream of the reporter rFF gene (the same way as a DLP motif was placed in construct 1). A comparative analysis of performances by replicon Construct 3 (described above) and Construct 4 would provide

information on whether the additional DLP placed upstream of the reporter gene has an added value to the expression of the reporter gene.

B. Construction

[0226] rEx-DLP-rFF was built according to a 3-piece Gibson Assembly® procedure described in Gibson *et al.* (Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* 6, 343–345, 2009) with rEx-rFF (c4; SEQ ID NO: 34) digested with SphI and EcoRI as a vector and a DLP-containing g-block as an insert. The nucleic acid sequence of the g-block used for construction of rEx-DLP-rFF is set forth at SEQ ID NO: 4 in the Sequence Listing.

[0227] The following primers were designed to amplify the corresponding fragments required to build the 3 new EAV-based DLP replicon constructs described above.

TABLE 3

Primer	Primers designed for construction DLP-(2A)-pp1ab-rFF/DLP-rFF replicons	
RP114	pp1a-DLP-F	GCCATGTGGAGGCCGCGGAGAAGGAGGCAGGCG GCCCGATGATGGCAACCTCTCCGCTACTGGAT (SEQ ID NO: 5)
RP115	pBR322-3'SrfI-R	ACAATGTTGCCCTCCCACATCTGCAA (SEQ ID NO: 6)
RP116	pBR322-3'SrfI-F	GGGTCACAAGGTAGTCGCCGTGGTT (SEQ ID NO: 7)
RP117	pBR322-bla-R	ACGTCAGGTGGCACTTTCTGGGGAA (SEQ ID NO: 8)
RP118	pp1a-DLP-2A-F	AGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAG AACCTGGACCTATGGCAACCTCTCCGCTACTGG AT (SEQ ID NO: 9)

Construction of rEx-DLP-pp1ab-rFF

[0228] For the construction of the rEx-DLP-pp1ab-rFF vector, three nucleic acid fragments were generated by using a 3-piece Gibson Assembly® procedure, as follows.

[0229] Fragment 1 was generated with primers RP114 and RP115 and the template backbone rEx-rFF.

[0230] Fragment 2 was generated with primers RP116 and RP117 and template backbone rEx-rFF.

[0231] Fragment 3 was a g-block for rEx-DLP-pp1ab-rFF with the nucleic acid sequence set forth at SEQ ID NO: 10 in the Sequence Listing.

Construction of rEx-DLP-2A-pp1ab-rFF

[0232] For the construction of rEx-DLP-2A-pplab-rFF vector, three nucleic acid fragments were generated by using a 3-piece Gibson Assembly® procedure, as follows.

[0233] Fragment 4 was generated with primers RP118 and RP115 and the template backbone rEx-rFF.

[0234] Fragment 5 was generated with primers RP116 and RP117 and template backbone rEx-rFF.

[0235] Fragment 6 was a g-block for rEx-DLP-2A-pplab-rFF with the nucleic acid sequence set forth at SEQ ID NO: 11 in the Sequence Listing.

Construction of rEx-DLP-2A-pplab-DLP-rFF

[0236] For the construction of rEx-DLP-2A-pplab-DLP-rFF vector, three nucleic acid fragments were generated by using a 3-piece Gibson Assembly® procedure, as follows.

[0237] Fragment 7 was generated with primers RP118 and RP115 and the template backbone rEx-DLP-rFF.

[0238] Fragment 8 was generated with primers RP116 and RP117 and template backbone rEx-DLP-rFF.

[0239] Fragment 9 was a g-block for rEx-DLP-2A-pplab-DLP-rFF with the nucleic acid sequence set forth at SEQ ID NO: 12 in the Sequence Listing.

[0240] Construct assembly was performed according to a 3-piece Gibson Assembly® procedure described in Gibson *et al.* (2009, *supra*). In particular, the rEx-DLP-pplab-rFF construct was built using fragments 1, 2, and 3; the rEx-DLP-2A-pplab-rFF construct was built using fragments 4, 5, and 6; and the rEx-DLP-2A-pplab-DLP-rFF construct was built using fragments 7, 8, and 9. Assembled products were subsequently transformed into EPI300 cells from Epicenter. A total of 144 colonies were screened using the primers RP126 (SEQ ID NO: 13) and RP127 (SEQ ID NO: 14) for each transformation, resulting in 4 PCR-positive clones for rEx-DLP-pplab-rFF, 3 PCR-positive clones for rEx-DLP-2A-pplab-rFF, and 2 PCR-positive clones for rEx-DLP-2A-pplab-DLP-rFF. Subsequent MiSeq results revealed that clone 4, clones 3 and 15, and clones 18 and 20 were completely sequence-correct for rEx-DLP-pplab-rFF, rEx-DLP-2A-pplab-rFF, and rEx-DLP-2A-pplab-DLP-rFF, respectively.

TABLE 4

Primer	Primers designed for colony screening of the DLP-(2A)-pp1ab replicons	
RP126	DLP-pp1ab-screen-F	CAGCATCTTTACTTTCACCAGCGTTCTG (SEQ ID NO: 13)
RP127	DLP-pp1ab-screen-R	GGAACCTGGCGAAGCCAGTTTAACA (SEQ ID NO: 14)

[0241] The maps of rEx-DLP-rFF, rEx-DLP-pp1ab-rFF, rEx-DLP-2A-pp1ab-rFF, and rEx-DLP-2A-pp1ab-DLP-rFF are also shown in FIGUREs 2A-2D.

[0242] The sequences of the resulting replicons are disclosed in the Sequence Listing with a T7 promoter and a polyA tail of 65 A's, as follows: rEx-DLP-rFF (SEQ ID NO: 15), rEx-DLP-pp1ab-rFF (SEQ ID NO: 16), rEx-DLP-2A-pp1ab-rFF (SEQ ID NO: 17), and rEx-DLP-2A-pp1ab-DLP-rFF (SEQ ID NO: 18).

EXAMPLE 3

Construction of DLP-containing Alphavirus Replicon Designs

[0243] This Example describes the generation of a number of Alphavirus RNA replicon-based expression vectors with a DLP motif positioned upstream of the polyprotein/non-structural protein genes and/or a reporter gene. These Alphavirus RNA replicon-based expression vectors were subsequently characterized and analyzed in the flow cytometry analysis and bulk luciferase analyses described in EXAMPLE 5.

A. Design

[0244] The respective design features of three Alphavirus-based DLP replicon constructs are described below.

(1) Alpha-R-DLP-rFF

[0245] In this construct, DLP was placed immediately upstream of the start codon of the reporter gene rFF.

(2) Alpha-R-DLP-2A-nsp-rFF

[0246] In this construct, the sequence encoding the DLP motif and the 2A peptide sequence (which was the same sequence used in the rEx-DLP-2A-pp1ab-rFF replicon described in Example 2 above) was placed within the 5' end of the replicon with a few careful design modifications described below, to potentially maintain the sequence-structure requirement for replication and subgenomic mRNA transcription.

[0247] (i) The first 195 nucleotides of the nspl gene was duplicated with its start codon mutated from ATG to TAG (bold in the sequence of SEQ ID NO: 19 below).

[0248] (ii) This 195-nucleotide duplicated sequence was placed immediately following the 5' UTR of the wild-type Alphavirus (underlined in the sequence of SEQ ID NO: 19 below) and is followed by the DLP-2A sequence (italicized in the sequence below).

[0249] (iii) The start codon of the nspl gene following the DLP-2A sequence was removed (strike-through in the sequence of SEQ ID NO: 19 below).

SEQ ID NO: 19 (partial sequence)

GATAGGCGGCGCATGAGAGAAGCCCAGACCAATTACCTACCCAAATGGAGAAAGTTC
ACGTTGACATCGAGGAAGACAGCCCATTCTCAGAGCTTGCAGCGGAGCTTCCG
CAGTTGAGGTAGAAGCCAAGCAGGTCACTGATAATGACCATGCTAATGCCAGAGC
GTTTCGCATCTGGCTCAAAACTGATCGAAACGGAGGTGGACCCATCCGACACGA
TCCTTGACATTGGAATAGTCAGCATAGTACATTCATCTGACTAATACTACAACACCACC
ATGAATAGAGGATTCTTAACTGCTCGGCCGCCCTCCCGCCCCACTGCCATGTGG
AGGCCGGAGAAGGAGGCAGGCCGCCGGAAAGCGGAGCTACTAACCTCAGCCTGCTGA
AGCAGGCTGGAGACGTGGAGGAACCTGGACCTATGGAGAAAGTTCACG...

(3) Alpha-R-DLP-2A-nsp-DLP-rFF

[0250] This construct is essentially identical to Construct 2 following the same three design modifications, except that another DLP motif was placed immediately upstream of the reporter rFF gene (the same way as a DLP motif was placed in Construct 1). A comparative analysis of performances by replicon Constructs 2 and 3 would provide information on whether the additional DLP placed upstream of the reporter gene has an added value to the expression of the reporter gene (see EXAMPLE 5 below).

B. ConstructionConstruction of Alpha-R-DLP-rFF

[0251] Alpha-R-DLP-rFF was built via Gibson Assembly® procedure, using Alpha-R-eGFP (c6; SEQ ID NO: 35) digested with EcoRI/SapI as a vector and DLP-rFF as an insert PCR-amplified from the template rEx-DLP-rFF (c2, SEQ ID NO: 15) using the primers RP112 (SEQ ID NO: 20) and RP113 (SEQ ID NO: 21) to replace eGFP with DLP-rFF. Clones 2 and 3 were sequence-confirmed to be completely correct via MiSeq sequencing.

TABLE 5

Primer	Primers used to clone DLP-rFF into Alpha-R-GFP (EcoRV/SapI)	
RP112	DLP-rFF-F	CCTGAATGGACTACGACATAGTCTAGTCCGCCAAGAT ATCGCACCATAGTCAGCATAGTACATTTCATCTGAC TAATACT (SEQ ID NO: 20)
RP113	DLP-rFF-R	GCAGCTTGCCAATTGCTGCTGTATCGATCAATT AATCACATCTGGCCACGGGTTCTTC (SEQ ID NO: 21)

Construction of Alpha-R-DLP-2A-nsp-rFF and Alpha-R-DLP-2A-nsp-DLP-rFF

[0252] Alpha-R-DLP-2A-nsp-rFF (Construct 2) and Alpha-R-DLP-2A-nsp-DLP-rFF (Construct 3) were built via Gibson Assembly® procedure, using the respective g-blocks as inserts and the vectors that had been PCR-amplified from the respective templates, Alpha-R-rFF (c6; SEQ ID NO: 35) and Alpha-R-DLP-rFF (c2; SEQ ID NO: 26), using the primers RP124 (SEQ ID NO: 22) and RP125 (SEQ ID NO: 23). Clones 1 and 3 of Alpha-R-DLP-2A-nsp-rFF and clones 8 and 32 of Alpha-R-DLP-2A-nsp-DLP-rFF were sequence-confirmed to be completely correct via MiSeq.

TABLE 6

Primer	Primers used for construction of Alpha-DLP-nsp-rFF/DLP-rFF	
RP124	5'Alpha-P2A-F	GAAGCAGGCTGGAGACGTGGAGGAGAACCT GGACCTGAGAAAGTTCACGTTGACATCGAGGA AGAC (SEQ ID NO: 22)
RP125	5'ScaI-R	CACCAGTCACAGAAAAGCATCTTACGGATG (SEQ ID NO: 23)

[0253] The sequence of g-block used for the construction of Alpha-R-DLP-2A-nsp-rFF is provided in the Sequence Listing as SEQ ID NO: 24. The sequence of g-block

used for the construction of Alpha-R-DLP-2A-nsp-DLP-rFF is also provided in the Sequence Listing as SEQ ID NO: 25.

[0254] The maps of Alpha-R-rFF, Alpha-R-DLP-rFF, Alpha-R-DLP-2A-nsp-rFF, and Alpha-R-DLP-2A-nsp-DLP-rFF are shown in **FIGS. 3A-3D**.

[0255] The sequences of the resulting replicons are also provided in the Sequence Listing with a T7 promoter and a polyA tail of 40 A's, as follows: Alpha-R-rFF (SEQ ID NO: 26), Alpha-R-DLP-rFF (SEQ ID NO: 27), Alpha-R-DLP-2A-nsp-rFF (SEQ ID NO: 28), and Alpha-R-DLP-2A-nsp-DLP-rFF (SEQ ID NO: 29).

Construction of Alpha-R-DLP-2A-rFF and Alpha-R-DLP-2A-nsp-DLP-2A-rFF

[0256] Without being bound by any particular theory, it is believed that placing a DLP motif immediately upstream of the reporter gene rFF without the inclusion of the 2A protease in between them may negatively impact protein expression of the GOI; this negative impact could be due to the fact that rFF now became a "fusion" protein, resulting from the presence of the DLP sequence translated into a peptide at the 5' end of rFF. Therefore, 2 new constructs were designed and built, including the 2A protease sequence between the DLP motif and the rFF gene for the two Alphavirus-replicon constructs, Alpha-R-DLP-rFF and Alpha-R-DLP-2A-nsp-DLP-rFF, to generate Alpha-R-DLP-2A-rFF and Alpha-R-DLP-2A-nsp-DLP-2A-rFF, respectively. The inclusion of the 2A protease peptide sequence would enable cleavage of the peptide encoded by the DLP sequence from rFF (see Example 5 below).

[0257] For this purpose, two g-block fragments were synthesized (SEQ ID NOS: 30 and 31) and cloned into their respective vectors digested with EcoRV/SbfI via Gibson Assembly. Clone 1 of Alpha-R-DLP-2A-rFF and clones 8 and 9 of Alpha-R-DLP-2A-nsp-DLP-2A-rFF were sequence-confirmed to be completely correct via Sanger sequencing using RP123 (SEQ ID NO: 32) and RP96 (P89; SEQ ID NO: 96).

TABLE 7

Primer	Primers used to sequence Alpha-R-(DLP-2A-nsp)-DLP-2A-rFF constructs	
RP123	Alpha-3'nsp4-F	GGCTGTTAACGCTGGCAACCTCT (SEQ ID NO: 32)
RP96	rFF-seq1	AGCGAGAACTGCGAGGAATTCTT (SEQ ID NO: 33)

[0258] Schematic maps of Alpha-R-DLP-2A-rFF and Alpha-R-DLP-2A-nsp-DLP-2A-rFF are provided in **FIGS. 4A-4B**.

EXAMPLE 4

Expression Analysis of EAV-based DLP containing replicons

[0259] As presented in Examples 2 and 3 above, a number of EAV-based DLP containing replicons were constructed to determine the impact of engineering a DLP motif positioned upstream of either the replicon nonstructural protein genes or the GOI gene on a subgenomic mRNA (TABLE 8).

TABLE 8: Listing of DLP-containing EAV Replicons and DLP-containing VEEV replicons.

EAV DLP Replicons
rEx-DLP-rFF
rEx-DLP-2A-rFF
rEx-DLP-pp1ab-rFF
rEx-DLP-2A-pp1ab-rFF
rEx-DLP-2A-pp1ab-DLP-rFF
rEx-DLP-2A-pp1ab-DLP-2A-rFF
VEEV DLP replicons
alpha-R-DLP-rFF
alpha-R-DLP-2A-rFF
alpha-R-DLP-2A-nsp-rFF
alpha-R-DLP-2A-nsp-DLP-rFF
alpha-R-DLP-2A-nsp-DLP-2A-rFF

[0260] Initial characterization of the DLP replicon constructs was carried out *ex vitro*. RNA was produced and used to electroporate BHK cells as described in EXAMPLE 1 above. After electroporation cells were analyzed for protein expression by FACs analysis, Western blot or bulk luciferase assay.

[0261] A graphical summary of the results of experiments performed to measure the expression level of an exemplary gene of interest (GOI), rFF luciferase reporter, from EAV-based DLP replicons is shown in **FIG. 5**. Both FACs analysis and bulk luciferase data

are presented. In these experiments, four different EAV DLP replicons were analyzed as follows:

[0262] 1) rEx-DLP-rFF: an EAV-based replicon with a DLP motif positioned upstream to the subgenomic mRNA rFF transcript);

[0263] 2) rEx-DLP-pplab-rFF: an EAV-based replicon with DLP positioned upstream to the non-structural pplab genes);

[0264] 3) rEx-DLP-2A-pplab-rFF: an EAV-based replicon with a DLP motif positioned upstream to the nonstructural proteins and a 2A protease peptide positioned between the DLP and the pplab region); and

[0265] 4) rEx-DLP-2A-pplab-DLP-rFF: an EAV-based replicon with a first DLP motif positioned upstream to the nonstructural proteins and a 2A protease peptide positioned between the DLP and the pplab region as well as a second DLP motif positioned upstream to the rFF subgenomic mRNA transcript).

[0266] The results presented in FIGS. 5A-5B demonstrated that engineering a DLP motif upstream to either the EAV nonstructural protein genes (e.g., rEx-DLP-pplab-rFF, rEx-DLP-2A-pplab-rFF or rEx-DLP-2A-pplab-DLP-rFF) or the rFF reporter gene subgenomic RNA (e.g., rEx-DLP-rFF and rEx-DLP-2A-pplab-DLP-rFF) did not negatively impact genomic RNA replication as all four constructs demonstrated nearly identical electroporation efficiencies (FIG. 5A). Interestingly, bulk luciferase activity analysis demonstrated that the rEx-DLP-pplab-rFF replicon expressed significantly less luciferase than the other three replicon designs (FIG. 5B). As stated above, incorporation of a DLP motif upstream of any GOI would result in an N terminal fusion of Sindbis capsid amino acids encoded in the in-frame codons found in the DLP sequence. The fusion protein generated with the amino acids encoding DLP and the EAV nsP1 protein is believed to impact the EAV replication complex from efficiently producing subgenomic RNAs and result in the reduced rFF GOI expression levels noted. One of the most remarkable results from this study was that EAV replicon constructs with a DLP controlling translation of the nonstructural protein genes (rEx-DLP-pplab-rFF, rEx-DLP-2A-pplab-rFF and rEx-DLP-2A-pplab-DLP-rFF) were as efficiently translated as the replicon RNA that did not have a DLP in this position (rEx-DLP-rFF). This result would not be predicted based on work conducted

by other researchers. It has been previously reported that incorporation 5' Sindbis virus subgenomic RNA sequences (including the DLP region) were only efficiently translated in cells infected with the virus. Stated differently, mRNA that contains a DLP motif associated with a reporter gene was reported to be poorly translated in cells that were not infected with Sindbis virus. The absence of innate immune activation in these cells rendered the DLP modified mRNA at a distinct translation disadvantage relative to translation of mRNAs that lack the DLP modification (all cellular mRNAs). The innate immune system was not activated in these cells at the time the DLP-containing replicon vectors were introduced so these DLP-containing mRNAs (capable of self-amplification) should be very inefficiently translated. Unexpectedly, that was not borne out in the experiments presented herein.

[0267] Subsequently, the rEx-DLP-2A-pplab-rFF EAV replicon was examined in cells that had been treated with IFN to induce the cellular innate immune system. IFN treatment of BHK cells will induce PKR activation and phosphorylation of eIF2 α which in turn results in shut-down of global cellular mRNA translation. It has been reported previously that arteriviruses are sensitive to IFN treatment (Luo *et al. Antiviral Res.* Aug;91(2):99-101, 2011), therefore the IFN treatment of BHK cells, which are capable of responding to IFN exposure and induce the innate immune system, would result in shut-down of arterivirus replication. A representative example of the expression capacity of the DLP modified EAV replicon in the presence of innate immune system activation is shown in **FIG. 6**. The rEx-DLP-2A-pplab-rFF replicon demonstrated significant resistance to innate immune system activation when compared to an EAV replicon that was not modified to contain the DLP motif, *i.e.* rEx-rFF. Both replication (**FIG. 6A**) and expression (**FIG. 6B**) of the rEx-DLP-2A-pplab-rFF replicon were significantly higher in IFN treated cells when compared to the control rEx-rFF replicon. These data demonstrate that DLP modified EAV replicons are capable of overcoming innate immune system shut-down and that this replicon vector represents a significant advance in self-amplifying RNA technology.

EXAMPLE 5

Expression Analysis of DLP-containing VEEV replicons

[0268] As presented in Examples 2 and 3 above, a number of VEEV-based DLP containing replicons were constructed to determine the impact of engineering a DLP motif

positioned upstream of either the replicon nonstructural protein genes or the GOI gene on a subgenomic mRNA.

[0269] VEEV alphavirus replicon vectors were engineered to contain one or more DLP motifs by using a strategy similar to the construction of EAV-based replicon vectors. Importantly, unlike other members of the Alphavirus genus (mostly Old World virus members), the genome of VEEV does not contain a DLP motif associated with translation of its subgenomic mRNA. Initial analysis of the VEEV DLP replicons was carried out in BHK-21 cells as described in EXAMPLE 1 above. BHK-21 cells do not secrete IFN in response to RNA replication but these cells are able to respond to exogenous IFN to induce innate immune activation. In this experiment, four different alphavirus replicon constructs were tested. The experimental data presented in **FIG. 7** shows DLP-containing alphavirus replicon replication and expression of the rFF luciferase gene in BHK cells that had been treated either at the time of electroporation (0 hr) or at 3 hr post electroporation with 1000 U/ml of exogenous IFN. The replicon RNAs tested were:

[0270] 1) Alpha-R-rFF: a control VEEV-based replicon with no DLP present;

[0271] 2) Alpha-R-DLP-rFF: a VEEV-based replicon with a DLP motif positioned upstream to the subgenomic mRNA rFF transcript;

[0272] 3) Alpha-R-DLP-2A-nsp-rFF: a VEEV-based replicon with a DLP motif positioned upstream to the nonstructural proteins with a 2A protease between the DLP and the nsp region; and

[0273] 4) Alpha-R-DLP-2A-nsp-DLP-rFF: VEEV-based replicon with a first DLP motif positioned upstream to the nonstructural proteins with a 2A protease between the DLP and the nsp region as well as with a second DLP motif positioned upstream to the rFF subgenomic mRNA transcript.

[0274] The results of luciferase expression normalized to the number of positive cells detected by FACs analysis are shown in **FIG. 7**. It was observed that the presence of a DLP motif controlling the translation of the VEEV non-structural protein genes resulted in higher reporter gene expression both in the absence and the presence of IFN treatment post electroporation (**FIG. 7A-7C**). Although the increase in rFF expression may have been considered statistically insignificant, the trend in all conditions was for increased protein

expression. As stated above in EXAMPLE 4 with respect to DLP-containing EAV replicons, one may have expected that a DLP motif would have a negative impact on mRNA translation in cells that are not in an innate immune response activated state. In direct contrast to that expectation, the BHK cells that had not been treated with IFN (FIG. 7A) in these experiments represent the sample with the largest benefit to incorporation of a DLP motif.

[0275] Subsequently, the two RNA replicons alpha-R-rFF and alpha-DLP-2A-nsp-rFF were tested *in vivo* in Balb/c mice. In this experiment, mice were tested in groups of 10 animals. In these experiments, equal doses of RNA were injected intramuscularly into mice and whole body IVIS (*In vivo* Imaging System) analysis was carried out over course of one week. Whole body imaging was performed at day 1, day 3 and day 7 post injection. The total flux measured at the injection site is shown in FIG. 8. Although only modest increases in protein expression were noted *ex vitro* (FIG. 8) from the DLP modified VEEV replicon, statistically significantly higher protein expression was detected at all time points measured from the DLP modified VEEV replicon RNA (FIG. 8). This observation represents a significant advantage, because as unmodified VEEV replicon vectors are capable of very high protein expression that can reach up to 20% of the total cellular protein (Pushko et al 1997). The DLP modified VEEV replicon surpassed even this expression potential and demonstrated superior protein expression; for this reason, the DLP modified alphavirus replicon vector represents a significant advance over existing alphavirus replicon RNA technology.

[0276] There are at least three unexpected results that can be drawn from the experimental data presented in the Examples above. First, the DLP motif has been shown to negatively impact translation of mRNAs when a cell is not in an innate immune system activated state. The DLP-containing replicon RNAs disclosed herein were found to have not been negatively impacted in cells at a basal state of innate activation. Second, expression levels, especially for the DLP-containing VEEV replicons, were found to have been even higher than unmodified replicons *in vivo*; this observation demonstrated that expression levels even from an alphavirus replicon can be increased from previously high historic expression levels. Third, all positive strand RNA viruses have considerable sequence conservation in both the 5' and 3' ends of their genomes. The fact that both the VEEV

replicon and the EAV replicon are flexible enough to accept incorporation of a stem loop structure (the DLP) in the 5' end of their RNAs is unexpected.

EXAMPLE 6

In vivo Immunogenicity Response Using DLP Replicon Expression Systems

[0277] Alphavirus replicon vectors were engineered to contain one or more DLP motifs, as described above. The RNA replicon, Alpha-R-gDLP-HA, containing the DLP sequence was further analyzed *in vivo* in Balb/c mice. In this experiment, 15 µg, 1.5 µg, or 0.15 µg of RNA encoding Hemagglutinin from Influenza A/Vietnam/1203/2004 (H5N1) was injected into mice at intervals 6 weeks apart. Fourteen days following the final boost, spleens and serum were collected to analyze the immune responses to HA. A summary of the results of these experiments is presented in **FIGs. 12A-12C**. In **FIG. 12A**, a significant increase in memory precursor effector cells (MPECs) was observed in constructs containing the DLP motif compared with each comparable dose of an unmodified replicon. HA-specific MPECs were detected using dextramers (H-2 Kd (IYSTVASSL; SEQ ID NO: 44)) along with other population-specific markers ($CD8^+CD44^+CD62L^{Lo}KLRG-1^{Lo}IL-7Ra^{Hi}CXCR3^{Hi}$). Of note, this benefit was also observable at low doses. In **FIGs 12B** and **12C**, effector T cell responses were measured by the number of antigen-specific HA cells that were secreting IFN- γ following stimulation with a $CD4^+$ T cell or $CD8^+$ T cell peptide. Animals immunized with replicons containing the DLP motif had a significantly higher frequency of cytokine-expressing $CD4^+$ and $CD8^+$ T cells at the 15µg and 1.5µg doses. Taken together, these data indicate a significant increase in both effector and memory T cell responses in response to immunization with antigen expressed by replicons containing the DLP motif as compared to the unmodified version.

[0278] The above DLP-containing replicons were further analyzed *in vivo* in Balb/c mice for compatibility with LNP formulations. In this experiment, 2 µg or 0.2 µg of RNA encoding Hemagglutinin from Influenza A/Vietnam/1203/2004 (H5N1) was injected into mice at intervals 4 weeks apart. Fourteen days following the final boost, spleens and serum were collected to analyze the immune response to HA. A summary of these experiments is presented in **FIG. 14A-14C**. In figures **14A-14C**, an increase in T-cell and B-cell responses was observed using constructs containing the DLP motif when combined with

LNP (cationic lipid nanoparticles) formulations. In figure 14A, HA-specific total IgG titers were significantly higher in all dose groups using LNP formulations compared to the group with replicon administered in saline. Furthermore, in figure 14B and 14C, it was observed that HA-specific CD8+ and CD4+ T cells were also significantly higher in all dose groups using LNP formulations compared to the group with replicon administered in saline. Taken together, this data demonstrates that replicon constructs containing the DLP motif are compatible with representative formulations.

EXAMPLE 7

Preventing Suppression of Immune Response Using DLP-containing Replicons

[0279] DLP-containing replicons constructed as described above were further evaluated *in vivo* for the ability to prevent suppression of immune response in Balb/c mice. In these experiments, 1.5 µg of mRNA, with or without DLP motif, and carrying a coding sequence for Hemagglutinin derived from Influenza A/Vietnam/1203/2004 (H5N1) is injected into mice at intervals 4 weeks apart. Approximately 24 hours prior to injection, 6-8 week old BALB/c mice are pre-treated with 20 µg of Poly(I:C) or saline by hydrodynamic tail vein injection to simulate a viral infection. Fourteen days following the final boost, serum from these mice are collected to analyze the immune response to Hemagglutinin (HA). A summary of these experiments is presented in FIG. 13. In Figure 13, a significant decrease is observed in the serum concentration of HA-specific antibodies in mice who were pre-treated with Poly(I:C) and received a doses of unmodified replicons. The levels in the Poly(I:C) group were not significantly above background. In contrast, animals pre-treated with Poly(I:C) and dosed with a construct containing the DLP motif showed no significant reductions in serum antigen-specific total IgG concentration. Taken together, these data show that the DLP motif protects against suppression of serum antibody levels in response to vaccination following a simulated viral infection compared to the unmodified version.

EXAMPLE 8

Construction of DLP-containing Expression Cassettes

[0280] This Example describes the generation of a plasmid vector for *ex vitro* transcription of an mRNA containing a Sindbis virus DLP element upstream of a gene of

interest, *e.g.*, a reporter gene, in accordance with some embodiments of the disclosure. The 5' and 3' untranslated regions (UTR) used in these experiments (SEQ ID NO: 36 and SEQ ID NO: 41, respectively) were derived from the human beta globin gene. The 5' UTR sequence was placed immediately downstream of a T7 promoter (SEQ ID NO: 37) and upstream of the Sindbis virus DLP sequence (SEQ ID NO: 38). In some experiments, the coding sequence for a gene of interest (GOI) was linked to the DLP via a P2A signal, which is an autocatalytic self-cleaving peptide (*e.g.*, autoprotease peptide) derived from the porcine teschovirus-1. In some experiments, a coding sequence for a destabilized form of EGFP reporter gene (dsGFP) which, in this case used as a GOI, was operably linked to the proteolytic PEST degradation signal derived from a mouse ornithine decarboxylase gene (MODC). In some other experiments, a coding sequence of the Red firefly luciferase reported gene was used as the gene of interest (also see, Example 9 below). However, it is contemplated that coding sequences for any gene of interest could be deployed in this configuration. In addition, as illustrated in **FIG. 15**, a 3' UTR sequence derived from human beta globin, a polyA tail consisting of 120 adenine residues, and a T7 terminator were inserted downstream and adjacent to the stop codon of dsGFP. The nucleic acid sequences of each of the components described above are as follows:

TABLE 9

Components of DLP dsGFP mRNAs	
5' human beta globin UTR	5'- ACATTGCTTCTGACACAACTGTGTCAGCAACCTCAA ACAGACACGCCGCCACC-3' (SEQ ID NO 36)
T7 Promoter	5'-TAATACGACTCACTATAG-3' (SEQ ID NO 37)
DLP Motif	5'-ATAGTCAGCATAGTACATTTCATCTGACTAATACTACAACAC CACCACCATGAATAGAGGATTCTTAACATGCTCGGCCGCCGC CCCTTCCCGGCCCCACTGCCATGTGGAGGCCGGAGAAGGA GGCAGGCGGCCCG-3' (SEQ ID NO 38)
P2A peptide	5'-GGAAGCGGAGCTACTAACCTCAGCCTGCTGAAGCAGG CTGGAGACGTGGAGGAGAACCCCTGGACCT-3' (SEQ ID NO 39)
DsGFP	5'- ATGGTGAGCAAGGGCGAGGAGCTGTTACCGGGGT GGTCCCCATCCTGGTCAGCTGGACGGCGACGTAAC GGCCACAAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCG ATGCCACCTACGGCAAGCTGACCTGAAGTTCATCTGC ACCACCGGCAAGCTGCCGTGCCCTGGCCCACCCCTCGT GACCACCCCTGACCTACGGCGTGCAGTGCTTCAGCCGCT ACCCCGACCACATGAAGCAGCAGCACGACTTCTTCAAGTCC GCCATGCCGAAGGCTACGTCCAGGAGCGCACCATCTT

	CTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGG TGAAGTCGAGGGCGACACCCCTGGTGAACCGCATCGAG CTGAAGGGCATCGACTCAAGGAGGACGGCAACATCCT GGGCACAAGCTGGAGTACAACACTACAACAGCCACAACG TCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAG GTGAACCTCAAGATCCGCCACAACATCGAGGACGGCAG CGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCA TCGGCAGGGCCCGTGTGCTGCCGACAACCAACTAC CTGAGCACCCAGTCCGCCCTGAGCAAAGACCCAACGA GAAGCGCGATCACATGGCTCTGCTGGAGTTCGTGAACCG CCGCCGGGATCACTCTGGCATGGACGAGCTGTACAA GAAGCTTAGCCATGGCTCCGCCGGAGGTGGAGGAG CAGGATGATGGCACCGCTGCCATGTCTGTGCCAGGA GAGCAGGATGGACCGTCACCTGCAGCCTGTGCTTCTG CTAGGATCAATGTGTAG -3' (SEQ ID NO 40)
3' Human beta globin UTR	5'-GCTCGCTTCTTGTCCAATTCTATTAAAGGTTCTTT GTTCCCTAAGTCCAACACTAAACTGGGGATATTATGAAGG GCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTATTT TCATTGCAA -3' (SEQ ID NO: 41)
T7 Terminator	5'- AACCCCTCTCTAAACGGAGGGTTTTTT-3' (SEQ ID NO: 42)
Sequence of DLP dsGFP Mrna	5'-TAATACGACTCACTATAGACATTGCTTCTGACAC AACTGTGTTCACTAGCAACCTCAAACAGACACCGC CGCCACCATAGTCAGCATAGTACATTCTCATCTGAC TAATACTACAACACCACCAACATGAATAGAGGATT CTTTAACATGCTGGCCGCCCTCCGGCC CACTGCCATGTGGAGGCCGCGGAGAAAGGAGGCAGG CGGCCCCGGAAGCGGAGCTACTAACCTCAGCTG CTGAAGCAGGCTGGAGACGTGGAGGAGAACCCCTGG ACCTATGGTGAGCAAGGGCGAGGAGCTGTTACCG GGGTGGTGCCTACCTGGTCAAGCTGGACGGCGACG TAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGC GAGGGCGATGCCACCTACGGCAAGCTGACCCCTGAA GTTCATCTGCACCAACCGCAAGCTGCCGTGCCCTG GCCCACCCCTCGTGACCAACCTGACCTACGGCGTGCA GTGCTTCAGCCGCTACCCGACCATGAAGCAGCA CGACTTCTTCAAGTCCGCAATGCCGAAGGCTACGTC CAGGAGCGCACCATCTTCAAGGACGACGGCAAC TACAAGACCCCGCCGAGGTGAAGTTCGAGGGCGAC ACCCCTGGTGAACCGCATCGAGCTGAAGGGCATCGAC TTCAAGGAGGACGGCAACATCTGGGGCACAAGCTG GAGTACAACATACAACAGCCACAACGTCTATATCATGG CCGACAAGCAGAAGAACGGCATCAAGGTGAACCTCA AGATCCGCCACAACATCGAGGACGGCAGCGTGCAGC TCGCCGACCACTACCAGCAGAACACCCCCATCGCG ACGGCCCCGTGCTGCTGCCGACAACCAACTACCTGAG CACCCAGTCCGCCCTGAGCAAAGACCCAACGAGAA GCGCGATCACATGGCTCTGCTGGAGTTCGTGAACCGCC

	<pre> GCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGA AGCTTAGCCATGGCTCCGCCGGAGGTGGAGGAGCA GGATGATGGCACGCTGCCATGTCTTGCCAGGAG AGCGGGATGGACCGTCACCCCTGCAGCCTGTGCTTCTG CTAGGATCAATGTGTAGGCTCGCTTCTGCTGTCCAA TTTCTATTAAAGGTTCCCTTGTCCCTAAGTCCAACTA CTAAACTGGGGATATTATGAAGGGCCTGAGCATCTG GATTCTGCCTAATAAAAAACATTATTTCATGCAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAACCCCTCTAAACGGAGGGGTTT TTT -3' (SEQ ID NO: 43) </pre>
--	--

[0281] In the above experiments, a DLP sequence from Sindbis virus was used. Additional experiments are performed to incorporate DLP sequences from other Old World alphavirus members such as SV, SFV, BEBV, RRV, SAG, GETV, MIDV, CHIKV, and ONNV, into the nucleic acid molecules of the present disclosure. The linkage of the DLP to the gene of interest can be configured with or without a self-cleaving peptide such as P2A. Without bound to any particular theory, it is believed that the requirement for a 2A sequence or other self-cleaving peptide is dependent on the individual gene being inserted into the gene cassette and on whether the additional amino acids added by the inclusion of DLP would affect the translated proteins function. It is further contemplated that the 5' and 3' UTR sequences used here may also be changed for any other set of functional UTRs regardless of origin.

EXAMPLE 9

Ex vivo Evaluation of Gene Expression in DLP-containing Expression Cassettes

[0282] mRNAs derived from DLP-containing expression cassettes engineered to contain one or more DLP motifs, as described above, were evaluated *ex vivo* for the ability to enhance expression of the gene of interest in BHK-21 cells. As control, mRNA samples lacking the DLP sequence but otherwise identical to the DLP-containing mRNAs described above were assayed in parallel under the same conditions. In these experiments, BHK-21 cells were pre-treated with 300, 600 or 1000 U/mL of universal type I interferon or vehicle control for 2 hours. Following pre-treatment the cells were electroporated, in triplicate, with 2.5 µg of mRNA containing or lacking DLP motifs. The cells were placed back into media

containing the same concentrations of interferon used during the pretreatment. The frequency of GFP positive cells and Mean Fluorescence Intensity (MFI) was assayed at 2, 4 and 24 hours post electroporation by flow cytometry. It was observed that DLP-containing mRNA yields significantly higher frequency of GFP positive cells compared to the non-DLP mRNA in the presence of interferon (**FIG. 16A**).

[0283] Furthermore, when the MFI of GFP was normalized to the frequency of GFP positive cells and plotted versus time, it was observed that the unmodified mRNA was sensitive to interferon treatment as exhibited by a statistically significant reduction of 30% in overall protein produced during the 24-hour time course (**FIG. 16B**). In contrast, the DLP-containing modified mRNA demonstrated resistance to interferon treatment as exhibited by a statistically significant increase of 30% in overall protein production over the control unmodified mRNA during the same 24-hour time course (**FIG. 16C**). The resistance to interferon treatment conferred by the presence of the DLP motifs was further strengthened by the finding that cells treated with interferon and electroporated with a DLP-containing mRNA produced as much protein as untreated cells electroporated with an unmodified mRNA (**FIG. 16C**).

EXAMPLE 10

In vivo Evaluation of Gene Expression in DLP-containing Expression Cassettes

[0284] mRNAs derived from DLP-containing expression cassettes engineered to contain one or more DLP motifs, as described above, are further evaluated *in vivo* for the ability to enhance expression of the gene of interest in Balb/c mice. In this experiment, 30 μ g, 15 μ g, or 1.5 μ g of DLP-containing mRNA encoding red firefly luciferase is injected into mice at interval of 6 weeks apart. Red firefly luciferase expression is subsequently monitored by IVIS (*In vivo* Imaging System) analysis at 1, 3, 7, 10, 14, 21 and 28 days post injection. A significant increase in luciferase expression is observed in mice that receive DLP-containing mRNAs when compared to control animals that receive mRNA lacking the DLP motif.

EXAMPLE 11

Preventing Suppression of Immune Response Using DLP-containing mRNAs

[0285] DLP-containing mRNAs as described above are further evaluated *in vivo* for the ability to enhance expression of the gene of interest in Balb/c mice. In this experiment, 30 μ g, 15 μ g, or 1.5 μ g of mRNA, with or without DLP motif, and carrying a coding sequence for Hemagglutinin derived from Influenza A/Vietnam/1203/2004 (H5N1) is injected into mice at intervals 4 weeks apart. Approximately 24 hours prior to injection, mice are pre-treated with 20 μ g of Poly(I:C) or saline by hydrodynamic tail vein injection to simulate a viral infection. Fourteen days following the final boost, serum from these mice are collected to analyze the immune response to Hemagglutinin (HA). A significant decrease in the serum concentration of HA-specific antibodies is expected to be observed in mice that are pre-treated with Poly(I:C) and receive a dose of mRNA lacking the DLP sequence. In contrast, animals pre-treated with Poly(I:C) and dosed with mRNA containing the DLP motif are expected to not show significant reductions in serum antigen-specific total IgG concentration.

[0286] While particular alternatives of the present disclosure have been disclosed, it is to be understood that various modifications and combinations are possible and are contemplated within the true spirit and scope of the appended claims. There is no intention, therefore, of limitations to the exact abstract and disclosure herein presented.

[0287] All of the references disclosed herein, including but not limited to journal articles, textbooks, publications, patents and patent applications are hereby incorporated by reference in their entireties to the same extent as if each reference was specifically and individually indicated to be incorporated by reference.

[0288] No admission is made that any reference cited herein constitutes prior art. The discussion of the references states what their authors assert, and the inventors reserve the right to challenge the accuracy and pertinence of the cited documents. It will be clearly understood that, although a number of information sources, including scientific journal articles, patent documents, and textbooks, are referred to herein; any discussion and comment in a specific information source should no way be considered as an admission that such comment was widely accepted as the general opinion in the field.

[0289] The discussion of the general compositions and methods given herein is intended for illustrative purposes only. It is not intended to be exhaustive or to limit the disclosure. Individual aspects or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. It is expressly contemplated that any aspect or feature of the present disclosure can be combined with any other aspect, features, or combination of aspects and features disclosed herein. Other alternative compositions, methods, and embodiments will be apparent to those of skill in the art upon review of this disclosure, and are to be included within the spirit and purview of this application.

CLAIMS

1. A nucleic acid molecule, comprising a modified viral RNA replicon, wherein the modified viral RNA replicon comprises:
 - a first nucleic acid sequence encoding a viral capsid enhancer; and
 - a second nucleic acid sequence encoding at least one nonstructural viral protein encoding a replicase, wherein the first nucleic acid sequence is operably linked upstream to the second nucleic acid sequence,

wherein the modified viral RNA replicon is derived from a virus species belonging to the Togaviridae family or from a virus species belonging to the Arterivirus genus of the Arteriviridae family; and the viral capsid enhancer comprises a nucleotide sequence having a sequence identity of at least 80% to RNA corresponding to any one of SEQ ID NOS: 1 and 46-52.
2. The nucleic acid molecule of claim 1, wherein the modified viral RNA replicon further comprises a coding sequence for an autoprotease peptide operably linked upstream to the second nucleic acid sequence.
3. The nucleic acid molecule of claim 2, wherein the coding sequence for the autoprotease peptide is operably linked downstream to the first nucleic acid sequence and upstream to the second nucleic acid sequence.
4. The nucleic acid molecule of claim 2 or claim 3, wherein the autoprotease peptide comprises a peptide sequence selected from the group consisting of porcine teschovirus-1 2A (P2A), a foot-and-mouth disease virus (FMDV) 2A (F2A), an Equine Rhinitis A Virus (ERAV) 2A (E2A), a Thosea asigna virus 2A (T2A), a cytoplasmic polyhedrosis virus 2A (BmCPV2A), a Flacherie Virus 2A (BmIFV2A), and a combination thereof.
5. The nucleic acid molecule of any one of claims 1-4, wherein the viral capsid enhancer is heterologous to the viral RNA replicon.

6. The nucleic acid molecule of any one of claims 1 to 5, wherein the second nucleic acid sequence comprises substantially all the coding sequence for the native viral nonstructural proteins of the corresponding unmodified viral RNA replicon.
7. The nucleic acid molecule of any one of claims 1-6, wherein the second nucleic acid sequence comprises the coding sequence for the native viral nonstructural proteins of the corresponding unmodified viral RNA replicon from an Venezuelan equine encephalitis virus (VEEV) or from an Equine arteritis virus (EAV).
8. The nucleic acid molecule of any one of claims 1-6, wherein the modified viral RNA replicon comprises a modified RNA replicon derived from a virus species belonging to Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), Everglades virus (EVEV), Mucambo virus (MUCV), Semiiki forest virus (SFV), Pixuna virus (PIXV), Middleburg virus (MH3V), Chikungunya virus (CHIKV), O’Nyong-Nyong virus (O’NNV), Ross River virus (RRV), Barm ah Forest virus (BF), Getah virus (GET), Sagiyama virus (SAGV), 13eba.ru virus (BEBV), Mayaro virus (MAYV), Una virus (UNAV), Sindbis virus (SINV), Aura virus (AURAV), Whataroa virus (WHAV), Babanki virus (BABV), Kyzyl agach virus (KYZV), Western equine encephalitis virus (WEEV), Highland J virus (HJV), Fort Morgan virus (FMV), Ndumu (NDUV), Salmonid alphavirus (SAV), or Buggy Creek virus, or the modified viral RNA replicon comprises a modified RNA replicon derived Equine arteritis virus (EAV), Porcine respiratory and reproductive syndrome virus (PRRSV), Lactate dehydrogenase elevating virus (LDV), or Simian hemorrhagic fever virus (SHFV).
9. The nucleic acid of claim 8, wherein the modified viral RNA replicon is derived from Venezuelan equine encephalitis virus (VEEV).
10. The nucleic acid molecule of any one of claims 1-6, wherein the modified viral RNA replicon is derived from a virus species belonging to the *Arterivivirus* genus of the Arteriviridae family, and wherein the second nucleic acid sequence encoding the nonstructural protein is a

portion of or the entire pp1ab nonstructural protein of the virus species belonging to the *Arterivirus* genus.

11. The nucleic acid of claim 10, wherein the second nucleic acid sequence encodes the nonstructural of pp1ab nonstructural protein of the virus species belonging to the *Arterivirus* genus.

12. The nucleic acid molecule of any one of claims 1 to 11, wherein the viral capsid enhancer comprises a nucleic acid sequence exhibiting at least 90% sequence identity to RNA corresponding to at least one of SEQ ID Nos: 1 and 46-52.

13. The nucleic acid molecule of claim 12, wherein the viral capsid enhancer comprises a nucleic acid sequence exhibiting at least 95% sequence identity to RNA corresponding to at least one of SEQ ID Nos: 1 and 46-52.

14. The nucleic acid molecule of claim 13, wherein the viral capsid enhancer comprises a nucleic acid sequence of RNA corresponding to SEQ ID Nos: 1 or 46-52.

15. The nucleic acid molecule of any one of claims 1 to 14, wherein the modified viral RNA replicon further comprises one or more expression cassettes, wherein at least one of the one or more expression cassettes comprises a promoter operably linked to a sequence for a first gene of interest (GOI).

16. The nucleic acid molecule of claim 15, wherein the modified viral RNA replicon further comprises:

 a third nucleic acid sequence encoding one or more RNA stem-loops of a second viral capsid enhancer or a variant thereof; and

 a fourth nucleic acid sequence operably linked to the third nucleic acid sequence, wherein the fourth nucleic acid sequence comprises a sequence for a second gene of interest (GOI).

17. The nucleic acid molecule of claim 15 or claim 16, wherein the coding sequence for the first GOI encodes a polypeptide.
18. The nucleic molecule of claim 17, wherein said polypeptide is selected from the group consisting of an antibody, an antigen, an immune modulator, a cytokine, an enzyme, and any combination thereof.
19. A nucleic acid molecule comprising a modified viral RNA replicon, wherein the modified viral RNA replicon comprises, ordered from the 5'- to 3'-end,
 - (1) a 5' untranslated region (5'-UTR),
 - (2) a nucleotide sequence encoding an amino-terminal fragment of the nsp1 of the VEEV,
 - (3) a downstream loop (DLP) motif derived from Sindbis virus (SINV),
 - (4) a nucleotide sequence encoding a 2A protease sequence (P2A), and
 - (5) a nucleotide sequence encoding a polyprotein comprising the sequences of at least one of the non-structural proteins nsp1, nsp2, nsp3 and nsp4 of the VEEV.
20. The nucleic acid molecule of claim 19, wherein the modified viral RNA replicon comprises, ordered from the 5'- to 3'-end,
 - (1) a 5'-UTR comprising nucleotides 1 to 45 of SEQ ID NO: 19,
 - (2) a nucleotide sequence consisting of nucleotides 46-240 of SEQ ID NO: 19,
 - (3) a DLP motif comprising the nucleotide sequence of SEQ ID NO: 38,
 - (4) a nucleotide sequence encoding a P2A having the nucleotide sequence of SEQ ID NO: 3, and
 - (5) a nucleotide sequence encoding a polyprotein comprising the sequences of the non-structural proteins nsp1, nsp2, nsp3 and nsp4 of the VEEV.
21. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO: 19.

22. A nucleic acid molecule comprising a nucleic acid sequence encoding the modified viral RNA replicon defined in any one of claims 1-21.
23. A method for producing a polypeptide of interest in a cell, comprising introducing the nucleic acid molecule of any one of claims 17-22 into the cell, thereby producing the polypeptide encoded by at least the first GOI in the cell.
24. The method of claim 23, wherein the cell is present in a tissue, an organ, or a subject, and wherein the subject is a vertebrate or invertebrate.
25. A composition, comprising the nucleic acid molecule of any one of claims 15-24 and a pharmaceutically acceptable carrier.
26. A method for producing a polypeptide of interest in a subject, comprising administering to the subject the nucleic acid molecule of any one of claims 17-22.

SEQ ID NO: 1

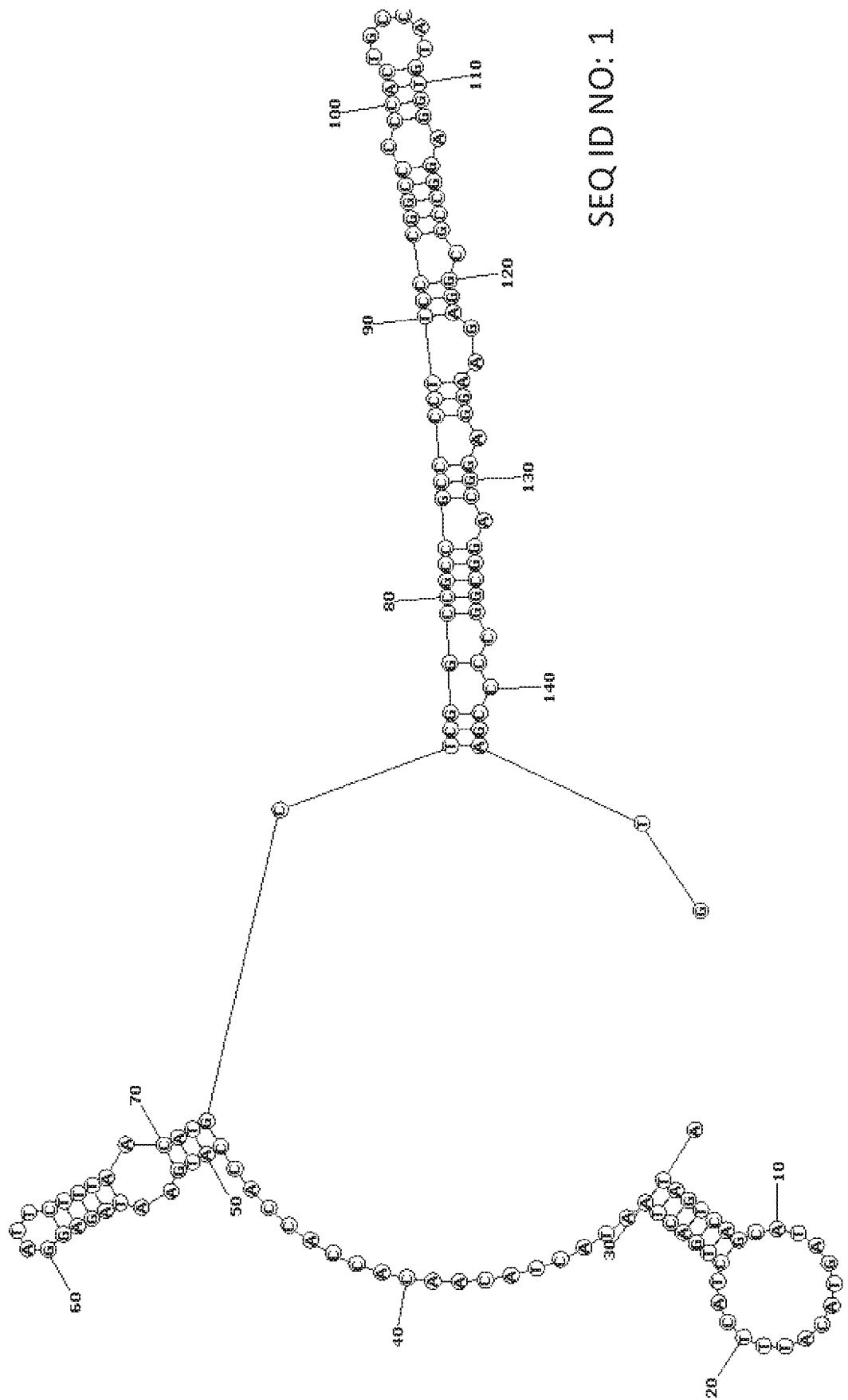


FIG 1

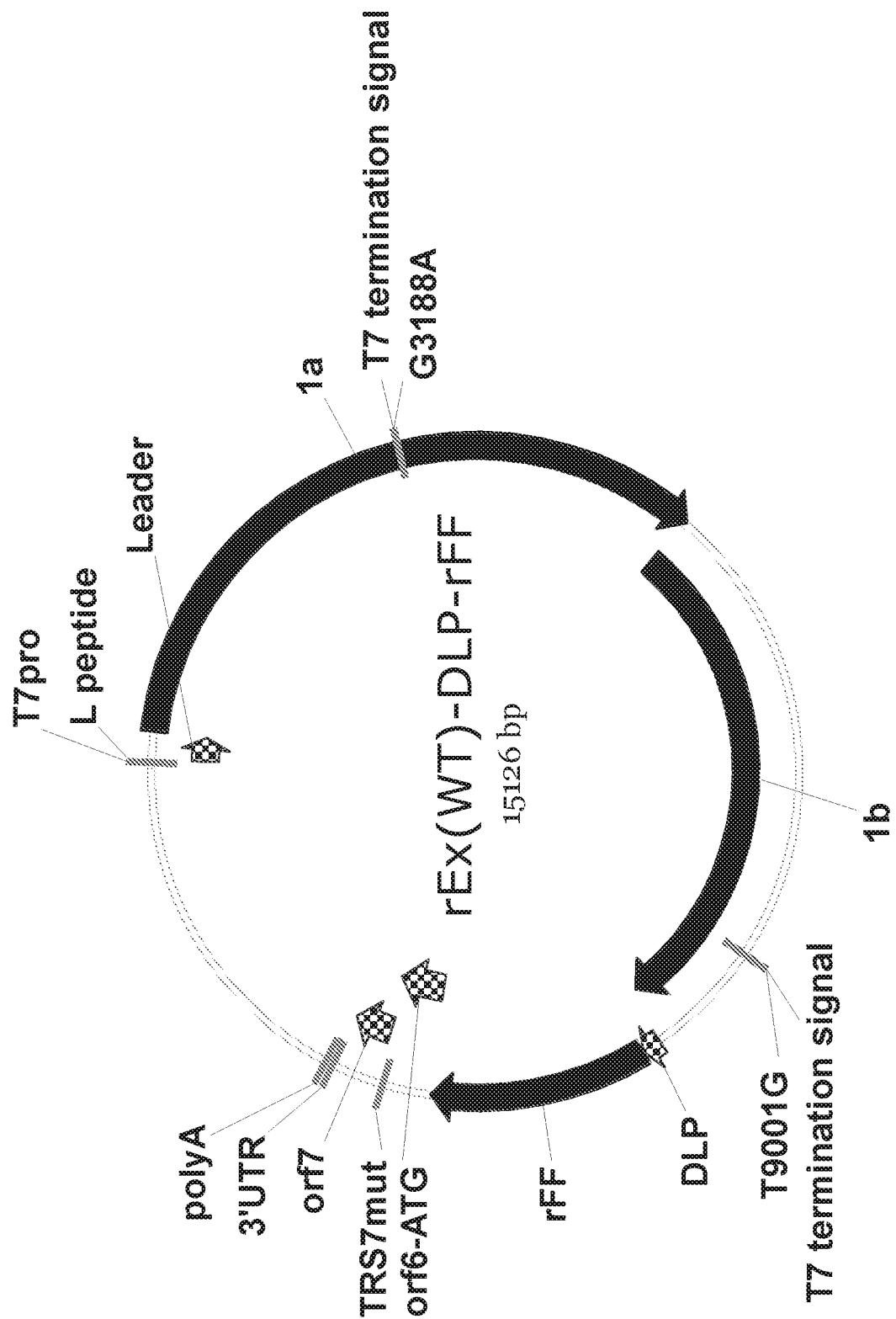


FIG. 2A

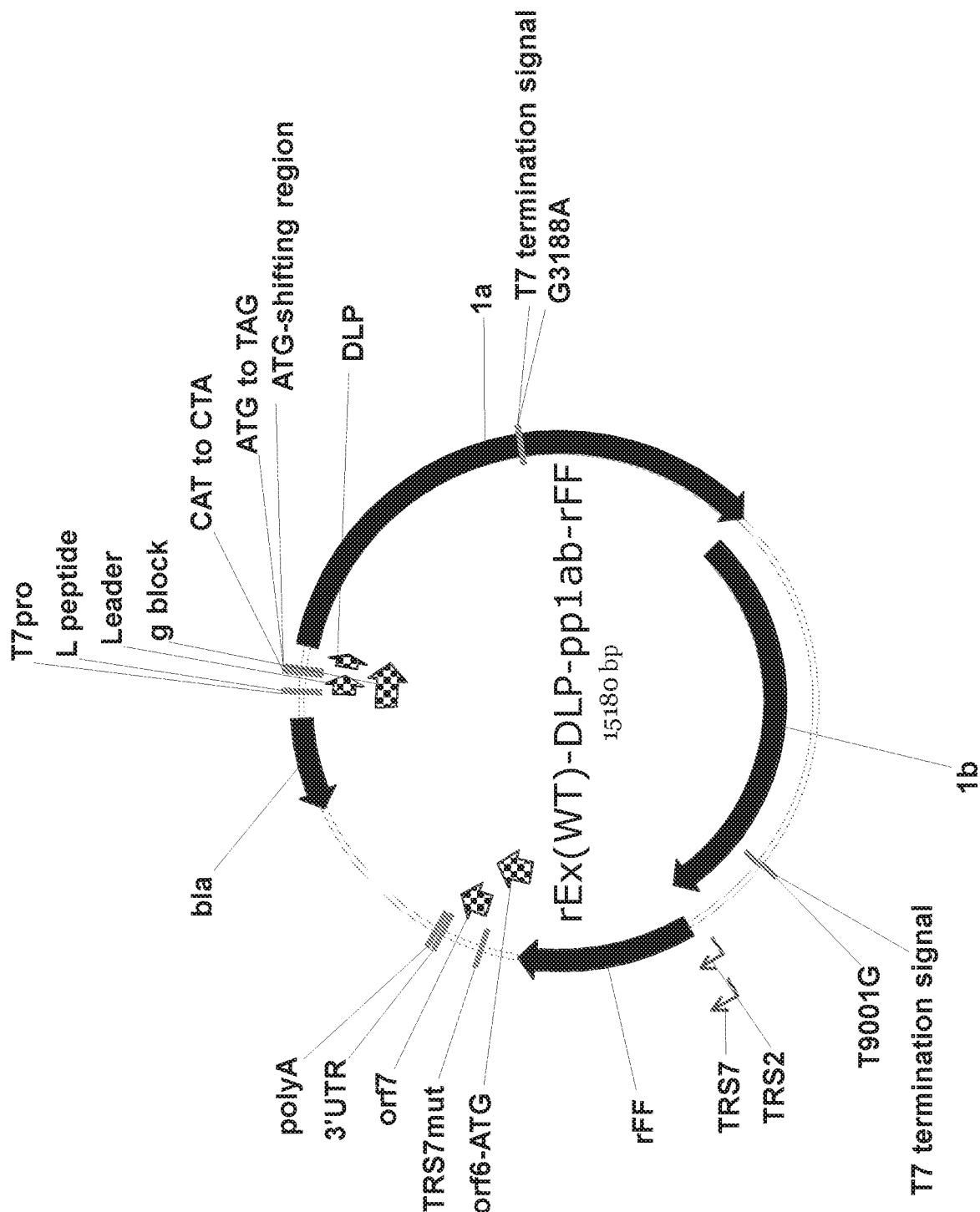


FIG. 2B

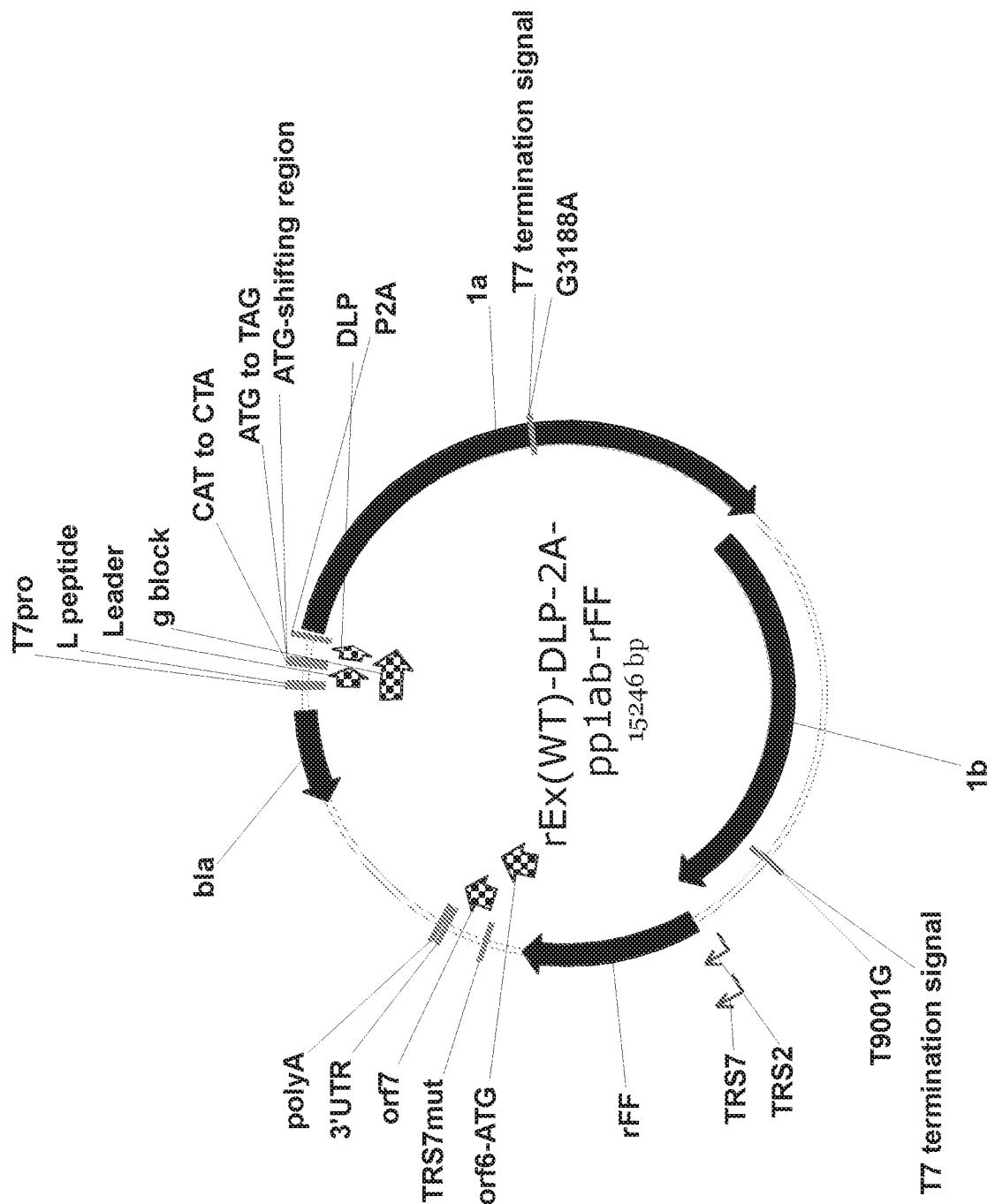


FIG. 2C

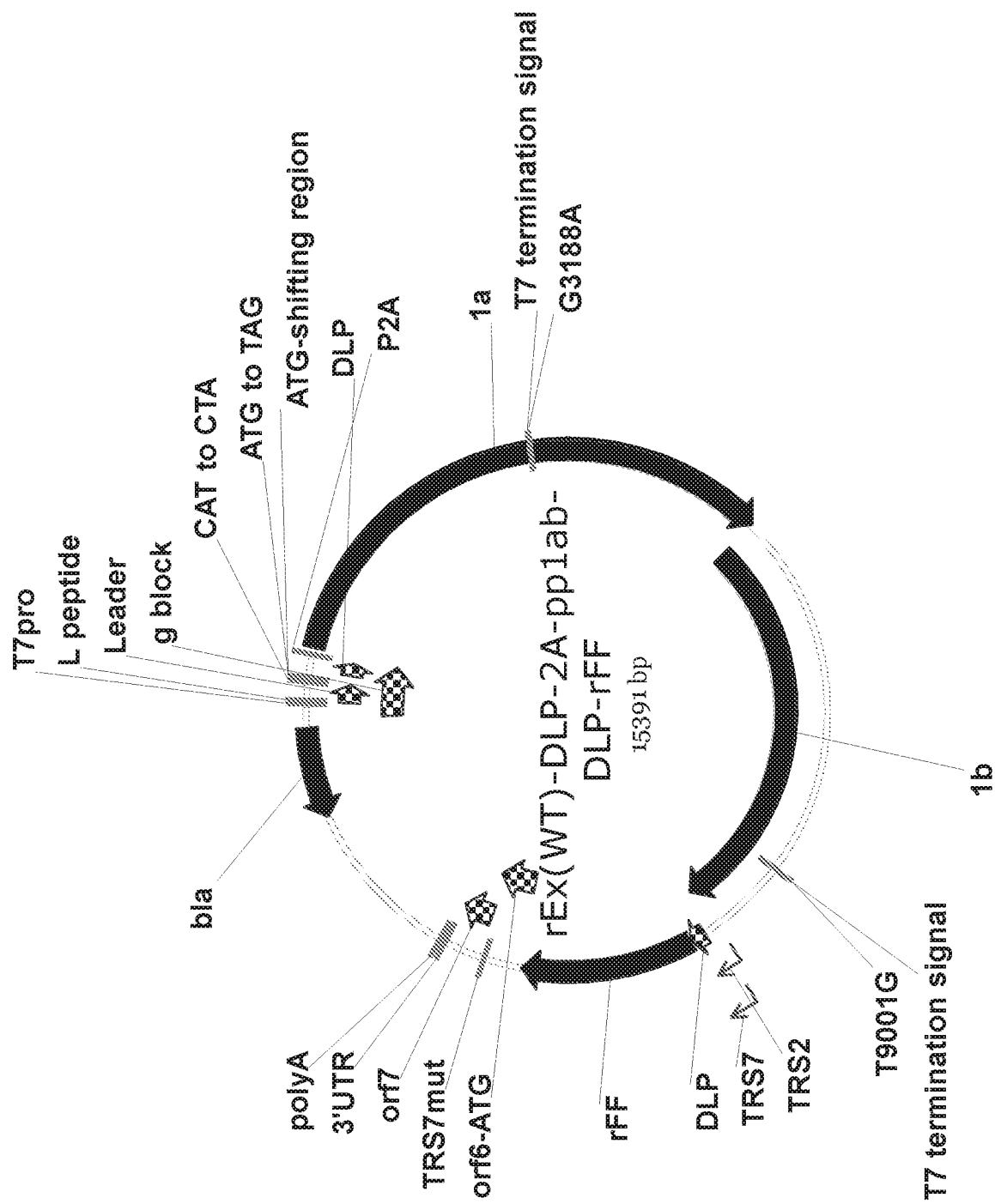


FIG. 2D

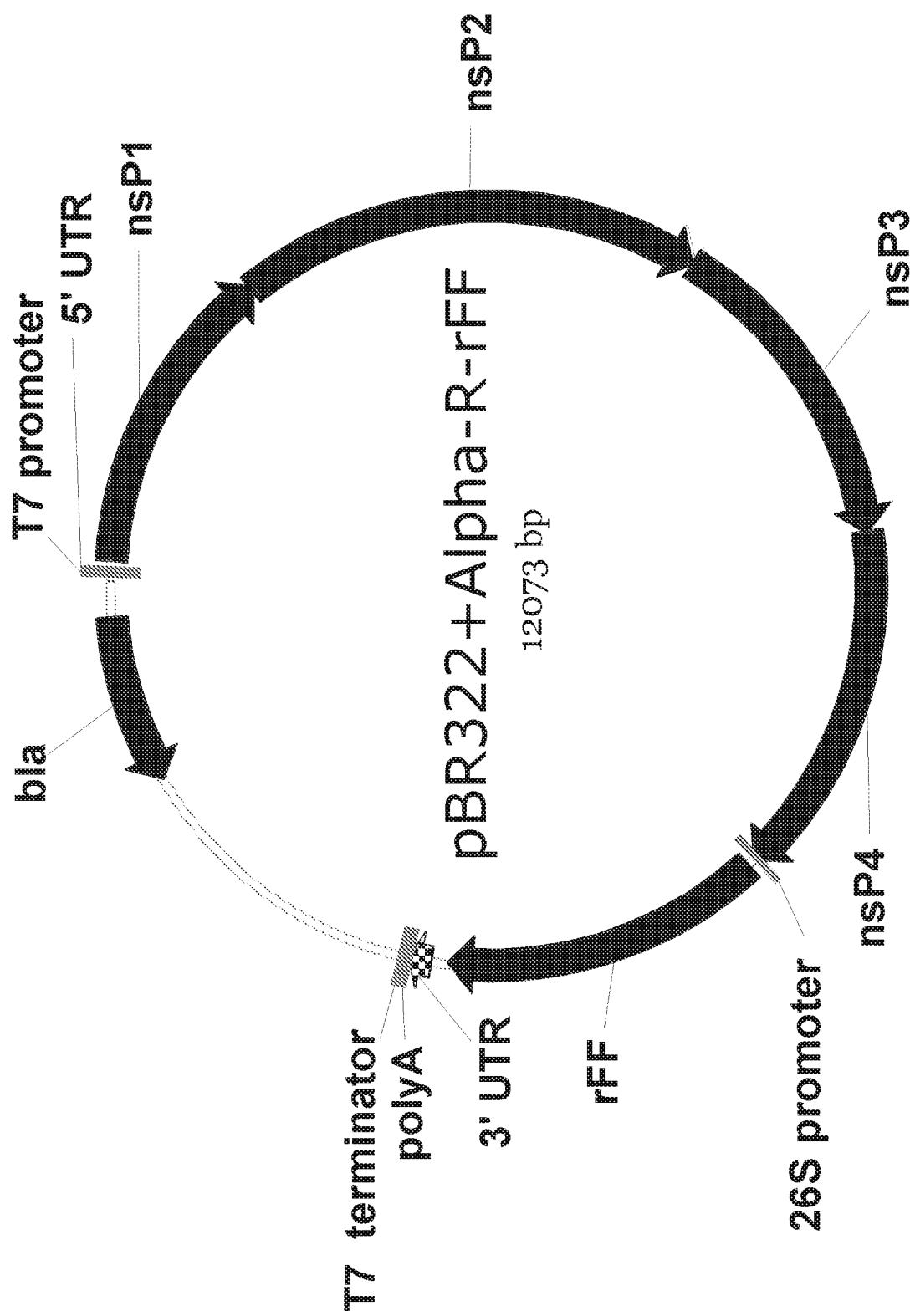


FIG. 3A

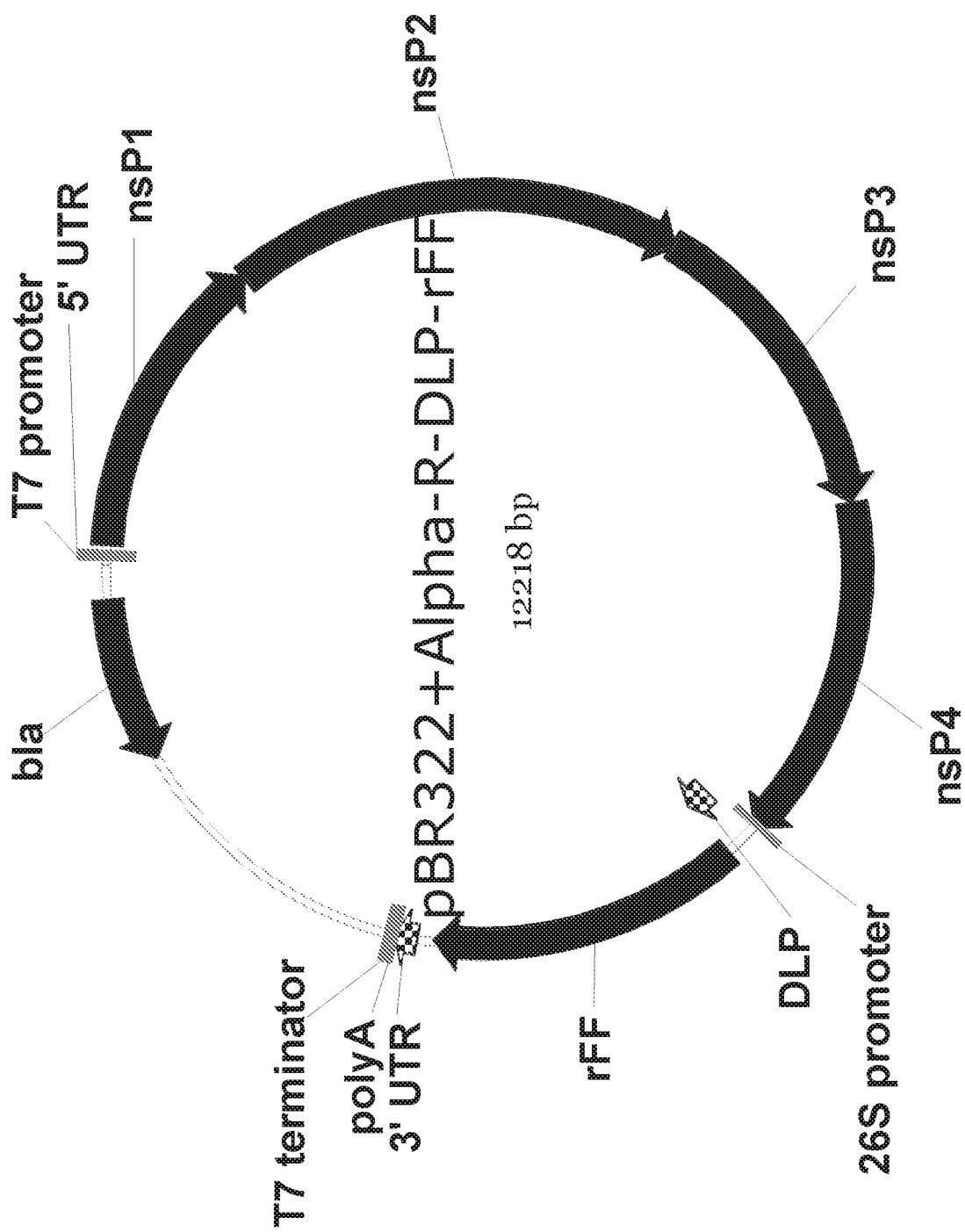


FIG. 3B

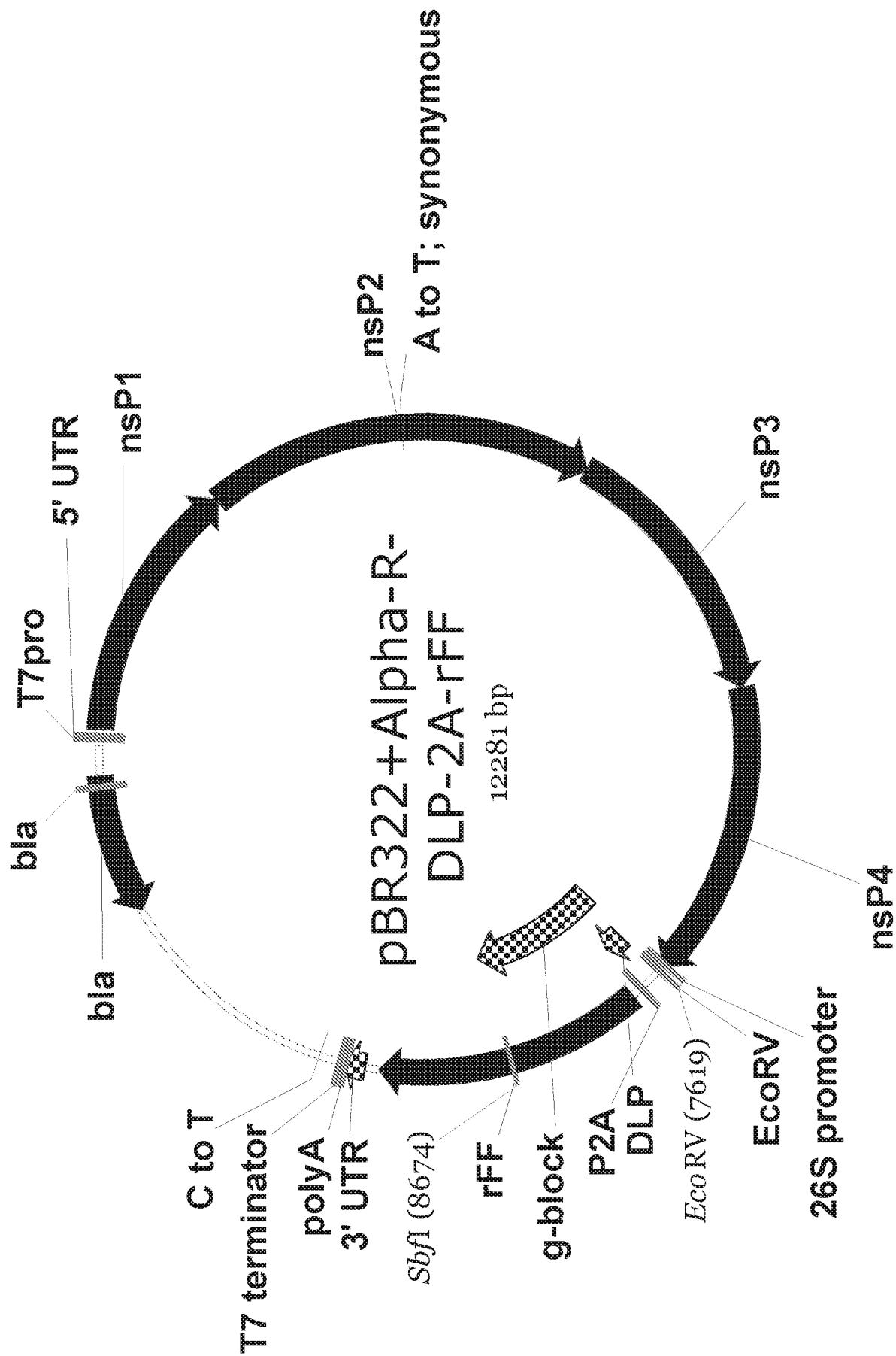


FIG. 3C

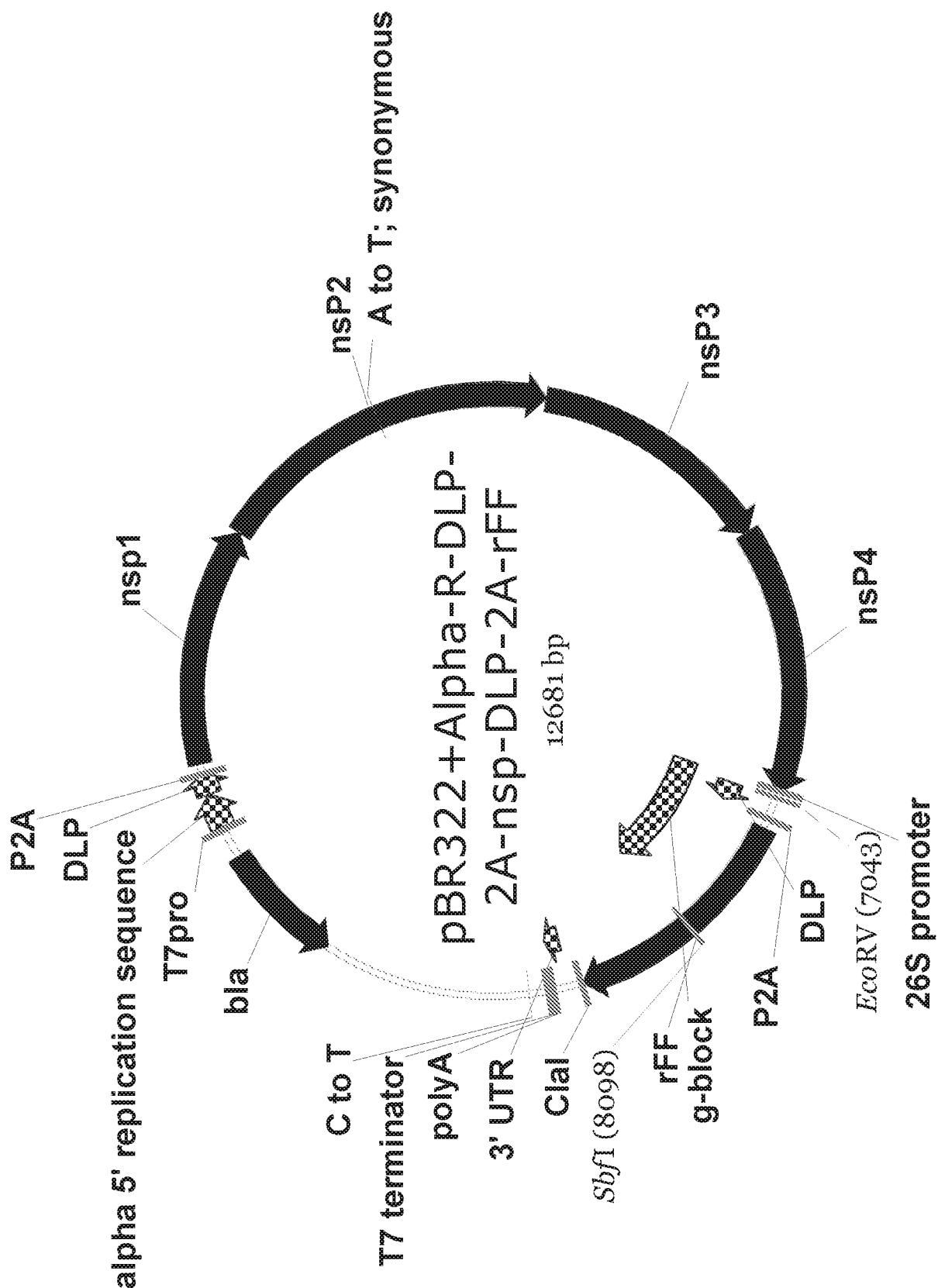


FIG. 3D

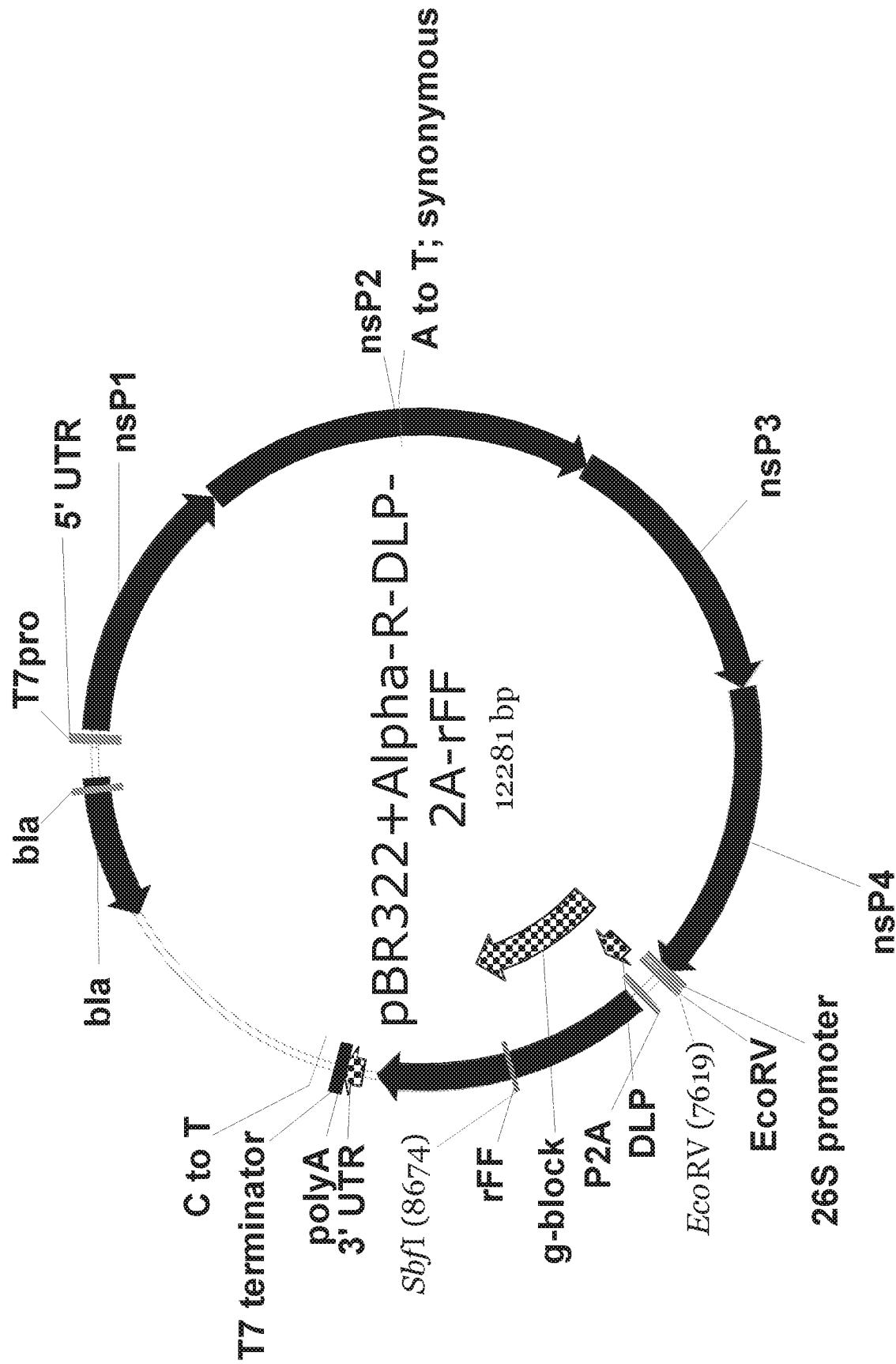


FIG. 4A

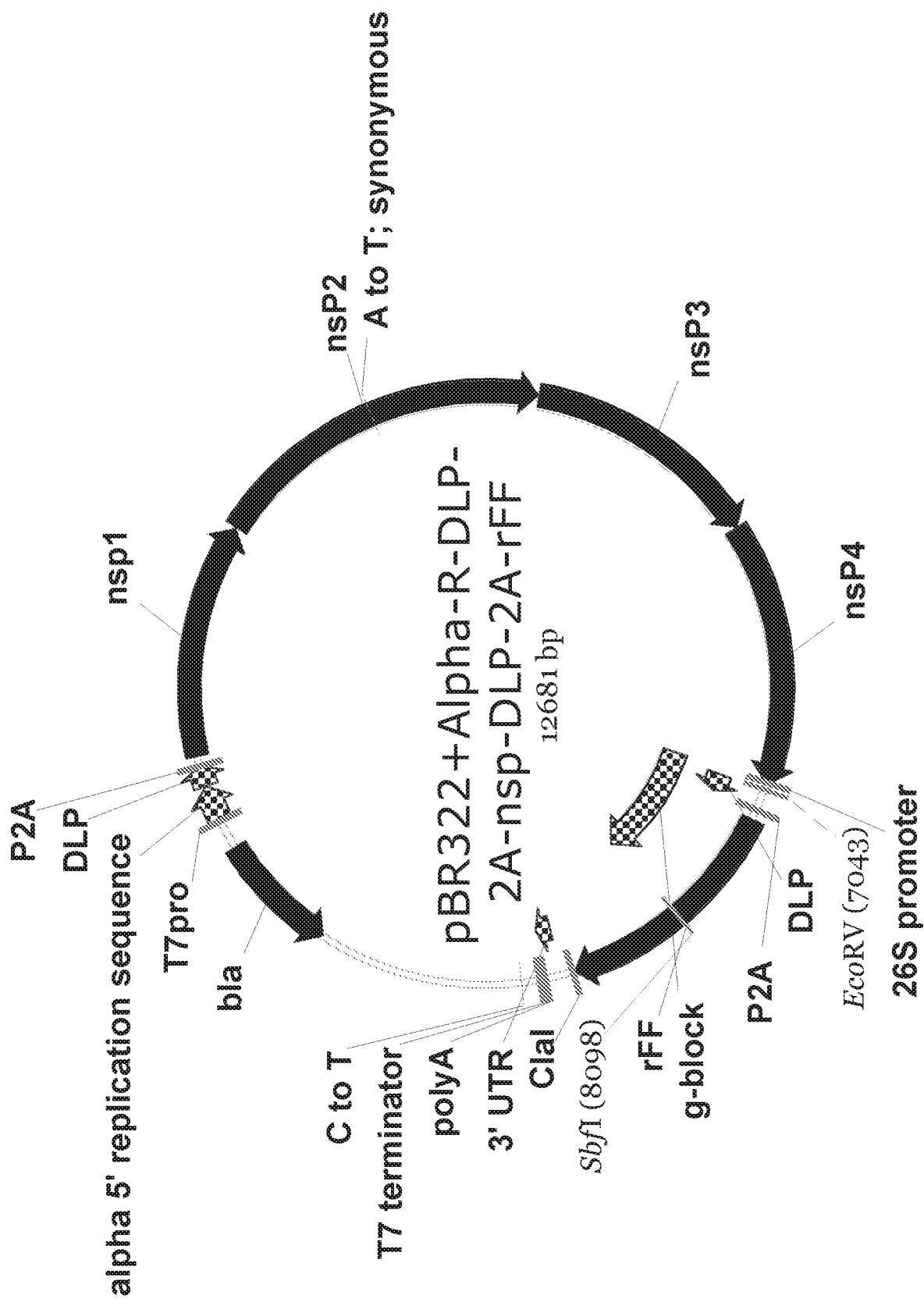


FIG. 4B

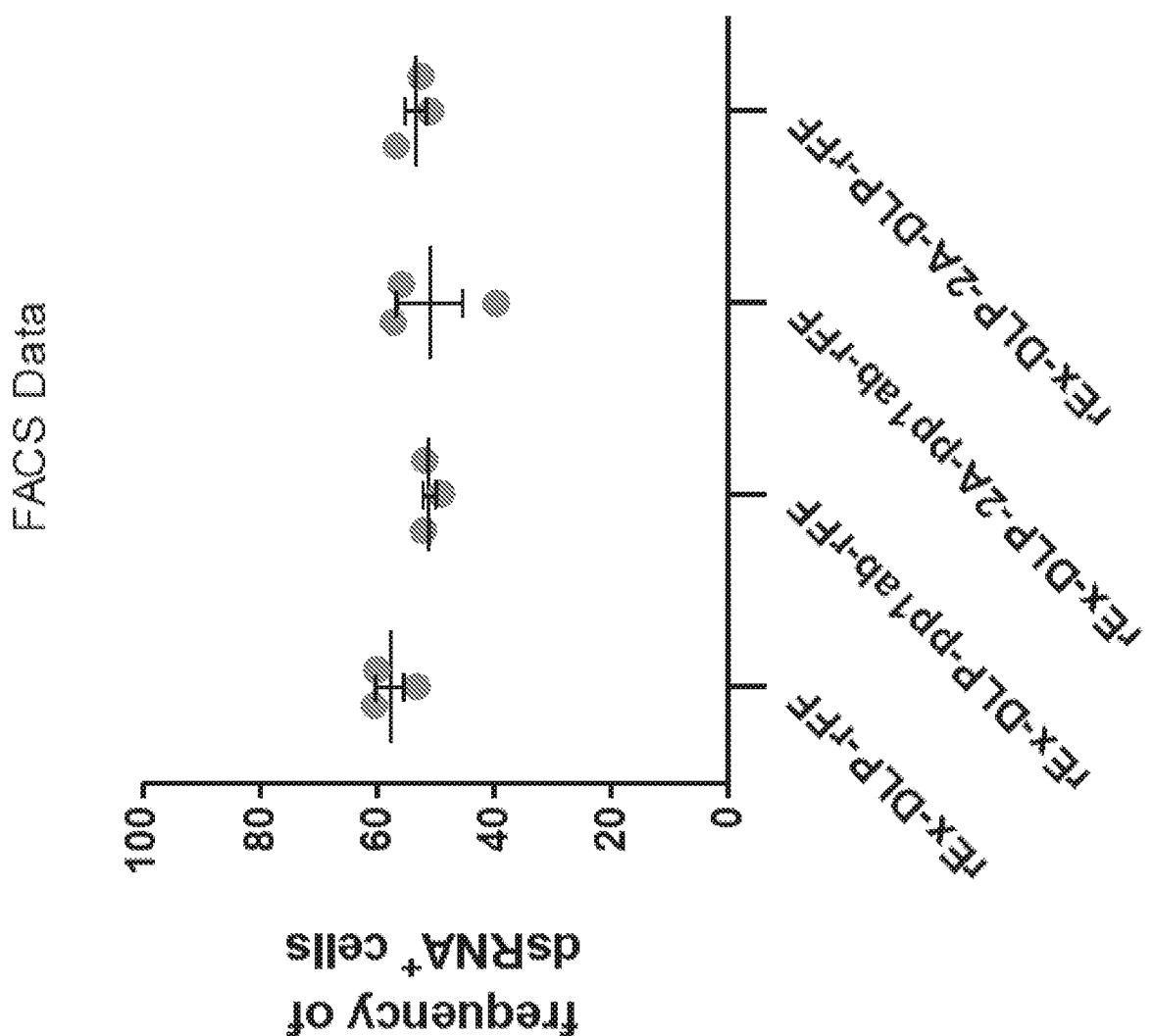


FIG. 5A

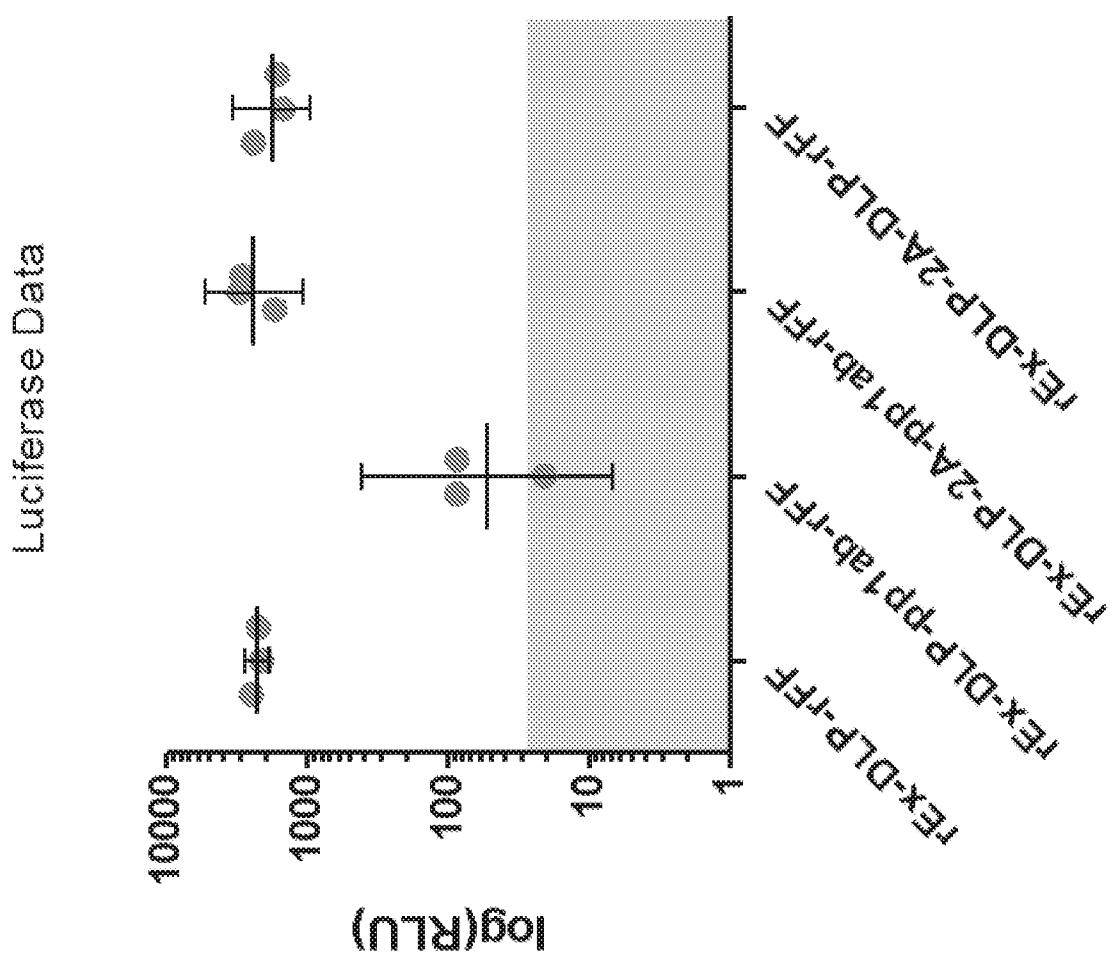


FIG. 5B

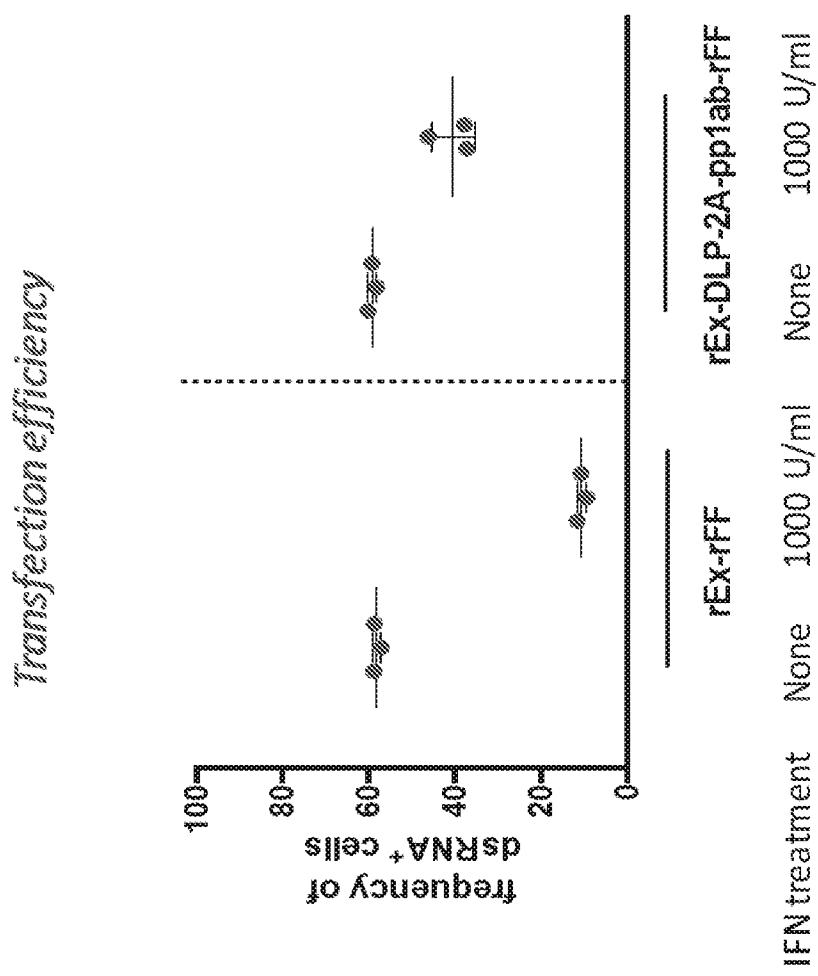


FIG. 6A

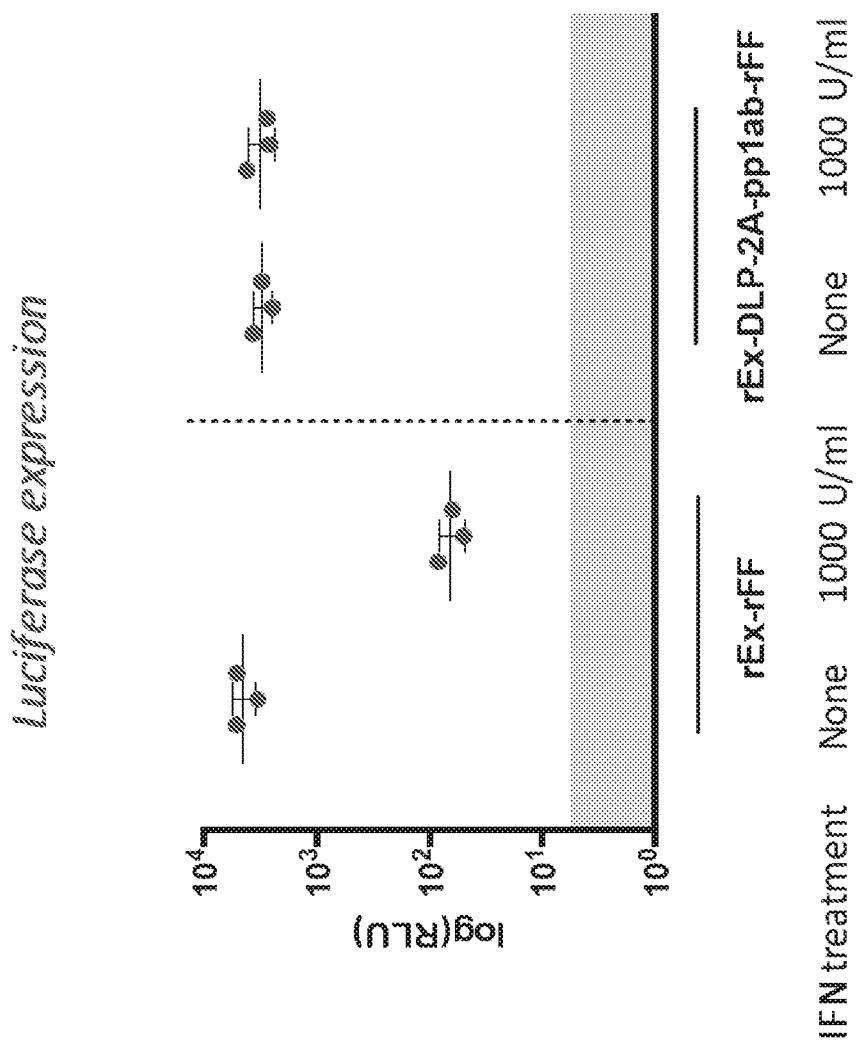


FIG. 6B

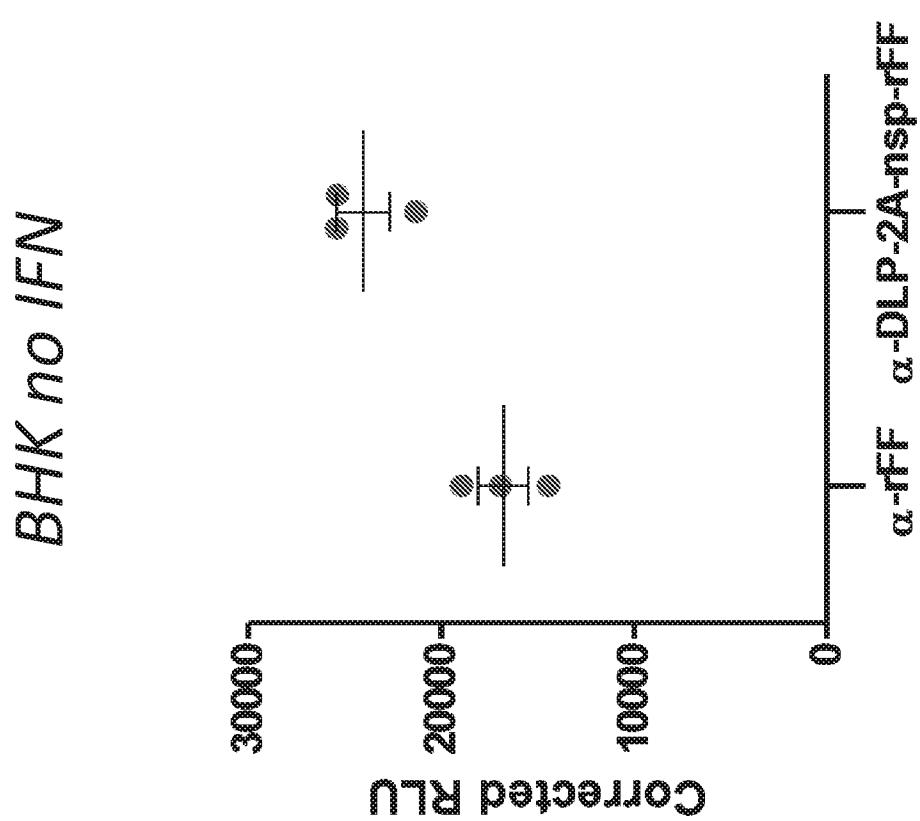


FIG. 7A

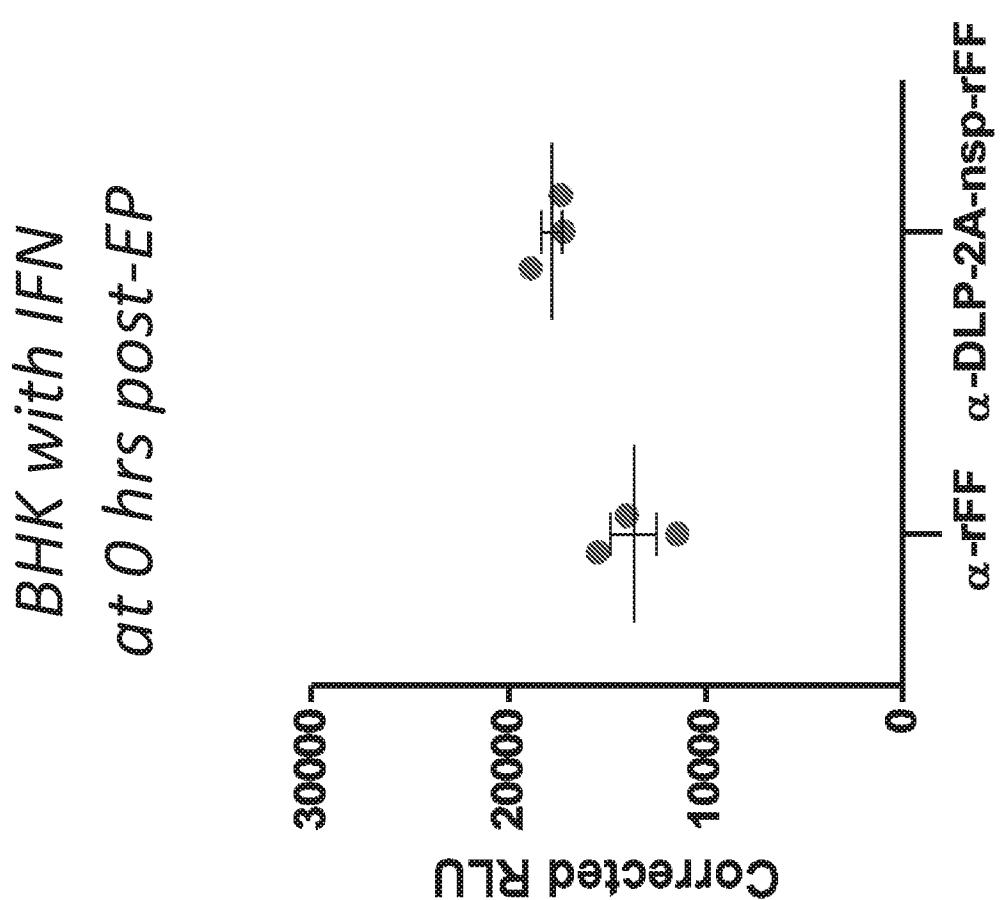


FIG. 7B

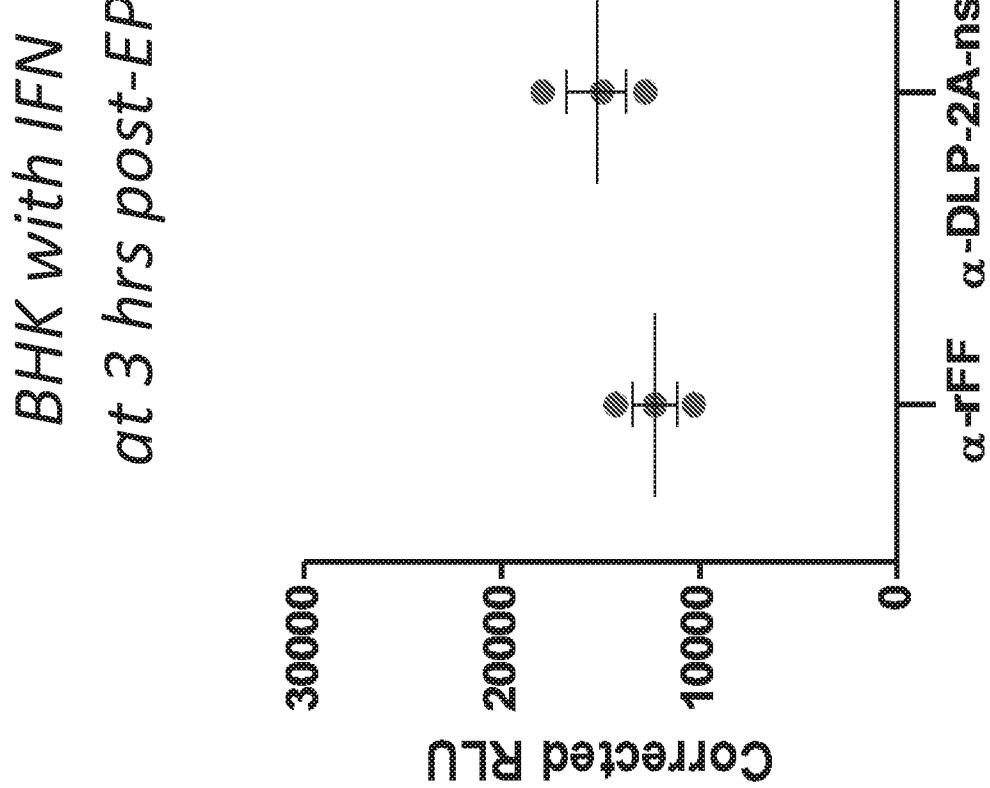
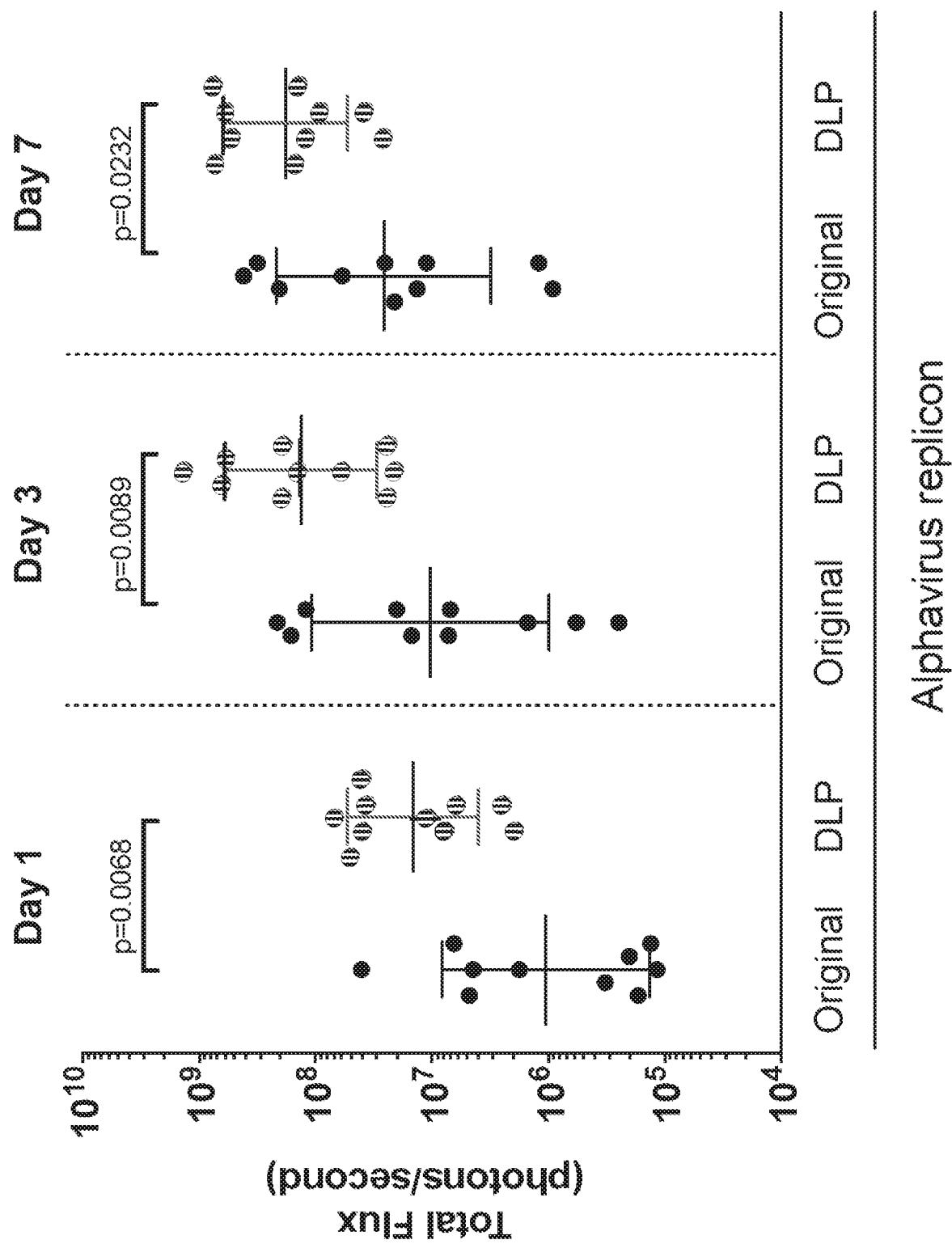
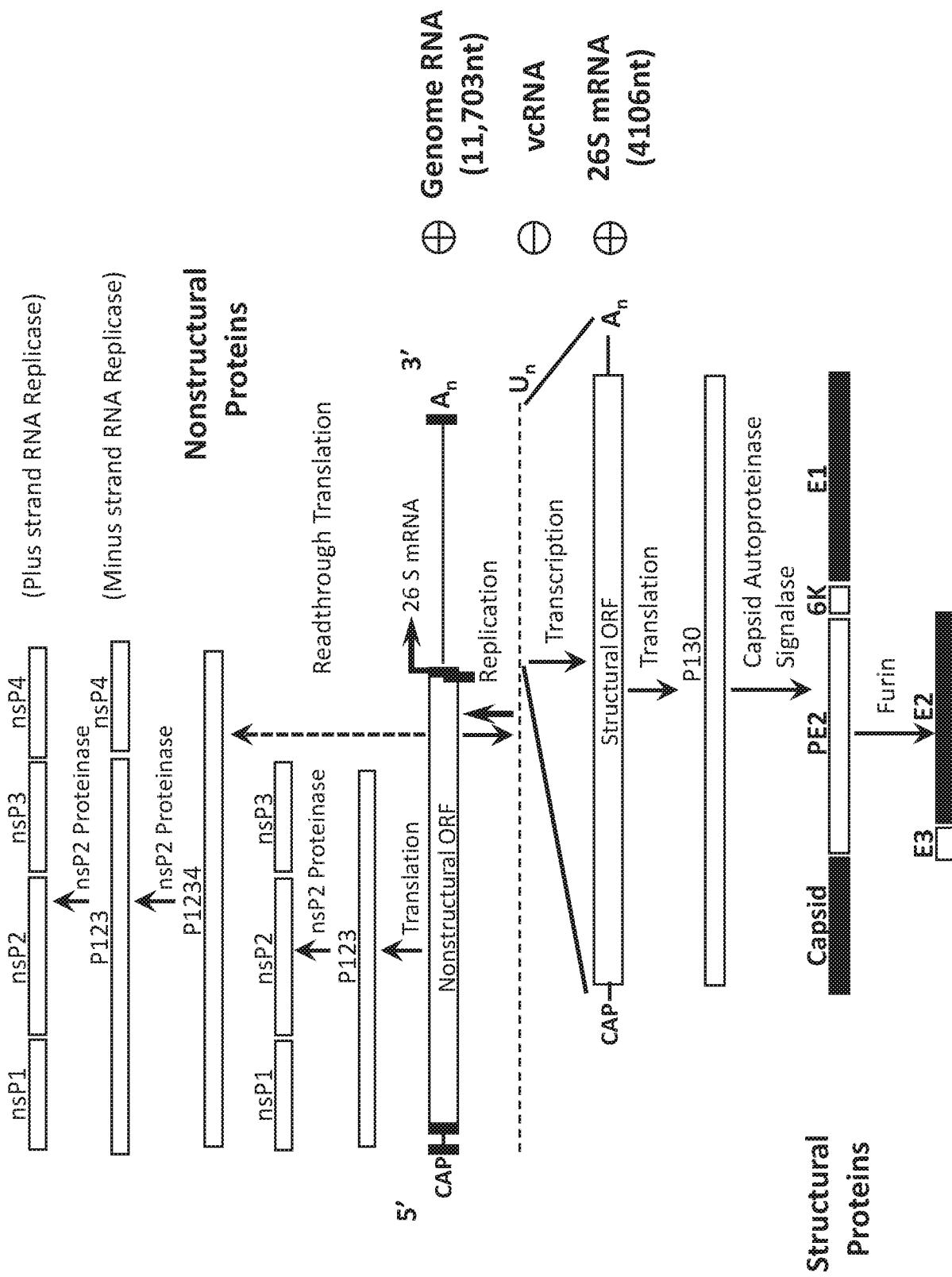




FIG. 7C

Adapted from Strauss *et al.*, 1994

FIG. 9

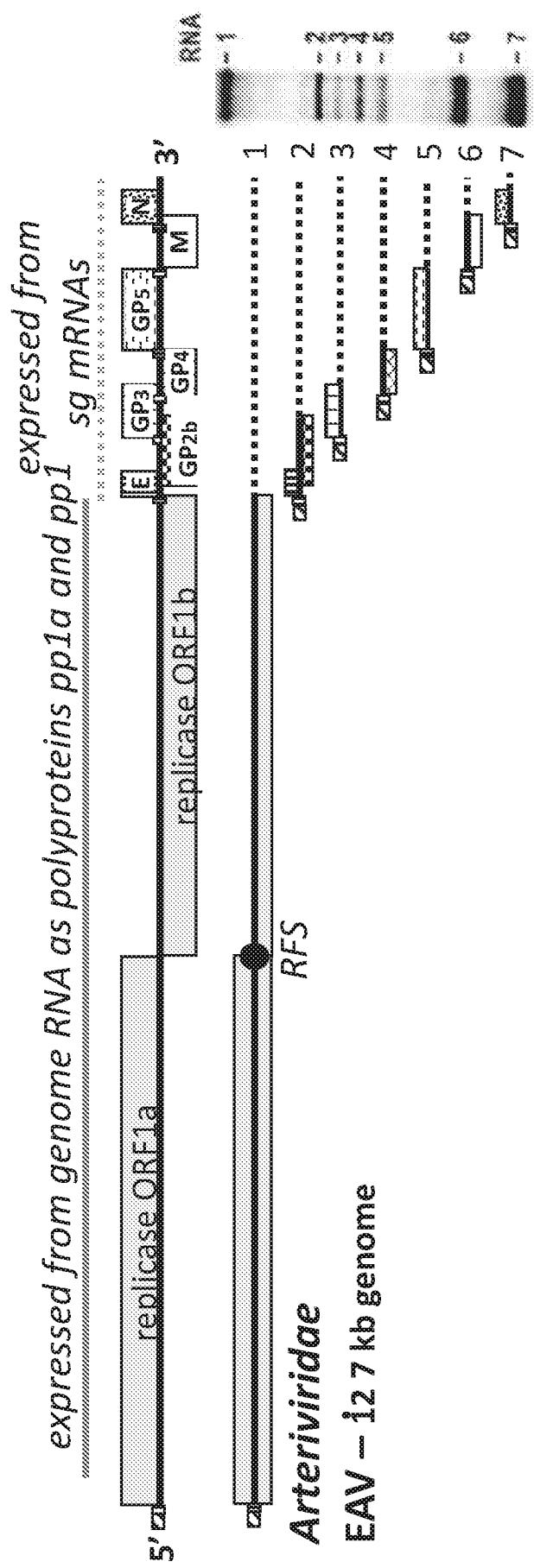
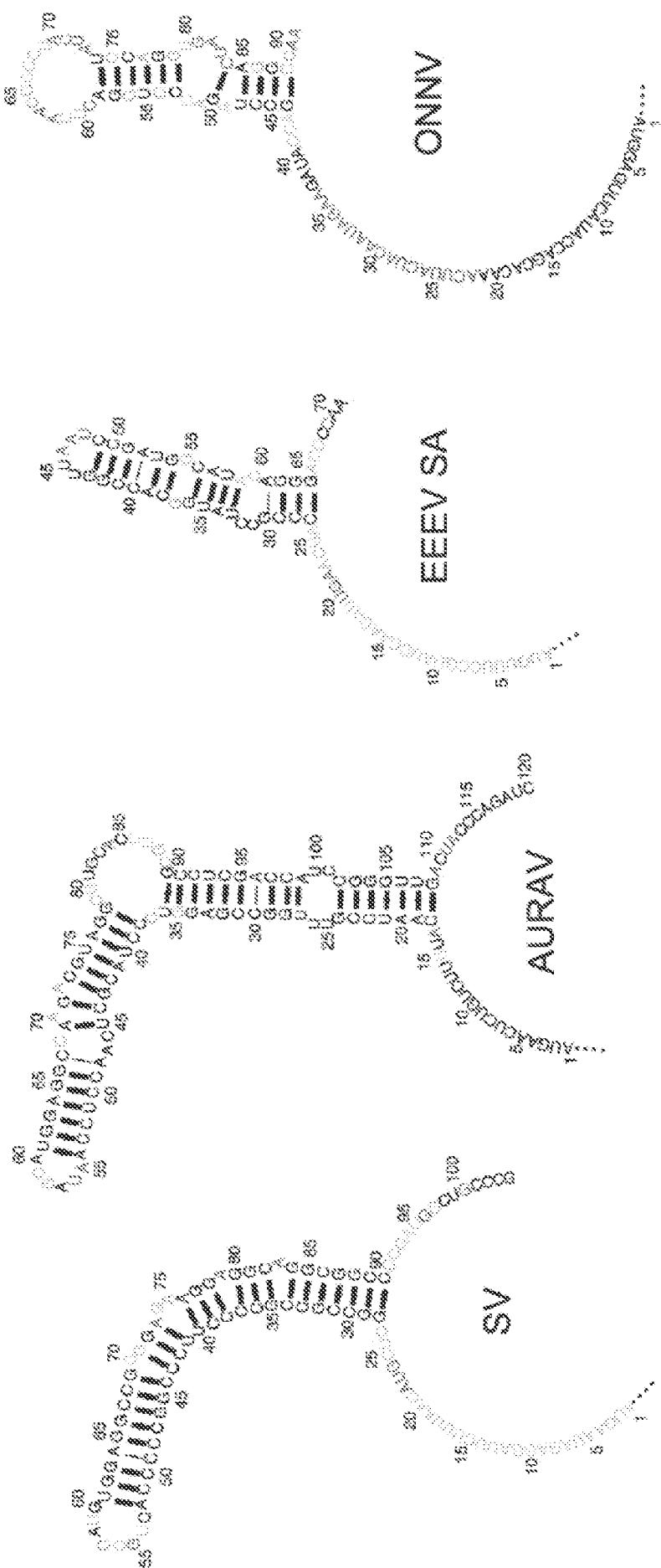
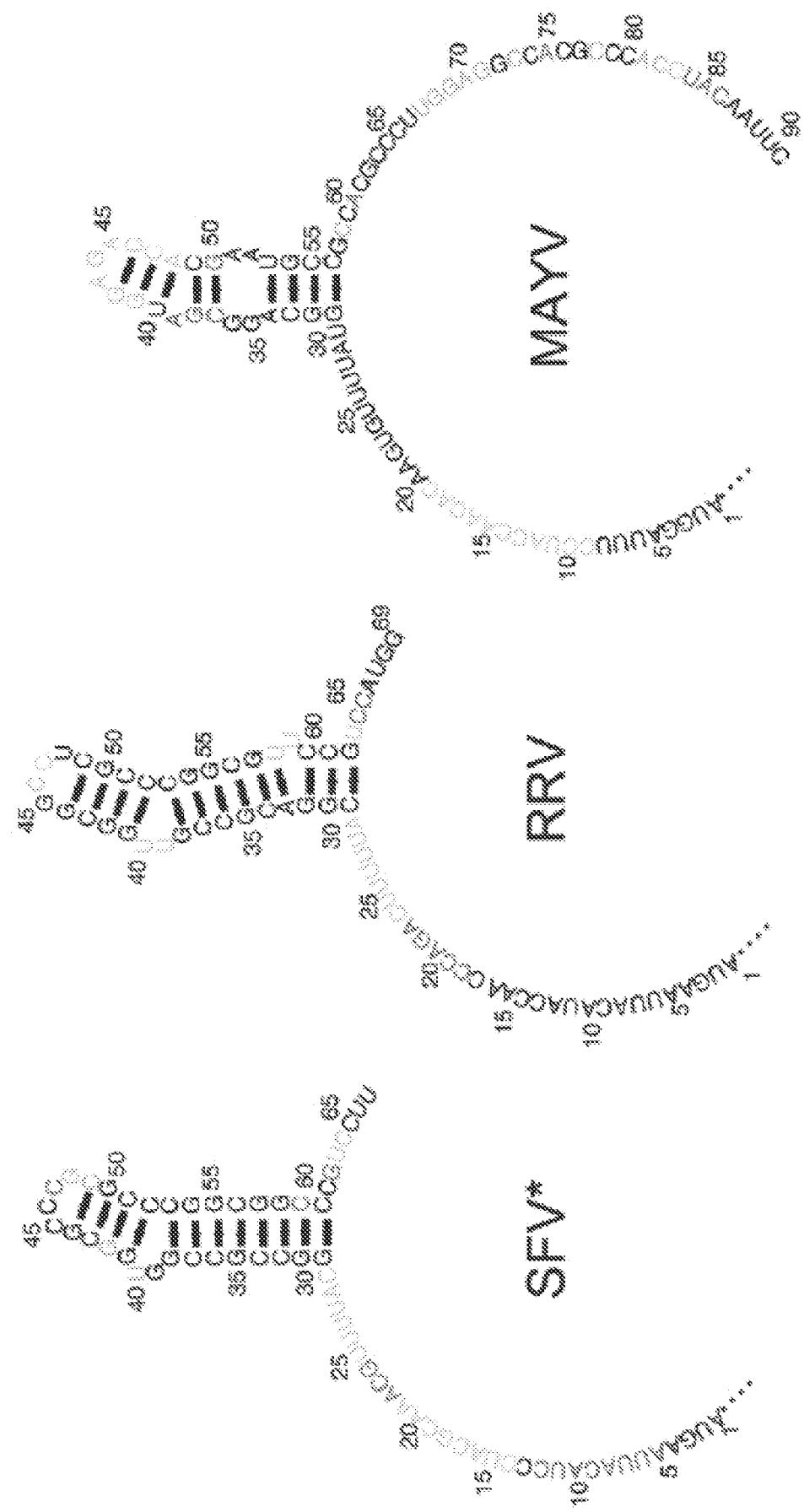



FIG. 10

Adopted from Toribio *et al.* 2016


SEQ ID NO: 49

SEQ ID NO: 48

SEQ ID NO: 47

SEQ ID NO: 46

FIG. 11A

Adopted from Toribio *et al.* 2016

FIG. 11B

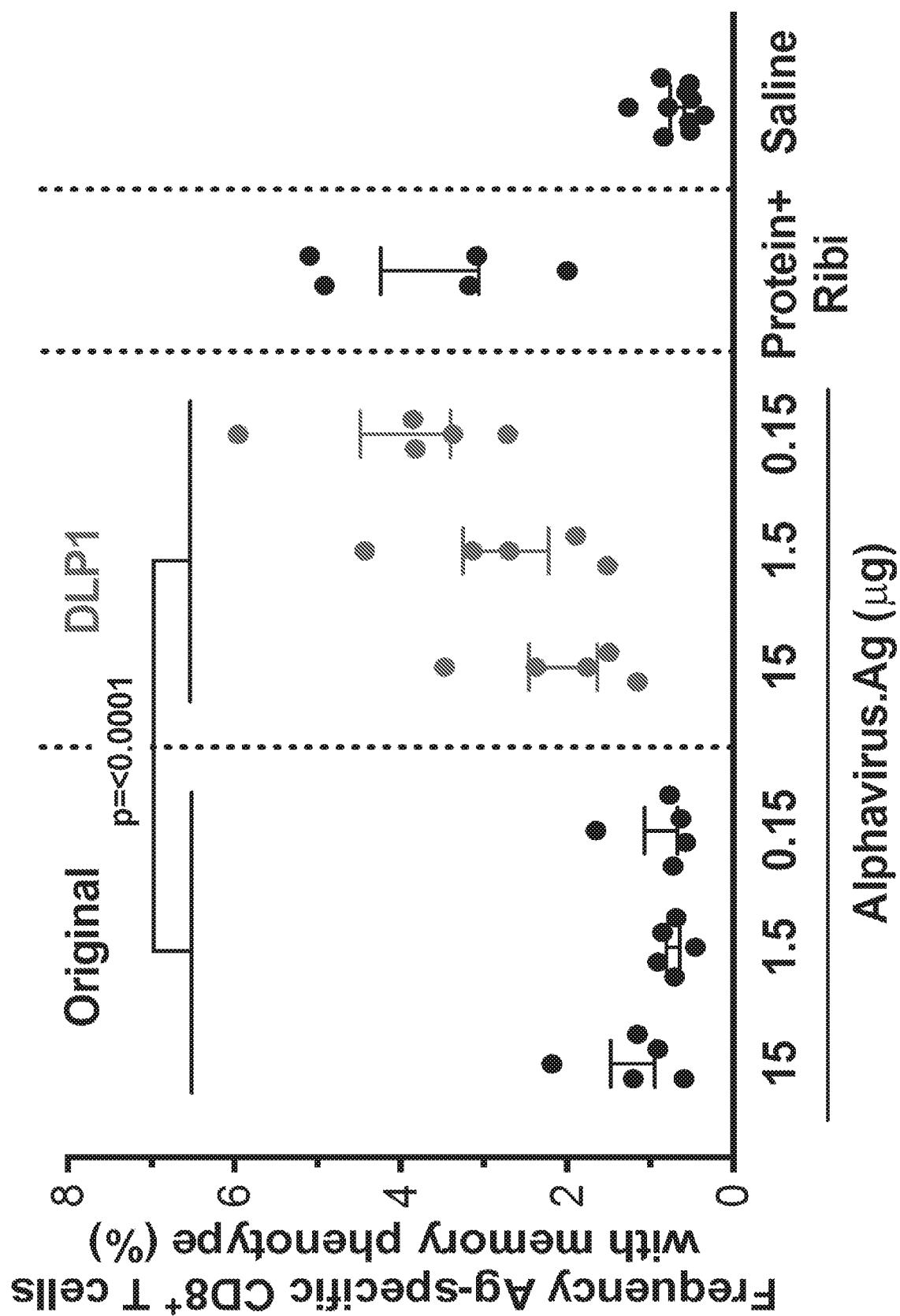


FIG. 12A

FIG. 12B

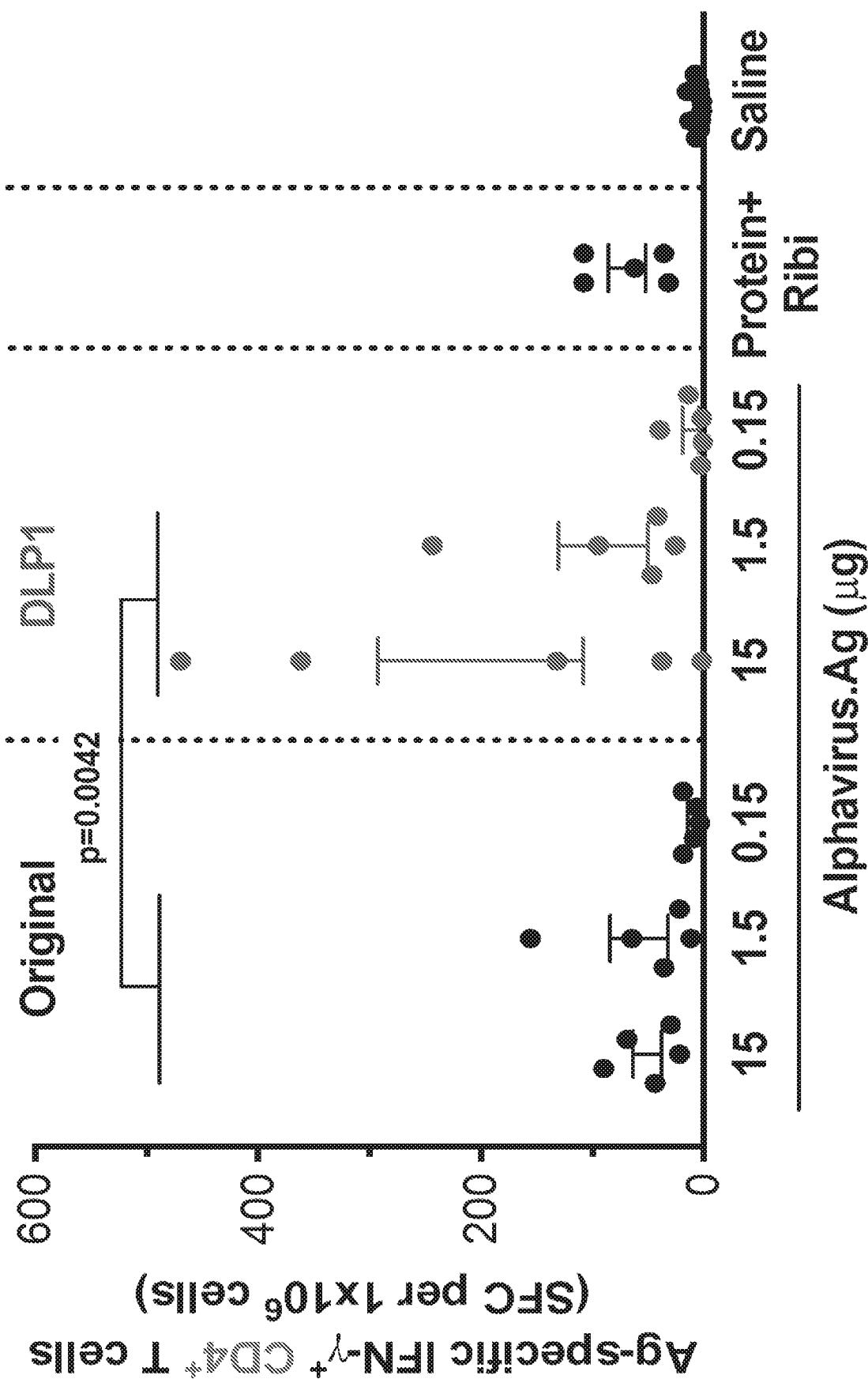


FIG. 12C

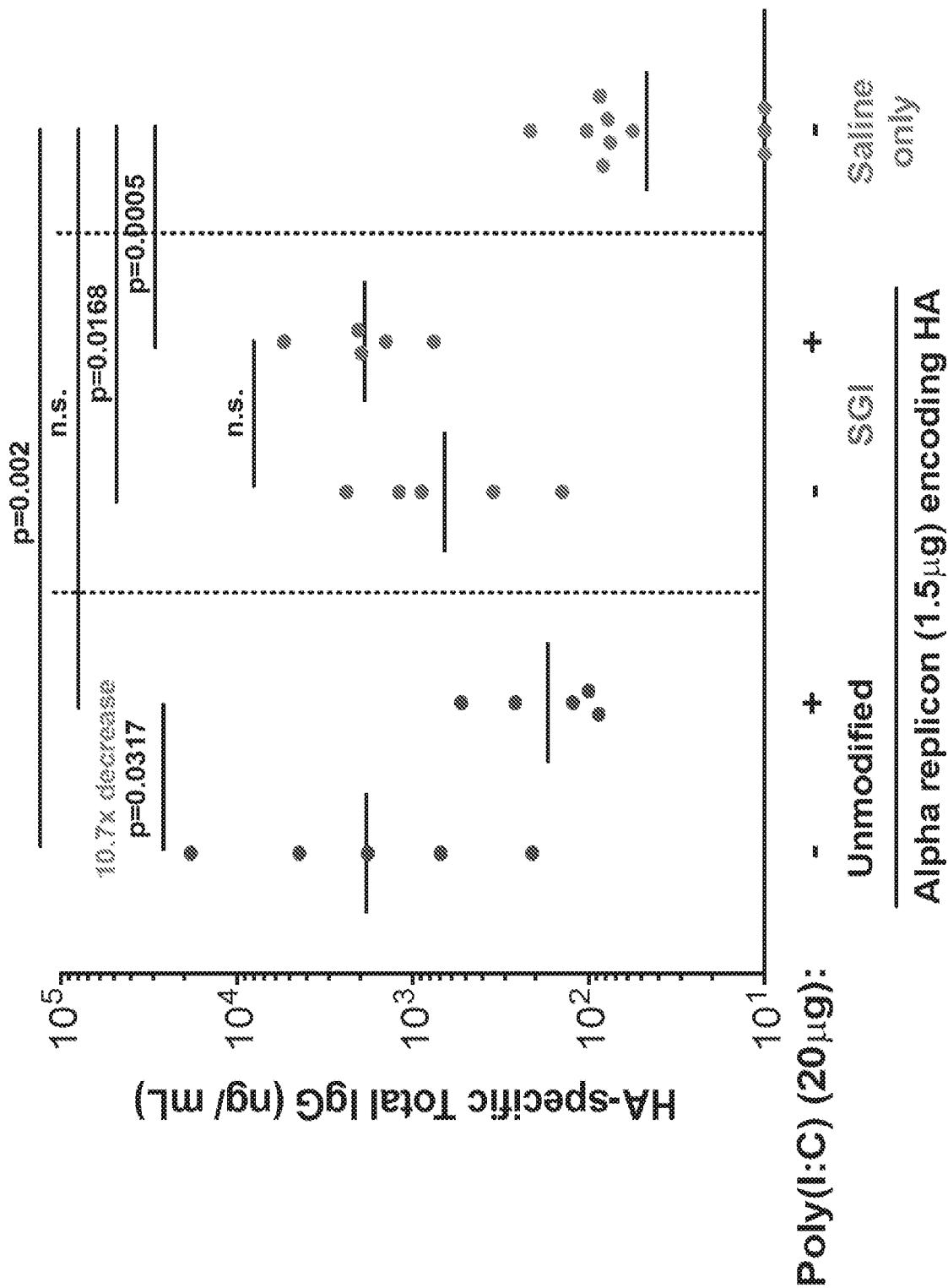


FIG. 13

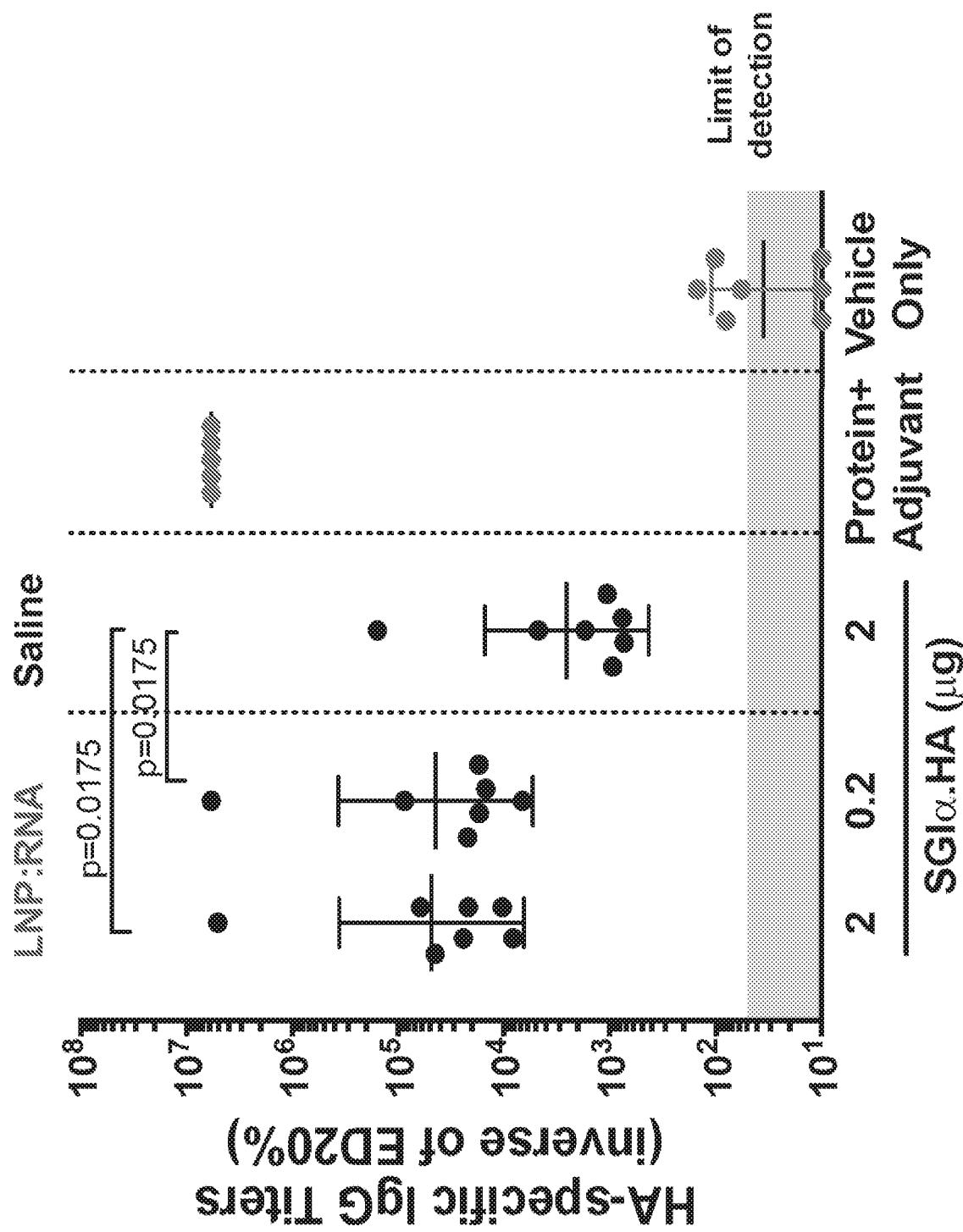


FIG. 1A

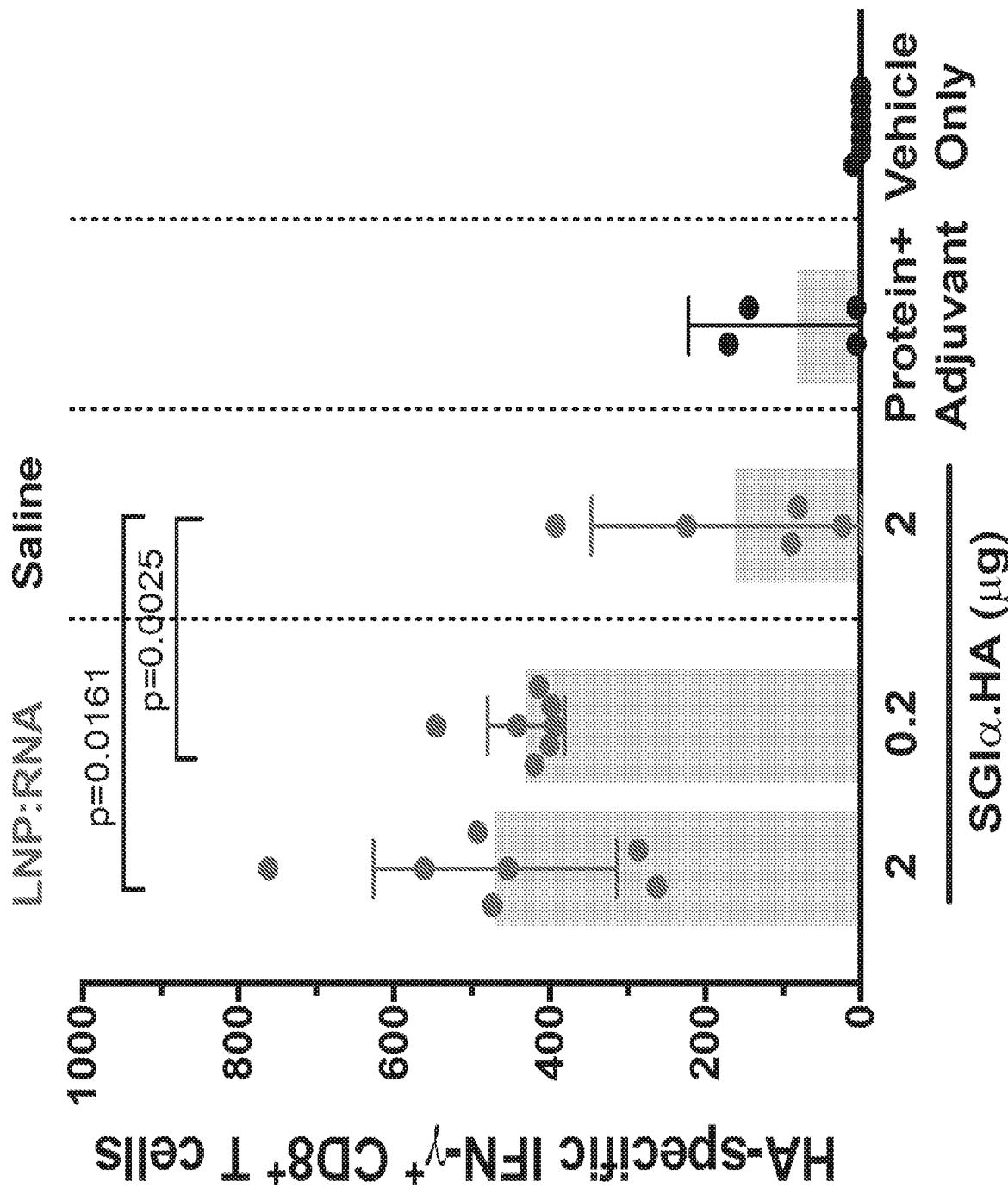
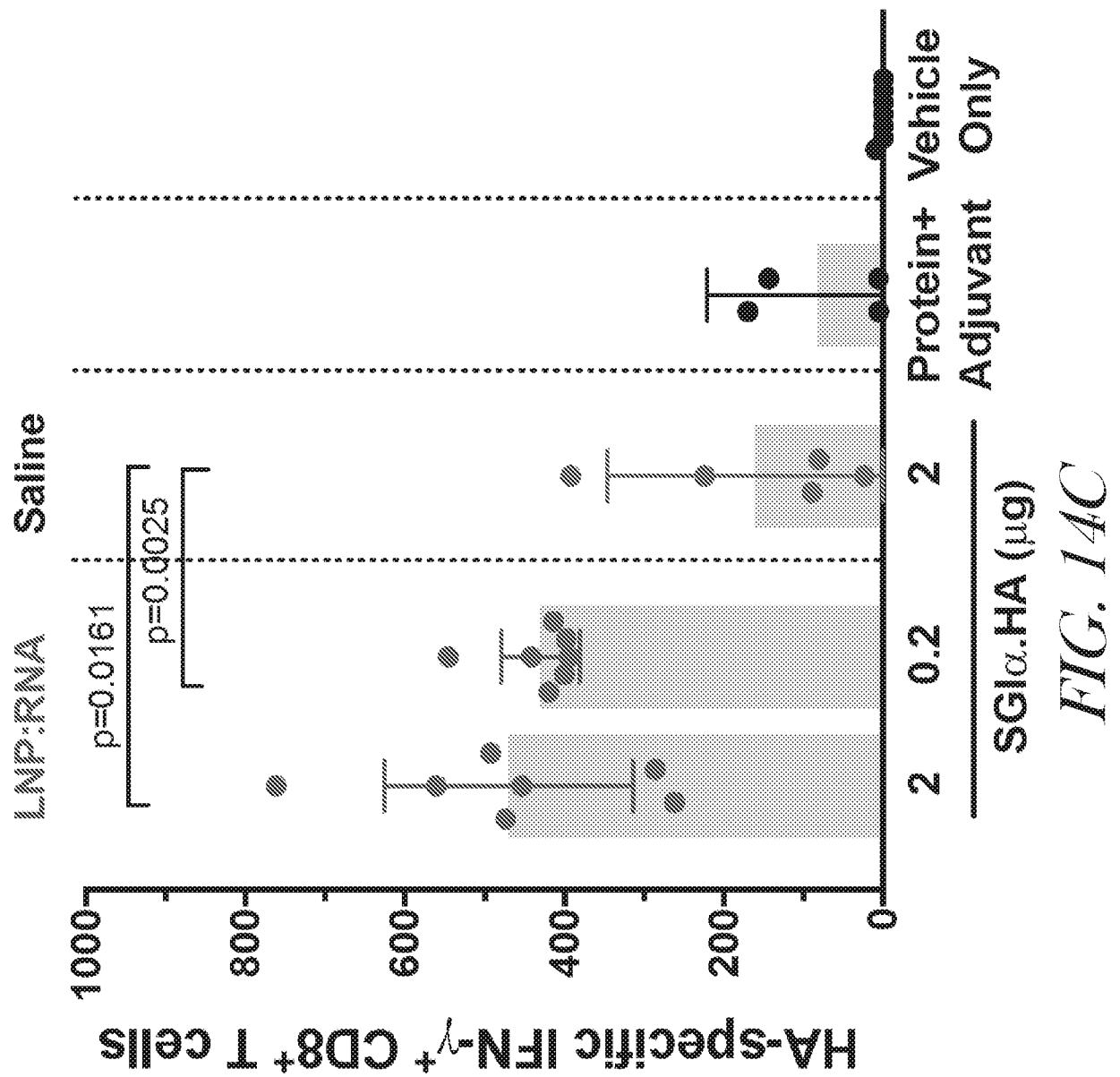



FIG. 14B



FIG. 15

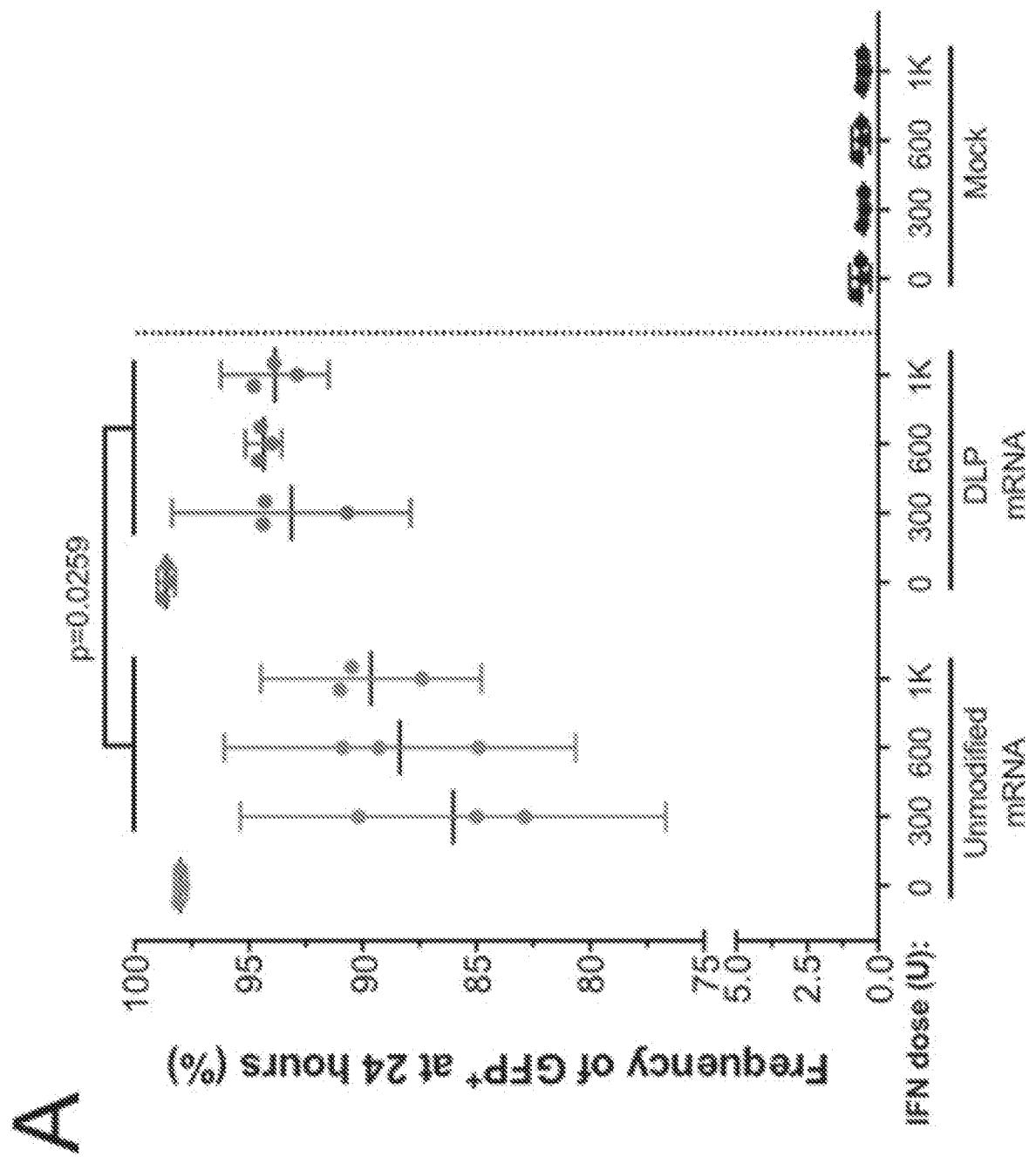


FIG. 16A

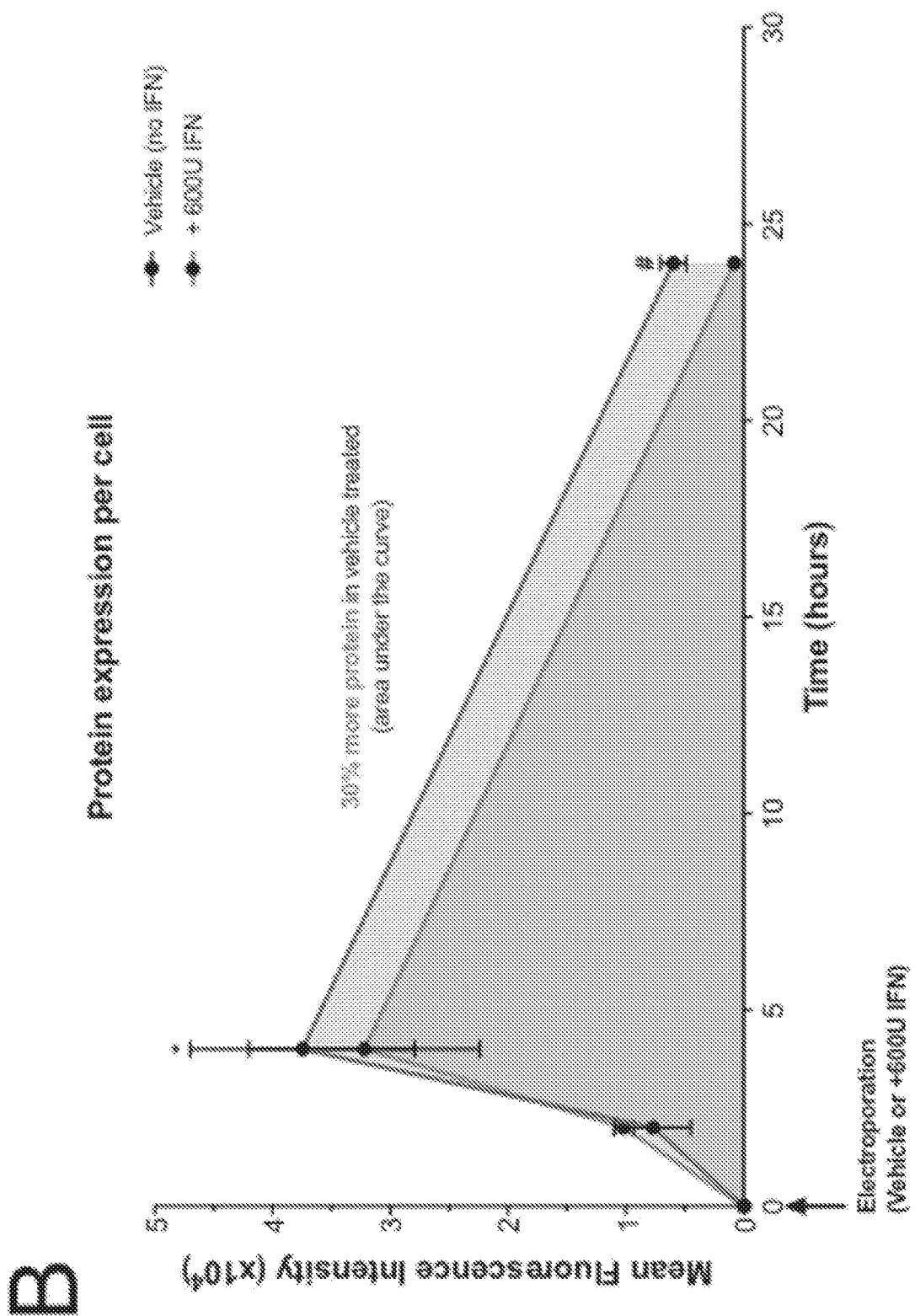


FIG. 16B

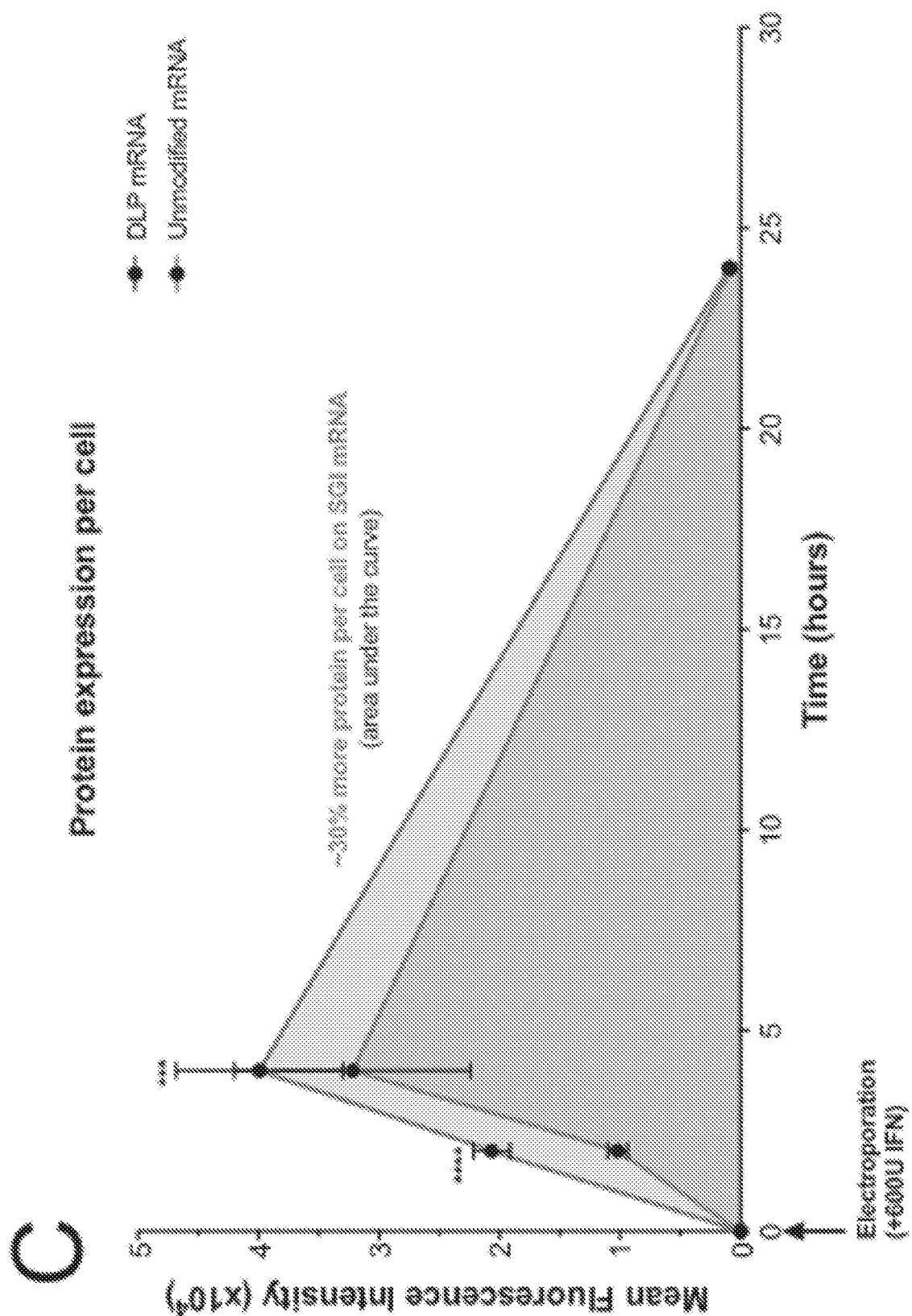


FIG. 16C

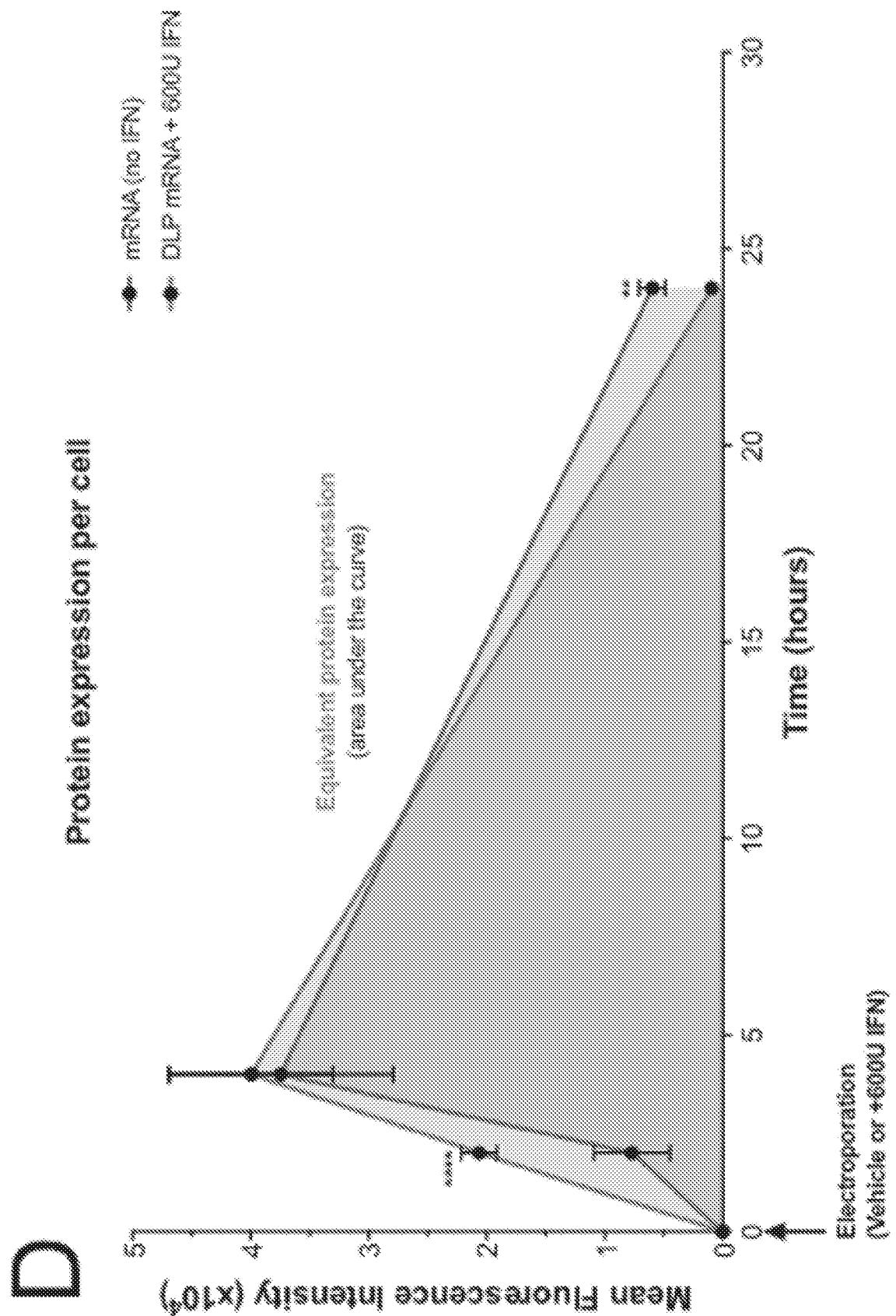


FIG. 16D

SEQUENCE LISTING

<110> SYNTHETIC GENOMICS INC

<120> COMPOSITIONS AND METHODS FOR ENHANCING GENE EXPRESSION

<130> SGI.012WO

<150> 62/430,250

<151> 2016-12-05

<150> 62/486,361

<151> 2017-04-17

<150> 62/587,954

<151> 2017-11-17

<160> 52

<170> PatentIn version 3.5

<210> 1

<211> 145

<212> DNA

<213> Sindbis virus

<400> 1

atagtcagca tagtacattt catctgacta atactacaac accaccacca tgaatagagg 60

attctttaac atgctcggcc gccgccccctt cccggccccc actgccatgt ggaggccg 120

gagaaggagg caggcggccc cgatg 145

<210> 2

<211> 480

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic polynucleotide

<400> 2

gctcgaagtg tgtatggtgc catatacggc tcaccacca atacactgca agaattacta 60

ttcttgtggg cccctctcg 120

taaatccctag agggcttcc tctcggttatt gcgagattcg

tcgttagata acggcaagtt cccttctta ctatcctatt ttcatcttgc 180

gtcactgcct acgtcgctcg 240

tctctatcaa ctacccttgc gacttaggca accttctccg

ctactggatt tggagggagt 300

tttggtaggg actggccct ggacttaccc gacgcttgc

agcatagtc 360

gcatagtc aacatgctcg 420

gccgcccgccttccccc cccactgcca tgtggaggcc

gcggagaagg 480

<210> 3

<211> 66

```

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<220>
<221> misc_feature
<223> 2A proteolytic cleavage site

<400> 3
ggaaggcggag ctactaactt cagcctgctg aagcaggctg gagacgtgga ggagaaccct      60
ggacct                                         66

<210> 4
<211> 1749
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<220>
<221> misc_feature
<223> g-block for construction of rEx-DLP-rFF

<400> 4
cagaggcgca ggacttgatc catggccac ctacagcatg ccacctggc caagaaattg      60
acctttggc caatgagggc ctcgaatatt acaaggaagt caacctgctg tacacacacg      120
tccccatcaa ggtatggta atacacagtt accctaattt tggccctgcc tgtggctggg      180
aaaagcaatc caacaaaatt tcgtgcctcc cgagagtggc acaaaaatttggcttaccact      240
attccccaga cttaccagga ttttgccttcc taccaaaaaga actcgctgag cattggcccg      300
tagtgtccaa tgatagatac cgcatttgc tgcaattttt cttacagcaa gtatgtgaac      360
tcagtaaacc gtgctcagcg ggctatattgg ttggacaatc gggtttcgat cagacgcctg      420
gtgtgacatc ttactggctt actgaatggg tcgacggcaa agcgcgtgt ctaccagatt      480
ccttatttctc gtccggtagg ttccggacta acagccgcgc tttccctcgat gaagccgagg      540
aaaagtttgc cggccgtcac cctcatgcct gtttggaga aattaataag tccaccgtgg      600
gaggatccca cttcatctt tcccaatatt taccaccatt gctaccgc gacgctgttgc      660
ccctggtagg tgcttcattt gctggaaag ctgctaaagc tgcttcagc gttgttgatg      720
tctatgctcc atcatttgc ccttatctac accctgagac actgagtcgc gtgtacaaga      780
ttatgatcga tttcaagccg tgtaggctt tgggtgtggaa aacgcgcacc ttttatgtcc      840
aagagggtgt tgatgcagtt acatcagcac tagcagctgt gtccaaactc atcaaagtgc      900
cgcccaatga gcctgtttca ttccatgtgg catcaggta cagaaccaac gcgctggtag      960
cgccccaggc taaaatttca attggagcct acgcccggca gtgggcactg tcaactgaac      1020
cgccacctgc tggttatgcg atcgtgcggc gatataattgt aaagaggctc ctcagctcaa      1080

```

cagaagtgtt cttgtgccgc aggggtgtt g tgtcttccac ctcagtgcag accatttgt	1140
cactagaggg atgtaaacct ctgttcaact tcttacaaat tggttcagtc attgggccccg	1200
tgtgactcta gagtgacact gttccatcc cccgctcaac tactcaggtt gtgggtcgcg	1260
gcaacgggta caccgcagtt ggtaacaago ttgtcgatag tcagcatagt acatttcattc	1320
tgactaatac tacaacacca ccaccatgaa tagaggattc tttaacatgc tcggccgccc	1380
cccccttcccg gcccccaactg ccatgtggag gccgcggaga aggaggcagg cggcccccgt	1440
gatggaaaat atggaaaacg acgagaacat cgtgggggc cccaagccct tctacccat	1500
cgaggaaggc agcgccggca cccagctgcg gaagtacatg gaaagatacg ccaagctggg	1560
cgccattgcc ttcaccaacg ccgtgaccgg cgtggactac agtacgcgg agtacctgga	1620
aaagagctgc tgcctgggca aggctctgca gaactacggc ctgggtggtgg acggccggat	1680
cgcctgtgc agcgagaact gcgaggaatt cttcatcccc gtgatgcgg gcctgttcat	1740
cggcgtggg	1749

<210> 5
 <211> 67
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> primer ppl-a-DLP-F

<220>
 <221> misc_feature
 <223> RP114

<400> 5
 gccatgttgg aggcgccggag aaggaggcag gggccccga tgatggcaac cttctccgct 60
 actggat 67

<210> 6
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> primer pBR322-3'SrfI-R

<220>
 <221> misc_feature
 <223> RP115

<400> 6		
acaatgttgc ctccccacatc tgcaa		25
<210> 7		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic polynucleotide		
<220>		
<221> misc_feature		
<223> primer pBR322-3'SrfI-F		
<220>		
<221> misc_feature		
<223> RP116		
<400> 7		
gggtcacaag gtagtcgccc tggtt		25
<210> 8		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic polynucleotide		
<220>		
<221> misc_feature		
<223> primer pBR322-bla-R		
<220>		
<221> misc_feature		
<223> RP117		
<400> 8		
cgtcagggtgg cactttcgg ggaa		24
<210> 9		
<211> 70		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic polynucleotide		
<220>		
<221> misc_feature		
<223> primer ppl-a-DLP-2A-F		
<400> 9		
agcctgctga agcaggctgg agacgtggag gagaaccctg gacctatggc aaccttctcc		60
gctactggat		70
<210> 10		
<211> 589		

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> g-block for rEx-DLP-pplab-rFF

 <400> 10

aaacaaatag	gggtccgcg	cacattccc	cgaaaagtgc	cacctgacgt	ctaagaaacc	60
attattatca	tgacattaag	catccgcctt	tcgtttatt	tgaccatgtt	ggtatgtaat	120
acgactcact	atagctcgaa	gtgtgtatgg	tgccatatac	ggctcaccac	catatacact	180
gcaagaatta	ctattcttgt	gggcccctct	cggtaaatcc	tagagggctt	tcctctcggt	240
attgcgagat	tcgtcgtag	ataacggcaa	gttcccttcc	ttactatcct	attttcatct	300
tgtggcttga	cgggtcactg	cctacgtcgt	cgatctctat	caactaccct	tgcgacttag	360
gcaacccctct	ccgctactgg	atttggaggg	agttttgtta	gggactggtc	cctggactta	420
cccgacgctt	gtgagcatag	tcagcatagt	acatttcatc	tgactaatac	tacaacacca	480
ccaccatgaa	tagaggattc	tttaacatgc	tcggccgcgg	cccctcccg	gccccactg	540
ccatgtggag	gccgcggaga	aggaggcagg	cggcccccgt	gatggcaac		589

<210> 11
 <211> 655
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> g-block for rEx-DLP-2A-pplab-rFF

 <400> 11

aaacaaatag	gggtccgcg	cacattccc	cgaaaagtgc	cacctgacgt	ctaagaaacc	60
attattatca	tgacattaag	catccgcctt	tcgtttatt	tgaccatgtt	ggtatgtaat	120
acgactcact	atagctcgaa	gtgtgtatgg	tgccatatac	ggctcaccac	catatacact	180
gcaagaatta	ctattcttgt	gggcccctct	cggtaaatcc	tagagggctt	tcctctcggt	240
attgcgagat	tcgtcgtag	ataacggcaa	gttcccttcc	ttactatcct	attttcatct	300
tgtggcttga	cgggtcactg	cctacgtcgt	cgatctctat	caactaccct	tgcgacttag	360
gcaacccctct	ccgctactgg	atttggaggg	agttttgtta	gggactggtc	cctggactta	420
cccgacgctt	gtgagcatag	tcagcatagt	acatttcatc	tgactaatac	tacaacacca	480
ccaccatgaa	tagaggattc	tttaacatgc	tcggccgcgg	cccctcccg	gccccactg	540
ccatgtggag	gccgcggaga	aggaggcagg	cggcccccgt	ggaagcgga	gctactaact	600

tcagcctgct gaagcaggct ggagacgtgg aggagaaccc tggacctatg gcaac	655
<210> 12	
<211> 655	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> g-block for rEx-DLP-2A-pplab-DLP-rFF	
<400> 12	
aaacaaatag gggttccgcg cacatttccc cgaaaagtgc cacctgacgt ctaagaaacc	60
attattatca tgacattaag catccgcctt tcgttttatt tgaccatgtt ggtatgtaat	120
acgactcact atagctcgaa gtgtgtatgg tgccatatac ggctcaccac catatacact	180
gcaagaatta ctattcttgt gggccctct cggtaaatcc tagaggcctt tcctctcggt	240
attgcgagat tcgtcgtagataacggcaa gttcccttc ttactatcct attttcatct	300
tgtggcttga cgggtcactg cctacgtcgt cgatctctat caactaccct tgcgacttag	360
gcaaccttct ccgctactgg atttggaggg agttttgtta gggactggc cctggactta	420
cccgacgctt gtgagcatag tcagcatagt acatttcattc tgactaatac tacaacacca	480
ccaccatgaa tagaggattc tttaacatgc tcggccgccc ccccttccc gccccactg	540
ccatgtggag gcccggaga aggaggcagg cggcccccgtat gggaaagcggaa gctactaact	600
tcagcctgct gaagcaggct ggagacgtgg aggagaaccc tggacctatg gcaac	655
<210> 13	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> primer DLP-pplab-screen-F	
<220>	
<221> misc_feature	
<223> RP126	
<400> 13	
cagcatcttt tactttcacc agcgtttctg	30
<210> 14	
<211> 25	
<212> DNA	
<213> Artificial Sequence	

<220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> primer DLP-pplab-screen-R

 <220>
 <221> misc_feature
 <223> RP127

 <400> 14
 ggaactggcg aagccagttt taaca 25

<210> 15
 <211> 12529
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> Construct rEx-DLP-rFF

 <220>
 <221> misc_feature
 <222> (1)...(18)
 <223> T7 promoter

<400> 15
 taatacgaact cactatagct cgaagtgtgt atgggccat atacggctca ccaccatata 60
 cactgcaaga attactattc ttgtggccct ctctcggtaa atcctagagg gctttccctct 120
 cgttattgcg agattcgtcg ttagataacg gcaagttccc tttcttacta tcctattttc 180
 atcttgcgc ttgacgggtc actgcccattcg tcgtcgatct ctatcaacta cccttgcgac 240
 tatggcaacc ttctccgcta ctggatttgg agggagttt gtttagggact ggtccctgga 300
 cttacccgac gcttgtgagc atggcgccggg attgtgctgc gaagtggacg gctccacctt 360
 atgcgccgag tgttttcgcg gttgcgaagg aatggagcaa tgtcctggct tgttcatggg 420
 actgttaaaa ctggcttcgc cagttccagt gggacataag ttccctgattt gttggatcg 480
 agctgccaaa gtcaccgggc gttacaattt ctttgagctg ttgcaacacc ctgcttcgc 540
 ccagctgcgt gtgggttgatg ctaggttagc cattgaagag gcaagtgtgt ttatttccac 600
 tgaccacgcg tctgctaagc gttccctgg cgcttagattt ggcgtgacac cgggtatgc 660
 taacgcttgg gttgtgagcc cggctgctaa cagttgata gtgaccactg accaggaaca 720
 agatgggttc tgctggtaa aactttgcc acctgaccgc cgtgaggctg gtttgcgggtt 780
 gtattacaac cattaccgcg aacaaaggac cgggtggctg tctaaaacag gacttcgctt 840
 atggcttggaa gacctgggtt tggcatcaa tgcgagctt ggagggctga aattccacat 900

tatgagggtt tcgcctcagg gagcttgca tatcacaaca cgcagctgca agctgaagag	960
ctactacgtt tgtgacatct ctgaagcaga ctggctctgt ttgcctgctg gcaactacgg	1020
cggctacaat ccaccagggg acggagcttg cggttacagg tgcttggcct tcatgaatgg	1080
cggcactgtt gtgtcggttg gttcagttc tgacttgtgg tgtgatgatg agttggctta	1140
tcgagtcattt caattgtcac ccacgttac ggttaccatc ccaggtggc gagttgtcc	1200
gaatgccaag tacgcaatga tttgtgacaa gcagcactgg cgcgtcaaac gtgcaaaggg	1260
cgtcggcctg tgtctcgatg aaagctgttt cagggcattc tgcaattgcc aacgcattgag	1320
tggaccacca cctgcaccccg tgtcagccgc cgtgttagat cacatactgg aggcggcgac	1380
gtttggcaac gttcgcgtgg ttacacctga agggcagcca cgccccgtac cagcgcgcg	1440
agttcgtccc agcgccaact cttctggaga tgtcaaagat cccggcccg ttccgcctagt	1500
accaaaaacca aggaccaagc ttgccacacc gaacccaact caggcgccca tcccagcacc	1560
gcgcacgcga cttaagggg cctcaacaca ggagccactg gcgagtgca gatgtcttc	1620
tgactcggca cctaaatggc gtgtggccaa aactgtgtac agctccgcgg agcgctttcg	1680
gaccgaactg gtacaacgtg ctcggccgt tggggacgtt cttttcaag cgctaccgct	1740
caaaaaccca gcagtgcagc ggtataccat gactctgaag atgatgcgtt cacgcttcag	1800
ttggcactgc gacgtgtggt accctttggc tgtaatcgct tgtttgcctc ctatatggcc	1860
atctcttgct ttgctcctta gctttgccat tgggttgata cccagtgtgg gcaataatgt	1920
tgttctgaca gcgttctgg tttcatcagc taattatgtt gcgtcaatgg accatcaatg	1980
tgaagggtgcg gcttgcttag cttgtgttgc agaagaacac tattatagag cggccgttg	2040
gcgcggattt acaggcgccgc tgtcgttgc gctcaattta ctggggcagg taggctatgt	2100
agctcggtcc acctttgatg cagcttatgt tccttgcact gtgtcgatc tttgcagctt	2160
tgctattctg tacctctgcc gcaatcggtt ctggagatgc ttccggacgt gtgtgcgtgt	2220
tgggcctgccc acgcatgttt tgggctccac cgggcaacga gtttccaaac tggcgctcat	2280
tgatttgcgtt gaccactttt caaagccac catcgatgtt gtggcatgg caactgggtt	2340
gagcggatgt tacacaggaa ccggccaaat ggagcgatcg tgcgttgcact cgggtggaccc	2400
tcactcggttc gaccagaaga aggcaggagc gactgtttac ctcacccccc ctgtcaacag	2460
cgggtcagcg ctgcgttgcc tcaatgtcat gtggaaagcga ccaattgggt ccactgtccct	2520
tggggaaacaa acaggagctg ttgtgacggc ggtcaagagt atctctttct cacctccctg	2580
ctgcgttctt accactttgc ccacccgacc cgggtgtgacc gttgtcgacc atgctttta	2640
caaccgggtt actgcttcag gggtcgtatcc cgctttattt cgtgttggc aaggtgat	2700
tctaaaactt aatccgggggt tccggctgat aggtggatgg atttatggga tatgctattt	2760
tgtgttgggt gttgtgtcaa cttttacctg cttacatc aaatgtggca ttggcaccgg	2820

cgacccttgc	tgccgcagag	tgtttctgt	acccgtcacc	aagacccaag	agcaactgcca	2880
tgctggaaatg	tgtgctagcg	ctgaaggcat	ctctctggac	tctctgggt	taactcagtt	2940
acaaagttac	tggatcgca	ccgtcactag	cggtttagtg	atcttgg	tctgccaccg	3000
cctggccatc	agcgccctgg	acttgg	tctagcttcc	ccttttagtgt	tgcttgg	3060
cccttggca	tctgtgggc	ttttacttgc	ttgcagtctc	gctggtgctg	ctgtgaaaat	3120
acagttgttgc	gcgacgc	ttgtgaatct	attcttccc	caagctaccc	ttgtcactat	3180
gggatactgg	gcgtgcgtgg	cggcttggc	cgtttacagt	ttgtatgg	tgcgagtgaa	3240
agtgaatgtg	cccatgtgt	tgacac	ccat	ctgtggcga	ggtcagctgg	3300
acagtcaaga	gagcagatgc	tccgggtcag	cgctgctgcc	cccaccaatt	cactgcttgg	3360
agtggctcg	gattgtt	tcacagg	aactcgg	tacata	aggaaggcgg	3420
gatgggttt	gaagg	tcaggt	gaagg	ggcaacgtcg	gcttcgtggc	3480
tggtagc	acggcac	ggtcag	gaccag	aacgagg	tcgtactgac	3540
agcgtcac	gtgg	gctta	ggccact	aagatcg	acgcaatgct	3600
gactctgact	ttcaaaa	atggc	cgccgagg	gtgacg	agtccgagct	3660
cccaggca	tggcc	acagt	tgcatt	ccaacc	accgggccc	3720
cactg	ggagat	aaag	aggctt	cagtgg	gtttagtgg	3780
tagtggc	tctgg	atct	cagtgg	gggtgac	gtggtaggg	3840
ttcga	actgg	tttgc	cctacgt	cacccaa	ggaaaactcc	3900
caccgt	ttgtc	atcac	tgtca	ttcacagg	ccttgac	3960
ggacat	gaca	acatta	ttggc	gtatgc	cctcgttctc	4020
gattgat	ttatcc	ata	gagag	ccttctgg	cctcagttgt	4080
ttgtttat	tgg	tttatc	ttaacc	tgcttactt	ccttatgtgc	4140
tgccg	cta	ac	tttcc	cata	ttggcttctt	4200
gtt	gtc	gc	ctttcc	caaaa	gtggta	4260
taccgt	cac	cg	cgat	gttctac	actgccc	4320
ccttct	gag	atgtgg	gagg	caccat	gtttag	4380
gtacc	atgtgg	ttcg	gagg	tttgc	ggttcc	4440
ggct	gtc	caca	ccctgtt	gatgtgtt	tccgc	4500
caggactt	atgtgaa	at	ttcctgg	gggagg	aaagag	4560
agtca	ccccgc	actt	cctgg	gggagg	gttgc	4620
cctca	actgt	atc	cctctc	tgtgt	actgtcg	4680
ggca	atgt	atc	tttca	tttca	ccgtccgatc	4740
aat	ctgcgt	cccg	cttc	caca	gtacatc	

taatgcaccc ttgcaagtgc atcggtacgc tgctcgtagt cgccagactaa tggcaaaaact	4800
ggctgatttt gcgggttgaac aagaagtaac agctggagac cgtgttgtgg ttatcgacgg	4860
tctggaccgc atggctcaact tcaaagacga tttggtgctg gttccttga ccaccaaagt	4920
agtagggcggt tctaggtgca ccatttgtga cgtcgtaag gaagaagcca atgacacccc	4980
agttaagcca atgcccagca ggagacgccc caagggcctg cctaaaggtg ctcagttgga	5040
gtgggaccgt caccaggaag agaagaggaa cgccgggtat gatgattttg cggtctcgaa	5100
tgattatgtc aagagagtgc caaagtactg ggatcccagc gacacccgag gcacgacagt	5160
gaaaatcgcc ggcactacct atcagaaaatg ggttactat tcaggcaatg tgcattacgt	5220
ggagcatcag gaagatctgc tagactacgt gctggcaag gggagctatg aaggcctaga	5280
tcaggacaaa gtgtggacc tcacaaacat gcttaaagtg gaccccacgg agctctcctc	5340
caaagacaaa gccaaggcgc gtcagcttgc tcatctgctg ttggatctgg ctaacccagt	5400
tgagggcagtg aatcagttaa actgagagcg ccccacatct ttcccggcga tgtggggcgt	5460
cggacctttg ctgactctaa agacaagggt ttcgtggctc tacacagtgc cacaatgttt	5520
ttagctgccc gggacttttt attaacatc aaatttgtgt ggcacgaaga gttcacaaag	5580
accccaaaag acacactgct tgggtacgta cgcgcctgccc ctggttactg gtttattttc	5640
cgtcgtaacgc accggcgcgt gattgatgca tactggaca gtatggagtg cgtttacgcg	5700
cttccacca tatctgattt tgcgtgagc ccaggtgacg tcgcagtgc gggcgagcga	5760
tgggattttg aatctcccg aggaggccgt gcaaaacgtc tcacagctga tctggtgac	5820
gctttcaag ggttccacgg agcctttat tcctatgatg acaaggtggc agctgctg	5880
agtggtgacc cgtatcggtc ggacggcggtc ttgtataaca cccgttgggg caacattcca	5940
tattctgtcc caaccaatgc tttggaaagcc acagctgct accgtgctgg atgtgaggcc	6000
gttaccgacg ggaccaacgt catcgcaaca attggccct tcccgagca acaacccata	6060
ccggacatcc caaagagcgt gcttgacaac tgcgctgaca tcagctgtga cgcttcata	6120
gcgcggcgtc cagagacagc cctgtgtgga gattnagaga aatacaacct atccacgcag	6180
ggttttgtgt tgcctagtgt tttctccatg gtgcgggcgt acttaaaaga ggagattgga	6240
gacgctccac cactctactt gcatctact gtaccatcta aaaattcaca agccggatt	6300
aacggcgctg agtttcctac aaagtctta cagagctact gtttgattga tgacatgg	6360
tcacagtcca tgaaaagcaa tctacaaacc gccaccatgg cgacttgtaa acggcaatac	6420
tgttccaaat acaagattag gagcattctg ggcaccaaca attacattgg cctaggttt	6480
cgtgcctgccc ttccgggggt tacggccgca ttccaaaaag ctggaaagga tgggtcaccg	6540
atttattttgg gcaagtcaaa attcgacccg ataccagctc ctgacaagta ctgcctgaa	6600
acagacctgg agagttgtga tcgctccacc ccggcttgg tgctgggtt cgctactaat	6660

cttatttttg agctagctgg ccagcccgag ttgggcaca gctacgtgtt gaattgctgt	6720
cacgatctag ttgtggcggt tagttagca ttcaccaaac gcgggggtt gtcatctgga	6780
gaccctatca cttccatttc caataccatc tattcattgg tgctgtacac ccagcacatg	6840
ttgctatgtg gacttgaagg ctatcccagagattgcag aaaaatatct tgatggcagc	6900
ctggagctgc gggacatgtt caagtacgtt cgagtgtaca tctactcgga cgatgtggtt	6960
ctaaccacac ccaaccagca ttacgcggcc agctttgacc gctgggtccc ccacctgcag	7020
gcgctgctag gttcaaggt tgacccaaag aaaactgtga acaccagctc cccttcctt	7080
ttgggctgcc ggttcaagca agtggacggc aagtgttac tagccagtct tcaggaccgc	7140
gttacacgct ctctgttata ccacattggt gcaaagaatc cctcagagta ctatgaagct	7200
gctgtttcca tctttaagga ctccatttac tgctgtgatg aagactggtg gacggacctc	7260
catcgacgta tcagtggcgc tgcgctacc gacggagttg agttccccac cattgaaatg	7320
ttaacatcct tccgcaccaa gcagttatgag agtgcgtgt gcacagtttggggccgc	7380
cccggtggcca agtctgcttg tggaggggtgg ttctgtggca attgtgtccc gtaccacg	7440
ggtcattgtc acacaacctc gctttcgcc aactgcgggc acgacatcat gtaccgctcc	7500
acttactgca caatgtgtga gggttccccaa aacagatgg taccaaaagt gcctcacccg	7560
atcctggatc atttgctgtg ccacatttac tacggcagta aagaggaact aactctggta	7620
gtggcggatg gtcgaacaac atcaccgccc gggcgctaca aagtgggtca caaggtagtc	7680
gccgtgggtt cagatgtggg aggcaacatt gtgtttgggt gcggccttgg atcacacatc	7740
gcagttaccac ttcaggatac gctcaaggcgttga ataaagctct gaagaacgcc	7800
gccgcctctg agtacgtgga aggacccctt gggagtggtt agactttca cctggtcaaa	7860
gatgtgctag ccgtggtcgg tagcgccacc ttgggtgtgc ccacccacgc gtccatgctg	7920
gactgcacca acaagctcaa acaagcgggc gccgatccat actttgtggt gccaagttat	7980
acagttcttgc actttccccggc gcctggcagt ggaaacatca cagtgccact gccacagg	8040
ggaaccaggtagt agggagaaac ctttggat gaggtggcct acttctcacc agtggatctg	8100
gcgccattt taacccaggc tcgagtcaag ggttacgggtt atttaatca gctcggtgc	8160
gtcggtttt cggcgctgac acgtaacctt tggctccgac attttgtcag cctggagccc	8220
ttgcgagtgtt gccatcgatt cggcgctgct gtgtgtgatt tgatcaaggg cattttatc	8280
tattatgagc cagctccaca taccactaaa gtgggttttgc tgccaaatcc agactttgag	8340
aaaggtagt tagtcatcaccgc ctaccacaaa gatcgccgtc ttggtcaccg cacaatttgc	8400
tcaattcaag gctgtacatt ccctgttgc actcttcgac tgccccacacc ccaatttactg	8460
acgcgcggc gcgcaagtgtt ggcgggttact agggcgcttc aggaattata catctacgac	8520
ccctttgatc agcttagcgg gttgttgaag ttccaccaagg aagcagaggc gcaggacttgc	8580

atccatggcc cacctacagc atgccacctg ggccaagaaa ttgaccttg gtccaatgag	8640
ggcctcgaat attacaagga agtcaacctg ctgtacacac acgtccccat caaggatggt	8700
gtaatacaca gttaccctaa ttgtggccct gcctgtggct gggaaaagca atccaacaaa	8760
atttcgtgcc tccccgagagt ggcacaaaaat ttgggctacc actattcccc agacttacca	8820
ggatttgcc ccataccaaa agaactcgct gagcattggc ccgtagtgtc caatgataga	8880
taccgcatt gcttgcaaat taccttacag caagtatgtg aactcagtaa accgtgctca	8940
gcgggctata tgggtggaca atcggtttc gtgcagacgc ctgggtgtgac atcttactgg	9000
cttactgaat gggtcgacgg caaagcgcgt gctctaccag attccttatt ctgcgtccggt	9060
aggttcgaga ctaacagccg cgcttcctc gatgaagccg aggaaaagtt tgccgcccgt	9120
caccctcatg cctgtttggg agaaaattaat aagtccaccg tgggaggatc ccacttcattc	9180
ttttcccaat atttaccacc attgctaccc gcagacgctg ttgcccctggt aggtgcttca	9240
ttggctggga aagctgctaa agctgcttgc agcgttggatg atgtctatgc tccatcattt	9300
gaaccttatac tacaccctga gacactgagt cgctgttaca agattatgat cgatttcaag	9360
ccgtgttaggc ttatgggtgtg gagaaacgcg acctttatg tccaagaggg tggatgca	9420
gttacatcag cactagcagc tggcatcagg gtacagaacc aacgcgctgg tagcgcggca ggctaaaatt	9480
tcatccatg tggcatcagg gtacagaacc aacgcgctgg tagcgcggca ggctaaaatt	9540
tcaattggag cctacgcccgc cgagtggca ctgtcaactg aaccgcacc tgctggtat	9600
gcgatcgtgc ggcgatataat tgtaaagagg ctcctcagct caacagaagt gttctgtgc	9660
cgcaggggtg ttgtgtcttc cacctcagtg cagaccattt gtgcactaga gggatgtaaa	9720
cctctgttca acttcttaca aattgggttca gtcattggc ccgtgtgact ctagagtgg	9780
cctgttccca tcccccgctc aactactcag gtgtgggttc gcggcaacgg gtacaccgca	9840
gttggtaaca agcttgcga tagtcagcat agtacatttc atctgactaa tactacaaca	9900
ccaccacccat gaatagagga ttctttaaca tgctcgcccg ccgccttc ccggccccc	9960
ctgccatgtg gaggccgcgg agaaggaggg aggccggccccc gatgtggaa aatatggaaa	10020
acgacgagaa catcgtggtg ggcccaagc cttctaccc catcgaggaa ggcagcgcgg	10080
gcacccagct gcgaaagtac atggaaagat acgccaagct gggcgccatt gccttcacca	10140
acgcgtgac cggcgtggac tacagctacg ccgagtaccc ggaaaagagc tgctgcctgg	10200
gcaaggctct gcagaactac ggctgtgggg tggacggcccg gatgcctgt tgcaagcaga	10260
actgcgagga attcttcatc cccgtgatcg ccggcctgtt catcgccgtg ggcgtggctc	10320
ccaccaacga gatctacacc ctgcgggagc tgggtgcacag cctggcattc agcaagccca	10380
ccatcgtttt cagcagcaag aaggccctgg acaaagtcat caccgtgcag aaaaccgtga	10440
ccaccatcaa gaccatcgtg atcctggaca gcaaggtgga ctaccggggc taccagtgcc	10500

tggacacctt	catcaagcgg	aacacccccc	ctggcttcca	ggccagcagc	ttcaagaccg	10560
tggaggtgga	ccggaaagaa	caggtggccc	tgatcatgaa	cagcagcggc	agcaccggcc	10620
tgcccaaggg	cgtcagctg	acccacgaga	acaccgtac	ccggttcagc	cacgcccagg	10680
acccatcta	cggcaaccag	gtgtccccc	gcaccggcgt	gctgaccgtg	gtgccttcc	10740
accacggctt	cggcatgttc	accaccctgg	gctacctgat	ctgcggcttc	cgggtggta	10800
tgctgaccaa	gttcgacgag	gaaaccttcc	tgaaaaccct	gcaggactac	aagtgcac	10860
acgtgattct	ggtgcccacc	ctgttcgcca	tcctgaacaa	gagcgagctg	ctgaacaagt	10920
acgacctgag	caacctggtg	gagatcgcca	gcggcggagc	ccccctgagc	aaagaagtgg	10980
gagaggccgt	cgccaggcgg	ttcaatctgc	ccggcgtg	gcagggtac	ggcctgaccg	11040
agacaaccag	cgcacatcatc	atcacccccc	agggcgacga	caagcctgga	gccagcggca	11100
aggtggtgcc	cctgttcaag	gccaaagtga	tcgacctgga	caccaagaag	agcctggcc	11160
ccaacagacg	gggcgaagtg	tgcgtaagg	gccccatgct	gatgaagg	tgatgaaca	11220
accccgaggc	caccaaagag	ctgatcgacg	aagagggctg	gctgcacacc	ggcgacatcg	11280
gctactacga	cgaagagaag	cacttcttca	tcgtggaccg	gctgaagagc	ctgatcaagt	11340
acaagggcta	tcaggtgccc	cctgcccagc	tggaaagcgt	cctgctgcag	cacccagca	11400
tcttcgacgc	cggcgtggcc	gggggtccag	atcctgtggc	cggcgagctg	cctggcgccg	11460
tgggtgtgct	ggaatccggc	aagaacatga	ccgagaaaaga	agtgtatggac	tacgtcgcca	11520
gccaggtgtc	caacgccaag	cggctgagag	gcggcgtgag	attcgtggac	gaagtgc当地	11580
agggcctgac	cggcaagatc	gacggcaggg	ccatccggga	gatcctgaag	aaacccgtgg	11640
ccaagatgtg	attataactc	gagggagcca	tagattcatt	ttgtgggtac	gggattttag	11700
gtgagtatct	agattactt	attctgtccg	tcccactt	gctgttgctt	actaggtatg	11760
tagcatctgg	gttagtgtat	gttttgactg	ccttgttcta	ttccttgt	ttagcagctt	11820
atatttggtt	tgttatagtt	ggaagagcct	tttctactgc	ttatgtttt	gtgttttgg	11880
ctgctttct	gttatttagta	atgaggatga	ttgtgggtat	gatgcctcgt	cttcggtcca	11940
ttttcaacca	tcgccaactg	gtggtagctg	attttgttga	cacacctagt	ggacctgttc	12000
ccatccccc	cccaaccact	caggttagtgg	ttcgcggcaa	cgggtacacc	gcagttggta	12060
acaagcttgt	cgtggcg	aagacgatca	cgtccgcagg	ccgcctttt	tcgaaacgga	12120
cggcggcgac	agcctacaag	ctacaatgac	ctactgcgc	tgtttggta	gatgcgggtc	12180
cgc当地accgc	ccgc当地acc	cactcaggct	attattgcag	agcctggaga	ccttaggcatt	12240
gattnaaatc	aacaggagcg	cgc当地acc	tgc当地acc	tacaacggtt	cttc当地acc	12300
gggc当地acc	cactcactgc	agatgc当地acc	ggactcacgt	acaccgtcag	ttgggacc	12360
accaaaca	tccagc当地acc	agttgc当地acc	ccagcagg	cgtaagacgt	ggatattctc	12420

ctgtgtggcg tcatgttcaa gtagttatta gccaccagg aaccaaaaaa aaaaaaaaaa	12480
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	12529
<210> 16	
<211> 12608	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> Construct rEx-DLP-pplab-rFF	
<220>	
<221> misc_feature	
<222> (1)...(18)	
<223> T7 promoter	
<400> 16	
taatacgaact cactatagct cgaagtgtgt atgggccat atacggctca ccaccatata	60
cactgcaaga attactattc ttgtgggccc ctctcggtaa atcctagagg gctttccctct	120
cgttattgcg agattcgtcg ttagataacg gcaagttccc tttcttacta tcctatttc	180
atcttgcgc ttgacgggtc actgcctacg tcgtcgatct ctatcaacta cccttgcgac	240
ttaggcaacc ttctccgcta ctggatttgg agggagttt gttagggact ggtccctgga	300
cttacccgac gcttgcgagc atagtcagca tagtacattt catctgacta atactacaac	360
accaccacca tgaatagagg attcttaac atgctcgcc gccgcccctt cccggccccc	420
actgccatgt ggaggccgagc gagaaggagg caggcggccc cgatgatggc aaccttctcc	480
gctactggat ttggagggag ttttgttagg gactggtccc tggacttacc cgacgcttgt	540
gagcatggcg cgggattgtg ctgcgaagtg gacggctcca ccttatgcgc cgagtgttt	600
cgcgggtgcg aaggaatgga gcaatgtcct ggcttgcata tggactgtt aaaactggct	660
tcgcccagtcc cagtggaca taagttcctg attgggttgt atcgagctgc caaagtcacc	720
ggcggttaca atttccttga gctgttgcac caccctgtt tcgcccagct gcgtgtggtt	780
gatgctaggt tagccattga agaggcaagt gtgtttattt ccactgacca cgcgtctgct	840
aagcgttcc ctggcgctag atttgcgttg acaccgggtg atgctaacgc ttgggttgt	900
agcccggtcg ctaacagttt gatagtgacc actgaccagg aacaagatgg gttctgctgg	960
ttaaaaacttt tgccacactga ccggcgtag gctgggttgc ggttgttata caaccattac	1020
cgcgaacaaa ggaccgggtg gctgtctaaa acaggacttc gcttatggct tggagacctg	1080
ggtttggca tcaatgcgag ctgtggaggg ctgaaattcc acattatgag gggttcgct	1140
cagcgagctt ggcataatcac aacacgcagc tgcaagctga agagctacta cgtttgcac	1200
atctctgaag cagactggtc ctgtttgcct gctggcaact acggcggcta caatccacca	1260

ggggacggag cttgcgggta caggtgcttg gccttcatga atggcgccac tgggtgtcg 1320
gctggttgca gttctgactt gtgggtgtat gatgagttgg cttatcgagt cttcaattt 1380
tcacccacgt tcacggttac catcccgagg gggcgagtt gtccgaatgc caagtacgca 1440
atgatttgc acaaggcagca ctggcgcgtc aaacgtgcaa agggcgctgg cctgtgtctc 1500
gatgaaagct gtttcagggg catctgcaat tgccaaacgca tgagtggacc accacctgca 1560
cccgtgtcag ccgcccgtgtt agatcacata ctggaggcg gacgatgggg caacgttgc 1620
gtggttacac ctgaagggca gccacgcccc gtaccagcgc cgacgatgggg tcccaacgccc 1680
aactcttctg gagatgtcaa agatccggcg cccgttccgc cagtaccaaa accaaggacc 1740
aagcttgcca caccgaaccc aactcaggcg cccatcccag caccgcgcac gcgacttcaa 1800
ggggcctcaa cacaggagcc actggcgagt gcaggagttt cttctgactc ggcaccta 1860
tggcgtgtgg ccaaaaactgt gtacagctcc gcggagcgct ttccggaccga actggta 1920
cgtgctcggt ccgttggggc cggttctgtt caagcgctac cgctcaaaac cccagcagtg 1980
cagcggtata ccatgactct gaagatgtat cggttacgct tcagttggca ctgcgacgtg 2040
tggtaaccctt tggctgtat cgttctgtt ctcctatat ggccatctct tgctttgtc 2100
cttagcttgc ccattgggtt gataccagt gtgggcaata atgttgc 2160
ctggtttcat cagctaatta tggcggtca atggaccatc aatgtgaagg tggcgcttgc 2220
ttagccttgc tggagaaga acactattat agagcggtcc gttggcgccc gattacaggc 2280
gcgctgtcgc ttgtgctcaa tttactgggg caggttaggtt atgttagctc ttccacctt 2340
gatgcagctt atgttgc 2400
ttttgggct ccaccgggca acgagttcc aaactggcg tcattgattt gtgtgaccac 2460
ttttcaaaggc ccaccatcga tggctgggc atggcaactg gttggagcgg atgttacaca 2520
ggAACCGCCG caatggagcg tcagtggtcc tctacgggtt accctca 2580
aagaaggcag gagcgactgt ttacccatc cccctgtca acagcggtc agcgctgc 2640
tgccctcaatg tcatgtggaa gcgaccaatt gggatccactg tccttggggc acaaacagga 2700
gctgttgtga cggcggtcaa gagtatctt ttctcaccc cctgctgtgtt ctctaccact 2760
ttggccaccc gaccgggtgt gaccgttgc gaccatgctc tttacaaccg gttgactgct 2820
tcaggggtcg atcccgctt attgcgtgtt gggcaagggtg attttctaaa acttaatccg 2880
gggttccggc tgataggtgg atggattttt gggatatgtt attttgc 2940
tcaacttttta cctgcttacc tatcaaattgt ggcattggca cccgcgaccc tttctgccc 3000
agagtgtttt ctgtaccgtt caccaagacc caagagcact gccatgctgg aatgtgtgt 3060
agcgctgaag gcatctctt ggactctctg gggtaactc agttacaaag ttactggatc 3120
3180

gcagccgtca ctagcggatt agtgatctt gttggctgcc accgcctggc catcagcgcc	3240
ttggacttgt tgactctagc ttccccccta gtgttgcattt gttcccttg ggcattctgtg	3300
gggcctttac ttgcttgcag tctcgctggt gctgctgtga aaatacagtt gttggcgacg	3360
cttttgcata atctattctt tccccaagct acccttgcata ctatggata ctggcggtgc	3420
gtggcggctt tggccgttta cagtttgcattt ggcttgcag tgaaagtggaa tgtgcccattt	3480
tgtgtgacac ctgcccattt tctgctgctg gcgaggcag ctggacagtc aagagagcag	3540
atgctccggg tcagcgctgc tgccccacc aattcactgc ttggagtggc tcgtgattgt	3600
tatgtcacag gcacaactcg gctgtacata cccaaggaag gcgggatggt gtttgaaggg	3660
ctattcaggt caccgaaggc gcgcggcaac gtcggcttcg tggctggtag cagctacggc	3720
acagggcag tggaccacag gaacaacgcag gtcgtcgatc tgacagcgac acacgtggtt	3780
ggccgcgcta acatggccac tctgaagatc ggtgacgcaa tgctgactct gactttcaaa	3840
aagaatggcg acttcgcccga ggcagtgcac acacagtccg agctcccagg caattggcca	3900
cagttgcatt tcgcccacc aacaaccggg cccgcttcat ggtgcactgc cacaggagat	3960
gaagaaggct tgctcagtgg cgaggttgtt ctggcgtggta ctactagtgg cgactctggta	4020
tctgcagtgg ttcagggtga cgctgtggta ggggtccaca ccggttcgaa cacaagtgg	4080
gttgccctacg tgaccacccc aagcggaaaa ctccttggcg ccgacaccgt gactttgtca	4140
tcactgtcaa agcatttcac aggccttttgc acatcaatcc cgaaggacat ccctgacaac	4200
attattgccc atgttgcatttgc tggccctcgat tctctggcca tgctgattga tggcttatcc	4260
aatagagaga gcagcccttc tggacctcag ttgttgcattt tgcttgcattt tatgtggct	4320
tatcttaacc aacctgcattt cttgccttat gtgctggct tctttggccgc taacttcttc	4380
ctgccaaaaaa gtgttggccgc ccctgtggcactt gttggcttc tatgtttgtt ctgccttttc	4440
acaccgcttt ccatgcgtt gtgttgcattt catctggctt gtgctaccgt cacggaaac	4500
gtgatatctt tgggttcttca catcaactgca gctggcacgt cttacccatc tgagatgtgg	4560
ttcgaggct atccaccat gttgtttgtt ccacgggtcc tagtgcacca gttcccccggc	4620
tggctatttgc acacagtact agcggatgc agcatcacca tgctggctgc tgccctcggt	4680
cacaccctgt tactggatgt gttctccgc tcaggtcgat ttgcacaggac tttcatgtat	4740
aaatacttcc tggagggagg agtggaaagag agtgcacccg cctcagtcac ccgcgttat	4800
ggcaaaaccaaa ttacccagga gagtgcact gcaacatttttgc ctgccttcac tgatgtatgc	4860
ttccaaattcc tctctgtatgt gcttgcatttgc cggccgtcc gatggcaat gaatctgcgt	4920
gccgctctca caagtttca agtggcgacg tatcgtaaca tccttaatgc atccttgcac	4980
gtcgatcgatgc acgctgcgtc tagtgcacca ctaatggcaaa aactggctga ttttgcgggtt	5040
gaacaagaag taacagctgg agaccgtgtt gtggttatcg acggcttgaa ccgcacggct	5100

cacttcaaag acgatttggc gctgggttc ttgaccacca aagttagtagg cggttctagg	5160
tgcaccatt gtgacgtcgt taaggaagaa gccaatgaca ccccagttaa gccaatgccc	5220
agcaggagac gcccgaaggg cctgcctaaa ggtgctcagt tggagtggga ccgtcaccag	5280
gaagagaaga ggaacgcgg tgatgtat tttgcggct cgaatgatta tgtcaagaga	5340
gtgc当地 cactggatcc cagcgacacc cgaggcacga cagtgaaaat cgccggcact	5400
acctatcaga aagtgggtga ctattcagga aatgtgcatt acgtggagca tcaggaagat	5460
ctgcttagact acgtgctggg caaggggagc tatgaaggcc tagatcagga caaagtgttg	5520
gacctcacaa acatgctaa agtggacccc acggagctct cctccaaaga caaagccaag	5580
gcgctcagc ttgctcatct gctgttggat ctggctaaacc cagttgaggg agtgaatcag	5640
ttaaacttag agcgccccac atcttcccg gcgatgtggg gctcgacc tttgctgact	5700
ctaaagacaa gggttcgtg gctctacaca gtcgcacaat gtttttagct gcccggact	5760
ttttatataa catcaaattt gtgtgcgacg aagagttcac aaagacccca aaagacacac	5820
tgcttggta cgtacgcgccc tgccctggtt actggttat tttccgtcgt acgcaccgg	5880
cgctgattga tgcataactgg gacagtatgg agtgcgtta cgcgcttccc accatatctg	5940
atttttagt gggccaggt gacgtcgacg tgacgggcga gcgatggat tttgaatctc	6000
ccggaggagg ccgtgcaaaa cgtctcacag ctgatctggt gcacgcttt caagggttcc	6060
acggagcctc ttattccat gatgacaagg tggcagctgc tgtcagtggt gaccgtatc	6120
ggtcggacgg cgtcttgcgtat aacacccgtt gggcaacat tccatattct gtcccaacca	6180
atgctttgga agccacagct tgctaccgtg ctggatgtga ggccgttacc gacgggacca	6240
acgtcatcgc aacaatttggg ccattccgg agcaacaacc cataccggac atccaaaga	6300
gcgtgcttga caactgcgct gacatcagct gtgacgctt catagcgccc gctgcagaga	6360
cagccctgtg tggagattta gagaataca acctatccac gcagggttt gtgtgccta	6420
gtgtttctc catggtgccgg gcgtactaa aagaggagat tggagacgct ccaccactct	6480
acttgccatc tactgtacca tctaaaaatt cacaagccgg aattaacggc gctgagttc	6540
ctacaaagtc ttacagagc tactgttga ttgatgacat ggtgtcacag tccatgaaaa	6600
gcaatctaca aaccgccacc atggcgactt gtaaacggca atactgttcc aaatacaga	6660
ttaggagcat tctggccacc aacaattaca ttggcctagg tttgcgtgcc tgccttcgg	6720
gggttacggc cgcattccaa aaagctggaa aggtgggtc accgatttat ttggcaagt	6780
caaaattcga cccgatacca gctcctgaca agtactgcct taaaacagac ctggagagtt	6840
gtgatcgctc caccggct ttggtgccgtt ggtcgctac taatcttatt tttgagctag	6900
ctggccagcc cgagttggtg cacagctacg tggatattg ctgtcacat ctagttgtgg	6960
cggtagtgt agcattcacc aaacgcgggg gttgtcatc tggagaccct atcacttcca	7020

tttccaatac catctattca ttggtgctgt acaccaggca catgttgcta tgtggacttg	7080
aaggctattt cccagagatt gcagaaaaat atcttgatgg cagcctggag ctgcgggaca	7140
tgttcaagta cgttcgagtg tacatctact cggacgatgt gggtcttaacc acacccaacc	7200
agcattacgc ggccagcttt gaccgctggg tccccacact gcaggcgctg ctaggtttca	7260
aggttgaccc aaagaaaact gtgaacacca gctcccttc cttttggc tgccggttca	7320
agcaagtgga cggcaagtgt tatctagcca gtcttcagga ccgcgttaca cgctctctgt	7380
tataccacat tggtgcaaag aatccctcag agtactatga agctgctgtt tccatcttta	7440
aggactccat tatctgctgt gatgaagact ggtggacgga cctccatcga cgtatcagtg	7500
gchgctgcgc taccgacgga gttgagttcc ccaccattga aatgttaaca tccttccgca	7560
ccaaggcagta tgagagtgcc gtgtgcacag tttgtggggc cgccccgtg gccaagtctg	7620
cttggagg gtggttctgt ggcaattgtg tcccgatcca cgcggtcat tgtcacacaa	7680
cctcgcttt cgccaaactgc gggcacgaca tcatgtaccg ctccacttac tgcacaatgt	7740
gtgaggggttc cccaaaacag atggtaccaa aagtgcctca cccgatcctg gatcattgc	7800
tgtgccacat tgattacggc agtaaagagg aactaactct ggttagtggcg gatggtcgaa	7860
caacatcacc gcccggcgc tacaaagtgg gtcacaagggt agtcgcccgtg gttgcagatg	7920
tggaggcaa cattgtgttt gggtgcggtc ctggatcaca catcgagta ccacttcagg	7980
atacgctcaa gggcgtggtg gtgaataaag ctctgaagaa cgccgcccgc tctgagtacg	8040
tggaaggacc ccctgggagt gggaaagactt ttcacctggt caaagatgtg ctggccgtgg	8100
tcggtagcgc gaccttggtt gtccccaccc acgcgtccat gctggactgc atcaacaagc	8160
tcaaaacaagc gggcgccgat ccatactttg tggtgcccaa gtatacagtt cttgactttc	8220
cccgccctgg cagtggaaac atcacagtgc gactgccaca ggtcggaacc agtgagggag	8280
aaacctttgt ggatgaggtg gcctacttct caccagtgg tctggcgcgc atttaaccc	8340
agggtcgagt caagggttac ggtgatttaa atcagctcggt gtgcgtcgga cccgcgagcg	8400
tgccacgtaa ccttggctc cgacatttg tcagcctggaa gcccttgcga gtgtgccatc	8460
gattcggcgc tgctgtgtgt gatttgcata agggcattta tccttattat gagccagctc	8520
cacataccac taaaagtggtg tttgtccaa atccagactt tgagaaagggt gtagtcatca	8580
ccgcctacca caaagatcgc ggtcttggtc accgcacaat tgattcaatt caaggctgt	8640
cattccctgt tgtgactctt cgactgcccac caccggaaatc actgacgcgc ccgcgcgcag	8700
ttgtggcggt tactagggcg tctcaggaat tatacatcta cgacccttt gatcagctt	8760
gcgggttggtt gaagttcacc aaggaagcag aggccagga cttgatccat ggcccaccta	8820
cagcatgcca cctggccaa gaaattgacc tttggtccaa tgagggcctc gaatattaca	8880
aggaagtcaa cctgctgtac acacacgtcc ccatcaagga tggtgtaata cacagttacc	8940

ctaattgtgg ccctgcctgt ggctggaaa agcaatccaa caaaatttcg tgcctcccga	9000
gagtggcaca aaatttgggc taccactatt ccccagactt accaggattt tgccccatac	9060
caaaagaact cgctgagcat tggcccttag tagtccaatga tagatacccg aattgcttgc	9120
aaattacctt acagcaagta tgtgaactca gtaaaccgtg ctcagcgggc tatatggttg	9180
gacaatcggt tttcgtgcag acgcctggtg tgacatctta ctggcttact gaatgggtcg	9240
acggcaaagc gcgtgctcta ccagattcct tattctcgtc cggttaggttc gagactaaca	9300
gccgcgcctt cctcgatgaa gccgaggaaa agtttgcgcg cgctcacccct catgcctgtt	9360
tgggagaaat taataagtcc accgtggag gatcccactt catctttcc caatattac	9420
caccattgct acccgacac gctgttgcct tgtaggtgc ttcattggct gggaaagctg	9480
ctaaagctgc ttgcagcggtt gttgatgtct atgctccatc atttgaacct tatctacacc	9540
ctgagacact gagtcgcgtg tacaagatta tgatcgattt caagccgtgt aggcttatgg	9600
tgtggagaaa cgcgacccctt tatgtccaag agggtgttga tgcagttaca tcagcactag	9660
cagctgtgtc caaactcatc aaagtgcggg ccaatgagcc tggatttcattt catgtggcat	9720
cagggtacag aaccaacgcg ctggtagcgc cccaggctaa aatttcaatt ggagcctacg	9780
ccgcccggatg ggcactgtca actgaaccgc cacctgctgg ttatgcgatc gtgcggcgat	9840
atattgtaaa gaggctccctc agctcaacag aagtgttctt gtgccgcagg ggtgttgtgt	9900
cttccacccctc agtgcagacc atttgcac tagagggatg taaacctctg ttcaacttct	9960
tacaaattgg ttcagtcatt gggccctgtt gactctagag tggacctgtt cccatcccc	10020
gctcaactac tcaggttagtg gttcgccgca acgggtacac cgcaagttggt aacaagcttg	10080
tcgatggaaa atatggaaaa cgacgagaac atcgtggtgg gccccaaagcc cttctacccc	10140
atcgaggaag gcagcgccgg caccctacgt cgaaagtaca tggaaagata cgccaaagctg	10200
ggcgccattt cttcaccaa cgccgtgacc ggcgtggact acagctacgc cgagttacctg	10260
gaaaagagct gctgcctggg caaggctctg cagaactacg gcctgggtgg ggacggccgg	10320
atcgccctgt gcagcgagaa ctgcgaggaa ttcttcattcc ccgtgatcgc cggcctgttc	10380
atcggcgtgg gcgtggctcc caccacaccc tgccggagct ggtgcacagc	10440
ctgggcacca gcaagccac catcgatgttc agcagcaaga agggcctgga caaagtcatc	10500
accgtgcaga aaaccgtgac caccatcaag accatcgta tcctggacag caaggtggac	10560
taccggggct accagtgcct ggacacccctt atcaagcgga acacccccc tggcttccag	10620
gccagcagct tcaagaccgt ggaggtggac cggaaagaac aggtggccct gatcatgaac	10680
agcagcggca gcaccggct gccaaggga gtgcagctga cccacgagaa caccgtgacc	10740
cggttcagcc acgccagggaa cccatctac ggcaaccagg tgtccccgg caccggcgtg	10800
ctgaccgtgg tgcccttcca ccacggcttc ggcatttca ccaccctggg ctacctgatc	10860

tgccggcttcc	gggtggtgat	gctgaccaag	ttcgacgagg	aaacaccttct	gaaaaccctg	10920
caggactaca	agtgcaccta	cgtgattctg	gtgcccaccc	tgttcgccc	cctgaacaag	10980
agcgagctgc	tgaacaagta	cgacctgago	aacctggtgg	agatcgccag	cggcggagcc	11040
ccccctgagca	aagaagtggg	agaggccgto	gccaggcggt	tcaatctgcc	cggcgtgcgg	11100
cagggctacg	gcctgaccga	gacaaccagc	gccatcatca	tcaccccccga	gggcgacgac	11160
aagcctggag	ccagcggcaa	ggtggtgccc	ctgttcaagg	ccaaagtgtat	cgacctggac	11220
accaagaaga	gcctggggccc	caacagacgg	ggcgaagtgt	gcgtgaaggg	ccccatgctg	11280
atgaagggct	acgtgaacaa	ccccgaggcc	accaaagagc	tgatcgacga	agagggctgg	11340
ctgcacacccg	gcgacatcg	ctactacgac	gaagagaagc	acttcttcat	cgtggaccgg	11400
ctgaagagcc	tgatcaagta	caagggctat	caggtgcccc	ctgcccagct	ggaaagcgtc	11460
ctgctgcagc	accccagcat	cttcgacgccc	ggcgtggccg	gggtgccaga	tcctgtggcc	11520
ggcgagctgc	ctggcgccgt	ggtggtgctg	gaatccggca	agaacatgac	cgagaaaagaa	11580
gtgatggact	acgtcgccag	ccaggtgtcc	aacgccaagc	ggctgagagg	cggcgtgaga	11640
ttcgtggacg	aagtgc当地	gggcctgacc	ggcaagatcg	acggcaggggc	catccgggag	11700
atcctgaaga	aacccgtggc	caagatgtga	ttataactcg	agggagccat	agattcattt	11760
tgtggtgacg	ggattttagg	ttagtatcta	gattactta	ttctgtccgt	cccactcttg	11820
ctgttgctta	ctaggtatgt	agcatctggg	ttagtgtatg	tttgactgc	cttggcttat	11880
tcctttgtat	tagcagctta	tattggttt	gttatagttg	gaagagcctt	ttctactgct	11940
tatgcttttg	tgctttggc	tgctttctg	ttattagtaa	tgaggatgat	tgtggatatg	12000
atgcctcgtc	ttcgggtccat	tttcaaccat	cgccaaactgg	tggtagctga	ttttgtggac	12060
acaccttagtg	gacctgttcc	catccccgc	ccaaccactc	aggttagtgg	tcgcggcaac	12120
gggtacacccg	cagttggtaa	caagcttgc	gatggcgtca	agacgatcac	gtccgcaggc	12180
cgcctcttt	cgaaacggac	ggcggcgaca	gcctacaagc	tacaatgacc	tactgcgcac	12240
gtttggtcag	atgcgggtcc	gcaaaccgcc	cgcgaacccc	actcaggcta	ttattgcaga	12300
gcctggagac	cttaggcatg	atttaaatca	acaggagcgc	gccaccctt	cgtcgaacgt	12360
acaacggttc	ttcatgattg	ggcatggttc	actcaactgca	gatgccggag	gactcacgta	12420
caccgtcagt	tgggttccta	ccaaacaaat	ccagcgc当地	gttgccctc	cagcaggccc	12480
gtaagacgtg	gatattctcc	tgtgtggcgt	catgttgaag	tagttattag	ccacccagga	12540
acaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	12600
aaaaaaaaa						12608

<210> 17
<211> 12674

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> Construct rEx-DLP-2A-pplab-rFF

 <220>
 <221> misc_feature
 <222> (1)...(18)
 <223> T7 promoter

 <400> 17

taatacgaact cactatagct cgaagtgtgt atggtgccat atacggctca ccaccatata	60
cactgcaaga attactattc ttgtgggccc ctctcggtaa atcctagagg gctttcctct	120
cgttattgcg agattcgtcg ttagataacg gcaagttccc tttcttacta tcctatttc	180
atcttgtggc ttgacgggtc actgcctacg tcgtcgatct ctatcaacta cccttgcgac	240
ttaggcaacc ttctccgcta ctggatttgg agggagttt gtagggact ggtccctgga	300
cttacccgac gcttgtgagc atagtcagca tagtacattt catctgacta atactacaac	360
accaccacca tgaatagagg attcttaac atgctcgcc gccgcccctt cccggccccc	420
actgccatgt ggaggccgcf gagaaggagg caggcggccc cgatggaaag cggagctact	480
aacttcagcc tgctgaagca ggctggagac gtggaggaga accctggacc tatggcaacc	540
ttctccgcta ctggatttgg agggagttt gtagggact ggtccctgga cttacccgac	600
gcttgtgagc atggcgcggg attgtgctgc gaagtggacg gctccacctt atgcgccgag	660
tgttttcgcf gttgcgaagg aatggagcaa tgtcctggct tggatggact ggtccctgga	720
ctggcttcgc cagttccagt gggacataag ttcctgattt gttgtatcg agctgcca	780
gtcacccgggc gttacaattt ctttgagctg ttgcaacacc ctgcttcgc ccagctgcgt	840
gtgggttgcgatg ctaggttagc cattgaagag gcaagtgtgt ttatttccac tgaccacgc	900
tctgctaagc gttccctgg cgctagattt ggcgtgacac cgggttatgc taacgcttgg	960
gttggatgc cggctgctaa cagtttata gtgaccactg accaggaaca agatgggttc	1020
tgctggtaa aactttgcc acctgaccgc cgtgaggctg gtttgcgggt gtattacaac	1080
cattaccgcg aacaaaggac cgggtggctg tctaaaacag gacttcgctt atggcttgg	1140
gacctgggtt tggcatcaa tgcgagctct ggagggtctga aattccacat tatgagggtt	1200
tcgcctcagc gagcttggca tattacaaca cgcagctgca agctgaagag ctactacgtt	1260
tgtgacatct ctgaagcaga ctggtcctgt ttgcctgctg gcaactacgg cggctacaat	1320
ccaccagggg acggagcttgcg cgttacagg tgcttggctt tcatgaatgg cgccactgtt	1380
gtgtcggctg gttgcagttc tgacttggatg tgtgatgtt agttggctt tcgagtctt	1440

caattgtcac ccacgttac ggttaccatc ccaggtggc gagttgtcc gaatgccaag	1500
tacgcaatga tttgtgacaa gcagcactgg cgcgtaaac gtgcaaagg cgtcggctg	1560
tgtctcgatg aaagctgttt cagggcata tgcaattgcc aacgcatacg tggaccacca	1620
cctgcacccg tgcagccgc cgtgttagat cacatactgg aggcggcgac gtttggcaac	1680
gttcgcgtgg ttacacctga agggcagcca cgccccgtac cagcgccgcg agttcgtccc	1740
agcgccaact cttctggaga tgtcaaagat ccggcgcccg ttccgcagc accaaaacca	1800
aggaccaagc ttgccacacc gaacccaact caggcgccca tcccgacacc ggcacgcga	1860
cttcaagggg cctcaacaca ggagccactg gcgagtgcag gagttgcttc tgactcggca	1920
cctaaatggc gtgtggccaa aactgtgtac agctccgcgg agcgcttcg gaccgaactg	1980
gtacaacgtg ctcggtccgt tggggacggtt cttgttcaag cgctaccgct caaaaaccca	2040
gcagtgcagc ggtataccat gactctgaag atgatgcgtt cacgcttcag ttggcactgc	2100
gacgtgtggt accctttggc tgtaatcgct tgtttgctcc ctatatggcc atctcttgct	2160
ttgctcctta gctttgccat tgggttgata cccagtggtt gcaataatgt tgttctgaca	2220
gcgcttctgg tttcatcagc taattatgtt gcgtaatgg accatcaatg tgaagggtgcg	2280
gcttgcttag ctttgcttgg agaagaacac tattatagag cggccgttg gcccggatt	2340
acaggcgccgc tgtcgcttgt gctcaattta ctggggcagg taggctatgt agctcggtcc	2400
acctttgatg cagcttatgt tccttgact gtgttcgatc tttgcagct tgctattctg	2460
tacctctgcc gcaatcggtt ctggagatgc ttccggacgct gtgtgcgagt tgggcctgcc	2520
acgcatgttt tgggctccac cggcaacga gttccaaac tggcgctcat tgatttggt	2580
gaccacttt caaagcccac catcgatgtt gtggcatgg caactgggtt gagcggatgt	2640
tacacaggaa ccggccaaat ggagcgtcag tgtgcctcta cggtgacccc tcactcggttc	2700
gaccagaaga aggcaggagc gactgtttac ctcacccccc ctgtcaacag cgggtcagcg	2760
ctgcagtgcc tcaatgtcat gtggaaagcga ccaattgggt ccactgtcct tgggaaccaa	2820
acaggagctg ttgtgacggc ggtcaagagt atctcttct cacctccctg ctgcgtctct	2880
accactttgc ccacccgacc cgggtgtgacc gttgtcgacc atgctttta caaccgggtt	2940
actgcttcag gggtcgatcc cgctttattt cgtgttggc aaggtgattt tctaaaactt	3000
aatccgggtt tccggctgat aggtggatgg atttatggga tatgctattt tgtgttgggt	3060
gttgtgtcaa cttttacctg cttacctata aatgtggca ttggcacccg cgacccttcc	3120
tgccgcagag tggtttctgt acccgtaacc aagacccaag agcactgcca tgctggaatg	3180
tgtgttagcg ctgaaggcat ctctctggac tctctgggt taactcagtt acaaagttac	3240
tggatcgccag ccgtcactag cggatttagtg atcttgggt tctgccacccg cctggccatc	3300
agcgcccttgg acttgggtgac tctagcttcc ccttagtgt tgcttgggtt cccttggca	3360

tctgtgggc tttacttgc ttgcagtctc gctggtgctg ctgtaaaat acagtttg 3420
gcgacgctt ttgtaatct attcttccc caagctaccc ttgtcactat gggatactgg 3480
gcgtgcgtgg cggcttggc cgttacagt ttgatggct tgcgagtgaa agtgaatgtg 3540
cccatgtgtg tgacacctgc ccattttctg ctgctggcga ggtcagctgg acagtcaaga 3600
gagcagatgc tccgggtcag cgctgctgcc cccaccaatt cactgcttgg agtggctcgt 3660
gattgttatg tcacaggcac aactcggctg tacataacca aggaaggcgg gatggtgttt 3720
gaagggctat tcaggtcacc gaaggcgcgc ggcaacgtcg gcttcgtggc tggtagcagc 3780
tacggcacag ggtcagtgtg gaccaggaac aacgaggtcg tcgtactgac agcgtcacac 3840
gtgggtggcc ggcctaactt ggccactctg aagatcggtg acgcaatgct gactctgact 3900
ttcaaaaaga atggcgactt cgccgaggca gtgacgacac agtccgagct cccaggcaat 3960
tggccacagt tgcatttcgc ccaaccaaca accgggccccg cttcatggt cactgccaca 4020
ggagatgaag aaggcttgc cagtggcgag gtttgcgtt cgtggactac tagtggcgac 4080
tctggatctg cagtggttca gggtgacgct gtggtagggg tccacaccgg ttcaacacaca 4140
agtgggttg cctacgtgac caccccaagc ggaaaactcc ttggcgccga caccgtgact 4200
ttgtcatcac tgtcaaagca tttcacaggc ccttgacat caatccgaa ggacatccct 4260
gacaacatta ttgccgatgt tgatgctgtt ctcgttctc tggccatgct gattgatggc 4320
ttatccaata gagagagcag ctttctgga ctcagttgt ttttaattgc ttgtttatg 4380
tggcttatac ttaaccaacc tgcttacttg cttatgtgc tggcttctt tgccgctaacc 4440
ttcttcctgc caaaaagtgt tggcccccgt gtggtcactg ggcttctatg gttgtgtgc 4500
ctcttcacac cgcttccat ggcgttgc ttgttccatc tggctgtgc taccgtcacg 4560
ggaaacgtga tatcttgcgt gttctacatc actgcccgtg gcacgtctta ctttctgag 4620
atgtggttcg gaggctatcc caccatgttgc tttgtgccac gggtccttagt gtaccagttc 4680
cccggtggg ctattggcac agtactagcg gtatgcagca tcaccatgct ggctgctgcc 4740
ctcggtcaca ccctgttact ggtatgttgc tccgcctcag gtcgcttga caggacttgc 4800
atgatgaaat acttcctgga gggaggagtg aaagagagtg tcaccgcctc agtcacccgc 4860
gcttatggca aaccaattac ccaggagagt ctcactgcaa cattagctgc ctcactgtat 4920
gatgacttcc aatttccttc tgatgtgctt gactgtcggg ccgtccgatc ggcaatgaat 4980
ctgcgtgccc ctctcacaag tttcaagtgc ggcgactatc gtaacatcct taatgcattcc 5040
ttgcaagtcg atcgtgacgc tgctcgtagt cgccgactaa tggcaaaact ggctgatccc 5100
gcgggtgaac aagaagtaac agctggagac cgtgttgcgttgg ttatcgacgg tctggaccgc 5160
atggctcact tcaaagacga tttgggtcgttgc gttccttgc ccaccaaaat agttaggcgg 5220
tcttaggtgca ccatttgcgttgc cgtcgatcag gaagaagccca atgacacccca agttaagcc 5280

atgcccagca ggagacgccc caagggcctg cctaaagggtg ctcagttgga gtgggaccgt	5340
caccaggaag agaagaggaa cgccggtgat gatgatttg cggtctcgaa tgattatgtc	5400
aagagagtgc caaagtactg ggatcccagc gacacccgag gcacgacagt gaaaatcgcc	5460
ggcactacct atcagaaagt ggtgactat tcaggcaatg tgcattacgt ggagcatcag	5520
gaagatctgc tagactacgt gctgggcaag gggagctatg aaggcctaga tcaggacaaa	5580
gtgttggacc tcacaaacat gcttaaagtg gaccccacgg agctctcctc caaagacaaa	5640
gccaaggcgc gtcagcttgc tcatctgctg ttggatctgg ctaaccagt tgaggcagtg	5700
aatcagttaa actgagagcg cccacatct ttcccgccga tgtggggcgt cggaccttg	5760
ctgactctaa agacaagggt ttatgtggctc tacacagtcg cacaatgttt ttagctgccc	5820
gggactttt atttaacatc aaatttgtgt gcgacgaaga gttcacaaag accccaaaag	5880
acacactgct tgggtacgta cgccctgca ctggttactg gtttatttc cgtcgacgc	5940
accggtcgt gattgatgca tactggaca gtagggagtg cgtttacgca cttccacca	6000
tatctgattt ttagtgtgacg ccaggtgacg tcgcagtgac gggcgagcga tgggattttg	6060
aatctcccg aggaggccgt gcaaaacgta tcacagctga tctggtgac gctttcaag	6120
ggttccacgg agcctcttat tcctatgatg acaagggtggc agctgctgtc agtggtgacc	6180
cgtatcggtc ggacggcgta ttgtataaca cccgttgggg caacattcca tattctgtcc	6240
caaccaatgc tttggaagcc acagcttgct accgtgctgg atgtgaggcc gttaccgacg	6300
ggaccaacgt catcgcaaca attggccct tccggagca acaaccata ccggacatcc	6360
caaagagcgt gcttgacaac tgctgtgaca tcagctgtga cgcttcata gcggccgctg	6420
cagagacagc cctgtgtgga gatttagaga aatacaacct atccacgcag ggttttgtgt	6480
tgcctagtgt tttctccatg gtgcggcggt actaaaaaga ggagattgga gacgctccac	6540
cactctactt gccatctact gtaccatcta aaaattcaca agccggaatt aacggcgctg	6600
agtttcctac aaagtcttta cagagctact gtttgattga tgacatggtg tcacagtcca	6660
tgaaaagcaa tctacaaacc gccaccatgg cgacttgtaa acggcaatac tgttccaaat	6720
acaagattag gagcattctg ggcaccaaca attacattgg cctaggtttg cgtgcctgca	6780
tttcgggggt tacggccgca ttccaaaaag ctggaaagga tgggtcaccg atttatttgg	6840
gcaagtcaaa attcgacccg ataccagctc ctgacaagta ctgccttgaa acagacctgg	6900
agagttgtga tcgctccacc ccggctttgg tgcgttggtt cgctactaat cttatTTTg	6960
agctagctgg ccagcccgag ttgggtcaca gctacgtgtt gaattgctgt cacgatctag	7020
ttgtggcggtt tagtgttagca ttacacaaac gccccgggttt gtcatctgga gaccctatca	7080
cttcatttc caataccatc tattcattgg tgctgtacac ccagcacatg ttgctatgtg	7140
gacttgaagg ctatTTTcca gagattgcag aaaaatatct tgatggcagc ctggagctgc	7200

gggacatgtt caagtacgtt cgagtgtaca tctactcgga cgatgtgggt ctaaccacac	7260
ccaaccagca ttacgcggcc agctttgacc gctgggtccc ccacacctgcag gcgctgctag	7320
gtttcaaggt tgacccaaag aaaactgtga acaccagctc cccttccttt ttgggctgcc	7380
ggttcaagca agtggacggc aagtgttatac tagccagtct tcaggaccgc gttacacgct	7440
ctctgttata ccacatttgtt gcaaagaatc cctcagagta ctatgaagct gctgttcca	7500
tctttaagga ctccattatac tgctgtgatg aagactggtg gacggacctc catcgacgta	7560
tcagtggcgc tgcgcttacc gacggagttg agttccccac cattgaaatg ttaacatcct	7620
tccgcaccaa gcagtatgag agtgcgtgt gcacagtttgg tggggccgccc cccgtggcca	7680
agtctgttttgc tggagggtgg ttctgtggca attgtgtccc gtaccacgct ggtcattgtc	7740
acacaacctc gctcttcgccc aactgcgggc acgacatcat gtaccgctcc acttactgca	7800
caatgtgtga gggttccca aaacagatgg taccaaaagt gcctcacccg atcctggatc	7860
atttgctgtg ccacattgtat tacggcagta aagaggaact aactctggta gtggcggatg	7920
gtcgaacaac atcaccgccc gggcgctaca aagtgggtca caaggtagtc gccgtggttg	7980
cagatgtggg aggcaacatt gtgtttgggt gcgggtctgg atcacacatc gcagtaccac	8040
ttcaggatac gctcaaggccg gtgggtggta ataaagctct gaagaacgccc gccgcctctg	8100
agtacgtgga aggacccctt gggagtggga agactttca cctggtaaaa gatgtgttag	8160
ccgtggtcgg tagcgcgacc ttgggtgtgc ccacccacgc gtccatgctg gactgcatca	8220
acaagctcaa acaagcgggc gcogatccat actttgtggt gcccaagtat acagttcttgc	8280
actttcccg gcctggcagt gaaaaacatca cagtgcgact gccacaggtc ggaaccagtg	8340
agggagaaac ctttgtggat gaggtggcct acttctcacc agtggatctg ggcgcattt	8400
taaccaggc tcgagtcaag ggttacgggtt atttaaatca gctcgggtgc gtcggaccgc	8460
cgagcgtgcc acgtaacctt tggctccgac atttgtcag cctggagccc ttgcgagttgt	8520
gccatcgatt cggcgctgct gtgtgtgatt tgcataaggc catttacatc tattatgagc	8580
cagctccaca taccactaaa gtgggttttgc tgccaaatcc agacttttagaa aaggtgttag	8640
tcatcaccgc ctaccacaaa gatcgccgtc ttggtcacccg cacaattgtat tcaattcaag	8700
gctgtacatt ccctgttgttgc actttcgac tgccacacc ccaatcactg acgcgcggc	8760
gcccgcgttgttgc ggcgggttact agggcgcttc aggaattata catctacgac ccctttgtatc	8820
agcttagcgg gttgttgaag ttacccaagg aagcagaggc gcaggacttgc atccatggcc	8880
cacccatcagc atgccacactg ggccaaagaaa ttgaccccttgc gtcacatgag ggcctcgaat	8940
attacaagga agtcaacactg ctgtacacac acgtccccat caaggatggt gtaatacaca	9000
gttaccctaa ttgtggccct gctgtggct gggaaaagca atccaaacaaa atttcgtgcc	9060
tcccgagagt ggcacaaaat ttgggctacc actattcccc agacttacca ggattttgcc	9120

ccataccaaa agaactcgct gagcattggc ccgtagtgtc caatgataga taccggatt	9180
gcttgaaat taccttacag caagtatgtg aactcagtaa accgtgctca gcgggctata	9240
tggttggaca atcggtttc gtgcagacgc ctgggtgtac atcttactgg cttactgaat	9300
gggtcgacgg caaagcgct gctctaccag attccttatt ctgtccggt aggttcgaga	9360
ctaacagccg cgcttcctc gatgaagccg aggaaaagtt tgccgcccgt caccctcatg	9420
cctgtttggg agaaattaat aagtccaccg tgggaggatc ccacttcattc ttttcccaat	9480
atttaccacc attgctaccc gcagacgctg ttgccttggt aggtgcttca ttggctggga	9540
aagctgctaa agctgcttc agcgttggat atgtctatgc tccatcattt gaaccttatac	9600
tacaccctga gacactgagt cgcggttaca agattatgtat cgatttcaag ccgtgttaggc	9660
ttatggtgtg gagaaacgcg acctttatg tccaagaggg tggatgca gttacatcag	9720
cactagcagc tgtgtccaaa ctcatcaaag tgccggccaa tgagcctgtt tcattccatg	9780
tggcatcagg gtacagaacc aacgcgttgg tagcgccccca ggctaaaatt tcaattggag	9840
cctacgcccgc cgagtggca ctgtcaactg aaccgcacc tgctggttat gcgtcgatgc	9900
ggcgatataat tgtaaagagg ctctcagct caacagaagt gttcttgcgc cgcaagggtg	9960
ttgtgtcttc cacctcagtg cagaccattt gtgcactaga gggatgtaaa cctctgttca	10020
acttcttaca aattggttca gtcattgggc ccgtgtgact cttagtgaa cctgttccca	10080
tcccccgctc aactactcag gtatgtggtc gcccggcaacgg gtacaccgca gttggtaaca	10140
agcttgcga tggaaaatat ggaaaacgcac gagaacatcg tggggccc caagcccttc	10200
taccccatcg aggaaggcag cgccggcacc cagctgcggc agtacatggc aagatacgcc	10260
aagctggcg ccattgcctt caccaacgccc gtgaccggcg tggactacag ctacggcgag	10320
tacctggaaa agagctgctg cctggcaag gctctgcaga actacggcct ggtggggac	10380
ggccggatcg ccctgtgcag cgagaactgc gaggaattct tcattccgt gatcgccggc	10440
ctgttcatcg gcgtggcggt ggctcccacc aacgagatct acaccctgcg ggagctggc	10500
cacagcctgg gcatcagcaa gcccaccatc gtgttcagca gcaagaaggg cctggacaaa	10560
gtcatcaccg tgcagaaaac cgtgaccacc atcaagacca tcgtgatcct ggacagcaag	10620
gtggactacc ggggctacca gtgcctggac accttcatca agcggaaacac ccccccgtggc	10680
ttccaggcca gcagcttcaa gaccgtggag gtggaccggc aagaacaggt ggccctgatc	10740
atgaacagca gcccggcgcac cggcctgccc aagggcgtgc agctgaccac cgagaacacc	10800
gtgaccgggt tcagccacgc cagggaccac atctacggca accaggtgtc ccccccggcacc	10860
gccgtgctga ccgtggtgcc cttccaccac ggcttcggca tggatcaccac cctgggctac	10920
ctgatctgcg gcttccgggt ggtgatgctg accaagttcg acgaggaaac cttcctgaaa	10980
accctgcagg actacaagtg cacctacgtg attctggatc ccaccctgtt cgccatcctg	11040

aacaagagcg	agctgctgaa	caagtacgac	ctgagcaacc	tggtgagat	cggcagcggc	11100
ggagccccc	tgagcaaaga	agtggagag	gccgtcgcca	ggcggttcaa	tctgcccggc	11160
gtgcggcagg	gctacggcct	gaccgagaca	accagcgcca	tcatcatcac	ccccgagggc	11220
gacgacaagc	ctggagccag	cggcaaggtg	gtgcccctgt	tcaaggccaa	agtgtatcgac	11280
ctggacacca	agaagagcct	gggccccaaac	agacggggcg	aagtgtgcgt	gaagggcccc	11340
atgctgatga	agggctacgt	gaacaacccc	gaggccacca	aagagctgat	cgacgaagag	11400
ggctggctgc	acaccggcga	catcggtac	tacgacgaag	agaagcactt	cttcatcgta	11460
gaccggctga	agagcctgat	caagtacaag	ggctatcagg	tgccccctgc	cgagctggaa	11520
agcgtcctgc	tgcagcaccc	cagcatcttc	gacgcccggcg	tggccggggt	gccagatcct	11580
gtggccggcg	agctgcctgg	cgcgtggtg	gtgctggaat	ccggcaagaa	catgaccgag	11640
aaagaagtga	tggactacgt	cgcagccag	gtgtccaacg	ccaagcggct	gagaggcggc	11700
gtgagattcg	tggacgaagt	gccaaaggc	ctgaccggca	agatcgacgg	cagggccatc	11760
cgggagatcc	tgaagaaacc	cgtggccaag	atgtgattat	aactcgaggg	agccatagat	11820
tcattttgtg	gtgacggat	tttaggtgag	tatctagatt	actttattct	gtccgtccca	11880
ctcttgctgt	tgcttactag	gtatgtagca	tctgggttag	tgtatgttt	gactgccttg	11940
ttctattcct	ttgttattagc	agcttatatt	tggttgtta	tagttggaag	agcctttct	12000
actgcttatg	ctttgtgct	tttggctgct	tttctgttat	tagtaatgag	gatgattgtg	12060
ggtatgatgc	ctcgtcttcg	gtccatttc	aaccatcgcc	aactgggtgt	agctgatttt	12120
gtggacacac	ctagtggacc	tgttccatc	ccccgcacaa	ccactcaggt	agtggttcgc	12180
ggcaacgggt	acaccgcagt	tggtaacaag	cttgcgtatg	gctgtcaagac	gatcacgtcc	12240
gcaggccgccc	tctttcgaa	acggacggcg	gctacagcct	acaagctaca	atgacctact	12300
gcgcatgttt	ggtcagatgc	gggtccgcaa	accgcggcg	caacccactc	aggctattat	12360
tgcagagcct	ggagaccta	ggcatgattt	aaatcaacag	gagcgcgc	ccctttcg	12420
gaacgtacaa	cggttcttca	tgattggca	tggttcactc	actgcagatg	ccggaggact	12480
cacgtacacc	gtcagttggg	ttcctaccaa	acaaatccag	cgcaaagttg	cgcctccagc	12540
agggccgtaa	gacgtggata	tttcctgtg	tggcgtcatg	ttgaagttagt	tattagccac	12600
ccaggaacca	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	12660
aaaaaaaaaa	aaaa					12674

<210> 18
<211> 12819
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

```

<220>
<221> misc_feature
<223> Construct rEx-DLP-2A-pplab-DLP-rFF

<220>
<221> misc_feature
<222> (1)...(18)
<223> T7 promoter

<400> 18
taatacgaact cactatagct cgaagtgtgt atgggccat atacggctca ccaccatata 60
cactgcaaga attactattc ttgtgggccc ctctcggtaa atcctagagg gcttcctct 120
cgttattgcg agattcgtcg ttagataacg gcaagttccc tttcttacta tcctatttc 180
atcttgtgc ttgacgggtc actgcctacg tcgtcgatct ctatcaacta cccttgcgac 240
ttaggcaacc ttctccgcta ctggatttgg agggagttt gtttagggact ggtccctgga 300
cttacccgac gcttgtgagc atagtcagca tagtacattt catctgacta atactacaac 360
accaccacca tgaatagagg attcttaac atgctcggcc gccgcccctt cccggccccc 420
actgccatgt ggaggccgcg gagaaggagg caggcggccc cgatggaaag cgagactact 480
aacttcagcc tgctgaagca ggctggagac gtggaggaga accctggacc tatggcaacc 540
ttctccgcta ctggatttgg agggagttt gtttagggact ggtccctgga cttacccgac 600
gcttgtgagc atggcgcggg attgtgctgc gaagtggacg gctccacctt atgcgcccag 660
tgtttcgca gttgcgaagg aatggagcaa tgtcctggct tgttcatggg actgttaaaa 720
ctggcttcgc cagttccagt gggacataag ttcctgattt gttggatcg agctgccaaa 780
gtcacccggc gttacaattt ctttgcgtt ttgcacacc ctgtttcgcc ccagctgcgt 840
gtgggtatcg ctaggttagc cattgaagag gcaagtgtgt ttatttccac tgaccacg 900
tctgctaagc gttccctgg cgctagattt ggcgtgacac cgggttatgc taacgcttgg 960
gttgtgagcc cggctgctaa cagtttgcata gtgaccactg accaggaaca agatgggttc 1020
tgctggtaa aactttgcc acctgaccgc cgtgaggctg gtttgcgtt gtattacaac 1080
cattaccgcg aacaaaggac cgggtggctg tctaaaacag gacttcgctt atggcttgg 1140
gacctgggtt tgggcataa tgctgatctt ggagggttga aattccacat tatgaggggt 1200
tcgcctcagc gagcttggca tatcacaaca cgcagctgca agctgaagag ctactacgtt 1260
tgtgacatct ctgaaggcaga ctggccctgt ttgcctgctg gcaactacgg cggctacaat 1320
ccaccagggg acggagcttgc cggttacagg tgcttggctt tcatgaatgg cgccactgtt 1380
gtgtcggttg gttgcgttgc tgacttggatg tgtgatgtatg agttggctta tcgagttttt 1440
caattgtcac ccacgttacac ggttaccatc ccaggtgggc gagttgtcc gaatgccaag 1500
tacgcaatga tttgtgacaa gcagcactgg cgcgtcaaacc gtgcaaaggc cgtcggcctg 1560
tgtctcgatg aaagctgttt caggggcatac tgcaattgcc aacgcattgag tggaccacca 1620

```

cctgcacccg	tgtcagccgc	cgtgttagat	cacatactgg	aggcggcgac	gtttggcaac	1680
gttcgcgtgg	ttacacctga	agggcagcca	cgccccgtac	cagcgccgcg	agttcggtccc	1740
agcgccaact	cttctggaga	tgtcaaagat	ccggcgccccg	ttccgcccagt	acccaaaacca	1800
aggaccaagc	ttgccacacc	gaacccaact	caggcgccca	tcccagcacc	gcgacacgcga	1860
cttcaagggg	cctcaacaca	ggagccactg	gcgagtgcag	gagttgcttc	tgactcggca	1920
cctaaatggc	gtgtggccaa	aactgtgtac	agctccgcgg	agcgcttcg	gaccgaactg	1980
gtacaacgtg	ctcggtccgt	tggggacgtt	cttggtaag	cgctaccgct	caaaacccca	2040
gcagtgcagc	ggtataccat	gactctgaag	atgatgcgtt	cacgcttcag	ttggcactgc	2100
gacgtgttgt	accctttggc	tgtaatcgct	tgtttgttcc	ctatatggcc	atctttgct	2160
ttgctcctta	gctttgccat	tgggttgata	cccagtgtgg	gcaataatgt	tgttctgaca	2220
gcgcttctgg	tttcatcagc	taattatgtt	gcgtcaatgg	accatcaatg	tgaaggtgcg	2280
gcttgcttag	ctttgctgga	agaagaacac	tattatagag	cggtccgttg	gcgcggatt	2340
acaggcgcgc	tgtcgcttgt	gctcaattta	ctggggcagg	taggctatgt	agctcggtcc	2400
acctttgatg	cagcttatgt	tcattgcact	gtgttcgatc	tttgcagctt	tgctattctg	2460
tacctctgcc	gcaatcggtt	ctggagatgc	ttcggacgct	gtgtgcgagt	tgggcctgcc	2520
acgcatgttt	tgggctccac	cgggcaacga	gtttccaaac	tggcgctcat	tgatttgtgt	2580
gaccactttt	caaagccac	catcgatgtt	gtgggcatgg	caactggttg	gagcggatgt	2640
tacacaggaa	ccgcccgaat	ggagcgtcag	tgtgcctcta	cggtgacccc	tcactcggttc	2700
gaccagaaga	aggcaggagc	gactgtttac	ctcacccccc	ctgtcaacag	cgggtcagcg	2760
ctgcagtgcc	tcaatgtcat	gtggaagcga	ccaattgggt	ccactgtcct	tggggaccaa	2820
acaggagctg	ttgtgacggc	ggtcaagagt	atctcttct	cacccctctg	ctgcgtctct	2880
accactttgc	ccacccgacc	cggtgtgacc	gttgtcgacc	atgtcttta	caaccgggtt	2940
actgcttcag	gggtcgatcc	cgctttattg	cgtgttggc	aaggtgattt	tctaaaactt	3000
aatccgggt	tccggctgat	aggtggatgg	atttatgggaa	tatgttattt	tgtgttggtg	3060
gttgtgtcaa	cttttacctg	cttacctatac	aaatgtggca	ttggcaccgg	cgacccttcc	3120
tgccgcagag	tgtttctgt	accgcgtcacc	aagacccaag	agcactgcc	tgctggaatg	3180
tgtgctagcg	ctgaaggcat	ctctctggac	tctctgggt	taactcagtt	acaaagttac	3240
tggatcgacag	ccgtcactag	cggatttagtgc	atcttggtg	tctgccaccg	cctggccatc	3300
agcgccctgg	acttggtgac	tctagcttcc	cctttagtgt	tgcttggtt	cccttggca	3360
tctgtggggc	ttttacttgc	ttgcagtctc	gctggtgctg	ctgtgaaaat	acagttgttg	3420
gcgacgcttt	ttgtgaatct	attctttccc	caagctaccc	ttgtcactat	gggatactgg	3480
cggtgcgtgg	cggctttggc	cgtttacagt	ttgatggct	tgcgagtgaa	agtgaatgtg	3540

cccatgtgtg tgacacctgc ccattttctg ctgctggcga ggtcagctgg acagtcaaga	3600
gagcagatgc tccgggtcag cgctgctgcc cccaccaatt cactgcttgg agtggctcgt	3660
gattgttatg tcacaggcac aactcggctg tacataacca aggaaggcgg gatggtgttt	3720
gaagggctat tcaggtcacc gaaggcgcgc ggcaacgtcg gcttcgtggc tggtagcagc	3780
tacggcacag ggtcagtgtg gaccaggaac aacgaggtcg tcgtactgac agcgtcacac	3840
gtggttggcc gcgctaacat ggccactctg aagatcggtg acgcaatgct gactctgact	3900
ttcaaaaaga atggcgactt cgccgaggca gtgacgacac agtccgagct cccaggcaat	3960
tggccacagt tgcatttcgc ccaaccaaca accggggcccg cttcatggtg cactgccaca	4020
ggagatgaag aaggcttgct cagtggcgag gtttgtctgg cgtggactac tagtggcgac	4080
tctggatctg cagtggttca gggtgacgct gtggtagggg tccacacccgg ttcgaacaca	4140
agtggtgttg cctacgtgac caccccaagc ggaaaactcc ttggcgccga caccgtgact	4200
ttgtcatcac tgtcaaagca tttcacaggc ccttgacat caatccgaa ggacatccct	4260
gacaacatta ttgccgatgt tgatgctgtt cctcggtctc tggccatgct gattgatggc	4320
ttatccaata gagagagcag ccttctgga cctcagttgt tgttaattgc ttgtttatg	4380
tggctttatc ttaaccaacc tgcttacttg ccttatgtgc tgggcttctt tgccgctaacc	4440
ttcttcctgc caaaaagtgt tggccgcct gtggtaactg ggcttctatg gttgtgctgc	4500
ctcttcacac cgcttccat gcgcttgc ttgttccatc tggctgtgc taccgtcacg	4560
ggaaacgtga tatcttgcg gttctacatc actgcccgtg gcacgtctta cctttctgag	4620
atgtggttcg gaggctatcc caccatgttgc tttgtgccac ggttcctagt gtaccagttc	4680
cccggtggg ctattggcac agtactagcg gtagcagca tcaccatgct ggctgctgcc	4740
ctcggtcaca ccctgttact ggatgtgttc tccgcctcag gtcgctttga caggacttcc	4800
atgatgaaat acttcctgga gggaggagtg aaagagagtg tcaccgcctc agtcacccgc	4860
gcttatggca aaccaattac ccaggagagt ctcactgcaa cattagctgc cctcaactgat	4920
gatgacttcc aattcctctc tgatgtgtt gactgtcggg ccgtccgatc ggcaatgaat	4980
ctgcgtgccc ctctcacaag tttcaagtgc ggcgactatc gtaacatcct taatgcattc	5040
ttgcaagtcg atcgtgacgc tgctcgttagt cgccagactaa tggcaaaact ggctgat	5100
gcgggtgaac aagaagtaac agtggagac cgtgttgtgg ttatcgacgg tctggaccgc	5160
atggctcact tcaaagacga tttggtgctg gttccttgc ccaccaaagt agtagggcggt	5220
tcttaggtca ccatttgcg cgtcgatgcgaa atgacacccc agttaagccaa	5280
atgcccagca ggagacgccc caagggcctg cctaaagggtg ctcagttggc gtgggaccgt	5340
caccaggaag agaagaggaa cgccgggtat gatgattttg cggtctcgaa tgattatgtc	5400
aagagagtgc caaagtactg ggatcccagc gacacccgag gcacgacagt gaaaatcgcc	5460

ggcactacct atcagaaaagt ggttgactat tcaggcaatg tgcattacgt ggagcatcag	5520
gaagatctgc tagactacgt gctggcaag gggagctatg aaggcctaga tcaggacaaa	5580
gtgttggacc tcacaaacat gcttaaagtg gaccccacgg agctctcctc caaagacaaa	5640
gccaaggcgc gtcagcttgc tcatctgctg ttggatctgg ctaaccagt tgaggcagtg	5700
aatcagttaa actgagagcg ccccacatct ttcccgccga tgtggggcgt cgaccccttg	5760
ctgactctaa agacaagggt ttctgtggctc tacacagtcg cacaatgttt ttagctgccc	5820
gggactttt atttaacatc aaatttgcgt ggcacgaaga gttcacaaag accccaaaag	5880
acacactgct tgggtacgta cgccctgca ctggttactg gtttatttc cgtcgatgc	5940
accggcgtct gattgatgca tactggaca gtatggagtg cgtttacgca cttccacca	6000
tatctgattt tggatgtgagc ccaggtgacg tggcagtgcg gggcgagcga tgggattttg	6060
aatctcccg aggaggccgt gcaaaacgta tcacagctga tctggtcac gctttcaag	6120
ggttccacgg agccttttat tcctatgatg acaaggtggc agctgctgca agtggtgacc	6180
cgtatcggtc ggacggcgctc ttgtataaca cccgttgggg caacattcca tattctgtcc	6240
caaccaatgc tttggaagcc acagcttgct accgtgctgg atgtgaggcc gttaccgacg	6300
ggaccaacgt catcgcaaca attggccct tcccgagca acaacccata ccggacatcc	6360
caaagagcgt gcttgacaac tgccgtgaca tcagctgtga cgcttcata gcccggctg	6420
cagagacagc cctgtgtgga gatttagaga aatacaacct atccacgcag gttttgtgt	6480
tgcctagtgt tttctccatg gtgcggcggt acttaaaaga ggagattgga gacgctccac	6540
cactctactt gccatctact gtaccatcta aaaattcaca agccgaaatt aacggcgctg	6600
agtttcctac aaagtcttta cagagctact gtttatttga tgacatgggt tcacagtcca	6660
tgaaaagcaa tctacaaacc gccaccatgg cgacttgtaa acggcaatac tttccaaat	6720
acaagattag gagcattctg ggcaccaaca attacattgg cctaggttt cgtgcctgcc	6780
tttcgggggt tacggccgca ttccaaaaag ctggaaagga tgggtcacccg atttatttgg	6840
gcaagtcaaa attcgacccg ataccagctc ctgacaagta ctgccttcaa acagacctgg	6900
agagttgtga tcgctccacc ccggctttgg tgcgttgggt cgctactaat cttattttg	6960
agctagctgg ccagcccgag ttggcaca gctacgtgtt gaattgctgt cacgatctag	7020
ttgtggcggt tagttagca ttccacaaac gcgggggtt gtcatttgg gaccctatca	7080
cttcatttc caataccatc tatttattgg tgctgtacac ccagcacatg ttgctatgtg	7140
gacttgaagg ctatcccaga gagattgcag aaaaatatct tggatggcagc ctggagctgc	7200
gggacatgtt caagtacgtt cgagtgtaca tctactcgga cgatgtgggtt ctaaccacac	7260
ccaaaccagca ttacgcggcc agcttgacc gctgggtccc ccacctgcag gcgctgctag	7320
gtttcaaggt tgacccaaag aaaactgtga acaccagctc ccatttcctt ttggcgtgcc	7380

ggttcaagca agtggacggc aagtgttata tagccagtct tcaggaccgc gttacacgct	7440
ctctgttata ccacattggc gcaaagaatc cctcagagta ctatgaagct gctgtttcca	7500
tcttaagga ctccattatac tgctgtgatg aagactggtg gacggacctc catcgacgta	7560
tcagtggcgc tgcgcgtacc gacggagttg agttcccccac cattgaaatg ttaacatcct	7620
tccgcaccaa gcagtatgag agtgcgtgt gcacagttg tggggccgccc cccgtggcca	7680
agtctgcttg tggagggtgg ttctgtggca attgtgtccc gtaccacgac ggtcattgtc	7740
acacaacctc gctcttcgccc aactgcgggc acgacatcat gtaccgctcc acttactgca	7800
caatgtgtga gggttcccca aaacagatgg taccaaaagt gcctcaccgc atcctggatc	7860
atttgctgtg ccacattgtat taacggcagta aagaggaact aactctggta gtggcggatg	7920
gtcgaacaac atcaccggcc gggcgctaca aagtgggtca caaggtagtc gccgtgggtg	7980
cagatgtggg aggcaacatt gtgtttgggt gcggtcctgg atcacacatc gcagtaccac	8040
ttcaggatac gctcaaggcc gttgtgggtga ataaagctct gaagaacgccc gccgcctctg	8100
agtacgtgga aggacccct gggagtgaaa agactttca cctggtaaaa gatgtgctag	8160
ccgtggtcgg tagcgcgacc ttgggtgtgc ccacccacgc gtccatgctg gactgcatca	8220
acaagctcaa acaagcgggc gccgatccat actttgtggt gcccaagtat acagttcttgc	8280
actttccccc gcctggcagt ggaaacatca cagtgcgact gccacaggtc ggaaccagtg	8340
agggagaaac ctttgtggat gaggtggcct acttctcacc agtggatctg gcgccattt	8400
taaccagggt tcgagtcaag gttacgggtg atttaaatca gctcgggtgc gtcggacccg	8460
cgagcgtgcc acgtaacatt tggctccgac attttgtcag cctggagccc ttgcgagtgt	8520
gccatcgatt cggcgctgct gtgtgtgatt tgcataaggg cattttatcc tattatgagc	8580
cagctccaca taccactaaa gtgggtttg tgccaaatcc agacttttag aaaggtag	8640
tcatcaccgc ctaccacaaa gatcgcggc ttggtcaccg cacaattgtat tcaattcaag	8700
gctgtacatt ccctgttgtg actcttcgac tgcccacacc ccaatcactg acgcgcccgc	8760
gcgcagttgt ggccgttact agggcgtctc aggaattata catctacgac ccctttgatc	8820
agcttagcgg gttgttgaaat ttccaccaagg aagcagaggc gcaggacttg atccatggcc	8880
cacccatcgc atgccacactg ggccaaagaaa ttgaccccttgc gtccaaatgag ggccctcgat	8940
attacaagga agtcaacactg ctgtacacac acgtccccat caaggatggt gtaatacaca	9000
gttaccctaa ttgtggccct gcctgtggct gggaaaagca atccaaacaaa atttcgtgcc	9060
tcccgagagt ggcacaaaat ttgggttacc actattcccc agacttacca ggattttgcc	9120
ccataccaaa agaactcgct gagcattggc ccgttagtgac caatgataga taccggaaatt	9180
gcttgcaaat taccttacag caagtatgtg aactcagtaa accgtgctca gcgggctata	9240
tgggtggaca atcggttttc gtgcagacgc ctgggtgtgac atcttactgg cttactgaat	9300

gggtcgacgg caaagcgcgt gctctaccag attccttatt ctcgtccgg aggtcgaga	9360
ctaacagccg cgcttcctc gatgaagccg aggaaaagtt tgccgcccgt caccctcatg	9420
cctgtttggg agaaattaat aagtccaccg tgggaggatc ccacttcattc ttttcccaat	9480
atttaccacc attgctaccc gcagacgctg ttgcctggg aggtgcttca ttggctgggaa	9540
aagctgctaa agctgcttgc agcgttggatg atgtctatgc tccatcattt gaaccttatac	9600
tacaccctga gacactgagt cgctgtaca agattatgtat cgatttcaag ccgtgtaggc	9660
ttatggtgtg gagaaacgcg acctttatg tccaagaggg tggatgatgca gttacatcag	9720
cactagcagc tgtgtccaaa ctcataaag tgccggccaa tgagcctgtt tcattccatg	9780
tggcatcagg gtacagaacc aacgcgctgg tagcgcccca ggctaaaatt tcaattggag	9840
cctacgcccgc cgagtgggca ctgtcaactg aaccgcacc tgctggttat gcgatcgtgc	9900
ggcgatatat tgtaaagagg ctccctagct caacagaagt gttcttgc cgcaagggtg	9960
ttgtgtcttc cacctcagtg cagaccattt gtgcactaga gggatgtaaa cctctgttca	10020
acttcttaca aattggttca gtcattgggc ccgtgtgact ctagagtggaa cctgttccca	10080
tcccccgctc aactactcag gtagtggttc gggcaacgg gtacaccgca gttggtaaca	10140
agcttgcga tagtcagcat agtacattt atctgactaa tactacaaca ccaccaccat	10200
gaatagagga ttcttaaca tgctcgccg ccgccccctc ccggcccccctgatgt	10260
gaggccgcgg agaaggaggc aggccgcacc gatgatggaa aatatggaaa acgacgagaa	10320
catcggtgtg ggccccaaagc cttctaccc catcgaggaa ggcagcgcgc gcaccagct	10380
gcggaagtac atggaaagat acgccaagct gggcgccatt gccttcacca acgcccgtac	10440
cggcgtggac tacagctacg ccgagttaccc ggaaagagc tgctgcctgg gcaaggctct	10500
gcagaactac ggcctgggtgg tggacggccg gatcgccctg tgcagcgaga actgcgagga	10560
attcttcatc cccgtgatcg ccggcctgtt catcggtgtg ggcgtggctc ccaccaacga	10620
gatctacacc ctgcgggagc tggtgacacag cctgggcattt agcaagccca ccatcgttgc	10680
cagcagcaag aagggcctgg acaaagtcat caccgtgcag aaaaccgtga ccaccatcaa	10740
gaccatcgatg atcctggaca gcaagggtgga ctaccggggc taccagtgcc tggacacctt	10800
catcaagcgg aacacccccc ctggcttcca ggccagcgc ttcaagaccg tggaggtgga	10860
ccggaaagaa caggtggccc tgcgtatgaa cagcagcggc agcaccggcc tgcccaaggg	10920
cgtcgagctg acccacgaga acaccgtgac ccgggttcagc cacgcccagg accccatcta	10980
cggcaaccag gtgtcccccg gcaccggccgt gctgaccgtg gtgccttcc accacggctt	11040
cggcatgttc accaccctgg gctacctgat ctgcggcttc cgggtgggtga tgctgaccaa	11100
gttcgacgag gaaaccttcc tgaaaaccct gcaggactac aagtgcaccc acgtgattct	11160
ggtgccccacc ctgttcgcca tcctgaacaa gagcgagctg ctgaacaagt acgacctgag	11220

caacctggtg gagatcgcca gcggcggaga ccccctgagc aaagaagtgg gagaggccgt	11280
cgccaggcgg ttcaatctgc ccggcgtgcg gcagggctac gcgcctgaccg agacaaccag	11340
cgcctatcatc atcacccccgg agggcgacga caagcctgga gccagcggca aggtggtgcc	11400
cctgttcaag gccaaagtga tcgacctgga caccaagaag agcctggcc ccaacagacg	11460
gggcgaagtgc tgctgtggagg gcgcctatgct gatgaaggc tacgtgaaca accccgaggc	11520
caccaaagag ctgatcgacg aagaggcgt gctgcacacc ggcgcacatcg gctactacga	11580
cgaagagaag cacttcttca tcgtggaccg gctgaagagc ctgatcaagt acaaggcgt	11640
tcaggtgccc cctgcccggc tgaaaagcgt cctgctgcag caccccgacca tcttcgacgc	11700
cggcgtggcc ggggtgcccggc atcctgtggc cggcgagctg cctggcgccg tgggtggct	11760
ggaatccggc aagaacatga ccgagaaaga agtgatggac tacgtcgcca gccagggtgc	11820
caacgccaag cggctgagag gcggcgtgag attcgtggac gaagtgc当地 agggcctgac	11880
cggcaagatc gacggcaggg ccatccgggaa gatcctgaag aaacccgtgg ccaagatgtg	11940
attataactc gagggagcca tagattcatt ttgtggtgc gggatggatgtatct	12000
agattacttt attctgtccg tccactctt gctgttgctt actaggtatg tagcatctgg	12060
gttagtgtat gtttgactg cttgttcta ttcccttgta ttagcagctt atattggtt	12120
tgttatagtt ggaagagcct ttctactgc ttatgc当地 gtgtttgg ctgtttct	12180
gttattagta atgaggatga ttgtggat gatgcctcgt ctgcgttcca ttcaacca	12240
tcgccaactg gtggtagctg attttgtggc cacacctgtt ggacctgttc ccatccccgg	12300
cccaaccact caggttagtgg ttgcggcaa cgggtacacc gcagttggta acaagcttgc	12360
cgtggcgctc aagacgatca cgtccgcagg ccgcctctt tggaaacggc cggcgccgac	12420
agcctacaag ctacaatgac ctactgcgc当地 tggtggtca gatgcgggtc cgcaaacccgc	12480
ccgcgc当地 cactcaggct attattgcag agcctggaga ccttaggcatt gatattaaatc	12540
aacaggagcg cgccaccctt tcgtcgaacg tacaacggtt ctcatgatt gggcatggtt	12600
cactcactgc agatgccggc ggactcacgt acaccgtcag ttgggttccct accaaacaaa	12660
tccagcgcaa agttgc当地 ccagcaggc cgtaaagacgt ggatattctc ctgtgtggcg	12720
tcatgttcaa gtagtttata gccacccagg aaccaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	12780
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	12819

<210> 19
<211> 464
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> Construct Alpha-R-DLP-2A-nsp-rFF

<400> 19
 gataggcggc gcatgagaga agccagacc aattacctac ccaaata tagga gaaagttcac 60
 gttgacatcg aggaagacag cccattcctc agagcttgc agcggagctt cccgcagtt 120
 gaggtagaag ccaagcaggt cactgataat gaccatgcta atgccagagc gtttgcata 180
 ctggcttcaa aactgatcga aacggaggtg gacccatccg acacgatcct tgacattgga 240
 atagtcagca tagtacattt catctgacta atactacaac accaccacca tgaatagagg 300
 attcttaac atgctcgcc gccgccccctt cccggccccc actgccatgt ggaggccgcg 360
 gagaaggagg caggcgcccc cgggaagcgg agctactaac ttcaagcctgc tgaagcaggc 420
 tggagacgtg gaggagaacc ctggacctat ggagaaagtt cacg 464

<210> 20
 <211> 80
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> primer DLP-rFF-F

<220>
 <221> misc_feature
 <223> RP112

<400> 20
 cctgaatgga ctacgacata gtctagtccg ccaagatatac gcaccatagt cagcatagta 60
 catttcatact gactaatact 80

<210> 21
 <211> 60
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> primer DLP-rFF-R

<220>
 <221> misc_feature
 <223> RP113

<400> 21
 gcagcttgcc aattgctgct gtatcgatca attaatcaca tcttggccac gggtttcttc 60

<210> 22
 <211> 67
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> primer 5'Alpha-P2A-F

 <220>
 <221> misc_feature
 <223> RP124

 <400> 22
 gaaggaggct ggagacgtgg aggagaaccc tggaccttag aaagttcactt ttgacatcga 60
 ggaagac 67

 <210> 23
 <211> 30
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> primer 5'ScaI-R

 <220>
 <221> misc_feature
 <223> RP125

 <400> 23
 caccagtcac agaaaagcat cttacggatg 30

 <210> 24
 <211> 1014
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> g-block for Alpha-R-DLP-2A-nsp-rFF

 <400> 24
 tgtcatgcca tccgtaagat gctttctgt gactggtag tactcaacca agtcattctg 60
 agaatagtgt atgcggcgac cgagttgctc ttgccccggcg tcaacacggg ataataccgc 120
 gccacatagc agaactttaa aagtgctcat cattggaaaa cgttcttgg ggcgaaaaact 180
 ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg caccacaactg 240
 atcttcagca tcttttactt tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa 300

tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac tttcccttt	360
tcaatattat tgaagcattt atcagggta ttgtctcatg agcggataca tatttgaatg	420
tatttagaaa aataaacaaa taggggttcc gcgcacattt ccccgaaaag tgccacctga	480
cgtctaagaa accattatta tcatgacatt aagcatccgc cttcgaaaaat attgaccat	540
gttggatgt aatacgactc actatagata ggccggcgcat gagagaagcc cagaccaatt	600
acctacccaa ataggagaaa gttcacgtt acatcgagga agacagccca ttcctcagag	660
ctttgcagcg gagcttcccg cagttgagg tagaagccaa gcaggtcaact gataatgacc	720
atgctaattgc cagagcgaaa tgcacatctgg cttcaaaact gatcgaaacg gaggtggacc	780
catccgacac gatccttgac attggaatag tcagcatagt acatttcattc tgactaatac	840
tacaacacca ccaccatgaa tagaggattt ttaacatgc tcggccgccc ccccttcccg	900
ccccccactg ccatgtggag gccgcggaga aggaggcagg cggcccccggg aagcggagct	960
actaacttca gcctgctgaa gcaggctgga gacgtggagg agaaccctgg acct	1014

<210> 25
 <211> 1014
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> g-block for Alpha-R-DLP-2A-nsp-DLP-rFF

<400> 25	
tgtcatgccatccgtaaat gctttctgt gactggtag tactcaacca agtcattctg	60
agaatagtgt atgcggcgac cgagttgctt ttgcccggcg tcaacacggg ataataccgc	120
gccacatagc agaactttaa aagtgtcat cattggaaaaa cgttcttcgg ggcggaaaact	180
ctcaaggatc ttaccgctgt tgagatccag ttcatgttacccactcgatcgacaccactg	240
atcttcagca tctttactt tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa	300
tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac tttcccttt	360
tcaatattat tgaagcattt atcagggta ttgtctcatg agcggataca tatttgaatg	420
tatttagaaa aataaacaaa taggggttcc gcgcacattt ccccgaaaag tgccacctga	480
cgtctaagaa accattatta tcatgacatt aagcatccgc cttcgaaaaat attgaccat	540
gttggatgt aatacgactc actatagata ggccggcgcat gagagaagcc cagaccaatt	600
acctacccaa ataggagaaa gttcacgtt acatcgagga agacagccca ttcctcagag	660
ctttgcagcg gagcttcccg cagttgagg tagaagccaa gcaggtcaact gataatgacc	720
atgctaattgc cagagcgaaa tgcacatctgg cttcaaaact gatcgaaacg gaggtggacc	780

catccgacac gatccttgc	attggaatag tcagcatagt acatttcatc	tgactaatac	840
tacaacacca ccaccatgaa	tagaggattc tttaacatgc	tcggccgccc ccccttcccg	900
gcccccaactg ccatgtggag	gccgcggaga aggaggcagg	cggccccggg aagcggagct	960
actaacttca gcctgctgaa	gcaggctgga gacgtggagg	agaaccctgg acct	1014
<210> 26			
<211> 9476			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic polynucleotide			
<220>			
<221> misc_feature			
<223> construct Alpha-R-rFF			
<220>			
<221> misc_feature			
<222> (1)...(18)			
<223> T7 promoter			
<400> 26			
taatacgact cactatacat	aggcggcgca tgagagaagc	ccagaccaat tacctaccca	60
aaatggagaa agttcacgtt	gacatcgagg aagacagccc	attcctcaga gctttgcagc	120
ggagcttccc gcagttttag	gtagaagcca agcaggtcac	tgataatgac catgctaatt	180
ccagagcggtt ttgcacatctg	gcttcaaaac tgatcgaaac	ggaggtggac ccatccgaca	240
cgatccttga cattggaagt	gcgcggcgcc gcagaatgta	ttctaaggcac aagtatcatt	300
gtatctgtcc gatgagatgt	gcggaagatc cggacagatt	gtataagtat gcaactaagc	360
tgaagaaaaaa ctgtaaggaa	ataactgata aggaattgga	caagaaaaatg aaggagctcg	420
ccgcgcgtcat gagcgaccct	gacctggaaa ctgagactat	gtgcctccac gacgacgagt	480
cgtgtcgcta cgaaggccaa	gtcgctgttt accaggatgt	atacgcgggt gacggaccga	540
caagtctcta tcaccaagcc	aataaggag ttagagtcgc	ctactggata ggctttgaca	600
ccaccccttt tatgttaag	aacttggctg gagcatatcc	atcatactct accaactggg	660
ccgacgaaac cgtgttaacg	gctcgtaaca taggcctatg	cagctctgac gttatggagc	720
ggtcacgtag agggatgtcc	attcttagaa agaagtattt	gaaaccatcc aacaatgttc	780
tattctctgt tggctcgacc	atctaccacg agaagaggga	cttactgagg agctggcacc	840
tgccgtctgt atttcactta	cgtggcaagc aaaattacac	atgtcggtgt gagactata	900
ttagttgcga cgggtacgtc	gttaaaaagaa tagctatcg	tccaggcctg tatggaaagc	960
cttcaggcta tgctgctacg	atgcaccgcg agggattctt	gtgctgcaaa gtgacagaca	1020
cattgaacgg ggagagggtc	tctttcccg tgtgcacgta	tgtgccagct acattgtgt	1080

accaaatgac tggcatactg gcaacagatg tcagtgcgga cgacgcgcaa aaactgctgg	1140
ttgggctcaa ccagcgata gtgtcaacg gtgcacccca gagaaaacacc aataccatga	1200
aaaattacct tttgcccgt a gtggcccagg catttgctag gtgggcaaag gaatataagg	1260
aagatcaaga agatgaaagg ccactaggac tacgagatag acagttagtc atgggggttt	1320
gttgggcttt tagaaggcac aagataacat ctattataa gcgcccggat acccaaacca	1380
tcatcaaagt gaacagcgat ttccactcat tcgtgctgcc caggataggc agtaacacat	1440
tggagatcg gctgagaaca agaatcagga aaatgttaga ggagcacaag gagccgtcac	1500
ctctcattac cgccgaggac gtacaagaag ctaagtgcgc agccgatgag gctaaggagg	1560
tgcgtgaagc cgaggagttg cgccgagctc taccacctt ggcagctgat gttgaggagc	1620
ccactctgga agccgatgtc gacttgatgt tacaagaggc tggggccggc tcagtggaga	1680
cacccctgtgg cttgataaaag gttaccagct acgtggcga ggacaagatc ggctttacg	1740
ctgtgctttc tccgcaggct gtactcaaga gtgaaaaatt atcttgcattt caccctctcg	1800
ctgaacaagt catagtgata acacactctg gccgaaaagg gcgttatgcc gtggaaaccat	1860
accatggtaa agtagtggtg ccagagggac atgcaatacc cgtccaggac tttcaagctc	1920
tgagtgaaag tgccaccatt gtgtacaacg aacgtgagtt cgtaaacagg tacctgcacc	1980
atattgccac acatggagga gcgctgaaca ctgatgaaga atattacaaa actgtcaagc	2040
ccagcgagca cgacggcgaa tacctgtacg acatcgacag gaaacagtgc gtcaagaaag	2100
aactagtcac tgggctaggg ctoacaggcg agctggtgga tcctcccttc catgaattcg	2160
cctacgagag tctgagaaca cgaccagccg ctccttacca agtaccaacc ataggggtgt	2220
atggcgtgcc aggtcaggc aagtctggca tcattaaaag cgcagtcacc aaaaaagatc	2280
tagtggtgag cgccaagaaa gaaaactgtg cagaaattat aagggacgtc aagaaaatga	2340
aagggctgga cgtcaatgcc agaactgtgg actcagtgtc cttgaatgga tgcaaacacc	2400
ccgtagagac cctgtatatt gacgaagctt ttgcttgtca tgcaggtact ctcagagcgc	2460
tcatagccat tataagaccc aaaaaggcag tgctctgcgg ggatccaaa cagtgcggtt	2520
tttttaacat gatgtgcctg aaagtgcatt ttaaccacga gatttgacaca caagtcttcc	2580
acaaaagcat ctctcgccgt tgcactaaat ctgtgacttc ggtcgctca accttggttt	2640
acgacaaaaa aatgagaacg acgaatccga aagagactaa gattgtgatt gacactaccg	2700
gcagtagccaa acctaaggcag gacgatctca ttctcacttg tttcagaggg tgggtgaagc	2760
agttgcaaat agattacaaa ggcaacgaaa taatgacggc agctgcctct caagggctga	2820
cccgtaaagg tgtgtatgcc gttcggtaca aggtgaatga aaatcctctg tacgcacccca	2880
cctctgaaca tgtgaacgatc ctactgaccc gcacggagga cccatcgatg tggaaaacac	2940
tagccggcga cccatggata aaaacactga ctgccaagta ccctggaaat ttcaactgcca	3000

cgatagagga gtggcaagca gagcatgatg ccatcatgag gcacatcttgcagagaccgg	3060
accctaccga cgtcttcag aataaggca acgtgttttgcagggct ttagtgcgg	3120
tgctgaagac cgctggcata gacatgacca ctgaacaatgtg gattatggaaacccggacaa agctcactca gcagagatgttgcagatcttgcagtttttgcacccactgttccgttatccattaggaata	3180
gactcgatct ggactccggt ctatggatcttgcacccactgttccgttatccattaggaata	3240
atcactggtaactccccgtcgccataaca tgtacgggttgcagatgttgcacccactgttccgttatccattaggaata	3300
agctctctcg caggtaccca caactgcctc gggcagttgcactggaaga gtctatgaca	3360
tgaacactgg tacactgcgc aattatgtatc cgcgataaa ccttagtacct gtaaacagaa	3420
gactgcctca tgcttagtcttccaccataatgaacaccc acagagtgacttcttcat	3480
tcgtcagcaa attgaagggc agaactgttgc tggtggtcgg ggaaaagtttgcgtccag	3540
gcaaaatggt tgactgggttgcagaccggccttgcaggttgcacttgcagatgttgc	3600
taggcattccc aggtgatgttgc cccaaatatgtacataatatttgttaatgttgcaggacccat	3660
ataaaatacca tcactatcag cagtgtgaag accatgccat taagcttagc atgttgcacca	3720
agaaagcttgc tctgcattctg aatccggcgaaacccatgttgc cagcataggttgc	3780
ctgacaggc cagcgaaagc atcattgggttgc ttagtgcgcgcagttcaagttttccgg	3840
tatgcaaacc gaaatcctca ttgaagaga cggaaagtttgc ttgttgcatttgc	3900
atcgcaaggc ccgtacgcac aatccttaca agcttcatc aacccgttgcacc aacattata	3960
caggttccag actccacgaa gcggatgttgc caccctcata tcatgtgggttgcaggggata	4020
ttgccacggc caccgaagga gtgattataatgctgttgc cagcaaagga caacccgttgc	4080
gaggggtgttgc cggagcgctgttgc tataagaaat tccggaaatgc ttcgcatttgc	4140
aagtaggaaa agcgacttgcgttgc cagctaaaca tatcattcat gccgttgc	4200
caaacttcaa caaagtttgc gaggttgcgttgc gtcacaaaca gttggcagag gcttatgttgc	4260
ccatcgctaa gattgtcaac gataacaatt acaagtcgttgc gtcatttgc	4320
ccggcatctt ttccggaaac aaagatcgac taacccatcatttgcatttgc	4380
ctttagacac cactgatgca gatgttagtgcataactgttgcggacaagaaa tggaaatgttgc	4440
ctctcaagga agcagtggcttgc agagagatgttgc cagtgaggttgc gatatgttgcata tccgttgcacttgc	4500
cttcagtgttgc acgttgcgttgc ttcgttgcgttgc tccgttgcgttgc	4560
gaaggaaggcttacagcaca agcgatggca aaacttctc atatttggaa gggaccaagt	4620
ttcaccaggc ggccaaggat atagcagaaa ttaatgttgcatttgcgttgc gcaacggagg	4680
ccaatgttgc ggtatgttgc tatactgttgc gagaagatgttgc gtcgttgcatttgc	4740
ccccgttgcgaa agagtcggaa gtcgttgcacac cacccgttgc gtcgttgcatttgc	4800
atgttgcatttgc tccagaaaga gtacagcgcc taaaaggcctc acgtccagaa caaattactgttgc	4860
atgttgcatttgc tccagaaaga gtacagcgcc taaaaggcctc acgtccagaa caaattactgttgc	4920

tgtgctcatc	ctttccattg	ccgaagtata	gaatcactgg	tgtgcagaag	atccaatgct	4980
cccagcctat	attgttctca	ccgaaagtgc	ctgcgtatat	tcatccaagg	aagtatctcg	5040
tggaaacacc	accggtagac	gagactccgg	agccatccgc	agagaaccaa	tccacagagg	5100
ggacacctga	acaaccacca	cttataaccg	aggatgagac	caggactaga	acgcctgagc	5160
cgatcatcat	cgaagaggaa	gaagaggata	gcataagttt	gctgtcagat	ggcccgaccc	5220
accaggtgct	gcaagtgcag	gcagacattc	acggggccgc	ctctgtatct	agctcatcct	5280
ggtccattcc	tcatgcattcc	gactttgatg	tggacagttt	atccatactt	gacaccctgg	5340
agggagctag	cgtgaccagc	ggggcaacgt	cagccgagac	taactcttac	ttcgcaaaga	5400
gtatggagtt	tctggcgcga	ccgggtgcctg	cgcctcgaac	agtattcagg	aaccctccac	5460
atcccgctcc	gcbcacaaga	acaccgtcac	ttgcacccag	cagggcctgc	tcgagaacca	5520
gcctagttc	caccccgcca	ggcgtgaata	gggtgatcac	tagagaggag	ctcgaggcgc	5580
ttacccggtc	acgcactcct	agcaggtcgg	tctcgagaac	cagcctggtc	tccaaacccgc	5640
caggcgtaaa	tagggtgatt	acaagagagg	agtttgaggc	gttcgttagca	caacaacaat	5700
gacggtttga	tgcgggtgca	tacatcttt	cctccgacac	cggtaaggg	catttacaac	5760
aaaaatcagt	aaggcaaacg	gtgctatccg	aagtgggttt	ggagaggacc	gaattggaga	5820
tttcgtatgc	cccgccctc	gaccaagaaa	aagaagaatt	actacgcaag	aaattacagt	5880
taaatccccac	acctgctaac	agaagcagat	accagtccag	gaaggtggag	aacatgaaag	5940
ccataacagc	tagacgtatt	ctgcaaggcc	tagggcatta	tttgaaggca	gaaggaaaag	6000
tggagtgcta	ccgaaccctg	catcctgttc	ctttgtattc	atctagtgt	aaccgtgcct	6060
tttcaagccc	caaggtcgca	gtggaagcct	gtaacgccc	gttgaagag	aactttccga	6120
ctgtggcttc	ttactgtatt	attccagagt	acgatgccta	tttggacatg	gttgacggag	6180
cttcatgctg	cttagacact	gccagttttt	gccctgcaaa	gctgcgcagc	tttccaaaga	6240
aacactccta	tttggAACCC	acaatacgat	cggcagtgcc	ttcagcgatc	cagaacacgc	6300
tccagaacgt	cctggcagct	gccacaaaaaa	gaaattgcaa	tgtcacgcaa	atgagagaat	6360
tgcccgatt	ggattcggcg	gccttaatg	tggaatgctt	caagaaatat	gcgtgtaata	6420
atgaatattt	ggaaacgttt	aaagaaaaacc	ccatcaggct	tactgaagaa	aacgtggtaa	6480
attacattac	caaattaaaa	ggacaaaaag	ctgctgctct	tttgcgaag	acacataatt	6540
tgaatatgtt	gcaggacata	ccaatggaca	ggtttgcata	ggacttaaag	agagacgtga	6600
aagtgactcc	aggaacaaaa	catactgaag	aacggccaa	ggtacaggtg	atccaggctg	6660
ccgatccgct	agcaacagcg	tatctgtgcg	gaatccaccc	agagctgggt	aggagattaa	6720
atgcggtcct	gcttccgaac	attcatacac	tgtttgatat	gtcggctgaa	gactttgacg	6780
ctattatagc	cgagcacttc	cagcctgggg	attgtgttct	ggaaactgac	atcgcgctcg	6840

aagtgtgcgt	gaagggcccc	atgctgatga	aggctacgt	gaacaacccc	gaggccacca	8820
aagagctgat	cgacgaagag	ggctggctgc	acaccggcga	catcggtac	tacgacgaag	8880
agaagcactt	cttcatcggt	gaccggctga	agagcctgat	caagtacaag	ggctatcagg	8940
tgccccctgc	cgagctggaa	agcgtcctgc	tgcagcaccc	cagcatcttc	gacgcccggcg	9000
tggccggggt	gccagatcct	gtggccggcg	agctgcctgg	cggcggtgg	gtgctggaaat	9060
ccggcaagaa	catgaccgag	aaagaagtga	tggactacgt	cggccagccag	gtgtccaacg	9120
ccaagcggct	gagaggcggc	gtgagattcg	tggacgaagt	gccaaagggc	ctgaccggca	9180
agatcgacgg	cagggccatc	cggagatcc	tgaagaaacc	cgtggccaag	atgtgattaa	9240
ttgatcgata	cagcagcaat	tggcaagctg	cttacataga	aggcgcgccg	tttaaacggc	9300
cggccttaat	taagtaacga	tacagcagca	attggcaagc	tgcttacata	gaactcgccg	9360
cgattggcat	gccgcttaa	aatttttatt	ttattttct	tttctttcc	gaatcgatt	9420
ttgttttaa	tatttcaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	9476

<210> 27
 <211> 9621
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> construct Alpha-R-DLP-rFF

<220>
 <221> misc_feature
 <222> (1)...(18)
 <223> T7 promoter

<400> 27	taatacgtact cactatacat	aggcggcgca	tgagagaagc	ccagaccaat	tacctaccca	60
aaatggagaa	agttcacgtt	gacatcgagg	aagacagccc	attcctcaga	gctttgcagc	120
ggagcttccc	gcagtttgag	gtagaagcca	agcaggtcac	tgataatgac	catgctaatt	180
ccagagcggtt	ttcgcatctg	gcttcaaaac	tgatcgaaac	ggaggtggac	ccatccgaca	240
cgatccttga	cattggaagt	gcggccgccc	gcagaatgta	ttctaaggcac	aagtatcatt	300
gtatctgtcc	gatgagatgt	gcggaagatc	cggacagatt	gtataagtat	gcaactaagc	360
tgaagaaaaaa	ctgttaaggaa	ataactgata	aggaattgga	caagaaaaatg	aaggagctcg	420
ccgccccgtcat	gagcgaccct	gacctggaaa	ctgagactat	gtgcctccac	gacgacgagt	480
cgtgtcgcta	cgaaggccaa	gtcgctgttt	accaggatgt	atacgcgggtt	gacggaccga	540
caagtctcta	tcacccaagcc	aataaggag	ttagagtgc	ctactggata	ggctttgaca	600
ccaccccttt	tatgtttaag	aacttggctg	gagcatatcc	atcatactct	accaactggg	660

ccgacgaaac cgtgttaacg gctcgtaaca taggcctatg cagctctgac gttatggagc	720
ggtcacgtag agggatgtcc attcttagaa agaagtattt gaaaccatcc aacaatgttc	780
tattctctgt tggctcgacc atctaccacg agaagagggc cttactgagg agctggcacc	840
tgccgtctgt atttcactta cgtggcaagc aaaattacac atgtcggtgt gagactata	900
ttagttgcga cgggtacgtc gttaaaagaa tagctatcg tccaggcctg tatggaaagc	960
cttcaggcta tgctgctacg atgcaccgcg agggattctt gtgctgcaaa gtgacagaca	1020
cattgaacgg ggagagggtc tctttcccg tgtgcacgta tgtgccagct acattgtgt	1080
accaaatgac tggcatactg gcaacagatg tcagtgcgga cgacgcgcaa aaactgctgg	1140
ttgggctcaa ccagcgtata gtgtcaacg gtcgcaccca gagaaacacc aataccatga	1200
aaaattacct tttgcccgtt gtggcccagg catttgctag gtgggcaaag gaatataagg	1260
aagatcaaga agatgaaagg ccactaggac tacgagatag acagttagtc atggggtgtt	1320
gttgggcttt tagaaggcac aagataacat ctatttataa gcgcggat acccaaacc	1380
tcatcaaagt gaacagcgat ttccactcat tcgtgctgcc caggataggc agtaacacat	1440
tggagatcgg gctgagaaca agaatcagga aaatgttaga ggagcacaag gagccgtcac	1500
ctctcattac cgccgaggac gtacaagaag ctaagtgcgc agccgatgag gctaaggagg	1560
tgctgaagc cgaggagttg cgccgcagctc taccacctt ggcagctgat gttgaggagc	1620
ccactctgga agccgatgtc gacttgatgt tacaagaggc tggggccggc tcagtggaga	1680
cacccgtgg cttgataaaag gttaccagct acgtggcga ggacaagatc ggctttacg	1740
ctgtgctttc tccgcaggct gtactcaaga gtaaaaatt atcttgcattt caccctctcg	1800
ctgaacaagt catagtgata acacactctg gccaaaaagg gctttatgcc gtggaaaccat	1860
accatggtaa agtagtggtg ccagaggac atgcaatacc cgtccaggac tttcaagctc	1920
tgagtgaaag tgccaccatt gtgtacaacg aacgtgagtt cgtaaacagg tacctgcacc	1980
atattgccac acatggagga gcgctgaaca ctgatgaaga atattacaaa actgtcaagc	2040
ccagcgagca cgacggcgaa tacctgtacg acatcgacag gaaacagtgc gtcaagaaag	2100
aactagtac tggctaggg ctacaggcg agctgggta tcctcccttc catgaattcg	2160
cctacgagag tctgagaaca cgaccagccg ctccttacca agtaccaacc ataggggtgt	2220
atggcgtgcc aggtcaggc aagtctggca tcattaaag cgcagtcacc aaaaaagatc	2280
tagtggtagg cgccaagaaa gaaaactgtg cagaaattat aagggacgtc aagaaaatga	2340
aagggtgga cgtcaatgcc agaactgtgg actcagtgct cttgaatgga tgcaaacc	2400
ccgttagagac cctgtatatt gacgaagctt ttgcttgtca tgcaggtact ctcagagcgc	2460
tcatagccat tataagaccc aaaaaggcag tgctctgcgg ggatccaaa cagtgcgg	2520
tttttaacat gatgtgcctg aaagtgcatt ttaaccacga gatttgcaca caagtcttcc	2580

acaaaagcat ctctcgccgt tgcactaaat ctgtgacttc ggtcgtctca accttgtttt	2640
acgacaaaaa aatgagaacg acgaatccga aagagactaa gattgtgatt gacactaccg	2700
gcagtagccaa acctaagcag gacgatctca ttctcacttg tttcagaggg tgggtgaagc	2760
agttgcaaat agattacaaa ggcacacgaaa taatgacggc agctgcctct caagggctga	2820
cccgtaaagg tgtgtatgcc gttcggtaca aggtgaatga aaatcctctg tacgcaccca	2880
cctctgaaca tgtgaacgtc ctactgaccc gcacggagga ccgcacatcgtg tggaaaacac	2940
tagccggcga cccatggata aaaacactga ctgccaagta ccctggaaat ttcaactgcca	3000
cgatagagga gtggcaagca gagcatgatg ccatcatgag gcacatcttggagagaccgg	3060
accctaccga cgtcttcag aataaggcaa acgtgtgttggccaaagggtttagtgcgg	3120
tgctgaagac cgctggcata gacatgacca ctgaacaatg gaacactgtg gattattttg	3180
aaacggacaa agctcactca gcagagatag tattgaacca actatgcgtg aggttcttg	3240
gactcgatct ggactccggt ctatttctg cacccactgt tccgttatcc attaggaata	3300
atcaactggga taactccccg tcgcctaaca tgtacgggct gaataaaagaa gtggtccgtc	3360
agctctctcg caggtaccca caactgcctc gggcagttgc cactggaaga gtctatgaca	3420
tgaacactgg tacactgcgc aattatgatc cgccgcataaaa cctagttacgtt gtaaacagaa	3480
gactgcctca tgcttagtc ctccaccata atgaacacccc acagagtgac ttttcttcat	3540
tcgtcagcaa attgaagggc agaactgtcc tggtggtcgg ggaaaagtttgcgtccag	3600
gcaaaatggt tgactgggttgcagaccggc ctgaggctac cttcagagct cggctggatt	3660
taggcattccc aggtgatgtg cccaaatatg acataatatt tgttaatgtg aggacccat	3720
ataaaatacca tcactatcg cagtgtgaag accatgccat taagcttagc atgttgacca	3780
agaaaagcttgc tctgcatactg aatccggcg gaacctgtgt cagcataggt tatggttacg	3840
ctgacagggc cagcgaaagc atcattggtg ctatagcgcg gcagttcaag tttccggg	3900
tatgcaaacc gaaatcctca cttgaagaga cggaaaggcttcttgcatttgcatttgc	3960
atcgcaaggc ccgtacgcac aatccttaca agcttcatc aaccttgacc aacattata	4020
caggttccag actccacgaa gccggatgtg caccctcata tcattgtggcgtcgagggata	4080
ttgccacggc caccgaagga gtgattataa atgctgctaa cagcaaagga caacctggcg	4140
gaggggtgtg cggagcgctg tataagaaat tccggaaag ctgcatttgcatttgcatttgc	4200
aagtaggaaa agcgcgactg gtcaaagggtg cagctaaaca tatcattcat gccgttaggac	4260
caaacttcaa caaagttcg gaggttgaag gtgacaaaca gttggcagag gcttatgagt	4320
ccatcgctaa gattgtcaac gataacaatt acaagtcagt agcgattcca ctgttgcacca	4380
ccggcatctt ttccggaaac aaagatcgac taacccaaatc attgaaccat ttgctgacag	4440
cttttagacac cactgatgca gatgttagcca tataactgcag ggacaagaaa tggaaatga	4500

ctctcaagga	agcagtggct	aggagagaag	cagtggagga	gatatgcata	tccgacgact	4560
cttcagtac	agaacctgat	gcagagctgg	tgagggtgca	tccgaagagt	tctttggctg	4620
gaaggaaggg	ctacagcaca	agcgatggca	aaacttctc	atatttggaa	gggaccaagt	4680
ttcaccaggc	ggccaaggat	atagcagaaa	ttaatgccat	gtggcccgtt	gcaacggagg	4740
ccaatgagca	ggtatgcatg	tatatcctcg	gagaaagcat	gagcagtatt	aggtcgaaat	4800
gccccgtcga	agagtcggaa	gcctccacac	cacctagcac	gctgccttgc	ttgtgcattcc	4860
atgccatgac	tccagaaaaga	gtacagcgcc	taaaagcctc	acgtccagaa	caaattactg	4920
tgtgctcatc	ctttccattg	ccgaagtata	gaatcactgg	tgtcagaag	atccaatgct	4980
cccagcctat	attgttctca	ccgaaagtgc	ctgcgtatata	tcatccaagg	aagtatctcg	5040
tggaaacacc	accggtagac	gagactccgg	agccatcgcc	agagaaccaa	tccacagagg	5100
ggacacctga	acaaccacca	cttataaccg	aggatgagac	caggactaga	acgcctgagc	5160
cgatcatcat	cgaagaggaa	gaagaggata	gcataagttt	gctgtcagat	ggcccgaccc	5220
accaggtgct	gcaagtcgag	gcagacattc	acggggccgccc	ctctgtatct	agctcatcct	5280
ggtcattcc	tcatgcattcc	gactttgatg	tggacagttt	atccataactt	gacaccctgg	5340
agggagctag	cgtgaccagc	ggggcaacgt	cagccgagac	taactcttac	ttcgcaaaga	5400
gtatggagtt	tctggcgcga	ccgggtgcctg	cgcctcgaac	agtattcagg	aaccctccac	5460
atcccgctcc	gcfgcacaaga	acaccgtcac	ttgcacccag	cagggcctgc	tcgagaacca	5520
gcctagttc	caccccgcca	ggcgtgaata	gggtgatcac	tagagaggag	ctcgaggcgc	5580
ttaccccgtc	acgcactcct	agcaggtcgg	tctcgagaac	cagcctggc	tccaaacccgc	5640
caggcgtaaa	tagggtgatt	acaagagagg	agtttgaggc	gttcgttagca	caacaacaat	5700
gacggtttga	tgcgggtgca	tacatcttt	cctccgacac	cggtaaggg	catttacaac	5760
aaaaatcagt	aaggcaaacg	gtgctatccg	aagtgggttt	ggagaggacc	gaattggaga	5820
tttcgtatgc	cccgcgccctc	gaccaagaaa	aagaagaatt	actacgcaag	aaattacagt	5880
taaatcccac	acctgctaacc	agaagcagat	accagtcag	gaaggtggag	aacatgaaag	5940
ccataacagc	tagacgtatt	ctgcaaggcc	tagggcatta	tttgaaggca	gaaggaaaag	6000
tggagtgcta	ccgaaccctg	catcctgttc	ctttgtattc	atctagtgt	aaccgtgcct	6060
tttcaagccc	caaggtcgca	gtggaagcct	gtaacgccc	gttcaaagag	aactttccga	6120
ctgtggcttc	ttactgtatt	attccagagt	acgatgccta	tttggacatg	gttgacggag	6180
cttcatgctg	cttagacact	gccagtttt	gccctgcaaa	gctgcgcagc	tttccaaaga	6240
aacactccta	tttggaaaccc	acaatacgt	cggcagtgcc	ttcagcgatc	cagaacacgc	6300
tccagaacgt	cctggcagct	gccacaaaaaa	gaaattgcaa	tgtcacgcaa	atgagagaat	6360
tgcccgatt	ggattcggcg	gccttaatg	tggaatgctt	caagaaatat	gcgtgtaata	6420

atgaatattg ggaaacgttt aaagaaaacc ccatcaggct tactgaagaa aacgtggtaa	6480
attacattac caaattaaaa ggaccaaaag ctgctgctct ttttgcgaag acacataatt	6540
tgaatatgtt gcaggacata ccaatggaca ggttttaat ggacttaaag agagacgtga	6600
aagtgactcc aggaacaaaa catactgaag aacggccaa ggtacaggtg atccaggctg	6660
ccgatccgct agcaacagcg tatctgtcg gaatccaccg agagctggtt aggagattaa	6720
atgcggtcct gcttccgaac attcatacac tggatgat gtcggctgaa gactttgacg	6780
ctattatagc cgagcacttc cagcctgggg attgtgtct ggaaactgac atcgctcg	6840
ttgataaaag tgaggacgac gccatggctc tgaccgcgtt aatgattctg gaagacttag	6900
gtgtggacgc agagctgtt acgctgattt aggccgttt cggcgaaatt tcataatac	6960
atttgcccac taaaactaaa tttaaattcg gagccatgtat gaaatctgga atgttcctca	7020
cactgtttgtt gaacacagtc attaacattt gatcgcaag cagagtgtt agagaacggc	7080
taaccggatc accatgtgca gcattcattt gagatgacaa tatcgtaaa ggagtcaaatt	7140
cgacaaatt aatggcagac aggtgcgcca cctgggtt gatggaaatc aagattatag	7200
atgctgtggt gggcgagaaa gcccatttatt tctgtggagg gtttattttt tgtgactccg	7260
tgaccggcac agcgtccgt gtggcagacc ccctaaaaag gctgttaag cttggcaaacc	7320
ctctggcagc agacgatgaa catgatgtt acaggagaag ggcattgtcat gaagagtcaa	7380
cacgctggaa ccgagtgggt attcttcag agctgtgcaaa ggcagtagaa tcaaggat	7440
aaaccgtagg aacttccatc atagttatgg ccatgactac tctagctagc agtgttaat	7500
cattcagcta cctgagaggg gcccataa ctctctacgg ctaacctgaa tggactacga	7560
catagtctag tccgccaaga tatcgacca tagtcagcat agtacatttc atctgactaa	7620
tactacaaca ccaccaccaat gaatagagga ttcttaaca tgctggccg ccgccttc	7680
ccggccccca ctgcatgtg gaggccgcgg agaaggaggc aggccccc gatgatggaa	7740
aatatggaaa acgacgagaa catcggtt ggccccaaagc ctttctaccc catcgaggaa	7800
ggcagcgcgg gcacccagct gccaaggatc atggaaagat acgccaagct gggccatt	7860
gccttcacca acgcccgtgac cggcgtggac tacagctacg ccgagttaccc ggaaaagagc	7920
tgctgcctgg gcaaggctct gcagaactac ggcctgggtt tggacggccg gatgcctc	7980
tgcagcgaga actgcgagga attcttcatc cccgtatcg ccggctgtt catggcgtg	8040
ggcgtggctc ccaccaacga gatctacacc ctgcgggagc tggtcacag cctggccatc	8100
agcaagccca ccatcggtt cagcagcaag aaggccctgg acaaagtcat caccgtcag	8160
aaaaccgtga ccaccatcaa gaccatcgatc atcctggaca gcaagggtt gaaaccggc	8220
taccagtgcc tggacacccat catcaagcgg aacacccccc ctggcttcca ggccagcagc	8280
ttcaagaccg tggaggtt gggaaagaa caggtggccc tgcgtatgaa cagcagcggc	8340

agcacccggcc	tgcccaaggg	cgtgcagctg	acccacgaga	acaccgtgac	ccgggttcagc	8400
cacgccaggg	accccata	cggcaaccag	gtgtcccccg	gcaccgcccgt	gctgaccgtg	8460
gtgcccttcc	accacggctt	cggcatgttc	accaccctgg	gctacctgat	ctgcggcttc	8520
cgggtggta	tgctgaccaa	gttcgacgag	gaaaccttcc	tgaaaaccct	gcaggactac	8580
aagtgcacct	acgtgattct	ggtgcccacc	ctgttcgcca	tcctgaacaa	gagcgagctg	8640
ctgaacaagt	acgacctgag	caacctggtg	gagatcgcca	gccccctgagc	8700	
aaagaagtgg	gagaggccgt	cgcaggcgg	ttcaatctgc	ccggcgtgcg	gcagggctac	8760
ggcctgaccg	agacaaccag	cgcacatcatc	atcacccccc	agggcgacga	caagcctgga	8820
gccagcggca	aggtggtgcc	cctgttcaag	gccaaagtga	tcgacctgga	caccaagaag	8880
gcctgggcc	ccaacagacg	ggcgaaagtg	tgcgtgaagg	gccccatgt	gatgaaggc	8940
tacgtgaaca	accccgaggc	caccaaagag	ctgatcgacg	aagagggctg	gctgcacacc	9000
ggcgacatcg	gctactacga	cgaagagaag	cacttcttca	tcgtggaccg	gctgaagagc	9060
ctgatcaagt	acaagggcta	tcaggtgccc	cctgcccggc	tggaaagcgt	cctgctgcag	9120
caccccagca	tcttcgacgc	cggcgtggcc	ggggtgccag	atcctgtggc	cggcgagctg	9180
cctggcgccg	tggtggtgct	ggaatccggc	aagaacatga	ccgagaaaga	agtgtatggac	9240
tacgtcgcca	gccaggtgtc	caacgccaag	cggctgagag	gccccgtgag	attcgtggac	9300
gaagtgccaa	agggcctgac	cggcaagatc	gacggcaggg	ccatccggga	gatcctgaag	9360
aaaccctgtgg	ccaagatgt	attaattgtat	cgatacagca	gcaattggca	agctgcttac	9420
atagaaggcg	cgcgtttaa	acggccggcc	ttaattaat	aacgatacag	cagcaattgg	9480
caagctgctt	acatagaact	cggggcgatt	ggcatgccgc	tttaaaattt	ttatttatt	9540
tttctttct	tttccgaatc	ggattttgtt	tttaatattt	aaaaaaaaaa	aaaaaaaaaa	9600
aaaaaaaaaa	aaaaaaaaaa	a				9621

<210> 28
 <211> 9876
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

 <220>
 <221> misc_feature
 <223> construct Alpha-R-DLP-2A-nsp-rFF

<220>
 <221> misc_feature
 <222> (1)...(18)
 <223> T7 promoter

<400> 28

taatacgaact cactatacat	aggcggcgca	tgagagaagc	ccagaccaat	tacctaccca	60	
aataggagaa	agttcacgtt	gacatcgagg	aagacagccc	attcctcaga	gctttgcagc	120
ggagcttccc	gcagtttgag	gtagaagcca	agcaggtcac	tgataatgac	catgctaattg	180
ccagagcgtt	ttcgcacatctg	gcttcaaaac	tgatcgaaac	ggaggtggac	ccatccgaca	240
cgatccttga	cattggaata	gtcagcatag	tacatttcat	ctgactaata	ctacaacacc	300
accaccatga	atagaggatt	ctttaacatg	ctcggccgccc	gccccttccc	ggcccccaact	360
gccatgtgga	ggccgcggag	aaggaggcag	gcggcccccgg	gaagcggagc	tactaacttc	420
agcctgctga	agcaggctgg	agacgtggag	gagaaccctg	gacctgagaa	agttcacgtt	480
gacatcgagg	aagacagccc	attcctcaga	gctttgcagc	ggagcttccc	gcagtttgag	540
gtagaagcca	agcaggtcac	tgataatgac	catgctaattg	ccagagcgtt	ttcgcacatctg	600
gcttcaaaac	tgatcgaaac	ggaggtggac	ccatccgaca	cgatccttga	cattggaagt	660
gcgcggcccc	gcagaatgta	ttctaagcac	aagtatcatt	gtatctgtcc	gatgagatgt	720
gcggaagatc	cggacagatt	gtataagtat	gcaactaagc	tgaagaaaaaa	ctgtaaggaa	780
ataactgata	aggaatttgg	caagaaaaatg	aaggagctcg	ccgcgcgtcat	gagcgaccct	840
gacctggaaa	ctgagactat	gtgcctccac	gacgacgagt	cgtgtcgcta	cgaagggcaa	900
gtcgctgttt	accaggatgt	atacgcggtt	gacggaccga	caagtctcta	tcaccaagcc	960
aataagggag	tttagagtcgc	ctactggata	ggctttgaca	ccaccccttt	tatgtttaag	1020
aacttggctg	gagcatatcc	atcatactct	accaactggg	ccgacgaaac	cgtgttaacg	1080
gctcgtaaca	taggcctatg	cagctctgac	gttatggagc	ggtcacgtag	agggatgtcc	1140
attcttagaa	agaagtattt	gaaaccatcc	aacaatgttc	tattctctgt	tggctcgacc	1200
atctaccacg	agaagaggg	cttactgagg	agctggcacc	tgccgtctgt	atttcactta	1260
cgtggcaagc	aaaattacac	atgcgggtgt	gagactatag	ttagttgcga	cgggtacgtc	1320
gttaaaagaa	tagctatcag	tccaggcctg	tatggaaagc	cttcaggccta	tgctgctacg	1380
atgcaccgcg	agggattctt	gtgctgaaa	gtgacagaca	cattgaacgg	ggagagggtc	1440
tctttcccg	tgtgcacgta	tgtgccagct	acattgtgtg	accaaattgac	tggcatactg	1500
gcaacagatg	tcagtgcgga	cgacgcgcaa	aaactgctgg	ttgggctcaa	ccagcgtata	1560
gtcgtcaacg	gtcgcaccca	gagaaacacc	aataccatga	aaaattacct	tttgcggcgt	1620
gtggccagg	catttgcgt	gtgggcaaag	aatataagg	aagatcaaga	agatgaaagg	1680
ccactaggac	tacgagatag	acagttagtc	atgggggttt	gttggccttt	tagaaggcac	1740
aagataacat	ctatttataa	gcgcggat	acccaaacca	tcatcaaagt	gaacagcgat	1800
ttccactcat	tcgtgctgcc	caggataggc	agtaacacat	tggagatcgg	gctgagaaca	1860
agaatcagga	aaatgttaga	ggagcacaag	gagccgtcac	ctctcattac	cgccgaggac	1920

gtacaagaag ctaagtgcgc agccgatgag gctaaggagg tgcgtgaagc cgaggagttg	1980
cgcgcagctc taccaccttt ggagctgat gttgaggaggc ccactctgga agccgatgtc	2040
gacttgatgt tacaagaggc tggggccggc tcagtggaga cacctcggtt cttgataaaag	2100
gttaccagct acgatggcga ggacaagatc ggctcttacg ctgtgctttc tccgcaggct	2160
gtactcaaga gtgaaaaatt atcttgcattt caccctctcg ctgaacaagt catagtgata	2220
acacactctg gccgaaaagg gcgttatgcc gtggaaccat accatggtaa agtagtggtg	2280
ccagagggac atgcaataacc cgtccaggac tttcaagctc tgagtgaaag tgccaccatt	2340
gtgtacaacg aacgtgagtt cgtaaacagg tacctgcacc atattgccac acatggagga	2400
gcgctgaaca ctgatgaaga atattacaaa actgtcaagc ccagcgagca cgacggcgaa	2460
tacctgtacg acatcgacag gaaacagtgc gtcaagaaag aactagtac tgggctaggg	2520
ctcacaggcg agctgggttca tcctcccttc catgaattcg cctacgagag tctgagaaca	2580
cgaccagccg ctcccttacca agtaccaacc ataggggtgt atggcgtgcc aggatcaggc	2640
aagtctggca tcattaaaag cgcaagtcacc aaaaaagatc tagtggtgag cgccaagaaa	2700
aaaaactgtg cagaaattat aagggacgtc aagaaaatga aagggcttga cgtcaatgcc	2760
agaactgtgg actcagtgct cttaatggta tgcaaacacc ccgttagagac cctgtatatt	2820
gacgaagctt ttgcttgca tgcaggtact ctcagagcgc tcatagccat tataagacct	2880
aaaaaggcag tgctctgcgg ggatccaaa cagtgcgggtt ttttaacat gatgtgcctg	2940
aaagtgcatt ttaaccacga gattgcaca caagtcttcc acaaaaagcat ctctcgccgt	3000
tgcactaaat ctgtgacttc ggtcgctca accttggttt acgacaaaaaa aatgagaacg	3060
acgaatccga aagagactaa gattgtgatt gacactaccg gcagtagccaa acctaaggcag	3120
gacgatctca ttctcacttg tttcagaggg tgggtgaagc agttgcaaat agattacaaa	3180
ggcaacgaaa taatgacggc agtgcctct caagggctga cccgtaaagg tgtgtatgcc	3240
gttcggtaca aggtgaatga aaatcccttg tacgcaccca cctctgaaca tgtgaacgtc	3300
ctactgaccc gcacggagga ccgcacatcgatg tggaaaacac tagccggcga cccatggata	3360
aaaacactga ctgccaagta ccctggaaat ttcaactgcca cgatagagga gtggcaagca	3420
gagcatgatg ccatcatgag gcacatcttgc gagagaccgg accctaccga cgtctccag	3480
aataaggcaa acgtgtgttgc ggccaaggct ttagtgcgg tgctgaagac cgctggcata	3540
gacatgacca ctgaacaaatg gaacactgtg gattatggaa aaacggacaa agctcactca	3600
gcagagatag tattgaacca actatgcgtg aggttcttgc gactcgatct ggactccgg	3660
ctatccactgt tccgttatcc attagaata atcactggga taactccccg	3720
tcgcctaaca tgtacgggct gaataaaagaa gtggccgtc agtctctcg caggtaccca	3780
caactgcctc gggcagttgc cactggaaaga gtctatgaca tgaacactgg tacactgcgc	3840

aattatgatc cgcgataaa cctagtacct gtaaacagaa gactgcctca tgcttagtc	3900
ctccaccata atgaacacccc acagagtgac ttttcttcat tcgtcagcaa attgaaggc	3960
agaactgtcc tggtggtcgg ggaaaagttg tccgtcccg gcaaaatggt tgactggttg	4020
tcagaccggc ctgaggctac cttcagagct cggctggatt taggcattccc aggtgatgtg	4080
cccaaataatg acataatatt tgttaatgtg aggacccat ataaataccca tcactatcag	4140
cagtgtgaag accatgccat taagcttagc atgttgacca agaaagcttgc tctgcatctg	4200
aatcccgcg gaacctgtgt cagcataggt tatggttacg ctgacagggc cagcgaaagc	4260
atcattggtg ctatagcgcg gcagttcaag tttcccggt tatgcaaacc gaaatcctca	4320
cttgaagaga cggaagttct gtttgttattc attgggtacg atcgcaaggc ccgtacgcac	4380
aatccttaca agcttcatc aaccttgacc aacattata caggttccag actccacgaa	4440
gccggatgtg caccctcata tcatgtggtg cgagggata ttgccacggc caccgaagga	4500
gtgattataa atgctgctaa cagcaaagga caacctggcg gaggggtgtg cggagcgctg	4560
tataagaaat tcccggaaag cttcgattta cagccgatcg aagttaggaaa agcgcgactg	4620
gtcaaagggtg cagctaaaca tatkattcat gccgtaggac caaacttcaa caaagttcg	4680
gaggttgaag gtgacaaaca gttggcagag gcttatgagt ccatcgctaa gattgtcaac	4740
gataacaatt acaagtcagt agcgattcca ctgttgcctt ccggcatctt ttccggaaac	4800
aaagatcgac taacccaatc attgaaccat ttgctgacag cttagacac cactgatgca	4860
gatgtagcca tatactgcag ggacaagaaa tggaaatga ctctcaagga agcagtggct	4920
aggagagaag cagtggagga gatatgcata tccgacgact cttagtgac agaacctgat	4980
gcagagctgg tgagggtgca tccgaagagt tctttggctg gaaggaaggg ctacagcaca	5040
agcgatggca aaactttctc atatttgaa gggaccaagt ttcaccaggc ggccaaggat	5100
atagcagaaa ttaatgcccattt gtaacggagg ccaatgagca ggtatgcattt	5160
tatattcctcg gagaaagcat gagcagtatt aggtcgaaat gccccgtcga agagtcggaa	5220
gcctccacac cacctagcac gctgccttgc ttgtgcattcc atgccatgac tccagaaaga	5280
gtacagcgcc taaaagcctc acgtccagaa caaattactg tgtgctcatc cttagatttgc	5340
ccgaagtata gaatcactgg tgtgcagaag atccaatgct cccagcctat attgttctca	5400
ccgaaagtgc ctgcgtatatt tcatccaagg aagtatctcg tggaaacacc accggtagac	5460
gagactccgg agccatcgac agagaaccaa tccacagagg ggacacctga acaaccacca	5520
cttataaccg agatgagac caggactaga acgcctgagc cgatcatcat cgaagaggaa	5580
gaagaggata gcataagttt gctgtcagat ggcccgaccc accaggtgct gcaagtcgag	5640
gcagacattc acggggccgccc ctatgtatct agctcatcct ggtccattcc tcatgcattcc	5700
gactttgatg tggacagttt atccatactt gacaccctgg agggagctag cgtgaccagc	5760

ggggcaacgt cagccgagac taactcttac ttgcgaaaga gtatggagtt tctggcgcga 5820
ccgggtgcctg cgcctcgaac agtattcagg aaccctccac atcccgctcc gcgcacaaga 5880
acaccgtcac ttgcacccag cagggcctgc tcgagaacca gcctagttc caccggcca 5940
ggcgtgaata gggtgatcac tagagaggag ctcgaggcgc ttacccgtc acgcactcct 6000
agcaggtcgg tctcgagaac cagcctggc tccaaacccgc caggcgtaaa tagggtgatt 6060
acaagagagg agtttgaggc gttcgttagca caacaacaat gacggttga tgcgggtgca 6120
tacatcttt cctccgacac cggtcaaggg catttacaac aaaaatcagt aaggcaaacg 6180
gtgctatccg aagtgggtt ggagaggacc gaattggaga tttcgatgc cccgcgcctc 6240
gaccaagaaa aagaagaatt actacgcaag aaattacagt taaatcccac acctgcta 6300
agaagcagat accagtccag gaaggtggag aacatgaaag ccataacagc tagacgtatt 6360
ctgcaaggcc tagggcatta tttgaaggca gaaggaaaag tggagtgcta ccgaaccctg 6420
catcctgttc ctttgttattc atctagtgt aaccgtgc tttcaagccc caaggtcgca 6480
gtggaagcct gtaacgccc gttgaaagag aactttccga ctgtggctt ttactgtatt 6540
attccagagt acgatgccta tttggacatg gttgacggag cttcatgctg ctttagacact 6600
gccagtttt gccctgcaaa gctgcgcagc tttccaaaga aacactccta tttggaaccc 6660
acaatacgat cggcagtgcc ttcagcgatc cagaacacgc tccagaacgt cctggcagct 6720
gccacaaaaaa gaaattgcaa tgtcacgcaa atgagagaat tgcccgatt ggattcgccg 6780
gccttaatg tggaatgctt caagaaatat gcgtgtaata atgaatattt ggaaacgttt 6840
aaagaaaaacc ccatcaggct tactgaagaa aacgtggtaa attacattac caaattaaaa 6900
ggaccaaaag ctgctgctt ttttgcgaag acacataatt tgaatatgtt gcaggacata 6960
ccaatggaca ggtttgtaat ggacttaaag agagacgtga aagtgactcc aggaacaaaa 7020
catactgaag aacggcccaa ggtacaggtg atccaggctg ccgatccgct agcaacagcg 7080
tatctgtcg gaatccaccc agagctggtt aggagattaa atgcggctt gcttccgaaac 7140
attcatacacat ttttgatat gtcggctgaa gactttgacg ctattatgc cgagcacttc 7200
cagcctgggg attgtgttct ggaaactgac atcgcgtcgt ttgataaaag tgaggacgac 7260
gccatggctc tgaccgcgtt aatgattctg gaagacttag gtgtggacgc agagctgtt 7320
acgctgattt aggcggctt cggcgaaatt tcatcaatac atttgcccac taaaactaaa 7380
tttaaattcg gagccatgat gaaatctgga atgttcctca cactgtttgtt gaacacagtc 7440
attaacattt gatcgcaag cagagtgttgc agagaacggc taaccggatc accatgtca 7500
gcattcattt gagatgacaa ttcgtgaaa ggagtcaaat cggacaaatt aatggcagac 7560
aggcgcgcca cctgggttgc tatggaaatgc aagattatag atgcgtgtt gggcgagaaa 7620
gcgccttatt tctgtggagg gtttatttttgc ttcgtactccg tgaccggcac agcgtccgt 7680

gtggcagacc ccctaaaaag gctgttaag cttggcaaac ctctggcagc agacgatgaa	7740
catgatgatg acaggagaag ggcattgcat gaagagtcaa cacgctggaa ccgagtgggt	7800
attcttcag agctgtgcaa ggcagtagaa tcaaggatg aaaccgtagg aacttccatc	7860
atagttatgg ccatgactac tctagctagc agtgttaat cattcagcta cctgagaggg	7920
gccctataa ctctctacgg ctaacctgaa tggactacga catagtctag tccgccaaga	7980
tatcgacca tggaaaatat ggaaaacgac gagaacatcg tggggcccaagcccttc	8040
taccccatcg aggaaggcag cgccggcacc cagctgcgga agtacatgga aagatacgcc	8100
aagctggcg ccattgcctt caccaacgco gtgaccggcg tggactacag ctacgcccag	8160
tacctggaaa agagctgctg cctggcaag gctctgcaga actacggcct ggtggtggac	8220
ggccggatcg ccctgtgcag cgagaactgc gaggaattct tcatccccgt gatcgccggc	8280
ctgttcatcg gcgtggcggt ggctcccacc aacgagatct acaccctgcg ggagctggtg	8340
cacagcctgg gcatcagcaa gccaccatc gtgttcagca gcaagaaggg cctggacaaa	8400
gtcatcaccg tgcagaaaac cgtgaccacc atcaagacca tcgtgatcct ggacagcaag	8460
gtggactacc ggggctacca gtgcctggac accttcatca agcggAACAC ccccccctggc	8520
ttccaggcca gcagcttcaa gaccgtggag gtggaccggaa aagaacaggt ggccctgatc	8580
atgaacagca gcggcagcac cggcctgccc aaggcggtgc agctgaccca cgagaacacc	8640
gtgacccgggt tcagccacgc cagggacccc atctacggca accaggtgtc ccccgccacc	8700
gccgtgctga ccgtggtgcc cttccaccac ggcttcggca tggaccac cctggctac	8760
ctgatctgcg gcttccgggt ggtgatgctg accaagttcg acgaggaaac cttcctgaaa	8820
accctgcagg actacaagtg cacctacgtg attctgggtgc ccaccctgtt cgccatcctg	8880
aacaagagcg agctgctgaa caagtacgac ctgagcaacc tgggtggagat cgccagcggc	8940
ggagcccccc tgagcaaaga agtgggagag gccgtcgcca ggccgttcaa tctgccccggc	9000
gtgcggcagg gctacggcct gaccgagaca accagcgcca tcatcatcac ccccgagggc	9060
gacgacaagc ctggagccag cggcaagggtg gtgcccctgt tcaaggccaa agtcatcgac	9120
ctggacacca agaagagcct gggcccaac agacggggcg aagtgtgcgt gaagggcccc	9180
atgctgatga agggctacgt gaacaacccc gaggccacca aagagctgat cgacgaagag	9240
ggctggctgc acaccggcga catcggtac tacgacgaag agaagcactt cttcatcg	9300
gaccggctga agagcctgat caagtacaag ggctatcagg tgccccctgc cgagctggaa	9360
agcgtcctgc tgcagcaccc cagcatctt gacgcccggcg tggccgggggt gccagatcct	9420
gtggccggcg agctgcctgg cgccgtgggt gtgctggaat ccggcaagaa catgaccgag	9480
aaagaagtga tggactacgt cgccagccag gtgtccaacg ccaagcggct gagaggcggc	9540
gtgagattcg tggacgaagt gccaaaggc ctgaccggca agatcgacgg cagggccatc	9600

cgggagatcc tgaagaaacc cgtggccaag atgtgattaa ttgatcgata cagcagcaat	9660
tggcaagctg cttacataga aggcgcgccg tttaaacggc cggccttaat taagtaacga	9720
tacagcagca attggcaagc tgcttacata gaactcgccg cgattggcat gccgcttaa	9780
aatttttatt ttatTTTct tttctttcc gaatcgatt ttgttttaa tatttcaaaa	9840
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa	9876
<210> 29	
<211> 10021	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> construct Alpha-R-DLP-2A-nsp-DLP-rFF	
<220>	
<221> misc_feature	
<222> (1)...(18)	
<223> T7 promoter	
<400> 29	
taatacgaact cactatacat aggcggcgca tgagagaagc ccagaccaat tacctaccca	60
aataggagaa agttcacgtt gacatcgagg aagacagccc attcctcaga gctttgcagc	120
ggagcttccc gcagtttgag gttagaagcca agcaggtcac tgataatgac catgctaatg	180
ccagagcggtt ttgcgcacatg gcttcaaaac tgatcgaaac ggaggtggac ccatccgaca	240
cgatccttga catttggata gtcagcatag tacatttcat ctgactaata ctacaacacc	300
accaccatga atagaggatt cttaacatg ctgcggcgcc gccccttccc ggccccccact	360
gccatgtgga ggccgcggag aaggaggcag gcggcccccgg gaagcggagc tactaacttc	420
agcctgctga agcaggctgg agacgtggag gagaaccctg gacctgagaa agttcacgtt	480
gacatcgagg aagacagccc attcctcaga gctttgcagc ggagcttccc gcagtttgag	540
gttagaagcca agcaggtcac tgataatgac catgctaatg ccagagcggtt ttgcgcacatg	600
gcttcaaaac tgatcgaaac ggaggtggac ccatccgaca cgatccttga catttggaaat	660
gcgcggccccc gcagaatgta ttctaaagcac aagtatcatt gatatctgtcc gatgagatgt	720
gcggaaagatc cggacagatt gtataagtat gcaactaagc tgaagaaaaa ctgtaaaggaa	780
ataactgata aggaatttggaa caagaaaaatg aaggagctcg ccgcgtcat gagcgaccct	840
gacctggaaa ctgagactat gtgcctccac gacgacgagt cgtgtcgcta cgaaggggcaa	900
gtcgctgttt accaggatgt atacgcgggtt gacggaccga caagtctcta tcaccaagcc	960
aataagggag ttagagtcgc ctactggata ggcttgaca ccaccccttt tatgtttaag	1020
aacttggctg gagcatatcc atcatactct accaactggg ccgacgaaac cgtgttaacg	1080

gctcgtaaca taggcctatg cagctctgac gttatggagc ggtcacgtag agggatgtcc	1140
attcttagaa agaagtattt gaaaccatcc aacaatgttc tattctctgt tggctcgacc	1200
atctaccacg agaagagggg cttactgagg agctggcacc tgccgtctgt atttcactta	1260
cgtggcaagc aaaattacac atgtcggtgt gagactatag ttagttgcga cgggtacgtc	1320
gttaaaagaa tagctatcag tccaggcctg tatggaaagc cttcaggcta tgctgctacg	1380
atgcaccgcg agggattctt gtgctgaaa gtgacagaca cattgaacgg ggagagggtc	1440
tctttcccg tgcgtcagta tgcgtccagct acattgtgtg accaaatgac tggcatactg	1500
gcaacagatg tcagtgcgga cgacgcgcaa aaactgctgg ttgggctcaa ccagcgtata	1560
gtcgtaacg gtcgcaccca gagaaacacc aataccatga aaaattacct tttgcccgt	1620
gtggcccagg catttgctag gtgggcaaag gaatataagg aagatcaaga agatgaaagg	1680
ccacttaggac tacgagatag acagttagtc atgggtgtt gttggcttt tagaaggcac	1740
aagataacat ctatttataa gcgcggat acccaaaccat tcataaaagt gaacagcgat	1800
ttccactcat tcgtgctgcc caggataggc agtaacacat tggagatcgg gctgagaaca	1860
agaatcagga aaatgttaga ggagcacaag gagccgtcac ctctcattac cgccgaggac	1920
gtacaagaag ctaagtgcgc agccgatgag gctaaggagg tgcgtgaagc cgaggagttg	1980
cgcgcagctc taccacctt ggcaagctgat gttgaggagc ccactctgga agccgatgtc	2040
gactttagt tacaagaggc tggggccggc tcagtggaga cacctcgtgg cttgataaaag	2100
gttaccagct acgatggcga ggacaagatc ggctcttacg ctgtgctttc tccgcaggct	2160
gtactcaaga gtaaaaatt atcttgcatc caccctctcg ctgaacaagt catagtgata	2220
acacactctg gccaaaaagg gcgttatgcc gtggaaaccat accatggtaa agtagtggtg	2280
ccagagggac atgcaataacc cgtccaggac tttcaagctc tgagtgaaag tgccaccatt	2340
gtgtacaacg aacgtgagtt cgtaaacagg tacctgcacc atattgccac acatggagga	2400
gcgctgaaca ctgatgaaga atattacaaa actgtcaagc ccagcgagca cgacggcgaa	2460
tacctgtacg acatcgacag gaaacagtgc gtcaagaaa aactagtcac tgggctaggg	2520
ctcacaggcg agctggtgga tcctcccttc catgaattcg cctacgagag tctgagaaca	2580
cgaccagccg ctccttacca agtaccaacc atagggtgt atggcgtgcc aggatcaggc	2640
aagtctggca tcattaaaag cgcaagtcacc aaaaaagatc tagtggtgag cgccaaagaaa	2700
aaaaactgtg cagaaattat aaggacgtc aagaaaatga aagggtggc cgtcaatgcc	2760
agaactgtgg actcagtgtctt cttgaatggc tgcaaacacc ccgttagagac cctgttatatt	2820
gacgaagctt ttgcttgca tgcaaggact ctcagagcgc tcatagccat tataagaccc	2880
aaaaaggcag tgctctgcgg ggatccaaa cagtgcggtt ttttaacat gatgtgcctg	2940
aaagtgcatt ttaaccacga gatttgacaca caagtcttcc acaaaaagcat ctctcgccgt	3000

tgcaactaaat ctgtgacttc ggtcgtctca accttggttt acgacaaaaaa aatgagaacg	3060
acgaatccga aagagactaa gattgtgatt gacactaccg gcagtagccaa acctaaggcag	3120
gacgatctca ttctcacttg tttcagaggg tgggtgaagc agttgcaa at agattacaaa	3180
ggcaacgaaa taatgacggc agctgcctct caagggctga cccgtaaagg tgtgtatgcc	3240
gttcggtaca aggtgaatga aaatcctctg tacgcaccca cctctgaaca tgtgaacgtc	3300
ctactgaccc gcacggagga ccgcacatcg tggaaaacac tagccggcga cccatggata	3360
aaaacactga ctgccaagta ccctggaaat ttcaactgcca cgatagaggg gtggcaagca	3420
gagcatgatg ccatcatgag gcacatctt gagagaccgg accctaccga cgtcttccag	3480
aataaggcaa acgtgtgtt ggcacaggct ttagtgccgg tgctgaagac cgctggcata	3540
gacatgacca ctgaacaatg gaacactgtg gattatttt aaacggacaa agctcactca	3600
gcagagatag tattgaacca actatgcgtg aggttcttg gactcgatct ggactccggt	3660
ctatttctg cacccactgt tccgttatcc attaggaata atcaactggg taactccccg	3720
tcgcctaaca tgtacgggct gaataaagaa gtggccgtc agctctctcg caggtaccca	3780
caactgcctc gggcagttgc cactggaaga gtctatgaca tgaacactgg tacactgcgc	3840
aattatgatc cgccgcataaa cctagttacct gtaaacagaa gactgcctca tgcttagtc	3900
ctccaccata atgaacaccc acagagtgac ttttcttcat tcgtcagcaa attgaaggc	3960
agaactgtcc tggtggtcgg gaaaaagttg tccgtcccgag gcaaaatggt tgactggttg	4020
tcagaccggc ctgaggctac cttcagagct cggctggatt taggcattccc aggtgatgtg	4080
cccaaataatg acataatatt tgttaatgtg aggacccat ataaataccca tcactatcag	4140
cagtgtgaag accatgccat taagcttagc atgttgcacca agaaagcttgc tctgcattcg	4200
aatcccgccg gaacctgtgt cagcataggt tatggttacg ctgacagggc cagcgaaagc	4260
atcattggtg ctatagcgcg gcagttcaag tttcccggt tatgcaaacc gaaatcctca	4320
cttgaagaga cggaagttct gtttgtattt attgggtacg atcgcaaggc ccgtacgcac	4380
aatccttaca agcttcatc aaccttgacc aacattata caggttccag actccacgaa	4440
gccggatgtg caccctcata tcatgtggtg cgagggata ttgccacggc caccgaagga	4500
gtgattataa atgctgctaa cagcaaagga caacctggcg gaggggtgtg cggagcgctg	4560
tataagaaat tccccggaaag cttcgattt cagccgatcg aagttaggaaa agcgcgactg	4620
gtcaaagggtg cagctaaaca tatcattcat gccgtaggac caaacttcaa caaagttcg	4680
gaggttgaag gtgacaaaca gttggcagag gcttatgagt ccatcgctaa gattgtcaac	4740
gataacaatt acaagtcagt agcgattcca ctgttgcacca cccgcatttt ttccggaaac	4800
aaagatcgac taacccaatc attgaaccat ttgctgacag cttagacac cactgatgca	4860
gatgttagcca tatactgcag ggacaagaaa tggaaatga ctctcaagga agcagtggt	4920

aggagagaag cagtggagga gatatgcata tccgacgact cttcagtgc agaacctgat	4980
gcagagctgg tgagggtgca tccgaagagt tctttggctg gaaggaaggg ctacagcaca	5040
agcgatggca aaactttctc atatttgaa gggaccaagt ttcaccaggc ggccaaggat	5100
atagcagaaa ttaatgccat gtggcccggtt gcaacggagg ccaatgagca ggtatgcatg	5160
tatatacctcg gagaaagcat gagcagtatt aggtcgaaat gccccgtcga agagtcggaa	5220
gcctccacac cacctagcac gctgccttgc ttgtgcattcc atgccatgac tccagaaaga	5280
gtacagcgcc taaaagcctc acgtccagaa caaattactg tgtgctcattc ctttccattg	5340
ccgaagtata gaatcactgg tgtgcagaag atccaatgct cccagcctat attgttctca	5400
ccgaaaagtgc ctgcgtatata tcatccaagg aagtatctg tggaaacacc accggtagac	5460
gagactccgg agccatcggc agagaaccaa tccacagagg ggacacctga acaaccacca	5520
cttataaccg aggatgagac caggactaga acgcctgagc cgatcatcat cgaagaggaa	5580
gaagaggata gcataagttt gctgtcagat ggcccgaccc accaggtgct gcaagtcgag	5640
gcagacattc acgggcccgc ctctgtatct agctcatcct ggtccattcc tcatgcattcc	5700
gactttgatg tggacagttt atccatactt gacaccctgg agggagctag cgtgaccagc	5760
ggggcaacgt cagccgagac taactcttac ttgcacaaga gtatggagtt tctggcgcga	5820
ccgggtgcctg cgcctcgaac agtattcagg aaccctccac atcccgtcc ggcacacaaga	5880
acaccgtcac ttgcacccag cagggcctgc tcgagaacca gcctagttc caccggcca	5940
ggcgtgaata gggtgatcac tagagaggag ctgcaggcgc ttacccgtc acgcactcct	6000
agcaggtcgg tctcgagaac cagcctggtc tccaacccgc caggcgtaaa tagggtgatt	6060
acaagagagg agtttgaggg gttcgttagca caacaacaat gacggtttga tgcgggtgca	6120
tacatcttt cctccgacac cggtaaggg catttacaac aaaaatcagt aaggcaaacg	6180
gtgctatccg aagtgggtt ggagaggacc gaattggaga tttcgtatgc cccgcgcctc	6240
gaccaagaaa aagaagaatt actacgcaag aaattacagt taaatcccac acctgctaac	6300
agaagcagat accagtccag gaaggtggag aacatgaaag ccataacagc tagacgtatt	6360
ctgcaaggcc tagggcatta tttgaaggca gaaggaaaag tggagtgcta ccgaaccctg	6420
catcctgttc ctttgttattc atctagtgtg aaccgtgcct tttcaagccc caaggcgca	6480
gtgaaaggct gtaacgccc gttgaaagag aacttccga ctgtggcttc ttactgtatt	6540
attccagagt acgatgccta tttggacatg gttgacggag cttcatgctg cttagacact	6600
gccagtttt gccctgcaaa gctgcgcagc tttccaaaga aacactccta tttggaaaccc	6660
acaatacgat cggcagtgcc ttcaagcgatc cagaacacgc tccagaacgt cctggcagct	6720
gccacaaaaaa gaaattgcaa tgtcacgcaa atgagagaat tgcccgtatt ggattcggcg	6780
gccttaatg tggaaatgctt caagaaatat gcgtgtaata atgaatattg ggaaacgttt	6840


```
<210> 30
<211> 1150
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Synthetic polynucleotide

```
<220>
<221> misc_feature
<223> g-block for Alpha-R-DLP-2A-rFF
```

```
<400> 30 tctacggcta acctgaatgg actacgacat agtctagtc gccaagatat cgcacccatag 60  
tcagcatagt acatttcatc tgactaatac tacaacaccca ccaccatgaa tagaggattc 120  
tttaacatgc tcggccgccg ccccttcccg gcccccactg ccatgtggag gccgcggaga 180
```

aggaggcagg	cggccccggg	aagcggagct	actaacttca	gcctgctgaa	gcaggctgga	240
gacgtggagg	agaaccctgg	acctatggaa	aatatggaaa	acgacgagaa	catcgtggtg	300
ggccccaagc	ccttctaccc	catcgaggaa	ggcagcgccg	gcacccagct	gcggaagtac	360
atggaaagat	acgccaagct	ggcgccatt	gccttacca	acgcccgtac	cggcgtggac	420
tacagctacg	ccgagtacct	gaaaaagagc	tgctgcctgg	gcaaggctct	gcagaactac	480
ggcctggtgg	tggacggccg	gatcgccctg	tgcagcgaga	actgcgagga	attcttcatc	540
cccgatcg	ccggcctgtt	catcgccgtg	ggcgtggctc	ccaccaacga	gatctacacc	600
ctgcggagc	tggtgcacag	cctgggcata	agcaagccca	ccatcgtgtt	cagcagcaag	660
aaggcctgg	acaaagtcat	cacgtgcag	aaaaccgtga	ccaccatcaa	gaccatgtg	720
atcctggaca	gcaagggtgga	ctaccggggc	taccagtgcc	tggacacctt	catcaagcgg	780
aacacccccc	ctggcttcca	ggccagcago	ttcaagaccg	tggaggtgga	ccggaaagaa	840
caggtggccc	tgatcatgaa	cagcagcgcc	agcaccggcc	tgcccaaggg	cgtgcagctg	900
acccacgaga	acaccgtgac	ccggttcagc	cacgccaggg	accccatcta	cggcaaccag	960
gtgtcccccg	gcaccgcccgt	gctgaccgtg	gtgcccttcc	accacggctt	cggcatgttc	1020
accacccctgg	gctacctgat	ctgcggcttc	cgggtggtga	tgctgaccaa	gttcgacgag	1080
gaaacacctcc	tgaaaacct	gcaggactac	aagtgcacct	acgtgattct	ggtgcccacc	1140
ctgttcgcca						1150

<210> 31
 <211> 1150
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polynucleotide

<220>
 <221> misc_feature
 <223> g-block for Alpha-R-DLP-2A-nsp-DLP-2A-rFF

<400> 31	tctacggcta	acctgaatgg	actacgacat	agtctagtcc	gccaaagatata	cgcaccatag	60
	tcagcatagt	acatttcatc	tgactaatac	tacaacacca	ccaccatgaa	tagaggattc	120
	tttaacatgc	tcggccgccc	ccccttcccg	gcccccaactg	ccatgtggag	gccgcggaga	180
	aggaggcagg	cggccccggg	aagcggagct	actaacttca	gcctgctgaa	gcaggctgga	240
	gacgtggagg	agaaccctgg	acctatggaa	aatatggaaa	acgacgagaa	catcgtggtg	300
	ggccccaagc	ccttctaccc	catcgaggaa	ggcagcgccg	gcacccagct	gcggaagtac	360
	atggaaagat	acgccaagct	ggcgccatt	gccttacca	acgcccgtac	cggcgtggac	420
	tacagctacg	ccgagtacct	gaaaaagagc	tgctgcctgg	gcaaggctct	gcagaactac	480

ggcctggtgg tggacggccg gatcgccctg tgcagcgaga actgcgagga attcttcata	540
cccggtatcg ccggcctgtt catcgccgtg ggcgtggctc ccaccaacga gatctacacc	600
ctgcgggagc tgggtcacag cctggcatac agcaagccca ccatgtgtt cagcagcaag	660
aaggcctgg acaaagtcat caccgtgcag aaaaccgtga ccaccatcaa gaccatcgtg	720
atcctggaca gcaaggtgga ctaccggggc taccagtgcc tggacacctt catcaagcgg	780
aacacccccc ctggcttcca ggccagcagc ttcaagaccg tggaggtgga ccggaaagaa	840
caggtggccc tggatcatgaa cagcagcggc agcaccggcc tgcccaaggcg cgtcagctg	900
acccacgaga acaccgtgac ccgggttcagc cacgcccagg accccatcta cggcaaccag	960
gtgtccccc gcaccgcgt gctgaccgtg gtgccttcc accacggctt cggcatgttc	1020
accaccctgg gctacctgat ctgcggcttc cgggtggta tgctgaccaa gttcgacgag	1080
gaaaccttcc tgaaaaccct gcaggactac aagtgcacct acgtgattct ggtgcccacc	1140
ctgttcgcca	1150

<210> 32	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> primer Alpha-3' nsp4-F	
<220>	
<221> misc_feature	
<223> RP123	
<400> 32	
ggctgtttaa gcttggcaaa cctct	25
<210> 33	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> primer Alpha-3' nsp4-F	
<220>	
<221> misc_feature	
<223> rFF-seq1	
<400> 33	
agcgagaact gcgaggaatt ctt	23

<210> 34
 <211> 12342
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic polypeptide

 <220>
 <221> misc_feature
 <223> Construct rEx-rFF

 <400> 34

gctcgaagtgc	tgtatggtgc	catatacggc	tcaccaccat	atacactgca	agaattacta	60
ttcttgtggg	cccctctcg	taaatcctag	agggcttcc	tctcgattt	gcgagattcg	120
tcgttagata	acggcaagtt	cccttctta	ctatcctatt	ttcatcttgt	ggcttgacgg	180
gtcactgcca	tcgtcgctga	tctctatcaa	ctaccctgc	gactatggca	accttctccg	240
ctactggatt	tggagggagt	tttggtaggg	actggccct	ggacttaccc	gacgcttgcg	300
agcatggcgc	gggattgtgc	tgcgaagtgg	acggctccac	cttatgcgcc	gagtgtttc	360
gcgggtgcga	aggaatggag	caatgtcctg	gcttgttcat	gggactgtta	aaactggctt	420
cgcgcgttcc	agtggacat	aagttcctga	ttgggtggta	tcgagctgcc	aaagtccacg	480
ggcggttacaa	tttccttgag	ctgttgcac	accctgctt	cgcgcgttgc	cgtgtggttg	540
atgcttagtt	agccattgaa	gaggcaagtgc	tgtttatcc	cactgaccac	gcgtctgcta	600
agcgtttccc	tggcgctaga	tttgcgctga	caccggtgta	tgctaacgct	tgggttgta	660
gccccggctgc	taacagtttgc	atagtgcac	ctgaccagga	acaagatggg	ttctgctgg	720
taaaaactttt	gccacctgac	cgcgtgagg	ctgggttgcg	gttgtattac	aaccattacc	780
gcgaacaaag	gaccgggtgg	ctgtctaaaa	caggacttcg	cttatggctt	ggagacctgg	840
gtttgggcat	caatgcgagc	tctggagggc	tgaaattcca	cattatgagg	ggttcgcctc	900
agcgagcttgc	gcatatcaca	acacgcagct	gcaagctgaa	gagctactac	gtttgtgaca	960
tctctgaagc	agactggtcc	tgtttgcctg	ctggcaacta	cggcggctac	aatccaccag	1020
gggacggagc	ttgcggttac	aggtgcttgg	ccttcatgaa	tggcgccact	gttgtgtcg	1080
ctgggttgcag	ttctgacttg	ttgggtgtatg	atgagttggc	ttatcgagtc	tttcaatttg	1140
caccacgtt	cacggttacc	atcccaggtg	ggcgagtttg	tccgaatgcc	aagtacgcaa	1200
tgatttgcgt	caagcagcac	tggcgctca	aacgtgcaaa	gggcgtcg	ctgtgtctcg	1260
atgaaagctg	tttcaggggc	atctgcaatt	gccaacgcac	gagtggacca	ccacccgcac	1320
ccgtgtcagc	cgcgtgttta	gatcacatac	tggaggcg	gacgtttggc	aacgttcgcg	1380
tggttacacc	tgaagggcag	ccacgccccg	taccagcgcc	gcgagttcgt	cccagcgcca	1440
actcttctgg	agatgtcaaa	gatccggcgc	ccgttccg	agtacaaaaa	ccaaggacca	1500

agcttgccac accgaaccca actcaggcgc ccatcccagc accgcgcacg cgacttcaag	1560
gggcctcaac acaggagcca ctggcgagtg caggagttgc ttctgactcg gcacctaaat	1620
ggcgtgtggc caaaaactgtg tacagctccg cggagcgctt tcggaccgaa ctggtacaac	1680
gtgctcggtc cgttgggac gttcttggtc aagcgctacc gctcaaaacc ccagcagtgc	1740
agcggtatac catgactctg aagatgatgc gttcacgctt cagttggcac tgcgacgtgt	1800
ggtaccctt ggctgtaatc gcttgggtgc tccctatatg gccatcttgc gctttgctcc	1860
ttagcttgc cattgggttg atacccagtg tggcaataa tgggttctg acagcgcttc	1920
tggtttcatc agctaattat gttcgtaaa tggaccatca atgtgaaggt gcggcttgct	1980
tagccttgc ggaagaagaa cactattata gagcggtccg ttggcgcccg attacaggcg	2040
cgctgtcgct tgtgctcaat ttactgggc aggtaggcta tggtagctcg tccaccttg	2100
atgcagctta tggcccttgc actgtgttcg atctttgcag ctttgcatt ctgtacctct	2160
gccgcaatcg ttgctggaga tgcttcggac gctgtgtgcg agttgggcct gccacgcatt	2220
ttttgggctc caccggcaa cgagttcca aactggcgct cattgatttg tgtgaccact	2280
tttcaaagcc caccatcgat gttgtggca tggcaactgg ttggagcgga tgttacacag	2340
gaaccggccgc aatggagcgt cagtgtgcct ctacggtgga ccctcactcg ttgcaccaga	2400
agaaggcagg agcgactgtt tacctcaccc cccctgtcaa cagcgggtca gcgctgcagt	2460
gcctcaatgt catgtggaaag cgaccaattt ggtccactgt ctttggggaa caaacaggag	2520
ctgttgcac ggcggtaag agtatcttt tctcacctcc ctgctgcgtc tctaccactt	2580
tgcccacccg acccggtgtg accgttgcg accatgtctt ttacaaccgg ttgactgctt	2640
caggggtcga tcccgcttta ttgcgtgttg ggcaaggtga ttttctaaaa cttaatccgg	2700
ggttccggct gataggtgga tggattatg ggatatgcta ttttgtgttg gtgggtgtgt	2760
caacttttac ctgcttaccc atcaaatgtg gcattggcac ccgcgaccct ttctgcccga	2820
gagtgttttcc tgcgttgc accaagaccc aagagcactg ccatgctgga atgtgtgcta	2880
gcgcgtgaagg catctctctg gactctctgg ggttaactca gttacaaagt tactggatcg	2940
cagccgtcac tagcggattta gtgatcttgc tggctgcca ccgcctggcc atcagcgcct	3000
tggacttgc gactcttagt tcccttttag tggatgttgc ttcccttgg gcatctgtgg	3060
ggctttact tgcttgcagt ctgcgtggc ctgcgtgaa aatacagttt ttggcgacgc	3120
ttttgcgttac tctattttt ccccaagcta cccttgcac tatggatac tggcgatgc	3180
tggcggtttt ggcggtttac agtttgcgttgc ttcccttgg gcatctgtgg	3240
gtgtgacacc tgcccatgg ctgcgtgcgg cgaggtcagc tggacagtca agagagcaga	3300
tgctccgggt cagcgctgct gccccacca attcactgct tggatggct cgtgattgtt	3360
atgtcacagg cacaactcgg ctgtacatac ccaaggaagg cggatgggtt tttgaaggc	3420

tattcaggtc accgaaggcg cgccggcaacg tcggcttcgt ggctggtagc agctacggca	3480
cagggtcagt gtggaccagg aacaacgagg tcgtcgact gacagcgtca cacgtggttg	3540
gccgcgctaa catggccact ctgaagatcg gtgacgcaat gctgactctg actttcaaaa	3600
agaatggcga cttegcccag gcagtgacga cacagtcgaa gctcccaggc aattggccac	3660
agttgcattt cgcccaacca acaaccgggc ccgcttcattt gtgcactgcc acaggagatg	3720
aagaaggctt gctcagtggtc gaggtttgtc tggcgtggac tactagtggc gactctggat	3780
ctgcagtggt tcagggtgac gctgtggtag gggtccacac cggttcgaac acaagtggtg	3840
ttgcctacgt gaccacccca agcggaaaac tccttggcgc cgacaccgtg actttgtcat	3900
cactgtcaaa gcatttcaca ggccctttaa catcaatccc gaaggacatc cctgacaaca	3960
ttattgccga tgttgatgtc gttcctcggtt ctctggccat gctgattgtat ggcttatcca	4020
atagagagag cagcctttct ggacctcagt tgttgttaat tgcttggtttt atgtggtctt	4080
atcttaacca acctgcttac ttgccttataa tgctgggtt ctttgcgcgt aacttcttcc	4140
tgccaaaaag tgttggccgc cctgtggtaa ctgggcttctt atgggtgtgc tgcctttca	4200
caccgctttc catgcgcattt tgattgttcc atctggtctg tgctaccgtc acgggaaacg	4260
tgatatcttt tggttctac atcaactgccc ctggcacgtc ttacctttctt gagatgtgg	4320
tcggaggcta tcccaccatg ttgtttgtgc cacggttcctt agtgtaccag ttcccccgt	4380
gggctattgg cacagtacta gcggtatgca gcatcaccat gctggctgt gcccctggc	4440
acaccctgtt actggatgtg ttatccgcctt caggtcgctt tgacaggact ttcatgtat	4500
aataacttcctt ggagggagga gtgaaagaga gtgtcaccgc ctcagtcacc cgcgcttata	4560
gcaaaaccaat tacccaggag agtctcaactg caacatttgc tgccctcaact gatgtat	4620
tccaaatttcctt ctctgatgtc cttgactgtc gggccgtccg atcggcaatg aatctgcgt	4680
ccgctctcac aagtttcaa gtggcgcagt atcgtaacat ccttaatgca tccttgcaag	4740
tcgatcgtga cgctgctcgat agtgcagac taatggcaaa actggctgtat tttgcgggtt	4800
aacaagaagt aacagctgga gaccgtgttgc tggttatcga cggctggac cgcatggc	4860
acttcaaaga cgatttggtg ctgggttcattt tgaccaccaa agtagtaggc gttcttaggt	4920
gcaccatttg tgacgtcgat aaggaagaag ccaatgacac cccagttaaag ccaatgccc	4980
gcaggagacg ccgcaagggc ctgcctaaag gtgctcagttt ggagtggac cgtcaccagg	5040
aagagaagag gaacgcccgtt gatgtatgtt ttgcgggttc gaaatgattt gtcaagagag	5100
tgccaaagta ctggatccc agcgacaccc gaggcacgac agtggaaatc gcccggacta	5160
cctatcagaa agtgggttgc tattcaggca atgtgcattt cgtggagcat caggaagatc	5220
tgctagacta cgtgctgggc aaggggagct atgaaggcctt agatcaggac aaagtgttgg	5280
acctcacaaa catgcttaaa gtggacccca cggagcttc ctccaaagac aaagccaagg	5340

cgcgtcagct tgctcatctg ctgttggatc tggctaaacc agttgaggca gtgaatcagt	5400
taaactgaga gcgccccaca tctttcccg cgatgtgggg cgtcgaccc ttgctgactc	5460
taaagacaag ggttcgtgg ctctacacag tcgcacaatg ttttagctg cccggactt	5520
tttatttaac atcaaatttg tgcgtacga agagttcaca aagaccccaa aagacacact	5580
gcttgggtac gtacgcgcct gccttggta ctggttatt ttccgtcgta cgcaccggc	5640
gctgattgat gcatactggg acagtatgga gtgcgttac gcgcttccca ccatatctga	5700
ttttgatgtg agcccaggtg acgtcgacgt gacggcgag cgatggatt ttgaatctcc	5760
cggaggaggc cgtcaaaac gtctcacagc tgcgttgcgac caccgtttc aagggttcca	5820
cggagccctct tattcctatg atgacaaggt ggcagctgct gtcagtggtg acccgatcg	5880
gtcggacggc gtcttgata acacccgttg gggcaacattt ccatattctg tcccaaccaa	5940
tgctttggaa gccacagctt gctaccgtgc tggatgttag gccgttaccg acgggaccaa	6000
cgtcatcgca acaattgggc cttcccgga gcaacaaccc ataccggaca tcccaaagag	6060
cgtgcttgac aactgcgtg acatcagctg tgacgtttc atagcgcccg ctgcagagac	6120
agccctgtgt ggagatttag agaaatacaa cctatccacg cagggtttt tagttgcctag	6180
tgtttctcc atggtgccgg cgtaataaa agaggagatt ggagacgctc caccactcta	6240
cttgcacatct actgtaccat ctaaaaattt acaagccgga attaacggcg ctgagttcc	6300
tacaaagtct ttacagagct actgtttgat tgcgtacatg gtgtcacagt ccatgaaaag	6360
caatctacaa accgccacca tggcgacttg taaacggcaa tactgttcca aatacaagat	6420
taggagcatt ctggccacca acaattacat tggcctaggt ttgcgtgcct gcctttccgg	6480
ggttacggcc gcattccaaa aagctggaaa ggatgggtca ccgattttt tggcaagtc	6540
aaaattcgac ccgataccag ctctgacaa gtactgcctt gaaacagacc tggagagttg	6600
tgcgtcc accccggctt tggcgcttg gttcgctact aatcttattt ttgagctagc	6660
tggccagccc gagttggtgc acagctacgt gttgaattgc tgcgtacgt tagttgtggc	6720
gggttagtgta gcattcacca aacgcggggg tttgtcatct ggagacccta tcacttccat	6780
ttccaataacc atctattcat tggcgctgta cacccagcac atgttgctat gtggacttga	6840
aggctatttc ccagagattt cagaaaaata tcttgatggc agcctggagc tgcgggacat	6900
gttcaagtac gttcgagttt acatctactc ggacgtgtg gttctaaacca caccaacca	6960
gcattacgac ggcagctttt accgctgggt ccccccaccc caggcgctgc tagtttcaa	7020
ggttgaccca aagaaaactg tgaacaccag ctcccccttcc tttttgggtt gccgggttcaa	7080
gcaagtggac ggcaagtgtt atctagccag tcttcaggac cgcgttacac gctctctgtt	7140
ataccacatt ggtgcaaaga atccctcaga gtactatgaa gtcgtgttt ccatctttaa	7200
ggactccatt atctgctgtg atgaagactg gtggacggac ctccatcgac gtatcagtgg	7260

cgctgcgcgt accgacggag ttgagttccc caccattgaa atgttaacat cttccgcac	7320
caagcagttt gagagtgcgg tggcacagt ttgtggggcc gccccgtgg ccaagtctgc	7380
ttgtggaggg tggttctgtg gcaattgtgt cccgtaccac gcgggtcatt gtcacacaac	7440
ctcgctcttc gccaactgcg ggcacgacat catgtaccgc tccacttact gcacaatgtg	7500
tgagggttcc caaaaacaga tggtaccaaa agtgcctcac ccgatcctgg atcatttgct	7560
gtgccacatt gattacggca gtaaagagga actaactctg gtatgtggcg atggtcgaac	7620
aacatcaccg cccgggcgct acaaagtggg tcacaaggta gtcgccgtgg ttgcagatgt	7680
gggaggcaac attgtgttg ggtgcggtcc tggatcacac atcgcagtac cacttcagga	7740
tacgctcaag ggcgtggtgg tgaataaaagc tctgaagaac gcccggcct ctgagtgac	7800
ggaaggaccc cctgggagtg ggaagacttt tcacctggtc aaagatgtgc tagccgtgg	7860
cggtagcgcg accttggttg tgcccaccca cgcgtccatg ctggactgca tcaacaagct	7920
caaacaagcg ggcgccgatc catactttgt ggtccccaa tatacagttc ttgactttcc	7980
ccggcctggc agtgaaaaca tcacagtgcg actgccccag gtcggAACCA gtgagggaga	8040
aacctttgtg gatgaggtgg cctacttctc accagtggat ctggcgccca ttttaaccca	8100
gggtcgagtc aagggttacg gtgatttaaa tcagctcggg tgcgtcggac ccgcgagcgt	8160
gccacgtaac cttggctcc gacattttgt cagcctggag cccttgcgag tgtgccatcg	8220
attcggcgct gctgtgtgtg atttgatcaa gggcatttat ccttattatg agccagctcc	8280
acataccact aaagtggtgt ttgtccaaa tccagacttt gagaaaggta tagtcatcac	8340
cgcctaccac aaagatcgcg gtcttggca ccgcacaatt gattcaattc aaggctgtac	8400
attccctgtt gtgactcttc gactgcccac accccaatca ctgacgcgc ccgcgcgcagt	8460
tgtggcggtt actagggcgt ctcaggaatt atacatctac gaccctttg atcagcttag	8520
cgggttggc aagttcacca aggaagcaga ggcgcaggac ttgatccatg gcccacctac	8580
agcatgccac ctgggccaag aaattgacct ttggtccaaat gagggcctcg aatattacaa	8640
ggaagtcaac ctgctgtaca cacacgtccc catcaaggat ggtgtataac acagttaccc	8700
taattgtggc cctgcctgtg gctggaaaaa gcaatccaac aaaatttcgt gcctcccgag	8760
agtggcacaa aatttgggtt accactattc cccagactta ccaggatttt gccccataacc	8820
aaaagaactc gctgagcatt ggcccgtagt gtccaaatgtt agatacccgaa attgcttgca	8880
aattaccttta cagcaagtat gtgaactcag taaaccgtgc tcagcgggtt atatggttgg	8940
acaatcggtt ttcgtgcaga cgcctgggtt gacatcttac tggcttactg aatgggtcga	9000
cgccaaagcg cgtgctctac cagattcctt attctgtcc ggttaggttcg agactaacag	9060
ccgcgccttc ctcgatgaag ccgagggaaaa gtttgcgc gtcaccctc atgcctgttt	9120
gggagaaatt aataagtcca ccgtggagg atcccacttc atctttccc aatatttacc	9180

accattgcta cccgcagacg ctgttgcctt ggttagtgct tcattggctg ggaaagctgc	9240
taaagctgct tgcagcgtt ttgatgtcta tgctccatca tttgaacctt atctacaccc	9300
tgagacactg agtcgcgtgt acaagattat gatcgatttc aagccgtgta ggcttatgg	9360
gtggagaaac gcgacctttt atgtccaaga gggtgttgcat gcagttacat cagcactagc	9420
agctgtgtcc aaactcatca aagtgccggc caatgagcct gttcattcc atgtggcatc	9480
agggtacaga accaacgcgc tggttagcgcc ccaggctaaa atttcaattt gggctacgc	9540
cgcccgagtgg gcactgtcaa ctgaaccgccc acctgctgg tttgcgtatcg tgccggata	9600
tattgtaaag aggctcctca gctcaacaga agtgttctt tgccgcaggg gtgttgttgc	9660
ttccacactca gtgcagacca tttgtgcact agagggatgt aaacctctgt tcaacttctt	9720
acaaatttgtt tcagtcattt ggccgtgtt actctagagt ggacctgttc ccatcccccg	9780
ctcaactact caggttagtgg ttgcggcaa cgggtacacc gcagttggta acaagcttgt	9840
cgtatggaaaa tatggaaaac gacgagaaca tcgtggtggg ccccaagccc ttctacccca	9900
tcgaggaagg cagcgccggc acccagctgc ggaagtacat gggaaagatac gccaagctgg	9960
gcgcattgc cttcaccaac gcgtgaccg gcgtggacta cagctacgcc ggttacctgg	10020
aaaagagctg ctgcctggc aaggctctgc agaactacgg cctgggtgg gacggccgga	10080
tcgcctgtg cagcgagaac tgcgaggaat tttcatccc cgtatcgcc ggcctgttca	10140
tcggcgtggg cgtggctccc accaacgaga tctacaccct gcgggagctg gtgcacagcc	10200
tgggcatcag caagcccacc atcgtgttca gcagcaagaa gggcctggac aaagtcatca	10260
ccgtgcagaa aaccgtgacc accatcaaga ccatcgat cctggacagc aaggtggact	10320
accggggcta ccagtgcctg gacaccttca tcaagcgaa caccggccctt ggcttccagg	10380
ccagcagctt caagaccgtg gaggtggacc ggaaagaaca ggtggccctg atcatgaaca	10440
gcagcggcag caccggcctg cccaaaggcg tgcaatgcac ccacgagaac accgtgaccc	10500
ggttcagcca cgccaggac cccatctacg gcaaccaggat gtcccccggc accggccgtgc	10560
tgaccgtggt gcccattcac cacggcttcg gcatgttac caccctggc tacctgatct	10620
gcggcttccg ggtggatg ctgaccaagt tcgacgagga aacccctctg aaaaccctgc	10680
aggactacaa gtgcacccatc gtgattctgg tgcccaccct gttcgccatc ctgaacaaga	10740
gcgagctgct gaacaagtac gacgtgagca acctgggtgg gatcgccagc ggcggagccc	10800
ccctgagcaa agaagtggg gaggccgtcg ccaggcggtt caatctgcc ggcgtgcggc	10860
agggtacgg cctgaccgag acaaccagcg ccatcatcat caccggcag ggcgacgaca	10920
agcctggagc cagcggcaag gtgggtcccc ttcaaggc caaagtgtt gacctggaca	10980
ccaagaagag cctggccccc aacagacggg gcgaagtgtg cgtgaagggc cccatgctga	11040
tgaagggcta cgtgaacaac cccgaggcca ccaaagagct gatcgacgaa gagggctggc	11100

tgcacacccgg cgacatcgac tactacgacg aagagaagca cttcttcatc gtggaccggc	11160
tgaagagcct gatcaagtac aagggtatac aggtgcccccc tgccgagctg gaaagcgtcc	11220
tgctgcagca ccccagcatc ttgcacgccc gcgtggccgg ggtgccagat cctgtggccg	11280
gcgagctgcc tggcgccgtg gtggtgctgg aatccggcaa gaacatgacc gagaaagaag	11340
tgatggacta cgtcgccagc caggtgtcca acgccaagcg gctgagaggc ggcgtgagat	11400
tcgtggacga agtgc当地 aag ggcctgaccg gcaagatcga cggcaggggcc atccgggaga	11460
tcctgaagaa acccggtggcc aagatgtgat tataactcga gggagccata gattcatttt	11520
gtggtgacgg gatttttaggt gagtatctag attactttat tctgtccgtc ccactcttgc	11580
tgttgcttac taggtatgta gcatctgggt tagtgtatgt tttgactgcc ttgttctatt	11640
cctttgtatt agcagcttat atttggtttgc ttatagttgg aagagccttt tctactgctt	11700
atgc当地gt gctttggct gctttctgt tattagtaat gaggatgatt gtgggtatga	11760
tgcctcgtct tcggccatt ttcaaccatc gccaactggg gtagctgat tttgtggaca	11820
cacctagtgg acctgttccc atccccggcc caaccactca ggtgtgggt cgcggcaacg	11880
ggtaaaaaaaaaa agttggtaac aagcttgcg atggcgtcaa gacgatcag tccgcaggcc	11940
gcctctttc gaaacggacg gcggcgacag cctacaagct acaatgaccc actgcgcatg	12000
tttggcaga tgc当地ggcc caaaccgccc ggc当地aaaccc ctcaggctat tattgc当地	12060
cctggagacc ttaggc当地tca tttaaatcaa caggagcgcc ccacccttc gtc当地aacgt	12120
caacggttct tcatgattgg gcatggttca ctcactgc当地 atgccc当地ggg actcacgtac	12180
accgtcagtt gggccctac caaacaatc cagcgcaag ttgc当地ctcc agcaggccg	12240
taagacgtgg atattctcct gtgtggcgctc atgttgaagt agttattagc cacccaggaa	12300
ccaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aa	12342

<210> 35
 <211> 8554
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic polypeptide

<220>
 <221> misc_feature
 <223> Construct Alpha-R-eGFP

<400> 35 ataggcggcg catgagagaa gcccagacca attacctacc caaaatggag aaagttcacg	60
ttgacatcga ggaagacagc ccattcctca gagcttgca gcggagcttc ccgcagtttgc	120
aggtagaagc caagcaggc当地 actgataatg accatgctaa tgccagagcg ttttc当地catc	180
tggcttcaaa actgatc当地aa acggagggtgg acccatccga cacgatcctt gacattggaa	240

gtgcgccccgc ccgcagaatg tattctaagc acaagtatca ttgttatctgt ccgatgagat	300
gtgcggaaga tccggacaga ttgtataagt atgcaactaa gctgaagaaa aactgtaagg	360
aaataactga taaggaattt gacaagaaaa tgaaggagct cggcccgctc atgagcgacc	420
ctgacaccttga aactgagact atgtgcctcc acgacgacga gtcgtgtcgc tacgaagggc	480
aagtgcgtgt ttaccaggat gtatacgcgg ttgacggacc gacaagtctc tatcaccagg	540
ccaataaggg agttagagtc gcctacttggaa taggctttga caccacccct tttatgttta	600
agaacttggc tggagcatat ccatcatact ctaccaactg ggccgacgaa accgtgtttaa	660
cggctcgtaa cataggccta tgcagctctg acgttatggaa gcggtcacgt agagggatgt	720
ccattcttag aaagaagtat ttgaaaccat ccaacaatgt tctattctct gttggctcga	780
ccatctacca cgagaagagg gacttactga ggagctggca cctgcccgtct gtatttcact	840
tacgtggcaa gcaaaattac acatgtcggt gtgagactat agtttagttgc gacgggtacg	900
tcgttaaaag aatagctatc agtccaggcc tgcgtatggaa gccttcaggc tatgctgcta	960
cgatgcaccg cgagggattt ttgtgtcgca aagtgcacaga cacattgaac ggggagaggg	1020
tctctttcc cgtgtgcacg tatgtgccag ctacattgtg tgaccaaattt actggcatac	1080
tggcaacaga tgcgtatgcg gacgacgcgc aaaaactgct ggttggcgc aaccagcgta	1140
tagtcgtcaa cggtcgcacc cagagaaaca ccaataccat gaaaaattttt cttttgcccgg	1200
tagtggccca ggcatttgct aggtggccaa aggaatataa ggaagatcaa gaagatgaaa	1260
ggccacttagg actacgagat agacagtttgc tcatgggttgc ttgttggcgt tttagaaggc	1320
acaagataac atctattttt aagcgccccgg atacccaaac catcatcaaa gtgaacagcg	1380
atttccactc attcgtgctg cccaggatag gcagtaacac attggagatc gggctgagaa	1440
caagaatcag gaaaatgtta gaggagcaca aggagccgtc acctctcatt accgcccagg	1500
acgtacaaga agctaagtgc gcagccgtatg aggctaaaggaa ggtgcgtgaa gccgaggagt	1560
tgcgcgcagc tctaccaccc ttggcagctg atgttgagga gcccactctg gaagccgtatg	1620
tcgacttgat gttacaagag gctggggcccg gctcagtggaa gacacctcgat ggcttgataa	1680
aggttaccag ctacgtggc gaggacaaga tcggcttta cgctgtgctt tctccgcagg	1740
ctgtactcaa gagtgaaaaa ttatcttgca tccaccctct cgctgaacaa gtcatagtga	1800
taacacactc tggccgaaaa gggcgttatg ccgtggaaacc ataccatggt aaagttagtgg	1860
tgccagaggg acatgcaata cccgtccagg actttcaagc tctgagtggaa agtgcacca	1920
ttgtgtacaa cgaacgtgag ttctgttacaa ggtacctgca ccatattgcc acacatggag	1980
gagcgctgaa cactgatgaa gaatattaca aaactgtcaa gcccagcgag cacgacggcg	2040
aataacctgta cgacatcgac aggaaacagt gcgtcaagaa agaactagtc actggcttag	2100
ggctcacagg cgagctgggtt gatccctccct tccatgaatt cgcctacgag agtctgagaa	2160

cacgaccaggc cgctccttac caagtaccaa ccataggggt gtatggcgtg ccaggatcag	2220
gcaagtctgg catcattaaa agcgcagtca ccaaaaaaga tctagtggtg agcgccaaga	2280
aagaaaactg tgcagaaatt ataagggacg tcaagaaaat gaaagggctg gacgtcaatg	2340
ccagaactgt ggactcagtg ctcttgaatg gatgcaaaca ccccgtagag accctgtata	2400
ttgacgaagc ttttgcttgt catgcaggtt ctctcagagc gctcatagcc attataagac	2460
ctaaaaaggc agtgctctgc ggggatccca aacagtgcgg ttttttaac atgatgtgcc	2520
tgaaagtgca ttttaaccac gagatttgca cacaagtctt ccacaaaagc atctctcgcc	2580
gttgcactaa atctgtgact tcggcgtct caaccttgtt ttacgacaaa aaaatgagaa	2640
cgacgaatcc gaaagagact aagattgtga ttgacactac cggcagtacc aaacctaagc	2700
aggacgatct cattctcaact tgtttcagag ggtgggtgaa gcagttgcaa atagattaca	2760
aaggcaacga aataatgacg gcagctgcct ctcaagggct gacccgtaaa ggtgtgtatg	2820
ccgttcggta caaggtgaat gaaaatcctc tgtacgcacc cacctctgaa catgtgaacg	2880
tcctactgac ccgcacggag gaccgcacatcg tgtggaaaac actagccggc gacccatgga	2940
taaaaaacact gactgccaag taccctggaa atttcactgc cacgatagag gagtggcaag	3000
cagagcatga tgccatcatg aggcacatct tggagagacc ggaccctacc gacgtcttcc	3060
agaataaggc aaacgtgtgt tgggccaagg cttagtgcc ggtgctgaag accgctggca	3120
tagacatgac cactgaacaa tggAACACTG tggattattt tggAAACGGAC aaagctca	3180
cagcagagat agtattgaac caactatgcg tgaggttctt tggactcgat ctggactccg	3240
gtctattttc tgcacccact gttccgttat ccattagaa taatcactgg gataactccc	3300
cgtcgccctaa catgtacggg ctgaataaag aagtggtccg tcagctctc cgccaggatcc	3360
cacaactgcc tcgggcagtt gccactggaa gagtctatga catgaacact ggtacactgc	3420
gcaattatga tccgcgcata aaccttagtac ctgtAAACAG aagactgcct catgttttag	3480
tcctccacca taatgaacac ccacagagtg acttttcttc attcgtcagc aaattgaagg	3540
gcagaactgt cctgggggtc gggggaaaagt tgtccgtccc aggcaaaatg gttgactggt	3600
tgtcagaccg gcctgaggct acottcagag ctggcgtgga tttaggcatc ccaggtgatg	3660
tgcccaaata tgacataata tttgttaatg tgaggacccc atataaatac catcaactatc	3720
agcagtgtga agaccatgcc attaagctta gcatgttgac caagaaagct tgtctgcata	3780
tgaatccccg cggAACCTGT gtcaagcatag gttatggtta cgctgacagg gccagcgaaa	3840
gcatcattgg tgctatacg cgccaggatca agtttccccg ggtatgcaaa ccgaaatcct	3900
cacttgaaga gacggaaagtt ctgtttgtat tcattggta cgatcgcaag gcccgtacgc	3960
acaatcctta caagcttca tcaaccttga ccaacattta tacaggttcc agactccacg	4020
aagccggatg tgcacccctca tatcatgtgg tgcgaggggta tattgccacg gccaccgaag	4080

gagtgattat aaatgctgct aacagcaaag gacaacctgg cggaggggtg tgcggagcgc	4140
tgtataagaa attcccgaa agttcgatt tacagccgat cgaagtagga aaagcgcgac	4200
tggtcaaagg tgcagctaaa catatcatc atgccgtagg accaaacttc aacaaagttt	4260
cggaggttga aggtgacaaa cagttggcag aggcttatga gtccatcgct aagattgtca	4320
acgataacaa ttacaagtca gtacgcattc cactgttgc caccggcatc tttccggga	4380
acaaagatcg actaacccaa tcattgaacc atttgctgac agctttagac accactgatg	4440
cagatgtgc catatactgc agggacaaga aatggaaat gactctcaag gaagcagtgg	4500
ctaggagaga agcagtggag gagatatgca tatccgacga ctcttcagtg acagaacctg	4560
atgcagagct ggtgagggtg catccgaaga gttcttggc tggaaaggaag ggctacagca	4620
caagcgatgg caaaacttgc tcatatttgg aagggaccaa gtttcaccag gcggccaagg	4680
atatacgaga aattaatgcc atgtggcccg ttgcaacgga ggc当地atgag caggtatgca	4740
tgtatatcct cggagaaaagc atgagcagta ttaggtcgaa atgccccgtc gaagagtcgg	4800
aagcctccac accacctagc acgctgcctt gcttgcgtat ccatgcccattg actccagaaa	4860
gagtacagcg cctaaaagcc tcacgtccag aacaaattac tgggtgctca tccttc当地	4920
tgccgaagta tagaatcaact ggtgtgcaga agatccaaatg ctcccagcct atattgttct	4980
caccgaaagt gcctgcgtat attcatccaa ggaagtatct cgtggaaaca ccaccggtag	5040
acgagactcc ggagccatcg gcagagaacc aatccacaga ggggacacct gaacaaccac	5100
cacttataac cgaggatgag accaggacta gaacgcctga gccgatcatc atcgaagagg	5160
aagaagagga tagcataagt ttgctgtcag atggcccgac ccaccaggtg ctgcaagtcg	5220
aggcagacat tcacggcccg ccctctgtat ctagctcatc ctggccatt cctcatgc当地	5280
ccgactttga tgtggacagt ttatccatac ttgacaccct ggagggagct agcgtgacca	5340
gcggggcaac gtcagccgag actaactctt acttcgcaaa gagtatggag tttctggcgc	5400
gaccggtgcc tgcgcctcga acagtattca ggaaccctcc acatcccgtc ccgc当地	5460
gaacaccgtc acttgacaccc agcagggcct gctcgagaac cagcctagtt tccacccgc	5520
caggcgtgaa tagggtgatc actagagagg agctcgaggc gcttaccccg tcacgc当地	5580
ctagcaggtc ggtctcgaga accagcctgg tctccaaaccc gccaggcgta aatagggtga	5640
ttacaagaga ggagttttag ggcgttgc当地 cacaacaaca atgacggttt gatgc当地	5700
catacatctt ttccctccgac accggcataag ggcatttaca acaaaaatca gtaaggcaaa	5760
cggcgtatc cgaagtgggtg ttggagagga ccgaatttgg gatttcgtat gccccgc当地	5820
tcgaccaaga aaaagaagaa ttactacgca agaaattaca gttaaatccc acacctgcta	5880
acagaagcag ataccagtcc aggaaggtgg agaacatgaa agccataaca gctagacgta	5940
ttctgcaagg cctagggcat tatttgaagg cagaaggaaa agtggagtgc taccgaaccc	6000

tgcatcctgt tcctttgtat tcatctagtg tgaaccgtgc ctttcaagc cccaaggctg	6060
cagtggaaagc ctgtAACGCC atgttggaaag agaactttcc gactgtggct tcttactgtat	6120
ttattccaga gtacgatgcc tatttggaca tgggtgacgg agcttcatgc tgcttagaca	6180
ctgccagttt ttggccctgca aagctgcgca gctttccaaa gaaacactcc tatttggAAC	6240
ccacaatacg atcggcagtg cttcagcga tccagaacac gctccagaac gtcctggcag	6300
ctgcccacaaa aagaaattgc aatgtcacgc aaatgagaga attgcccgtt ttggattcgg	6360
cggcccttaa tgtggaatgc ttcaagaaat atgcgtgtaa taatgaatat tgggaaacgt	6420
ttaaagaaaa ccccatcagg cttaactgaag aaaacgtggt aaattacatt accaaattaa	6480
aaggaccaaa agctgctgct cttttgcga agacacataa tttgaatatg ttgcaggaca	6540
taccaatgga caggtttgtat atggacttaa agagagacgt gaaagtgact ccaggaacaa	6600
aacatactga agaacggccc aaggtacagg tgatccaggc tgccgatccg ctagcaacag	6660
cgtatctgtg cgaaatccac cgagagctgg ttaggagatt aaatgcggtc ctgcttccga	6720
acattcatac actgtttgat atgtcggctg aagactttga cgctattata gccgagcact	6780
tccagcctgg ggatttgtt ctggaaactg acatcgctc gtttgataaa agtgaggacg	6840
acgccatggc tctgaccgcg ttaatgattc tggaaagactt aggtgtggac gcagagctgt	6900
tgacgctgat tgaggcggct ttccggaaa tttcatcaat acatttgcac actaaaacta	6960
aatttaaatt cggagccatg atgaaatctg gaatgttccct cacactgttt gtgaacacag	7020
tcatttaacat tgtaatcgca agcagagtgt tgagagaacg gctaaccgga tcaccatgtg	7080
cagcattcat tggagatgac aatatcgta aaggagtcaa atcggacaaa ttaatggcag	7140
acaggtgcgc cacctggttt aatatggaag tcaagattat agatgctgtg gtggcggaga	7200
aagcgcctta tttctgtgga gggtttattt tgtgtgactc cgtgaccggc acagcgtgcc	7260
gtgtggcaga cccctaaaaa aggctgttta agcttggcaa acctctggca gcagacgtg	7320
aacatgatga tgacaggaga agggcattgc atgaagagtc aacacgctgg aaccgagtgg	7380
gtattcttc agagctgtgc aaggcagtag aatcaaggta tggaaaccgtt ggaacttcca	7440
tcatagttat ggccatgact actctagcta gcagtgtttaa atcattcagc tacctgagag	7500
gggcccctat aactctctac ggctaacctg aatggactac gacatagtct agtccgcacaa	7560
gatatcgcac catgggaaga gcccggcgtga gcaaggggcga ggagctgttc accgggggtgg	7620
tgcccatcct ggtcgagctg gacggcgtacg taaacggcca caagttcagc gtgtccggcg	7680
agggcgaggg ccatgcccacc tacggcaagg tgaccctgaa gctgatctgc accaccggca	7740
agctgcccgt gcccctggccc accctcggtga ccaccctggg ctacggcctg cagtgtttcg	7800
cccgctaccc cgaccacatg aagcagcactg acttcttcaa gtccggccatg cccgaaggct	7860
acgtccagga gcgccaccatc ttcttcaagg acgacggcaa ctacaagacc cgccggagg	7920

tgaagttcga	gggcgacacc	ctggtaacc	gcatcgagct	gaagggcatc	gacttcaagg	7980
aggacggcaa	catcctgggg	cacaagctgg	agtacaacta	caacagccac	aacgtctata	8040
tcaccggcga	caagcagaag	aacggcatca	aggccaactt	caagatccgc	cacaacatcg	8100
aggacggcgg	cgtcagctc	gccgaccact	accagcagaa	caccccccattc	ggcgacggcc	8160
ccgtgctgct	gccccacaac	cactacctga	gctaccagtc	cgccctgagc	aaagacccca	8220
acgagaagcg	cgatcacatg	gtcctgctgg	agttcgtgac	cgccgcccggg	atcactctcg	8280
gcatggacga	gctgtacaag	taggctcttc	gtaattaatt	gatcgataca	gcagcaattg	8340
gcaagctgct	tacatagaag	gcgcgcgtt	taaacggccg	gccttaatta	agtaacgata	8400
cagcagcaat	tggcaagctg	cttacataga	actcgcggcg	attggcatgc	cgctttaaaa	8460
tttttatttt	atttttcttt	tctttccga	atcggatttt	gtttttaata	tttcaaaaaaa	8520
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaa			8554

<210>	36					
<211>	59					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Synthetic polynucleotide					
<220>						
<221>	misc_feature					
<223>	5 human beta globin UTR					
<400>	36					
	acatggctt	ctgacacaac	tgtgttcact	agcaacctca	aacagacacc	59
<210>	37					
<211>	18					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Synthetic polynucleotide					
<220>						
<221>	misc_feature					
<223>	T7 Promoter					
<400>	37					
	taatacgact	cactatacg				18
<210>	38					
<211>	142					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Synthetic polynucleotide					
<220>						

```

<221> misc_feature
<223> DLP

<400> 38
atagtcagca tagtacattt catctgacta atactacaac accaccacca tgaatagagg 60
attcttaac atgctggcc gccgccccctt cccggccccc actgccatgt ggaggccg 120
gagaaggagg caggcgcccc cg 142

<210> 39
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<220>
<221> misc_feature
<223> P2A

<400> 39
ggaagcggag ctactaactt cagcctgctg aagcaggctg gagacgtgga ggagaaccct 60
ggacct 66

<210> 40
<211> 846
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic polynucleotide

<220>
<221> misc_feature
<223> dsGFP

<400> 40
atggtagca agggcgagga gctgttcacc ggggtgggtgc ccatcctgg 60
tttgcacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccac 120
cttgcacgtaa ccctgaagtt catctgcacc accggcaagc tgcccgtg 180
ccctgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccg 240
ccacatgaag cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg 300
caccatcttc ttcaaggacg acggcaacta caagacccgc gcccgggtga agttcgaggg 360
cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat 420
cctggggcac aagctggagt acaactacaa cagccacaac gtcttatatca tggccgacaa 480
gcagaagaac ggcatcaagg tgaacttcaa gatccgccc acatcgagg acggcagcgt 540
gcagctcgcc gaccactacc agcagaacac ccccatcgac gacggccccc tgctgctg 600
cc 660
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggc

```

ctgctggagt tcgtgaccgc cgccgggatc actctcgca tggacgagct gtacaagaag	720
cttagccatg gttcccgcc ggaggtggag gaggcaggatg atggcacgct gcccatgtct	780
tgtccccagg agagcgggat ggaccgtcac cctgcagcct gtgcttctgc taggatcaat	840
gtgttag	846
<210> 41	
<211> 134	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> 3 Human beta globin UTR	
<400> 41	
gctcgcttcc ttgctgtcca atttctatta aaggttcctt tgttccctaa gtccaaactac	60
taaactgggg gatattatga agggccttga gcatctggat tctgcctaatt aaaaaacatt	120
tattttcatt gcaa	134
<210> 42	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> T7 Terminator	
<400> 42	
aaccctctc taaacggagg gttttttt	29
<210> 43	
<211> 1412	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic polynucleotide	
<220>	
<221> misc_feature	
<223> Sequence of DLP dsGFP Mrna	
<400> 43	
taatacgtact cactatagac atttgcttct gacacaactg tgttcaactg caacctcaaa	60
cagacaccgc cgccaccata gtcagcatag tacatttcat ctgactaata ctacaacacc	120
accaccatga atagaggatt cttaacatg ctggccgccc gccccttccc ggcccccact	180

gccatgtgga ggccgcggag aaggaggcag gcggccccgg gaagcggagc tactaacttc	240
agcctgctga agcaggctgg agacgtggag gagaaccctg gacctatggt gagcaaggc	300
gaggagctgt tcaccggggt ggtgccatc ctggtcgagc tggacggcga cgtaaacggc	360
cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg	420
aagttcatct gcaccaccgg caagctgccc gtgcctggc ccaccctgt gaccaccctg	480
acctacggcg tgcagtgttt cagccgctac cccgaccaca tgaagcagca cgacttcttc	540
aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc	600
aactacaaga cccgcgcga ggtgaagttc gagggcgaca ccctggtgaa ccgcacatcgag	660
ctgaaggcgca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac	720
tacaacagcc acaacgtcta tatcatggcc gacaaggcaga agaacggcat caaggtgaac	780
ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgcccacca ctaccagcag	840
aacaccccca tcggcgacgg ccccggtctg ctgcccacca accactacct gagcacccag	900
tccgcccgtga gcaaagaccc caacgagaag cgcgatcaca tggtcctgtggagttc	960
accgcgcgcg ggatcactct cggcatggac gagctgtaca agaagcttag ccatggcttc	1020
ccgcgcggagg tggaggagca ggatgatggc acgctgcccata tggtcctgtgc ccaggagagc	1080
ggatggacc gtcaccctgc agcctgtgct tctgcttagga tcaatgtgta ggctcgctt	1140
cttgctgtcc aatttctatt aaaggttcct ttgttcccta agtccaaacta ctaaactggg	1200
ggatattatg aagggccttg agcatctgga ttctgcctaa taaaaaaacat ttattttcat	1260
tgcaaa	1320
aaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaaaaaaaa	1380
aaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaaaaaaaa	1412

<210> 44
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Synthetic polypeptide

<220>
 <221> misc_feature
 <223> H-2 Kd peptide

<400> 44
 Ile Tyr Ser Thr Val Ala Ser Ser Leu
 1 5

<210> 45
 <211> 15
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Synthetic polypeptide

<220>
 <221> misc_feature
 <223> CD4 T cell epitope

<400> 45
 Lys Ser Ser Phe Phe Arg Asn Val Val Trp Leu Ile Lys Lys Asn
 1 5 10 15

<210> 46
 <211> 104
 <212> DNA
 <213> Sindbis virus

<400> 46
 atgaatagag gattcttaa catgctcgcc cgccgcccct tcccgcccc cactgccatg 60
 tggaggccgc ggagaaggag gcaggcggcc ccgatgcctg cccg 104

<210> 47
 <211> 120
 <212> DNA
 <213> Aura virus

<400> 47
 atgaactctg tctttacaa tccgtttggc cgaggtgcct acgctcaacc tccaatagca 60
 tggaggccaa gacgtagggc tgcacctgcg cctcgaccat ccgggttgac taccagatc 120

<210> 48
 <211> 71
 <212> DNA
 <213> Eastern Equine Encephalitis virus SA

<400> 48
 atgttccgt atccaacatt gaactacccg cctatggcac cggttaatcc gatggcatac 60
 agggacccca a 71

<210> 49
 <211> 91
 <212> DNA
 <213> O'Nyong-Nyong virus

<400> 49
 atggagttca taccagcaca aacttactac aatagaagat accagcctag accctggact 60
 caacgccccta ctatccaggt gatcaggcca a 91

<210> 50
 <211> 67
 <212> DNA
 <213> Semliki Forest virus

<400> 50
 atgaattaca tccctacgca aacgtttac ggccgcccgtt ggccgcccgcg cccggcggcc 60

cgtcctt

67

<210> 51
<211> 69
<212> DNA
<213> Ross River virus

<400> 51
atgaattaca taccaaccca gacttttac ggacgcgtt ggccggcctcg cccggcggttc 60
cgtccatgg 69

<210> 52
<211> 91
<212> DNA
<213> Mayaro virus

<400> 52
atggatttcc taccaacaca agtgtttat ggcaggcgat ggagaccacg aatgccgcca 60
cgcccttgga ggccacgccc acctacaatt c 91