0 O 0 OO

9690 Al

o

0O 01

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A 0O O 00 O

(10) International Publication Number

8 February 2001 (08.02.2001) PCT WO 01/09690 A1
(51) International Patent Classification’: GOSB 15/00 (81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,
(21) International Application Number: PCT/US00/20828 DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR, LS, LT, LU,
. . LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
(22) International Filing Date: 28 July 2000 (28.07.2000) RO, RU, SD, SE, SG, SI. SK, SL. TJ, TM. TR. TT. TZ. UA.
UG, UZ, VN, YU, ZA, ZW.
(25) Filing Language: English
(84) Designated States (regional): ARIPO patent (GH, GM,
(26) Publication Language: English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

(30) Priority Data:
60/146,406
60/149,276

29 July 1999 (29.07.1999)
17 August 1999 (17.08.1999)

us
us

(71) Applicant: THE FOXBORO COMPANY [US/US]; 33
Commercial Street, Foxboro, MA 02035 (US).

(72) Inventors: BADAVAS, Paul, C.; 19 Rockpoint Road,
Southboro, MA 01772 (US). HANSEN, Peter, D.; 59
Fiske Road, Wellesley, MA (US).

(74) Agents: POWSNER, David, J. et al.; Nutter, McClennen
& Fish LLP, One International Place, Boston, MA 02110-
2699 (US).

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND APPARATUS FOR OBJECT-BASED PROCESS CONTROL

(57) Abstract: A control system has blocks or other components that facilitate validation of their own replacements, e.g., downloaded
=~ via e-commerce transactions. The system includes first and second process control components. The first component is coupled to
a third process control component, with which it transfers information, e.g., as part of an active or ongoing control process. The
second component can be, for example, an update or other potential replacement for the first component. The first and/or second
components can effect substitution of the second component for the first. More particularly, they can effect coupling of the second
component for information transfer with the third component and decoupling of the first component from such transfer with the third
component. Preferably, such coupling and decoupling occur while the process control system remains active.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

Methods and Apparatus for Object-Based Process Control

Background of the Invention

This application claims the benefit of priority of United States Patent Application
Serial No. 60/146,406, filed July 29, 1999, entitled Process Control Objects, as well as of
United States Patent Application Serial No. 60/149,276, filed August 17, 1999, entitled
Methods and Apparatus for Process Control ("AutoArchitecture"), the teachings of all of
the foregoing of which are incorporated herein by reference.

The invention pertains to control and, more particularly, to methods and apparatus
for implementing process and other control systems at lower cost, with greater flexibility
and robustness.

The terms "control" and "control systems" refer to the control of a device or
system by monitoring one or more of its characteristics. This is used to insure that output,
processing, quality and/or efficiency remain within desired ranges over the course of
time. In many control systems, digital data processing or other automated apparatus
monitor a device, process or system and automatically adjust its operational parameters or
variables. In other control systems, such apparatus monitor the device, process or system
and display alarms or other indicia of its characteristics, leaving responsibility for
adjustment to the operator.

Control is used in a number of fields. Process control, for example, is typically
employed in the manufacturing sector for process, repetitive and discrete manufactures,
though, it also has wide application in utility and other service industries. Environmental
control finds application in residential, commercial, institutional and industrial settings,
where temperature and other environmental factors must be properly maintained. Control
is also used in articles of manufacture, from toasters to aircraft, to monitor and control
device operation.

Modern day control systems typically include a combination of field devices,
controllers, workstations and other more powerful digital data processing apparatus, the
functions of which may overlap or be combined. Field devices include temperature, flow
and other sensors that measure characteristics of the subject device, process or system.
They also include valves and other actuators that mechanically, electrically, magnetically,

or otherwise effect the desired control.

WO 01/09690

10

15

20

25

30

Controllers generate settings for the actuator type field devices based on
measurements from sensor type field devices. Controller operation is typically based on a
"control algorithm" that maintains a controlled device at a desired level, or drives it to
that level, by minimizing differences between the values measured values and, for
example, a setpoint defined by the operator. Workstations, control stations and the like
are typically used to configure and monitor the process as a whole. They are often also
used to execute higher-levels of process control, e.g., coordinating groups of controllers
and responding to alarm conditions occurring within them.

In an electric power plant, for example, a workstation coordinates controllers that
actuate conveyors, valves, and the like, to move coal or other fuels to a combustion
chamber. The workstation also configures and monitors the controllers that maintain the
dampers that determine the level of combustion. The latter operate, for example, by
comparing the temperature of the combustion chamber with a desired ‘sctpoint. If the
chamber temperature is too low, the control algorithm may call for incrementally opening
the dampers, thereby, increasing combustion activity and driving the temperature
upwards. As the temperature approaches the desired setpoint, the algorithm
incrementally levels the dampers to maintain the combustion level.

The design of control systems and specification of the control algorithms is
typically performed using tools known as configurators. An exemplary such tool is
provided with the I/A Series® (hereinafter, "IAS" or "I/A") systems, marketed by the
assignee hereof. A graphical configurator, F 0xCAE,® provided with those systems
permits an engineer to model a process hierarchically and to define a control algorithm
from that hierarchy. Once configuration is complete, the control algorithm is downloaded
to the control devices. This may involve "compiling" the algorithm in order to convert it
into code understood by the controllers and other control devices.

While prior art products such as the aforementioned ones by the Assignee hereof
continue to meet success in the marketplace, there remains a need for advancement.

In view thereof, an object of this invention is to provide improved methods and
apparatus for control. A related object is to provide such methods and apparatus as can
be achieved with lower cost, greater flexibility and robustness.

Another object of the invention is to provide such methods and apparatus as

facilitate the modeling of control processes by engineers and users alike.

PCT/US00/20828

WO 01/09690

10

15

20

25

30

PCT/US00/20828

A related object is to provide such methods and apparatus as facilitate the
generation of higher-quality modeling software at lower cost and more widespread
applicability.

A further object is to provide such methods and apparatus as can be used in

process and other control systems.

Summary of the Invention

The foregoing are among the objects attained by invention which provides, in one
aspect, an improved control device for a process or other control system. The device
provides a virtual machine environment in which Java objects, or other such software
constructs, are executed to implement control (e.g., to monitor and/or control a device,
process or system). These objects, referred to herein as process control objects (PCOs),
define blocks, which are the basic functional unit of the control. They also define the
input, output and body parts from which blocks are formed, and the signals that are
communicated between blocks. PCOs also define nested and composite groupings of
blocks used to control loops and higher-level control functions.

By way of non-limiting example, a control system with devices according to the
invention can have a workstation and controllers, each providing a Java virtual machine
(JVM) environment. Executing on the devices are Java PCOs embodying their respective
control functions and signaling. Thus, PCOs executing in each controller monitor and
control sensors and actuators under that controller's purview. PCOs executing in the
workstation monitor and control the controllers themselves (as well, perhaps, as
monitoring the outputs of some of the field devices). Intelligent field devices in the
control system may also execute PCOs, thereby, further distributing the control function

and taking up tasks otherwise handled by the controllers and workstation.

Referential Communication Between Process Control Entities

Further aspects of the invention provide control devices as described above in
which individual data, such as measurements, setpoints or other values, are
communicated block-type PCOs by reference. To this end, only one object of each pair
of objects between which a given datum is communicated stores the datum itself, e.g., by
non-limiting example, in a data structure referred to as below as a "variable." The other
block maintains only a reference, i.e., a pointer, address, symbolic or other reference, to

the datum. In order to access the sole instance of the datum as between at least those two

10

15

20

25

30

WO 01/09690 PCT/US00/20828

blocks, the latter block interrogates -- or, if permitted, sets the value of -- the datum by
using the pointer, address or other reference.

A given datum, according to further aspects of the invention, can be maintained in
the block that is the logical and/or physical source of the measurement, setpoint or other
value to which it pertains. For example, a PCO embodying an analog input (AIN) block
maintains a data structure containing data measured by it. PCO blocks that use those
measurements access that data structure and, thereby, the data, by reference.

The data structures embodying data can themselves be PCOs, e.g., by non-limiting
example, instantiated from the "signal" class described in the detailed description, below.
According to further aspects of the invention, in addition to storing specific
measurements, setpoints or values (e.g., the "variables" described below), these data
structures can maintain range, status, time stamps and/or other information pertaining to
them. ‘

Thus, for example, a "float" variable data structure in a PCO analog input block
maintained in a thermocouple sensor device can have, in addition to a floating point value
representing the temperature value measured by that device, range values representing
permissible upper and lower values for the measured temperatures. It can also have status
values representing signal quality (e.g., SEVA values of the type discussed elsewhere
herein) and/or initialization state; limit status for signal limiting and connection status;
timestamp values identifying when the value was last changed; among others. According
to related aspects of the invention, the "limit status” can include a flag, e.g., a "publish"”
bit, indicating whether the subject datum has been communicated to other elements of the
control system, e.g., by "publication.”

An advantage of devices using PCOs that communicate data, i.e., establish
"connections," in the manner described above is that they minimize the unnecessary
duplication of data and the attendant cost of maintaining coherency. A further advantage
is that they can more readily propagate variables and their attendant values, ranges, and so
forth, throughout the system.

With respect to this latter point, a control system having devices as described
above will typically implement a control scheme wherein a value generated (or measured)
by single block is used by several downstream blocks. Thus, for example, a PCO block
maintained by a thermocouple field device might be connected to a PCO control block

executing in a controller that processes the thermocouple output to adjust a fuel intake

WO 01/09690 PCT/US00/20828

10

15

20

25

30

valve. It might also be connected to a PCO control block executing in an intelligent field
device that adjusts a damper level.

The use of data structures as described above facilitate establishing common
values, ranges, and so forth, e.g., for the thermocouple output, among all of the PCO
blocks that use connections. That information is stored only in the source PCO, e.g., the
thermocouple PCO. Hence, the risk of data loss or misinterpretation resulting from lack
of coherency is minimized, as is the risk of incorrect scaling and the like among the
blocks participating in the connections.

Control devices as described above can, according to further aspects of the
invention, maintain unilateral and/or bilateral connections for the information that they
exchange. Unilateral connections utilize a data structure as described above to store a
single "forward going" data value (or set of values), along with its attendant range, status,
limit status, time and other related information. These are typically used, for example, in
connections to/from sensors and actuators.

The control devices can also utilize PCOs that establish bilateral connections
maintaining two data values (or sets of values), along with attendant range, status, limit
status, time and other related information. These can be used, for example, in
connections in which a forward going data value is dependent on a backward going one.

For example, a PCO functioning as a proportional integral derivative (PID)
control block and executing in an intelligent actuator might provide the setpoint to a PCO
executing as an analog output (AOUT) control block in that same actuator. A single data
structure maintaining the AOUT setpoint can be stored in the PID, with the AOUT
accessing it by reference. The PID requires feedback, such as the current valve position,
in order initialize its output to avoid bumping that value at startup. The AOUT can
provide that feedback, according to related aspects of the invention, by accessing the data
structure by reference and storing a backward going data value (or feedback value) there.
Similar bilateral communications are required between cascaded controllers where the
output of one is the setpoint of another.

Control devices utilizing PCO that establish bilateral connections have additional
advantages, including, eliminating the need to establish and ensure that forward-going
and back-going values for each connection necessarily run between the same two blocks.

In addition, they ensure that consistent range, status, limit status, time and other

WO 01/09690 PCT/US00/20828

10

15

20

25

30

information concerning the forward-going and back-going values are shared by both PCO

that are parties to the connection.

Process Control Entities with Mandatory and Optional Parts

Further aspects of the invention provide control devices as described above that
include PCOs with mandatory parts for which memory space is allocated at the time of
object creation (or instantiation) and with optional parts for which memory space is
allocated only as needed. The optional parts can be added subsequent to creation,
typically, for example, during configuration.

By way of example, an intelligent field device embodying a PCO according to the
invention representing an analog input block (AIN) can have a mandatory input part for
receiving, linearizing, filtering and scaling measurements. It can also have a mandatory
output part for processing or switching and for making the result available to PCOs, e.g.,
embodying control algorithms. These mandatory parts are instantiated when the AIN
PCO is first instantiated. Optional parts for the AIN PCO permit, inter alia, establishing
alarm limits, defining a characterizer that linearizes an input measurement, defining
filtering for an input measurement, and defining limits for output values, and to utilize
potential emergency interlock output values. These optional parts can be instantiated, if
at all, e.g., when the already-instantiated PCO is being configured.

The invention provides, in other aspects, control devices as described above in
which the parts, whether optional or mandatory, are associated with block-type PCOs and
are instantiated locally in relation to the respective blocks that contain them. Put another
way, the parts are instantiated in the processes responsible for executing the PCO in
which they are contained.

Further aspects of the invention provide control devices as described above in
which mandatory parts of a PCO are instantiated in a declaration or a constructor method
(e.g., a default constructor) of a class from which the PCO is instantiated. While optional
parts can be instantiated by a constructor (e.g., other than the default constructor), they
can also be instantiated by configurator following creation of the PCO.

Control device incorporating dynamically configurable PCOs, i.e., with
mandatory and optional parts, as described herein are advantageous, for example, in that
their constituent blocks provide all necessary input, output and/or processing behaviors,

without dedicating memory or other resources to unused ones. Thus, the AIN PCO

WO 01/09690 PCT/US00/20828

10

15

20

25

30

described in the example above can be selectively configured to allocate memory and
processor resources to alarms and filters, yet, not to consume resources with optional
features that will not be used, e.g., interlocks and characterizers. Moreover, such PCOs
instill in their respective control devices (e.g., their respective control stations, work
stations, controllers, or field devices) optional behaviors that execute as if "compiled in,"
yet, not requiring recompilation on configuration.

In addition to individual block-type PCOs that are dynamically configurable,
further aspects of the invention provide control devices and systems with dynamically
configurable composite PCOs. These are PCOs with mandatory constituent blocks for
which memory space is allocated at the time of object creation (or instantiation) and with
optional blocks for which memory space is allocated only as needed. The optional blocks
are added at the time each composite PCO is created, e.g., during configuration, or later.

By way of example, a control system executing a PCO composite-type object
representing a process control loop, can have a mandatory analog input block (AIN), a
mandatory analog output (AOUT) block and a mandatory proportional-integral-derivative
(PID) control block. Optional blocks for the composite PCO can provide for feedforward
control. These can include, for example, an optional second AIN block, e.g., for
detecting disturbances in the controlled process, as well as for an optional, feed forward
control block that generates additional control values to facilitate disturbance

compensation in the first (feedback), PID block.

Process Control System with Blocks Having Common

Input and/or Output Sections
Still further aspects of the invention provide control systems and control devices

as described above with block-type and composite-type PCOs that use standardized
classes (or other definitional software constructs) to define input and output parts that
receive and transmit information on behalf of the PCOs. The classes provide common
interfaces between interconnected blocks, as well as insuring common processing of
information by them.

By way of example, PCO blocks executing on the workstations, controllers,
intelligent field devices and other control devices in a control system according to the
invention can have input and output parts instantiated from a common set of input and
output classes, respectively. The PCOs can be of a variety of composite block types and

individual block types, the latter including, for example, Analoglnput, AnalogOutput,

WO 01/09690 PCT/US00/20828

10

15

20

25

30

PID, and Feedback Tuner. The common set of classes from which their input and output
parts are instantiated include, according to one aspect of the invention and by way of non-
limiting example, cascaded floating point input, cascaded floating point output,
unidirectional boolean input, unidirectional boolean output.

According to related aspects of the invention, the input and output parts of the
block PCOs are created from possibly overlapping subsets of classes selected from a
common set of standardized classes. Thus, for example, PCOs that embody PID control
blocks include input and output parts defined with standardized cascaded floating point
input and cascaded floating point output classes. PCOs that embody "user" control blocks
also use the standardized cascaded floating point output classes, though their input parts
are defined using a different standardized class, to wit, the unidirectional floating point
input class.

Further aspects of the invention provide control systems and control devices as
described above wherein the input and output parts, themselves, use standardized classes
to define objects that reflect, by way of non-limiting example, state, status, mode, and
option assignments shared by the respective blocks and their parts, as well as to define
information that is communicated between the blocks. In addition to providing common
methods for setting and getting values, these classes define methods for linking variables
(and their constituent parameters) to establish connections between blocks.

By way of example, the standardized cascaded floating point input part contained
in the above-described PID control blocks can have constituent objects defined from a
standardized "Irs" setpoint mode class that characterizes the setpoint source for an input
part, e.g., whether it is set by an external block, by a supervisory task, or by the operator.
By way of further example, the cascaded floating point output part of such a PID block
can include a constituent objects defined from a standardized "mas" mode class that
characterizes source of the outgoing signal generated by that output part, e.g., whether it
is set by the block, a supervisory task or the operator.

A control device with a PCO block having input and output parts utilizing objects
instantiated independent classes, such as the Irs and mas classes described above, can
provide for the independent characterization of setpoints received and generated by the
PCO. Thus, for example, the block can be set by an operator at runtime to provide for
any of local, remote or supervisory setpoint input and, at the same time, for any of

manual, automatic and supervisory setpoint output. Moreover, the block can retain a

WO 01/09690 PCT/US00/20828

10

15

20

25

30

setpoint value previously defined, e.g., before transition into manual or supervisory mode,
to facilitate transition back to automatic mode.

Further related aspects of the invention provide control systems and control
devices where the input, output, body and other parts use other standardized classes.
These can include, by way of non-limiting example, a signal quality status class, a
maintenance status class, a limit indication and linking/setting permissions class, among
others,

The invention provides, in still further aspects, control systems and devices as
described above in which memory is allocated for mandatory constituent portions of a
part at the time of creation and in which memory is allocated for optional portions only as
necessary, e.g., during configuration. These portions can include PCOs defined in accord
with the aforementioned signal classes, as well as in accord with other classes that make
up the parts.

According to further related aspects of the invention, that parts of PCO control
blocks utilized in control systems and devi(;es can have the mandatory constituent that
include, by way of example, the aforementioned Irs and mas setpoint mode classes of the
cascaded floating point input and output parts, respectively. Further mandatory classes of
these péuts can include, by way of further non-limiting example, a floating point variable‘
class for containing the setpoints received or set by the input and output parts,
respectively. Optional classes for these parts can include a limit class (defined as a
"parts” class in the discussion below) used to define high and low setpoint values for the
input and output parts that include the limit class.

Still further aspects of the invention provide control systems and devices as
described above in which the block-type PCOs include body parts, in addition to input
and output parts. The body parts can, for example, embody attributes and methods that
are unique to the particular block class, in addition to standardized parts such as for

feedback tuning and deadtime compensation.

Multi-Input Analog Input Block for Process Control System

Further aspects of the invention provide a control device with an analog input
block (AIN) coupled to accept readings from multiple sensors or other input devices and
to generate an output based on one or more of those readings. The analog input block,

which can be a PCO as described above, can take a reading from each of the multiple

WO 01/09690

10

15

20

25

30

PCT/US00/20828
10

sensors during each block processing cycle (BPC), e.g., each cycle during which the AIN
is invoked (typically, along or in sequence with other blocks in a common control
system).

Related aspects of the invention provide a control device configured as an AIN as
described above that generates an output based on the multiple inputs every "block
period," e.g., every period (typically multiple BPCs) in which the output of the AIN is
updated. The output can be, by way of non-limiting example, minimum, maximum,
median, weighted average (e.g., based on uncertainty values, such as SEVA, provided by
the sensor as part of the variable data structure) or other selection or function of the
multiple inputs.

Further related aspects of the invention provide a control device configured by a
PCO as an AIN block as described above in which the input part of that block samples
measurements received from its respective sensor every BPC, notwithstanding that the
block period may run over several BPCs. Those measurements can be averaged with one
another (e.g. by the input or body parts of the PCO), prior to being statistically compared
or combined with the outputs of other input parts in the AIN.

Still further aspects of the invention provide a AIN PCO as described above
having multiple input parts, each receiving, filtering, characterizing and/or otherwise
processing a respective one of the measurements received by the AIN block. A control
device in which such an AIN is embodied can dedicate memory space upon instantiation
of the block or its subsequent configuration to only such input parts as are required by the
particular implementation. Moreover, such a control device can apply independent
filtering, characterizing or other functions to each of the inputs.

Further aspects of the invention provide contro! systems embodying one or more
control devices as described above and/or utilizing PCOs as described above. Other
aspects provide control devices and systems having individual ones of the features
described above, alone or in combination with other ones of the features.

Yet other aspects of the invention provide methods of operating control devices
and control systems paralleling the foregoing.

These and other aspects of the invention are evident in the attached drawings, and

in the description and claims that follow.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

11

Brief Description of the Drawings
A more complete understanding of the invention may be attained by reference to the

drawings, in which:

Figure 1 depicts a process control system 10 of the type with which the invention
is practiced,

Figure 2 depicts the object model notation utilized in this disclosure;

Figure 3 depicts a control and information collection class and object architecture
in a control system according to the invention;

Figure 4 depicts control and information collection signal, part, and block classes
in a control system according to the invention;

Figure 5 depicts input/output classes for intelligent and standard devices in a
control system according to the invention;

Figure 6 depicts control and information collection nested classes in a control
system according to the invention;

Figure 7 depicts an architecture for a typical block class in a control system
according to the invention,

Figure 8 shows examples of unidirectional and cascade input and output part
classes in a control system according to the invention;

Figure 9 depicts a loop composite class in a control system according to the
invention;

Figure 10 depicts a PLoop composite class in a control system according to the
invention;

Figure 11 depicts a cascade composite class in a control system according to the
invention;

Figure 12 depicts a TempProcess Composite class in a control system according to
the invention;

Figure 13 depicts Loops2 control and process objects in a control system
according to the invention;

Figure 14 depicts Loops2 control and process objects and details in a control
system according to the invention;

Figure 15 depicts TempCasc contro! and process objects in a control system

according to the invention;

WO 01/09690

10

15

20

25

30

PCT/US00/20828
12

Figure 16 depicts TempCasc control and process objects and details in a control
system according to the invention;

Figure 17 depicts cascade peer-to-peer communication in a control system
according to the invention; and

Figure 18 depicts variable and parameter transfer and rules in a control system

according to the invention.

Detailed Description of the Illustrated Embodiment

Figure 1 depicts a process control system 10 of the type with which the invention
is practiced. The system includes networked control devices that monitor and control a
hypothetical mixing process 20 that utilizes mixing chamber 22, fluid inlets 24, 26, fluid
outlet 28, paddle 30, cooler 32, and cooler inlet 34. Though illustrated and described
below for use in connection with process control, those skilled in the art will appreciate
that apparatus and methods according to the invention can be used in connection with any
industrial, manufacturing, service, environmental or other process, device or system
amenable to monitoring or control (hereinafter, collectively, "control").

The networked control devices include actuators, such as the valves depicted as
controlling inlets and outlets 24 - 28 and 34. A further actuator is shown controlling
paddle 30. These and other actuators utilized by the control system are constructed and
operated in the conventional manner, as modified in accord with the teachings hereof.
The actuators operate under control of respective field device controllers, labeled CTL,
that are also constructed and operated in the conventional manner to provide
initialization, signal conditioning and communications functions.

Rather than using separate controllers CTL, the actuators can be of the intelligent
variety and can include integral microprocessors or other digital data processing
apparatus for control, initialization, signal conditioning, communications and other
control-related functions. For sake of convenience, the label CTL is used regardless of
whether the control-related functionality is integral to the actuators (e.g., as in the case of
intelligent actuators) or otherwise.

Illustrated sensor 29 monitors a temperature, level or other characteristic of fluid
in chamber 22. The sensor 29, as well as other sensing apparatus utilized by the system,
are constructed and operated in the conventional manner known in the art, as modified in

accord with the teachings hereof. They can be coupled to the control network via a

WO 01/09690 PCT/US00/20828

10

15

20

25

30

13

transmitter or other interface device INT that, too, is constructed and operated in the
conventional manner, as modified by the teachings hereof. The interface devices
facilitate initialization, signal conditioning and communications between the sensors and
the control system. As above, one or more sensors can be of the intelligent variety,
incorporating integral microprocessors or other digital data processing capabilities for
initialization, signal conditioning, communications and other control-related functions.
Here, too, the label INT is used in reference to the control-related functionality, regardless
of whether embodied in an intelligent transmitter or otherwise.

The networked control devices include one or more controllers 36 that monitor
and control respective aspects of the hypothetical mixing process in the conventional
manner, as modified in accord with the teachings hereof. The controllers can comprise
mainframe computers, workstations 40, personal computers 42, special-purpose hardware
or other digital data processing apparatus capable of performing conventional monitoring
and control functions. Preferred controllers are constructed and operated in the manner of
the CP control processors commercially available from the assignee hereof, as modified
in accord with the teachings herein.

The control system 10 includes elements that serve as user interfaces and that
provide configuration and/or control functions, all in the conventional manner as
modified in accord with the teachings hereof. Illustrated for these purposes are, for
example, workstation 40 and personal (laptop) computer 42. These devices can provide
configuration and control functions directly, as in the case of workstation 40, or in
cooperation with server devices (not shown). Apparatus 36 - 42 can couple with one
another directly, e.g., via bus or network connection (as illustrated below), or indirectly,
e.g., via satellite, wireless connection or modem connection.

The devices 36 - 42, CTL and INT, collectively, referred to as "control" devices,
are coupled for communications via a medium that permits at least selected ones of the
devices to communicate with one another. To this end, in the illustrated embodiment
those devices are coupled via one or more networks 48 that are, preferably, IP-based such
as, by way non-limiting example, Ethernets. The network(s) can include, as indicated by
the multiple segments shown in the drawing, multiple segments such as various wide and
local area networks. They may also include high and/or low bandwidth components, such

as phone lines, and low and/or high latency components, such as satellites networks.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

14

In the preferred, illustrated embodiment, each of the control devices 36 - 42, CTL
and INT, provides virtual machine environment for executing Java byte code (or other
such intermediate code) in the form of Java applications, Java applets, Java servlets, or
like constructs in other software languages that, for example, configures the respective
device to provide monitoring and/or control (collectively, "control"), including, by way of
non-limiting example, servicing sensors to provide inputs (analog or otherwise), servicing
actuators to provide outputs, executing blocks (composite, individual or otherwise) that
include a control algorithm and/or otherwise to participate in the control system.

By way of non-limiting example, the illustrated intelligent field devices can
include low power processors, along with a random access memory, read-only memory,
FlashRAM, and appropriate sensor/actuator interfaces. The processors of those devices
can execute a real-time operating system, as well as a Java virtual machine (JVM).
Process control blocks or entities in Java byte code execute in the JVMs to configure the
respective field devices to perform process control functions, e.g., for analog input (AIN),
analog output, proportional integral derivative (PID) control and so forth.

By way of further non-limiting example, the controllers, workstations, control
stations and other digital data processor-based control devices can include larger, more
powerful central processing units, along with on-board memory (e.g., RAM, ROM,
FlashRAM), mass storage, sensot/actuator interfaces, as necessary, conventional
operating systems and JVMs, and so forth. The JVMs on these more powerful devices
permit them to perform a still wider range of control functions, e.g., to monitor control
larger scale plant operations.

A further appreciation of the hardware and software environment provided by
system 10 may be attained by reference to commonly-assigned, co-pending United States
Patent Application Serial No. 09/591,604, and to counterpart PCT Application Serial No.
PCT/US 00/15860, both filed June 9, 2000, entitled METHODS AND APPARATUS
FOR CONTROL USING CONTROL DEVICES THAT PROVIDE A VIRTUAL
MACHINE ENVIRONMENT AND THAT COMMUNICATE VIA AN IP NETWORK,
a copy of the common specification of which is attached hereto and which is reprinted as
an Appendix hereof. The teachings of these applications are incorporated herein by
reference.

Described below are aspects of the operation of the aforementioned control

devices 36 - 42, CTL and INT, and, more generally, of the control system 10 deriving

WO 01/09690 PCT/US00/20828

10

15

20

25

30

15

from execution on the devices of Java applications, applets, servlets (or other such
software constructs) to implement control. These objects, referred to herein as process
control objects (PCOs), define blocks which are the basic functional unit of the control.
They also define the input, output and body parts from which blocks are formed, and the
signals that are communicated between blocks. PCOs also define nested and composite

groupings of blocks used to control loops and higher-level control functions.

The Advantages of PCOs

As evident in the discussion above and in the pages that follow Process Control
Objects facilitate the development, implementation and maintenance of control systems,
additionally, maximizing their flexibility of configuration and robustness. PCOs also
facilitate the introduction of new control objects and enhancements without affecting the
running system, in addition to enabling on-line modification and upgrade of objects.
Control systems utilizing PCOs are, moreover, portable: control classes, written once,
can run everywhere. The systems are also scaleable.

By way of both review and introduction, control systems implemented with PCOs
implement optional parts and functionality separately from mandatory parts, thus,
minimizing consumption of undue resources. Their use of separate input and output parts
speeds implementation, while permitting the input and output sides of each block to be
independently configured and operated.

The PCO control architecture provides standardized input and output part classes
used in all blocks. Input and output part classes provide initialization, anti-windup,
cascade handling, local/remote/supervisory switching, manual/auto/supervisory
switching, standardized variable naming, input and output multiplicative and additive
feedforward, output selection (limiting with an override controller). In addition optional
parts for the input and output classes furnish alarming, limiting, filtering, feedforward,
characterization, and interlock. Architecturally the input and output part classes provide
standard interfaces between interconnected blocks.

PCOs provide a framework where interconnected block and nested classes are
aggregated to create higher level nested classes, which are then used to create object
instances. These higher nested instance include, for example, all control for a process
unit, all information collection for a process unit, and so forth. Information is stored at its

source, permitting other objects to reference it, e.g., via implicit pointers, addresses,

WO 01/09690 PCT/US00/20828

10

15

20

25

30

16

symbolic references, or the like, in order to obtain specific datum (such as measurements)
and information pertaining to it. For objects residing in remote stations the source passes
the referenced information to proxy objects residing in those stations.

In a control system implemented using PCOs, scaling is done at the source and
transmitted to the sink(s) when it changes. For example, in a cascaded controller, the
local, remote, and supervisory setpoints obtain scaling from the measurement input. A
cascade output obtains scaling from its back-calculated input. In geﬁeral, cascade scaling
information flows upstream. An analog output object has no measurement, therefore the
scaling of its remote setpoint and back-calculated output is either entered locally or
obtained from the downstream field device.

Other aspects of a control implementation using PCOs is that it permits the
creation of object classes for required inter-block signals to communicate values with
signal (SEVA) quality status, cascade handling (bumpless initialization and anti-windup)
logic, and permissions for connection, setting, and configuration. Moreover, it makes

automatically the backward interconnection for cascaded blocks.

Object Model Notation

Figure 2 shows the notation for object and class diagrams used in this patent
application. Those skilled in the art will appreciate that this is a subset of the standard
Rumbaugh notation.

Architecture of Process Control Classes

This section describes the overall architecture for Process Control Objects and
introduces the signal, part, block, nested, and composite classes and objects.

Signal Object. A signal object is an object that is implemented as a component of
a block or a part object, and its name includes the name of its block object. It is located
locally in relation to the block object that contains it. A signal object is an instance of a
signal class. Signal objects contain the information communicated between blocks or
inserted into blocks as constants. These objects also provide methods to be used by users
and tasks for setting and getting values and for linking and unlinking parameters and
variables.

Signal Classes. Signal Classes are classes that provide signal objécts as defined

above.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

17

Part Object. A part object is an object that is implemented as a component of a
block or another part object, and its name includes the name of its block object. It is
located locally in relation to the block object that contains it. A part object is an instance
of a part class. Input and output part objects contain or reference float, boolean, or integer
signal objects, which enable uni-directional and cascade communication between blocks.
Some part classes provide objects for optional functionality such as alarm, limit, and
filter, which can be components of the input and output part objects or blocks.

Part Classes. Part Classes are classes that provide part objects as defined above.

Block Object. A block object is an instance of a block class and provides a base
level of functionality. It is the lowest level object, which can be implemented as an
independent object with a network-wide unique name. A block object is made up of input
part objects, a body, and output part objects. The input and output parts are independent
of the body and enable uni-directional and cascade communication between blocks. The
body contains the attributes and methods that are unique to the particular block class. In
addition the body may contain optional parts such as feedback tuner, feedforward tuner,
and deadtime. Analoginput, AdvancedPID, and AnalogOutput are examples of block
objects. Typically, block objects are used to create a hierarchy of nested objects.

Block Classes. Block Classes are classes that provide block objects as defined
above.

Nested Object. A nested object is an instance of a nested class and is a
component of possibly interconnected block and nested objects. Replication of a control
solution is achieved with multiple instances of a nested class. Each object instance can be
implemented as an independent object with a network-wide unique tag name. An example
of a nested class is a loop class, name it Loop, which contains the Analoginput,
AdvancedPID, and AnalogOutput block classes with appropriate connections achieved by
linking the input and output parts of the blocks. Class Loop can then be used to create
many instances of loop composite objects. A second level nested class can be created by
nesting together the Analoginput and AdvancedPID block classes and the Loop class with
appropriate connections to create a cascade class, name it Cascade. Class Cascade can
then be used to create many instances of cascade composite objects.

Nested Classes. Nested Classes are classes that provide nested objects as defined

above.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

18

Composite Object or Composite. A composite object is an instance of a nested
class implemented as an independent object with a network-wide unique name. For
example instances of class Loop or Cascade with network-wide unique names are
composite objects.

Composite Class. A composite class is a nested class whose object instances are
implemented as independent objects with a network-wide unique name, that is, composite
objects. When class Loop is used to create instances with network-wide unique names it
is a composite class. However, the same class Loop when used as a component of the
Cascade class is a component class, while class Cascade is a composite class.

Figure 3 shows the architecture for the Process Control Objects (PCO). Square
boxes indicate classes, while rounded ones indicate object instances (objects). The Signal
Classes, shown with vertical lines, provide signal classes to the part and block classes, for
example the float parameter and float variable classes.

The Part Classes, shown shaded, provide mandatory and optional part classes to
the block classes, for example the uni-directional and cascade float input and output
classes. The optional part classes also provide optional part classes to the mandatory part
classes.

The Block Classes are typically used to create component and composite classes,
which are then used to create many instances of composite objects (composites).

A tag name is an arbitrary string,

Predefined (Implementation-Standard) Control Classes

Figure 4 shows the signal, part, and block classes for control and information
collection in more detail. In particular it shows the inheritance hierarchy and aggregation
of the part and block classes for control and information collection.

Class names start with a capital letter, while names for objects, attributes, and
methods start with small letters with additional words concatenated to the first word
starting with capital letters. This is the recommended practice by many authors and
developers and is followed in this document.

The clear rectangular boxes indicate block classes, for example, Analoglnput
class. The shaded rectangular boxes indicate part classes, for example, Alarm and
FloatVariable classes. The boxes with the diagonal lines indicate signal classes, for

example, boolean and float parameters and variables.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

19

Figure 5 shows the InputOutput classes for intelligent and standard devices, which
are indicated by boxes filled with dots. The boxes with dotted lines indicate classes from
Figure 4. The InputOutput classes are parts of the UniDirFloatlnput and CascFloatOutput
classes for analog inputs and analog outputs, respectively.

Figure 6 illustrates the aggregation of control block classes to create many levels
of nested classes. The inheritance hierarchy and aggregation classes for control part and
block objects shown in Figure 4 furnishes the control block classes used to create nested
classes.

As shown in the figure, the objects of class ControlNestedLevell contain block
objects. In particular, they contain combinations of two or more (indicated by 2+) block
objects. The objects of class ControlNestedLevel2, contain combinations of one or more
(indicated by 1+) ControlNestedLevell objects, and optionally zero or more block
objects. A level 2 control nested object must contain at least one level 1 control nested
object.

Following this procedure, nesting can be generalized to N levels. Each higher
level control nested object contains at least one control nested object from the level below
it, and optionally, zero or more objects from any other levels as well as zero or more
block objects.

This is how the composite classes of Figure 3 are created and then used to create
many instances of composite objects as required.

Figure 7 shows the architecture for a typical block class. The Input Parts contain
the parts and references for uni-directional and cascade variables. The input parts can also
contain optional parts such as filter and alarm. The Output Parts contain parts and
references for unidirectional and cascade variables. The output parts can also contain
optional parts such as limit and alarm. The Body contains the attributes and methods that
are unique to the particular block class. It can also contain optional parts such as feedback
tuner and deadtime.

Figure 8 provides examples of uni-directional and cascade input and output parts.
More particularly, Figure 8(a) shows the uni-directional part UniDirlnput. The variable in
comes from a source and there is no backward communication as indicated by the single
incoming arrow. The variable pv can be a source for many sinks and there is no backward

communication as indicated by the single outgoing arrow.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

20

Figure 8(b) shows the cascade part Cascadelnput. The cascade part enables uni-
directional and bi-directional communications. The variables in, fdFwd, pv, sp, and
deviation are uni-directional as indicated by the single arrow. Variables remSP and
supvSP are bi-directional as indicated by the double arrow.

Similarly, Figure 8(c) and (d) shows the uni-directional part UniDirOutput and
the cascade part Cascadelnput, respectively.

The Input and Output parts are instances of the part classes that are shown in the
Control and Information Class structure of Figure 4 and they are separate and
independent from the Body of the typical block class. This enables inter-operability
between components by connecting the output variable of an output part to the input
variable of an input part.

When either the output part of the source block or the input part of the sink block
is uni-directional, the communication between them is uni-directional (one- way) from
the source to the sink. For example, the value and status of the output part’s variable is
passed by reference to the input part’s variable.

When both the output part of the source block and the input part of the sink block
are cascade, the communication between them is also cascade. That is from the source to
the sink for both the forward value and status, and from the sink to the source for both the
back value and status. In this case the sink component is connected to the source
component and the source component is connected to the sink component. A single
linkage of the sink to the source connects both the forward and back signals.

Control applications use both uni-directional and cascade connections. Consider,
for example, heating cold water in a heat exchanger by condensing steam. The cold water
flows through the tubes of the heat exchanger and steam flows through the shell of the
heat exchanger. The objective is to heat the water to a desired temperature using cascade
control, whereby the temperature controller sets the setpoint of the steam flow controller.
The temperature controller uses the hot water temperature measurement, while the steam
flow controller uses the steam flow measurement. The steam flow controller delivers the
required steam by throttling the steam valve.

This is an example of cascade control, that is, the output of the temperature
controller is cascaded to the setpoint of the steam flow controller. Consider the case
where the operator opens the cascade by placing the steam flow controller on local

control, and sets the steam flow setpoint herself, thereby disabling the temperature

WO 01/09690 PCT/US00/20828

10

15

20

25

30

21

controller from doing so. When the operator closes the cascade and transfers control to
the temperature controller there is going to be a “bump” in the steam flow unless the
temperature controller output was initialized to the value of the steam flow local setpoint
at the time of transfer.

This is precisely accomplished with the cascade connection. In normal cascade
control the output of the temperature controller is connected to the setpoint of the steam
flow controller. The forward value and status of the steam flow controller setpoint are the
value and status of the temperature controller output to which it is connected. Also the
back value and status of the temperature controller output are the back value and status of
the steam flow controller remote setpoint to which it is connected.

When the cascade has been open for a period of time and the operator transfers
control to the temperature controller by switching the steam flow controller from local to
remote, the temperature controller knows this from its output’s back status from the steam
flow controller setpoint. At this time the temperature controller initializes and computes
the value of its forward output to be the output back value, which the steam flow
controller sets equal to its local setpoint value at the time of transfer. From then on
normal cascade control commences again and the temperature controller manipulates the
steam flow setpoint to drive the actual water temperature to the desired value, as

determined by the value of the temperature controller setpoint.

Signal Classes

The signal classes are contained in the Signals package, described below. A
package contains a number of Java files and each Java file contains one and only one
class. Objects from Signals classes contain the information communicated between linked
blocks or inserted into blocks as constants. These classes also provide methods to be used
by users and tasks for setting and getting values and for linking and unlinking parameters
and variables. The Signals package also contains an interface for shared constants, and a
mode class, which is used by cascade input parts for local/remote/supervisory switching
and by cascade output parts for manual/auto/supervisory/interlock switching.

The signal classes include the following: BoolParameter, BoolVariable,
FloatParameter, FloatRange, FloatVariable, IntParameter, IntRange, IntVariable, Mode,
ObjList. Parameter and Variable are abstract classes passing common methods and

attributes through inheritance to the individual XxxParameter and XxxVariable classes.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

22

Part Classes

The part classes are contained in the Parts package. A Part must be contained in a
block or other part contained in a block. Each block may have one or more input parts, a
body, and one or more output parts. Input and output Part classes contain or reference
FloatVariable, BoolVariable, or IntVariable signals, which enable uni-directional or
cascade communication between blocks. Some part classes provide objects for optional
functionality such as alarm, limit, and filter and they can be components of input and
output part objects or blocks.

An unused optional part has a null reference. The configurator must instantiate an
optional part before it can be used or its parameters set.

The parts classes include the following: Alarm, BoolFilter, Characterizer,
CascBoollnput, CascBoolOutput, CascFloatlnput, CascFloatOutput, CascIntInput,
CascIntOutput, Deadtime, Failsafe, FeedForward, Filter, InfoBuffer, IntFilter, Interlock,
Limit, LinearFlow, PIDParameters, Ramp, TimeCount, UniDirBoollnput,
UniDirBoolOutput, UniDirFloatInput, UniDirFloatOutput, UniDirlntInput,
UniDirIntOutput, Zone,

InputOutput Classes

The InputOutput classes are contained in the InputOutput package. The
InputOutput classes are parts of the UniDirFloatinput and CasFloatOutput classes for
analog inputs and analog outputs, respectively. They are optional parts with a default null
reference. The configurator must instantiate them before they can be used or their
parameters set.

The InputOutput Classes provide the interface to input and output signals using

the Java Native Interface (JNI), which provides Java classes with native methods.

Block Classes
The block classes are contained in the Blocks package. The block classes provide
block object instances, which can be implemented as independent objects with network-
wide unique names. Typically, block classes are used to provide component classes for
composite classes, which are then used to create many instances of composite objects.
Figure 7 shows the architecture for a typical block class. The Input Parts contain
the parts for uni-directional and cascade variables. The input parts can also contain

optional parts such as filter and alarm. The Output Parts contain the parts for uni-

WO 01/09690 PCT/US00/20828

10

15

20

25

30

23

directional and cascade variables. The output parts can also contain optional parts such as
limit and alarm. The Body contains the attributes and methods that are unique to the
particular block class. It can also contain optional parts such as feedback tuner and
deadtime.

The Input and Output parts are instances of the part classes and are separate and
independent from the Body of the typical block class. This enables inter-operability
between components by connecting the output variable of an output part to the input
variable of an input part.

The configurator must instantiate a block and its mandatory and selected optional
parts before it can be used or its parameters set.

Block is a parent class (superclass) to all block classes including the UserBlock
class and its attributes and methods are inherited by all block classes. The UserBlock is a
parent class to the Arithmetic and UserDefined classes and its attributes and methods are
inherited by them. The following two sections provide a detailed functional description of
the Block and UserBlock classes.

Block Class

Overview

Block is an abstract class that contains data and methods common to all blocks. It
implements the Constants and Runnable interfaces. Options, mode, and status are
conveyed with packed Booleans. Bit-mask definitions are contained in the Constants
interface, which is inherited by most classes.

A part class, which provides a common function, may be contained in several
block classes or other part classes. An optional part may be instantiated at configure time.
If it is not configured, it has a "null" value in the container object.

The run method of each block is called each bpc. Its output is updated each period
at a specified phase. The bpc is a configured float number in seconds, an integer number
of milliseconds, preferably an integer multiple of .1 seconds. The nominal period is an
integer number of bpcs less than or equal to the configured float blockPeriod, but at least
one bpc. The execute method determines when each block updates its output based on its
configured blockPeriod and phase. The actual period is based on the time since the start

of the last execution.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

24

An output variable object is stored in an output part of its source block object. An
input variable object of a block's input part may be linked (connected) to the output
variable object by setting the input variable object equal to the output variable object.
This is done at configure time with the output variable object's /inkTo method, which
checks for permissions.

Output variables are instances of the FloatVariable, BooleanVariable, or
IntVariable classes. These contain a forw and may contain a back parameter object which
are instances of the FloatParameter, Boolean Parameter, or IntParameter classes. Each of
the parameter classes contains a value and two status bytes. The status bytes provide
SEnsor VAlidation (SEVA) quality indications, cascade handling bits, downstream limit
bits, and permissions. The parameter classes have getStatus, getValue, setValue, linkTo,
and unlink methods to be used by users and tasks. The Variable classes contain alarmSum
and maintenance status. The FloatVariable also contains /inkTo, ack, and getdlarm
methods, a range object, and the SEVA 'uncertainty’. Both source and sink have access to
the members of a linked Variable object.

There are two types of input objects. One is an instance of the UniDirFloatInput
class, the other is an instance of the CascadeFloatInput class. The UniDirFloatlnput class
accepts one input variable object. It may contain charac and filter objects, used to
precondition the input variable prior to its use in the block algorithm. It outputs the pv
variable. The CascadeFloatlnput class inherits from the UniDirFloatInput class and also
receives local, remote, supervisory, and feedforward input variables in addition to the
measurement input variable. It outputs pv and deviation. The CascadeFloatInput class
does the local, remote, supervisory mode switching and cascade handling for bumpless
transfer and initialization. It also may contain a setpoint /imit object, a local setpoint
ramp object, a deviation alarm object, and an additive or multiplicative fdFwd object.

There are also two types of output objects. One is an instance of the
UniDirFloatOutput class, the other is an instance of the CascFloatOutput class. The
UniDirFloatOutput class provides one output variable object and receives manual and
supervisory input variable objects. It provides auto, manual, supervisory mode switching
and may provide an output 'limit' object and two output alarm objects. The
CascFloatOutput inherits from the CascFvloatOutput class. It also provides bumpless mode
transfer and initialization. It may contain an additive or multiplicative fdFwd object and a

limit object.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

25

Attributes
tag object instance tag, a string.

description object instance description, a string.

type object instance type, a string

blockPeriod is the time in seconds between output updates, float, default .5.
phase object instance phase, a double integer, default is 0.

Methods
run Arguments: none.

Executes object instance when invoked.

Returns: none.

UserBlock Class

Overview

An object from the UserBlock class has parts from the UniDirBoollnput, IntInput,
and UniDirFloatInput classes, parts from the CascBoolOutput, CasclntOutput, and
CascFloatOutput classes, and output mode parts from the Mode class.

Initialization, bumpless auto/manual/supervisory switching, and antiwindup
protection are automatically provided when the user program calculates its
outputFloat[i] .out forw.value by adding an incremental change to its
outputFloat[i].out.back.value. Toggled booleans are treated similarly. The number of
inputs, outputs, and modes are specified as the constructor arguments in the above order.

Methods from the FloatParameter, IntParameter and BoolParameter classes can be
used to getValue(), setValue(), and getStatus(). Methods from the FloatVariable and
BooleanVariable classes can be used to getdlarm() and ack(). Methods from the Mode
class can be used to getMode() and setMode(). Definitions of status and modes are in the
Constants interface.

Attributes

inputBool is an optional array of BooleanInput parts.
outputBool is an optional array of CascBoolOutput parts.
inputFloat is an optional array of UniDirFloatinput parts.

outputFloat is an optional array of CascFloatOutput parts.

WO 01/09690

numberFloatOut

mode

seed = 100001

Methods
run

Arguments;

10 Called
Returns:

runMethod

Arguments:

15 Called
Returns:

ranUniform

Arguments:

Computes
20 Retumns:

ranGauss

Arguments:

Computes
Returns:
25

Composite Classes

PCT/US00/20828
26

number of float outputFloats specified as constructor
argument.

is an optional array of Mode parts.

is an int seed number for generating the uniform (0,1)
probability Distribution. Different seed numbers generate

different, and statistically independent distributions.

none
each time step to run the block.

none

contains the user written code.
none
by run method

none

none.
uniform random number when invoked.

random number uniformly distributed between 0 and 1,

none.

Gausian random number when invoked.

random number distributed normally, with mean = 0 and
standard deviation (6) = 1.0, also known as the Gaussian

distribution.

Figure 5 shows the implementation of composite classes in general. This section

describes a library of the Nested superclass and composite classes.

30 Nested

Overview

WO 01/09690

10

15

20

25

30

PCT/US00/20828
27

Nested is an abstract class containing Strings for nested classes. It implements the

Constants and Runnable interfaces. The config method prepares a comp list of its

runnable components. The run method calls the run method of each composite and block

on the comp list.

Loop

Attributes
tag_desc

description

type
offOn

Methods
config

Arguments:

Returns:

Arguments:

Retumns:

Overview

is a String composite user tag

is a String composite brief description.

is a String identifying the composite class.

is a boolean that allows its components to run when true. Its

default is false.

none.

none.

none.

none

Loop is a user defined nested class. It contains config and run methods, which are

called by the main method.

Figure 9 shows the Loop composite class, which contains the Analoglnput,

AdvancedPID, and AnalogOutput classes connected as shown. Each time the Loop class

is used to create a Loop composite object it also creates an instance of ain, pid, and aout.

Each Loop composite object is created with the default attributes of the ain, pid, and

aout, however, the default attributes can be overridden.

Attributes

ain is an instance of Analoglnput class.
pid is an instance of AdvancedPID class.
aout is an instance of AnalogQutput class.

comp is a ObjList of Runnable objects.

sp is the alias for the pid setpoint, a FloatParameter

WO 01/09690 PCT/US00/20828

10

15

20

25

30

28
pv is the alias for the pid process variable, a FloatParameter
out is the alias for the pid output, a FloatParameter
Attributes from superclass
tag user specified Loop tag, a String
description "Secondary", a String.
type "Loop", a String,
Methods
Methods from superclass
Config
Arguments: none.
Returns: none.
run
Arguments: none.
Returns: none
PLoop
Overview

PLoop is a user defined nested class. It contains config and »un methods, which
are called by the Configure class.

Figure 10 shows the Ploop (Primary Loop) composite class, which contains the
AnalogInput and AdvancedPID classes connected as shown. Each time the PLoop
composite class is used to create a PLoop composite object it also creates an instance of
ain and pid. Each PLoop composite object is created with the default attributes of ain and

pid, however, the default attributes can be overridden.

Attributes
ain is an instance of AnalogInput class.
pid is an instance of AdvancedPID class.

comp is a ObjList of Runnable objects.

sp is the alias for the pid setpoint, a FloatParameter
pv is the alias for the pid process variable, a FloatParameter
out is the alias for the pid output, a FloatParameter

Attributes from superclass

tag user specified Ploop tag, a String

WO 01/09690 PCT/US00/20828
29

description "Primary", a String.

type "Ploop", a String.

Methods from superclass

config specifies internal default values and connections.

S Arguments: none.

Returns: none.

run schedules and runs contained components when run is called.
Arguments: none.

Returns: none

10 Cascade
Overview
Cascade is a user defined nested class. It contains config and run methods, which
are called by the Configure class.
Figure 11shows the Cascade composite class, which contains the Ploop and Loop

15 composite classes connected as shown.

Attributes
Pri is an instance of the Ploop class.
sec is an instance of the Loop class.

comp is a ObjList of Runnable objects.

20 attributes from superclass

tag user specified Cascade tag, a String

description ~ "TempCascade", a String.

type "TempCascade", a String..

Methods from superclass

25 config specifies internal default values and connections.
Arguments: none.
Returns: none.

run schedules and runs contained components when run is called..
Arguments: none.

30 Retums: none

WO 01/09690

10

15

20

25

30

PCT/US00/20828
30

User Composite Classes

The user composite classes are examples of classes that would be created by a
user in the same way as the composite classes discussed above. In addition users can
create their own subclasses under the superclass UserBlock shown in Figure 4.

The remainder of this section describes the TempProcess composite class, which
is used to create instances that simulate a process, which provides temperature and flow

measurements.

TempProcess

Overview

Figure 12 shows the TempProcess user composite class, which contains two
ProcessSim classes connected as shown. Each time the TempProcess composite class is
used to create a TempProcess composite object it also creates an instance of flow and
temp. Each TempProcess composite class is created with the default attributes of flowOut
and tempQut, however, the default attributes can be overridden. The flow process is a one

time step delay (.5 sec.) and the temperature process is a 10 sec. delay.

Attributes
flow is a ProcessSim block with 1 input.
temp is a ProcessSim block with 1 input.

comp is a ObjList of Runnable objects.

FlowOut 1is the output of the flow process, a FloatVariable.

TempQut is the output of the temp process, a FloatVariable.

Attributes from superclass

tag user specified TempProcess tag, a String

description is the String "Temperature Process".

type is the String "TempProcess".

Methods

config specifies internal default values and connections.
Arguments: none.
Returns: none,

run schedules and runs contained components when run is called.
Arguments: none.

Returns: none

WO 01/09690 PCT/US00/20828

W

10

15

20

25

30

31

Supv

Overview

Supv is a user defined class derived from the UserBlock class. It contains a run
method. It has one floatOut and no inputs. It contains the controller parameters and ramps

its output, used as the supervisory setpoint of the temperature controller.

Attributes

parTC is a PIDParameters part that contains parameters for the
temperature controller.

ParFC is a PIDParameters part that contains parameters for the flow

controller.

Attributes from superclass
tag user specified Supv tag, a String
description is the String "Supervisory Setpoint".
type is the String "Supv".
Methods from superclass
run

Arguments: none

Called each time step to run the block.

Returns: none
runMethod contains the user written code.
Arguments: none

Called by run method

Returns: none

Process Control Application Classes

The Block, Composite, and UserComposite classes can be used to create many
object instances, which are simply referred to as composite objects or composites. An
application instantiates and configures the composite objects using the config method and
then executes them using the run method. The config method prepares a comp list of its
runnable composites. The run method calls the run method of each composite on the

comp list. The following two sections present the Loops2 and TempCasc applications.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

32

Loops2

The Loops2 application illustrates composite objects for control and process
simulation, which are made up of block objects.

Overview

Figure 13 shows the Loops2 control composite objects and the process composite
object, while Fig. 8.4.1-2 shows the same composites in detail. Application Loops2 uses
the config method to instantiate (configure) composite objects s21, #121, f121, and pr21
and the run method to schedule them for execution.

Composite object s2/ (Supervisor 21) is an instance of the Supv block class
described in Sec. 8.3.2. It acts as a supervisory component and its output s2/.out sets the
temperature setpoint #/2/.sp of Temp Loop #121.

Composite object #/21 is an instance of the PLoop component class shown in
Figure 10 and is a single loop made up of block instances ain, and pid. Temp Loop 21
compares the temperature measurement value #/2/.pv to the temperature setpoint ¢/21.sp
and computes #/2].out, which sets the required steam flow setpoint fI21.sp

Composite object 121 (Flow Loop 21) is an instance of the Loop composite class
shown in Figure 9 and is a single loop made up of block instances ain, pid, and aout.
Flow Loop 21 compares the steam flow measurement value fI21.pv to the required steam
flow setpoint f121.sp and computes the required steam valve position fI2/.out, which sets
process variable pr21.pv

Composite object pr21 (Process 21) is an instance of the TempProcess composite
class shown in Fig. 8.3.1-1 and simulates the temperature process. Process 21 uses
process variable pr21.pv and computes the resulting steam flow f121.pv and temperature
t21.pv.

Object ic21 is an instance of the InfoCollect block class. Object ic21 collects the
date/time, value, and status for 10 (configurable) samples of #21.pv, t121.sp, f121.pv,
f121.sp, and f121.out. Each of these objects is double-buffered and when one buffer fills it
switches to the other, which it overwrites.

Attributes

s21 is a Supv block.

ti21V1 is version 1 of a Ploop composite.

21 is an alias for a Ploop composite.

H21v2 is version 2 of a Ploop composite

WO 01/09690 PCT/US00/20828

10

15

20

25

30

33

21 is a Loop composite.

pr2l is a TempProcess composite.

ic2l is an InfoCollect block.

comp is a ObjList of Runnable objects.

Methods

config overrides default values and makes external connections.
Arguments: none,
Returns: none.

run schedules Loop2 objects and calls their run methods.
Arguments: none.

Returns: none

TempCasc

The TempCasc application illustrates the cascade composite object for control,
which is made up of component (composite) objects, while the process composite is made
up of block objects.

Overview

Figure 13 shows the TempCascade composite object and process, while Fig.
Figure 14 shows the same components in detail. Application TempCasc uses the config
method to instantiate composite objects 521, tc21, and pr21, and the run method to
schedule them for execution.

Composite object s21 (Supervisor 21) is an instance of the Supv block class
described in Sec. 8.3.2. It acts as a supervisory component and its output s2/.out sets the
temperature setpoint tc21.sp of Temp Loop tc21.

Composite object Temp Cascade 21, fc21, is an instance of the Cascade composite
class shown in Fig. 8.2.5-3 and is a cascade loop made up of Ploop instance pri, and Loop
instance sec.

Temp Cascade 21, tc21, uses measurement values tc2/.pv] and tc21.pv2 and
temperature setpoint fc21.sp and computes the required steam valve position out21.

Composite object pr2/ (Process 21) is an instance of the TempProcess component
class shown in Fig. 8.3.1-1 and simulates the temperature process. Process 21 uses

process variable pr2].pv and computes the resulting steam flow f121.pv and temperature
t21.pv.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

34

Object ic2! is an instance of the InfoCollect block class. Object ic21 collects the
date/time, value, and status for 10 (configurable) samples of tc21.sp, tc21.pvl, tc21.pv2,
and f121.out. Each of these objects is double-buffered and when one buffer fills it

switches to the other, which it overwrites.

Attributes

521 is a Supv block.

tc2l is a Cascade composite.
pr21 is a TempProcess composite.

comp is a ObjList of Runnable objects.

Methods

Config overrides default values and makes external connections.
Arguments: none.
Returns: none.

Run schedules TempCasc objects and calls their run methods.
Arguments: none.

Returns: none

Information Collection Objects

The purpose of information objects is to collect information for date/time, bool,
int, and float parameters, alarmSum, and modes.

The purpose of InfoCollect objects is to collect a specified number of samples for
the date/time, value, and status of a specified number of bool and float parameters,
alarmsSum, and mode. The samples are collected in two buffers. When one buffer fills
data storage is switched to the other.

An object from the InfoCollect class has paramBool parts from the
BoolParameter class, paramlint parts from the IntParameter class, paramFloat parts from
the FloatParameter class, actual mode parts from the Mode class, and alarmSum short
integers.

Methods from the source FloatParameter and BoolParameter classes can be used
to linkTo().

An object from the Event class may have a paramBool part from the

BoolParameter class, paramlInt parts from the IntParameter class, a paramFloat part from

WO 01/09690

10

15

20

‘25

30

PCT/US00/20828
35

the FloatParameter class, an actual mode part from the Mode class, and an alarmSum
short integer. '

Methods from the BoolParameter, IntParameter, and FloatVariable classes can be
used to linkTo().

Configuration

All parts that a block or part may use are declared. Mandatory parts are
instantiated in the declaration or constructor, while optional parts are not. If optional parts
are used, they are instantiated by the configurator. An arbitrary number of a specific part
type is specified as an argument of the container's constructor method. For example, see
the Supv class derived from the UserBlock in Loops2. An example of an optional part
class is Filter, which is used in the CascFloatlnput class.

Block classes are the lowest level classes that can be used as component classes
that are optionally interconnected to create composite classes. Of course the composite
classes can contain not only block classes but also other composite (component) classes,
and so on. The block classes and their mandatory and optional part, signal, and

inputOutput classes contain default values for each attribute.

Configuration of Composite Classes

Java code is written and compiled to create a new composite class. An already
existing composite class can be instantiated and the resulting composite object can be
customized to suit the application without compiling.

The code for a new composite contains name declarations of component blocks
and composites. Its constructor method preferably contains calls to the component’s
constructor methods. A block object that may have multiple part objects from the same
part class requires that the number of such part objects be specified as an argument in the
block’s constructor. This number may be passed from a containing composite
constructor’s argument.

A config method can be written that makes the internal variable and parameter
connections between components and overrides default parameter value and option
assignments. Connections are made and broken with /inkTo and Unlink methods of the
source parameter or variable. The linkTo method will not succeed if the sink parameter or
variable is already linked. A bidirectional cascade variable connection is made or broken

with a single /inkTo or Unlink method.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

36

Each component composite’s config method is called before overriding its
assignments. This method may be used to instantiate new optional part objects and
override their defaults. Each component block or composite is added to the composite’s
comp list in the order in which they are to execute.

A run method must be written. This calls in sequence the run method of each
component block and composite.

After compilation any number of new composite objects can be created from this
composite class in the same way as standard composite objects can be created from its
library class.

The following are examples of composite classes: Loop, Ploop, Cascade,

TempProcess.

Configuration of Block and Composite Object Instances

The block classes, the composite classes, and the user composite classes can be
used to configure as many block and composite object instances as desired without
recompiling provided there is a capable configure process.

Examples of block and composite object instances: Loops2 and TempCasc.

Configuration Without Compilation

A control system implemented with PCOs as described above can be configured
without compilation. To this end, the following steps can be performed:

Create a configuration object which contains configured PCO objects including
parameter values, initial target mode and all connections among various blocks necessary
for a closed-loop control.

Download the configuration object to the field device.

Create an object file based on the configuration object.

Start PCO execution from the object file.

Change connections among PCO blocks on the fly by invoking a remote method.

Transfer PCO parameters or variables from a client (host) to a server (field
device) together with a string identifying the blocks and related PCO parts and signals .

Add and remove new blocks on the fly. New blocks are instantiated in the device
and added into the runList. Connections to the new blocks are made on the fly as well.

Enable PCO optional parts on the fly.

Checkpoint on demand.

WO 01/09690

10

15

20

25

30

PCT/US00/20828
37

Upload an object file into the configurator.

A general RMI Remotelnterface is designed to make all on-line operations listed
above possible. The methods in this Remotelnterface provide a useful framework for
further development. In particular, several common methods are provided to deal with the
following important issues:

Access PCO Parameters and Variables via a string name and an object. The string
name follows the naming convention outlined in this document.

Make connections between blocks by invoking a remote method. Sink and source
of arrays can be connected by a single remote method call.

Enable any PCO optional parts of any PCO blocks by invoking a single remote
method.

The implementation of these methods utilizes the Java Reflection package which

is included in Java 1.1.

IEC 1131-3

The IEC 1131-3 specification requires that its Sequential Function Charts and the
three different languages namely, Structured Text, Ladder Logic, and Function Blocks
work in concert, that is, a user can intermix them and create a control strategy. An
example is the creation of a task using Structured Test, which invokes the in-line code
execution of a Ladder(s) or a Function Block(s).

Referring to Figure 4 the IEC 1131-3 functionality (Sequential Function Charts,
Structured Text, Ladder Logic, and Function Blocks) is shown as a subclass(s) under the
UserBlock class. The UserBlock class provides the inputs and outputs as defined by the
PCO to all its subclasses, thus enabling interconnection between PCO and IEC 1131-3
objects. The IEC 1131-3 configurator then can produce Java bytecode directly, or can

compile source code of another language such as structured text into Java bytecode.

Execution Environment

Process Conrol Objects are preferably run as Java applications (though, they can
be run as Java applets, servlets, or the like), with each composite and block object having
its own run method, which is called by the run method of the next higher level composite
object. Scheduling of a thread is preferably also done in Java, though it can be performed
elsewise. For example, a real-time operating system can be used for scheduling, though,

it is preferably not hardware specific. The sleep interval until the next run start is

WO 01/09690 PCT/US00/20828

10

15

20

25

30

38

determined by adding the Block Processing Cycle (BPC) time to the present desired run
start time and subtracting the current time (in milliseconds).

Each thread preferably has its own object set and run methods. When device is
powered up, it starts a PCO application shell. The application shell itself is a Java
application. Once it gets started, it runs until device is powered down or rebooted. After
the application shell starts, it periodically checks for messages sent from a host running
the configurator. In the illustrated embodiment, it understands three types of messages,
FileCreation, Commit and Checkpoint.

FileCreation

This message is sent when the OK button is pressed. Once this message is
received, the application shell serializes the configuration object to a file in the local file
system of the device.

Commit

This message is sent when the Commit button is pressed. Once this message is
received, the application shell does the following:

(1) Load the object file from the file system with the file name given in the
message; '

(2) Loop through the HashTable built in configuration object to identify all
blocks;

(3) Make the block objects available to the remote object;

(4) Start a control thread which executes each object in the runList.

Checkpoint

This message is sent when the Checkpoint button is pressed. Once this message is
received, the application shell serializes the current configuration object into a file in the
local file system. This file is the checkpoint file which can be transferred to any computer

via FTP.

Verification and Validation

Verification and validation of control blocks can be implemented in the manner
described in copending, commonly assigned United States Patent Application No.
09/345,215, filed June 30, 1999, and its counterpart PCT Application Serial No.
US00/16152, filed June 9, 2000, both entitled Process Control and Method with Auto-

WO 01/09690 PCT/US00/20828

10

15

20

25

30

39

Updating, the teachings of which are incorporated herein by reference, and the

specification common to both of which is attached in the Appendix hereto.
Platform Communications

Intra-Platform Communication

A cascaded FloatVariable, IntVariable or BoolVariable requires that some of its
fields (subobjects) be communicated downstream (forw, alarmSum, uncertainty,
maintenance) and others upstream (back, range). All unidirectional variable fields are
communicated downstream. Intra-platform communication is done by reference.
Variables are stored in an output part of the upstream block and linked to the downstream
block with a linkTo() method called at configure time. There is also an unLink() method
that can be called to reconfigure.

Objects are not moved from place-to-place within a platform. Input and output
signals are instances of the xxVariable class. Variable linking is discussed above.
"Constants" such as a gain or time constant are instances of the FloatParameter class. A
FloatParameter can be linked to a forw or back parameter of a FloatVariable with a
linkTo() method. Each Parameter (such as forw and back) has two status bytes, one is
enumerated providing SEVA (clear/blind etc. instead of good/bad) status and cascade
status, the other a packed Boolean containing limit bits and linking and setting permission

status bits.

Cascade Peer-to-Peer Communication

Block-to-block input-output Variable connections within a station are made by
reference. Although the data resides in the upstream block, either block may be the source
for a particular attribute. Thus in a cascade (one-to-one) connection, the forw Parameter
(value, status, limStatus) and alarmSum are set by the upstream block and the back
Parameter and Range are set by the downstream block. The upstream block sets all of the
unidirectional Variable attributes.

When the upstream and downstream blocks are in different stations, both
unidirectional and bidirectional communication is more complicated. A copy (proxy) of
the Variable (or Parameter) that resides in the upstream block must also exist in the
downstream block. A cascade Variable must be split into its forward- and back-

propagated Parameters. If push (publish-subscribe) communications are used, the source

WO 01/09690 PCT/US00/20828

10

15

20

25

30

40

station needs a publish list of the source object references and a source String names
(topics). The sink object needs a subscribe list of the sink object references (proxies) and
source object String names (topics).

Figure 17 shows an example of cascade peer-to-peer communication. The cascade
control loop consists of AIN1 and PID1 that make up the temperature loop TL1 and AIN2
and P1D2 that make up flow loop FL2. TL1 is in device NCAP1 and FL2 is in device
NCAP?2. In the forward direction from PID1 to PID2, output OUT of PID1 sets the
remote setpoint RSP of PID2. In the backward direction from PID2 to PID1, output
BACK of PID2 sets the BACK of PID1.

Each device has a Publisher and a Subscriber list and a CommsAPL. Each
publisher and subscriber list contains references and topics. The topics are strings
indicated in quotes.

Consider the communication in the forward direction from PID1 to PID2.
Publisher1 shows reference PID1.OUT, which points to the actual parameter object OUT
that needs to be transferred to its subscriber(s) and its corresponding topic “PID1.OUT™.
This topic is subscibed to by Subscriber2, which shows topic “PID1.OUT” and reference
PID1Proxy.RSP. This reference points to the actual parameter proxy object
PID1Proxy.RSP where the required parameter object is transferred to. Controller PID2
references this object and uses it when it executes.

Now consider the communication in the back direction from PID2 to PID1.
Publisher2 shows reference.PlDlProxy.BACK, which points to the actual parameter
object that needs to be transferred to its subscriber(s) and its corresponding topic
“PID1.BACK” . This topic is subscibed to by Subscriberl, which shows topic
“PID1.BACK” and reference PID1.BACK. This reference points to the actual parameter

object BACK where the required parameter object is transferred to.

PCO Object Based Transfer

There are two types of communications transfer cascade and unidirectional.

Cascade transfer for peer-to-peer inter-platform communication requires transfer
of parameters (value, status, limStatus, time). The previous section provides an example
of transfer of parameters for cascade transfer.

Unidirectional transfer for peer-to-peer inter-platform communication requires

transfer of variables (forw parameter, range, uncertainty, maintenance, alarmSum).

WO 01/09690 PCT/US00/20828

10

15

20

25

30

41

Object transfer as opposed to fundamental data type allows more information to
be transferred in each message, therefore fewer messages and a smaller lookup table.
Periodic transfers can be done using publish-subscribe services. One-to-one event driven
transfers can be done with client-server services.

Peer-to-peer requires transfer of parameters (value, status, limStatus, time) for
cascade transfer or variables (forw parameter, range, uncertainty, maintenance,
alarmSum) for unidirectional transfer. Assuming publish-subscribe, each published object
must have a unique string name that the subscribing device can recognize.

Operator display requires a trend object (setpoint, measurement, output forw
parameters and input and output modes). Publish-subscribe may be used for this also.
User setpoint, output, and mode changes can be transmitted using RMI.

Block details require transfer of an object containing the part parameters on each
open window each time one changes. Settable changes can be transmitted using RMI.

Configuration requires the streaming of a PCO configuration or checkpoint file.
Also it is necessary to be able to invoke remote methods with object arguments.

A historian can receive InfoCollect buffer objects.

Figure 18 provides a summary of the variable and parameter transfer and rules.

Discussion

Blocks structured with a body and one or more input and output parts. Each
cascade input part supports local/remote/supervisory switching, setpoint limiting,
matched characterization, additive or multiplicative feedforward (bias or ratio setpoint),
pV (process variable) output, measurement (in) filtering, deviation 9pv-sp), alarming, and
support for bumpless initialization and antiwindup recovery from downstream limiting.
Each output part supports manual/auto, supervisory switching, output limiting and
alarming, additive or multiplicative feedforward, and bumpless initialization and

antiwindup recovery from downstream limiting.

Variables are alarmed at their source and alarm status is communicated to sinks as
part of the variable. Range is specified at a measurement source and communicated to
sinks as part of the variable. Cascaded range is transmitted upstream. Blocks are the
lowest level objects that are recognized at the system level. Each block and its parts must

reside in a single station or device. Composites may span stations or devices.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

42

Parts Classes

This section describes the part classes, which are contained in the Parts package.
A Part must be contained in a block or other part contained in a block. Each block may
have one or more input parts, a body, and one or more oufput parts. Input and output Part
classes contain or reference either FloatVariable, BoolVariable, or IntVariable signals
which enable uni-directional or bi-directional communication between blocks.

An unused optional part has a null reference. The configurator must instantiate an

optional part before it can be used or its parameters set.

UniDirFloatInput
Overview
UniDirFloatInput is a measurement path input interface part that initializes and

applies charactization, and filtering to its in signal.

Attributes

in is a reference to a FloatVariable source. in.forw.value is in eng.
units.

charac is a reference to an optional signal Characterizer.
charac.xPt[i] and charac.yPt[i] are breakpoint coordinates, float
values.

filter is a reference to an optional signal Filter.

options is a packed boolean byte with:

I_Oin is provided from device and point

device is the String name of an i/o device that is the source of in.
point is an integer used to identify an i/o address within the device.
pv is a Float Variable output representing the processed in value.
gain is a FloatParameter that multiplies pv.

dtime 1is areference to an optional Deadtime part.
Methods for Developer
UniDirFloatInput (constructor)

Arguments: none.

Returns: none.

startup

Arguments: none

WO 01/09690

10

15

20

25

30

PCT/US00/20828
43

tests span.

Returns: true if ready to run.

CascFloatInput

Overview

CascFloatInput is an input interface part that provides initialization,
local/remote/supervisory switching, optional setpoint limiting, optional local or
supervisory setpoint ramping, optional deviation alarming, and an optional multiplicative
or additive feedforward input.

Its internal methods are called by its container block.

startup() Called when out-of-service, retums true if ready to run.

inHandle() Sets back values and status, processes in.

locRemTarget() Determines the internal target mode.

devHandle(period) Handles setpoint and deviation.

initialize() Provides bumpless mode transitions.

modeHandle() Provides functionality for active mode.

limitStatus(lim) Propagates limit bits to back.status.

Attributes

remSP is an optional reference to the source of the remote setpoint
FloatVariable.

supvSP is an optional reference to the source of the supervisory setpoint, a
FloatVariable.

Irs is the setpoint local/remote/supervisory Mode having target, actual,
permitted, and last packed boolean bytes whose bits are:

0_S Block is out of service

INITIALIZE Transition actual mode enables bumpless transfer to target
mode
LOCAL Operator or set method can set sp.
REMOTE External block (remSP) sets setpoint.
SUPER Supervisory task (supvSP) sets setpoint.
LINKED Permitted attribute indicates target connected to external

source.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

44

fdFwd is an optional reference to the source of a Feedforward object.
JdFwd ff is a reference to the source of a FloatVariable.
fdFwd.gain is a FloatParameter gain applied to fdFwd.ff.

ramp is an optional reference to the source of a Ramp object.
ramp.rateDn is a positive FloatParameter specifying the rate down.
ramp.rateUp is a positive FloatParameter specifying the rate up.
ramp.target is a FloatParameter that contains the termination value.
ramp.trigger is a BoolParameter that starts the ramp.

limit is an optional reference to the source of a setpoint Limit object.

limit.hi is the high limit, FloatParameter
limit.lo is the low limit, FloatParameter
alarmDevi is an optional reference to the source of a deviation Alarm object.
alarmDev.hi is the high alarm limit, a FloatParameter.
alarmDev .lo is the low alarm limit, a FloatParameter.

alarmDev hys is the alarm hysteresis, a FloatParameter.
alarmDev.delay is an optional alarm delay in seconds, a
FloatParameter
alarmDev.noAck is a boolean, alarm requires no acknowledge if
true.

sp is a FloatVariable representing the current setpoint. In the LOCAL
mode sp can be set

deviation is a FloatVariable output representing in - sp. It can be alarmed.

Attributes from super class.

in is a reference to a FloatVariable source. in forw.value is in eng.
units.
charac is a reference to an optional signal Characterizer.

charac.xPt[i] and charac.yPt[i] are breakpoint coordinates, float

values.
filter is a reference to an optional signal Filter.
options is a packed boolean byte with bits assigned as:

SP_PV_TRK_MAN Setpoint tracks PV when output is manually set.
SP_DN_UNCER Setpoint is decreased by the uncertainty.
SP_UP_UNCER Setpoint is increased by the uncertainty.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

45
MULT_FF Feedforward is multiplicative, else it is additive.
device is the String name of an i/o device that is the source of in.
point is an integer used to identify an /0 address within the device.
pv is a Float Variable output representing the processed in value.

Methods for Developer
CascFloatinput (constructor)
Arguments: none.
Instantiates sp and deviation.
Returns: none.
startup
Arguments: none.
Called when out-of-service.
Returns: true if ready to run.
inHandle
Arguments: none.
Sets back values and status, processes in and feedforward.
Returns: none.
locRemTarget
Arguments: none.
Determines the internal target mode.
Returns: none.
devHandl
Arguments: period is the time since the last update in seconds, a
double.
Handles setpoint and deviation.
Returns: none
initialize
Arguments: none.
Provides bumpless mode transitions
Returns: none.
modeHandle
Arguments: none.

Provides functionality for active mode.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

46

Returns: none.
limitStatus
Arguments: /im holds limit bits to be propagated upstream, an
integer.
Propagates limit bits to back.status.

Returns: none.

UniDirFloatOutput

Overview

UniDirFloatOutput is an output interface part that provides
auto/manual/supervisory switching, optional out limiting, optional out alarming, and an
optional multiplicative or additive feedforward input.

Its methods are called by its container block.

startup() Called when out-of-service, returns true if ready to run.

manAutoTarget() Determines the internal target mode.

modeHandle(period) Provides functionality for active mode.

Attributes

fdFwd is an optional reference to the source of a Feedforward object.
fdFwd.ff is areference to the source of a FloatVariable.
wd.gain is a FloatParameter gain applied to fdFwd ff.

supvOut is an optional reference to the source of the supervisory output, a
FloatVariable.

mas is the output manual-auto-supervisory Mode having target, actual,

permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
INITIALIZE Transition actual mode enables bumpless transfer to target
mode
MANUAL Operator or set method can set out.
AUTO Block algorithm sets out.
SUPER Supervisory task (supvSP) sets setpoint.
LINKED Permitted attribute indicates target connected to external
source.

INTERLOCK interlock.in sets out when interlock.trigger is true.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

47

options is a packed boolean byte with bits assigned as:
LIM_MAN Limits are applied to manual output.
ALM_MAN Alarming is applied to a manual output.
MAN_START Block retumns from out-of-service in MANUAL
mode.
MULT_FF Feedforward is multiplicative, else it is additive.
ALARM_BLURRED Block alarm triggered by BLURRED signal status.
1O out is provided to device and point.
limit is an optional reference to the source of an out Limit object.
limit.hi is the high limit, FloatParameter
limit.lo is the low limit, FloatParameter
alarmHi is an optional reference to the source of an out Alarm object.
alarmHi.hi is the high alarm limit, a FloatParameter.
alarmHi.lo is the low alarm limit, a FloatParameter.
alarmHi hys is the alarm hysteresis, a FloatParameter.
alarmHi.delay is an optional alarm delay in seconds, a
FloatParameter
alarmHi.noAck is a boolean, alarm requires no acknowledge if true.
alarmHiHi is an optional reference to the source of an out Alarm object.
alarmHiHi.hi is the high alarm limit, a FloatParameter.
alarmHiHi lo is the low alarm limit, a FloatParameter.
alarmHiHi.hys is the alarm hysteresis, a FloatParameter.
alarmHiHi.delay is an optional alarm delay in seconds, a
FloatP araméter
alarmHiHi.noAck is a boolean, alarm requires no acknowledge if
true.
interlock is an optional object used to invoke an override of the current
Mode.
interlock.trigger is a BoolParameter used to invoke INTERLOCK
Mode.
interlock.reset is a BoolParameter used to return to normal Mode,

provided interlock.trigger is false.

WO 01/09690 PCT/US00/20828

10

15

20 .

25

30

48

interlock.in is a FloatParameter that sets out in the INTERLOCK

Mode.
device is the String name of an /o0 device that is the sink of out.
point is an integer used to identify an i/o address within the device.
out is a FloatVariable representing the current output. In the MANUAL

mode out can be set
fbk is the integral feedback input, a FloatParameter, which is connected
by default to out.back if it is connected externally, otherwise to
out.forw..
Methods for Developer
UniDirFloatOutput (constructor)
Arguments: none.
Instantiates out.
Returns: none.
startup
Arguments: none.
Attributes from super class
FdFwd is an optional reference to the source of a Feedforward object.
fdEFwd. ff is areference to the source of a FloatVariable.

fdFwd.gain is a FloatParameter gain applied to fdFwd. ff.

supvOut is an optional reference to the source of the supervisory output, a
FloatVariable.
mas is the output manual-auto-supervisory Mode having target, actual,

permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
INITIALIZE Transition actual mode enables bumpless transfer to target
mode
MANUAL Operator or set method can set out.
AUTO Block algorithm sets out.
SUPER Supervisory task (supvSP) sets setpoint.
LINKED Permitted attribute indicates target connected to external
source.

INTERLOCK interlock.in sets out when interlock.trigger is true.

WO 01/09690 PCT/US00/20828
49

options is a packed boolean byte with bits assigned as:
LIM_MAN Limits are applied to manual output.
ALM_MAN Alarming is applied to a manual output.
MAN_START Block returns from out-of-service in MANUAL
5 mode.
MULT_FF Feedforward is multiplicative, else it is additive.
ALARM_BLURRED Block alarm triggered by BLURRED signal status.
limit is a reference to the source of an out Limit object.
limit.hi is the high limit, FloatParameter
10 limit.lo is the low limit, FloatParameter
alarmHi is an optional reference to the source of an out Alarm object.
alarmHiHi is an optional reference to the source of an out Alarm object.
alarmHiHi.hi is the high alarm limit, a FloatParameter.
alarmHiHi.lo is the low alarm limit, a FloatParameter,
15 alarmHiHi.hys is the alarm hysteresis, a FloatParameter.
alarmHiHi.delay is an optional alarm delay in seconds, a
FloatParameter
alarmHiHi.noAck is a boolean, alarm requires no acknowledge if
true.
20 interlock is an optional object used to invoke an override of the current
Mode.
interlock.trigger is a BoolParameter used to invoke INTERLOCK
Mode.
interlock.reset is a BoolParameter used to return to normal Mode,
25 provided interlock.trigger is false.
interlock.in is a FloatParameter that sets out in the INTERLOCK
Mode.
device is the String name of an i/o device that is the sink of out.
point is an integer used to identify an i/o address within the device.
30 out is a FloatVariable representing the current output. In the MANUAL
mode out can be set
Methods for Developer
CascFloatOutput (constructor)

WO 01/09690

10

15

20

25

30

50.

Arguments: none.
Instantiates out and limit.
Returns: none.
manAutoTarget
Arguments: none.
Determines the internal target mode
Returns: none.
bkCalc
Arguments: none.
Compensates integral feedback for feedforwards.
Returns: none.
initialize
Arguments: none.
Provides bumpless mode transitions.
Returns: none.
Methods from super class
startup
Arguments: none.
Called when out-of-service, returns true if ready to run.
Returns: none.
modeHandle
Arguments: period is the time since the last update in seconds, a
double.
Provides functionality for active mode.

Returns: none.

Alarm

Overview

Alarm is an optional part for all outputs. Its float method is func(x,type,period)
where #ype is true for HH and LL, false for HI and LO. Its boolean method is
Sfunc(x,period). Alarm reporting can be delayed if the optional delay parameter is not null
or inhibited if inhib is true.

Attributes

PCT/US00/20828

WO 01/09690 PCT/US00/20828

10

15

20

25

30

51

hi s the high alarm limit, a FloatParameter.
lo is the low alarm limit, a FloatParameter.
hys is the alarm hysteresis, a FloatParameter.
lim is the boolean alarm state, a BoolParameter.
lim is an optional output, true if alarm is active, a BoolParameter.
delay is an optional alarm delay in seconds, a FloatParameter.
noAck is a boolean, alarm requires no acknowledge if true.
inhib is a boolean, inhibits alarm if true.
Methods for Developer
Alarm (constructor)
Arguments: none,. signifying a float alarm.
Returns: none.
Alarm (constructor)
Arguments: r is a FloatRange.object used to set the alarm limits.
Returns: none.
Alarm (constructor)
Arguments: b is a boolean signifying a boolean alarm..
Returns: none.
Sfunc
Arguments: x is the alarmed BoolVariable.
period is the time since the last update in seconds, a
double blurdl
Returns: none.
Junc
Arguments: x is the alarmed BoolVariable.
period is the time since the last update in seconds, a
double blurdl

Returns: none.

Characterizer

Overview

WO 01/09690 PCT/US00/20828
52

Characterizer is an optional part class used in the CascFloatlnput part,
UniDirFloatInput part, LinearFlow part, and ProcessSim block classes. Its method is y =
func(x). The number of breakpoints is specified as the constructor argument.
Attributes
5 xPt[i] and yPt[i] are breakpoint coordinates, float values.
Methods for Developer
Characterizer (constructor)

Arguments: »Pt is an int number of (xPt, yPt) break points.

Returns: none.
10 Func
Arguments: . is the input to the function, a double (x if forw is
true).
Forw is true ifu =x,v=y,elseu =y, v =x.
Returns: _ v is the output of the function, a double (y if forw is
15 true)
FeedForward
Overview

Feedforward is an optional part class used in CascFloatlnput, CascFloatOutput,
and UniDirFloatOutput classes. It provides multiplicative or additive compensation for
20 the input. Its methods are "= forwFunc(f, mult, out) and b = backFunc(b,mult), where
mult and out are booleans indicating if true that the compensation is multiplicative and
applied to output respectively.
Attributes
Nid is a reference to the source of a FloatVariable.
25 Gain is a FloatParameter gain applied to ff-
Methods for Developer
Feedforward (constructor)
Arguments: none,
Returns: none.
30 ForwFunc
Arguments: sig is the internal pre feedforward out.forw.value, a
double.

WO 01/09690 PCT/US00/20828
53

mult is true if feedforward is multiplicative.

out is true if the feedforward is an output part. Then
a multiplicative feedforward is normalized with its
high-range value.

S Returns: the prelimited out.forw.value, a double.

backFunc
Arguments: sig = fbk.value, a double.

mult is true if feedforward is multiplicative.

Returns: the back-calculated internal fbk, a double.

10 Filter
Overview
Filter is a part class used in the CascFloatlnput part, UniDirFloatInput part,
and ProcessSim block classes. Its method is y = func(x,period). 1t is initialized
with init(x).

y:
15 1+sz'me~s+.nype-()‘Time-s)2
v= fTime-s-y
(1+1lead-s)-x

1+sz'me-s+.nype-(;‘Time-s)2

returns.

Attributes
FTime is the filter time in seconds, a FloatParameter.
lead is the lead time in seconds, a FloatParameter.
fType specifies the filter denomiator type, a FloatParameter.
20 1/2 Butterworth, 1/3 Averaging, 1/4 Two-Lag, 0 One-Lag
y is the low-pass filtered output, a double.

v isthe band-pass filtered output, a double.

Methods for Developer
25 Filter (constructor)
Arguments: none.
Instantiates fTimeto 0., fType to .S, and lead to 0.

WO 01/09690

10

15

20

25

30

Limit

PCT/US00/20828
54

Retumns: none.
init
Arguments: x is the filter input, a double
Initializes the filter output to equal its input..
Returns: none.
func
Arguments: x is the filter input, a double.
period is the time since the last update in seconds, a
double
Returns: the filter output, a double.
Overview

Limit is a part class applied to the setpoint in the CascFloatinput, and to the out of

a CascFloatOutput, and UniDirFloatOutput classes. Its method is x = func(x). The high

limit cannot be less than the low limit. Neither limit may be more than 2% beyond the

range limits.

Attributes
hi is areference to a FloatVariable containing the high limit.
lo is areference to a FloatVariable containing the low limit.
Methods for Developer
Limit (constructor)

Arguments: none.

Instantiates /i and lo.

Returns: none.
Sfunc

Arguments: x is the FloatVariable to be limited.

Retums: none.

Overview

Ramp is an optional part class applied to the local setpoint in the CascFloatInput

class. It provides a triggered ramp function with the method y = func(x,period).

Attributes

WO 01/09690 PCT/US00/20828

10

15

20

25

30

55

rateDn is a positive FloatParameter specifying the rate down.
rateUp is a positive FloatParameter specifying the rate up.
target is a FloatParameter that contains the termination value.

trigger is a BoolParameter that starts the ramp.

Methods for Developer
Ramp(constructor) (boolean link)
Arguments: none.
Returns: none.
Ramp(constructor)
Arguments: none.
Returns: none.
Sfunc
Arguments: spt is the input to the ramp, a double.
period is the time since the last update in seconds, a
double.
Returns: the ramp result, a double.

UniDirBoollnput

signal.

Overview

UniDirBoollnput is a measurement path input interface part that initializes to its in

Attributes

in is a reference to a BoolVariable source.
filter is a reference to an optional signal Filter.
options is a packed boolean byte with:

1_Oin is provided from device and point

device is the String name of an I/O device that is the source of in.
point is an integer used to identify an I/O address within the device.
pv is a BoolVariable output representing the processed in value,
Methods for Developer

UniDirFloatlnput (constructor)
Arguments: none.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

56

Returns: none.
startup
Arguments: none
Returns: true if ready to run.

CascBoollnput

Overview

CascBoollnput is an input interface part that provides initialization and

local/remote/supervisory switching,

Its internal methods are called by its container block.

startup() Called when out-of-service, retumns true if ready to run.
inHandle() Sets back values and status, processes in.
locRemTarget() Determines the internal target mode.
devHandle(period) Handles setpoint and deviation.

initialize() Provides bumpless mode transitions.

modeHandle() Provides functionality for active mode.

Attributes

remSP is an optional reference to the source of the remote setpoint
BoolVariable.

supvSP is an optional reference to the source of the supervisory setpoint, a
BoolVariable.

Irs is the setpoint local/remote/supervisory Mode having target, actual,

permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
INITIALIZE Transition actual mode enables bumpless transfer to target
mode
LOCAL Operator or set method can set sp.
REMOTE External block (remSP) sets setpoint.
SUPER Supervisory task (supvSP) sets setpoint.
LINKED Permitted attribute indicates target connected to external

source.

WO 01/09690

PCT/US00/20828
57

sp is a BoolVariable representing the current setpoint. In the LOCAL

mode sp can be set
filter

options

is a reference to an optional signal BoolFilter.
is a packed boolean byte with bits assigned as:
pv is a IntVariable output representing the processed in value.
Methods for Developer
CascBoollnput(constructor)
Arguments: none.
Returns: none.

10 startup
Arguments: none.

Called when out-of-service.

Returns: true if ready to run.
inHandle

15 Arguments: none.

Sets back values and status.
Returns: none.

locRemTarget

Arguments: none.

20 Determines the internal target mode.

Returns: none.
devHandl
Arguments: none.
Handles setpoint.
25 Returns: none
initialize
Arguments: none.

Provides bumpless mode transitions
Returns: none.

30 modeHandle
Arguments: none.

Provides functionality for active mode.
Returns: none.

WO 01/09690 PCT/US00/20828
58

UniDirBoolOutput
Overview
UniDirBoolOQutput is an output interface part that provides
auto/manual/supervisory switching.
5 Its methods are called by its container block.
startup() Called when out-of-service, returns true if ready to run.
manAutoTarget() Determines the internal target mode.

modeHandle(period) Provides functionality for active mode.

Attributes
10 supvOut is an optional reference to the source of the supervisory output, a
BoolVariable.
mas is the output manual-auto-supervisory Mode having target, actual,

permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
15 INITIALIZE Transition actual mode enables bumpless transfer to target
mode
MANUAL Operator or set method can set out.
AUTO Block algorithm sets out.
SUPER Supervisory task (supvSP) sets setpoint.
20 LINKED Permitted attribute indicates target connected to external
source.
INTERLOCK interlock.in sets out when interlock.trigger is true.
options is a packed boolean byte with bits assigned as:
ALARM_BLURRED Block alarm triggered by BLURRED signal
25 status.
I_O out is provided to device and point.
alarm is an optional reference to the source of an out Alarm object.
alarmHi.hi is the high alarm limit, a FloatParameter.
alarmHi.lo is the low alarm limit, a FloatParameter.
30 alarmHi.hys is the alarm hysteresis, a FloatParameter.
alarmHi.delay is an optional alarm delay in seconds, a
FloatParameter

alarmHi.noAck is a boolean, alarm requires no acknowledge if true.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

59

interlock is an optional object used to invoke an override of the current
Mode.
interlock.trigger is a BoolParameter used to invoke INTERLOCK
Mode.
interlock.reset is a BoolParameter used to return to normal Mode,
provided interlock.trigger is false. interlock.in is a FloatParameter
that sets out in the INTERLOCK Mode.

device is the String name of an /O device that is the sink of out.
point is an integer used to identify an I/O address within the device.
out is a BoolVariable representing the current output. In the MANUAL

mode out can be set.
Methods for Developer
UniDirBoolQutput (constructor)
Arguments: none.
Instantiates out.
Returns: none.
startup
Arguments: none..
Called when out-of-service, returns true if ready to run.
Returns: none.
manAutoTarget
Arguments: none.

Determines the internal target mode

Returns: none.
modeHandle
Arguments: period is the time since the last update in seconds, a
double.
Provides functionality for active mode.
Returns: none.
CascBoolOutput

Overview

WO 01/09690 PCT/US00/20828

10

15

20

25

30

60

CascBoolOutput is an output interface part that provides initialization,

auto/manual/supervisory switching.

Its methods are called by its container block.

startup() Called when out-of-service, returns true if ready to run.
manAutoTarget() Determines the internal target mode.

bkCalc() Set the backword values.

initialize() Provides bumpless mode transitions.

modeHandle(period) Provides functionality for active mode.

Attributes

outl is a BoolVariable representing the first output. In the MANUAL
mode out0 can be set.

outl is a BoolVariable representing the second output. In the MANUAL
mode out] can be set.

point0 is an integer used to identify the 1/O address of outz0.

pointl is an integer used to identify the /O address of outl.

Attributes from super class

supvQOut is an optional reference to the source of the supervisory output, a
BoolVariable.

mas is the output manual-auto-supervisory Mode having target, actual,

. permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
INITIALIZE Transition actual mode enables bumpless transfer to target
mode
MANUAL Operator or set method can set out.
AUTO Block algorithm sets out.
SUPER Supervisory task (supvSP) sets setpoint.
LINKED Permitted attribute indicates target connected to external
source.
INTERLOCK interlock.in sets out when interlock.trigger is true.
alarm is an optional reference to the source of an out Alarm object.
alarmHi.hi is the high alarm limit, a FloatParameter.
alarmHi lo is the low alarm limit, a FloatParameter,

alarmHi.hys is the alarm hysteresis, a FloatParameter.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

61

alarmHi.delay is an optional alarm delay in seconds, a
FloatParameter

alarmHi.noAck is a boolean, alarm requires no acknowledge if true.

interlock is an optional object used to invoke an override of the current

Mode.
interlock.trigger is a BoolParameter used to invoke INTERLOCK
Mode. interlock.reset is a BoolParameter used to return to normal
Mode, provided interlock.trigger is false. interlock.in is a
FloatParameter that sets out in the INTERLOCK Mode.

device is the String name of an /O device that is the sink of out.
point is an integer used to identify an I/O address within the device.
out is a BoolVariable. It is assigned to out0, the first output.
Methods for Developer

CascBoolOutput (constructor)
Arguments: none.
Instantiates out0 and outl.
Returns: none.
manAutoTarget
Arguments: none.
Determines the internal target mode
Returns: none.
bkCalc
Arguments: none.
Set the backword values for out0 and out1.
Returns: none.
initialize
v Arguments: nomne.
Provides bumpless mode transitions.
Returns: none.
Methods from super class
startup
Arguments: none.

Called when out-of-service, returns true if ready to run.

WO 01/09690 PCT/US00/20828
62

Returns: none.

modeHandle

Arguments: period is the time since the last update in seconds, a
double.
5 Provides functionality for active mode.
Returns: none.
BoolFilter
Overview

BoolFilter is a part class used in classes such as DeviceControl and Logic. Its
10 method is y = func(x, period). It is initialized with init() to y = 0 each time the input

changes state.

d()
=a
1
YT+ frime- s
veturns :{ tinput state y20.632
output state otherwise
Attributes
fTime is the filter time in seconds, a FloatParameter.
15
Methods for Developer
BoolFilter(constructor)
Arguments: none.
Returns: none.
20 init
Arguments: x is the filter input, a double
Initializes the filter output to its input.
Returns: none.
func
25 Arguments: x is the filter input, a double.

period is the time since the last update in seconds, a double

Returns: the filter output, a boolean.

WO 01/09690 PCT/US00/20828
63

UniDirlntInput
Overview
UniDirIntInput is a measurement path input interface part that initializes to its in

signal.

5 Attributes
in is a reference to a IntVariable source.
Sfilter is a reference to an optional signal IntFilter.
options is a packed boolean byte with:
1_O in is provided from device and point
10 device is the String name of an I/O device that is the source of in.
point is an integer used to identify an I/O address within the device.
pv is a IntVariable output representing the processed in value.
Methods for Developer
UniDirintlnput (constructor)
15 Arguments: none.
Returns: none.
startup
Arguments: none

Returns: true if ready to run.

20 CasclntInput
Overview
Cascintlnput is an input interface part that provides initialization and
local/remote/supervisory switching.
Its internal methods are called by its container block.

25 startup() Called when out-of-service, returns true if ready to run.
inHandle() Sets back values and status, processes in.
locRemTarget() Determines the internal target mode.
devHandle(period) Handles setpoint and deviation.
initialize() Provides bumpless mode transitions.

30 modeHandle() Provides functionality for active mode.
Attributes

WO 01/09690 PCT/US00/20828

64
remSP is an optional reference to the source of the remote setpoint
IntVariable.
supvSP is an optional reference to the source of the supervisory setpoint, a
IntVariable.
S Irs is the setpoint local/remote/supervisory Mode having target, actual,

permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
INITIALIZE Transition actual mode enables bumpless transfer to target
mode
10 LOCAL Operator or set method can set sp.
REMOTE External block (remSP) sets setpoint.
SUPER Supervisory task (supvSP) sets setpoint.
LINKED Permitted attribute indicates target connected to external
source.
15 sp is a IntVariable representing the current setpoint. In the LOCAL

mode sp can be set

pv is a IntVariable output representing the processed in value.
Methods for Developer
20 CuascBoollnput(constructor)
Arguments: none.
Returns: none.
startup
Arguments: none.
25 Called when out-of-service.
Returns: true if ready to run.
inHandle
Arguments: none.
Sets back values and status.
30 Returns: none.
locRemTarget
Arguments: none.

Determines the internal target mode.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

65

Returns: none.
devHandl
Arguments: none.
Handles setpoint.
Returns: none
initialize
Arguments: none.
Provides bumpless mode transitions
Returns: none.
modeHandle
Arguments: none.
Provides functionality for active mode.

Returns: none.

UniDirIntOutput
Overview
UniDirIntOutput is an output interface part that provides auto/manual/supervisory
switching.
Its methods are called by its container block.
startup() Called when out-of-service, returns true if ready to run.
manAutoTarget() Determines the internal target mode.

modeHandle(period) Provides functionality for active mode.

Attributes

supvQut is an optional reference to the source of the supervisory output, a
IntVariable.

mas is the output manual-auto-supervisory Mode having target, actual,

permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
INITIALIZE Transition actual mode enables bumpless transfer to target
mode
MANUAL Operator or set method can set out.
AUTO Block algorithm sets out.
SUPER Supervisory task (supvSP) sets setpoint.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

66

LINKED Permitted attribute indicates target connected to external
source.

INTERLOCK interlock.in sets out when interlock.trigger is true.

options is a packed boolean byte with bits assigned as:
MAN_START Block returns from out-of-service in MANUAL
mode.

ALARM_BLURRED Block alarm triggered by BLURRED signal status.
1O out is provided to device and point.
alarm is an optional reference to the source of an our Alarm object.
alarmHi.hi is the high alarm limit, a FloatParameter.
alarmHi.lo is the low alarm limit, a FloatParameter.
alarmHi.hys is the alarm hysteresis, a FloatParameter.
alarmHi.delay is an optional alarm delay in seconds, a
FloatParameter
alarmHi.noAck is a boolean, alarm requires no acknowledge if true.
interlock is an optional object used to invoke an override of the current
Mode.
interlock.trigger is a BoolParameter used to invoke INTERLOCK
Mode. interlock.reset is a BoolParameter used to return to normal
Mode, provided interlock.trigger is false. interlock.in is a
FloatParameter that sets out in the INTERLOCK Mode.

device is the String name of an I/O device that is the sink of out.
point is an integer used to identify an i/0 address within the device.
out is a IntVariable representing the current output. In the MANUAL

mode out can be set.
Methods for Developer
UniDirBoolOutput (constructor)
Arguments: none.
Instantiates out.
Returns: none.
startup
Arguments: none..

Called when out-of-service, returns true if ready to run.

WO 01/09690 PCT/US00/20828
67

Returns: none.
manAutoTarget
Arguments: none.

Determines the internal target mode

5 Returns: none.
modeHandle
Arguments: period is the time since the last update in seconds, a
double.
Provides functionality for active mode.
10 Returns: none.
CascIntOutput
Overview

CascIntOutput is an output interface part that provides initialization and
auto/manual/supervisory switching.
15 Its methods are called by its container block.
startup() Called when out-of-service, returns true if ready to run.
manAutoTarget() Determines the internal target mode.
bkCalc() Set the backword values.

initialize() Provides bumpless mode transitions.

20 modeHandle(period) Provides functionality for active mode.
Attributes '
point is an integer used to identify address of out.

Attributes from super class

supvOut is an optional reference to the source of the supervisory output, a
25 IntVariable.
mas is the output manual-auto-supervisory Mode having target, actual,

permitted, and last packed boolean bytes whose bits are:
O_S Block is out of service
INITIALIZE Transition actual mode enables bumpless transfer to target
30 mode
MANUAL Operator or set method can set out.
AUTO Block algorithm sets out.

WO 01/09690

10

15

20

25

30

68

SUPER Supervisory task (supvSP) sets setpoint.
LINKED Permitted attribute indicates target connected to external
source.
INTERLOCK interlock.in sets out when interlock.trigger is true.
alarm is an optional reference to the source of an out Alarm object.
alarmDev.hi is the high alarm limit, a FloatParameter.
alarmDev .lo is the low alarm limit, a FloatParameter.
alarmDev .hys is the alarm hysteresis, a FloatParameter.
alarmDev .delay is an optional alarm delay in seconds, a
FloatParameter
alarmDev.noAck is a boolean, alarm requires no acknowledge if
true.
interlock is an optional object used to invoke an override of the current
Mode.
interlock.trigger is a BoolParameter used to invoke INTERLOCK
Mode. interlock.reset is a BoolParameter used to return to normal
Mode, provided interlock.trigger is false. interlock.in is a
FloatParameter that sets out in the INTERLOCK Mode.
device is the String name of an 1/O device that is the sink of out.
point is an integer used to identify an I/O address within the device.
out is a IntVariable representing the current output. In the MANUAL
mode out can be set.
Methods for Developer
CascBoolOutput (constructor)
Arguments: none.
Instantiates out.
Returns: none.
manAutoTarget
Arguments: none.
Determines the internal target mode
Returns: none.
bkCalc
Arguments: none.

PCT/US00/20828

WO 01/09690 PCT/US00/20828
69

Set the backword values for out.
Returns: none.

initialize

Arguments: none.
5 Provides bumpless mode transitions.
Returns: none.
Methods from super class
startup

Arguments: none.

10 Called when out-of-service, returns true if ready to run.
Returns: none.
modeHandle
Arguments: period is the time since the last update in seconds, a
double.
15 Provides functionality for active mode.
Returns: none.
IntFilter
Overview

IntFilter is a part class used in the Discretelnput class. Its method is y =

20 func(x,period). It is initialized with init(to y = I each time the input changes state.

d
5= 40
dt
y e __1—.
1+ fTime- s
input state y 20.632
returns .
output state otherwise
Attributes
fTime is the filter time in seconds, a FloatParameter.
25 Methods for Developer

BoolFilter(constructor)
Arguments: none.

Returns: none.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

70

init
Arguments; x is the filter input, a double
Initializes the filter output to equal its input..
Returns: none.
func
Arguments: x is the filter input, a double.
period is the time since the last update in seconds, a
double
Returns: the filter output, a boolean.
PIDParameters
Overview

PIDParameters is an optional part class containing tuning parameters used in the

AdvancedPID class.

Attributes
PGain is the nondimensional prpoortional gain, a FloatParameter.
integral is the integral time in seconds, a FloatParameter.
derivativeis the derivative time in seconds, a FloatParameter.
relGain is the nondimensional relative gain on setpoint, a FloatParameter.
dtime isthe optional deadtime in seconds, a FloatParameter
fTime is the measurement filter time in seconds, a FloatParameter.
bypass is an optional BoolParameter, if true the controller is bypassed.
Zone is an optional iject from the Zone class, used to position a region
of low gain where the control error is small.
sampleReady is a BoolParameter indicating that a new measurement value is
available.
Its default value is true.
options is a packed-boolean byte with the following assignments:
IFS_IF_BAD_RSP initiates failsafe if remoteSP is BLIND
IFS_IF_BAD_IN Initiates failsafe if in is BLIND .

INCOPT increasing in causes out to increase.
PD no controller integral action.
I_ONLY only controller integral action.

PASS_RANGE the range is passed to the setpoint.

WO 01/09690 PCT/US00/20828
71

Methods for Developer
PIDParameters (constructor)
Arguments: none.
Instantiates pGain, integral, derivative, and relGain.

5 Returns: none.

Deadtime
Overview
Deadtime is a part class used in the AdvancedPID and ProcessSim classes. Its
method y = func(x,period) implements a bucket-brigade delay line. The number of
10 buckets is specified as the constructor argument.
Attributes
dt is the deadtime in seconds, a FloatParameter.
Methods for Developer
Deadtime() (constructor)
15 Arguments: none.
Instantiates dt, uses 10 buckets.
Returns: none.
Deadtime (constructor)
Arguments: numBuckets is the number of buckets, an int..
20 Instantiates dt.
Retumns: none.
hold
Arguments: none
Returns: none.
25 init
Arguments: x
Initializes the delayed signal to equal input x.
Returns: none.
Sfunc
30 Arguments: x
period is the time since the last update in seconds, a
double.

WO 01/09690 PCT/US00/20828
72

Returns: the value of the delayed signal, a double..

Zone
Overview

Zone is a part class used in the AdvancedPID class. It is a three segment

5 characterizer used as a nonlinear noise filter and in pH control. Its method is y = func(x).
Attributes
hi is the upper control error breakpoint in percent of in span, a
FloatParameter.
lo is the lower control error breakpoint in percent of in span, a
10 FloatParameter.
Methods for Developer
Zone (constructor)
Arguments; none.
Instantiates Ai, lo, and k.
15 Returns: none.
Sfunc
Arguments: x is the input signal, a double.
Returns: the Zone output signal, a double.
FailSafe
20 Overview
FailSafe is a part class used by AnalogOQutput and Logic classes.
Attributes
fsTime Sf5Timeis a FloatParameter wait time in seconds before failsafe is
activated.
25 var var is the FloatParameter that sets the valve target when failsafe is
active.
bool is the value of a BoolParameter that sets out when failsafe is active.
Methods for Developer
Failsafe (constructor)
30 Arguments: none.

Returns: none.

WO 01/09690 PCT/US00/20828
73

LinearFlow
Overview
LinearFlow is an optional part used to cause the our Variable of an AnalogOutput
block to be a valve position target that will make valve flow linear with the AnalogOutput
5 setpoint. Its methods
are X = forw(v) and v = back(x). The parameter 0 <= beta <=1 is defined
as:
Valve pressures at max opening: p1, p2
Supply pressures: ps, Pa

10 Liquid: g=2—"Fz
p.~P.

2 _ 2
e
p.\‘ —pa

0 <=v <=1 is normalized flow
0 <=y <=1 is normalized valve flow area
0 <= x <=1 is normalized valve stem position.
15 Maximum liquid power is delivered to the load when beta is 1/3 and v=1.
Then the ratio of max-to-min slopes dv/dy is 5.2. The pressure drop correction

is:

Ve ?"}
1-v* (1- B
x = func(y,true)
20 Attributes
beta is the pressure drop ratio, a FloatParameter.
turndown is (max flow area)/(min flow area) for an equql-percentage valve,
an optional FloatParameter.
charac is an optional object of the Characterizer class providing
25 normalized stroke vs. normalized area in the forward direction.
Methods for Developer

LinearFlow (constructor)
Arguments: none.

Returns: none.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

74

forw
Arguments: the normalized target flow, a double.
Returns: the nomalized target valve position, a double.
back
Arguments: the nomalized actual valve position, a double.

Returns: the normalized back-calculated flow, a double.

InfoBuffer

Overview

InfoBuffer is a part class used by the InfoCollect class. Its method func

implements double buffering with a bucket-brigade delay line for each parameter stored.

The number of buckets (time steps) is specified as a constructor argument.

Attributes
xTime[buf] [step] is an array of time stamp in milliseconds since Jan
1, 1970, a long.
xFloat[buf] [step] [nFP]is an optional array of FloatParameter value floats.
xFStatus[buf] [step] [nFP] is an optional array of FloatParameter status bytes.
xBool [buf] [step] [nBP] is an optional array of BoolParameter values.
xBStatus[buf][step][nBP] is an optional array of BoolParameter status bytes.
xMode[buf] [step] [nM] is an optional array of Mode actual bytes.
xAlarm[buf] [step] [nAl]is an optional array of AlarmSum shorts.
Methods for Developer
InfoBuffer(constructor)
Arguments: x is the time stamp, a long.
NumSteps is the length of the buffer, an int.

Returns: none.

InfoBuffer(constructor)
Arguments; x is an array of FloatParameters.
nP is the number of FloatParameters
NumsSteps is the length of the buffer, an int.

Returns: none.

InfoBuffer(constructor)

Arguments: x is an array of BoolParameters.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

75

nP is the number of BoolParameters
NumSteps is the length of the buffer, an int.
Retumns: none.
InfoBuffer(constructor)
Arguments: x is an array of Modes.
nP is the number of Modes.
NumSteps is the length of the buffer, an int.
Returns: none.
InfoBuffer(constructor)
Arguments: x is an array of bytes.
nP is the number of bytes
NumSteps 1s the length of the buffer, an int.

Returns: none.
func
Arguments: buf is number of the buffer, an int.
step is the position in the buffer, an int.
x is the time stamp, a long.
Returns: none.
Sfunc

Arguments: bufis number of the buffer, an int.
step is the position in the buffer, an int.
x is an array of FloatParameters.
Returns: none.
Sfunc
Arguments: buf is number of the buffer, an int.
step is the position in the buffer, an int.
x is an array of BoolParameters.
Returns: none,
Sfunc
Arguments: buf is number of the buffer, an int.
step is the position in the buffer, an int.
x is an array of Modes.

Returns: none.

WO 01/09690

10

15

20

25

30

PCT/US00/20828

76

Sfunc
Arguments: buf is number of the buffer, an int.
step is the position in the buffer, an int.
x is an array of shorts.
Returns: none.
TimeCount
Overview

TimeCount is a part class that performs a timer function. Method func returns true

when time reaches pre-specified time value.

Attributes

tTime is the time in seconds, a FloatParameter.
timeElapsed is the time elapsed since timer starts, a double.
statusFlag indicates whether timer is running or stopped.
Methods for Developer

TimeCount (constructor)

init

Sfunc

stop

Arguments: countUp, a boolean, Timer counts up from 0 if
countUp is true; counts down from ¢Time otherwise.
Instantiates 7ime, a FloatParameter.

Returns: none.

Arguments: none.
Initializes the timer. It should be called before timer starts.

Returns: none.

Arguments: period is the time since the last update in seconds, a
double.
Updates the timer.

Returns: none.

Arguments: none,

Stops the timer. It should be called when the timer is going to stop.

Returns: none.

WO 01/09690 PCT/US00/20828
77

getTime
Arguments: none.
Gets the time elapsed since timer starts.
Returns: elapsed time, a double.
5 Interlock
Overview

Interlock is an optional part class used to invoke an override of the current out

Variable.

Attributes

10 interlock.trigger is a BoolParameter used to invoke INTERLOCK Mode.
interlock.reset is a BoolParameter used to return to normal Mode.
interlock.in is a FloatParameter or BoolParameter that sets out in the

INTERLOCK Mode.

Methods for Developer

15 None.

Discussion of Parts Classes

Parts are optional or mandatory parts of blocks, providing optional functionality or
functionality shared by many blocks. Generally, each block has one or more input parts, a
body, and one or more output parts. Exceptions are InfoCollect, Event, and IOInterface

20 blocks.

input (-Input) and output (-Output) parts may be of the unidirectional (UniDir-) or
cascade (Casc-) types and may be for float (-Float-), boolean (-Bool-), or short (16 bit)
integer (-Int-) value data types.

Unidirectional inputs and outputs are used in blocks, such as Analoglnput and
25 ProcessSim, located in a measurement signal path. Dynamic elements in these blocks are

initialized to steady-state corresponding to the current in value.

A unidirectional or cascade output part provides manual, auto, supervisory mode
switching to select the source of the out variable. Before the mode switch the auto signal
may be modified by an additive or multiplicative feedforward (unidirectional) source.

30 Afier the mode switch the output is limited (optional in manual) and may be alarmed

WO 01/09690 PCT/US00/20828

10

15

20

25

30

78

(optional in manual). In a cascade output part the out limits are each bidirectional
variables that can be connected from a bidirectional out variable of another AdvancedPID
block to implement a constraint or override. Each output part has an interlock input that

when triggered overrides the out variable from other sources.

A cascade input part provides local/remote/supervisory mode switching to select
the setpoint sp (bidirectional) source. The local setpoint may be ramped, the setpoint
limited and modified by an additive or multiplicative feedforward (unidirectional) source.
If the cascade part has an in (unidirectional measurement) signal, both it and the signal in
the setpoint path may be linearized with matched functions before being passed to the
block body. Then the signal in the measurement path is filtered (quadratic
Butterworth).The cascade input part has two unidirectional output variables, pv and
deviation. When the block has an in, as in an AdvancedPID block, it is passed to the pv.
When it doesn’t, as in an AnalogOutput block, pv is back calculated from a signal passed
from the body. In either case deviation, which may be alarmed, is the difference between

pv and sp.

Signals Classes

This section describes the signal classes, which are contained in the Signals
package. Objects from Signals classes contain the information communicated between
linked blocks or inserted into blocks as constants. These classes also provide methods to
be used by users and tasks for setting and getting values and for linking and unlinking
parameters and variables. The Signals package also contains an interface class for shared

constants,

Constants

Overview

Constants is an interface containing state, status, mode, and option assignments
shared by all blocks and their parts.

Attributes

Manual, auto, supervisory (mas) output modes are:

0_S Block is out of service.
INITIALIZE Transition actual mode enables bumpless transfer to target

mode.

WO 01/09690

PCT/US00/20828

79

MANUAL Operator or set method can set output.

AUTO Block algorithm sets output.

SUPER Supervisory task sets output.

LINKED Permitted attribute indicating Mode target is connected to
external source.

INTERLOCK Interlock sets output, actual mode is enabled by trigger,
disabled by reset.

Local, remote, supervisory (/rs) setpoint modes are:

10

15

0_S Block is out of service

INITIALIZE Transition actual mode énables bumpless transfer to target
mode

LOCAL Operator or set method can set setpoint.

REMOTE External block sets setpoint.

SUPER Supervisory task sets setpoint.

LINKED Permitted attribute indicates mode target connected to

external source.

Signal quality status has the following (SEVA) ranked values:

20

25

CLEAR Signal is valid, on-line, and within spec.

CLOSE_CAS status is used to close cascade connection.

INIT status is used to open cascade connection.

BLURRED Signal is degraded, uncertainty is increased.
DAZZLED Signal is temporarily invalid, replaced by an estimate.
BLIND Signal is permanently invalid, replaced by an estimate.
FAILSAFEstatus indicates valve is forced to failsafe position.

OFFLINE Source is out of service.

Device maintenance status has the following (SEVA) ranked values:

30

NOMINAL Maintenance is not needed.

ON_TEST Device is in test or calibration mode.

LOW_PRIORITY Minor fault has been detected, quality status is
BLURRED.

HIGH_PRIORITY Major fault has been detected, quality status is
BLIND.

CRITICAL Critical fault detected, jeopardizing safety.

WO 01/09690 PCT/US00/20828
80

UNCHECKED maintenance reporting is not supported.
Limit indication and linking and setting permissions are contained in a packed

Boolean status:

LIM_LO Signal is at its low limit.
5 LIM_HI Signal is at its high limit.

CONSTANT Signal is manually set.

CASCADE Signal is cascade connected.

UNSETABLE Signal can not be set. It is linked and not MANUAL
or LOCAL

10 LINKED Signal is already linked, it cannot be connected to

two sources.

LINK_NOSET Signal can not be set or linked.

NON_NEG Signal is prevented from having a negative value.

NOT_MEDIAN Signal is determined not to be the median signal.
15 Input part options include:

SP_PV_TRK_MAN Setpoint tracks PV when output is manually set.

SP_DN_UNCER Setpoint is decreased by the uncertainty.

SP_UP_UNCER Setpoint is increased by the uncertainty.

MULT_FF Feedforward is multiplicative, else it is additive.
20 IO in is provided from device and point

Output part options include:
LIM_MAN Limits are applied to MANUAL output.
ALM_MAN Alarming is applied to a MANUAL output.

MAN_START Block returns from out-of-service in MANUAL
25 mode.
MULT_FF Feedforward is multiplicative, else it is additive.

ALARM_BLURRED Block alarm triggered by BLURRED signal status.
| 0] out is provided to device and point.

Feedback tuner states are;

30 PRETUNE Pretune is active. Controller must be in MANUAL.
OFF Tuner is off or not connected.
HOLD Selftune is suspended but stored tuning sets are

used.

WO 01/09690

10

15

20

25

30

PCT/US00/20828
81
QUIET The loop is undisturbed, no error-peak search is in
progress.
LOCATE_1 Error peak 1 is sought.
LOCATE_2 Error peak 2 is sought.
LOCATE_3 Error peak 3 is sought.
LOCATE_4 Error peak 4 is sought.
WAIT Tuning update is waiting for an output peak search
to complete.
SETTLE Selftune is testing for error settling before returning
to QUIET.
The feedforward tuner states are:
OFF Tuner is off or not connected.
HOLD Feedforward tuning is suspended and stored tuning
sets are used.
QUIET The loop is undisturbed, no moment integration is in
progress.
UNMEAS An error upset is detected before a load upset.
MEAS A load upset is detected while QUIET.
SIGNIF When MEAS, the control error exceeds the
threshold
CNFIRM When SIGNIF, the feedback tuner finds peak 1.
WAIT There is no wait time before compensation update.
SETTLE The error is tested for settling before returning to
QUIET.
The alarmSum states are:
LL_ACT Low-low alarm is active.
LO_ACT Low alarm is active.
HI_ACT High-high alarm is active.
HH_ACT High alarm is active.

B_ACT Boolean alarm is active.

BLK_ACT Block alarm is active.
LL_UNACK Low-low alarm is unacknowledged.
LO_UNACK Low alarm is unacknowledged.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

82

HI_UNACK High-high alarm is unacknowledged.
HH_UNACK High alarm is unacknowledged.
B_UNACK Boolean alarm is unacknowledged.
BLK_UNACK Block alarm is unacknowledged.
UNACK Set to false to acknowledge all of these alarms.

Mode
Overview
The cascade input parts use the Mode class for local-remote-supervisory (Irs)
switching. The oufput parts use the Mode class for manual-auto-supervisory (mas)
switching.
Attributes
The Mode class has four byte attributes whose bit assignments are assigned by the
Constants interface:
target requested mode; one bit is set, default O_S bit set.
actual currently active mode; one bit is set, default O_S bit set.
permitted allowed modes; several bits may be set, default all bits are set.
last - the last mode both requested and active; one bit is set, default O_S
bit set.
Methods
getMode
Arguments: none.
Returns: active mode.
setMode
Arguments: desired mode.
If the mode is not linked
target mode is set to desired mode.
Returns: true
Else:
target mode is not changed.
Retumns: false
linkTo Called from source

Arguments: sink reference.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

83

If the sink is not linked
Source and sink are linked.
Returns: source reference
Else:
Returns: unchanged sink reference
unlink Called from source
Arguments: new sink reference.
Source and sink are unlinked
Returns: instantiates new sink object with existing target,

actual, permitted (not linked), and last.

Parameter
Overview
Parameter is an abstract class providing features common to FloatParameter,

BoolParameter, and IntParameter.

Attributes
status (SEVA ranked) signal quality status, enumerated byte.

limStatus Limit indication and link and set permissions, packed boolean byte.

source source is a String name.

time timestamp, a long integer msec. since 1970
Methods

getStatus

Arguments: none.

Returns: signal quality status.

FloatParameter

Overview

A block's or part's continuous tuning parameters are instances of the
FloatParameter class.

It inherits from the Parameter class. The FloatParameter contains floating-point
value and two status bytes. The value of an unlinked parameter may be set with the

setValue method. A source for a linked parameter may be the forw or back part source

WO 01/09690 PCT/US00/20828
84

block's out variable. It is linked (connected) by its /inkTo method with a reference for the
sink block's parameter.
Attributes
value floating point signal value.
5 Attributes from super class
status (SEVA ranked) signal quality status, enumerated byte.

limStatus Limit indication and link and set permissions, packed boolean byte.

source source is a String name.
time timestamp, a long integer msec. since 1970
10 Methods

linkTo Called from source
Arguments: sink reference, source name.
If the sink is not linked
Source and sink are linked.
15 The source name is assigned

Returns: source reference

Else:
Retumns: unchanged sink reference
unlink Called from source
20 Arguments: sink reference.
Source and sink are unlinked
Returns: instantiates new sink object with existing value and
clear status.
getValue
25 Arguments: none.
Returns: value.
setValue

Arguments: desired value.
If the mode is not unsetable:
30 value is set to desired value.
Returns: true
Else:

value is not changed.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

85
Returns: false

Methods from super class
getStatus

Arguments: none.

Returns: signal quality status.

FloatRange

Overview

The FloatRange class contains the high and low range limits and their units. A
range object is contained in a FloatVariable. Range information is entered at the signal
source and propagated downstream with a unidirectional connection and upstream with a

bidirectional (cascade) connection.

Attributes
hi high range limit in engineering units, float, default is 100.
lo low range limit in engineering units, float, default 0.

units engineering units, String, default %.

delta is a communication threshold, a float value in engineering units,
default 0.
Variable
Overview

Variable is an abstract class providing features common to Float Variable, Bool

Variable, and Int Variable.

Attributes

alarmSum active and unacknowledged alarms, packed Boolean short.
maintenance SEVA ranked maintenance status, enumerated byte.
source source is a String name.

Methods

ack

Arguments: none.

All alarms are acknowledged.

Returns: none.
getAlarmHI

Arguments: none.

WO 01/09690

10

15

20

25

30

86
If high alarm is active:
Returns: true.
Else
Returns false.
getAlarmHH

Arguments: none.
If high-high alarm is active:
Returns: true.
Else
Returns false.
getAlarmLO
Arguments: none.
If low alarm is active:
Returns: true.
Else
Returns false.
getAlarmLL
Arguments: none.
If low-low alarm is active:
Returns: true.
Else
Returns false.
getAlarmBLK
Arguments: none.
If block alarm is active:
Returns: true.
Else
Retumns false.
getAlarmB
Arguments: none.
If boolean alarm is active:
Returns: true.
Else

PCT/US00/20828

WO 01/09690 PCT/US00/20828

10

15

20

25

30

87

Returns false.

FloatVariable

Overview

A block output or input signal is an instance of the FloatVariable class. It inherits
from Variable and is usually contained in the source block's oufput part and linked
(connected) by its /inkTo method with a reference for the sink block's variable. A cascade
connection, such as primary- out to secondary-remoteSP, is bidirectional. A
FoatParameter (forw) is set by the primary. Another FoatParameter (back) is set by
the.secondary. Both parameters and other entities are contained in the FloatVariable class.
A connection from an Analoglnput's out to an AdvancedPID's in is uni-directional. It's
FloatVariable has a forw parameter but no back parameter. The FloatVariable also
conveys uncertainty, range, and maintenance information, backwards for a cascade
connection and forwards for a uni-directional connection. Alarm summary information is
conveyed forwards.

Attributes

Sforw forward propagated FloatParameter, value (eu), status, limStatus.

back backward propagated FloatParameter, value (eu), status, limStatus.

range high, low range limits in engineering units (eu), FloatRange class.

uncertainty SEVA uncertainty, float value (eu).

Attributes from super class

alarmSum active and unacknowledged alarms, packed Boolean short.

maintenance SEVA ranked maintenance status, enumerated byte.
source source is a String name.
Methods

linkTo Called from forw source
Arguments: forw sink reference, source name.
If the forw sink is not linked
Source and sink are linked.
The source name is assigned.
Returns: forw source reference

Else:

WO 01/09690

10

15

20

25

30

88

Returns: unchangcd forw sink reference
Unlink Called from forw source
Arguments: forw sink reference.
CASCADE or 0.
Source and sink are unlinked
Returns: instantiates new sink object.
Methods from super class
ack
Arguments: none.
All alarms are acknowledged.
Returns: none.
getAlarmHI
Arguments: none.
If high alarm is active:
Returns: true.
Else
Returns false.
getAlarmHH
Arguments: none.
If high-high alarm is active:
Returns: true.
Else
Returns false.
getAlarmLO
Arguments: none.
If low alarm is active:
Returns: true.
Else
Returns false.
getAlarmLL
Arguments: none.
If low-low alarm is active:

Returns: true.

PCT/US00/20828

WO 01/09690 PCT/US00/20828

10

15

20

25

30

89
Else
Returns false.
getAlarmBLK
Arguments: none.
If block alarm is active:
Returns: true.
Else
Returns false.
BoolParameter
Overview

A block's or part's binary parameters are instances of the BoolParameter class. It
inherits from the Parameter class. The BoolParameter contains boolean value and two
status bytes. The value of an unlinked parameter may be set with the setValue method. A
source for a linked parameter may be the forw or back part source block's out variable. It
is linked (connected) by its /inkTo method with a reference for the sink block's parameter.

Attributes

value boolean signal value.

Attributes from super class

status (SEVA ranked) signal quality status, enumerated byte.

limStatus limit indication and link and set permissions, packed Boolean byte.

source source is a String name.
time timestamp, a long integer msec. since 1970
Methods

linkTo Called from source

Arguments: sink reference, source name.

If the sink is not linked.
Source and sink are linked.

The source name is assigned

Returns: source reference.

Else:
Returns: unchanged sink reference.

unlink Called from source

WO 01/09690 PCT/US00/20828

10

15

20

25

30

920

Arguments: sink reference.
Source and sink are unlinked |
Returns: instantiates new sink object with existing value and
clear status.
getValue
Arguments: mnone.
Returns: value.
setValue
Arguments: desired value.
If the parameter is not unsetable:
value is set to desired value.
Returns: true
Else:
value is not changed.
Returns: false
Methods from super class
getStatus
Arguments: none.

Returns: signal quality status.

BooleanVariable

Overview

A block’s binary output or input signal is an instance of the BoolVariable class. It
inherits from Variable and is usually contained in the source block's oufput part and
linked (connected) by its linkTo method with a reference for the sink block's variable. A
cascade connection, such as primary-out to secondary- remoteSP, is bidirectional. A
BoolParameter (forw) is set by the primary. Another BoolParameter (back) is set by the
secondary. Both parameters and other entities are contained in the BoolVariable class.
The BoolVariable also conveys the maintenance information, backwards for a cascade
connection and forwards for a uni-directional connection. Alarm summary information is
conveyed forwards.

Attributes

forw forward propagated BoolParameter, value (eu), status, limStatus.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

91

back backward propagated BoolParameter, value (eu), status, limStatus.
Attributes from super class

alarmSum active and unacknowledged alarms, packed boolean short.

maintenance SEVA ranked maintenance status, enumerated byte.
source source is a String name.
Methods

linkTo Called from forw source
Arguments: forw sink reference, source name.
If the forw sink is not linked
Source and sink are linked.
The source name is assigned.
Returns: forw source reference
Else:
Returns: unchanged forw sink reference
unlink Called from forw source
Arguments: forw sink reference
CASCADE or 0
Source and sink are unlinked
Returns: instantiates new sink object.

Methods from super class

ack
Arguments: mnone.
The boolean alarm is acknowledged.
Returns: none.
getAlarm
Arguments: none.
If boolean alarm is active:
Returns: true.
Else
Returns false.
getAlarmBLK

Arguments: none.

If block alarm is active:

WO 01/09690 PCT/US00/20828

10

15

20

25

30

92

Returns: true.
Else
Returns false.

IntParameter

Overview

A block's or part's integer parameters are instances of the IntParameter class. It
inherits from the Parameter class. The IntParameter contains integer value and two status
bytes. The value of an unlinked parameter may be set with the setValue method. A source
for a linked parameter may be the forw or back part source block's out variable. It is
linked (connected) by its linkTo method with a reference for the sink block's parameter.

Attributes

value integer signal value,

Attributes from super class

status (SEVA ranked) signal quality status, enumerated byte.

limStatus limit indication and link and set permissions, packed Boolean byte.

source source is a String name.
time timestamp, a long integer msec. since 1970
Methods

linkTo Called from source
Arguments: sink reference, source name.
If the sink is not linked
Source and sink are linked.
The source name is assigned.
Returns: source reference.
Else:
Returns: unchanged sink reference.
unlink Called from source
Arguments: sink reference.
Source and sink are unlinked
Returns: new sink reference with existing value and clear status.
getValue

Arguments: none.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

93

Retumns: value.
setValue
Arguments: desired value.
If the parameter is not unsetable:
value is set to desired value.

Returns: true

Else:
value is not changed.
Returns: false

Methods from super class

getStatus
Arguments: none.
Returns: signal quality status.
IntRange
Overview

The IntRange class contains the high and low range limits. A range object is
contained in an IntVariable. Range information is entered at the signal source and
propagated downstream with a unidirectional connection and upstream with a
bidirectional (cascade) connection.

Attributes

hi high range limit in integer, default is 1.

lo low range limit in integer, default is 0.

IntVariable

Overview

A block’s integer output or input signal is an instance of the IntVariable class. It
inherits from Variable and is usually contained in the source block's output part and
linked (connected) by its linkTo method with a reference for the sink block's variable. A
cascade connection, such as primary- out to secondary- remoteSP, is bidirectional. An
IntParameter (forw) is set by the primary. Another IntParameter (back) is set by the
secondary. Both parameters and other entities are contained in the IntVariable class. The

IntVariable also conveys range, and maintenance information, backwards for a cascade

WO 01/09690

10

15

20

25

30

94

conveyed forwards.

Attributes

PCT/US00/20828

connection and forwards for a uni-directional connection. Alarm summary information is

SJorw forward propagated BoolParameter, value (eu), status, limStatus.

back backward propagated BoolParameter, value (eu), status, limStatus.

range high, low range limits in engineering units (eu), IntRange class.

Attributes from super class.

alarmSum active and unacknowledged alarms, packed Boolean short.

maintenance SEVA ranked maintenance status, enumerated byte.
source source is a String name.
Methods

linkTo Called from forw source
Arguments: forw sink reference, source name.
If the forw sink is not linked
Source and sink are linked.
The source name is assigned.
Returns: forw source reference
Else:
Returns: unchanged forw sink reference
unlink Called from forw source
Arguments: forw sink reference, CASCADE or 0
Source and sink are unlinked
Returns: instantiates new sink object.

Methods from super class

ack
Arguments: none.
All alarms are acknowledged.
Returns: none.
getAlarmHI

Arguments: none.

If high alarm is active:
Returns: true.

Else

WO 01/09690 PCT/US00/20828

10

15

20

25

30

95

Returns false.
getAlarmHH
Arguments: none.
If high-high alarm is active:
Returns: true.
Else
Returns false.
getAlarmLO
Arguments: none.
If low alarm is active:
Returns: true.
Else
Returns false.
getAlarmLL
Arguments: none.
If low-low alarm is active:
Returns: true.
Else
Returns false.
getAlarmBLK
Arguments: none.
If block alarm is active:
Returns: true.
Else
Returns false.

Discussion of Signals Classes

Interblock connections are performed with Variable and Parameter objects
contained in the upstream block and linked by reference to the downstream block. When
the upstream block and downstream block are in different stations, it is necessary to have
a periodically updated proxy Variable or Parameter in the station with the downstream
block. Fixed constants shared by potentially all blocks and parts are made available in the
Constants interface implemented or inherited by all PCOs. All PCOs also inherit or

WO 01/09690

10

15

20

25

PCT/US00/20828
96

implement the Serializable interface. Composites and blocks also inherit or implement the

Runnable interface.
External Interfaces for Signals Classes

Output signals are objects of a float, boolean, or int Variable class contained in the
upstream block. An input Variable of one block may be linked by reference to an output
Variable contained in another block in the same station. When the output variable is
contained in a block from a different station it is necessary to store a periodically updated
copy of the output Variable in the same station as the downstream block so that the input
may be linked by reference to the copy (proxy). A bidirectional Variable involved in a
cascade connection requires that certain of its Parameters and attributes (forw and
alarmSum) be communicated in the downstream direction, while others (back and range)

are communicated in the upstream direction.

Parameters of one block may be linked by reference to a Parameter component of
an output Variable in another block. Similarly an updated proxy Parameter is required in

the downstream block's station if the upstream block is in a different station.

A PCO Temperature Cascade Control Loop with a Simulated Process

A further appreciation of the operation of a control system 10 (Figure 1) and
particularly, for example, of a controller 36 (or other control device) that utilizes process
control objects (PCOs) of the type described above may be attained by reference to the
Java code listing that follows. This is an application of a PCO that implements a
temperature cascade control loop on the device (e.g., controller 36) on which it resides. A
graphical depiction of the operation of that control loop is presented in Figure 16, above.

Referring to the listing, in lines 3 - 7 declare and instantiate the composites and
blocks that make up the temperature cascade control loop PCO, to wit, supervisor (Supv)
block, the cascase composite (Cascade), the temperature process composite
(TempProcess), the information collection block (InfoCollect), and the object (ObjList)
that enumerates all objects that are to be executed by the control system 10. The latter
object is referred to as the "run" list. In lines 9 - 10, the code declares alias names for

parameters internal to the TempCasc PCO object itself.

WO 01/09690 PCT/US00/20828

10

15

20

25

30

97

Line 13 begins the configuration method, which is provided here merely as an
example of how a previously-instantiated PCO (e.g., the TempCasc PCO) can be
customized for use in a particular control system. Those skilled in the art will, of course,
appreciate that configuration can be performed other than via "hard coding" as shown in
lines 13, et seq. Typically, such configuration is performed via a graphical user interface.

In line 16, the previously instantiated user block object (s21) is added to the run
list. No additional configuration is shown here with respect thereto.

In lines 19 - 33, the cascade composite object (tc21) is configured and its input
variables connected, by reference, to the outputs of other objects utilized in the system 10.
Particularly, in lines 19 - 20, the analog input of the primary control loop in temperature
cascade object tc21 is connected to the temperature measurement output of the simulated
process object (pr21). In lines 21 - 22, a bidirectional connection is established between
the PID supervisory setpoint of the composite object tc21 and the output of the
supervisory block s21. In lines 23 - 24, a unidirectional connection is established
between the flow measurement output of the simulated process object pr21 and the analog
input of the secondary control loop in the temperature cascade object tc21.

In step 25, the configuration method of the temperature cascade control object
tc21 is invoked. This effects initialization of the parameters and connections for that
object tc21.

In step 26 - 27, an optional alarm part of object tc21's primary loop analog input is
instantiated. The default alarm limits are set in accord with the output range of the analog
input. In steps 28 - 29, the high and low alarm limits are set to 75 and 30, respectively.

In step 30, the input mode of the object tc21's primary PID is set to "supervisory,"
indicating that it will take its setpoint from supervisory object s21. Those skilled in the
art will, of course, appreciate that the supervisory setpoint could be set by other external
sources.

In steps 31 - 32, the tuning settings previously defined in user block s21 are
inserted into the primary and secondary loops of the PID controllers of the composite
tc21. Instep 33, the block period of the analog input block of the secondary loop is set.

In step 34, the composite tc21 is added to the run list.

In steps 37 - 40, the secondary analog output of the simulated process block tc21

is connected to the flow process input of composite pr21, the latter's configure method is

called and it is added to the run list.

WO 01/09690 PCT/US00/20828
98

In lines 43 - 47, inputs for the information collection block are connected to
outputs of blocks and composites of interest, and the former is added to the run list.
In lines 49 - 50, the composite objects tc21 and pr21 are turned "on" for execution.
The run method of the temperature cascade control loop begins at line 54. This
5 method is called by the control system 10 scheduler each BPC based on the loop's
inclusion in the run list. In steps 64 - 78, the run method of the cascade control loop
invokes the run methods of its respective composites and blocks, specifically, those
enumerated the run list. Though not shown here, the composites have their own run
lists, the blocks on which are called as each composite is called. In the illustrated
10 embodiment, a loop beginning at step 62 limits the foregoing to n cycles, merely for

purposes of testing and illustration.

PCT/US00/20828

WO 01/09690

929

‘oLxed 1zs = T3ud" ()Prdadb- () T1d396° 1203
! (49dNS) @POW3ISs * () sa1386 " () Indurish- () pTdlsb- () Tad3eb- 1203
f(-og)enTealss ()oT3eb THuxeTe" ()andanpieb- ()uTylasb: () Txd3sb 1223
{(-gL)enTeadss” () THIS6 THwxeTe " () andanoleb: ()utylish- () T1d3sb 1223
f (ebuex’ ()3ano39b- () andanpash - ()urtyaeb- () Txd3eb - 1zo3
yureTy msu = tHwIeTe ()andinpisb- ()utyasb- () Txd3sb 1zo3
! ()brguon-1Z0o3
! (ut- (0)3Indurlsh- ()uryasb- ()oes3=b 1703
YyOILMUTT " ()3Ino3sb- () andanpasb-morz tzad = ut’ (0)andurisbh- ()uryasb- ()o9s38b 1Zo3
! (gsadns- ()andurisb- ()pTdasb- () taxgasb 1zo3
YyOINUTT " () 3n03a36- (0)3eordandanplsb 1zs = dsadns- () andurash- () prdasb- () Tadasb 1zo3
{(ut- (0)Indurlsb- ()uryiab- () T2d386 1223
YyOIMUTT " () 3nO3ab- () andanpaeb-dwel - 1zad = ut* (0) andurasbh- ()uryish- () Tadasb 1Zo3
303lqo speosed //

! (1zs)ppe-dwod
)}oo1q I98n //

}

()bryuod pTOA DT3E]S

!MOTJI 1203 IojsweIedleoTd OTaels

!dwsa” 1223 I9]oweIedileoTd OTI3eas

f(01)3sT1lqo mau = dwod ast1fqo oT3e3S
!(0’0'0'%070T)3DSTTODOFULI MBU = TZOT 3D9TTODOFUI DT3RS
! ()ssoooxgdway mau = 1zad sseooxgdwal OT3RI1S

! ()opeose) mau = TZO3 opeose) DOT3e3S

! ()adng mduU = T12ZS adng oTaels

sjueasuo) sjuswsidwt osepdwsy sserdo orTand

}

— N T NNO 00N

SUBSTITUTE SHEET (RULE 26)

PCT/US00/20828

WO 01/09690

100

(+#+T ‘fu=>1 ‘0 = T) I037
{()STTTTIWBWILIUDIAND "WOISAS = 3JIe]3SoUWT]

‘0g = u
{JTp ‘3xe3gsswrly buot
X aTgnop
‘IT'T’U juT
}

(yunx ptoa oTT1and
()Brguoo 3o pus // {

! (dnx3)up3yyoarss- - tzad
! (dnx3)u03IF03ISs 1703

!(Teot1)ppe - dwod
[€] 3eoTguwexed" TZDOT
[z] yeoTawexed" TZOT
[T] yeoTawexed 120T
[0] 3eoTgwexed TZOT

jo9TTopoIul //

! ([g]3eoTqueaed IZOT)OILMUTT " () an03=ab- 1zo3
! ([Z]aeoTqueaed TZOT)OLMUTT" () ZzAdasb 1Zo2
! ([T]3eordwexed 1zoT)OINUTT" () Tad3asb 1zo3

! ([0]3eoTgwexed 1zoT)orqutT" ()dsasb 1zo2

! (1zxd)ppe dwod
! ()brguoo-1zad
! (ZA¥DSYD~‘ut" (0)andurleb-morz - Tzad)
OLYUTT " () 3Ino38b " () andanpasb- () noylyeb- ()035396° 1223 = utr- (0)3Indurisb-mor3y-tead
ssoooxgdwsy, //

*(1zo3)ppe-dwod
{1)poTIadoo1dass ()utyasb: ()oog3sb 1zo2
!Daxed-1zs = T3ud" ()pTdasdb- ()oss3isb-1zo3

4
19
09
6S
8¢
LS
9¢
Ss
123
€S
(43
|89
0s
17
8t
Ly
9
197
144
137
47
472
()7
6¢

Le
9¢
133
143
113
[43

-100-

SUBSTITUTE SHEET (RULE 26)

PCT/US00/20828

WO 01/09690

101

{¢(®)urautad- Ino ws3sis}

f()3xeas IpUl
! ()bTtyuoo -soTASpP

! (90TASP)PESIYL MAU = TPY] peaayl
! ()osepdwsl mau = 90TA9p osepdws]

}

({]sbxe Butaag)uTew pToa dT3els orignd

(Junz 3o pus // {

{

{
{
(@ uotideoxgpsidnixsjul)yoied
{!(31P)deaTs pPeEaIyL} L1313
}
(0<3TP) 3T
! ()STTITWAWILIUSIAND "Wa3sAg-3Ie3goWTl = JTIP
!700T =+ 3IeISOWT]
{
f(yunx- () astIrsbh - dwod
!3e@aq (TTnu==(3)3sT13I8b6 dwod) JT
}
(++3 ! ()yabusrisb-dwod>y !0 = I JUT) IOT
}

(++L ! ()potasgasgodgisb-geoz>L ‘0 = [3jut) x03

-101-

SUBSTITUTE SHEET (RULE 26)

WO 01/09690 PCT/US00/20828

10

102

Summary

Described herein are control systems and method meeting the objects set forth
above. Those skilled in the art will appreciate that the illustrated embodiment is an
example of the invention and that other embodiments incorporating changes therein fall
within the scope of the invention. Thus, by way of example, it will be appreciated that
the invention can be practiced utilizing, instead of or in addition to Java objects, Java
applets, servlets, and/or software constructs of programming languages other than Java.
Moreover, it will be appreciated that the invention can be utilized in a range of control
application, including, process, industrial, and environmental, among others. In view

thereof, what we claim is:

WO 01/09690 PCT/US00/20828
103

Appendix

Appendix
to
Patent Application for
Methods and Apparatus for Object-Based Process Control

Copies of common specifications for

United States Patent Application Serial No. 09/591,604, and to
counterpart PCT Application Serial No. PCT/US 00/15860, both
filed June 9, 2000, entitled METHODS AND APPARATUS FOR
CONTROL USING CONTROL DEVICES THAT PROVIDE A
VIRTUAL MACHINE ENVIRONMENT AND THAT
COMMUNICATE VIA AN IP NETWORK, and

United States Patent Application No. 09/345,215, filed June 30,
1999, and its counterpart PCT Application Serial No. US00/16152,
filed June 9, 2000, both entitled Process Control and Method with
Auto-Updating

10

15

20

25

30

WO 01/09690 PCT/US00/20828
104

Appendix

METHODS AND APPARATUS FOR CONTROL USING CONTROL DEVICES THAT
PROVIDE A VIRTUAL MACHINE ENVIRONMENT AND THAT COMMUNICATE VIA
AN IP NETWORK

Background of the Invention

This application claims the priority of the following United States Patent Applications: United
States Patent Application Serial No. 60/139,071, entitled OMNIBUS AND WEB CONTROL,
filed June 11, 1999; United States Patent Application Serial No. 60/144,693, entitled OMNIBUS
AND WEB CONTROL, filed July 20, 1999; United States Patent Application Serial No.
60/149,276, entitled METHODS AND APPARATUS FOR PROCESS CONTROL
("AUTOARCHITECTURE"), filed August 17, 1999; United States Patent Application Serial
No. 09/345,215, entitled PROCESS CONTROL SYSTEM AND METHOD WITH IMPROVED
DISTRIBUTION, INSTALLATION, AND VALIDATION OF COMPONENTS, filed June 30,
1999.

The invention pertains to control systems and, more particularly, to methods and apparatus for
networking, configuring and operating field devices, controllers, consoles and other control

devices.

The terms "control" and "control systems" refer to the control of a device or system by
monitoring one or more of its characteristics. This is used to insure that output, processing,
quality and/or efficiency remain within desired parameters over the course of time. In many
control systems, digital data processing or other automated apparatus monitor a device, process
or system and automatically adjust its operational parameters. In other control systems, such
apparatus monitor the device, process or system and display alarms or other indicia of its

characteristics, leaving responsibility for adjustment to the operator.
Control is used in a number of fields. Process control, for example, is employed in the
manufacturing sector for process, repetitive and discrete manufactures, though, it also has wide

application in utility and other service industries. Environmental control finds application in

-1-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
105

Appendix

residential, commercial, institutional and industrial settings, where temperature and other
environmental factors must be properly maintained. Control is also used in articles of

manufacture, from toasters to aircraft, to monitor and control device operation.

Modem day control systems typically include a combination of field devices, controllers,
workstations and other more powerful digital data processing apparatus, the functions of which
may overlap or be combined. Field devices include temperature, flow and other sensors that
measure characteristics of the subject device, process or system. They also include valves and
other actuators that mechanically, electrically, magnetically, or otherwise effect the desired

control.

Controllers generate settings for the control devices based on measurements from sensor type
field devices. Controller operation is typically based on a "control algorithm" that maintains a
controlled system at a desired level, or drives it to that level, by minimizing differences between

the values measured by the sensors and, for example, a setpoint defined by the operator.
Workstations, control stations and the like are typically used to configure and monitor the
process as a whole. They are often also used to execute higher-levels of process control, e.g.,

coordinating groups of controllers and responding to alarm conditions occurring within them.

In a food processing plant, for example, a workstation coordinates controllers that actuate

- conveyors, valves, and the like, to transport soup stock and other ingredients to a processing

vessel. The workstation also configures and monitors the controllers that maintain the contents
of that vessel at a simmer or low boil. The latter operate, for example, by comparing
measurements of vapor pressure in the processing vessel with a desired setpoint. If the vessel
pressure is too low, the control algorithm may call for incrementally opening the heating gas
valves, thereby, driving the pressure and boiling activity upwards. As the pressure approaches
the desired setpoint, the algorithm requires incrementally leveling the valves to maintain the roil

of the boil.

10

15

20

25

30

WO 01/09690 PCT/US00/20828
106

- Appendix

The field devices, controllers, workstations and other components that make up a process control
system typically communicate over heterogeneous media. Field devices connect with
controllers, for example, over dedicated "fieldbuses" operating under proprietary or industry-
specific protocols. Examples of these are FoxCom(TM), Profibus, ControlNet, ModBus,
DeviceNet, among others. The controllers themselves may be connected to one another, as well
as to workstations, via backplane or other proprietary high-speed dedicated buses, such as
Nodebus(TM). Communications among workstations and plant or enterprise-level processors

may be via Ethernet networks or other Internet Protocol (IP) networks.

Control device manufacturers, individually, and the control industry, as a whole, have pushed for
some uniformity among otherwise competing communication standards. The Foundation
Fieldbus, for example, is the result of an industry-wide effort to define a uniform protocol for
communications among processor-equipped (or "intelligent") field devices. Efforts such as this
have been limited to specific segments of the control hierarchy (e.g., bus communications among
field devices) and are typically hampered by technological changes that all to soon render the

standards obsolete.

Still less uniform are the command and operation of control devices. Though field devices may
function at the direction of controllers and controllers, in turn, at the direction of workstations (or
other plant-level processors), proprietary mechanisms within the individual components
determine how they perform their respective functions. Even the commands for invoking those
functions may be manufacturer- or product-specific. Thus, the commands necessary to drive
actuators of one manufacturer will differ from those of another. How the corresponding
commands are processed internally within the actuators differ still more (though, hopefully, the
results achieved are the same). The specific programming codes used to effect a given control
algorithm likewise differs among competing makes, as do those of the higher-level control

processors.
Industry efforts toward harmonization of software for command and operation of control devices
have focused on editing languages that define process control algorithms. This is distinct from

the codes used to effect those algorithms within control devices and, rather, concerns software

-3-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
107

Appendix

"tools" available to users to specify the algorithms, e.g., editors including IEC-1131 standard
languages such as Field Blocks, Sequential Function Charts (SFC), Ladder Logic and Structured

Text.

Less concerted are industry moves to extend monitoring and limited configuration capabilities
beyond in-plant consoles, e.g., to remote workstations. An example of this was the abortive Java
for Distributed Control (JDC) effort, which proposed enabling in-plant workstations to serve web
pages to remote Java bytecode-enabled client computers. The latter used the to web pages to
monitor and set control parameters which the workstations, in turn, incorporated into their own

control schemes.

An academic system along these same lines was suggested by the Mercury Project of the
University of Southern California, proposing the use of a web browser to enable remote users to
control a robotic arm via a server that controlled the arm. A related company-specific effort
included that announced by Tribe Computer Works that allegedly enabled users to manage
routers and remote access servers over [P networks using web browser software. See, "Tribe
Defines Net Management Role For Web Browser Software," Network World, May 22, 1995, at
p- 14.

Thus sets the stage for the present invention, an object of which is to provide improved methods
and apparatus for networking, configuring and operating field devices, controllers, consoles and
other control devices. A related object is to provide such methods and apparatus for process

control.

Further objects of the invention are to provide such methods and apparatus as reduce the

confusion, complexity and costs attendant to prior art control systems.

Related objects of the invention are to provide such methods and apparatus as can be

implemented with commercial off the shelf hardware and software.

10

15

20

25

30

WO 01/09690 PCT/US00/20828

108

Appendix

Still further objects of the invention are to provide such methods and apparatus as achieve
confusion-, complexity- and cost-reduction without hampering manufacturer creativity and

without removing incentives to development of product differentiators.
Summary of the Invention

The foregoing are among the objects attained by invention which provides, in one aspect, an
improved field device for a process or other control system. The field device includes a virtual
machine environment for executing Java byte code (or other such intermediate code) that, for

example, configures the device to execute a control algorithm.

By way of non-limiting example, the field device can be an "intelligent" transmitter or actuator
that includes a low power processor, along with a random access memory, a read-only memory,
FlashRAM, and a sensor interface. The processor can execute a real-time operating system, as
well as a Java virtual machine (JVM). Java byte code executes in the JVM to configure the field
device to perform typical process control functions, e.g., for proportional integral derivative

(PID) control and signal conditioning.

Further aspects of the invention provide a field device, such as a low-power intelligent actuator,
that incorporates an embedded web server. This can be used to configure, monitor and/or
maintain the device itself (as well as other elements of the control system) via a browser attached
directly to the device or coupled to it over the network. To this end, the field device can
incorporate a configuration editor, e.g., operating on a processor within the field device, that an

end-user executes via the browser and web server.

Such a configuration editor can, in related aspects of the invention, be enabled or disabled
depending on the environment in which it is used and more specifically, for example, the type of
network in which it is incorporated. Thus, for example, the editor can be disabled when the field
device is incorporated in a process control network that includes, e.g., an applications
development environment suitable for configuration of the field device. Conversely, it can be

enabled when the field device is incorporated in a network that lacks such a capability.

-5-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
109

Appendix

Still further aspects of the invention provide a field device as described above that includes an
interface to an IP network, through which the device communicates with other elements of the
control system. The IP network can be, for example, an Ethernet network. Moreover, it can be
"powered," carrying electrical power as well as packets, datagrams, and other control or data
signals. The field device, in related aspects of the invention, draws operational power, e.g., for

its processor and other components, from such a network.

Yet further aspects of the invention provide a field device as described above that obtains
configuration information and/or its network address from such an IP network upon start-up. To
this end, on power-up or coupling to the network, the field device can supply an identifier (e.g.,
attained from a letterbug, assigned by a hub, or otherwise) to a DHCP or other server on the
network. Once provided with an IP address, the field device can formally enter into the control
network, e.g., by posting its characteristics to a network bulletin board, e.g., using a network
enabler such as a Jini and/or JavaSpace server, or the like. Other network devices monitoring or
notified via such a bulletin board can send configuration information to the field device or

otherwise.

Still further aspects of the invention provide control devices, such as servers, control stations,
operator consoles, personal computers, handheld computers, and the like, having attributes as.
described above. Such control devices can have other attributes, according to further aspects of
the invention. Thus, by way of non-limiting example, they can provide web servers that collect
process data from one or more control devices, generate source for operator displays, provide

access to the control system, and host an applications development environment.

Still other aspects of the invention provide process, environmental, industrial and other control
systems that comprise field and control devices as described above that are coupled via an IP

network and, particularly, for example, by a powered IP network.

Additional aspects of the invention are directed to DHCP servers and network enablers

(optionally, including web servers) for use in control systems as described above. Related

-6-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
110

Appendix

aspects provide such servers and enablers as are embodied in solid state technologies, e.g., with

no moving parts.

These and other aspects of the invention are evident in the attached drawings, and in the

description and claims that follow.
Brief Description of the Drawings

A more complete understanding of the invention may be attained by reference to the drawings, in
which:

Figure 1 depicts a process control system 10 according to one practice of the invention;

Figures 2 and 3 depict more particular embodiments of a control system of the type shown in

Figure 1;

Figure 4 depicts a native intelligent field device according to the invention;

Figure 5 depicts a native control device according to the invention; and

Figure 6 depicts a native intelligent positioner implementation according to the invention.
Detailed Description of the Illustrated Embodiment

Figure 1 depicts a process control system 10 according to the invention. The system includes
networked control devices that monitor and control a hypothetical mixing process that utilizes
mixing chamber 22, fluid inlets 24, 26, fluid outlet 28, paddle 30, cooler 32, and cooler inlet 34.
Though illustrated and described below for use in connection with process control, those skilled
in the art will appreciate that apparatus and methods according to the invention can be used in
connection any industrial, manufacturing, service, environmental or other process, device or

system amenable to monitoring or control (hereinafter, collectively, "control").

-7-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
111

Appendix

The networked control devices include actuators, such as the valves depicted as controlling inlets
and outlets 24 - 28 and 34. A further actuator is shown controlling paddle 30. These and other
actuators utilized by the control system are constructed and operated in the conventional manner,
as modified in accord with the teachings hereof. The actuators operate under control of
respective field device controllers, labeled CTL, that are also constructed and operated in the
conventional manner to provide initialization, signal conditioning and communications

functions.

Rather than using separate controllers CTL, the actuators can be of the intelligent variety and can
include integral microprocessors or other digital data processing apparatus for control,
initialization, signal conditioning, communications and other control-related functions. For sake
of convenience, the label CTL is used regardless of whether the control-related functionality is

integral to the actuators (e.g., as in the case of intelligent actuators) or otherwise.

[llustrated sensor 29 monitors a temperature, level or other characteristic of fluid in chamber 22.
The sensor 29, as well as other sensing apparatus utilized by the system, are constructed and
operated in the conventional manner known in the art, as modified in accord with the teachings
hereof. They can be coupled to the control network via a transmitter or other interface device
INT that, too, is constructed and operated in the conventional manner, as modified by the
teachings hereof. The interface devices facilitate initialization, signal conditioning and
communications between the sensors and the control system. As above, one or more sensors can
be of the intelligent variety, incorporating integral microprocessors or other digital data
processing capabilities for initialization, signal conditioning, communications and other control-
related functions. Here, too, the label INT is used in reference to the control-related

functionality, regardless of whether embodied in an intelligent transmitter or otherwise.

The networked control devices include one or more controllers 36 that monitor and control
respective aspects of the hypothetical mixing process in the conventional manner, as modified in
accord with the teachings hereof. The controllers can comprise mainframe computers,

workstations, personal computers, special-purpose hardware or other digital data processing

-8 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
112

Appendix

apparatus capable of performing conventional monitoring and control functions. Preferred
controllers are constructed and operated in the manner of the CP control processors
commercially available from the assignee hereof, as modified in accord with the teachings

herein.

The control system 10 includes a variety of devices that serve as user interfaces and that provide
configuration and/or control functions, all in the conventional manner as modified in accord with
the teachings hereof. Illustrated for these purposes are workstation 40, laptop computer 42 and
handheld computer 44. These devices can provide configuration and control functions directly,
as in the case of workstation 40, or in cooperation with server devices, e.g., as in the case of
handheld computer 44 and server 46. Apparatus 40 - 44 can couple with the control network
directly, e.g., via bus or network connection, or indirectly, e.g., via satellite, wireless connection

or modem connection.

The control devices 36 - 46, CTL and INT, collectively, referred to as "native" devices, are
coupled for communications via a medium that permits at least selected ones of the devices to
communicate with one another. To this end, in the illustrated embodiment those devices are
coupled via one or more networks 48 that are, preferably, IP-based such as, by way non-limiting
example, Ethernets. The network(s) can include, as indicated by the multiple segments shown in
the drawing, multiple segments such as various wide and local area networks. They may also
include high and/or low bandwidth components, such as phone lines, and low and/or high latency

components, such as geosynchronous satellites networks.

Figure 2 depicts a more particular embodiment of a control system 50 of the type shown in
Figure 1. The system includes an enterprise server 52, a first thin client 54, plant server 56, a
second thin client 58, a controller 60, a Java-enabled field device 62, and one or more field
devices 64, coupled to one another, e.g., in the manner illustrated, by one or more networks 66,

68.

Native enterprise server 52 (corresponding, by way of non-limiting example, to server 46)

comprises a mainframe computer or engineering workstation that executes enterprise-level

-9.

10

15

20

25

30

WO 01/09690 PCT/US00/20828
113

Appendix

_ applications such as, by non-limiting example, those for financial, asset planning and

procurement, distribution and/or human resources. In addition, it supports web serving, as well
as optional object, relational and other database management systems. Server 52 executes
Windows NT, Solaris or another conventional commercial or proprietary operating system. It is
also equipped with a Java Virtual Machine (JVM), e.g., capable of executing Java virtual
machine instructions (bytecodes), of performing remote method invocation (RMI), and of
supporting Jini networking. The enterprise server 12 can be coupled to further networks, e.g., to

the Internet, as shown, in any manner known in the art.

Native thin client 54 (corresponding, for example, to handheld computer 44) provides similar
functionality as server 52, though its actual processing activity is limited to user input and
output. Application processing, such as financial, asset planning and procurement, distribution
and/or human resources, are performed on behalf of client 54 by a server, such as server 52. The
operating system and JVM functions may be embedded in the conventional manner of a thin
client. The thin client 54 is coupled to the enterprise server 52 over a business information
network 66 (corresponding, for example, to network 48), typically, an Ethernet or other IP
network, configured in a LAN , WAN or the like.

Native plant server 56 (corresponding, by way of non-limiting example to workstation 40)
comprises a plant control console or engineering workstation modified in accord with the
teachings hereof, executing plant-level control applications including system, process,
engineering, plant information, configuration, lab quality, maintenance, resource and
documentation applications of the type known in the art . Like enterprise server 52, plant server
56 can execute Windows NT, Solaris or other conventional operating systems. It is also
preferably equipped to execute a Java Virtual Machine as described above. Plant server 56 is

coupled to the enterprise server 52 and thin client 54 over the business information network 66.
Native thin client 58 provides similar functionality as server 56 though, again, relies on that (or

another) server to perform most processing activity. As above, the operating system and JVM

functions may be embedded in the conventional manner of a thin client. The thin client 58 is

-10 -

10

IS

20

25

30

WO 01/09690 PCT/US00/20828
114

Appendix

coupled to the plant server 56 over a control network 68 (corresponding, for example, to network

48), e.g., an Ethernet.

Native controller 60 (corresponding, for example, to controller 36) executes control algorithms to
control associated non-native field devices 64, e.g., via any variety of commercial and/or
proprietary field bus 70 hardware and protocols. Where processing resources are limited, the
controller 60 utilizes a embedded operating system that supports web serving and the JVM. The

controller 60 is coupled to the plant sever 66 and to the thin client 58 via control network 68.

Native field device 62 is a sensor, actuator or other field device. The illustrated device is of the
intelligent variety, including processor (not shown) and operating system. It can be of the type
commercially available in the marketplace, as modified in accord with the teachings hereof. The
illustrated device supports web serving and JVM, as described above. The device 62 provides

information collection and control functions, as illustrated.

Figure 3 depicts another a more particular embodiment of a control system 50 of the type shown

in Figure 1.

Referring to Figure 1, the illustrated control system 10, 50 uses web browsers, Java, Jini,
JavaSpaces, TCP/IP and other technologies normally associated with the Internet and the world
wide web to create a self-defining control network that minimizes complexity while emphasizing
the portability and re-usability of the user's application. These technologies are advantageously
employed to eliminate proprietary hardware and software to preserve the user’s investments;
eliminate network configuration and system management through self-configuring networks;
increase the user’s choice of algorithm suppliers by implementing control in Java; preserve the
user’s applications through hardware and system software changes through the use of Java and
Web Browsers for process displays; minimize the wiring costs; reduce maintenance by making

intelligent field devices a practical reality.

In addition to web technologies, the illustrated control system 10 uses an object location service,

a commercial messaging service, and standard networking equipment, such as hubs, routers,

-11-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
115

Appendix

network interface cards, where applicable. It also relies on common standards, where applicable,
such as 802.3, Internet RFCs, the IEEE 1451 sensor standards. The system 10 supports a
heterogeneous computing environment and utilizes industry standards (e.g., Microsoft standards)
to provide communications between the native control components to the business and desktop

environments.

1 Device Hardware

1.1 Platform-Defining Control Devices

In the illustrated embodiment, native control devices such as controllers 36, 60, workstation 40,
servers 46, 52, 56 providing a platform for the control system typically include a central
processing unit (CPU), memory (RAM), network support hardware, access to permanent storage,
an operating system, and a Java Virtual Machine (JVM) including the TCP/IP suite. In addition,
the devices include web server software, e.g., software of the type that serves graphical "web"
pages in response to requests by other devices. Configurator software can be provided, as well,
permitting each device to configure the control system or selected portions of it. Those skilled in
the art will appreciate that not all of these components need be included in all native control

devices, e.g., some commercially available JVMs can serve as an OS themselves.

Process control object (PCO) software provided on the platform-defining control devices
comprise a collection of data and methods implemented in Java and executed on the native
control devices’ JVMs to perform typical process control functions, by way of non-limiting
example, signal conditioning and PID control. Likewise, station management object (SMO)
software on the devices comprise data and methods that allow the device to report its health,
performance, and other status information in a uniform manner. The SMO software can

implement SNMP or the equivalent Java functionality.

Software is also provided on the platform-defining controls devices for messaging services for
data transfer and alarm/event notification, as well as software comprising system management
pages. Each control device may include additional software, of course, depending on its

functionality.

-12-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
116

Appendix

1.2 Field Devices

Native intelligent field devices typically include a low power CPU, e.g., a NetARM or Java
Chip; a real-time OS like VxWorks, QNX, PSOS; RAM; FlashRAM to serve as permanent
storage; ROM/EEPROM to serve as the home for the OS and other permanent software; an
Ethernet interface; power from the Ethernet interface (in the event a powered Ethernet network
or hub is used) or otherwise; a sensor interface , e.g., IEEE 1451.1 and 1451.2; JVM; a web
server, and a device specific configurator servlet. A field device so constructed can be
configured and monitored via a lightweight web browser, e.g., handheld computer 44, coupled to

the device over the network 48.

The field devices can include serial interfaces to allow the attachment of these devices to HART,
FoxComm, Profibus and other networks operating under a protocol different from that of
network 48. Combined with appropriate software, these devices provide the user with a single

transmitter suitable for use on any field network.

One configuration of a native intelligent field device including the elements described above
these elements is shown in Figure 5. Those skilled in the art will appreciate that other

configurations can be realized, as well, in accord with the teachings hereof.

1.2.1 Stoic Sensors

The control system 10 can include one or more stoic sensors, not illustrated, that constitute
minimal sensing elements. Typically, these are simply silicon chips that are packaged to allow
them to sense the process environment and that have only enough electronics to relay
measurements to a pair of wires that carry the raw signal to another device for processing. Some
stoic sensors generate a signal without external power; others require some excitation. Ina
preferred embodiment, native devices 36 - 46, CTL and INT according to the invention support

the attachment of many stoic sensors.

1.22 1/0

1.2.2.1 Overview

-13-

10

IS

20

25

30

WO 01/09690 PCT/US00/20828
117

Appendix

Some I/O devices, e.g., thermocouples, RTDs and analog transmitters, may not use a transmitter
compatible with the network 48 but, rather, send raw sensor output to a multiplexor for
processing. To accommodate these devices, the system 10 includes two types of intelligent I/O
cards: network I/O cards supporting IP and an API, and native I/O cards that support the

protocol of network 48 (i.e., the "native" protocol) directly.

Network I/O cards are coupled directly to network 48. Native control devices are IP enabled and
support the proprietary API of the cards, thereby, permitting reading and writing of their /0
registers. The cards’ respective APIs support retrieval of data in several formats (raw counts,
linearized counts, engineering units, etc.), as well as the assignment of simple configuration
information to those registers, if the device supports such functions. To this end, the native
devices utilize 1/0 classes that corresponding to the native I/O protocols. Redundant /O devices
can be physically interfaced transparently through a single I/O card or through multiple
independent network I/O cards. Logically, PCOs support at least the use of multiple independent
cards. Alternative I/O features may be used in addition. Native I/O cards are substantially
similar to native-enabled transmitters, except for packaging and scale. These I/O cards may be

considered as small multi-loop controllers or multiplexors.

1.2.2.2 Foreign Device Integration

Networked 1/0 cards are utilized with devices that cannot otherwise directly interface with the
network 48. The cards, in this case, provide an interface that permits at least reading and writing
of relevant device values, which can be stored internally to the card and accessed via its APIL.
Foreign devices that are control systems in its own right typically maintain objects or other data
structures representing process values and associated data. A preferred interface to these
"devices" are through objects that wrap the foreign function blocks with the services expected of
native devices, , e.g., detail displays and configurators, which are accessed in exactly the same
manner as native ones of those same services. For example, a name service is be able to locate

foreign blocks and the native API of system 10 permits querying those blocks for values.

1.3 Native Controllers

-14-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
118

Appendix

In a preferred embodiment, all native devices may be used as controllers, though, dedicated 1/0-
less native controllers, such as controllers 36 and 60, are typically required for unit-wide
operations. Thus, for example, control can also be provided by personal computers, workstations
and servers of the type shown as elements 40, 42, 46, in Figure 1. Native controllers, e.g., 36, 60
are of the same general design as native boards used in the transmitters and actuators. However,
they support a faster CPU clock cycle and more memory (volatile and non-volatile) than their
smaller siblings. High performance native controllers have a still more powerful CPU, more
RAM, and maybe a removable FlashRAM card for bulk storage and backup. Like the native
transmitters and actuators, these native controllers can receive power from a powered Ethernet
connection or otherwise. Native controllers can be used in redundant and non-redundant
configurations. Since the I/O is independent of the native controller, redundancy can be
implemented in a number of manners, e.g., hardware fault-tolerance or transaction based

synchronization between stations with clustering.

1.4 Native Compliant Workstations

Native workstations, e.g., such as element 40, can be constitute web browser-enabled devices
that communicate with web servers, such as element 46, that actually collect the process data
from other native devices. In addition, the workstations can consist of a flat panel display, OS
and web browser in ROM (or on a memory card), web page (process graphic) database/cache,
connections for optional annunciator keyboards, option for wireless Ethernet, and, optional,

battery operation. Data supporting the operator interface comes from native devices directly.

1.5 Native Web Server

If a generic web browser-enabled device is the operator’s console, a native web server, such as
servers 46, 52, 56 sources the operator displays. This can be implemented with redundancy
using technologies NT’s clustering capabilities, or the like. Additionally, a native web server
provides access to a illustrated control system 10 to users not physically attached to the
illustrated control system 10, e.g., as illustrated with respect to elements 44 and 46 of Figure 1.

In this mode, it centralizes data requests to maximize efficient use of communication resources.
1.6 Native Enablers

-15-

10

IS5

20

25

30

WO 01/09690 PCT/US00/20828
119

Appendix

1.6.1 The illustrated control system 10 includes native enablers 49, such as Jini and JavaSpaces
devices and Solid-State DHCP servers. These enablers, which are optionally redundant, are
preferably fully solid state with persistent memories. They do not use batteries for their persistent
memory, though they may well plug into a wall outlet for power in non-industrial environments.
The Jini and JavaSpaces serve as community "bulletin boards." These are used to notify system
monitors that native devices have been added to or removed from the system. The system

monitors respond to such notices by triggering appropriate actions.

The illustrated control system 10 assumes that each native device is able to acquire an IP address
when it comes on-line. To minimize configuration, a DHCP server, illustrated for example by
element 49, is required to furnish these addresses. To ensure maximum availability of this
critical server, it is preferably a solid-state device and, optionally, includes a redundant partner
DHCP Server. A particular native DHCP server provides addresses for a portion of the network

48. Tt obtains its configuration by notifying the system 10 that it has come on line.

Those skilled in the art will, of course, appreciate that IP addresses can be selected by

mechanisms other than DHCP servers.

1.6.2 Native Internetwork Server

An internetwork server 47 is used to link separate control systems networks 48. It provides a
platform for inter-network communications, controlled access to data, name conflict resolution,
and other services need to efficiently, securely, and transparently accomplish the connection of

one or more illustrated control systems to another.

2 SubSystems

2.1 Software Downloads

The illustrated system permits the electronic downloading of software and/or licenses for
execution on the native devices. This includes native software objects, updates and/or licenses
for same. To ensure proper operation of the process facility even in the event of insufficient

licenses, downloaded software registers with the system monitor and declares whether or not it is

-16 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
120

Appendix

licensed. In the case of insufficient licensing, the system monitor’s notifies the customer

appropriately.

In instances where appropriate native software modules and authorizations are in place, the
system 10 can access a download site, e.g., an Internet e-commerce site, and determines if
updates are available. If so, it notifies the user and invites him/her to request downloading of the
upgrade. Such an e-commerce or other web site can also provide configuration tools that allow
the user to design, implement, and test a new PCO block. This allows the user to access complex
and/or rapidly improving software tools without having to maintain them locally. For this

purpose, the use is charged, e.g., a modest access fee.

2.2 Security

The system 10 includes a native security system to control access to managed objects based on
the type of access, e.g., (i) extra-network, i.e., users who are accessing the illustrated control
system 10 from a non-native station; (ii) inter-network, i.e., users who are operating from a
native workstation on a different physical native network; and (iii) intra-network, i.e., users who

are operating from a native workstation within the particular native network.

Secured extra-system access is provided through a native secure web server, e.g., server 46, that
permits dial-up, network, and other remote access and that supplies and defines the permitted
extra-network access, including the API available to applications hosted outside the network or
on the server. See, for example, elements 44 and 46 of Figure 1. Access is controlled by user
name, by user location (IP address or workstation name depending on the network), and by the

type of the targeted object.

Inter-system access is provided by a gateway device, such as server 47, that permits the secure
transfer of data. This device negotiates secure access, deals with name conflicts between
systems, and provides support for various physical media A pair of such devices are provided to
account for situations where the source is local to the sink. In a preferred system, the server 47
or other gateway encrypts the data so that others cannot read it. Likewise, it authenticates

message sources to verify that they are coming from a matching device. A preferred gateway

-17 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
121

Appendix

minimizes the number of packet transfers so as to minimize delays over slow or high latency
links.

Secured intra-system access is controlled based on the user and the workstation, leveraging the
Java security model and other security models to the extent possible. The native security system
authenticates users, e.g., regardless of whether they are attempting access from operator’s

console or via an application program.

The native security system manages access to objects, including PCO attributes (i.e., variables
and/or parameters of PCOs), system monitors, and native messages. It allows applications to add
objects to the list of managed objects. Read and write access is preferably controlled separately,

i.e., as if a single PCO attribute was two separate objects.

The security model is based on a lock and key approach. Each PCO attribute, for example, is
assigned to one of a large number of locks. The user is given different keys for read and write
access to object attributes. This key may be modified according to the type of native workstation
used for access. The key is passed to the object attribute when the object attribute is accessed. If
the access is a connection, it need be passed only once. The object attribute compares the key to

its lock and allow or deny access as appropriate.

A software tool is supplied with the applications development environment (ADE) or
configurator that allows identification of users; access points allowed by the user; object attribute
groups accessible to the user; and access type (read or write) to the object types. The object
attribute groups define collections of object attributes via similar security access guidelines, e.g.,
alarm limits might be in one group and tuning parameters might be in another. The security
model is embedded in the APIs providing access to the secured objects. This assures that that

access is granted only after the native security system has performed the necessary verifications.
2.3 Maintenance and Support
The illustrated control system 10 supports the on-line upgrade of all application software from

remote and local workstations. Application software, for purposes of this discussion, includes the

-18-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
122

Appendix

system monitor, PCOs, and other Java-based code. Native diagnostic and maintenance tools
work over user-supplied or other IP-based networks, providing that they allow services such as
the world wide web to operate over them to external sites. For networks that do not permit this,
the illustrated control system 10 provides modules that support direct connections to a native
support center via dialup analog phone lines, and dialup high speed lines, e.g., ISDN and ADSL.
Native maintenance, including software updates, operate over these connections; hence, it is not

necessary for a person to be physically present to update system or application software.

The illustrated control system IO includes diagnostics to track problems from the hardware
upwards. Maintenance staff can run in parallel diagnostic versions of the software. Such
software running in open loop or switched into operation as necessary is believed particularly

advantageous for support purposes.

2.4 Configuration

An application development environment (ADE) coordinates configuration in the illustrated
control system 10, e.g., except for devices (such as certain transmitters and positioners) where
use of an ADE is not advantageous and for which internal configuration is preferred.
Characteristics of the ADE are its use in configuring/building control applications including
control schemes, displays, historians, etc.; support of multiple simultaneous users; support of
remote, concurrent development; support of change tracking and change management including
task based activity traces, summary reports, change annotation, approval cycles, and user
identification; a human interface component that runs in any web browser coupled to the system;
a server component that runs on any user-supplied system; permanent storage comprising a
commercial database for which a JDBC implementation is available; allowing the definition of
configuration object templates; allowing the instantiation of configuration object templates into
configuration objects; allowing the user to add and remove editors for configuration object
components in real-time; limiting the user’s access to configuration capabilities in the various
pieces of equipment; and supporting application distribution along with verification of download

permissions.

-19-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
123

Appendix

With respect to the support of multiple simultaneous users, system editors provide object-based
“check-out” and “check-in.” No other user is allowed to edit a checked-out object or any of the
objects that it contains. As an alternative, editors support the concept of task-based configuration
activities and the related “check-out” and “check-in" facilities required to make it work. When
an object is checked out, it is assigned to a task. Objects are not checked back in, tasks are. A
build manager has the responsibility of integrating the tasks.

The native ADE delivers lower engineering and maintenance costs through the unification of
application development, preservation of application expertise, reduction of application
development effort, and the deployment of developed applications. Is it based on industry
standards (e.g., IEC 1131 and IEC 1499) to preserve the user’s investment in training and
applications. It also produces appropriately formatted Java class for execution in native devices.
Since the native ADE produces output that can be read and loaded into a JVM and since the

native control devices include JVM, one control configurator can configure all native devices.

In a preferred embodiment, the ADE imports configurations from legacy systems; supports the
use of third-party control algorithms; and supports both bulk building of control configurations

and on-line changes with validation.

Configuration is not limited to implementation on a web browser, though this can be
advantageous since it allows configuration from many types of device without installation of
special software, i.e., it provides a thin-client configuration mechanism. For device
configuration, there are two cases: a device used in illustrated control system 10 and a device
used outside illustrated control system 10. For devices used outside illustrated control system

10, the configurator is placed in the device so that it can be configured even without the native
ADE. This on-board configurator allows the device to be configured for use with Profibus,
Foundation Fieldbus, on 4-20ma wires, and other industry-standard or proprietary networks. For
devices used in the native environment, (i) a copy of the configurator is available from a native
web server for off-line configuration and download, and (ii) the on-board configurator is disabled

to prevent changes in the configuration except through the ADE.

-20 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
124

Appendix

2.5 Human Interface

The illustrated system’s primary human interface (HI) device is a web browser. The current
range of devices executing these spans cellular phones to mainframe computers. The native HI
is multilingual, i.e., it supports the presentation of information in a default language and one or
more secondary languages simultaneously. All standard native applications support text
substitution based on the currently selected language. Error messages are likewise in the

currently selected language.

2.6 Process Control

Process Control is implemented using process control objects (PCOs) running in an execution
environment consisting of a JVM and any associated applications required to load and execute
the specified control strategies. Control strategies are specified in terms of PCO composites.
PCOs are Java classes designed to be modular and easily upgraded even during operation. The
native PCO configurator, from a high level view, creates instances of these classes, connects

them as necessary, and installs them in particular devices.

Process control objects consist of two user-available types: blocks and composites. PCO blocks
are, from the user’s point of view, similar to conventional function blocks. Likewise, composites
are similar to conventional collections of function blocks. Distinguishing external features of
PCOs include the fact that changes involve the addition/deletion of PCOs and cause new
versions to be loaded into the targeted native device. The new version runs in parallel with the
old version until the engineer decides that it is operating properly and “swaps” the control from

old to new.

Composite PCOs may span stations transparently. PCOs are bound to stations very late in the
configuration process and may be migrated from one station to another at any time. Further,
PCOs from different sources may operate in the same device if the configurator supports the use

of multiple PCO libraries.

A native PCO configurator supports multiple libraries of PCOs from multiple vendors; permits

the creation of composite PCOs from other PCOs; permits the use of composite PCOs as

-21-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
125

Appendix

templates, with a composite PCO definition specifying which fields is altered in a template;
permits the assignment of PCOs to physical devices; provides IEC 1131/1499 influenced view of
the configuration process, i.e., support for Logic Diagrams, Structured Text, Sequential Function

Charts, Function Blocks, and PCOs, while producing Java byte code as its output.

The creation of composites includes the raising of internal (deeply buried) names to the top level
of the composite PCO. For example, a cascaded Temperature/Flow loop might have the
temperature and flow measurements referenced as TC_CASCADE:PRIMARYFLOW and
TC_CASCADE:SECONDARYFLOW or as the longer fully qualified name. The configurator

works both off-line in a bulk creation mode and on-line in an individual correction mode.

2.7 Communications: Object Location, Message Transfer, and Data Transfer

The concepts of object location and data/message transfer are closely bound. A process control
system imposes significant quality of service requirements on any services used to locate objects
of interest and to acquire values from or make changes to those objects. The illustrated system
includes an object location and data transfer service that provides a communication model
definition, security, object location services, network types requiring support, quality of service,
APIs (Java and non-Java), maintenance and upgrade strategy, and interoperability with existing
control systems. In addition, the communications system addresses the particular needs of

process data transfer.

2.8 Critical Applications

2.8.1 Time Synchronization

The illustrated control system 10 supports time synchronization to the millisecond in each station
on the network 46. Where equipment configuration renders this impossible, time

synchronization to 50 ms is provided.

2.8.2 Alarm and Message Management
The illustrated control system 10 provides a facility that centralizes viewing, recording,
organizing, and categorizing the messages generated by the system monitor, the operator action

journals, the PCOs, and other systems that record textual information. This application is the

-22 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
126

Appendix

basis for alarm management strategies including inferential alarming and alarm prediction.
However, the message management facility is not in and of itself an alarm historian. Rather, it

relies on a native historian to provide the long-term storage of this information.

2.8.3 Historian

The native historian provides the fundamental data collection, reduction, and archival services.
The data collected includes process values and messages from various applications within the
illustrated control system 10. In addition, it provides historical data in support of several other
common applications — typically known as plant information management system (PIMS)
programs and trend window support. The historian is capable of exporting its data to user-

selected databases.

2.8.4 Plant Information Management System

These applications include a simple and easy to report writing facility, a calculation facility that
can use historical and real-time data to compute new values, and a desktop visualization system
that uses the historians data instead of real-time data. The desktop visualization system uses the
native graphics capabilities to connect the graphics to the historian and to allow the operator to
“move” the entire graphic backwards and forwards through the historical data. The values
calculated by the calculation facility are stored in PCOs that represent the data and generate
appropriate alarms. The report writing facility supports shift reports with calendar adjustments
as a simple to use feature. In addition, it facilitates the definition of ad-hoc reports using a page

layout metaphor.

3 Interoperablity

Interoperability of the illustrated control system IO with legacy process control systems can be
facilitated by adding a networked I/O module to the I/O chain of existing I/O cards, adding a
native device integrator to talk to other networks of devices, or utilizing a native API for

Microsoft- and Solaris-based applications.

4 Operating the Control System
4.1 System Startup and Management

-23-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
127

Appendix

4.1.1 Device Identification

Each native device is assigned a name that is used to identify the device and obtain any
configuration information that it needs. Embodiments of the invention use alternate approaches
to identifying a device, including using a hub that is configured by the user to assign a name to
each of its ports, e.g., using letterbug or software configuration; installing a letterbug, e.g., on the
workshop bench, which tells the device its name; using a PC or handheld computer, e.g., on the

workshop bench, to give the device its name; or using soft letterbugs.

4.1.2 Address Acquisition
After a native device has its name, it acquires its IP address from its environment. The illustrated
embodiment uses DHCP for this purpose. Preferably, the DHCP server is a native device, such as

enabler 49, though other DHCP servers can be used, as well.

4.1.3 Registration of the Device

Once the device knows its address, it registers its characteristics on a native bulletin board,
which can be colocated with the DHCP server, e.g., in an enabler 49. Typically, many software
services in the system 10 register with the bulletin board for notification of additions of native
devices. Upon registration of a device, these services are notified and enter into relationships, if
any, with the new device. A typical situation would involve notifying a system monitor process
that a native device is active. That process then updates its web page with information about this
device. In a preferred embodiment that utilizes a hierarchical network, each bulletin board is

covers a given “territory” or region of the network.

4.1.4 Configuration Acquisition

If a device is unconfigured, it marks the “Configured” attribute on its bulletin board entry as
“False”. Any system monitor receiving device notifications to this effect generates an alert.
Once a device has its name, it is able to communicate with any networked supply of non-volatile
storage. This is particularly useful in the case of devices with limited in device non-volatile
storage, whom a system configuration utility notifies of the location of configuration

information. Devices that can retain all of their configuration information can start up using that

-24.

10

15

20

25

30

WO 01/09690 PCT/US00/20828
128

Appendix

configuration. Actions taken during start-up, e.g., taking PID algorithms out of hold, are
configurable.

4.1.5 System Monitors

A system monitor monitors the health of system components (hardware and software), monitors
the health and operation of user applications, provides configuration information to devices that
request it, and monitors the licensing of software and upgrades for purposes of alerting the
appropriate groups. The system monitor supports standard SNMP agents and any native specific

system management protocols.

The predominant source of information used by the system monitors are the bulletin boards
which, as noted above, are used by the native devices to record their current state of operation.
As devices are added and removed from the bulletin boards, the system monitor displays that
information. The information posted on the bulletin boards includes diagnostic information. A
system monitor not only displays this information but also allows the user to access and operate

any embedded diagnostic displays and operations.

4.2 Device Configuration and Management
4.2.1 Device Startup
Initial start-up of a native device involves the following steps:
1) Install the device on the network 48 and turn on the power as required by the device.
2) The device obtains an IP address from a DHCP server 49 on the network 48.
3) The device registers with the native name service.
4) The device waits for a configuration.

5) The device is now ready for configuration.

Restart of a native device is effected by the steps of
1) Install the device on the network 48 and turn on the power.
2) The device obtains an IP address from a DHCP server on the network.

3) The device registers with the bulletin board.

225 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
129

Appendix

4) The device begins operation according the configuration stored in its non-volatile RAM.
This RAM may be a network resource that it must recover. If that resource is unavailable,
the device is essentially unconfigured and the above procedure is followed.

5) The device is now ready for configuration and operation.

4.2.2 On-Line Configuration
The steps involved in on-line native device configuration are:
1) The engineer starts a web browser on workstation 40, handheld computer 44 (wireless or
otherwise), a PC, a native workstation, etc.
2) The default home page on the browser is cached and contains an applet that locates the
native bulletin board and raises the initial web page that lists the services available from
that workstation.

3) The engineer selects the ADE and a native device of interest.

If the device is on a native network 48, the native configurator (ADE) is used to make the
changes. In this case, the web browser is pointed at the web server that hosts the ADE. This
approach eliminates conflicts between field change and database changes. The configuration of
non-native devices is provided by a service that encapsulates the native commands and passes.

them through a native device to the actual foreign device.

The steps in PCO configuration are

1) As in the off-line mode, the engineer accesses the ADE and makes necessary changes.

2) Once the changes are complete, the engineer tells the new objects to begin execution in
“open loop” mode, i.e., their outputs are not allowed to go to the field or to any other
display station other than the one used to configure them. (For examples, their names are
not registered with the native name service.)

3) In the open loop mode, the engineer can “Verify and Validate” his new control scheme
by viewing the detail displays for the new and the old objects “in parallel”. The set of
available detail displays may include special displays for evaluation of parallel

composites.

-26 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
130

Appendix

4) Once the configuration is complete, the device records its new configuration in its local
non-volatile RAM. Optionally, it updates a remote configuration database or just set a
“changed configuration” status indicator much like conventional intelligent transmitters.

5 Native Software Subsystems

5.1 Security

5.1.1 Object Access

5.1.1.1 Locks and Keys

As noted above, the proposed security mechanism is a lock and key. In this model, the attributes
of an object that are available to be manipulated are assigned a lock number. An application
registers with the security system at start-up to obtain a key. The value of the key depends on the
effective user id (name) and the station on which the application is running. The key is never
visible to the user, so he/she cannot alter it. This key is available to any library that uses the

security system to ensure proper access.

5.1.1.2 Security Database

A security database contains a list of users. For each user it allows the specification of a master
key, i.e., a bit array with a bit set for each lock the user is allowed to unlock. There is one master
key for each object type supported by the security system. By default, the security system
supports the creation of master keys for the system monitor, process data (PCO attributes), and
native messages (events). The database also allows modifications to the master key for a user.
based on the station used to perform an operation. These exceptions can be expressed as IP
addresses, station names, or by the type of access being used (e.g., extra-system, inter-system, or

intra-system).

5.1.1.3 Operation

The security system supports caching the security system database on specific servers to improve
redundant operation and to speed key queries. This is generally not a significant issue since the
query is done once per application. Each time an operation is attempted or, in some
circumstances, once per connection, the key is passed to the target object along with any other
information required by the object to achieve the user’s request. It is the responsibility of the

object to match a bit in the key with the lock on the attribute or method being altered. If there is a

-27-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
131

Appendix

match, the operation proceeds. If the match fails, the operation is aborted and the calling

application is notified of the failure. If the lock is zero, the operation is allowed to continue.

5.1.14 Use
According to a preferred practice, the illustrated control system 10 supports at least 256
individual locks. This allows the application engineer to define 255 groups of objects for each

type of object being accessed.

5.1.1.5 Impact on PCOs and Other System Components

The value record of a PCO attribute includes two keys: one for read access and one. for write
access. A default value for the key can be inherited according to rules concerning the use of the
attribute, e.g., all alarm attributes have an assigned group by default. A system monitor interface

implements the same mechanism.

5.2 Maintenance and Support

5.3 Configuration

A configuration object (CO) is a collection of objects plus the editor used to manipulate them. A
Configuration Object Template (COT) is a CO that has not been instantiated. The application
development environment (ADE) is the environment for configuration object editors. It shows
the user the existing COs in the CO being edited and a list of available templates. It provides the
mechanism for adding objects to a CO by instantiating a COT and for removing COs. A
Configuration Object Component (COC) is any of the objects found in a Configuration Object.
Typical components are: PCOs, Process Graphics, Reports, Historian Configuration Objects, etc.
The ADE has two components: the human interface and the server. Several human interfaces

can access the same server at any time,

When a Native device is placed on-line, its internal configuration services are disabled. All
configuration instructions come from the application development environment. Where on-line
configuration is permitted, the system monitor or other system component flags any

configuration mismatches.

-28 -

10

15

WO 01/09690 PCT/US00/20828
132

Appendix

Invoking the ADE is tantamount to starting the editor of a particular top-level CO. The ADE
presents all of the available COs within the selected CO and all of the available COTs. The ADE
provides a mechanism for manipulating those objects and for adding new objects by instantiating
COTs. Since the objects within the ADE are also Configuration Objects, i.e., they are
themselves collections of objects with associated editors, configuration involves selecting an
object, invoking its editor, and making changes. Each editor knows how to store its object’s data

in the persistent storage.

The ADE preferably includes a system editor, a control editor, a graphic editor, a message
manager editor, a historian editor. All editors support the use and creation of templates by the
user. The also support the assignment of their objects to particular stations in the native network.

Not all objects require assignment, but the editors are responsible for it.

5.3.1 System Editor

The system editor allows the user to configure a logical arrangement of native device objects..
The only devices it configures are those that are native-enabled. If a device, such as Networked
I/0O, does not support Native, this editor is not interested in it. The following table lists those

devices, what they do, and what needs to be configured.

Device Type Description System Editor Configured Attributes
DHCP/Bullet These devices allocate IP Name and association with a Web

in Board addresses to stations and act as Server

Server the bulletin board for the stations

that ask for addresses. They are

not configured to know what

devices might be attached.
Native These devices act as PCO Name and association with a
Controllers platforms. DHCP/bulletin board Server (which
may be a Web Server)
Native The devices that supply the Name and association with a

Workstations human interface to the process. ~ DHCP/bulletin board Server (which

-29.

10

15

20

25

WO 01/09690 PCT/US00/20828
133

Appendix

may be a Web Server)
Native Web This devices host Native Name
Servers Applications and graphics.
Native Workstations may also be
Web Servers.

As with the other editors, the system editor is object oriented and template driven. The user is
allowed to select an object type from a palette and attach it to the appropriate stations. Individual

Device Editors are provided for each of the device types.

5.3.1.1 DHCP/Bulletin Board Editor

If the device is assigned to another DHCP/bulletin board device or a web server, the editor
allows the user to specify the number of IP addresses that this device needs to be able to supply
below it. In this case, when the device starts up, it gets its own IP address and IP address range
from the Web Server or DHCP/bulletin board device to which it is assigned. If it is not assigned.
to such a device, the editor allows a range of IP addresses to be assigned to it. It is assumed that

the device gets its own IP address from another, non-Native DHCP Server.

5.3.1.2 Native PCO platforms _

Each device type on the network is provided a specific editor to control its specific configuration.
Typical devices are: transmitters, actuators, controllers, etc. These editors are available for off-
line configuration. In this case, the system monitor downloads any approved configurations at
the next start-up. The editors may also be available on-board the device (e.g., for fixed function
devices such as single station controllers), which allows direct configuration through a web
browser. The on-board facility is automatically disabled once the device is placed on a native
network. This ensures database consistency while allowing the use of the device on non-native
networks. In the illustrated embodiment, device specific configurators are provide in ADE add-in

and on-board, preferably, with the same code would be available and used for both.

5.3.1.3 Native Workstations

-30-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
134

Appendix

The configuration of this device includes user name(s) allowed; read only operation; full fledged

operator; and so forth.

5.3.1.4 Native Server
The configuration of this station is a range of addresses if it is acting as a DHCP server.

5.3.2 The Control Editor

The Control Editor implements PCOs plus four of the IEC 1131-3 languages (LD, ST, SFC, and
FB). Any control schemes built in those languages are translated into a Java file, compiled, and
downloaded. The IEC 1131-3 concept of configurations, resources, programs, and tasks are
translated into the native environment that consists of set of native platforms. In addition, the
Control Editor supports defining of control schemes using PCOs in the same manner that it
supports the use of IEC Function Blocks; supports the assignment of control entities to specific

PCO platforms; the importation of instruments lists to generate, and PCOs.

5.3.3 The Graphic Editor
The Graphic Editor support all of the human interface (HI) functionality and graphics typical of
this type of editor.

5.3.4 Application Configuration

Applications can only be assigned to native web servers.

5.3.4.1 Historian Object Editor

A historian object when found in a CO is a representation of a portion of the full historian
configuration, e.g., a slice of the historian. The historian object consists of the name of the
historian to receive the data and a list of PCO attributes. Each attribute is associated with certain
critical information related to the historian, e.g., change deltas, sample rates, reduction
operations, archive characteristics, etc. Starting the historian editor resulting in showing the full

configuration of the historian(s) to which this object is assigned.
5.3.4.1.1 Historian Data Definition Object Editor

-31-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
135

Appendix

One historian object exists for each historian in the system. These objects are created
automatically if a historian data definition object is created and assigned to a historian. The data
in this object controls the general function of the historian, e.g., where it runs in the system, what

its archive policy is, what its data reduction policy is, etc.

5.4 Process Control

5.4.1 Definition of the Process Control Domain

The process control domain is usually divided into three primary control styles: (i) analog control
(continuous), (it) logic control (ladder logic), and (iii) sequential control (supervisory operation
of logic and analog control structures). In addition, every process control system must address

batch (or recipe based) manufacturing with the related topics of lot tracking and validation.

The illustrated control system 10 views these styles as particular visualizations of the process
control functionality. This means that these three types of control do not exist as objects. Rather,
the control system receives a class definition of a process control object (PCO) which it
instantiates and executes. It is the responsibility of the control editor to create the correct
representation of the control structure while also representing that control structure in one of the

industry standard formats, i.e., ladder-logic, function blocks, or structured text, or PCOs directly

Sequential Function Charts are a meta-language used to control the execution of the other three.
languages. In the illustrated embodiment, it serves as a wrapper class for the other classes. The
source code for a control scheme and the critical values for its PCO attributes, i.e., its checkpoint

file, are held in the non-volatile memory of the Native device.

5.4.2 Process Control Objects

5.4.2.1 PCO Attributes

The fundamental control object is a PCO attribute. As noted above, these are provided in two
types: variables and parameters. An example of a variable attribute is a measurement in a PID
block. In the illustrated system, a PCO attribute is an object in its own right and it contains
certain vital information when it is retrieved. This information is “atomic”, i.e., all information is

obtained with an attribute, not just its “value”. The minimal set of information from a PCO

-32-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
136

Appendix

variable attribute is value, data type, quality information time tag in milliseconds, and alarm
status. It is this object that is transferred from one PCO to another to implement the transfer of

information needed in an actual control scheme.

Parameter attributes bundle less information than a variable attribute. The typical example of a
parameter attribute is the proportional band of a PID block. In the illustrated control system 10,
this attribute has less supporting information than a variable attribute, e.g., it would not have an

engineering unit range.

5.4.2.2 PCO Blocks

PCO attributes and methods to operate on those attributes are combined into PCO Blocks. These
blocks are analogous to the control blocks in other systems, e.g., I/A Series FoxBlocks, IEC
1131-3 Function Blocks, and Foxboro Microspec Blocks. However, because they are
implemented in Java, they can be executed on any microprocessor running any OS that supports
a JVM. In addition, they are designed to occupy only the amount of RAM required for the

selected options and to be on-line replaceable.

PCO blocks capture and encapsulate knowledge of regulatory control algorithms needed to by
continuous processes. The PCO user block can be used to integrate particular user-defined
control algorithms into a PCO control scheme. It is the PCO user block that is used to implement

control strategies that are defined using one of the IEC 1131-3 control languages.

5.4.2.3 PCO Composites

PCO Composites are implementations of a control strategy. They consist of PCO blocks and
other PCO composites linked in such a manner as to provide the control mechanisms needed for
a particular process. It is the PCO composite that captures application level control expertise,
e.g., complex control structures for major pieces of equipment or even the simpler idioms of

cascade control.

5.4.3 PCO Execution Environment

-33.-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
137

Appendix

The PCO execution environment is the software in a native control device that supports the
execution of PCOs. This software includes the JVM and any other required code, such as a class
loader that loads stand-alone applications for each composite, a class loader that loads an applet
for each composite, a block processor that loads Java byte codes for a composite and executes
each composite in turn, and a block processor that loads Java byte codes for PCO Blocks and

executes each blocks in turn.

5.5 Communications

5.5.1 Requirements

5.5.1.1 Communication Model Definition

Several types of communication are provided in the illustrated control system 10. These types
include data transfer, message transfer between application programs, object movement

(downloads), class file (code) transfers, and events (unsolicited messages).

The communications mechanism is redundant, i.e., the failure of one station in the system does
not prevent communication (new or established) between any two other stations. It also
minimizes the impact on uninvolved stations when the service is used by its clients, e.g., a
message is not sent to a network segment if it is not going to be used there. The communications
mechanism, moreover, provides an encapsulated implementation that can be replaced “under the
hood” as new technologies become available. Also, it allows the illustrated control system 10 to
be configured for the appropriate communication resources, e.g., the number of outbound
connections. Moreover, it provides performance statistics, e.g., high, low, average transfer times
between two stations, bytes per seconds between two stations, etc., for viewing in the system
monitor. Still further, it automatically reconnects to an object if it is relocated on or removed

from/restored to the network.

Data transfer in the illustrated control system 10 is provided by a mechanism that permits clients
to subscribe to updates in a object. It also provides a mechanism for one-shot get/set access to an
object. A client of the data transfer facility supplies the control system with a (i) number of
objects that it needs, (ii) conditions under which it wants updates: change delta, maximum time

between updates, or both, (iii) be capable of retrieving the values all at once (a snapshot), and

-34 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
138

Appendix

(iv) be capable of retrieving the values as series of changes with the option to block, for a user
specified amount of time, while waiting for a change. Client publication (write lists) are not
supported in the illustrated embodiment. Target devices subscribe to the data in the source

device.

With respect to client one-shots (get), the client of the data transfer facility supplies the system
with a number of objects that it needs and retrieve the values all at once (a snapshot).
Conversely, with respect to client one-shots (set), the client supplies the system with a number of
objects that it wishes to change, and set any part of the object if it has access. The parts referred

to are the supporting information in a PCO attribute as well as the value part.

5.5.1.1.1 Message Transfer

55.1.1.1.1 General

While the message transfer mechanism is a general case of the data transfer mechanism, its
requirements are given separately. The client of the message transfer facility must support
private conversations between applications using a reliable communications mechanism and

support by subscription publication of information from one server to many clients.

5.5.1.1.1.2 Private Conversations

The private conversation mode allows applications to find each other by their application name:
the client application is not required to know the station name or IP address of the server
application. It also allow applications to send records (messages) of arbitrary size: the private
conversation mode guarantees that the message boundary is recognized and that order is
preserved. Moreover, it allows both the sending and receiving process to determine if the
connection is lost. Still further, it supports transaction based message transfer, i.e., the sender

does not get an acknowledgement until the receiver says that the message is safely stored.

5.5.1.1.1.3 Subscriptions
The subscription facility supports senders and listeners. A sender is a process that has data that
may be of interest to one or more listeners. The subscription mode supports this type of operation

by allowing a “sending” process to register that it will produce messages of a particular type,

-35-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
139

Appendix

allowing a “listening” process to register to receive all messages of a particular type, supporting
transaction based subscription if the client so requests (this request would have no impact on the
sender), and supporting transaction based publishing by a server if the server requests it (this
request would have no impact on the receiver). If no listeners are registered, the subscription

facility defines how the message is handled.

5.5.1.2 Security

The native communications system is linked to the native security system to ensure that
unauthorized users are unable to access objects. The illustrated control system 10 does not
arbitrate between users of a resource. The prevention of multiple access to an object is the
responsibility of the object. The breaking of an application secured link by an operator is not a

function of the illustrated control system 10.

5.5.1.3 Object Location Services

Object are located by name. To this end, the object location service supports the location of
named objects; supports hierarchical object names; allows rule based specification of the name
delimiting character; locates an object based on a “longest fit” because (a) not all parts of an
object name are globally known and (b) not all parts of an object are in the same physical
location; supports the implementation of naming scopes, i.e., limiting the visibility of names;
supports the use of a name search path so that relative names can be located; is redundant;
supports locating many types of objects, e.g., server processes, PCO attributes, and application
programs; and supports the addition of related information about the object in the name
directory, e.g., object type, short-cut information to be used by the process that owns the object,
object type/implemented interface, and information. With respect to the last item, the object
location services permit a client to request the name of a service that supports a specific

mterface. This allows new interfaces to be added to a service without breaking an old one.

5.5.1.4 Networks
The illustrated control system operates over any IP based network 48. By way of non-limiting
example, the illustrated control system 10 operates over wide area networks supplied by the

customer, installed plant LANs supplied by the customer, dedicated LANs supplied either by the

-36-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
140

Appendix

customer or the vendor, redundant LANs supplied by the vendor. This operation is transparent
to all applications using the system 10. While it is recognized that performance are degraded
over low bandwidth (phone lines) and high latency (geosynchronous satellites) networks, the
system 10 optimizes as best it can to minimize the impact of different network types. In short,

the illustrated control system 10 does not assume that it “owns” the network.

5.5.1.5 Quality of Service

5.5.1.5.1 Performance

Assume that the illustrated control system 10 is operating in support of a PCO in a dedicated
control station (not a transmitter) or in a PC, it supports at least 10,000 object value gets/sets per
second if the object is in the local station; supports at least 100 get/set per second requests from a
client if the object is in a remote station; supports at least 50 get/set reduests per second made to
a server from a remote client; is able to locate 3000 objects per second; is able to detect a
communication failure in no more than 1000 milliseconds; ensures that the time to move data
from a server station to a client station (API call to API call) is less than 100 milliseconds in a
normally configured network; allows a server station to move 6000 values out of its box every
second; allows a client station to accept at least 2000 values every second; allows an unlimited
(but, configured) number of names to be defined in the system; and supports the registration of
50,000 globally known names without requiring a reconfiguration. All server stations are able to
support at least 30 client stations for continuous data feed without requiring a reconfiguration:.
All client stations support at least 30 server stations for continuous data feeds without requiring a

reconfiguration.

5.5.1.6 APIs
Within the illustrated control system 10 environment an API are provided for all of the above
services. This API are delivered as a Java Bean so that the underlying communications

mechanism may be replaced without breaking all of the applications that use the service.
5.5.1.7 Maintenance and Upgrades of Messaging Services
The illustrated control system 10 defines and enforces a mechanism for supporting inter-

operability of messages from stations at different versions. A mechanism like interface

-37-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
141

Appendix

inheritance is provided, i.e., a message carries in it enough “type” information that the receiving
application knows how to “decode” the message even if the receiving application is at a lower

level. This adds fields to messages if necessary, but not remove/replace old fields.

5.5.1.8 Integration of non-Native Based Systems
The illustrated control system 10 supports integration of non-Java applications using appropriate
technologies, e.g., CORBA, COM/DCOM/ActiveX, and emulation of APIs. Physical gateways

are permitted, but these gateways provide only a minimal amount of configuration.

5.5.1.9 Object Location Service Implementation

5.5.1.9.1 The All Java Approach

5.5.1.9.1.1 Description

JINI and JavaSpaces technologies permit object location within the illustrated system. JINI
technology allows native devices to register names in a globally available database. JINI clients
can find this database and perform searches against it. JavaSpaces allow a device to register
important information in a globally available bulletin board. JavaSpaces provide four simple
services: posting, removal, query by example, and notification. The notification feature informs
prospective users of a class of objects when such objects are added and removed from the

JavaSpace. A JavaSpace handles services like system monitoring.

5.5.1.9.2 The Enhanced Object Manager Approach
5.5.1.9.2.1 Description
As an alternative, an enhanced object manager (EOM) approach to address location and

connection of data clients and servers can be utilized as follows:

1) A LDAP compliant service are created and used to store pathnames and related
information, e.g., IP addresses, Port Numbers, internal indexes, etc.

2) The EOM API provides get/set and read/write support similar to that provided by the OM
today.

3) When provided a name, the EOM looks in the local copy of the LDAP database.

-38-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
142

Appendix

4) If the name is found and the data is local, the request is passed to the correct data
provider (the EOM, the CIO database, or the AOS database) who returns the value and
other data. The EOM handles sending updates on change driven data.

5) If the name is found and not local, the EOM sends the request to the remote EOM which
then makes a local query. The EOM handles sending updates on change driven data.

6) If the name is not found locally, the location request is passed to the master LDAP
database. If it is found there, the address information is passed back to the local LDAP
database (which is updated) and steps 4) and 5) are repeated.

7) If the name is not found remotely, the request is posted for a period of time. If it is
resolved in that period, the requesting station is notified. If it is not resolved, the master

LDAP database drops the name and notifies the requesting station.

5.6 Critical Applications

5.6.1 Time Synchronization

SNTP (Simple Network Time Protocol) is used to keep operator stations and similar non-process
data producers in sync. This protocol is as accurate as 1 ms in a carefully controlled
environment, but 50 ms is more common on shared networks. Controllers requiring high
accuracy are placed on tightly controlled networks or equipped with an interrupt used to
coordinate time updates. In either case, a master timekeeper tied to a well known reliable data
source - GPS clock or broadcasted time from the national atomic clocks. This master time keeper
generates the interrupt and SNTP. It is built with a highly reliable internal clock so that loss of
time feed does not result in significant drift within the Mean Time to Repair (MTTR).

5.6.2 Alarm and Message Management

Alarm and message manage requires that all process alarming to be based on the top-level
composite’s attributes; that acknowledgments be handled at the composite level; that PCOs,
system monitors, and the native human interface a reliable message protocol to send the message
to a message management system (MMS); that the MMS is used by end-users to view the current
alarm state and the alarm history; and that the MMS use the plant historian to permanently store

and archive messages.

-39-

10

15

20

25

30

WO 01/09690 PCT/US00/20828
143

Appendix

To meet the control market's requirement for a message management system, the illustrated
control system 10 provides a message management support service (MMSS) in the native
devices that are used to deliver messages to a Message Manager. The service operates as

follows.

When a client of the MMSS connects to the MMSS server, the MMSS server send any messages
in its internal alarm queue that are older than the time of the connection to the client; transmits
the alarm state at the time of the connection to the client, and transmit any new messages
subsequent to the connection. If the connection to the MMSS client fails, there is no impact on
the operation of the control station or the control network; minor delays associated with detecting
the loss of connection are generally viewed as acceptable. The MMSS support at least two (2)

and, preferably, four simultaneous clients.

The alarm state of a PCO attribute is defined to include block attribute identification (full PATH
attribute name, at least); the bad I/O status of the block for I/O attributes; an indication of the
alarm status for each alarm type defined for the attribute; the priority, criticality, and
acknowledgment status of the attribute; the on/off status of the attribute, i.e., is it updating; the
status of the alarm inhibit and alarm disable or alarm option parameters, and the time tag of each
alarm event stored within the block, e.g., the into alarm time, the acknowledged time, and the

return to normal time. This information is recovered from all currently active alarms.

5.6.2.1 Configuration

5.6.2.1.1 Process Alarms

When a composite is configured, the application engineer specifies which attributes of the PCOs
within the composite are to be annunciated. When a composite is placed on line, it notifies the
object location service that it exists. A message management service are notified of the new

composite and arrange for notification from the device.
5.6.2.1.2 System Alarms and Messages
No user configuration is required to get these alarms into the MMS. The sources of such

messages arranges for the appropriate notification.

-40 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828
144

Appendix

5.6.2.1.3 Native Operator Actions
No user configuration is required to get these alarms into the MMS. The sources of such

messages arranges for the appropriate notification.

5.6.2.2 Native Message Management Service
The MMS are centralized and redundant. It provides a complete alarm state for the plant at any
time including startup. It retains a message history for as long as configured through the use of

the plant historian. Users view the alarms through to the Alarm Manager.

6 Native Hardware SubSystems

6.1 Field Devices

6.1.1 Overview

The native field devices are coupled to the network 48 via an IP network, preferably, Ethernet
and, still more preferably, powered Ethernet. Powered Ethernet delivers the power, along with
conventional Ethernet data. To this end, the native field devices use one of two wiring schemes,
with each scheme supplying power to the field device: (a) standard four wire 10Base-T wiring,
or (b) industry standard two-wires used for 4-20ma based transmitters. The devices also provide
a single Ethemnet interface (or redundancy, where desired in the cabling or the field device); and
connect to a non-redundant powered hub with the following features: (a) non-redundant
connections to the [FDs; and (b) support for redundant connection to a plant-wide network.
Where used, the powered Ethernet implementation leaves the physical and logical Ethernet
interfaces in place. This means that except for adding a new wiring type, the physical layer, the

data link layer, the use of CSMA/CD, and 10Base-T connectors are preserved.

The illustrated embodiment utilizes powered Ethernet hubs to provide communications and
power to its intelligent field devices. These IFDs may be transmitters, actuators, Networked I/O,
or PCO platforms. The powered hubs are preferably, stackable, DIN rail-mountable, support
connection to a redundant network, and support both 10 Mbps and 100 Mbps Ethernet.

-41 -

10

15

20

WO 01/09690 PCT/US00/20828
145

Appendix

A further understanding of the operated of the powered Ethernet network and of the circuitry
used within the native field and control devices to draw power therefrom may be attained by
reference to United States Patent Application Serial No. 09/444,827, filed November 22, 1999,
entitled POWERED ETHERNET FOR INSTRUMENTATION AND CONTROL, and by
reference to the corresponding PCT Patent Application US00/10013, filed April 14, 2000, the
teachings of which are incorporated herein by reference, and a copy of which is attached as an

appendix hereto.

On the software side, specific implementations of the native field devices support web based
configuration, as described above. The support is supplied by including an embedded web server

with a selection of pages used for configuration and maintenance.

6.1.2 Transmitters
Intelligent transmitters use the IEEE 1451 standard to communicate to their sensor(s). This
facilitates use of the same module in many types of transmitters from potentially many vendors

and allows the transmitter to support up to 255, perhaps externally mounted, sensing devices.

6.1.3 Positioners

The native intelligent positioners also support a powered Ethernet interface like the one used by
the native intelligent transmitters. Figure 6 shows a preferred native intelligent positioner
implementation. The approach standardize interfaces and use a PCO to control the positioner as

evident in the drawing.

-42 -

PCT/US00/20828

WO 01/09690

146

Appendix

SOX
so X
S9 L

pieoq
uBaqng S

IMVI

(1-sseg01)
SO X Sax Sax SOx Sa X SOA SOA Sax Sox PuRyg
(ETH/TTH/S8Y/TET
S3X seX oA -S¥) /1 1819
(s11 7)
S SO X WYY poiemog
(15¥1 294D
SO Sa X /1 I0susg
SOX Sax SoA Sa X SoX Sox Sox Sox yserg
SO A SOX Sox SO& Sax sax SO X SO L SOA NWOoY
SOx SOA sax SO X SO X SO Sox sax SOX VY
ndo
Sax sax SO X Sa X SO% Sax soueurroyrad dog,
ndp soueurojrad
Sa X Sax SO K Y3y ‘remod mor]
sejosuo))
IOAIDS IOAIOS QO IOAISS GO\ uOTEISIOA IojeradQ
dDHA SS 9els-prio§ paseq Dd QATIEN peseq Dd 101vISoJU] IS[[OIUO)) JOUOLISOJ JepIury saimes

"901ASP PSJROIPUI 9Y) U Juasaxd J0U ST 9Injeay S Jey) 9JedIpul S[[9d JUE[E "SMO[[OJ SSOIAAP [OIJUOD SATJEU JO SOINJed) S} Jo ATRWUNS Y

ad{£], uonyess £q sanyes,] aremyoS/erempiey jo Arewung 7°9

-43 -

PCT/US00/20828

WO 01/09690

147

Appendix

SO &
SOx

SO
SO X
SO
Sax

pIeoq

SOx
SO X

SOx
Sox
SO X
Sox

IOATSS

SO
SO X

SO X

Sox

Sox

Sax
Sax
S X
S
S

SO
Sax

Sax
SO

S X

SO
SOx
Sax
SOx

paseq Dd

SO X

SO X

so X

sax

SO X

Sox

SOX

SOX
SOx

Sa X
SO X

IOAIOS GO IOAISS GO\ UOIERISHIOM

updnng S dOHA SS S¥es-pros 2AEN

I.V.VI

SO A

Sax
Sax
SO X
SOA

So X

SO X
SOK

sa X

Sa[osuo))
103e1edQ
paseq Dd

SOA

Sax
sa X

Sax
sox

Sa X

I03eI3o)U]

SOA

SoX
SO X

SOx
Sox

Sox

I[[ONUO)) JOUONISOJ IenIury

SOk

SaX
SOX

Sax
SO A

SOx

SAX

SO
SOX

S9X
Sax

SOk

[o1U0)) $$9201d

IONUOIA] WSAS
23e103§

JIng 911§ pros

SALD pIeH

Aepdsiq

[Teq3oe1] /oSO

U99I0SY2N0 |,
preoq4ey]

Iojerounuuy
IoyeI3uo))

a9189(]

IOAISS QOM
suIyoRN

JENMIA BAEf

SO 14

IeareS JOHA

ams dI/dDL 9y

JouwIaIg SSO[PIM

saImea,]

-44 -

PCT/US00/20828

WO 01/09690

148

Appendix

SO A SO A

pIeoq I9AI0G

une[nq §S dOHA SS

SaX

SOA

IOAIRS GO 1OAISS QA UODEISIOM

ayeIs-pIjos

SO X

SO

pased Dd

SO X

SO X

QATJEN

lW?l

SOA

SOx

se[osuo))

1o03e10dQ

paseq Dd

SO X

Sax

sax

SOX
So X

So X

Sax

SO X

Sax

I0jeI3oju] IQ[[OIUO)) ISUONISOJ IOPIUrY

sax

sax

1do

1do

1do

uQO
3do

.uQO

1do

SOA

Sax

1do

1do

1do

1o
1do

1do

13do

SO X

Sex

PNS21AJ
ypoddng

IH Snqp[eld
poddng

dSH snqpyatg
ypoddng

WUWO0)X0,]

ypoddng 1VH
poddng

dd snqyord
ypoddng

Vd snqyoid
S9OIAIRS
Buidessopy

snqruuo
s199[q0
JuswaSeurA

w9ISAS
(s004) s12[q0

Salmeaq

- 45-

PCT/US00/20828

WO 01/09690

149

X
T
£
o
&
&
5 4 Sox
Sa K
S8 X SOx
SOx
SOX
pIeoq IOAI9S I0AISS GOA\ JRAISS QAN UONEISNIOAN
ugemq S dOHASS S®IS-pros pased Od

lovl

S3[0sU0))

10yeradp

paseq Dd

Sox

SOx
S
SOX
Sox
SO X

1do

1do

JuowReuRA
oessoN
SIId
UONIRZIUOTYIUAS
swL]
UeLIoIstH
JUSUIUONAUF
yuowdopaasg
uonyesrddy
(wwoHx0.)

snqpoLy

1do SOLIAS /I

SNQaPON
SOUISS V1
Hagv
+Snqpo
snqpojy

1do SHOMNOT

I0JRIO)U] IS[ONUO)) ISUOLISOJ JOPIULY SoINyeS,J

- 46-

WO 01/09690 PCT/US00/20828
150

Appendix

Described above are apparatus and methods that achieve the goals of the invention. It will be
appreciated that the embodiments described herein are examples and that other embodiment
incorporating changes thereto also fall within the scope of invention. Thus, by way of example,
it will be appreciated that the invention can be implemented using a virtual machine environment
other than JVM and using bytecode other than Java bytecode. By way of further example, it will
be appreciated that the apparatus and methods taught herein can be applied to a range of control

application, in addition to process control.

In view of the foregoing, what I claim is

-47 -

WO 01/09690 PCT/US00/20828
151

Appendix

1. A field device for a control system, the improvement wherein
the field device provides a virtual machine environment and executes byte code therein,
the byte code configuring the field device to execute a control algorithm.

2. The field device of claim 1, the further improvement wherein the byte code configures

the field device to execute a control function block.

3. The field device of claim 1, the further improvement wherein the byte code configures

the field device as a controller.

4. The field device of claim 3, the further improvement wherein the byte code configures

the field device to perform proportional integral derivative control.
5. A field device for a control system, the improvement comprising
a virtual machine environment within the field device,

byte code executing within the field device that configures it to perform signal

conditioning,
6. The field device of any of claims 1 - 5, the further improvement wherein the field device
comprises any of a transmitter or other sensor device, and a positioner or other actuator

device.

7. The field device of any of claims 1 - 5, the further improvement wherein the byte code
comprises JAVA byte code.

8. A field device for process control, the improvement wherein the field device comprises a

web server.

-48 -

WO 01/09690 PCT/US00/20828

10.

11.

12.

13.

14.

15.

16.

17.

152

Appendix

The field device of claim 8, the further improvement wherein the web server is
embedded.

The field device of claim 8, the further improvement wherein the web server serves web
pages that facilitate any of configuration, monitoring and maintenance of at least the field

device.

The field device of claim 10, the further improvement comprising a configuration editor
in communication with the web server, the configuration editor controlling at least the

field devices' configuration.

The field device of claim 11, the further improvement wherein the configuration editor is
selectively disabled or enabled, depending upon the type of network to which the field

device is coupled.

A field device for a control system, the improvement wherein the field device provides a

web server and a virtual machine environment.
The field device of claim 13, the further improvement wherein the virtual machine
environment executes byte code that configures the field device to any of (i) execute a

control algorithm and (ii) perform signal conditioning.

The field device of claim 14, the further improvement wherein the byte code configures

the field device as a controller.

The field device of claim 15, the further improvement wherein the byte code configures

the field device to perform proportional integral derivative control.

The field device of claim 14, the further improvement wherein the web server is
embedded.

-49 .

WO 01/09690 PCT/US00/20828
153

Appendix

18. The field device of claim 14, the further improvement wherein the web server facilitates

any of configuration, monitoring and maintenance of at least the field device.

19. The field device of claim 18, the further improvement comprising a configuration editor
that is in communication with the web server, the configuration editor controlling at least

the field devices' configuration.

20. The field device of claim 19, the further improvement wherein the configuration editor is
selectively disabled or enabled, depending upon the type of network to which the field

device is coupled.
21. The field device of any of claims 13 - 20, the further improvement wherein the field
device comprises any of a transmitter or other sensor device, and a positioner or other

actuator device.

22, The field device of any of claims 13 - 20, the further improvement wherein the byte code
comprises JAVA byte code.

23. A field device for a control system, the improvement wherein the field device comprises

an interface to an IP network.

24. The field device of claim 23, the further improvement wherein the interface receives

operational power for the field device from the IP network.

25. The field device of claim 23, the further improvement wherein the interface comprises an

interface to an Ethernet network.

26. The field device of claim 25, the further improvement wherein the interface receives

operational power for the field device from the Ethernet network.

-50 -

WO 01/09690 PCT/US00/20828

27.

28.

29.

30.

31.

32.

33.

34.

35.

154

Appendix

The field device of claim 23, the further improvement comprising a processor that is in

communication with the interface.

The field device of claim 27, the further improvement wherein the processor is a low-

pPOWeET processor.

The field device of claim 27, the further improvement wherein the processor provides a

virtual machine environment and executes a web server.

The field device of claim 29, the further improvement wherein the processor executes an

operating system.

The field device of claim 30, the further improvement wherein the operating system is a

real-time operating system.

The field device of claim 30, the further improvement wherein the field device comprises
at least one of a random access memory, a read-only memory, FlashRAM, a FlashRAM,
and a sensor interface.

The field device of any of claims 23 - 32, the further improvement wherein the field
device comprises any of a transmitter or other sensor device, and a positioner or other
actuator device.

A field device for process control, the improvement comprising

a processor, and

an interface to an IP network, the interface being in communication with the processor.

The field device of claim 34, the further improvement wherein interface receives

operational power for the field device from the IP network.

-51-

WO 01/09690 PCT/US00/20828

36.

37.

38.

39.

40.

41.

42.

43.

44,

155

Appendix

The field device of claim 34, the further improvement wherein the interface comprises an

interface to an Ethernet network.

The field device of claim 36, the further improvement wherein the interface receives

operational power from the Ethernet network.

The field device of claim 34, the further improvement wherein the processor executes a

web server.

The field device of claim 34, the further improvement wherein the processor executes any

of (i) a control algorithm and (ii) a signal conditioning algorithm.

The field device of claim 39, the further improvement wherein the processor performs

proportional integral derivative control.

The field device of claim 34, the further improvement wherein the processor executes a
web server that facilitates any of configuration, monitoring and maintenance of at least

the field device.

The field device of claim 41, the further improvement comprising a configuration editor

in communication with the web server.

- The field device of claim 42, the further improvement wherein the configuration editor is

selectively disabled or enabled, depending upon the type of network to which the field

device is coupled.
The field device of any of claims 34 - 43, the further improvement wherein the field

device comprises any of a transmitter or other sensor device, and a positioner or other

actuator device.

-52-

WO 01/09690 PCT/US00/20828
156

Appendix

45. The field device of claim 44, the further improvement wherein the field device is adapted

for use in a process control system.

46. A field device for a control system, the improvement wherein the field device includes an
interface to an IP network and wherein the field device issues to the IP network, via the

interface, a request for assignment of an IP address.

47. The field device of claim 46, the further improvement wherein the field device receives a
device identification name from any of (i) a user-configured hub or other device to which
the field device is coupled, (ii) a letterbug installed in the field device, (iii) a digital data

processing apparatus, (iv) a software generated letterbug.

48. The field device of claim 46, the further improvement wherein the field device registers a

characteristic via the IP network.

49. The field device of claim 48, the further improvement wherein the field device registers

the characteristic with a bulletin board on the IP network.

50. The field device of claim 49, the further improvement wherein the field device registers

the characteristic with in a Javaspace on the IP network.

51. The field device of claim 46, the further improvement wherein the field device
communicates with another element of the system over the IP network in order to obtain

configuration information.

52. The field device of claim 46, the further improvement wherein the field device retains

configuration for use at startup.
53. The field device of any of claims 46 - 52, the further improvement wherein the field
device has a processor that performs any of (i) a control algorithm and (ii) signal

conditioning.

-53-

WO 01/09690 PCT/US00/20828

54.

55.

56.

57.

58.

59.

60.

61.

157

Appendix

The field device of claim 53, the further improvement wherein the processor configures

the field device as a controller.

The field device of claim 54, the further improvement wherein the processor configures

the field device to perform proportional integral derivative control.
The field device of any of claims 46 - 52, the further improvement wherein the field
device includes a web server that facilitates any of configuration, monitoring and

maintenance of at least the field device.

The field device of claim 56, the further improvement wherein the field device comprises

a configuration editor.

The field device of claim 57, the further improvement wherein the configuration editor is
selectively disabled or enabled, depending upon the type of network to which the field
device is coupled.

The field device of any of claims 46 - 52, the further improvement wherein the field
device comprises any of a transmitter or other sensor device, and a positioner or other

actuator device.

The field device of claim 59, the further improvement wherein the field device is adapted

for use in a process control system.
A control device for a control system, the improvement wherein

the control device provides a virtual machine environment and executes byte code

therein,
the byte code configuring the control device to execute a control algorithm.

-54-

WO 01/09690 PCT/US00/20828

62.

63.

64.

65.

66.

67.

68.

69.

70.

158

Appendix

The control device of claim 61, the further improvement wherein the byte code

configures the control device to execute a control function block.

The control device of claim 61, the further improvement wherein the byte code

configures the control device as a controller.

The control device of claim 63, the further improvement wherein the byte code

configures the control device to perform proportional integral derivative control.

The control device of any of claims 61 - 64, the further improvement wherein the control
device comprises any of web server, control station, operator console, personal computer,
handheld computer, workstation, integrator, controller, transmitter or other sensor device,

positioner or other actuator device.

The control device of any of claims 61 - 64, the further improvement wherein the byte

code comprises JAVA byte code.

A control device for a control system, the improvement wherein the control device

provides a web server and a virtual machine environment.

The control device of claim 67, the further improvement wherein the virtual machine
environment executes byte code that configures the control device to execute a control
algorithm.

The control device of claim 68, the further improvement wherein the byte code

configures the control device as a controller.

The control device of claim 69, the further improvement wherein the byte code

configures the control device to perform proportional integral derivative control.

-55-

WO 01/09690 PCT/US00/20828

71.

72.

73.

74.

75.

76.

159

Appendix

The control device of claim 67, the further improvement wherein any of the web server

and the virtual machine environment is embedded.

The control device of claim 67, the further improvement wherein the web server any of
(1) facilitates any of configuration, monitoring and maintenance of the control system or
one or more control devices, (ii) collects process data from one or more control devices,
(iii) generates source for operator displays, (iv) provides access to the control system, and

(v) hosts an applications development environment.

The control device of any of claims 67 - 72, the further improvement wherein the control
device comprises any of a web server, control station, operator console, personal
computer, handheld computer, workstation, integrator, controller, transmitter or other

sensor device, positioner or other actuator device.

The control device of any of claims 67 - 72, the further improvement wherein the byte
code comprises JAVA byte code.

A control device for a control system, the improvement wherein the control device

comprises
a low-power processor,

an interface to an IP network, the interface being in communication with the processor,

and

the interface receives operational power for the control device from the [P network.

The control device of claim 75, the further improvement wherein the interface comprises

an interface to an Ethernet network.

-56 -

WO 01/09690 PCT/US00/20828

77.

78.

79.

80.

81.

82.

83.

160

Appendix

The control device of claim 75, the further improvement wherein the processor provides a

virtual machine environment and executes a web server.

The control device of claim 77, the further improvement wherein the control device
comprises at least one of a random access memory, a read-only memory, FlashRAM, and
a sensor interface, access to permanent storage, a configurator, system management
software, messaging services, alarm/event notification, byte code implementing process

control functions, byte code implementing status reporting.

The control device of any of claims 75 - 78, the further improvement wherein the control
device comprises any of a web server, control station, operator console, personal
computer, handheld computer, workstation, integrator, controller, transmitter or other

sensor device, positioner or other actuator device.
A control device for process control, the improvement wherein
the device comprises an interface to an IP network, and

on startup, the device registers a characteristic thereof with at least one other device on

the IP network.

The control device of claim 80, the further improvement wherein the control device

issues to the IP network, via the interface, a request for assignment of an IP address.

The control device of claim 80, the further improvement wherein the control device
receives a device identification name from any of (i) a user-configured hub or other
device to which the control device is coupled, (ii) a letterbug installed in the control

device, (iii) a digital data processing apparatus, (iv) a software generated letterbug.

The control device of claim 80, the further improvement wherein the control device

registers the characteristic with a bulletin board on the IP network.

-57-

WO 01/09690 PCT/US00/20828

84.

85.

86.

87.

88.

89.

90.

91.

161

Appendix

The control device of claim 83, the further improvement wherein the control device

registers the characteristic with in a Javaspace on the IP network.

The control device of claim 80, the further improvement wherein the control device
communicates with another device over the IP network in order to obtain configuration

information.

The control device of claim 80, the further improvement wherein the control device

retains configuration information for use at startup.

The control device of any of claims 81 - 86, the further improvement wherein the control

device has a processor that executes code that performs a control algorithm.

The control device of claim 87, wherein the processor executes code that configures the

control device as a controller.

The control device of claim 88, the further improvement wherein the processor executes

code to perform proportional integral derivative control.

The control device of any of claims 81 - 86, the further improvement wherein the control
device includes a web server that any of (i) facilitates any of configuration, monitoring
and maintenance of the control system or one or more control devices, (ii) collects
process data from one or more control devices, (iii) generates source for operator
displays, (iv) provides access to the control system, and (v) hosts an applications

development environment.

The control device of claim 90, the further improvement wherein the control device

comprises a configuration editor.

-58-

WO 01/09690 PCT/US00/20828
162

Appendix

92. The control device of any of claims 81 - 86, the further improvement wherein the control
device comprises any of a web server, control station, operator console, personal
computer, handheld computer, workstation, integrator, controller, transmitter or other

sensor device, positioner or other actuator device.

93. The control device of claim 92, the further improvement wherein the control device is

adapted for use in a process control system,

94. A control system comprising one or more field devices or control devices according to
any of claims 1 - 5, 8 - 20, 23 - 32, 34 - 43, 46 - 53, 61 - 64, 67 - 72, 75 - 78, 80 - 86, and
88 coupled via one or more IP networks.

95. A control system according to claim 94, wherein the IP network is powered.

96. A process control system having one or more field devices according to any of claims 8 -
12.

97. A control system comprising
a plurality of control devices coupled for communication via an IP network,

a DHCP server that furnishes IP addresses in response to requests by one or more of the

control devices.

98. The control system of claim 97, wherein one or more of the control devices are field

devices.

99. The control system of claim 98, adapted for process control, wherein the control devices

are process control devices.

-59._

WO 01/09690 PCT/US00/20828

100.

101.

102.

103.

104.

105.

106.

107.

108.

163

Appendix

The control system of any of claims 97 - 99, wherein the control devices comprises any

of a transmitter or other sensor device, and a positioner or other actuator device.
The control system of any of claims 97 - 99, wherein the DHCP server is solid state.

The process control system of claim 101, wherein the DHCP server is free of moving

parts and comprises zero, one or more removable components.
The control system of any of claims 97 - 99, wherein the IP network is powered and
wherein one or more of the control devices receive operational power from the IP

network.

A DHCP server that is solid state and that is adapted for use on an IP network comprising

one or more control devices.

The solid state DHCP server of claim 104, adapted for use with one or more control

devices that are process control devices.

The solid state DHCP server of claim 104, adapted for use with one or more control

devices that are field devices.

The solid state DHCP server of claim 106, adapted for use with field devices that include

any of a transmitter or other sensor device, and a positioner or other actuator device.
A control system comprising

a plurality of control devices coupled for communication via an IP network,

a network enabler that is coupled to the IP network that responds to requests by the

control devices to at least one of

-60 -

WO 01/09690 PCT/US00/20828

109.

110.

111.

112,

113.

114.

164
Appendix
i) register names specified by the control devices,
i) search for names specified by the control devices,

iii) posting to a network bulletin board events specified by the control devices,

removing from the network bulletin board events specified by the control devices,

querying the network bulletin board for events specified by the control devices,

vil) notifying the control devices of events specified by the control devices.

The control system of claim 108, wherein the network enabler is any of a JINI and a

JavaSpace server.

The control system of claim 108, wherein one or more of the control devices are field

devices.

The control system of claim 110, adapted for process control, wherein the control devices

are process control devices.

The control system of any of claims 108 - 111, wherein the control devices comprises any

of a transmitter or other sensor device, and a positioner or other actuator device.

The control system of any of claims 108 - 111, wherein the network enabler is solid state.

The process control system of claim 113, wherein the network enabler is free of moving

parts and comprises zero, one or more removable components.

-61 -

WO 01/09690 PCT/US00/20828

115.

116.

117.

118.

165

Appendix
The control system of any of claims 108 - 111, wherein the IP network is powered and
wherein one or more of the control devices receive operational power from the IP
network.
A network enabler comprising

at least one IP network interface, and

one or more server functionalities, each of which responds to requests received over the

network interface to at least one of

1) register a name specified in a request,

i) search for a name specified in a request,

ili) post to a network bulletin board an event specified in a request,

V) remove from the network bulletin board an event specified in a request,
vi) query the network bulletin board for an event specified in a request,
vil) notify a requestor of events specified thereby,

viii)serve as a web server.

The network enabler of claim 116, wherein the server functionality is any of a JINI and a

JavaSpace server.

The network enabler of any of claims 116 - 117, wherein the network enabler is solid

state.

-62-

WO 01/09690 PCT/US00/20828

119.

120.

121.

122

123.

124.

125.

166

Appendix

The network enabler of claim 118, wherein the network enabler is free of moving parts

and comprises zero, one or more removable components.

The network enabler of claim 118, wherein the network enabler receives operational

power from the IP network.

A method of operating a field device for a control system, the improvement comprising

the steps of
providing within the field device a virtual machine environment,

executing byte code embodying a control algorithm within the virtual machine

environment.

The method of claim 121, the further improvement comprising executing a control

function block with the byte code.

The method of claim 121, the further improvement comprising configuring the field

device as a controller.

The method of claim 123, the further improvement comprising configuring the field

device with the byte code to perform proportional integral derivative control.

A method of operating a field device for a control system, the improvement comprising

the steps of the steps of
providing a virtual machine environment within the field device ,
executing byte code within the virtual machine environment to configure the field device

to perform signal conditioning.

-63-

WO 01/09690 PCT/US00/20828

126.

127.

128.

129.

130.

131.

132.

133.

134

167

Appendix

The method of any of claims 121 - 125, the further improvement wherein the field device
comprises any of a transmitter or other sensor device, and a positioner or other actuator

device.

The method of any of claims 121 - 125, the further improvement wherein the byte code
comprises JAVA byte code.

A method of operating a field device for process control, the improvement comprising

executing a web server within the field device.
The method of claim 128, the further improvement wherein the web server is embedded.

The method of claim 128, the further improvement comprising serving with the web
server web pages that facilitate any of configuration, monitoring and maintenance of at

least the field device.

The method of claim 130, the further improvement comprising controlling configuration
of at least the field device with a configuration editor that utilizes the web server as an

interface.

The method of claim 131, the further improvement comprising selectively disabling or
enabling the configuration editor, depending upon the type of network to which the field

device is coupled.

A method of operating a field device for a control system, the improvement comprising
the steps of executing a web server and a virtual machine environment within the field

device.
The method of claim 133, the further improvement comprising executing byte code
within the virtual machine environment that configures the field device to any of (i)

execute a control algorithm and (ii) perform signal conditioning,

-64 -

WO 01/09690 PCT/US00/20828

135.

136.

137.

138.

139.

140.

141.

142.

143.

168

Appendix

The method of claim 134, the further improvement comprising configuring the field

device as a controller.

The method of claim 135, the further improvement comprising configuring the field

device with the byte code to perform proportional integral derivative control.
The method of claim 134, the further improvement wherein the web server is embedded.

The method of claim 134, the further improvement comprising facilitating any of
configuration, monitoring and maintenance of at least the field device with the web

server.

The method of claim 138, the further improvement comprising controlling at least the
field devices' configuration with a configuration editor that utilizes the web server as an

interface.

The method of claim 139, the further improvement comprising selectively disabling or
enabling the configuration editor, depending upon the type of network to which the field

device is coupled.

The method of any of claims 133 - 140, the further improvement wherein the field device
comprises any of a transmitter or other sensor device, and a positioner or other actuator

device.

The method of any of claims 133 - 140, the further improvement wherein the byte code
comprises JAVA byte code.

A method of operating a field device for a control system, the improvement comprising

the steps of interfacing the field device with other elements of the control system via IP

network.

-65 -

WO 01/09690 PCT/US00/20828

144.

145.

146.

147.

148.

149.

150.

151.

152.

169

Appendix

The method of claim 143, the further improvement comprising receiving operational

power for the field device from the IP network.

The method of claim 143, the further improvement comprising interfacing the field

device with other elements of the control system via an Ethernet network.

The method of claim 145, the further improvement comprising receiving operational

power for the field device from the Ethernet network.

The method of claim 143, the further improvement comprising providing a processor in

the field device that is in communication with the IP network.

The method of claim 147, the further improvement wherein the processor is a low-power

processor.

The method of claim 147, the further improvement comprising executing a virtual

machine environment and a web server with the processor.

The method of claim 149, the further improvement comprising executing an operating

system with the processor..

The method of claim 150, the further improvement comprising executing a real-time

operating system with the processor.
The method of claim 150, the further improvement wherein the field device comprises at

least one of a random access memory, a read-only memory, FlashRAM, and a sensor

interface.

-66-

WO 01/09690 PCT/US00/20828

153.

154.

155.

156.

157.

158.

159.

160.

170

Appendix

The method of any of claims 143 - 152, the further improvement wherein the field device
comprises any of a transmitter or other sensor device, and a positioner or other actuator

device.

A method of operating a field device for process control, the improvement comprising the

steps of
interfacing the field device with other elements of the control system via an IP network,
operating a processor in the field device that is in communication with the IP network.

The method of claim 154, the further improvement comprising receiving operational

power for the field device from the IP network.

The method of claim 154, the further improvement comprising interfacing the field

device with other elements of the control system via an Ethernet network.

The method of claim 156, the further improvement comprising receiving operational

power for the field device from the Ethernet network.

The method of claim 154, the further improvement comprising executing a web server

with the processor.

The method of claim 154, the further improvement comprising operating the processor to

execute any of (i) a control algorithm and (ii) a signal conditioning algorithm.

The method of claim 159, the further improvement comprising performing proportional

integral derivative control with the processor.

-67 -

WO 01/09690 PCT/US00/20828
171

Appendix

161. The method of claim 154, the further improvement comprising executing with the
processor a web server that facilitates any of configuration, monitoring and maintenance

of at least the field device.

162. The method of claim 161, the further improvement comprising controlling configuration
of at least the field device with a configuration editor that utilizes the web server as an

interface.

163. The method of claim 162, the further improvement comprising selectively disabling or
enabling the configuration editor, depending upon the type of network to which the field

device is coupled.
164. The method of any of claims 154 - 163, the further improvement wherein the field device
comprises any of a transmitter or other sensor device, and a positioner or other actuator

device.

165. The method of claim 164, the further improvement comprising utilizing the field

processor for process control.

166. A method of operating a field device for a control system, the improvement comprising

the steps of
’interfacing the field device with other elements of the control system via an IP network,
issuing a request from the field device to the IP network for an IP address.
167. The method of claim 166, the further improvement comprising receiving a device
identification name from any of (i) a user-configured hub or other device to which the

field device is coupled, (ii) a letterbug installed in the field device, (iii) a digital data

processing apparatus, (iv) a software generated letterbug.

-68 -

WO 01/09690 PCT/US00/20828

168.

169.

170.

171.

172.

173.

174.

175.

176.

172

Appendix

The method of claim 166, the further improvement comprising registering a characteristic

of the field device via the IP network.

The method of claim 168, the further improvement comprising registering the

characteristic with a bulletin board on the IP network.

The method of claim 169, the further improvement comprising registering the

characteristic with in a Javaspace on the IP network.

The method of claim 166, the further improvement comprising communicating between
the field and another element of the system over the IP network in order to obtain

configuration for the field device.

The method of claim 166, the further improvement comprising retaining configuration

information within the field device for use at startup.

The method of any of claims 166 - 172, the further improvement comprising performing
with a processor in the field device any of (i) a control algorithm and (ii) signal

conditioning.

The method of claim 173, the further improvement comprising configuring the field

device as a controller.

The method of claim 174, the further improvement comprising configuring the field

device to perform proportional integral derivative control.
The method of any of claims 166 - 172, the further improvement comprising executing a

web server within the field device, the web server facilitating any of configuration,

monitoring and maintenance of at least the field device.

-69 -

WO 01/09690 PCT/US00/20828

177.

178.

179.

180.

181.

182.

183.

184.

173

Appendix

The method of claim 176, the further improvement comprising executing a configuration
editor within the field device and providing an interface to the configuration editor via the

web server.

The method of claim 177, the further improvement comprising selectively disabling or
enabling the configuration editor, depending upon the type of network to which the field
device is coupled.

The method of any of claims 166 - 172, the further improvement wherein the field device
comprises any of a transmitter or other sensor device, and a positioner or other actuator

device.

The method of claim 179, the further improvement comprising utilizing the field

processor for process control.

A method of operating a control device for a control system, the improvement comprising

the steps of
executing byte code within a virtual machine environment provided in the control device,
the byte code configuring the control device to execute a control algorithm.

The method of claim 181, the further improvement comprising using the byte code to

configure the control device to execute a control function block.

The method of claim 181, the further improvement comprising using the byte code to

configure the control device as a controller.

The method of claim 183, the further improvement comprising using the byte code to

configure the control device to perform proportional integral derivative control.

-70 -

WO 01/09690 PCT/US00/20828

185.

186.

187.

188.

189.

190.

191.

192.

193.

174

Appendix

The control device of any of claims 181 - 184, the further improvement wherein the
control device comprises any of web server, control station, operator console, personal
computer, handheld computer, workstation, integrator, controller, transmitter or other

sensor device, positioner or other actuator device.

The control device of any of claims 181 - 184, the further improvement wherein the byte

code comprises JAVA byte code.

A method of operating a control device for a control system, the improvement comprising

executing a web server and a virtual machine environment within the control device.

The method of claim 187, the further improvement comprising using the byte code to

configure the control device to execute a control algorithm.

The method of claim 188, the further improvement comprising using the byte code to

configure the control device as a controller.

The method of claim 189, the further improvement comprising using the byte code to

configure the control device to perform proportional integral derivative control.

The method of claim 187, the further improvement wherein any of the web server and the

virtual machine environment is embedded.

The method of claim 187, the further improvement comprising using the web server to
any of (i) facilitate any of configuration, monitoring and maintenance of the control
system or one or more control devices, (i1) collect process data from one or more control
devices, (iii) generate source for operator displays, (iv) provide access to the control

system, and (v) host an applications development environment,

The control device of any of claims 187 - 192, the further improvement wherein the

control device comprises any of a web server, control station, operator console, personal

-1 -

WO 01/09690 PCT/US00/20828

194.

195.

196.

197.

198.

199.

175

Appendix

computer, handheld computer, workstation, integrator, controller, transmitter or other

sensor device, positioner or other actuator device.

The control device of any of claims 187 - 192, the further improvement wherein the byte

code comprises JAVA byte code.

A method of operating a control device for a control system, the improvement comprising

the steps of
operating a low-power processor within the control device,

communicating between the control device and other elements of the control system via

an IP network,
drawing operational power for the control device from the IP network.

The method of claim 195, the further improvement comprising interfacing the field

device with other elements of the control system via an Ethernet network.

The method of claim 195, the further improvement comprising executing a virtual

machine environment and a web server with the processor.

The method of claim 197, the further improvement wherein the control device comprises
at least one of a random access memory, a read-only memory, FlashRAM, and a sensor
interface, access to permanent storage, a configurator, system management software,
messaging services, alarm/event notification, byte code implementing process control

functions, byte code implementing status reporting.

The control device of any of claims 195 - 198, the further improvement wherein the

control device comprises any of a web server, control station, operator console, personal

-T2 -

WO 01/09690 PCT/US00/20828
176

Appendix

computer, handheld computer, workstation, integrator, controller, transmitter or other

sensor device, positioner or other actuator device.

200. A method of operating a control device for process control, the improvement comprising

the steps of

communicating between the control device and other elements of the control system via

an IP network, and

causing the control device, on startup, to register a characteristic thereof with at least one

other device over the IP network.

201. The method of claim 200, the further improvement comprising issuing with the control

device, via the IP network, a request for assignment of an IP address.

202. The method of claim 200, the further improvement comprising receiving for the control
device a device identification name from any of (i) a user-configured hub or other device
to which the control device is coupled, (ii) a letterbug installed in the control device, (iii)

a digital data processing apparatus, (iv) a software generated letterbug.

203. The method of claim 200, the further improvement comprising registering a characteristic

of the control device with a bulletin board on the IP network.

204. The method of claim 203, the further improvement comprising registering the

characteristic with in a Javaspace on the IP network.
205. The method of claim 200, the further improvement comprising communicating between

the control device and another device over the IP network in order to obtain configuration

information for the control device.

-73 -

WO 01/09690 PCT/US00/20828
177

Appendix

206. The method of claim 200, the further improvement comprising retaining configuration

information within the control device for use at startup.

207. The control device of any of claims 201 - 206, the further improvement comprising

executing code embodying a control algorithm on a processor within the control device.

208. The method of claim 207, comprising using the code to configure the control device as a

controller.

209. The method of claim 208, the further improvement wherein the processor executes code

to perform proportional integral derivative control.

210. The control device of any of claims 201 - 206, the further improvement comprising
executing a web server within the control device, the web server any of (i) facilitating any
of configuration, monitoring and maintenance of the control system or one or more
control devices, (ii) collecting process data from one or more control devices, (iii)
generating source for operator displays, (iv) provides access to the control system, and

(v) hosting an applications development environment.

211. The method of claim 210, the further improvement comprising executing a configuration
editor within the control device, the configuration editor utilizing the web server as an

interface.

212. The control device of any of claims 201 - 206, the further improvement wherein the
control device comprises any of a web server, control station, operator console, personal
computer, handheld computer, workstation, integrator, controller, transmitter or other

sensor device, positioner or other actuator device.

213. The method of claim 212, the further improvement comprising utilizing the control

device for process control.

-74 -

WO 01/09690 PCT/US00/20828

214.

215.

216.

217.

218.

219.

220.

221.

178

Appendix

A method of operating control system comprising the steps of
communicating among a plurality of control devices via an IP network,

generating, within at least a selected one of the control devices, a request for an IP
address,

furnishing IP addresses to a requesting control device with a DHCP server in response to

such a request.

The method of operating a control system of claim 214, wherein one or more of the

control devices are field devices.

The method of operating a control system of claim 215, including the step of utilizing the

control devices for process control.
The method of operating a control system of any of claims 214 - 216, wherein the control
devices comprises any of a transmitter or other sensor device, and a positioner or other

actuator device.

The method of operating a control system of any of claims 214 - 216, comprising the step

of providing a DHCP server that is solid state.

The process control system of claim 218, comprising providing a DHCP server that is

free of moving parts and that comprises zero, one or more removable components.

The method of operating a control system of any of claims 214 - 216, comprising the step

of drawing operational power for the control devices from the IP network.

A method of operating a control system comprising the steps of

=75 -

WO 01/09690 PCT/US00/20828

222.

223.

224

225.

179

Appendix

communicating among a plurality of control devices coupled via an IP network,

responding to requests issued by the control devices over the IP network with a network

enabler that at least one of
i) registers names specified by the control devices,
i) searches for names specified by the control devices,
1i1) posts to a network bulletin board events specified by the control devices,

V) removes from the network bulletin board events specified by the control

devices,

vi) queries the network bulletin board for events specified by the control

devices,
vii) notifies the control devices of events specified by the control devices.

The method of operating a control system of claim 221, wherein the network enabler is

any of a JINI and a JavaSpace server.

The method of operating a control system of claim 221, wherein one or more of the

control devices are field devices.
The method of operating a control system of claim 223, for process control.
The method of operating a control system of any of claims 221 - 224, wherein the control

devices comprises any of a transmitter or other sensor device, and a positioner or other

actuator device.

-76 -

WO 01/09690 PCT/US00/20828
180

Appendix

226. The method of operating a control system of any of claims 221 - 225, comprising the step
of providing a network enabler that is solid state.

227. The process control system of claim 226, comprising providing a network enabler that is

free of moving parts and comprises zero, one or more removable components.

228. The method of operating a control system of any of claims 221 - 224, comprising the step

of drawing operational power for the control devices from the IP network.

-77 -

10

WO 01/09690 PCT/US00/20828
181

Appendix

Abstract of the Invention

The invention provides improved methods and apparatus for control using field and control
devices that provide a virtual machine environment and that communicate via an IP network. By
way of non-limiting example, such field device can be an "intelligent" transmitter or actuator that
includes a low power processor, along with a random access memory, a read-only memory,
FlashRAM, and a sensor interface. The processor can execute a real-time operating system, as
well as a Java virtual machine (JVM). Java byte code executes in the JVM to configure the field
device to perform typical process control functions, e.g., for proportional integral derivative
(PID) control and signal conditioning. Control networks can include a plurality of such field and

control devices interconnected by an IP network, such as an Ethernet.

-78 -

WO 01/09690 PCT/US00/20828
182

Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

Appendix to Patent Application for

METHODS AND APPARATUS FOR CONTROL USING CONTROL DEVICES THAT
PROVIDE A VIRTUAL MACHINE ENVIRONMENT AND THAT COMMUNICATE
VIA AN IP NETWORK

-79 -

10

15

20

25

WO 01/09690 PCT/US00/20828
183

AppendiX (from PCT Patent Application US00/10013, filed April 14, 2000) Ap pen dix

POWERED ETHERNET FOR INSTRUMENTATION AND CONTROL

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application Nos. 60/129,541
and 60/157,110, which were filed, respectively, on April 6, 1999, and October 4, 1999, both

of which are incorporated by reference.

TECHNICAL FIELD

The invention relates to interconnecting devices for instrumentation and control.

BACKGROUND

Control systems often include intelligent field devices having digital processors.
Examples of such devices include valve controllers and transmitters, such as those associated
with, for example, temperature sensors, pressure sensors, and flow meters. Another type of
intelligent field device is a field mounted process controller that sends control signals to, for
example, a valve controller, based on process information received from one or more
transmitters.

The functionality of different field devices may be incorporated into a single module.
For example, a process controller, a valve controller, and a temperature sensor/transmitter
may be incorporated into a single module. However, even with such consolidation of
function, control systems typically require some mechanism for transmitting signals between
devices, and for transmitting signals from devices to a central control station.

Due to cost constraints, connections between de{lices, and between the devices and a
control station, are often provided using a single pair of wires. In many instances, this same
pair of wires is used to provide power to the devices.

Many proprietary protocols have been developed for powering field devices and
transmitting signals between the devices using a single pair of wires. Two such protocols are

the HART protocol and the FOXCOMM protocol.

-80-

10

15

20

25

30

WO 01/09690 PCT/US00/20828

184
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

The HART protocol specifies provision of a 4-20 mA analog control signal and a
1200 baud bidirectional digital data link on a pair.of wires connected to a device. The 4-20
mA signal is used both to power the device and to provide a control signal to or from the
device. The HART protocol achieves simultaneous analog and digital transmission by using
a frequency shift keying (FSK) technique to overlay a bidirectional digital signal on the
analog control signal.

The FOXCOMM protocol also overlays a bidirectional digital data signal on a 4-20
mA analog control and power signal. Different versions of the protocol use either 600 baud
or 4800 baud digital signals. Yet another version uses the analog signal only for power

delivery and transmits all information using digital signals.

SUMMARY

In one general aspect, the invention features providing a powered Ethernet connection
between two devices connected by an Ethernet connection that provides data communication
between the devices. Electrical power is applied on to the Ethernet connection at the first
device. At the second device, the electrical power is extracted and used to power the second
device.

Embodiments may include one or more of the following features. For example, the
Ethernet connection may include two pairs of wires, with a first pair of wires being used to
transmit data from the first device to the second device and a second pair of wires being used
to transmit data from the second device to the first device. In this case, applying electrical
power on to the Ethernet connection at the first device may include applying a DC voltage
across the two pairs of wires by coupling a first potential to the first pair of wires and a
second potential to the second pair of wires, with the DC voltage being defined as a
difference between the two potentials. For example, when each pair of wires is connected to
a corresponding transformer at the first device, and each transformer includes a center-tapped
primary winding, coupling potentials to the pairs of wires may include applying the DC
voltage between the center taps of the primary windings of the two transformers. As an
alternative, a center-tapped inductor may be connected across each pair of wires at the first
device, and potentials may be coupled to the pairs of wires by applying the DC voltage

between the center taps of the inductors. Electrical power may be extracted at the second

-81-

10

15

20

25

30

WO 01/09690 PCT/US00/20828

185

Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

device through center-tapped windings of transformers of the second device, or through
center-tapped inductors coupled across the pairs of wires at the second device. ‘

The Ethernet connection also may be implemented using a single pair of wires to
transmit data from the first device to the second device, to transmit data from the second
device to the first device, and to provide power from the first device to the second device. In
this case, applying electrical power on to the Ethernet connection at the first device may
include applying a DC voltage across the pair of wires by coupling a first potential to the first
wire through an inductor and coupling a second potential to the second wire through an
inductor, with the DC voltage being defined as a difference between the two potentials.

Each device may be, for example, a process controller, a field device, or an Ethernet
hub. A field device may be operable to sense a process condition and to transmit information
about the sensed process condition using the Ethernet connection, or to control a process
condition in response to a command received through the Ethernet connection.

In another general aspect, the invention features connecting a four-terminal Ethernet
connection to a two-wire Ethernet connection. A device having a four-terminal Ethernet
connection, the connection including a first pair of terminals for transmitting data away from
the device and a second pair of terminals for transmitting data to the device is connected to a
two-wire Ethernet connection for transmitting data to and from the device by a switched
connection. The switched connection operating in a first mode in which the two-wire
Ethernet connection is connected to the first pair of terminals and a second mode in which
the two-wire Ethernet connection is connected to the second pair of terminals. The switched
connection is initially set to operate in the first mode, and the two-wire Ethernet connection
is monitored for data being transmitted to the device. The switched connection is set to
operate in the second mode upon detection of data being transmitted to the device.

Power may be injected on to the two-wire Ethernet connection at the device for use in
powering another device connected to the two-wire Ethernet connection. In addition, an
impedance presented to the two-wire Ethernet connection may be changed from a first
impedance when the switched connection is operating in the first mode to a second
impedance when the switched connection is operating in the second mode.

In another general aspect, the invention features a field device having a powered

Ethernet connection. The field device includes communications circuitry operable to

-82 -

10

15

20

25

WO 01/09690 PCT/US00/20828

186
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

communicate data over an Ethernet connection using an Ethernet protocol, power circuitry
operable to extract operating power from the Ethernet connection, and process circuitry
operable to sense a process condition and to transmit information about the sensed process
condition using the Ethernet connection, or to control a process condition in response to a
command received through the Ethernet connection.

Examples of such a field device include a device providing a temperature or pressure
sensor, a flow meter, and a valve controller. The communications circuitry and the power
circuitry may be operable to interface with an Ethernet connection including only a single
pair of wires.

Other features and advantages will be apparent from the following description,

including the drawings, and from the claims,

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1-3 are block diagrams of systems using powered Ethernet connections.

Figs. 4 and 5 are block diagrams of systems for providing power to a field device
over a four-wire Ethernet connection.

Fig. 6 is a circuit diagram of a four-wire circuit.

Fig. 7 is a block diagram of a system for providing power and emulating a four-wire
Ethernet connection using only a single pair of wires.

Figs. 8A-8F are block diagrams of different operating states of the system of Fig. 7.

Fig. 9 is a circuit diagram showing connections of a hub using two-wire powered
Ethernet.

Fig. 10 is a circuit diagram of a line circuit of the circuit of Fig. 9.

Figs. 11-17 are circuit diagrams of elements of a two-wire circuit,

DETAILED DESCRIPTION

Referring to Fig. 1, a control system 100 includes a controller 105 that powers and
controls a remote field device 110 over a powered Ethernet connection 115. Thus, the
system 100 applies the well-known and well-established Ethernet protocol to an

instrumentation and control system,

-83-

10

15

20

25

30

WO 01/09690 PCT/US00/20828

187
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) - Appendix

The powered Ethernet connection 115 may be provided by modifying connections to
existing wiring of a system employing a proprietary protocol. Thus, a powered Ethernet
system may be produced by retrofitting an existing system.

Protocols such as the Ethernet protocol are often used to communicate between
devices, such as components of a computer network. Ethernet uses a bus or star topology
and supports data transfer rates of 10 Mbps. Ethernet handles simultaneous demands using a
technique known as carrier sense multi-access with collision detection (‘CSMA/CD”). The
Ethernet specification served as the basis for the IEEE 802.3 communication standard, which
specifies the physical and lower software layers, The IEEE 802.3 standard controls the
implementation of the basic Ethernet hardware technology. In specific terms, it controls the
media access control sublayer and the physical layer functions for a bus-structured local area
network that uses CSMA/CD as an access protocol.

One of several adaptations of the Ethernet (IEEE 802.3) standard for Local Area
Networks (LANs) is 10Base-T. The 10Base-T standard (also called Twisted Pair Ethernet)
uses a twisted-pair cable with maximum lengths of 100 meters. The cable is thinner and
more flexible than the coaxial cable used for the 10Base-2 or 10Base-5 standards. Cables in
the 10Base-T system connect with RJ-45 connectors. A star topology is common, with 12 or
more computers connected directly to a hub or a concentrator. The 10Base-T system
operates at 10 Mbps and uses baseband transmission methods.

A networking standard that supports data transfer rates up to 100 Mbps (100 megabits
per second), called 100BASE-T, is based on the older Ethernet standard. Because it is 10
times faster than Ethernet, it is often referred to as Fast Ethernet. Officially, the 100BASE-T
standard is IEEE 802.3u.

Information is communicated on the Ethernet using electrical signals. The standard
Ethernet protocol specifies the physical layer characteristics of these signals. This
information is converted to digital information by the Ethernet devices.

The Ethernet protocol typically employs a first pair of wires for transmission in one
direction and a second pair of wires for transmission in the opposite direction. The pairs of
wires generally are not used to power the devices. Associated with the Ethernet protocol is a
well-developed collection of standard hardware and software components that may be used

to implement communications between devices.

-84 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828

188
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

The powered Ethernet connection 115 provides a connection for powering and
communicating with remote field devices using standard, or slightly modified, Ethernet
hardware and software. The connection 115 may employ either one or two pairs of wires.

Figs. 2 and 3 illustrate examples of other system topologies. As shown in Fig. 2, a
system 200 includes a controller 205 connected to a collection of field devices 210 by a
powered Ethernet connection 215 in a bus configuration. The connection 215 may employ
either one or two pairs of wires.

Similarly, Fig. 3 shows a system 300 that includes a controller 305 connected to a hub
310 by a powered Ethernet connection 315. The hub 310 is then connected to a collection of
field devices 320 by powered Ethernet connections 325 in a star configuration.

Each of the connections 315, 325 may employ either one or two pairs of wires, and
different connections may employ different numbers of pairs. For example, the connection
315, which is typically substantially longer than the connections 325, may employ a single
pair of wires, while one or more of the connections 325 employs two pairs of wires.
Exemplary single-pair (two-wire) and double-pair (four-wire) systems are discussed in detail

below.

Four-Wire System
Referring to Fig. 4, a system 400 employs standard Ethernet boards 405 at both a

process controller 410 and a remote field device 415. The boards communicate via two pairs
of wires, with the first pair 420 providing communications from the process controller to the
field device, and the second pair 425 providing communications from the field device to the
process controller.

Each Ethernet board includes a pair of transformers 430, with each transformer being
associated with a pair of wires. At the process controller, a 24 Volt DC power signal from a
power supply 435 is injected to central taps 440 of the primary coils of the transformers. The
positive (+V) lead 445 of the DC power signal is provided at the central tap of the primary
coil of one of the transformers. The ground (GND) lead 450 of the DC power signal is
provided at the central tap of the primary coil of the other transformer.

At the field device, the central tap 440 of the primary coil of one of the transformers
430 serves as device ground 455. The central tap 440 of the primary coil of the other

-85 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828

189
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appe ndix

transformer 430 provides a device operating power signal 460. The signal 460 and ground
455 are provided to a DC-to-DC converter 465 that reduces and isolates the DC voltage to
provide operating power for the device. For optimum power transfer, the coil of the DC-to-
DC converter can be impedance matched to the resistance of the wire pairs. The output of
the DC-to-DC converter is provided to a voltage regulator circuit 470 that provides power to
the Ethernet board and the field device. The process controller also may include a DC-to-DC
converter 465 and a voltage regulator circuit 470 for use in powering the Ethernet board of
the process controller. These elements are unnecessary when the process controller has a
separate power supply.

Only one remote field device 415 is shown in Fig. 4. However, as illustrated in Figs.
2 and 3, nothing precludes having more devices connected at the far end of the Ethernet wire
pairs. The only requirements are that the loads of the devices must be designed so that the
wire pairs are properly terminated and that the total power delivered is sufficient to drive all
of the devices. Since only one remote device is active at a time, the power requirement will
be the sum of the requirements of the one active device and N - 1 idle devices, where N is the
number of devices connected to the wire pair. .

The transformers include primary coils connected to the twisted pairs and secondary
coils connected to devices on the Ethernet boards. The secondary coils of the transformers
may be constructed of bi-filar coils to reduce the required size of the transformers.

Referring to Fig. 5, for transformers that cannot carry the required DC current or don't
have center taps in their primary coils, the power can be applied via center-tapped inductors
500 connected across the secondary coils of the transformers. The DC current is isolated
from the transformers by capacitors 505. Each inductor must be large enough that it does not
degrade the termination impedance of its corresponding wire pair.

Fig. 6 illustrates a fairly simple prototype circuit 600 for powering a four-wire
connection 605. At the process controller end 610, center-tapped inductors 615 are used to
direct power on to the connection 605. At the field device end 620, center-tapped inductors
625 are used to remove power from the connection 605. With the circuit shown in Fig. 6, a
24 volt signal was applied to the connection 605 at the process controller side and about 100
mA was drained through a resistor 630 on the field device end, resulting in power

consumption of 2.5 watts. The two ends were implemented using NIC cards 635 mounted in

-86 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828

190
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

personal computers. No attempt was made to actually power any part of the NIC cards. The
loop was about six feet long, which is much shorter than many contemplated
implementations. The prototype circuit confirmed that power can be successfully injected
into an Ethernet connection without jeopardizing the communications capability of the

connection.

Two-Wire System
Referring to Fig. 7, a system 700 having a two-wire connection may be used to

emulate a four-wire, powered Ethernet connection. This approach is particularly useful in
retrofitting Ethernet to existing systems that use only a single pair of wires to provide power
and communications between a process controller and a remote field device. In particular,
this approach may be used to make Ethernet connections without upgrading or replacing
existing wires.

The system 700 includes a hub port 705 connected by a single pair of wires 710 to a
remote field device 715. Each connection includes the hub port 705, a switch 720 connected
between the port and the hub end of the single pair of wires 710, an activity detector 725
connected to the switch 720, and a switch 730 connected between the other end of the pair of
wires and the remote field device. Each switch functions as a double pole, double throw
switch, and may be implemented with a driver and receiver that can be enabled or disabled.
by means of a chip select lead. The switches control their associated devices to be in
reception states or transmission states.

Referring to Fig. 8A, the remote field device 715 and an associated hub port 705
operate in an idle mode when no traffic is present on the wire connection between them. The
hub switch 720 is switched to the transmit position and the remote field switch 730 is
switched to the receive position. In this mode, the remote field device can determine if the
network is clear.

Referring to Fig. 8B, when the field device 715 is ready to send data, the field device
715 switches the switch 730 to the transmit position under control of the Ethernet remote
physical layer. This connects the field device to the hub activity detector 725. The activity
detector 725 detects the first part of the output signal of the remote device 715.

-87-

10

15

20

25

30

WO 01/09690 PCT/US00/20828

191
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Ap pe ndix

Referring to Fig. 8C, once the hub's activity detector 725 detects activity, it switches
the switch 720 to the receive position to connect the transmitting field device to the transmit
pair of the hub. There may be several bits of transmission lost during this transition.
However, this causes no problem since the first 64 bits of the Ethernet packet are only used
for synchronizing clocks.

Referring to Fig. 8D, once the hub starts receiving data, the hub generates a signal to
the other remote field devices to notify them that the system is busy so that they will not start
to send data of their own.

Referring to Fig. 8E, the hub may detect a collision when it receives a signal on its
receive pair from another remote field device connected to it. It must then signal to the
remote field devices that a collision has occurred. This can be done in several ways. One
simple way is to reverse the polarity of the DC power supplied to the field devices. The field
devices may be configured to automatically switch their switches to the receive positions in
response to this polarity reversal, as shown in Fig. 8F. The transmitting field devices will
then see the jamming signal on their receive inputs, will stop transmitting, and will initiate a

backout sequence to resolve the collision.

Hub

Referring to Fig. 9, an eight-port, standard Ethernet hub 900 includes ports 905, each
of which includes a two-wire transmit connection 910 that receives data transmitted by a
remote device 715 and a two-wire receive connection 915 that sends data to be received by
the remote device 715. A two-wire powered Ethernet connection is provided by inserting a
line circuit 920 between a hub port 905 and a two-wire connection 710 to a remote device
715. This permits the use of standard Ethernet hubs to provide powered connections to
remote devices over only a single pair of wires.

Referring to Fig. 10, each hub port line circuit 920 includes a first pair of terminals
1000 connected to the two-wire connection 710, a second pair of terminals 1005 connected to
the transmit connection 910, and a third pair of terminals 1010 connected to the receive
connection 915. Power is supplied to the terminals 1000 by a 24 Volt source connected to

the terminals through inductors 1015 or other high impedance devices. Capacitors 1020

- 88 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828

192

Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Ag} pe ndix

serve to isolate the power from a transformer 1025, the secondary coil of which is connected
through the capacitors 1020 to the terminals 1000.

A load switch 1030 is connected across the primary coil of the transformer 1025. The
load switch 1030 is controlled by the hub to provide impedance matching. When the hub
port is in the receive mode, the load switch 1030 connects a load impedance across the line
so that the line is properly terminated. When the hub port is in the transmit mode, the load
switch removes the load since a transmission driver 1035 provides the terminating
impedance.

An activity detector 1040 also is connected across the primary coil of the transformer
1025. As discussed above, the activity detector 1040 detects transmissions by the remote
device and notifies the hub to permit the hub to reconfigure the line circuit 920. The activity
detector can be implemented in a number of ways. One simple implementation rectifies the
signal produced by the primary coil of the transformer 1025 and compares the rectified signal
to a threshold that indicates that a signal is present.

A receiver 1045 is connected across the primary coil of the transformer 1025.

Outputs of the receiver 1045 are connected to the pair of terminals 1005. The receiver 1045
is controlled by a signal (TCE) from the hub.

Outputs of the transmission driver 1035 are connected through resistors 1050 to the
primary coil of the transformer 1025. The resistors 1050 may be used to provide a 100 ohm
driving impedance. Inputs of the transmission driver 1035 are connected to the pair of

terminals 1010. The transmission driver 1035 is controlled by a signal (RCE) from the hub.

Two-Wire System - Details

As discussed above with reference to Fig. 7, a powered, two-wire 10 MHz half
duplex Ethernet communications system may be used to transmit Ethernet packets as well as
DC power to remote field devices. This permits existing 4-20 mA loop-powered remote field
devices to be upgraded to intelligent field devices using their existing 4-20 mA twisted pair
current loop cabling. This eliminates the substantial expense of replacing existing current
loop wiring to upgrade the customer's cable to UTP Category 5 Ethernet wire.

To understand how the two-wire powered Ethernet communication system operates,

it is useful to understand how conventional 10 BaseT Ethernet operates. To this end, three

-89 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828

193
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Ap ge ndix

conventional Ethernet configurations are considered below: (1) point-to-point
communication, (2) multi-point communication through an Ethernet hub, and (3) multi-point

communication through an Ethemnet switch.

Point-to-Point

The first configuration examined was a two-wire powered Ethernet point-to-point
connection that involved two NIC cards connected together via a cable that was cut in half so
that the two pairs of the cable could be connected together. With the two pairs shorted
together, the NIC cards were put in the full-duplex mode so that a card that received its own
signal would not interpret the signal as a collision and shut down. The two cards
communicated with each other, by "pinging" each other continuously. Pinging is simply
sending a message with an address of a device. If the device is up and connected, it sends an
acknowledgement.

This configuration used two standard NIC cards from SMC installed on two standard
personal computers running Windows NT. The PHY chip on the SMC NIC cards is the
Altima AH101 single port chip. As noted above, the TX output of each NIC card was
connected to its RX input to reduce the channel from four wires down to two. Both cards
were set to 10MHz, full-duplex operation in Windows NT using the NIC cards' standard
driver software. This setting did not allow the two NIC cards to perform auto-negotiation,
which would have caused communications to fail. In addition, the cable was a short run
(approximately 10 ft.) of Category 5 unshielded twisted pair.

No hardware changes were made to the NIC cards themselves. The two wire
connection of the TX pair to the RX pair was made external to the NIC card on a small
adapter board. In addition, no power was sent during initial testing.

DC power was later introduced into this configuration using several discrete analog
components. These modifications were added to the external adapter board. Additions made
to the adapter boards to superimpose DC power into the two-wire cable included using
inductors to couple DC power on to the two-wire composite pair, while adding capacitors to
AC couple the high speed Ethernet signals to the wires. Ten volts of DC power was applied
to one adapter board and was sent across a short run of Category 5 unshielded twisted pair to

the other adapter board on which was mounted a 10 Ohm, 10 Watt power resistor. With 10

-90 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828

194
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

volts sent across the two-wire composite pair, a current of 100 mA was delivered to the
resistor, which resulted in a total of 1 Watt being sent across the cable, simultaneous with

Ethernet signal information (i.e., pinging) being sent between the two NIC cards.

Multi-Point with Hub (No Modifications to Hub)
The second configuration, which proved unsuccessful, employed a standard NIC card

connected to a standard hub and back to a standard NIC card. The configuration included
one NIC card, again the SMC 9432 NIC card using the Altima AH101 PHY chip, connected
in two-wire mode via UTP Category 5 cable to one port of a standard low cost single board
Ethernet hub. Another 9432 NIC card (in another computer) was interfaced in standard
Ethernet 4 wire mode via a short run (10 ft.) of UTP Category 5 cabling to another port of the
Ethernet hub. When tested, this configuration failed because the hub is always a half duplex
only device.

When a hub is connected in two-wire mode to some other two-wire Ethernet device,
such as a NIC card, the TX output of that particular hub port may be directly connected to the
RX input of that same port. Therefore, when the hub transmits out of one of its ports in two-
wire mode, the TX output data is immediately received by the corresponding RX input.
When a device, such as a hub, operates in half duplex mode, it can only receive when it is not
transmitting and it can only transmit when it is not receiving. That is the definition of half
duplex operation. Full duplex operation, on the other hand, allows a device to transmit and
receive simultaneously, which is why it needs four wires. When a half duplex device
receives a packet while it is transmitting, it considers this to be a collision, which is a
violation of the half duplex mode of operation. The generic response of a half duplex device
to a perceived collision is to immediately terminate whatever it was transmitting when
something came in on its RX input, ignore the packet it is receiving on RX, generate a "jam"
signal on its TX output, and then time out for some random period of time before trying to
re-transmit the packet it was sending when the collision occurred. However, when it tries to
re-transmit the packet, it again immediately senses the packet on its RX input, and again goes
into collision response mode. This sequence of events continues indefinitely whenever the
hub tries to transmit an Ethernet packet, which means that no useful information is

transmitted as long as TX is connected to RX. Therefore, without hardware or firmware

-91 -

10

15

20

25

30

WO 01/09690 PCT/US00/20828

195
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appand ix
modifications, a standard half-duplex, off-the-shelf hub cannot be used for two-wire Ethernet
communication in a system. This problem is avoided by using a hub that functions in full

duplex mode.

Multi-Point With Switch (No Hardware Modifications Made to Switch)

A third configuration used a standard NIC card interfaced to a port of a high
performance Cisco switch in two-wire mode and another NIC card interfaced to the switch
via another switch port in four-wire mode with no modifications made to the switch's
hardware. (Changes were made to the switch firmware via the software control console on
the switch.) The NIC-card-to-Cisco switch two-wire interface failed because the switch
could not properly perform a needed operational function called auto-negotiation with a two-
wire cable. The problems can be avoided by directing the switch to not auto-negotiate with
the NIC in two-wire mode and to disregard anything it receives on its RX input when it is

transmitting out of TX on its two-wire interface.

Multi-Point with Switch (Modifications Made to Switch)

A variation on the previous configuration used a low cost, single board, ADMtech
switch of simple construction, made with three major VLSI components and other low cost
discrete chips and components. The switch was modified by adding one low cost HC chip
and a resistor to the board. The rest of the experimental configuration was the same as that
for the previous configuration. In particular, one NIC card was interfaced to the switch in
two-wire mode on one switch port, while a second NIC card was interfaced to the switch via
another port in four-wire mode.

This configuration worked correctly and as designed because the modification to the
switch prevented the switch from paying attention to packets being immediately received on
the two-wire port when the TX output was transmitting out (the usual two-wire mode
transmission problem). The other reason this worked is because the switch was configured
during hardware setup to auto-negotiate with the NIC before it saw the two-wire interface.
The lesson learned from this configuration is that a simple, low cost switch may be a viable
candidate for use in a two-wire Ethernet system configuration, if the switch can be

configured, through hardware or other modifications, to ignore packets being transmitted in

-92-

10

15

20

25

30

WO 01/09690 PCT/US00/20828

196
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

each two-wire port by the corresponding RX input and, through hardware or firmware
modifications, to not auto-negotiate. The hardware modification to the switch involving the
74HC125 chip and resistor solves the problem of RX inputs ignoring transmitted TX packets.
The second problem is solved by adding a boot strap serial EEPROM to the board to direct
the main switch controller chip, the ADMtech AL968 chip, to not auto-negotiate.

The first modification of the NIC board attempted for two-wire operation is shown in
Fig. 11. The NPN transistor 1100 was turned on only when TXEN went high. This
connected the two 49.9 ohm resistors 1105 to TXOP and TXON. When the TXEN lead was
low, the transmit driver was disconnected from the rest of the circuit. The receive pair on the
output side of the transformer 1110 was connected to the transmit pair. The transmit pair
was then connected to the jack 1115 and inductors were added. This approach was
unsuccessful.

The next modification approach is shown in Fig. 12. All modifications were done to
an external board 1200 that was then connected in series with the loop. This approach was
successful and resulted in the two NIC cards communicating. One problem with this
approach was that the terminations on the transmit and receive pairs were connected in
parallel, which resulted in a 50 ohm termination instead of a 100 ohm termination. This is
not important on short loops. With the setup shown in Fig. 12, 10 volts were applied to one
card and a 100 ohm resistor on the other. This resulted in one watt being sent over the loop.

A telephone then was connected to each loop, and one end was connected to a 20-volt
power supply through two 160-ohm resistors. Users were able to talk on the Ethernet loop
while it was transmitting data. The circuit is shown in Fig. 13.

Other attempts to have the cards communicate through an unmodified Altima switch
were unsuccessful. Since the Altima switch uses virtually the same physical layer, AHIO4L
vs. AH101L, it was determined that the problem was because the switch is smarter than the
NIC cards. The switch generated a table of addresses by monitoring the traffic. Once it saw
its own address as the source of an incoming message, it shut down. This problem may be
solved through use of a card that cuts off the receiver when the transmitter is active. Such a
card is shown in Fig. 14. In Fig. 14, resistors R3 and R4 have been added to provide a DC

current component since Tl is not a bipolar switch. L3 is added so that the DC current will

-93-

10

15

20

25

30

WO 01/09690 PCT/US00/20828

197

Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

not saturate the transformer. With this circuit, the only modification needed on the Altima

switch is to tap into the TXEN signal and to pick up a ground.

Maximum Connection Distances
The maximum distance over which powered Ethernet can operate is a function of

several variables. The distance can be limited by one of two factors, the power limitation and
the signal strength limitation. The power limitation is in turn determined by the power a
device needs, the resistance of the loop, and the maximum voltage available for use. To get
the maximum distance, the DC impedance of the converter must equal the loop resistance. In
general, the connection distance provided by the four-wire mode is twice that of the two-wire
mode. Assuming that the voltage is restricted to 24 volts, that 26 gauge twisted pair wiring is
used, and that the power requirement for the device is one watt, the loop and the device will
each dissipate one watt (since, for maximum distance, the device resistance equals the loop
resistance.) The DC current will be 83.3 mA, and the loop resistance will be 144 ohms. For
two-wire operation this corresponds to a loop length of 1,450 feet. For four-wire operation,
the length is 2,900 ft. This is sufficiently long that the limitation due to signal strength may
be the controlling factor for most applications.

While physical layer chips advertise that they can support a distance of 100 meters,
Altima states that they guarantee a minimum of 140 meters at 100 Mbit operation. The limit
for 10 Mbit operation should be considerably longer. Another possibility for greater signal

distance is to operate at 1 Mbit. However, this would require modifications to the switch.

Full Duplex

There are a number of problems with developing true full duplex over a single pair.
It requires the development of a hybrid similar to those used in the telephone. A hybrid
circuit requires a point where the output signal can be picked off uncorrupted by any input
signal. The present physical layer chip does not provide such a point. The chip's output is
from a current source that drives the line in parallel with a 100 ohm terminating resistor.
This output circuit is shown in Fig, 15. If the output were as shown in Fig. 16, the desired
signal could be picked off at points a and b. One way to provide full duplex operation is

shown in Fig. 17. The 100 ohm resistor connected to the two 49.9 ohm resistors is required

-94 -

10

WO 01/09690 PCT/US00/20828

198
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Ap pen dix

for the output to be the proper shape for Manchester encoding. The added circuit essentially

doubles the power used by the output driver.

Multi-drop

Providing multi-drop capability is even more difficult than full duplex operation. To
prevent reflections at the point of connection, the output driver must present an infinite
output impedance (that is, it must be a pure current source). Since the signal injected in the
loop will travel in both directions, the driver power will be doubled. The power supply also
becomes more complicated. The power supplies on the remote devices must be designed so
that they draw a constant current. Otherwise, near-end devices will draw excessive current
and far end devices will not be able to operate.

Other embodiments are within the scope of the following claims.

What is claimed is:

-95-

O 00 9 N R W e

HOWON

SN e

HOW N =

WO 01/09690 PCT/US00/20828
199 .

Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

1. A method of providing a powered Ethernet connection between two devices, the
method comprising:

providing a first device;

providing a second device;

providing an Ethernet connection between the first device and the second device, the
Ethernet connection providing data communication between the devices;

applying electrical power on to the Ethernet connection at the first device;

extracting electrical power from the Ethernet connection at the second device; and

powering the second device using the extracted electrical power.

2. The method of claim 1, wherein the Ethernet connection comprises two pairs of
wires, with a first pair of wires being used to transmit data from the first device to the second
device and a second pair of wires being used to transmit data from the second device to the

first device.

3. The method of claim 2, wherein applying electrical power on to the Ethernet
connection at the first device comprises applying a DC voltage across the two pairs of wires
by coupling a first potential to the first pair of wires and a second potential to the second pair

of wires, with the DC voltage being defined as a difference between the two potentials.

4. The method of claim 3, wherein:

each pair of wires is connected to a corresponding transformer at the first device,
each transformer includes a center-tapped primary winding, and

coupling potentials to the pairs of wires comprises applying the DC voltage between

the center taps of the primary windings of the two transformers.

5. The method of claim 3, wherein:
a center-tapped inductor is connected across each pair of wires at the first device, and
coupling potentials to the pairs of wires comprises applying the DC voltage between

the center taps of the inductors.

- 96 -

SN = [T S AN AW N =

i AW N -

WO 01/09690 PCT/US00/20828

200

Appendix Appendix

6. The method of claim 3, wherein:

each pair of wires is connected to a corresponding transformer at the second device,

each transformer includes a center-tapped winding, and

extracting electrical power from the Ethernet connection at the second device
comprises extracting a DC voltage existing between the center taps of the windings of the

two transformers.

7. The method of claim 3, wherein:

a center-tapped inductor is connected across each pair of wires at the second device,
and

extracting electrical power from the Ethernet connection at the second device

comprises extracting a DC voltage existing between the center taps of the inductors.

8. The method of claim 1, wherein the Ethernet connection comprises a single pair of
wires used to transmit data from the first device to the second device, to transmit data from
the second device to the first device, and to provide power from the first device to the second

device.

9. The method of claim 8, wherein applying electrical power on to the Ethernet
connection at the first device comprises applying a DC voltage across the pair of wires by
coupling a first potential to the first wire through an inductor and coupling a second potential
to the second wire through an inductor, with the DC voltage being defined as a difference

between the two potentials.
10. The method of claim 1, wherein the first device comprises a process controller.
11. The method of claim 10, wherein the second device comprises a field device

operable to sense a process condition and to transmit information about the sensed process

condition to the first device using the Ethernet connection.

-97-

[am—y

O 00 0 N W bW -

WO 01/09690 PCT/US00/20828
201

Appendix Appendix

12. The method of claim 10, wherein the second device comprises a field device
operable to control a process condition in response to a command sent from the first device

using the Ethernet connection.
13. The method of claim 1, wherein the first device comprises an Ethernet hub.

14. The method of claim 13, wherein the second device comprises a field device
operable to sense a process condition and to transmit information about the sensed process

condition to the first device using the Ethernet connection.

15. The method of claim 13, wherein the second device comprises a field device
operable to control a process condition in response to a command sent from the first device

using the Ethernet connection.

16. The method of claim 1, wherein the second device comprises a field device
operable to sense a process condition and to transmit information about the sensed process

condition to the first device using the Ethernet connection.

17. The method of claim 1, wherein the second device comprises a field device
operable to control a process condition in response to a command sent from the first device

using the Ethernet connection.

18. A method of connecting a four-terminal Ethernet connection to a two-wire
Ethernet connection, the method comprising:

providing a device having a four-terminal Ethernet connection, the connection
including a first pair of terminals for transmitting data away from the device énd a second
pair of terminals for transmitting data to the device;

providing a two-wire Ethernet connection for transmitting data to and from the
device;

providing a switched connection between the four-terminal Ethernet connection and

the two-wire Ethernet connection, the switched connection operating in a first mode in which

- 98-

10
11
12
13
14
15
16

O 0 Y R W N Y

Pt
_— O

WO 01/09690 PCT/US00/20828

202
AppendiX (from PCT Patent Application US00/10013, filed April 14, 2000) Ap pen dix

the two-wire Ethernet connection is connected to the first pair of terminals and a second
mode in which the two-wire Ethernet connection is connected to the second pair of terminals;

setting the switched connection to operate in the first mode;

monitoring the two-wire Ethernet connection for data being transmitted to the device;
and

setting the switched connection to operate in the second mode upon detection of data

being transmitted to the device.

19. The method of claim 18, further comprising injecting power on to the two-wire
Ethernet connection at the device for use in powering another device connected to the two-

wire Ethernet connection.

20. The method of claim 18, further comprising changing an impedance presented to
the two-wire Ethernet connection at the device from a first impedance when the switched
connection is operating in the first mode to a second impedance when the switched

connection is operating in the second mode.

21. A field device for use with a powered Ethernet connection, the field device
comprising:
communications circuitry operable to communicate data over an Ethernet connection
using an Ethernet protocol;
power circuitry operable to extract operating power from the Ethernet connection;
and
process circuitry operable to:
sense a process condition and to transmit information about the sensed process
condition using the Ethernet connection; or
control a process condition in response to a command received through the

Ethernet connection.

- 99 -

P
— O O 00 N N W R W N =

W e

W A wN

WO 01/09690 PCT/US00/20828

203

Appendix Appendix

22. The field device of claim 21, wherein the communications circuitry and the
power circuitry are operable to interface with an Ethernet connection including only a single

pair of wires.

23. A system providing a powered Ethernet connection between two devices, the
system comprising:

a first device;

a second device;

an Ethernet connection between the first device and the second device, the Ethernet
connection providing data communication between the devices;

circuitry for applying electrical power on to the Ethernet connection at the first
device; '

circuitry for extracting electrical power from the Ethernet connection at the second
device; and

circuitry for powering the second device using the extracted electrical power.

24. The system of claim 23, wherein the Ethernet connection comprises two pairs of
wires, with a first pair of wires being used to transmit data from the first device to the second
device and a second pair of wires being used to transmit data from the second device to the

first device.

25. The system of claim 24, wherein the circuitry for applying electrical power on to
the Ethernet connection at the first device comprises circuitry for applying a DC voltage
across the two pairs of wires by coupling a first potential to the first pair of wires and a
second potential to the second pair of wires, with the DC voltage being defined as a

difference between the two potentials.
26. The system of claim 25, wherein:

each pair of wires is connected to a corresponding transformer at the first device,

each transformer includes a center-tapped primary winding, and

- 100-

S

SN L1 B W N - AN AW

P S S S R)

WO 01/09690 PCT/US00/20828

204
Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

the circuitry for coupling potentials to the pairs of wires comprises circuitry for
applying the DC voltage between the center taps of the primary windings of the two

transformers.

27. The system of claim 25, wherein:
a center-tapped inductor is connected across each pair of wires at the first device, and
the circuitry for coupling potentials to the pairs of wires comprises circuitry for

applying the DC voltage between the center taps of the inductors.

28. The system of claim 25, wherein:

each pair of wires is connected to a corresponding transformer at the second device,

each transformer includes a center-tapped winding, and

the circuitry for extracting electrical power from the Ethernet connection at the
second device comprises circuitry for extracting a DC voltage existing between the center

taps of the windings of the two transformers.

29. The system of claim 25, wherein:

a center-tapped inductor is connected across each pair of wires at the second device,
and

the circuitry for extracting electrical power from the Ethernet connection at the
second device comprises circuitry for extracting a DC voltage existing between the center

taps of the inductors.

30. The system of claim 23, wherein the Ethernet connection comprises a single pair
of wires used to transmit data from the first device to the second device, to transmit data from
the second device to the first device, and to provide power from the first device to the second

device.

31. The system of claim 30, wherein the circuitry for applying electrical power on to
the Ethemnet connection at the first device comprises circuitry for applying a DC voltage

across the pair of wires by coupling a first potential to the first wire through an inductor and

-101 -

WO 01/09690 PCT/US00/20828
205

Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

coupling a second potential to the second wire through an inductor, with the DC voltage

being defined as a difference between the two potentials.
32. The system of claim 23, wherein the first device comprises a process controller.

33. The system of claim 32, wherein the second device comprises a field device
operable to sense a process condition and to transmit information about the sensed process

condition to the first device using the Ethernet connection.

34. The system of claim 32, wherein the second device comprises a field device
operable to control a process condition in response to a command sent from the first device

using the Ethernet connection.
35. The system of claim 23, wherein the first device comprises an Ethernet hub.

36. The system of claim 35, wherein the second device comprises a field device
operable to sense a process condition and to transmit information about the sensed process.

condition to the first device using the Ethernet connection.

37. The system of claim 35, wherein the second device comprises a field device
operable to control a process condition in response to a command sent from the first device

using the Ethernet connection.

38. The system of claim 23, wherein the second device comprises a field device
operable to sense a process condition and to transmit information about the sensed process

condition to the first device using the Ethernet connection.
39. The system of claim 23, wherein the second device comprises a field device

operable to control a process condition in response to a command sent from the first device

using the Ethernet connection.

-102 -

WO 01/09690 PCT/US00/20828
206

Appendix (from PCT Patent Application US00/10013, filed April 14, 2000) Appendix

ABSTRACT

A powered Ethernet connection is provided between two devices connected by an
Ethernet connection that provides data communication between the devices. Electrical power is
applied to the Ethernet connection at the first device, and extracted from the Ethernet connection

at the second device. The extracted power is used to power the second device.

-103 -

WO 01/09690
207

PCT/US00/20828

- — - — v i imaca —
——— e et

- Soskeatlos v_&e;ﬂ_ame__{ﬁa‘“
o ' - V'c@

(e - S
.—_J — - -

- L z |
F\':q | ‘;__ I~
— I o 200 T B
208 A2 T

' —

- e -ch{-mlhn__&nnd_é!h.r*‘ f
Fra\d ‘ Cra\d Credd__ ¢
—_— Davea. . | . .| .Devrey 4 Pevres |- -
B i |
! T 7

ua 2la UG S

Fra. 2 I
204 T

Qs 310 e
' 728 - - .
cawtes\lae _&s.nmi.rc;*h&__ Wb / Fred 322 . .

. Davres
- ’I 's f! - re——
- - s ———————— s
| Fretd fez2o. -
Devies
ng. 3 —

PCT/US00/20828

WO 01/09690

208

Appendix

..‘-"-‘)

v e’

+ * o o 45

-

.f,ﬂw.

S =mal

- Guved : sHIvd
1INONID 13T Q3LSIAL

uvod
1INJAID 1 WNAMLI

[

Olh

OSh

Dl

'
c o o me -

¢l = ™~

]
V-

b@ﬁov ok
ssavayy |
L

s & " &

PCT/US00/20828

WO 01/09690

209

Appendix

- Auvea
1INJAID L3INALI

= m M._,_
/v/
—Ht

2>

|Ilw /__

o8 SUIvd
sos G3LSIAL

+

§
B 2NN
s | jr

axvos
1INJYID 13NAINI D

WO 01/09690 PCT/US00/20828

210

Appendix

NIC
CAR

5

€<

/
=

343

-

{720

(I3

NIC
CARD

PCT/US00/20828
211

WO 01/09690

130d
anH

SO

Nn -
orL oz,
ENH NOYJ 303 RS
| b5/ 180d 4nH S
IDIAI ! . . '
ETT L EL I IV ks A
Ny 01 ’ :
HSNVY ‘ AMDN3Y.
\\ i ! K 01 LIWSNVaL
e) J40133130
divd d 3304 ALIATLOV

Appendix

WO 01/09690

Appendix

PCT/US00/20828
212
—l-LS
7S 7o %

PAIR n .
™ N ‘(mu“ ‘% Cig. IA
— IOLE WODE

e -~
Pl) 15
ele-3 10
]
- ™ / POVERED PAIR DUt | ;_‘_3‘ 98
BEVICE
RTADY O SEND

WO 01/09690 PCT/US00/20828

213
Appendix
aQ 90
0 ass - Te
[i —% e jm macz o
(, « CIRCUIT
Wi/ | s
.l;' ‘ncey -y
a5, SR~ iy ‘
e B LINe :'-—vl'“m‘“
, H=F « CIRCUIT °
u :gg lT.u 210 °
0 m‘ T 2 E'E‘E I °
TR | —n 8 . :% — : . 72 °
[ES——Y" | 'Tq :: —"_J i - Q
seerve | il 3 ol srn seviee 7
e A = LINE T
L A]w CIRCUIT
B | e e Eim na
m p—
- e
& e
Y -

WO 01/09690 PCT/US00/20828
214

Appendix

G20 _icus

loe

103

\ /]

W\ ey |

N ua N\ lozo T

gﬁg\ mbe == Ha e
N

taso

Cfs, o

PCT/US00/20828

WO 01/09690
215
Appendix
2]
X
[~'4
&
W
e
=

fo

fee
"

"

?

0

g
|
‘ sﬁﬂ_ 2 22
5\/ U
X \\E
5""“—‘/! ’-’

REN
™ 9%
o
P &4
AxIP
™0
XN

uto
AHI0IL

WO 01/09690 PCT/US00/20828
216

Appendix

{700
\

2,
0

WO 01/09690 PCT/US00/20828
217

Appendix

F:rg, K

WO 01/09690 PCT/US00/20828
218

Appendix
F\'Ck . ”’]
+av TD -12v
£V
c
| ‘ 0.04UF|
S — AR
1 0.01UF g e e
. T1 0.01UF rous
— N
—_— R3 R1
L3 400 & B¢
R& ReZ 4

WO 01/09690

219

Appendix
49.9
v ™R
TXON
-_— e
+33V
499
(7 | +33V |
- 3100
"o O 34993

PCT/US00/20828
¥s
Y:T%‘
¢
.
499 TXOP
TXON

PCT/US00/20828

WO 01/09690

220

Appendix

0

4

ST

g€
Jajjonuo)

0l

2%

Jajqeus

oy

Jajqeuq

6v

A

SRR

RS

lajqeusy

PCT/US00/20828

WO 01/09690

221

Appendix

99

Z 614

‘SO Pappaqu3.
WA ‘30 SMopuim.
WA ‘Peppaqu3

LN SMOpUIp.
.

JaAIBG GBM.
WY eAep.
WY eAep.
AR,

R6ojouyoa1

waNo Uy

uewn e
onngLysiQe
U3WaUNO0Ude

Buiuue|g.
1955V,
[e1ouBUIge
Aefdsig

0L
/ sassnqp|aly

payoddns
Auew jo auQ

ao|Aa(piatd

12U YI3 SN 001/04 ‘dI/dOL
NJOM]BN |O43U0D

JOMIBN uoBWIOo|
ssauisng

12°]

(euonejays.

103(qo.
WAr ‘SO 13130
WAP siejos.
WAF ‘LN SMOopuipe $824N0S3Y UBWINH.
turpe uonnqLRsIg.
JOALDS QM. JUBLWBLND0Id.
1IN eaep. pue Buguue(de
INY eAep. 9SSV
BABM. {eloueulge
RBo[OUGoSL : jUstodwoy

Janlag asudiajug

[AS]

@~ -

~ Jaudayu| -

N

7

v R ~

PCT/US00/20828

WO 01/09690

222

Appendix

¢ b4

0O0d Yymm Jaylwsues)

00d Yim Jauosod

|

on
1021100 YpM 194|05)u02) 3AREN

Joyeubaju aoineq sAleN Off O/M J3{joRU0D BANEN

4o}

MS

[OcO000000

000000 J]

[co0o0c000

0000000

8josuo) sJojeladQ

paseq-(0d) 8diAaQ [0U0D dAlEN

et L
HEER

19A8S g9 A
paseq-(0d) a21AaQ [03U0D dAlEN

lasmolg qapn yim Dd dopseq

——]
=]

50—

WO 01/09690 PCT/US00/20828
223

Appendix

N R - SR = SRR
R SR R 3 R
Cagg ; % S

2
£3

e I) SETEHA IS . 2
\ L % s : S

Datagram/Power
Interface

sng jewaju)
| 1 l
= =3 3
2 53| g
[D:m'c ‘c
2 2 |8 g 2
O i P s £ s
o c < [p=
2 c - | @ o L L
o = 25 - © c
© g Z|E 8 3 §
Q Q)a T < =
x
_ | 21 T 3
05 d.)qh, an
wl2|cle w|2|c|e &
= [(>|e|= =[>|0(= [+7]
OoO|s|w|0 O|5|n|0O 2]
w
-‘D.E
- EGG
55 Eas
s TQac
o 3 RN
n o tag
o<
e

Native Field Device

PCT/US00/20828

WO 01/09690

224

Appendix

G

‘Bi

=

(o1018Y | sS800Y jE21607
o) abeloyg Jusuewlad

(aoepsyiy)
Jlamod/welbejeq
“B'a) woddng yiomiaN

alem})jos uopeo)ddy

|sng |eusaju|

JETNETS

Wvd
WAP

S/O

Nndo

891A8(] |0J)UOD BABN

PCT/US00/20828

WO 01/09690

225

Appendix

dVON
oL

9 “6i4

WNILS w

'S
m0
3
Pl

i

319071
ss3uaav

!!!!!!!!!

O_Q —

R

——| 0aV

»:mz>m<zaw

(zindLno)
SHOSNIS IUNSSIUL

(LLNd1noO)
ZYOSNIS FYNSSINd

(A1d<dNS)
LHOSNIAS ANSSIUd

10

15

20

25

30

WO 01/09690 PCT/US00/20828
226

Appendix

PROCESS CONTROL SYSTEM AND METHOD WITH IMPROVED DISTRIBUTION,
INSTALLATION AND VALIDATION OF COMPONENTS

Background of the Invention

The invention pertains to control systems and, more particularly, to methods and

apparatus for distributing, installing and/or validating components of such systems.

The terms "control" and "control systems" refer to the control of a device or system by
monitoring one or more of its characteristics. This is used to insure that output, processing,
quality and/or efficiency remain within desired parameters over the course of time. In many
control systems, digital data processing or other automated apparatus monitor the device or
system in question and automatically adjust its operational parameters. In other control systems,
such apparatus monitor the device or system and display alarms or other indicia of its

characteristics, leaving responsibility for adjustment to the operator.

Control is used in a number of fields. Process control, for example, is typically employed
in the manufacturing sector for process, repetitive and discrete manufactures, though, it also has
wide application in electric and other service industries. Environmental control finds application
in residential, commercial, institutional and industrial settings, where temperature and other
environmental factors must be properly maintained. Control is also used in articles of

manufacture, from toasters to aircraft, to monitor and control device operation.

Digital data processing is firmly entrenched in the control systems. System designers
increasingly rely on software to add functionality and flexibility to their systems. The installation
and validation of process control system components, for example, has generally been quite
simplistic. When a new hardware component is to be installed, an operator or test engineer must
take the system offline, install the new component, bring the system back online, and monitor the

operation of the component. If satisfied, the engineer makes the installation permanent.

10

15

20

25

WO 01/09690 PCT/US00/20828
227

Appendix

The I/A Series process control systems, manufactured by the assignee hereof, represent a
major advance in this technology. They utilize a fault-tolerant architecture in which each control
processor (CP), for example, has a redundant, shadow partner. Either of the partners can be
replaced or updated while the system is still in operation. To this end, one of the CPs is placed in
acttve mode, while its partner is being upgraded. The upgraded unit is then brought on-line, but
only in shadow mode. Its operation is monitored by the engineer or operator, e.g., who compares
its output with that of the active CP. If satisfied with the upgraded unit, the engineer can make it
active, so that the remaining original CP can be upgraded. Redundant, fault-tolerant operation

resumes once both CPs are similarly upgraded.

While the prior art techniques have proven effective to date, the ever increasing
complexity of control systems render those techniques problematic. The physical replacement of
hardware components, for example, can render maintenance unduly costly. This is exacerbated if

the engineer must remain at a remote site until validation of the replacement is complete.

The replacement of software components is only somewhat less demanding. Apart from
the aforementioned I/A Series systems, the prior art typically demands that an entire system be
upgraded or, at least, taken off-line in order for an upgrade to be performed and tested.
Moreover, the replacement of software components in prior art systems requires that the engineer

be present at the replacement site, remaining there until the replacement is validated.
An object of this invention is to provide methods and apparatus that overcome these
shortcomings. More particularly, an object is to provide improved methods and apparatus that

facilitate the distribution, installation and validation of control systems and components.

A further object of the invention is to provide such methods and apparatus as facilitate the

installation of components into active or on-line control systems.

A still further object of the invention is to provide such methods and apparatus as facilitate

10

WO 01/09690 PCT/US00/20828
228

Appendix

the distribution of control system components, e.g., from a manufacturer's site, and their

installation, e.g., at a remote site.

Yet a still further object of the invention is to provide such methods and apparatus as can
be readily implemented on existing digital data processing apparatus or special purpose control

apparatus.

Still yet further related objects of the invention are to provide such methods and apparatus

as can be applied in process control systems, environmental control systems, and the like.

10

15

20

25

WO 01/09690 PCT/US00/20828
229

Appendix

Summary of the Invention

The foregoing are among the objects attained by the invention, which provides in one
aspect a control system with blocks or other components that facilitate validation of their own
replacements. Further aspects of the invention provide control systems in which the components

to be validated are downloaded and installed from a remote site, e.g., via e-commerce transaction.

Thus, in one aspect, the invention provides a control system that includes first and second
control components, e.g., flow control objects for a process control system. The first component
is coupled to a third control component, with which it transfers information, e.g., as part of an
active or ongoing control process. The third component can be, for example, a temperature
control object with which the first component (e.g., a flow control object) is in a cascaded
arrangement. The second component can be, for example, an update or other potential
replacement for the first component. Thus, for example, if the first component is a flow control

object, the second component can be a similar control object with new or improved functionality.

The first and/or second components of a control system according to this aspect of the
invention can effect substitution of the second component for the first. More particularly, they
can effect coupling of the second component for information transfer with the third component
and decoupling of the first component from such transfer with the third component. Preferably,

such coupling and decoupling occur while the control system remains active.

According to a related aspect of the invention, prior to its substitution for the first
component, the second component is coupled to receive information from the third component
and/or any sources from which the first component receives information. The second component,
however, is at least temporarily prevented from outputting information to any sinks to which the
first component sends information. Instead, the output of the second component can be routed,
along with that of the first component, to one or more comparators. These can reside elsewhere

in the control system, e.g., in a supervisor object, or within the first and/or second components

10

15

20

25

WO 01/09690 PCT/US00/20828
230

Appendix

themselves. Substitution of the second component for the first rests on the success of comparison

of their outputs and, in most applications, on confirmation by the operator or test engineer.

By way of example, a comparator can check the output of a newly installed flow control
object against the output of an old object it is intended to replace. The comparator can notify the
operator of the results of the comparison and, if the operator approves, the new object can be

substituted for the old.

Further aspects of the invention provide a control system as described above in which one
or more stores, e.g., pointers, symbols, variables, matrices, arrays, tables, records, databases, files,
or other information stores, identify relationships between components and, more particularly,
their respective sources and sinks. A list maintained in the first component, for example, can
identify its various parameters that are sinks for the third component and, likewise, parameters in
the third (or other components) for which it (the first component) is the source. Substitution of
the second component for the first may be effected, for example, by replacing all connections

to/from the first component with connections to/from the second component.

Still further aspects of the invention provide a control system as described above in which
the first and second components are resident on a control processor, a "smart" field device, or on
another digital data processor-based control device. The configured second component can be
downloaded to that device, e.g., from a control system work station, while the control system is
active and while the first component is operational, e.g., exchanging information with the third
component. By way of further example, downloading from a manufacturer's site to the
workstation can be effected as part of a contracted-for maintenance transaction, an upgrade
transaction and/or as part of an e-commerce transaction, e.g., between the customer and the
manufacturer. Such downloading, moreover, can be instigated by the customer or, automatically,

by the first component or a software agent within the control system.

Yet still further aspects of the invention provide methods for control and methods for

WO 01/09690 PCT/US00/20828
231

Appendix

distributing and/or installing control components paralleling the operations described above.

10

WO 01/09690 PCT/US00/20828
232

Appendix

Brief Description of the Drawings

A more complete understanding of the invention may be attained by reference to the

drawings, in which:

Figure 1 depicts a plurality of networked digital data processors for use in practicing the

invention;

Figure 2 depicts objects for controlling a process in a system according to the invention;

and

Figures 3A-3C depict the insertion and validation of a replacement object in the process

control system of Figure 2.

10

15

20

25

WO 01/09690 PCT/US00/20828
233

Appendix

Detailed Description of the Illustrated Embodiment

Figure 1 depicts a digital data processing system of the type with which the invention may
be practiced. The system includes a controller or other digital data processor 10 on which resides
a process control system for monitoring or controlling a process 12. Though only one element is
shown, those skilled in the art will appreciate that digital data processor 10 represents one or
more workstations, controllers, microprocessors, embedded processors, "smart" field devices, or
other digital data processing apparatus, utilized to control or monitor a process. Such digital data
processing apparatus are of the types commercially available in the marketplace, operated in
accord with the teachings herein to facilitate process control component installation and/or

validation.

Medium 14 provides for transport, from site 16, of process control components -- and,
more particularly, software aspects thereof -- that are to be installed and executed on digital data
processor 10. Though illustrated to represent a LAN, WAN, or global network (Internet), those
skilled in the art will appreciate that element 14 may represent any medium or mechanism through
which software may be transported, electronically, physically or otherwise, from site 16 to digital

data processor 10 or workstation 11.

Site 16 represents any source of software-based process control components or definitions
thereof. This can include, for example, a retail store, warehouse or other distribution point of
CDROMs, diskettes or other magnetic medium on which components or their definitions are
stored. In a preferred embodiment, however, it represents a digital data processor that functions
as a server, e.g., maintained by a manufacturer or other distributer, from which such components
can be electronically transported to the digital data processor 10 or workstation 11. Without

detracting from breadth of the teachings herein, site 16 is referred to hereinafter as a "site server."

Process 12 represents any industrial, manufacturing, service, environmental or other

process amenable to monitoring or control (hereinafter, collectively, "control"). This is illustrated

10

15

20

25

WO 01/09690 PCT/US00/20828
234

Appendix

in greater detail in Figure 2, wherein a simple such process is shown as including valve 18 that
governs the rate of fluid flow to aeration tank 20 which, in turn, transfers the liquid to storage
tank 22. Sensors 24 and 26 monitor the state of process 12 and, thereby, facilitate its control by
process control system 28 operating on the one or more digital data processors represented by
element 10. Thus, sensor 24 is disposed in or adjacent to tank 20 for measuring the temperature
of fluid therein, while sensor 26 measures the flow of fluid from aeration tank 20 to storage tank

22,

Figure 2 illustrates a sample process control system 28 in which the invention is employed.
The system 28 includes three process control components 29, 30, 32 which, themselves, may
include further components (not shown). Components 29, 30, 32 may comprise any combination
of software and hardware features. In the illustrated embodiment only software features are
shown -- ‘here, as object-oriented programming (OOP) "objects.” Other software constructs, by

way of non-limiting example, DLL files, may be employed as well.

The workstation 11 or supervisor object 29 may initiate process control functions,
including activation and execution of process control objects 30 and 32. The supervisor object 29
generates a temperature supervisory setpoint, e.g., based on operator input or a supervisory
program. Object 30 serves as a temperature controller that utilizes a proportional-integral-
derivative (PID) or other control algorithm to generate a flow remote setpoint based on the
temperature setpoint from the supervisor object 29 and on temperature readings from sensor 24.
Object 32 serves as a flow controller that, too, utilizes a PID or other control algorithm to
generate a flow level based on the flow setpoint from object 30 and on flow readings from sensor
26. Objects 29, 30, 32 operate in the conventional manner known in the art, as modified in
accord with the teachings herein to facilitate installation and/or validation of a further such

component, e.g., replacement object 30a (Figure 3).

In process control terminology, supervisor 29 is referred to as a “source” for PID 30 and,

more accurately, for the temperature setpoint parameter used by PID 30. Temperature sensor 24

10

15

20

25

WO 01/09690 PCT/US00/20828
235

Appendix

is also a source for PID 30. PID 32 is, conversely, referred to as a “sink” for PID controller 30
and, more accurately, for the flow setpoint parameter generated by it. Like terminology can be
applied to the other elements and parameters that are sources (i.e., suppliers) or sinks (i.e.,

consumers) of information produced within the system 12.

The identities of the respective sources and sinks are maintained in centralized or
distributed stores, e.g., pointers, symbols, variables, matrices, arrays, tables, records, databases,
files, in the process control system 28. In one embodiment, for example, a centralized table (not

shown), accessible by all of the components, stores those identities.

In a preferred embodiment, each element maintains information about its own sources
and/or sinks. Thus, for example, in the illustrated embodiment, component 30 maintains pointers,
addresses and/or identifiers of its various parameters that are sinks for information generated by
the other components, e.g., elements 29 and 32. It also maintains pointers, addresses and/or
identifiers of the components for which it (i.e., component 30) is a source. This facilitates
reconnection of any components (e.g., 29, 32) that may be affected by replacement of component

30.

Figures 3A-3C depict a methodology for the insertion and validation of a replacement
component in the process control system 28. Each drawing shows the system 28 in reduced
format, using numeric labels to refer to the same-number blocks of Figure 2. The components of

the system 28 may, as noted above, reside on one or more digital data processing apparatus 10.

In Figure 3A, a new or replacement component 30a is added to system 28, e.g., to the
same digital data processor as resides component 30 which it (component 30a) will replace. In
the illustrated embodiment, in which component 30a comprises an OOP object, an OOP class
definition comprising an object template and methods is transmitted from the server 16 to a
workstation 11, e.g., as part of a contracted-for maintenance transaction, upgrade transaction, or

e-commerce transaction. There, an operator or engineer instantiates a replacement object 30a

10

10

15

20

25

WO 01/09690 PCT/US00/20828
236

Appendix

from the new class and configures the object for use in controlling process 12 via controller 10.
Once configured, the object is downloaded to the controller, where it replaces a prior object 30 as
described in further detail below.

Those skilled in the art will appreciate that the replacement object may be downloaded to
digital data processor 10 via other mechanisms, as well. Thus, for example, the object definition
or preconfigured object may be downloaded directly from server 16 to the digital data processor
10. Moreover, in embodiments that utilize non-OOP constructs, alternate data structures or code

constructs (e.g., DDL files) may be downloaded to processor 10 directly or via workstation 11.

Referring back to Figure 1, depicted there are steps of an e-commerce transaction through
which such a download can be effected. In step 1, an operator utilizes workstation 11 to send an
inquiry to site server 16. This step, as well as the others required for installation and validation of
the component 30a, preferably occur while the process control system 28 is online and
operational, e.g., controlling process 12, and without substantive disruption or delay of any of the
monitor and/or control functions performed by the replaced component, or of any components in
communication therewith., As used herein, "substantive disruption or delay" refers to any
disruption or delay having more than negligible impact on the aforesaid monitor and/or control

functions.

In step 2, the site server 16 responds with information regarding possible upgrades. The
server 16 can provide a complete listing of available upgrades or, alternatively, only those

applicable to process control system 28.

In step 3, the operator selects a desired upgrade (e.g., the class for component 30a) and
provides requisite purchase account information, e.g., credit card, PO number, etc. The operator
also supplies whatever additional information is required or desirable in order to effect the

download from the server 16.

11

10

15

20

25

WO 01/09690 PCT/US00/20828
237

Appendix

In step 4, the site server 16 downloads the replacement software to workstation 11, e.g.,
in the form of a .java file, a .class file, a DLL file (e.g., for non-OOP implementations), or in any

other format suitable for adding software aspects of component 30a to workstation 11.

In step 5, workstation 11 instantiates and configures component 30a, based on the new

class, to be similar to component 30 and downloads it for testing in the control processor 10.

Those skilled in the art will, of course, appreciate that numerous other alternatives may be
employed to add the class for component 30a (or, e.g., in non-object oriented systems, to add the
component 30a, itself) to digital data processor 10. These include, for example, installing the
component from a CDROM, diskette, or other medium. By way of further example, electronic
downloading of the component 30a can be "requested" by the system 28, itself. For example, the
component 30 being replaced can itself query the site server 16 for upgrades, e.g., periodically,
upon expiration of an obsolescence timer, in response to messaging from site server 12, or

otherwise.

Turning to Figure 3B, the downloaded component 30a is coupled to the sources of the
block 30a that it is intended to replace, i.e., block 30. In a preferred embodiment, the component
is downloaded in the form of a JAVA ".class" file and, hence, it is immediately operational for
purposes for such coupling. In other embodiments, additional steps (such as compilation,
linking/loading, etc.) required to bring component 30a into existence on digital data processor 10

and/or to make it available for coupling into control system 28 can be effected at this time.

The manner in which component 30a is coupled to the sources of component 30 varies in
accord with the manner in which source information is stored in process control system 28. For
example, if pointers to sources for component 30 are maintained in its own stores, component 30a
can copy that information. Alternatively, if source information is coded into component 30 via a
configurator (not shown), such a configurator may be employed to imbue component 30a with the

same information.

12

10

15

20

25

WO 01/09690 PCT/US00/20828
238

Appendix

In addition to such “source coupling,” the outputs of blocks 30 and 30a are routed to a
comparator (labeled "=") so that they can be compared. This can reside within supervisor object
29, within components 30, 30a themselves, within workstation 11, or elsewhere within the system
28. Routing can be effected by adding additional sinks to blocks 30, 304a, i.e., by defining them
as sources for the comparator, or otherwise. Apart from routing its outputs to the comparator,
replacement object 30a is temporarily prevented from applying those outputs to other

components, e.g., 29, 32, in the system.

Once coupled as described above, the potential replacement block 30a is tested to
determine whether its output is comparable with that of the block 30. To this end, block 30a
processes inputs received identically with block 30 and generates output comparable with that of
block 30. Comparison can be performed in any manner known in the art, preferably, using
comparison methodologies defined in the newly instantiated object 30a, in the original block 30,
or elsewhere in the system. In the illustrated embodiment, graphical or other output indicative of
the comparison is generated by the comparator for routing to a log and/or to the operator

workstation 11.

If the results of the comparison are acceptable, and if the operator signals his or her
confirmation, installation of the replacement module is completed as shown in Figure 3C. This is
effected by further modification of the centralized or distributed source/sink stores so that
component 30a is identified as the source or sink of any component 29, 32 for which component
30 was previously so identified. Information regarding component 30 can then be removed from
those stores. As with the preceding steps, this too preferably occurs while the process control

system 28 is operational so as "not to miss a beat."

In one embodiment, the foregoing operations are effected by executing sequences of the

type that follow on the workstation 11 and control processor 10:

Workstation

13

10

15

20

25

30

35

40

WO 01/09690

Lo -

5.

PCT/US00/20828
239

Appendix

Obtain new composite, block, or part class from server 16.
Instantiate new object 30a from class.

Instantiate all external bi-directional (cascade) input variables.
Configure new object 30a to handle tasks of object it is to replace:

- Connect forward parameter of all cascade inputs and connect
variable of all uni-directional inputs to source of inputs of old
object.

- Connect back parameter of all cascade outputs to back parameter
of existing outputs.

- Create a sinkList object for the list of output sinks of object 30
being replaced.

- Create test runList object.

- Create final runList object.

Serialize new object 30a, sinkList object, test runList object, and final runList
object to an object file for each.

Control Processor

SSV®NO U AL

0.
1

12.
13.
14.
15.

Download new class files.

Download new object 30a and new test runList object file.

Send message with object names.

Set flag in application to instantiate new object 30a from the new class.

Read object file to customize object.

Replace existing runList with new runList from runList object file.

Continue executing runList.

Bring output of old and new objects to display with trends.

Let operator experiment by creating transients.

If new object performs satisfactorily, the operator pushes the "accept" button.
Download sinkList object for the list of output sinks of original object 30 and
make new output connections in sink objects.

Disconnect (null) inputs in old object 30.

Download final runList and continue execution.

Change cascade input from forward parameter to variable.

Delete (null) old object 30 and object files.

Described above are methods and apparatus achieving the desired objects. Those skilled

in the art will appreciate that the embodiments described herein and shown in the drawings are

examples of the invention and that other embodiments incorporating one or more of the

mechanisms and techniques herein, or equivalents thereof, fall within the scope of the invention.

14

10

15

WO 01/09690 PCT/US00/20828
240

Appendix

Thus, for example, further embodiments of the invention provide environmental control
systems utilizing apparatus and methods like those herein to monitor and/or control heating,
ventilation, cooling, and other environmental factors. Yet still further embodiments of the
invention provide industrial control systems, manufacturing control systems, or the like, that also
utilize apparatus and methods like those herein to monitor and/or control respective industrial,

manufacturing or other processes.

By way of further non-limiting example, it will be appreciated that the comparison phase
can involve matching the output of potential replacement object 30a with a standard other than
the output of object 30.

By way of still further non-limiting example, it will be appreciated that replacement
components can be downloaded directly to a controller or other digital data processing apparatus

in which they are to be executed.

In view of the foregoing, what is claimed is:

15

WO 01/09690 PCT/US00/20828
241

Appendix

1. A control system, including

a first component and a second component, the first component being coupled to and

transferring information with a third component, and

at least a selected one of the first and second components selectively decoupling the first
and third components from information transfer and, in lieu thereof, coupling the second

component to the third component for transfer of information therewith.

2, A control system according to claim 1, wherein the control system remains operational
while the first and third components are decoupled from information transfer and wherein

the second and third components are coupled for information transfer.

3. A control system according to claim 1, wherein the second component generates
information for possible transfer to the third component, which information is comparable

with information generated by the first component for transfer to such third component.

4. A control system according to claim 3, comprising a comparator that is coupled with the
first and second components and that compares the information generated by the first
component for transfer to such third component with information generated by the second

component for possible transfer to the third component.

5. A control system according to claim 4, wherein the comparator is coupled to an operator
console and wherein the comparator applies thereto an output indicative of the results of

the comparison.

6. A control system according to claim 4, wherein the comparator is resident in any of the
first component, second component, third component, an operator workstation, elsewhere

in the control system.

16

WO 01/09690 PCT/US00/20828

10.

11.

12.

242

Appendix

A control system according to claim 4, wherein the selected component selectively
decouples the first and third components from information transfer and couples the second
and third components for information transfer in response to any of an operator command

and a result of the comparison.

A control system according to claim 1, comprising one or more stores identifying any of

sources and sinks of information transferred between the components.

A control system according to claim 8, wherein the one or more stores are any of

centralized and distributed within the control system.

A control system according to claim 9, wherein the one or more stores comprise any of

pointers, symbols, variables, matrices, arrays, tables, records, databases, and files.

A control system according to claim 8, wherein at least one of the first and second
components updates one or more of the stores in order to decouple the first and third
components from information transfer and in order to couple the second and third
components for information transfer.

A control system, including

a first component coupled to and transferring information with a third component, at least

the first component being resident on a first digital data processor,
a second digital data processor coupled with the first digital data processor,

the second digital data processor transferring any of a second component and a definition

thereof to the first digital data processor,

17

WO 01/09690 PCT/US00/20828

13.

14.

15.

16.

17.

18.

243

Appendix

at least a selected one of the first and second components selectively decoupling the first
and third components from information transfer and, in lieu thereof, coupling the second

component to the third component for transfer of information therewith.

A control system according to claim 12, wherein the control system remains operational
while the first and third components are decoupled from information transfer and wherein

the second and third components are coupled for information transfer.

A control system according to claim 12, wherein the second digital data processor
transfers any of the second component and the definition thereof to the first digital data

processor in response to a request from an operator.

A control system according to claim 12, wherein the second digital data processor
transfers any of the second component and the definition thereof to the first digital data
processor as part of any of a contracted-for maintenance transaction, an upgrade

transaction and an e-commerce transaction.

A control system according to claim 12, wherein the second component generates
information for possible transfer to the third component, which information is comparable

with information generated by the first component for transfer to such third component.

A control system according to claim 16, comprising a comparator that is coupled with the
first and second components and that compares the information generated by the first
component for transfer to such third component with information generated by the second

component for possible transfer to the third component.

A control system according to claim 17, wherein the selected component selectively
decouples the first and third components from information transfer and couples the second

and third components for information transfer in response to any of an operator command

18

WO 01/09690 PCT/US00/20828

19.

20.

21

22,

23.

244

Appendix

and a result of the comparison.

A control system according to claim 12, comprising one or more stores identifying any of

sources and sinks of information transferred between the components.

A control system according to claim 19, wherein at least one of the first and second
components updates one or more of the stores in order to decouple the first and third
components from information transfer and in order to couple the second and third

components for information transfer.

A control system that controls any of a manufacturing, industrial, and environmental

control process, the control system including

a first component and a second component, the first component being coupled to and

transferring information with a third component,

at least one of the first and third components being arranged for at least one of monitoring

and controlling said manufacturing, industrial, and environmental control process,

at least a selected one of the first and second components selectively decoupling the first
and third components from information transfer and, in lieu thereof, coupling the second

component to the third component for transfer of information therewith.

A control system according to claim 21, wherein the control system remains operational
while the first and third components are decoupled from information transfer and wherein

the second and third components are coupled for information transfer.

A control system according to claim 21, wherein at least one of the first and third

components is directly or indirectly coupled to a device that at least one of monitors and

19

WO 01/09690 PCT/US00/20828

24.

25.

26.

217.

28.

29.

30.

245

Appendix

controls said manufacturing, industrial, and environmental control process.

A control system according to claim 21, wherein the second component generates
information for possible transfer to the third component, which information is comparable

with information generated by the first component for transfer to such third component.

A control system according to claim 24, comprising a comparator that is coupled with the
first and second components and that compares the information generated by the first
component for transfer to such third component with information generated by the second

component for possible transfer to the third component.

A control system according to claim 25, wherein the comparator is coupled to an operator
console and wherein the comparator applies thereto an output indicative of the results of

the comparison.

A control system according to claim 25, wherein the comparator is resident in any of first
component, second component, third component, an operator workstation, elsewhere in

the control system.

A control system according to claim 25, wherein the selected component selectively
decouples the first and third components from information transfer and couples the second
and third components for information transfer in response to any of an operator command

and a result of the comparison.

A control system according to claim 21, comprising one or more stores identifying any of

sources and sinks of information transferred between the components.

A control system according to claim 29, wherein the one or more stores are any of

centralized and distributed within the control system.

20

WO 01/09690 PCT/US00/20828

31

32.

33.

34.

246

Appendix

A control system according to claim 30, wherein the one or more stores comprise any of

pointers, symbols, variables, matrices, arrays, tables, records, databases, and files.

A control system according to claim 29, wherein at least one of the first and second
components updates one or more of the stores in order to decouple the first and third
components from information transfer and in order to couple the second and third

components for information transfer.

A control system that controls any of a manufacturing, industrial, and environmental

control process, the control system including,

a first component coupled to and transferring information with a third component, at least

the first component being resident on a first digital data processor,

at least one of the first and third components being arranged for at least one of monitoring

and controlling said manufacturing, industrial, and environmental control process,
a second digital data processor coupled with the first digital data processor,

the second digital data processor transferring any of a second component and a definition

thereof to the first digital data processor,

at least a selected one of the first and second components selectively decoupling the first
and third components from information transfer and, in lieu thereof, coupling the second

component to the third component for transfer of information therewith.

A control system according to claim 33, wherein the control system remains operational
while the first and third components are decoupled from information transfer and wherein

the second and third components are coupled for information transfer.

21

WO 01/09690 PCT/US00/20828

3s.

36.

37.

38.

39.

40.

41.

247

Appendix

A control system according to claim 33, wherein at least one of the first and third
components is directly or indirectly coupled to a device that at least one of monitors and

controls said manufacturing, industrial, and environmental control process.

A control system according to claim 33, wherein the second digital data processor
transfers any of the second component and the definition thereof to the first digital data

processor in response to a request from an operator.

A control system according to claim 33, wherein the second digital data processor
transfers any of the second component and the definition thereof to the first digital data
processor as part of any of a contracted-for maintenance transaction, an upgrade

transaction and an e-commerce transaction.

A control system according to claim 33, wherein the second component generates
information for possible transfer to the third component, which information is comparable

with information generated by the first component for transfer to such third component.

A control system according to claim 38, comprising a comparator that is coupled with the
first and second components and that compares the information generated by the first
component for transfer to such third component with information generated by the second

component for possible transfer to the third component.

A control system according to claim 39, wherein the selected component selectively
decouples the first and third components from information transfer and couples the second
and third components for information transfer in response to any of an operator command

and a result of the comparison.

A control system according to claim 33, comprising one or more stores identifying any of

sources and sinks of information transferred between the components.

22

WO 01/09690 PCT/US00/20828

42.

43.

44

45.

46.

47.

248

Appendix

A control system according to claim 41, wherein at least one of the first and second
components updates one or more of the stores in order to decouple the first and third
components from information transfer and in order to couple the second and third

components for information transfer.

A method of operating a control system of the type having a first component that is

coupled to and that transfers information with a third component, the method comprising
providing a second component,

selectively operating any of the first and second components to decouple the first and third
components from information transfer and, in lieu thereof, coupling the second component

to the third component for transfer of information therewith.

A method according to claim 43, including the step of keeping the control system
operational while the first and third components are decoupled from information transfer

and wherein the second and third components are coupled for information transfer.

A method of operating a control system according to claim 43, comprising generating
information with the second component for possible transfer to the third component,
which information is comparable with information generated by the first component for

transfer to such third component.

A method of operating a control system according to claim 45, comprising comparing
information generated by the first component for transfer to such third component with
information generated by the second component for possible transfer to the third

component.

A method of operating a control system according to claim 46, comprising applying to an

23

WO 01/09690 PCT/US00/20828

48.

49,

50.

51.

249

Appendix

operator console an output indicative of the results of the comparison.

A method of operating a control system according to claim 46, comprising responding to
any of an operator command and a result of the comparing step by selectively decoupling
the first and third components from information transfer and, in lieu thereof, coupling the

second and third components for information transfer.

A method of operating a control system according to claim 43, comprising providing one
or more stores identifying any of sources and sinks of information transferred between the
components.

A method of operating a control system according to claim 49, comprising updating one
or more of the stores in order to decouple the first and third components from information
transfer and in order to couple the second and third components for information transfer.

A method of operating a control system of the type having

a first component coupled to and transferring information with a third component, at least

the first component being resident on a first digital data processor,.
the method comprising

transferring, from a second digital data processor to the first digital data processor, any of

a second component and a definition thereof,
operating any of the first and second components to selectively decoupling the first and

third components from information transfer and, in lieu thereof, coupling the second

component to the third component for transfer of information therewith.

24

WO 01/09690 PCT/US00/20828

52.

53.

54.

55.

56.

57.

58.

250

Appendix

A method according to claim 51, including the step of keeping the control system
operational while the first and third components are decoupled from information transfer

and wherein the second and third components are coupled for information transfer.

A method of operating a control system according to claim 51, wherein the second digital
data processor transfers any of the second component and the definition thereof to the first

digital data processor in response to a request from an operator.

A method of operating a control system according to claim 51, wherein the second digital
data processor transfers any of the second component and the definition thereof to the first
digital data processor as part of any of a contracted-for maintenance transaction, an

upgrade transaction and an e-commerce transaction.

A method of operating a control system according to claim 51, generating information
with the second component for possible transfer to the third component, which
information is comparable with information generated by the first component for transfer

to such third component.

A method of operating a control system according to claim 55, comprising comparing
information generated by the first component for transfer to such third component with
information generated by the second component for possible transfer to the third

component.

A method of operating a control system according to claim 56, comprising responding to
any of an operator command and a result of the comparing step by selectively decoupling
the first and third components from information transfer and coupling the second and third

components for information transfer.

A method of operating a control system according to claim 57, comprising providing one

25

WO 01/09690 PCT/US00/20828

59.

60.

6l.

62.

251

Appendix

or more stores identifying any of sources and sinks of information transferred between the

components.

A method of operating a control system according to claim 58, comprising updating one
or more of the stores in order to decouple the first and third components from information

transfer and in order to couple the second and third components for information transfer.

A method of operating a control system that controls any of a manufacturing, industrial,

and environmental control process, the control system including
a first component that is coupled to and that transfers information with a third component,

at least one of the first and third components being arranged for at least one of monitoring

and controlling said manufacturing, industrial, and environmental control process,
the method comprising
providing a second component,

operating of any of the first and second components to selectively decouple the first and
third components from information transfer and, in lieu thereof, coupling the second

component to the third component for transfer of information therewith.

A method according to claim 60, including the step of keeping the control system
operational while the first and third components are decoupled from information transfer

and wherein the second and third components are coupled for information transfer.

A method of operating a control system according to claim 60, wherein at least one of the

first and third components is directly or indirectly coupled to a device that at least one of

26

WO 01/09690 PCT/US00/20828

63.

64.

65.

66.

67.

68.

69.

252

Appendix

monitors and controls said manufacturing, industrial, and environmental control process.

A method of operating a control system according to claim 60, generating information
with the second component for possible transfer to the third component, which
information is comparable with information generated by the first component for transfer

to such third component.

A method of operating a control system according to claim 63, comprising comparing
information generated by the first component for transfer to such third component with
information generated by the second component for possible transfer to the third

component.

A method of operating a control system according to claim 64, comprising applying to an

operator console an output indicative of the results of the comparison.

A method of operating a control system according to claim 64, comprising responding to
any of an operator command and a result of the comparing step by selectively decoupling
the first and third components from information transfer and coupling the second and third

components for information transfer.

A method of operating a control system according to claim 60, comprising providing one
or more stores identifying any of sources and sinks of information transferred between the

components.
A method of operating a control system according to claim 60, comprising updating one

or more of the stores in order to decouple the first and third components from information

transfer and in order to couple the second and third components for information transfer.

A method of operating a control system that controls any of a manufacturing, industrial,

27

WO 01/09690 PCT/US00/20828

70.

71.

72.

253

Appendix

and environmental control process, the control system including

a first component coupled to and transferring information with a third component, at least

the first component being resident on a first digital data processor,

at least one of the first and third components being arranged for at least one of monitoring

and controlling said manufacturing, industrial, and environmental control process,
the method including

transferring, from a second digital data processor to the first digital data processor, any of

a second component and a definition thereof,

operating any of the first and second components to selectively decouple the first and third
components from information transfer and, in lieu thereof, coupling the second component

to the third component for transfer of information therewith.

A method according to claim 69, including the step of keeping the control system
operational while the first and third components are decoupled from information transfer

and wherein the second and third components are coupled for information transfer.

A method of operating a control system according to claim 69, wherein at least one of the
first and third components is directly or indirectly coupled to a device that at least one of

monitors and controls said manufacturing, industrial, and environmental contro! process.
A method of operating a control system according to claim 69, wherein the second digital

data processor transfers any of the second component and the definition thereof to the first

digital data processor in response to a request from an operator.

28

WO 01/09690 PCT/US00/20828

73.

74.

75.

76.

71.

78.

79.

254

Appendix

A method of operating a control system according to claim 69, wherein the second digital
data processor transfers any of the second component and the definition thereof to the first
digital data processor as part of any of a contracted-for maintenance transaction, an

upgrade transaction and an e-commerce transaction.

A method of operating a control system according to claim 69, generating information
with the second component for possible transfer to the third component, which
information is comparable with information generated by the first component for transfer

to such third component.

A method of operating a control system according to claim 74, comprising comparing
information generated by the first component for transfer to such third component with
information generated by the second component for possible transfer to the third

component,

A method of operating a control system according to claim 75, comprising responding to
any of an operator command and a result of the comparing step by selectively decoupling
the first and third components from information transfer and coupling the second and third

components for information transfer.

A method of operating a control system according to claim 69, comprising providing one
or more stores identifying any of sources and sinks of information transferred between the

components.

A method of operating a control system according to claim 69, comprising updating one
or more of the stores in order to decouple the first and third components from information

transfer and in order to couple the second and third components for information transfer.

A method of electronic commerce comprising

29

WO 01/09690 PCT/US00/20828

80.

1.

82.

83.

255

Appendix

transferring, from a first digital data processor to a second digital data processor, any of a

first control system component and a definition thereof,

the first control system component being adapted for use in a control system of the type
having a second control system component coupled to and transferring information with a

third component,

any of the first and second control system components being further adapted for
selectively decoupling the second and third components from information transfer and, in
lieu thereof, coupling the first control component to the third component for transfer of

information therewith

A method according to claim 79, comprising transferring the first control system
component from the first digital data processor to the second digital data processor as part
of any of a contracted-for maintenance transaction, an upgrade transaction and an

e-commerce transaction.

A method according to claim 79, comprising transferring the first control system
component from the first digital data processor to the second digital data processor in

response to an operator request.
A method according to claim 79, comprising transferring the first control system
component from the first digital data processor to the second digital data processor in

response to a request by the second control component,

A method according to claim 79, wherein at least the second control component is

resident on the second digital data processor.

30

10

15

WO 01/09690 PCT/US00/20828
256

Appendix

Abstract of the Invention

A control system has blocks or other components that facilitate validation of their own
replacements, e.g., downloaded via e-commerce transactions. The system includes first and
second process control components. The first component is coupled to a third process control
component, with which it transfers information, e.g., as part of an active or ongoing control
process. The second component can be, for example, an update or other potential replacement
for the first component. The first and/or second components can effect substitution of the second
component for the first. More particularly, they can effect coupling of the second component for
information transfer with the third component and decoupling of the first component from such
transfer with the third component. Preferably, such coupling and decoupling occur while the

process control system remains active.

Exchange.3057134.1

31

WO 01/09690 PCT/US00/20828
257

Claims :

1. A control device comprising

a virtual machine environment,

the virtual machine environment executing an object or other software construct

(collectively, "object") that configures the device to provide a control function,
the object communicating a datum with an entity that stores the datum,
the object accessing the datum by reference to storage maintained in the entity.

2. The control device of claim 1, wherein
the virtual machine environment is a Java virtual machine, and
the object is a Java object.

3. The control device of claim 1, wherein the object accesses the datum via any of a
pointer, an address, or a symbolic or other reference to storage maintained in the

entity.

4, The control device of claim 3, wherein the object accesses the datum for purposes

of any of getting or setting a value thereof.

5. The control device of claim 3, wherein the object does not maintain a copy of the
datum.
6. The control device of any of claims 1 - 5, wherein the datum is any of a

measurement, a setpoint or other value, or any of a range, a status, a limit status, a
time stamp or other information pertaining to such measurcment, setpoint or other

value.

7. The control device of any of claims 1 - 5, wherein the object configures the

control device to provide any of sensing, actuation and other control functions.

WO 01/09690 PCT/US00/20828

10.

11.

12.

13.

14.

15.

258

The control device of any of claims 1 - 5, wherein the object configures the

control device to execute one or more control blocks.

The control device of claim 8, wherein one or more of the control blocks execute a

control algorithm, provide input, and/or provide output.

The control device of any of claims 1 - S, wherein the device is any of a

workstation, controller, control station, and a field device.

The control device of claims 1 - 5§ adapted for providing any of process, industrial,

environmental or other control.

The control device of claims 1 - 5, wherein the object comprises

one or more mandatory portions for which memory is allocated in the control

device at the time of object creation,

and one or more optional parts for which memory space is allocated subsequent to

object creation as needed.

The control device of claims 1 - 5, comprising

a second object that executes in the virtual machine environment,

the first and second objects having input and output parts defined from subsets of

a common set of input and output classes, respectively.

The control device of claims 1 - 5, wherein the object configures the device to
provide an analog input function with multiple inputs coupled to accept readings
from multiple respective input devices and to generate an output based on one or

more of those readings.

A control system comprising

WO 01/09690 PCT/US00/20828
259

one or more control devices, each providing a virtual machine environment,

a plurality of objects executing in the one or more virtual machine environments,

the plurality of objects including a first object and a second object that

communicate a datum with one another,

the first object maintaining a sole instance of the datum as between at least the

first and second objects,

the second object accessing the datum by reference.

16. The control system of claim 15, wherein

the virtual machine environment maintained by the control devices is a Java

virtual machine, and

the first object and the second objects are Java objects.

17. The control system of claim 15, wherein the second object accesses the datum via
any of a pointer, an address, or a symbolic or other reference to the instance of the

datum maintained by the first object.

18. The control system of claim 17, wherein the second object accesses the datum for

purposes of any of getting or setting a value thereof.

19. The control system of any of claims 15 - 18, wherein the datum is any of a
measurement, a setpoint or other value, or any of a range, a status, a limit status, a
time stamp or other information pertaining to such measurement, setpoint or other

value.

WO 01/09690 PCT/US00/20828

20.

21.

22.

23.

24,

25.

26.

27.

260

The control system of any of claims 15 - 18, wherein the first and second objects
configure control devices on which they execute to provide any of sensing,

actuation and other control functions.

The control system of any of claims 15 - 18, wherein the first and second objects

configure the one or more control devices on which they reside to execute control
blocks.

The control system of claim 21, wherein at least one of the control blocks

executes a control algorithm, provides input and/or provides output.

The control system of any of claims 15 - 18, wherein one or more of the control

devices is any of a workstation, controller, control station, and a field device.

The control system of claims 15 - 18 adapted for providing any of process,

environmental or other control.

The control system of claims 15 - 18, wherein at least one of the first and second

object comprise

one or more mandatory portions for which memory is allocated in the control

device at the time of object creation,

and one or more optional parts for which memory space is allocated subsequent to

object creation as needed.

The control system of claims 15 - 18, wherein the first and second objects have
input and output parts defined from subsets of a common set of input and output

classes, respectively.

The control system of claims 15 - 18, wherein at least one of the first and second
objects configures the device to provide an analog input function with multiple
inputs coupled to accept readings from multiple respective input devices and to

generate an output based on one or more of those readings.

WO 01/09690 PCT/US00/20828

28.

29.

30.

31.

261

A control system comprising

one or more control devices, each providing a virtual machine environment,

a plurality of objects executing in the one or more virtual machine environments,
the plurality of objects including a first object and a second object between which
a connection is established to communicate with one another one or more data

contained in a data structure,

the first object maintaining a sole instance of the data structure and data contained

therein as between at least the first and second objects,

the second object accessing data in the data structure by reference.

The control system of claim 28, wherein the data structure comprises a

unidirectional variable having

a measurement, a setpoint or other value, and

any of a range, a status, a limit status, a time stamp or other information pertaining

to such measurement, setpoint or other value.

The control system of claim 29, wherein

the virtual machine environment maintained by the control devices is a Java

virtual machine, and
the first object and the second objects are Java objects.
The control system of claim 29, wherein the second object accesses data in the

data structure via any of a pointer, an address, or a symbolic or other reference to

the instance of the data structure maintained by the first object.

WO 01/09690 PCT/US00/20828

32.

33.

34.

35.

36.

37.

38.

39.

262

The control system of claim 29, wherein the second object accesses the data

structure for purposes of any of getting or setting a datum thereof.

The control system of claim 28, wherein the datum is any of a measurement, a
setpoint or other value, or any of a range, a status, a limit status, a time stamp or

other information pertaining to such measurement, setpoint or other value.

The control system of claim 28, wherein the first and second objects configure
control devices on which they execute to provide any of sensing, actuation and

other control functions.

The control system of claim 28, wherein the first and second objects configure the

one or more control devices on which they reside to execute control blocks.

The control system of claim 33, wherein at least one of the control blocks

executes a control algorithm, provides input and/or provides output.

The control system of claim 28, wherein one or more of the control devices is any

of a workstation, controller, control station, and a field device.

The control system of claim 28 adapted for providing any of process,

environmental or other control.

The control system of any of claims 28 - 38, wherein the data structure comprises

a bi-directional variable having

a forward-going measurement, setpoint or other value (collectively, "forward-

going value"),

any of a range, a status, a limit status, a time stamp or other information pertaining

to the forward-going value,

WO 01/09690 PCT/US00/20828

40.

41.

263

a back-going measurement, setpoint or other value (collectively, "back-going

value"), and

any of a range, a status, a limit status, a time stamp or other information pertaining

to the back-going value).

A control system comprising

one or more control devices, each providing a virtual machine environment,

a plurality of objects executing in the one or more virtual machine environments,

the plurality of objects including a first object that communicates a datum with a

second object and a third object,

the first object maintaining a sole instance of the datum as between at least the

first, second and third objects,

the second and third objects accessing the datum by reference.

A control system comprising

one or more control devices, each providing a virtual machine environment,

a plurality of objects executing in the one or more virtual machine environments,
the plurality of objects including a first object with which connections are
established by a second object and by a third object, each connection being for the

transfer of data contained in a data structure,

the first object maintaining a sole instance of the data structure and data contained

therein as between at least the first, second and third objects,

the second and third objects accessing data in the data structure by reference.

WO 01/09690 PCT/US00/20828

42.

43.

44,

45.

46.

264

The control system of any of claims 40 - 41, wherein the data structure comprises

a bi-directional variable having

a forward-going measurement, setpoint or other value (collectively, "forward-

going value"),

any of a range, a status, a limit status, a time stamp or other information pertaining

to the forward-going value,

a back-going measurement, setpoint or other value (collectively, "back-going

value"), and

any of a range, a status, a limit status, a time stamp or other information pertaining

to the back-going value).

A method of operating a control device comprising

executing an object or other software construct (collectively, "object") ona virtual
machine environment provided in the control device, the object configuring the

control device to provide a control function,

communicating a datum between the object and an entity that stores the datum, the

object accessing the datum by reference to storage maintained in the entity.

The method of claim 43, wherein the virtual machine environment is a Java virtual

machine, and wherein the object is a Java object.

The method of claim 43, comprising accessing the datum from the object via any
of a pointer, an address, or a symbolic or other reference to storage maintained in

the entity.

The method of claim 45, comprising accessing the datum for purposes of any of

getting or setting a value thereof.

WO 01/09690 PCT/US00/20828

47.

48.

49.

50.

51,

52.

53.

54.

265

The method of claim 45, wherein the object does not maintain a copy of the

datum.
The method of any of claims 43 - 47, wherein the datum is any of a measurement,
a setpoint or other value, or any of a range, a status, a limit status, a time stamp or

other information pertaining to such measurement, setpoint or other value.

The method of any of claims 43 - 47, comprising executing the object to configure

the control device to provide any of sensing, actuation and other control functions.

The method of any of claims 43 - 47, wherein the executing step includes

executing one or more control blocks associated with the object.

The method of claim 50, wherein one or more of the control blocks comprises a

control algorithm, an input function, and/or an output function.

The method of any of claims 43 - 47, wherein the device is any of a workstation,

controller, control station, and a field device.

The method of claims 43 - 47 adapted for providing any of process, industrial,

environmental or other control.

A method of operating a control system comprising

executing a plurality of objects in virtual machine environments provided on one
or more control devices, the objects configuring the one or more devices to
provide control functions,

communicating a datum between first and second ones of the plurality of objects,

maintaining in the first object a sole instance of the datum, as between at least the

first and second objects, and

WO 01/09690 PCT/US00/20828

55.

56.

57.

58.

59.

60.

61.

62.

63.

266

accessing by reference the datum with the second object.

The method of claim 54, wherein the virtual machine environment is a Java virtual

machine, and the plurality of objects are Java objects.

The method of claim 54, wherein the accessing step includes accessing the datum
via any of a pointer, an address, or a symbolic or other reference to the instance of

the datum maintained by the first object.

The method of any of claims 54 - 56, wherein the datum is any of a measurement,
a setpoint or other value, or any of a range, a status, a limit status, a time stamp or

other information pertaining to such measurement, setpoint or other value.

The method of any of claims 54 - 56, wherein the executing step includes
executing at least the first and second objects to configure the control devices to

provide any of sensing, actuation and other control functions.

The method of any of claims 54 - 56, wherein the executing step includes

executing one or more control blocks associated with the first and second objects..

The method of claim 59, wherein at least one of the control blocks executes a

control algorithm, provides input and/or provides output.

The method of any of claims 54 - 56, wherein one or more of the control devices

is any of a workstation, controller, control station, and a field device.

The method of claims 54 - 56 adapted for providing any of process, environmental

or other control.
A method of operating a control system, comprising
executing a plurality of objects in virtual machine environments provided on one

or more control devices, the objects configuring the one or more devices to

provide control functions,

WO 01/09690 PCT/US00/20828

64.

65.

66.

67.

68.

69.

267

communicating one or more data contained in a data structure between first and

second ones of the plurality of objects,

maintaining in the first object a sole instance of the data structure and data

contained therein as between at least the first and second objects,

accessing by reference data in the data structure with the second object.

The method of claim 63, wherein the data structure comprises a unidirectional

variable having

a measurement, a setpoint or other value, and

any of a range, a status, a limit status, a time stamp or other information pertaining

to such measurement, setpoint or other value.

The method of claim 63, wherein the executing step includes executing at least the
first and second objects to configure the control devices to provide any of sensing;,

actuation and other control functions.

The method of claim 63, wherein the executing step includes executing one or

more control blocks associated with the first and second objects.

The method of claim 63, wherein at least one of the control blocks executes a

control algorithm, provides input and/or provides output.

The method of claim 63, wherein one or more of the control devices is any of a

workstation, controller, control station, and a field device.

The method of claim 63 adapted for providing any of process, environmental or

other control.

WO 01/09690 PCT/US00/20828

70.

71.

72.

268

The method of any of claims 63 - 69, wherein the data structure comprises a bi-

directional variable having

a forward-going measurement, setpoint or other value (collectively, "forward-

going value"),

any of a range, a status, a limit status, a time stamp or other information pertaining

to the forward-going value,

a back-going measurement, setpoint or other value (collectively, "back-going

value"), and

any of a range, a status, a limit status, a time stamp or other information pertaining

to the back-going value).

A method of operating a control system, comprising

executing a plurality of objects in virtual machine environments provided on one
or more control devices, the objects configuring the one or more devices to

provide control functions,

communicating one or more data contained in a data structure between first one of

the objects and second and third ones of the objects,

maintaining in the first object a sole instance of the data structure and data

contained therein as between at least the first, second and third objects,

accessing by reference data in the data structure with the second and third objects.

The method of claim 71, wherein the data structure comprises a bi-directional

variable having

a forward-going measurement, setpoint or other value (collectively, "forward-

going value™),

WO 01/09690 PCT/US00/20828
269

any of a range, a status, a limit status, a time stamp or other information pertaining

to the forward-going value,

a back-going measurement, setpoint or other value (collectively, "back-going

value"), and

any of a range, a status, a limit status, a time stamp or other information pertaining

to the back-going value).

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US00/20828
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOSB 15/00
Us CL :700/1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation scarched (classification system followed by classification symbols)
U.S. : 700/1,9,86;709/1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X,p US 6,002,104 A (HSU) 14 December 1999 (14.12.1999), column 2 lines 20-30, column 3 | 1-5,9,15-18,22,28-
lines 51-55, column 7 lines 46-58, column 10 lines 65-67, column 12 lines 1-20 38,40,41,43-47,51,54-
56,60,63-69,71,72
A US 5,854,750 A (PHILLIPS et al) 29 December 1998 (29.12.1998) All
A US 5,844,804 A (SCHUSSLER) 1 December 1998 (01.12.98) All
A US 6,085,120 A (SCHWERDTFEGER et al) 4 July 2000 (04.07.2000) All

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited de : “T" later document published after the international filing date or priority
date and not in coaflict with the application but cited to understand the
“A" document defining the general siate of the art which is not coasidered 10 be principle or theory underlying the invention
of particular relevance
“X» document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the inlernational filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubis on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “Y” document of particular relevance; the claimed invention cannol be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the ar
“P™ document published prior to the international filing date but later than the “&” document member of the same patent family

priority daie claimed

Date of the actual completion of the international search Date of mailinS)f NxU_ver?chﬂ search report

13 October 2000 (13.10.2000)

Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks . /7 m
Box PCT Edward (Skip) Gain /mm f /

Washington, D.C. 2023t ;
Facsimile No. (703)305-3230 Telephone No. 703-305-7335

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US00/20828

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claim Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

(8]

D Claim Nos.:

because they relatc to parts of the international application that do not comply with the prescribed requirements to
such an extent that no meaningful international search can be carried out, specifically:

3. & Claim Nos.: 6-8,10-14,19-21,23-27,39,42,48-50,52,53,57-59,61,62 and 70
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
6.4(a).

Box IT Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

As all required additional search fees were timely paid by the applicant, this international search report covers all
searchable claims.

As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite
payment of any additional fee.

OO

As only some of the required additional search fees were timely paid by the applicant, this international search
report covers only those claims for which fees were paid, specifically claims Nos.:

4. l:] No required additional search fees were timely paid by the applicant. Consequeuntly, this international search report
is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest.

,:I No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Search_Report

