发明名称
火电机组负荷裕度实时预测方法

摘要
本发明公开了一种火电机组负荷裕度实时预测方法，包括以下步骤：搜集电厂12个月内火电机组的各个影响因素的设计值与火电机组不同负荷下的运行值；利用BP神经网络法训练出各影响因素的设计值与实际运行值的差值对火电机组负荷设计值与负荷实际运行值的差值的联合权系数；得到电厂1个月内各影响因素的设计值与实际运行最大值的差值；结合上述步骤并通过BP神经网络得到火电机组负荷调节实时速率值；计算得出火电机组最大可调负荷值。如果计算出的最大可调负荷值大于火电机组实际设计最大负荷，即取设计最大负荷值为最大可调负荷。本发明既可以使电厂能够了解自身的实时发电能力，又可以使电网根据火电机组实时情况及时调整电网各火电机组出力。
1. 火电机组负荷裕度实时预测方法，其特征在于，包括以下步骤：

1) 搜集电厂12个月内火电机组的各个影响因素的设计值与火电机组不同负荷下的实际运行值，其中，火电机组的影响因素包括给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、中温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流，火电机组不同负荷下的实际运行值根据火电机组基础数据进行计算得出；

2) 结合火电机组不同负荷下的实际运行值，并利用BP神经网络法训练出火电机组的每个影响因素的设计值与实际运行值的差值εi与火电机组负荷设计值与负荷实际运行值的差值εd的加权系数wij(τ)，得到各影响因素的设计值与实际运行值的差值εi，对火电机组负荷设计值与负荷实际运行值的差值εd的联合权系数wij(τ)；

其中，i=1, 2, …, 16，x1, x2，…，x16分别表示给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、中温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流的设计值与实际运行值的差值εj，j=1, 2, …, d1, d2, …，分别表示火电机组负荷设计值与负荷实际运行值的差值εd，εd为BP神经网络的学习次数；

3) 通过比较电厂近1个月内各个影响因素的设计值与实际运行最大值，得到各影响因素的设计值与实际运行最大值的差值εi，εi的计算公式为：

$$\xi_i = x_i^{design} - x_i^{max}$$ （1）

式中，i=1, 2, …, 16，ε1, ε2，…，ε16分别表示为影响因素给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、中温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流的设计值和实际运行最大值的差值，x1，x2，…，x16依次为上述各个影响因素的设计值，ε1，ε2，…，ε16依次为上述各个影响因素的运行最大值；

4) 根据步骤2) 和3) 得到的结果，通过BP神经网络得到火电机组修正后的负荷调节实时速率yj，yj的计算公式为：

$$\frac{1}{1 + e^{-\sum_{i} w_{ij} \xi_j - \theta_j}} y_j^{design}$$ （2）

式中，j=1, 2, …，θj为BP神经网络采用的临界值，0j, i=1, 2, …, 16，εj分别表示为上述各影响因素的设计值与实际运行最大值的差值，yj为火电机组设计负荷速率；

5) 依据步骤4) 得出的火电机组修正后的负荷调节实时速率yj，yj在规定火电机组升负荷时间t内，计算得出火电机组最大可调负荷值为y，y的计算公式为：

$$y = y_j \times t$$ （3）

如果计算出的最大可调负荷值y 大于火电机组实际设计最大负荷，即取实际设计最大负荷值为火电机组最大可调负荷，如果计算出的最大可调负荷值y 不大于火电机组实际设计最大负荷，即取最大可调负荷值y 为火电机组最大可调负荷。

2. 本权利要求1所述的火电机组负荷裕度实时预测方法，其特征在于，步骤2) 中，BP神经网络法的训练算法包括以下步骤：

3.
a) 设置各影响因素的设计值与实际运行值的差值对火电机组负荷设计值与负荷实际运行值的差值的初始联合权系数为 w 和初始临界值为 θ，其取值范围为 [0, 1]；
b) 将各影响因素的设计值与实际运行值的差值 x_{ij} 加到 BP 神经网络上，利用下面的公式计算出 BP 神经网络训练出的火电机组负荷调节实时速率值 y_{ij}，计算公式如下：

\[
y_{ij} = \frac{1}{1 + e^{-\left(\sum_{j=1}^{n} w_{ij} \delta_j \right)}} y_{\text{design}}
\]

式中，i=1, 2, ..., 16, x_1, x_2, ..., x_{10} 分别表示为影响因素给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨机电流、一次风机电流、送风机电流和引风机电流的设计值和实际运行值的差值；j=1, 2, ..., θ_{ij} 为 BP 神经网路采用的临界值，y_{\text{design}} 为火电机组负荷设计速率；

3) 按火电机组负荷设计值与负荷实际运行值的差值 d_{ij} 与神经网络训练出的火电机组负荷调节实时速率值 y_{ij} 调整联合权系数 w_{ij}，其调整量 Δw_{ij} 的计算公式如下：

\[
\Delta w_{ij} = \pi_{ij} \delta_j x_j
\]

式中，j=1, 2, ..., η_{ij} 为学习率比例系数，其取值为 [0, 1]，x_j 为 BP 神经网络在隐节点的输入，δ_j 是一个与输出偏差相关的值，对于输出节点来说有：

\[
\delta_j = \pi_j (1-y_j)(d_j-y_j)
\]

对于隐层节点来说有：

\[
\delta_j = x_j (1-x_j) \sum_k \delta_k w_{jk}
\]

式中，k=1, 2, ..., j；

各层神经元的联合权系数 w_{ij} 调整后为：

\[
w_{ij}(\tau) = w_{ij}(\tau-1) + \Delta w_{ij}
\]

式中，τ 为 BP 神经网络的学习次数。
火电机组负荷裕度实时预测方法

【技术领域】
[0001] 本发明涉及火力发电技术领域，具体涉及一种火电机组负荷裕度实时预测方法。

【背景技术】
[0002] 目前，火电机组实时负荷调节指令一般由电网调度人员指定，并没有考虑实际的机组运行状况，经常会因为技术原因无法响应及满足电网要求，致使火电机组实际运行下可调最大负荷达不到设定值，导致部分机组由于实际运行状况无法满足电网要求，这样就会影响火电机组调节指令及实时精度。

【发明内容】
[0003] 本发明的目的在于克服上述现有技术的缺陷，提供一种火电机组负荷裕度实时预测方法，采用该方法可以使电网调节指令与火电机组实际运行状况相结合。
[0004] 为实现上述目的，本发明采用如下技术方案：
[0005] 火电机组负荷裕度实时预测方法，包括以下步骤：
[0006] 1）搜集电厂12个月内火电机组的各个影响因素的设计值与火电机组不同负荷下的实际运行值，其中，火电机组的影响因素包括给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、中温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流，火电机组不同负荷下的实际运行值根据火电机组历史数据进行计算得出；
[0007] 2）结合火电机组不同负荷下的实际运行值，并利用BP神经网络法训练出火电机组的各影响因素的设计值与实际运行值的差值d_{ij}的关系，得到各影响因素的设计值与实际运行值的差值的x_{i}对火电机组负荷设计值与负荷实际运行值的差值d_{ij}的联合权系数w_{ij}（τ）；
[0008] 其中，i=1,2,…,16，x_{1}, x_{2}, …, x_{16} 分别表示给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、中温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流的设计值与实际运行值的差值，j=1,2,…,d_{1}, d_{2}, … 分别表示火电机组负荷设计值与负荷实际运行值的差值，τ 为BP神经网络的学习次数；
[0009] 3）通过比较电厂近1个月内各个影响因素的设计值与实际运行最大值，得到各影响因素的设计值与实际运行最大值的差值x′_{ij}，其计算公式为：

\[x_{ij}' = x_{ij}^{\text{design}} - x_{ij}^{\text{max}} \tag{1} \]

【0010】式中，i=1,2,…,16，x′_{1}, x′_{2}, …, x′_{16} 分别表示为影响因素给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、中温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流的设计值和实际运行最大值的差值，x_{1}^{\text{design}}, x_{2}^{\text{design}}, …, x_{16}^{\text{design}} 依次为上述
述各个影响因素的设计值，x_{1}^{max}、x_{2}^{max}、\cdots、x_{16}^{max} 依次为上述各个影响因素的实际运行最大值；

[0012] 4) 根据步骤 2) 和 3) 得到的结果，通过 BP 神经网络得到火电机组修正后的负荷调节实时速率值 y'，其计算公式为：

$$
\frac{1}{1 + e^{-\left(\sum_{i} w_{ij} x_{i} - \theta_{j}\right)}} y_{\text{design}}
$$

[0013] 式中：$j=1, 2, \cdots, \theta_{j}$ 为 BP 神经网路采用的临界值，$i=1, 2, \cdots, 16, x_{i}$ 分别为上述各影响因素的设计值与实际运行最大值的差值，y_{design} 为火电机组设计负荷速率；

[0014] 5) 依据步骤 4) 得出的火电机组修正后的负荷调节实时速率值 y'，在规定火电机组升负荷时间 t 内，计算得出火电机组最大可调负荷值 y，其计算公式为：

$$
y = y' \times t
$$

[0016] 如果计算出的最大可调负荷值 y 大于火电机组实际设计最大负荷，即取实际设计最大负荷值为火电机组最大可调负荷；如果计算出的最大可调负荷值 y 不大于火电机组实际设计最大负荷，即取最大可调负荷值 y 为火电机组最大可调负荷。

[0017] 本发明进一步改进在于，步骤 2) 中，BP 神经网络法的学习算法包括以下步骤：

[0018] a) 设置各影响因素的设计值与实际运行值的差值对火电机组负荷设计值与负荷实际运行值的差值的初始权联合系数为 w 和初始临界值为 θ_{j}，其取值均为 [0, 1]；

[0019] b) 将各影响因素的设计值与实际运行值的差值 x_{i} 加到 BP 神经网络上，利用下面的公式计算出 BP 神经网络训练出的火电机组负荷调节实时速率值 y_{j}，计算公式如下：

$$
\frac{1}{1 + e^{-\left(\sum_{i} w_{ij} x_{i} - \theta_{j}\right)}} y_{\text{design}}
$$

[0021] 式中：$j=1, 2, \cdots, 16, x_{1}, x_{2}, \cdots, x_{16}$ 分别表示为影响因素给煤机出力，低温再热器壁温，高温再热器壁温，低温过热器壁温，中温过热器壁温，高温过热器壁温，汽水分离器温差，主蒸汽压力，给水流量，胀差，轴振，瓦振，给煤机流量，一次风机流量，二次风机流量和引风机流量的设计值和实际运行值的差值；$j=1, 2, \cdots, 16$ 为 BP 神经网路采用的临界值，y_{design} 为火电机组设计负荷速率；

[0022] 3) 按火电机组负荷设计值与负荷实际运行值的差值 d_{j} 与神经网络训练出的火电机组负荷调节实时速率值 y_{j} 调整联合权系数 w_{ij}，其调整量 Δw_{ij} 的计算公式如下：

$$
\Delta w_{ij} = \eta_{j} \delta_{j} x_{i}
$$

[0024] 式中：$i=1, 2, \cdots, 16, \delta_{j}$ 为学习率比例系数，其取值为 [0, 1]，x_{i} 为 BP 神经网络在隐节点的输入，δ_{j} 是一个与输出偏差相关的值，对于输出节点来说有：

$$
\delta_{j} = x_{j} (1 - y_{j}) (d_{j} - y_{j})
$$

[0026] 对于层节点来说有：

$$
\delta_{j} = x_{j} (1 - y_{j}) \sum_{k} \delta_{k} w_{jk}
$$

[0028] 式中，$k=1, 2, \cdots, j$；

[0029] 各层神经元的联合权系数 w_{ij} 调整后为：
【具体实施方式】

[0035] 下面结合具体实施例对本发明作进一步说明。

[0036] 本发明火电机组负荷裕度实时预测方法，包括以下步骤：

[0037] 1）根据电厂 12 个月内火电机组的各个影响因素的设计值与火电机组不同负荷下的实际运行值，其中，火电机组的影响因素包括给煤机出力、低温再热器壁温、高温再热器壁温、低温过热器壁温、中温过热器壁温、高温过热器壁温、汽水分段器壁温、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流，火电机组不同负荷下的实际运行值根据火电机组基础数据进行计算得出；参见表 1，火电机组负荷裕度计算所需参数的设计值及最大运行值；

[0038] 表 1：

<table>
<thead>
<tr>
<th>影响因素</th>
<th>设计值</th>
<th>最大运行值</th>
</tr>
</thead>
<tbody>
<tr>
<td>给煤机出力，t / h</td>
<td>312</td>
<td>299.02</td>
</tr>
<tr>
<td>低温再热器壁温，℃</td>
<td>515</td>
<td>504</td>
</tr>
<tr>
<td>高温再热器壁温，℃</td>
<td>610</td>
<td>603</td>
</tr>
<tr>
<td>低温过热器壁温，℃</td>
<td>490</td>
<td>502</td>
</tr>
<tr>
<td>中温过热器壁温，℃</td>
<td>600</td>
<td>589</td>
</tr>
<tr>
<td>高温过热器壁温，℃</td>
<td>625</td>
<td>618</td>
</tr>
<tr>
<td>汽水分段器壁温，℃</td>
<td>426</td>
<td>436</td>
</tr>
<tr>
<td>主蒸汽压力，MPa</td>
<td>24.2</td>
<td>25.4</td>
</tr>
<tr>
<td>给水流量，t / h</td>
<td>1807</td>
<td>1924</td>
</tr>
<tr>
<td>胀差，mm</td>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>轴振，μm</td>
<td>127</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>69.6</td>
<td>58.5</td>
</tr>
<tr>
<td></td>
<td>254.4</td>
<td>139.8</td>
</tr>
<tr>
<td></td>
<td>141.3</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>429</td>
<td>229.1</td>
</tr>
</tbody>
</table>

[0040] 2) 结合火电机组不同负荷下的实际运行值，并利用 BP 神经网络法训练出火电机组的各个影响因素的设计值与实际运行值的差值 x_i 与火电机组负荷设计值与负荷实际运行值的差值 d_j 的关系，得到各影响因素的设计值与实际运行值的差值 x_i 对火电机组负荷设计值与负荷实际运行值的差值 d_j 的联合权系数 w_{ij} (τ)；

[0041] 其中，$i=1, 2, \cdots, 16$, x_1, x_2, \cdots, x_{16} 分别表示给煤机电出力、低温穿热器壁温、高温穿热器壁温、低温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流；一次风机电流、送风机电流和引风机电流的设计值与实际运行值的差值；$j=1, 2, \cdots, d_1, d_2, \cdots$ 分别表示火电机组负荷设计值与负荷实际运行值的差值，τ 为 BP 神经网络的学习次数；

[0042] 步骤 2) 中，BP 神经网络法的学习算法包括以下步骤：

[0043] a) 设置各影响因素的设计值与实际运行值的差值对火电机组负荷设计值与负荷实际运行值的差值的初始结合权系数为 w 和初始临界值为 θ，其取值均为 $[0, 1]$；

[0044] b) 将各影响因素的设计值与实际运行值的差值 x_i 加到 BP 神经网络上，利用下面的公式计算出 BP 神经网络训练出的火电机组负荷调节实时速率值 y_j，计算公式如下：

$$y_j = \frac{1}{1 + e^{-(\sum_{i} w_{ij} x_i - \theta_j)}} y_{design}$$ (4)

[0046] 式中：$i=1, 2, \cdots, 16$, x_1, x_2, \cdots, x_{16} 分别表示为影响因素的给煤机电出力、低温穿热器壁温、高温穿热器壁温、低温过热器壁温、高温过热器壁温、汽水分离器温度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、送风机电流和引风机电流的设计值与实际运行值的差值；$j=1, 2, \cdots, 0$ 为 BP 神经网络采用的临界值，y_{design} 为火电机组设计负荷速率；

[0047] 3) 按火电机组负荷设计值与负荷实际运行值的差值 d_j 与神经网络训练出的火电机组负荷调节实时速率值 y_j 调整结合权系数 w_{ij}，其调整量 Δw_{ij} 的计算公式如下：

$$\Delta w_{ij} = n_j \delta_j x_j$$ (5)

[0049] 式中：$j=1, 2, \cdots, n_j$ 为学习率比例系数，其取值为 $[0, 1]$，x_j 为 BP 神经网络在隐节点的输入，δ_j 是一个与输出偏差相关的值，对于输出节点来说有：

$$\delta_j = n_j (1-y_j) (d_j - y_j)$$ (6)

[0051] 对于隐层节点来说有：

$$\delta_j = x_j (\sum_k x_{jk} \delta_k w_{jk})$$ (7)
式中，k=1,2, ⋯, j；

各层神经元的联合权系数 w_{ij} 调整后为:

$$w_{ij}(\tau)=w_{ij}(\tau-1)+\Delta w_{ij} \quad (8)$$

式中：τ 为 BP 神经网络的学习次数。

这个算法是个迭代过程，每一轮将联合权系数 w_{ij} 调整一遍，这样一直迭代下去，直到输出误差小于某一允许值为止，这样一个好的网络就训练成功了，BP 神经网络的算法从本质上讲是把一组样本的输入输出问题变为一个非线性优化问题，它使用了优化技术中最普通的一种梯度下降算法，用迭代运算求解权值相当于学习记忆过程。

3) 通过比较电厂近 1 个月内各个影响因素的设计值与实际运行最大值，得到各影响因素的设计值与实际运行最大值的差值 x_i', 其计算公式为:

$$x_i'=x_i^{design}-x_i^{max} \quad (1)$$

式中，i=1,2, ⋯,16，x_i' 为影响因素的特征值，低温再热器壁温、高温再热器壁温、低温过热器壁温、高温过热器壁温、汽水分层度、主蒸汽压力、给水流量、胀差、轴振、瓦振、磨煤机电流、一次风机电流、二次风机电流和引风机电流的设计值和实际运行最大值的差值，x_1^{design}、x_2^{design}、⋯、x_{16}^{design} 依次为上述各个影响因素的设计值，x_1^{max}、x_2^{max}、⋯、x_{16}^{max} 依次为上述各个影响因素的实际运行最大值；

4) 根据步骤 2) 和 3) 得到的结果，通过 BP 神经网络得到火电机组修正后的负荷调节实时速率值 y_j'，其计算公式为:

$$y_j' = \frac{1}{1+e^{-\left(\sum_i w_i x_i'-\theta_j\right)}} y_j^{design} \quad (2)$$

式中：j=1,2, ⋯, 0, 为 BP 神经网路采用的临界值，i=1,2, ⋯,16，x_i' 分别为上述各影响因素的设计值与实际运行最大值的差值，y_j^{design} 为火电机组设计负荷速率；

5) 根据步骤 4) 得出的火电机组修正后的负荷调节实时速率值 y_j', 在规定火电机组升负荷时间 t 内，计算得出火电机组最大可调负荷值为 y，其计算公式为:

$$y=y_j' \times t \quad (3)$$

如果计算出的最大可调负荷值 y 大于火电机组实际设计最大负荷，即取实际设计最大负荷值为火电机组最大可调负荷；如果计算出的最大可调负荷值 y 不大于火电机组实际设计最大负荷，即取最大可调负荷值 y 为火电机组最大可调负荷。

具体计算结果如表 2 所示，从表 2 中可以看出，火电机组的设计负荷速率为 30MW/ 分钟，在火电机组运行一段时间后，而其实际负荷速率为 27.37MW/ 分钟，小于火电机组的设计负荷速率。

表 2：
<table>
<thead>
<tr>
<th>设计最大负荷 MW</th>
<th>实时负荷 MW</th>
<th>可调最大负荷 MW</th>
<th>设计负荷速率 MW/分钟</th>
<th>实际负荷速率 MW/分钟</th>
</tr>
</thead>
<tbody>
<tr>
<td>619</td>
<td>300.7</td>
<td>574.4</td>
<td>30</td>
<td>27.37</td>
</tr>
</tbody>
</table>