

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/166310 A1

(43) International Publication Date
5 November 2015 (05.11.2015)

WIPO | PCT

(51) International Patent Classification:
F16G 1/10 (2006.01) *F16G 1/12* (2006.01)
F16G 1/28 (2006.01)

(21) International Application Number:
PCT/IB2014/061164

(22) International Filing Date:
2 May 2014 (02.05.2014)

(25) Filing Language: Italian

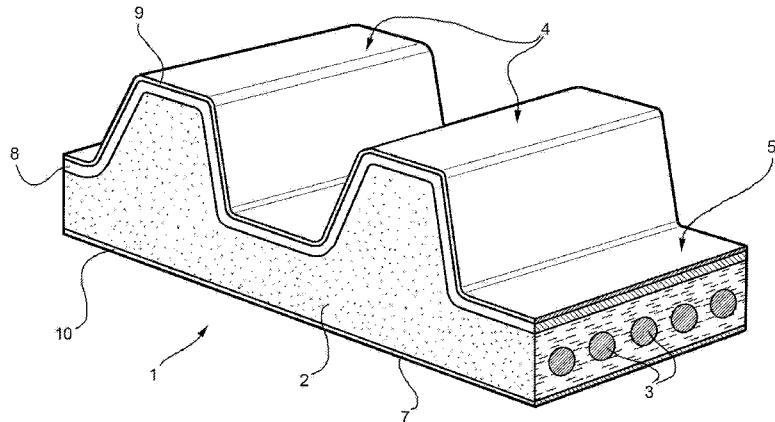
(26) Publication Language: English

(71) Applicant: DAYCO EUROPE S.R.L. [IT/IT]; Via Papa Leone XIII, 45, Frazione Chieti Scalo, I-Chieti (IT).

(72) Inventors: PARZIALE, Domenico; c/o Dayco Europe S.r.l., Via Papa Leone XIII, 45, Frazione Chieti Scalo, I-66100 Chieti (IT). PETACCIA, Marino; c/o Dayco Europe S.r.l., Via Papa Leone XIII, 45, Frazione Chieti Scalo, I-66100 Chieti (IT). BREGGIA, Fabrizio; c/o Dayco Europe S.r.l., Via Papa Leone XIII, 45, Frazione Chieti Scalo, I-66100 Chieti (IT). DI MECO, Marco; c/o Dayco Europe S.r.l., Via Papa Leone XIII, 45, Frazione Chieti Scalo, I-66100 Chieti (IT).

(74) Agents: BOGGIO, Luigi et al.; Studio Torta S.p.A., Via Viotti, 9, I-10121 Torino (IT).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: TRANSMISSION BELT AND ASSOCIATED TRANSMISSION SYSTEM

FIG. 1

(57) Abstract: A transmission belt (1) is provided which comprises a first elastomeric material, a plurality of longitudinal inserts (3) comprising a first material, a working surface (5) covered by a covering (8) including a second material, and an opposite surface (7) to said working surface, wherein at least one of the first material and the second material is a fibrous metallic material. Advantageously, the transmission belt (1) is a toothed belt.

WO 2015/166310 A1

1
"TRANSMISSION BELT AND ASSOCIATED TRANSMISSION SYSTEM"

TECHNICAL FIELD

The present invention relates to a transmission belt 5 comprising a fibrous material covering the working surface that includes metallic fibres. In a preferred embodiment, the transmission belt is a toothed belt.

PRIOR ART

10 Transmission belts, and especially toothed belts, generally comprise a body made of an elastomeric material, in which a plurality of longitudinal thread-like durable inserts, also known hereinafter as cords or simply inserts, is buried and a working surface that, in use, transmits the driving force.

15

Each component of the belt contributes to increase the performance in terms of mechanical resistance, in order to decrease the risk of the belt breaking and to increase the specific transmissible power.

20

In particular, the cords contribute to ensure the required mechanical characteristics of the belt and make an essential contribution to determine the modulus of the belt and, in particular, to ensure stable performance over time. The cords 25 are generally obtained by twisting high-modulus fibres several times.

The cords or inserts are normally treated with suitable compounds to increase the compatibility of the fibres with the 30 body compound surrounding the cords.

It is known that cords are manufactured in many materials based on different fibres, such as, purely by way of example, carbon, aramid, PBO and glass.

35

The body compound enables connecting the various elements and

ensures that they contribute to the final performance of the belt in a synergetic manner.

5 Body compounds are based on one or more elastomeric materials, possibly enriched with fibres to increase hardness.

Lastly, the transmission belts have a working surface generally covered by a fibrous material, for example a covering fabric on the belts, which has the task of increasing 10 abrasion resistance and thus protects the working surface of the belt from wear due to rubbing between the sides and the slopes of the teeth of the belt and the sides and the throats of the grooves of the pulley with which the belt interacts.

15 In addition, the fibrous covering material reduces the coefficient of friction of the working surface, reduces the deformability of the teeth and, most of all, reinforces the root of the tooth, thereby avoiding its breakage.

20 However, in recent engines where performance has increased significantly, toothed belts are subjected to high temperatures and these temperatures result in quicker deterioration of the materials forming the various components of the belts.

25

Furthermore, the belts are often used "in oil", or rather in systems in which the belt is inside the crankcase and therefore in direct contact with oil spray, or even works partially immersed in an oil bath. In particular, the 30 materials of transmission belts used "dry", designed to resist oil only for a short time and at low temperatures, are unable to prevent deterioration of the mechanical characteristics at high temperatures and can therefore give rise to teeth breaking and consequently shorten the mean life of the belt.

35

To avoid these problems, it is currently known to use covering

fabrics, especially for toothed belts, for example with a structure constituted by woven yarns, or rather yarns that extend, in use, in a longitudinal direction of the belt, including fibres of polyamide or with a composite structure, 5 each formed by an elastic yarn as the core and a pair of composite yarns wound around the elastic yarn. Each composite yarn comprises a yarn of high thermal and mechanical resistance and at least one covering yarn wound around the yarn of high thermal and mechanical resistance. The elastic 10 yarn could be made, for example, of polyurethane. The yarn of high thermal and mechanical resistance could be made, for example, of para-aromatic polyamide. The covering yarn is made of an aliphatic polyamide, in particular nylon 66.

15 However, this solution is disadvantageous as it easily deteriorates and causes quite a few belt breakages, in particular in high-temperature conditions and in systems where the belt works continuously in contact with oil.

20 Alternative materials are therefore being sought for the production of a covering for transmission belts, in particular toothed belts, which enables improving the mechanical and wear resistance characteristics of known fabrics.

25 In addition, in the last few years, more stringent emission regulations have resulted in designing engines that reach increasingly higher temperatures in the engine compartment when running.

30 The materials currently used for making the coverings comprise simple yarns in nylon 66. However, the behaviour of these yarns is not optimal at high temperatures, whether the belts are used dry or in air, and even more so when used in systems in oil and therefore inside the engine crankcase.

the high temperatures of current-day engines, whether dry or in oil.

In the end, whether used dry or in oil or inside the engine 5 crankcase, belts are subjected to attack by numerous chemical agents. In systems where the belt is used in direct contact or partially immersed in oil, the engine oil often contains pollutants such as ethanol, petrol and diesel fuel, and combustion residues. In particular, pollution from petrol that 10 mixes with the oil, even in quite high percentages, diluting the oil and attacking the materials constituting the belt, is harmful.

For example, in some applications, the oil can contain up to 15 30% fuel. The percentage of fuel is variable, depending on the running conditions of the engine, and increases with high load and low engine temperature.

In addition, the modern, so-called green fuels are 20 particularly aggressive as they contain numerous additives that attack the polyamide yarns of the fabric.

Covering fabrics are therefore sought that are resistant to 25 chemical agents, especially at the high running temperatures of the engines in use today with peaks of roughly 150°C and up to around 170°C.

Producing coverings for conveyor belts comprising metal is 30 already known.

However, the known coverings in steel are made with single 35 steel wires of a diameter well above 50 micron, in both weft and warp, and are extremely rigid. These thick wires are therefore suitable for being used as sheathing for products that must not flex or only flex very slightly.

These fabrics are therefore not used in transmission belts, especially in toothed transmission belts.

Using durable inserts made of aramid fibres, for example those 5 marketed with the Kevlar® or Twaron® trademarks, in belts for high performance in terms of transmissible power is also known.

However, as has long been known, aramid fibres have the 10 drawback of very low dimensional stability over time, and so a belt with durable inserts in aramid fibres undergoes a shortening of its length during storage, with consequent alteration (reduction) of the initial pitch; it is therefore subjected to higher loads and stress during use, which 15 normally result in premature wear triggered by the meshing error created between belt and pulley. Moreover, durable inserts made of aramid fibres require a particularly complex and expensive adhesion enhancement treatment to improve the long-term dimensional stability of the durable insert, which 20 if not carried out accurately can also entail problems in the step of cutting the belts.

Alternatively, producing inserts in glass is also known, although this is a fragile material and therefore not 25 particularly resistant to bending.

In the past, durable steel inserts have been produced by twisting several wires, each having a diameter of more than 50 30 micron and with high long-term dimensional stability, but having a high specific weight and, in addition, because the depositing of the reinforcement element takes place in a helical manner, these durable elements partially stick out from the side edges of the belts during the belt cutting step, with the risk of injury to operators when fitting the belt.

further finishing step, which contemplates the removal of the cord strands that stick out due to the cut and the manual sealing of all the edges of the belt with adhesive in the areas where the strands partially stuck out. This extra 5 finishing step entails significant additional costs, as it is carried out by hand and must be carried out of every single belt.

Finally, the flexural strength, i.e. the capacity to support 10 the bending of these steel wires, is particularly modest, for example, with respect to glass. For this reason, they are no longer used nowadays.

SUBJECT OF THE INVENTION

15 A first object of the present invention is to obtain a transmission belt comprising a fibrous covering material that covers the working surface and which has a simple structure and is resistant to high temperatures, whether dry or in oil.

20 A second object of the present invention is also to obtain a transmission belt that comprises a fibrous covering material that is resistant to chemical agents, especially the impurities present in engine oil.

25 A third object of the present invention is to obtain a toothed transmission belt having an extremely high modulus and very high long-term stability and that, at the same time, avoids the above-described problems regarding known durable inserts.

30 A further object of the present invention is to obtain a transmission belt that has a long service life, and which therefore has excellent mechanical and meshing precision characteristics.

35 In accordance with the present invention, these objects are achieved by a transmission belt according to claim 1.

In accordance with the present invention, a use according to claim 16 is also provided.

5 In accordance with the present invention, a transmission system according to claim 17 is also provided.

BRIEF DESCRIPTION OF DRAWINGS

For a better understanding of the present invention, it will 10 now be described with reference to the attached figures, in which:

- Figure 1 is a partial perspective view of a toothed belt according to the present invention;

15 - Figure 2 is a diagram of a first timing control system using a first toothed belt according to the present invention;

- Figure 3 is a diagram of second timing control system using a second toothed belt according to the present invention; and

- Figure 4 is a diagram of a third timing control system using a third toothed belt according to the present invention.

20

DESCRIPTION OF INVENTION

Figure 1 shows a toothed belt, indicated as a whole by reference numeral 1. The belt 1 comprises a body 2, including a first elastomeric material in which a plurality of 25 longitudinal thread-like durable inserts 3 is buried, and toothing 4 composed of a plurality of teeth that, in use, constitute the working surface 5, or rather the surface that meshes with a corresponding pulley of the transmission system.

30 The toothed belt also comprises a back 7 opposite to the working surface 5.

35 Preferably, the body 2 is made of a compound comprising one or more elastomeric materials and numerous additives. For convenience, the elastomeric material(s) is/are hereinafter indicated altogether as the "first elastomeric material".

The body of the belt advantageously comprises an elastomer as the main elastomer in the first elastomeric material that is chosen from the group constituted by natural rubber (NR), 5 polychloroprene (CR), acrylonitrile butadiene (NBR) and associated hydrogenated elastomers known as hydrogenated acrylonitrile butadiene (HNBR) or zinc salts of hydrogenated acrylonitrile butadiene seamed with esters of unsaturated carboxylic acid, polyisoprene, styrene-butadiene rubbers, 10 ethylene-alpha-olefin elastomers, EPDM, polyurethane, fluoroelastomers, ethylene-acrylic elastomers (AEM), bromobutyls, chlorosulphonated polythene (CSM) or chlorosulphonated alkyl, chlorinated polythene, epoxidized natural rubber, SBR, NBR carboxylates, HNBR carboxylates, ACM 15 and mixtures of these compounds.

The "main elastomer" is intended as being present in the compound that constitutes the body for more than 50% by weight, calculated on the total weight of all the elastomers 20 in the compound and therefore excluding all other non-elastomeric components of the belt.

The body preferably comprises at least one copolymer of polyolefin or a rubber containing acrylonitrile units as the 25 first or a further elastomeric material.

More advantageously, the copolymer(s) used as body compounds are nitrile rubbers, advantageously acrylonitrile butadiene rubbers, known as NBR. Even more advantageously, they are 30 hydrogenated acrylonitrile butadiene, or HNBR, or even XHNBR, i.e. hydrogenated and carboxylated acrylonitrile butadiene.

Advantageously, the HNBR used for making the transmission systems in which the belt is partially in an oil bath or in 35 direct contact with oil and impurities has a high level of hydrogenation, for example so-called completely saturated

HNBRs can be used, these having a percentage of residual double bonds of 0.9% at most, but HNBRs with a lower level of unsaturation can also be used in alternative, such as, for example, so-called partially saturated HNBRs having a 5 saturation level of 4% or 5.5%.

Some examples of HNBR copolymers that can be used in the body compound, but also in the different treatments of the various elements forming the toothed belt, include copolymers 10 belonging to the THERBAN family made by Lanxess, such as THERBAN 3407 with 34% nitrile groups and a hydrogenation level of 0.9% at most, THERBAN 3406 with 34% nitrile groups and an unsaturation level of 0.9% at most, THERBAN 3607 with 36% nitrile groups and an unsaturation level of 0.9% at most, 15 THERBAN 3446 with 34% nitrile groups and an unsaturation level of 4% at most, THERBAN 3447 with 34% nitrile groups and an unsaturation level of 5.5% at most, THERBAN 3627 with 36% nitrile groups and an unsaturation level of 2% at most, THERBAN 3629 with 36% nitrile groups and an unsaturation level 20 of 2% at most, and THERBAN 3907 with 39% nitrile groups and an unsaturation level of 0.9% at most.

Alternatively, it is also possible to use HNBRs made by Nippon Zeon with the name ZETPOL. In particular, ZETPOL 2000 with 36% 25 nitrile groups and an unsaturation level of 0.9% at most, ZETPOL 2000L with 36% nitrile groups and an unsaturation level of 0.9% at most, ZETPOL 2010 with 36% nitrile groups and an unsaturation level of 4% at most, ZETPOL 2010L with 36% nitrile groups and an unsaturation level of 4% at most, ZETPOL 30 2010H with 36% nitrile groups and an unsaturation level of 4% at most, ZETPOL 2020 with 36% nitrile groups and an unsaturation level of 5.5% at most, and ZETPOL 2020L with 36% nitrile groups and an unsaturation level of 5.5% at most. 35 More advantageously, the acrylonitrile units in the elastomer for applications in oil are between 33% and 51%, for example

50% by weight, while for dry applications they are between 15% and 25% by weight, for example 21% by weight.

Even more advantageously, a polymer formed by a mixture of one 5 or more copolymers, obtained starting from a diene monomer and a monomer containing nitrile groups where an acid or salt of an unsaturated carboxylic acid is added to one or more of these copolymers, is used in combination with a first polymer. More advantageously, the unsaturated carboxylic acid is 10 methacrylic or acrylic acid and said salt is a zinc salt of methacrylic or acrylic acid. Even more advantageously, a zinc salt of methacrylic acid is used. Even more advantageously, the zinc salt of methacrylic acid is added in a quantity in the range between 10 and 60 phr.

15

For example, the elastomers sold by Zeon under the following names can be used advantageously: ZSC 1295, ZSC 2095, ZSC 2195, ZSC 2295, ZSC 2295L, ZSC 2295R and ZSC 2395.

20 In particular, it is possible to partially or entirely replace the previously mentioned HNBRs, namely ZETPOL and/or THERBAN with a ZSC that comprises an unsaturated carboxylic acid and zinc oxide and/or with THERBAN ART that comprises an unsaturated carboxylic acid salt.

25

Mixed compounds of polyolefin and rubber containing acrylonitrile units are also preferred, more preferably compounds containing a copolymer of ethylene with NBRs or HNBRs or the above-mentioned modified HNBRs. For example, 30 rubbers containing EPDM (ethylene-propylene diene monomer) or EPM (ethylene-propylene monomer) can be added to polymers containing acrylonitrile units in quantities preferably in the range between 1% and 30%.

35 In addition to the elastomeric materials, the body compound can comprise conventional additives such as, for example,

reinforcement agents, extenders, pigments, stearic acid, accelerators, vulcanization agents, antioxidants, activators, initiators, plasticizers, waxes, prevulcanization inhibitors, antidegradants, process oils and similar.

5

Advantageously, carbon black can be employed as an extender, being advantageously added in quantities in the range between 0 and 80 phr, more advantageously about 40 phr. Advantageously, light-coloured reinforcing extenders such as 10 talc, calcium carbonate, silica and silicates are added in quantities advantageously in the range between 0 and 80 phr, advantageously about 40 phr. It is also possible to advantageously use silanes in quantities in the range between 0 and 5 phr.

15

Advantageously, zinc and magnesium oxides are added in a quantity ranging between 0 and 15 phr.

Advantageously, ester plasticizers such as trimellitates or 20 ethyl esters are added in a quantity advantageously ranging between 0 and 20 phr.

Advantageously, vulcanization coagents such as triallyl cyanurates and organic or inorganic methacrylates such as 25 metal salts are advantageously added in a quantity ranging between 0 and 20 phr, or organic peroxides, such as isopropyl benzene peroxide for example, in a quantity advantageously ranging between 0 and 15 phr.

30 It is understood that use "in-oil" means that the belt is used partially immersed in an oil bath or in direct contact with oil. In general, in use, the belt can be inside the engine crankcase, for example, as an alternative to chain or gear systems.

35

It is understood that "dry" use means that the belts are

outside the engine crankcase and are only accidentally in contact with engine oil and not generally in contact with oil mixed with petrol.

5 It is understood that use "in oil mixed with petrol" means that the toothed belt is used in a mixture of oil with percentages of petrol even exceeding 30%.

In the following, reference will be made to an example of 10 producing the transmission belt of the present invention with reference to a toothed belt, but it is obvious that the transmission belt could also be a multi-groove belt or so-called poly-V belt.

15 In one aspect of the present invention, the transmission belt comprises inserts 3, also known as cords or durable inserts, arranged in a longitudinal direction and including a fibrous metallic material.

20 It is understood that fibrous metallic material means a material including metallic fibres.

It is understood that metallic fibres means composite fibres not only just of metal, but also metal covered by polymeric 25 material or fibres of a polymeric material covered by metal.

In another aspect of the present invention, the working surface 5 of the transmission belt is covered with a covering 8 including a fibrous metallic material.

30

It is understood that working surface means the face of the belt that, in use, meshes with the pulley and via which the drive is transmitted. Clearly, the working surface can comprise one or more coverings and subsequent treatments that 35 all contribute to the belt's performance and only one of them will be effectively on the outside and in contact with the

pulley.

Advantageously, the transmission belt comprises both inserts 3 and the covering 8 including a fibrous metallic material.

5

Advantageously, the fibrous metallic material is based on fibres having a diameter of between 2 and 40 μm .

More advantageously, the fibrous metallic material is based on 10 fibres having a diameter of between 5 and 15 μm .

More advantageously, the fibrous metallic material is steel, even more advantageously stainless steel.

15 For example, the fibrous metallic material could be a material chosen from those sold under the Naslon registered trademark.

Advantageously, the fibrous metallic material comprises 20 filaments including fibres, more advantageously it comprises yarns including filaments including metallic fibres.

Advantageously, the fibrous metallic material comprises complex or hybrid yarns composed of several fibrous materials.

25 Advantageously, the covering 8 of the working surface 5 is chosen from the group constituted by woven fabric, knitted fabric and non-woven fabric.

In the case where a woven fabric or a knitted fabric is used, 30 the fabric yarns include the fibrous metallic material.

More advantageously, the fibrous metallic material is a fabric.

35 Advantageously, the fibrous metallic material has a weight of between 500 and 1500 g/m².

More advantageously, the fabric comprises yarns that extend substantially in the longitudinal direction of the toothed belt. As a rule, these longitudinal yarns are weft yarns.

5

In the case where the transmission belt is a toothed belt, the longitudinal yarns including the fibrous metallic material are substantially parallel to the inserts 3.

10 Advantageously, the fabric comprises longitudinal yarns and transverse yarns both including the fibrous metallic material.

15 Alternatively, the transverse yarns include a material chosen from the group constituted by polyamides and polyesters. More advantageously, the transverse yarns include polyamides, even more advantageously aromatic polyamides such as para-aramids or meta-aramids for example, e.g. materials sold under the Conex registered trademark.

20 Advantageously, the longitudinal yarns comprise composite yarns formed by at least two yarns.

25 More advantageously, the yarns comprise at least one elastic yarn around which at least one yarn including metallic fibres is wound.

30 The covering fabric 8 of the toothing 4 can be formed by one or more layers and can be obtained via different weaving techniques, for example, preferably twill weaving, even more preferably 2x2 twill weaving.

35 For example, in a first embodiment of the present invention, the covering fabric 8 has a structure constituted by longitudinal yarns forming the weft and transverse yarns forming the warp, in which at least the weft is constituted by yarns including metallic fibres.

Advantageously, the yarns include metallic fibres for at least 25% by weight and, even more preferably, could be made entirely of metallic fibres.

5

Optionally, the warp is also constituted by warp yarns including metallic fibres.

In a second embodiment of the present invention, the covering 10 fabric 8 has a structure constituted by longitudinal yarns forming the weft and transverse yarns forming the warp, in which at least the weft has a composite structure, i.e. constituted by weft yarns each formed from an elastic yarn as the core and a pair of composite yarns wound around the 15 elastic yarn; each composite yarn comprises a yarn of high thermal and mechanical resistance and at least one covering yarn wound around the yarn of high thermal and mechanical resistance. The elastic yarn is made, for example, of polyurethane. The yarn of high thermal and mechanical 20 resistance is made, for example, of para-aromatic polyamide. The covering yarn is made of metallic fibres.

In a third embodiment of the present invention, the covering 25 fabric 8 has a structure constituted by longitudinal yarns forming the weft and transverse yarns forming the warp, in which at least the weft has a composite structure, i.e. constituted by weft yarns each formed from an elastic yarn as the core around which a yarn of high thermal and mechanical resistance is wound. A covering yarn is subsequently wound on 30 the yarn of high thermal and mechanical resistance. The elastic yarn is made, for example, of polyurethane. The yarn of high thermal and mechanical resistance is made, for example, of para-aromatic polyamide. The covering yarn is made of metallic fibres.

35

According to a preferred embodiment of the present invention,

the woven, knitted, or non-woven covering fabric of the working surface 8 of the transmission belt 1 is treated with at least a first and/or second protection or adhesion enhancement treatment.

5

Advantageously, it is subjected to a first protection or adhesion treatment, for example, with RFL.

10 More advantageously, it is also subjected to a second protection treatment comprising a second elastomeric material different from or the same as that forming the body of the belt.

15 More advantageously, the second protection treatment also comprises an anti-friction material, for example, chosen from the group constituted by copper powder, molybdenum sulphide, graphite and a fluorinated homopolymer or copolymer or mixture thereof.

20 Even more advantageously, the anti-friction material is PTFE.

Advantageously, one or more copolymers formed from a monomer containing nitrile groups and a diene are used as the second elastomeric material.

25

Advantageously, the monomers containing nitrile-groups are in a percentage in the range between 15% and 60% with respect to the entirety of end copolymers.

30 More advantageously, they are between 15% and 25% by weight for cold applications with temperatures down to -40°C, between 33% and 39% by weight for belts with dry applications and between 39% and 51% by weight for in-oil applications.

35 Even more advantageously, for in-oil applications they are between 34% and 49% by weight, while for dry applications also

suitable for low-temperature starting they are between 19% and 23% by weight, for example 21% by weight.

More advantageously, the copolymer(s) used are nitrile 5 rubbers, advantageously acrylonitrile butadiene rubbers, known by the acronym NBR. Even more advantageously, they are hydrogenated acrylonitrile butadiene or HNBR, or even XHNBR, i.e. carboxylated hydrogenated acrylonitrile butadiene.

10 By opportunely choosing the quantities of the materials of which it is composed, the protection treatment can form a covering coating 9, distinct and separate from the fibrous material, also referred to hereinafter as the wear-resistant coating 9. The wear-resistant coating 9 constitutes the 15 working surface of the belt and therefore further increases wear resistance and avoids oil absorption.

Advantageously, PTFE is present in the wear-resistant coating in a larger phr quantity than the second elastomeric material.

20 The gauge of the wear-resistant coating 9 is advantageously between 0.03 mm and 0.2 mm.

25 The wear-resistant coating 9 can be placed over the covering fabric 8 in different ways. Preferably, it is placed by means of a calendering step.

30 Preferably, to ensure the necessary resistance, the wear-resistant coating 9 weighs between 50 and 400 gr/m².

Preferably, the back 7 of the belt is also covered by a fibrous covering material, preferably the same as that previously described.

35 In one aspect of the present invention, the inserts 3 are formed by a plurality of filaments or yarns and each yarn is

formed by a plurality of filaments.

Advantageously, each insert 3 comprises between 3 and 20 yarns.

5

Even more advantageously, each insert 3 comprises between 5 and 15 yarns twisted together. For example, the embodiment in which there are 11 yarns proved to be particularly preferred.

10 More advantageously, each yarn comprises between 50 and 500 filaments. Even more advantageously, between 100 and 300 filaments, for example 200.

15 Even more preferable, each filament is made from metallic fibres having a diameter of between 10 and 15 micron. For example, the embodiment in which the diameter of the single fibres forming the filaments is 12 micron proved to be particularly preferred.

20 In an alternative preferred embodiment of the invention, the inserts 3 also comprise a second fibrous material.

The second fibrous material used for producing the inserts 3 is preferably chosen from a group composed of glass fibres, 25 aramid fibres, polyester fibres, carbon fibres and PBO fibres.

The fibrous metallic material preferably has a higher modulus than the second material and the second material is preferably wound around the fibrous metallic material.

30

The second material is preferably chosen so as to solve problems of compatibility with the compound of the surrounding body.

35 In section, the second material preferably occupies an area of between 15% and 75% with respect to the overall surface of the

section. Even more preferably, the second material occupies an area of between 45% and 55% with respect to the overall surface.

5 Preferably, the inserts according to the present invention have a twist of the Lang's twist type, namely they have two twists in the same direction, as this this construction has been found to be particularly effective.

10 It is possible to vary the number of filaments or yarns that form a durable insert, as well as the number of base filaments or the count or the entire construction of the insert without departing from the present invention.

15 Preferably, the fibres forming the cord are treated with HNBR latex vulcanized with water-soluble peroxides by means of the procedure illustrated in patent WO2004057099 in the name of Nippon Glass.

20 Preferably, the treatment therefore comprises a treatment liquid, preferably an aqueous adhesive and consequently including more than 50% water, comprising elastomeric latex material and a vulcanization accelerator.

25 As a rule, the water portion evaporates during vulcanization and only the latex remains on the finished belt.

30 Preferably, the latex comprises a third elastomeric material including one or more copolymers formed from a monomer containing nitrile groups and a diene in which the monomers containing nitrile groups are in a percentage of between 30% and 39% by weight with respect to entirety of end copolymers. More preferably, the nitrile groups are in a percentage of between 30% and 32% by weight with respect to entirety of end copolymers.

A transmission belt and, in particular, a toothed transmission belt 1 according to the present invention are produced using known manufacturing processes.

5 The transmission belts according to the present invention are particularly suitable for being used in systems in direct contact with or partially immersed in oil, in particular engine oil at high temperatures, such as those reached in recently developed engines, for example even higher than 130°, 10 and inside the vehicle's engine crankcase. In particular, excellent results have been achieved in the case where the belt is used as a replacement for traditional gear or chain systems, systems in which the belt is exposed for its entire working life to continuous contact with oil spray or is 15 possibly partially immersed in an oil bath.

In this case, when a covering fabric 10 is present on the back, it is quite advantageous to carry out the adhesive treatment and/or the protection treatment on the back 7 of the 20 transmission belt as well. In this case, the treatment enables preventing oil penetration from the back 7 of the toothed belt 1 as well, and is particularly advantageous when the toothed belt 1 is used in control systems in which the back 7 of the belt is in contact with shoes or tensioners. In fact, in these 25 systems oil remains interposed between the contact surface of the shoe or tensioner with the belt and the back of the belt and therefore penetration inside the mixture that constitutes the body would be favoured.

30 Preferably, the toothed belt 1 can be treated on all the outside surfaces and, in particular, on the sides where the body mixture is most exposed to attack by oil, with a swelling resistant rubber, for example ENDURLAST (registered trademark of Lord).

advantageously used, for example, in a timing control system for a motor vehicle of the type depicted in Figure 2. The timing control system is indicated as a whole in the figure by reference numeral 11 and comprises a drive pulley 12 rigidly fastened to the driveshaft, not shown, a first 13a and a second 13b driven pulley and a tensioner 14 for tensioning the toothed belt.

According to a second alternative embodiment, shown in Figure 10 3, a toothed belt according to the present invention is indicated by reference numeral 1, this belt having toothing on both faces and therefore a covering 8 on one or both of the toothings.

15 The timing control system is indicated as a whole in the figure by reference numeral 21 and comprises a drive pulley 22 rigidly fastened to the driveshaft, not shown, a first 23a, a second 23b and a third 24 driven pulley.

20 According to a third embodiment of the present invention, shown in Figure 4, a toothed belt 1 according to the present invention can advantageously be used in a timing control system indicated as a whole in the figure by reference numeral 31, which comprises a drive pulley 32 rigidly fastened to the driveshaft, not shown, a first 33a and a second 33b driven pulley, a shoe tensioner 34 and a shoe 35.

25 In particular, the transmission belt of the present invention has proved to be particularly effective when used in a transmission system commonly referred to as balance shafts.

In use, the toothed belts 1 in the respective control systems 11, 21 and 31 are in direct contact with oil.

35 Figures 2 to 4 refer to control systems related to the movement of balance countershafts, but it is clear that the

belt according to the present invention can also be used in so-called cam-to-cam systems or for driving the oil pump. In these cases, the belt becomes partially immersed in an oil bath during operation.

5

Furthermore, it is also possible to use the belt of the present invention in the main transmission for driving cams and also for driving the injection pump in diesel engines.

10 It has been experimentally verified that the use of the fabric and inserts according to the present invention enables achieving effective oil resistance even at high temperatures and consequently enables passing the endurance tests to which toothed belts are subjected in order to be used in motor vehicles and therefore avoids all the belt problems when used in contact with oil and, in particular, the fall-off in mechanical characteristics, less adhesion, worse meshing and less wear resistance.

15

20 Alternatively, the belt according to the present invention can also be used as a dry belt for engine timing.

From examination of the characteristics of the belt produced according to the present invention, the advantages that can be achieved with it are evident.

Advantageously, the above-described belts can consequently be used for both dry and in-oil high-temperature applications, even in the presence of contaminants, for example green fuels, which are particularly aggressive.

30

23
CLAIMS

1. A transmission belt (1) comprising a body (2) including a first elastomeric material, a plurality of longitudinal inserts (3) comprising a first material, a working surface (5) covered by a covering comprising a second material, and an opposite surface (7) to said working surface, characterized in that at least one of said first material and said second material is a fibrous metallic material comprising fibres with a diameter of between 2 and 40 μm .
2. A transmission belt (1) according to claim 1, characterized in that said fibrous metallic material comprises fibres with a diameter of between 5 and 15 μm .
- 15 3. A transmission belt (1) according to any of the preceding claims, characterized in that said fibrous metallic material is steel.
- 20 4. A transmission belt (1) according to any of the preceding claims, characterized in that the second material is chosen from the group constituted by woven fabric, knitted fabric and non-woven fabric.
- 25 5. A transmission belt (1) according to claim 4, characterized in that said second material is a fabric.
- 30 6. A transmission belt (1) according to claims 4 or 5, characterized in that said fibrous metallic material has a weight of between 500 and 1500 g/m^2 .
- 35 7. A transmission belt (1) according to any of claims 4 to 6, characterized in that said fabric comprises yarns that extend in the longitudinal direction and include said fibrous metallic material.

8. A transmission belt (1) according to claim 7, characterized in that said yarns comprise at least one elastic yarn around which at least one yarn comprising said second material is wound.

5

9. A transmission belt (1) according to any of claims 7 or 8, characterized in that said fabric comprises both longitudinal yarns and transverse yarns including said fibrous metallic material.

10

10. A transmission belt (1) according to any of the preceding claims, characterized in that said first material is a fibrous metallic material based on fibres having a diameter of between 2 and 40 μm .

15

11. A transmission belt (1) according to any of the preceding claims, characterized in that said inserts (3) are formed by a plurality of yarns and each yarn is formed by a plurality of filaments.

20

12. A transmission belt (1) according to any of the preceding claims, characterized in that each one of said inserts (3) comprises between 3 and 20 yarns.

25

13. A transmission belt (1) according to any of claims 11 or 12, characterized in that each one of said yarns comprises between 50 and 500 filaments.

30

14. A transmission belt (1) according to any of claims 11 to 13, characterized in that said inserts (3) also comprise a second fibrous material.

15. A transmission belt (1) according to any of the preceding claims, characterized in that it is a toothed belt.

35

16. Use of a transmission belt (1) according to any of claims

1 to 15 wherein said belt is at least partially in an oil bath or continuously in contact with oil.

17. A transmission system, characterized in that it comprises 5 a transmission belt according to any of claims 1 to 16.

18. A transmission system (11, 21, 31) for a motor vehicle comprising at least one drive pulley, a driven pulley, a transmission belt and means for maintaining said belt (1) in 10 direct contact with oil or partially immersed in oil, said transmission belt comprising a body (2) including a first elastomeric material, a plurality of longitudinal inserts (3) including a first material, a working surface (5) covered by a covering including a second material, and an opposite surface 15 (7) to said working surface, characterized in that at least one of said first material and said second material is a fibrous metallic material comprising fibres with a diameter of between 2 and 40 μm .

FIG. 1

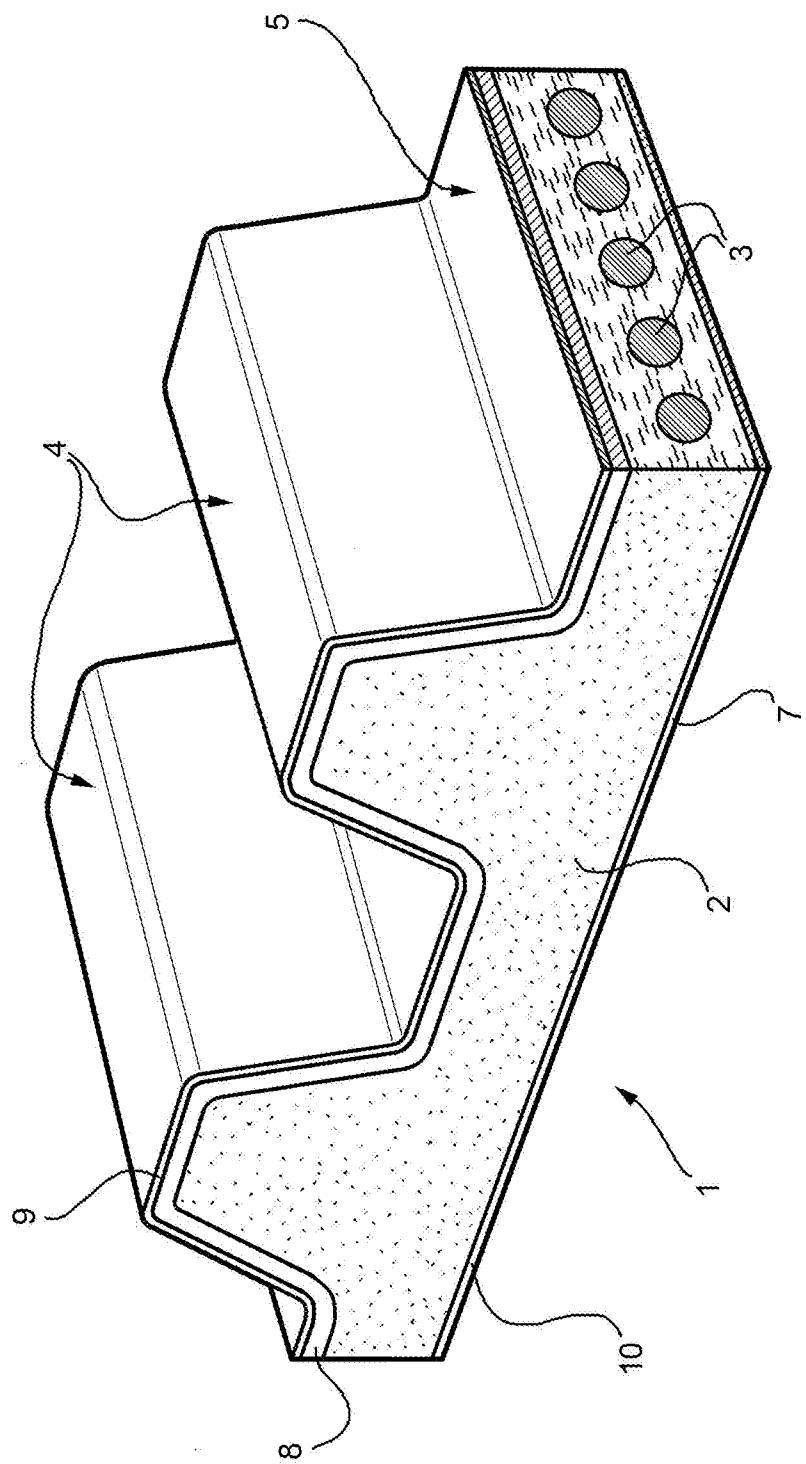


FIG. 2

FIG. 3

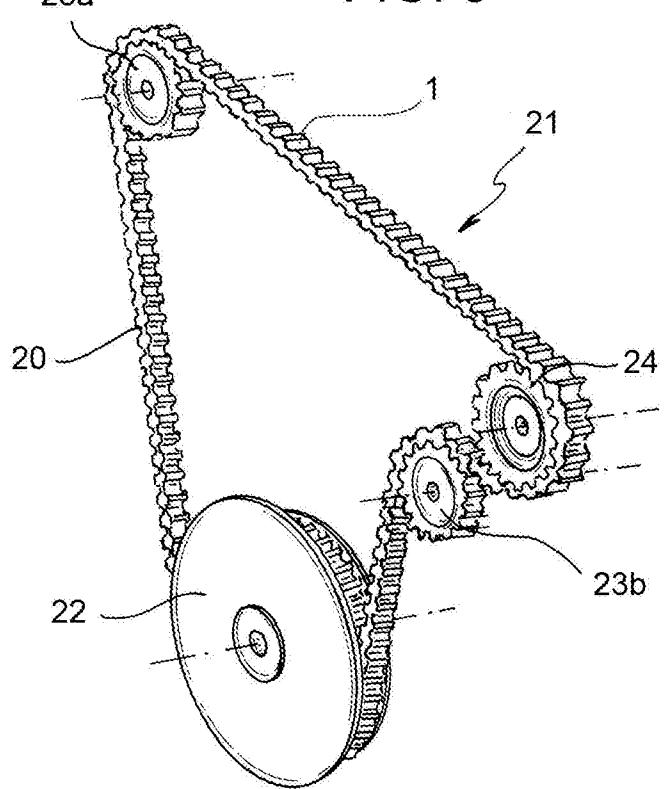
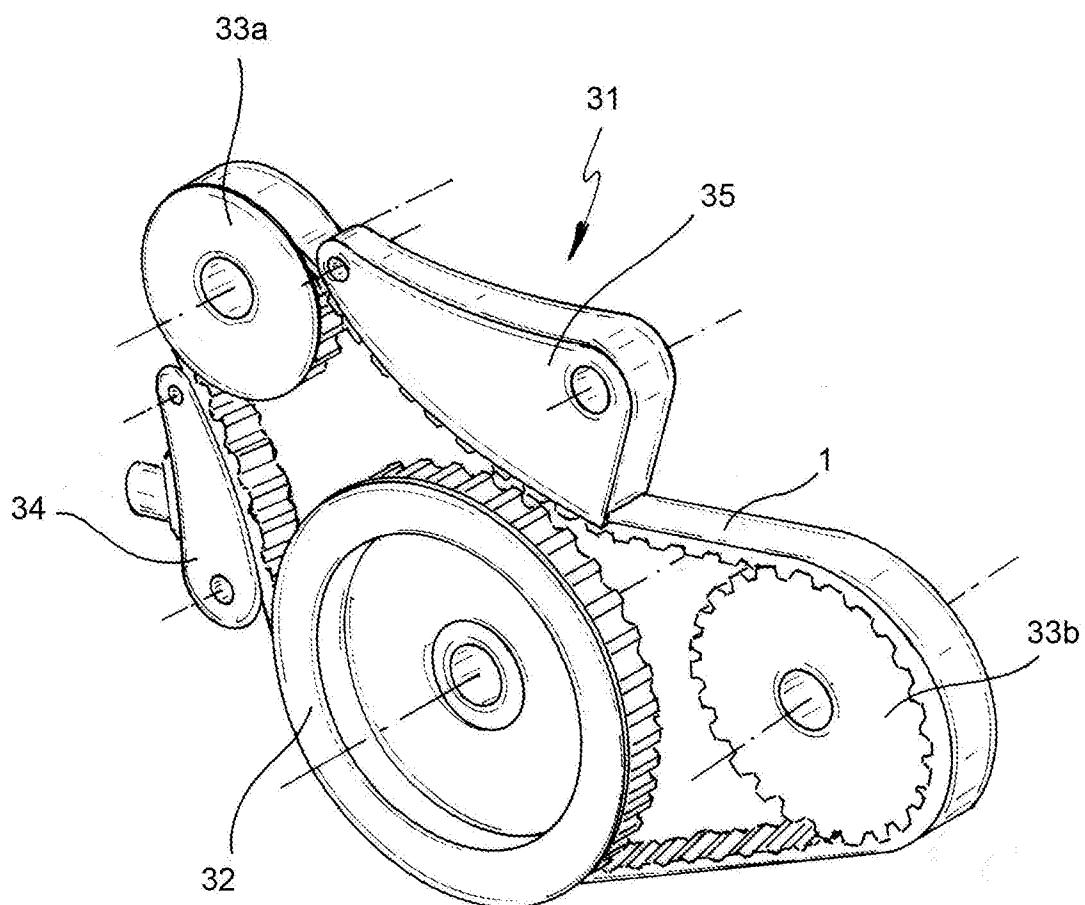



FIG. 4

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2014/061164

A. CLASSIFICATION OF SUBJECT MATTER
INV. F16G1/10 F16G1/28 F16G1/12
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F16G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 649 995 A1 (BANDO CHEMICAL IND [JP]) 26 April 1995 (1995-04-26) page 2, line 29 - page 3, line 23; figure 1; table 1 -----	1-6, 10-18
Y	page 2, line 29 - page 3, line 23; figure 1; table 1 -----	7-9
X	EP 0 050 011 A1 (UNIROYAL INC [US]) 21 April 1982 (1982-04-21) page 1, line 25 - page 2, line 6; figures 1, 2 -----	1-13, 15-18
Y	EP 2 025 971 A1 (TEIJIN FIBERS LTD [JP]; TEIJIN TECHNO PRODUCTS LTD [JP]) 18 February 2009 (2009-02-18) paragraph [0030]; figure 1 ----- -/-	7-9

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

4 February 2015

13/02/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Lantsheer, Martijn

INTERNATIONAL SEARCH REPORTInternational application No
PCT/IB2014/061164

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2006/035463 A1 (DAYCO EUROPE SRL [IT]; DI MECO MARCO [IT]; DELLI ROCIOLI MASSIMILIANO) 6 April 2006 (2006-04-06) page 1, line 12 - page 2, line 17; figure 2 -----	18
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2014/061164

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
EP 0649995	A1 26-04-1995	EP 0649995 A1			26-04-1995
		JP H07112494 A			02-05-1995
EP 0050011	A1 21-04-1982	BR 8106551 A			29-06-1982
		CA 1142777 A1			15-03-1983
		DE 3170314 D1			05-06-1985
		EP 0050011 A1			21-04-1982
		IN 157058 A1			04-01-1986
		JP H0243060 B2			27-09-1990
		JP S57127142 A			07-08-1982
		MX 155863 A			13-05-1988
		US 4392842 A			12-07-1983
EP 2025971	A1 18-02-2009	EP 2025971 A1			18-02-2009
		US 2009197726 A1			06-08-2009
		WO 2007142318 A1			13-12-2007
WO 2006035463	A1 06-04-2006	BR P10419078 A			18-12-2007
		CA 2582511 A1			06-04-2006
		CN 101052828 A			10-10-2007
		EP 1802897 A1			04-07-2007
		JP 2008514888 A			08-05-2008
		US 2009191998 A1			30-07-2009
		WO 2006035463 A1			06-04-2006