(54) 发明名称

铸件、行星架、空心轴和行星减速器

(57) 摘要

本发明涉及一种用于一体式行星架(26)的铸件，其包括一基体(100)，从所述基体伸出毛坯销轴，其中毛坯销轴具有这样的形状：由该形状能在基体上在不同位置处制造出用于行星轮(27)的销轴(24)。由这种铸件可制造出行星架(26)，其中行星架(26)可用来在行星减速器(10)中。
1. 一种行星架，
 做成盲孔式空心轴的输出轴一体形成在该行星架上，
 其特征为：
 在空心轴的形成柱形表面的内壁上加工出螺旋形槽,
 所述空心轴具有不连贯的口，
 在所述空心轴的界定所述口的内壁中加工出一螺旋形槽，该螺旋形槽优选在一在空心
 轴的输出侧端面上的倒角中引出，
 所述空心轴作为输出轴形成在单侧壁式的行星架上或另外的行星架上，
 所述槽的一端部在一倒角中引出，所述倒角在空心轴的输出侧端面的环形的内棱边
 上形成。

2. 根据权利要求1所述的行星架，其特征为：
 所述空心轴从输出侧起包括——优选具有圆形周界的——缺口，其中，所述缺口的直
 径朝向输入侧变小，
 最靠近输出测的缺口具有一在空心轴的内壁中加工出的螺旋形槽。

3. 根据权利要求1或2所述的行星架，其特征为：
 最靠近输入侧的缺口盲孔式地终止于该行星架中。

4. 根据权利要求1-3中任一项所述的行星架，其特征为：
 在所述缺口之间在空心轴中分别加工出退刀槽，所述退刀槽的直径大于相邻缺口的直
 径。

5. 根据权利要求1-4中任一项所述的行星架，其特征为：
 所述缺口和退刀槽在该行星架中共同形成一不连贯的口。

6. 一种行星减速器，该行星减速器具有第一级和第二级，
 其中，第二级的太阳轮的一端部区域作为带动件接合到第一级的行星架中，
 其特征为：
 所述太阳轮具有一制造成沿轴向连贯的齿部，
 所述太阳轮具有一中间区域，在所述中间区域处所述连贯的齿部被中断，
 所述连贯的齿部在端部区域中在一分区内具有缩短的齿，因而具有缩小的齿顶圆直
 径，由此形成一轴向止挡。
 所述第一级的行星架制成铸件并近似地具有等腰三角形的形状，其中用来支承行星轮的
 轴在三角形的角部中沿轴向伸出，所述轴能由所述铸件在距行星架的中心的不同
 的轴向距离处制成，
 行星减速器具有一中央的柱壳形壳体件，
 第二级的太阳轮通过太阳轮轴承支承在根据权利要求1-5中任一项所述的行星架中，
 所述中央的柱壳形壳体件为第一级和第二级各具有由一螺圈在输入侧设有在端壁中
 的孔，在该端壁上能螺纹连接一输入侧法兰，该中央的柱壳形壳体件在输出侧做成法兰，在
 该法兰上螺纹连接一输出侧盖。

7. 根据权利要求6所述的行星减速器，其特征为：
 所述第二级做成输出级，其中输出级的行星架在输出侧做成空心轴或实心轴，该空心
 轴优选被一收缩盘包围。
8. 根据权利要求6或7所述的行星减速器，其特征为：
 所述第一级具有三个行星轮。
9. 根据权利要求6-8中任一项所述的行星减速器，其特征为：
 所述第二级具有四个另外的行星轮。
10. 一种行星减速器，该行星减速器具有第一级和第二级，
 其中，第二级的太阳轮的一端部区域作为带动件接合到第一级的行星架中，
 其特征为：
 所述太阳轮具有制作成沿轴向连贯的齿部，
 所述太阳轮具有中间区域，在所述中间区域处所述连贯的齿部被中断，
 所述第二级做成输出级，输出级的根据权利要求1-5中任一项所述的行星架在输出侧
 做成实心轴或优选被一收缩盘包围的空心轴，
 在输出侧能在行星减速器上固定一柱壳形护罩，该柱壳形护罩包围空心轴或实心轴，
 该柱壳形护罩由相互螺纹连接的弯曲件制成。
11. 根据权利要求10所述的行星减速器，其特征为：
 在输入侧法兰上能法兰连接一前置减速器，特别是锥齿轮减速器或圆柱齿轮减速器。
12. 根据权利要求10或11所述的行星减速器，其特征为：
 在输出侧能上能螺纹连接一具有近似环形的分段的L形支脚，其中，所述支脚的四边形
 框架垂直于该环形分段设置，该四边形框架通过角形件以及环形框架的翻边部与环形框架
 连接，其中角形件接合到环形分段的侧向翻边部中的四边长孔中。
铸件、行星架、空心轴和行星减速器

【0001】本申请是申请号为200980150304.3的专利申请的分案申请，原申请的申请日为2009年12月9日，发明名称为“铸件、行星架、空心轴和行星减速器”。

技术领域
【0002】本发明涉及一种铸件、行星架（行星轮托架）、空心轴和行星减速器（传动装置）。

背景技术
【0003】由DE 23 05 780已知一种行星架和行星减速器。

发明内容
【0004】因此，本发明的目的是：改进铸件、行星架、空心轴和行星减速器。
【0005】根据本发明，这个目的对于铸件按照在权利要求1中给出的特征实现。对于行星架按照在权利要求6或12中给出的特征来实现。对于制造行星架的方法按照在权利要求9中给出的特征来实现。对于空心轴按照在权利要求13中给出的特征来实现。对于行星减速器按照在权利要求19中给出的特征来实现。
【0006】对于用于一体式行星架的铸件，重要特征是，所述铸件包括基体，从所述基体伸出毛坯销轴，其中所述毛坯销轴具有的形状使得从所述形状能在所述基体上在不同的位置处制造出用于行星轮的销轴。其优点是，可将来自同一铸模的相同的铸件用于具有不同传动比的行星减速器。
【0007】在铸件的一种有利的构型中，所述基体是盘片形（扁形）的，优选是具有圆角的、近似的三角形。其优点是，铸件制造简单。
【0008】在铸件的另一种有利构型中，所述毛坯销轴近似垂直地或垂直地从所述基体伸出，其优点是，毛坯销轴加工简单。
【0009】在铸件的另一种有利构型中，毛坯销轴在相对于基体的凸台上具有卵形或近似三角形的底面/基面。其优点是，可以由毛坯销轴在基体上在不同位置处制造出用于行星轮的销轴。
【0010】在铸件的另一种有利构型中，盘片形的所述基体是近似三角形的并在每个角部区域中具有一个毛坯销轴，其优点是可以由铸件制造出销轴。
【0011】对于用于行星减速器的行星架，重要特征是，该行星架由如上所述的铸件制成。其优点是，可以用同一铸模制造出用于具有不同传动比的行星减速器的行星架。
【0012】在行星架的一种有利的构型中，所述基体具有一带有内齿部的中央圆形开口，所述基体设计成围绕所述圆形开口加厚，所述行星架近似在所述基体的角部中具有垂直于所述基体的三个用于行星轮的销轴，所述销轴由毛坯销轴在距圆形开口的中心的不同距离处制成。其优点是，在不同的传动比条件下都能可靠地传递转矩。
【0013】在行星架的另一种有利构型中，行星架设计成一体的，用于行星轮的销轴在一基体上伸出，其中销轴能在距基体的旋转轴线的不同径向距离处制成，其中，在所述销轴距所
述旋转轴线的距离最小的情况下，基体的最大径向延伸尺寸与轴系轴体中心的最大径向距离之差大于轴承的半径的一半，优选大于轴承的半径。其优点是，可以用同一铸模制造出用于具有不同传动比的行星减速器的行星架。

【0014】对于行星架的制造方法，重要特征是，由一在相对于行星架的旋转轴线沿轴向拉长的、沿轴向方向延伸的毛坏轴切削加工出用于行星轮的轴系。其优点是，可以用同一铸模制造出用于具有不同传动比的行星减速器的行星架。

【0015】在该方法的一种有利方案中，轴系到旋转轴线的径向距离在拉长的毛坏轴切削的范围内选择。其优点是，可以用同一铸模制造出用于具有不同传动比的行星减速器的行星架。

【0016】在该方法的另一种有利方案中，在行星架的围成与旋转轴线同心的开口——特别是圆形开口——的柱形表面中加工出内齿部。其优点是，能可靠地传递转矩。

【0017】对于具有不连续的开口的空心轴，重要特征是，在空心轴的界定所述缺口的内壁中加工出螺旋形槽，该槽优选在空心轴的输出侧端面上的倒角中引出。其优点是，可以迅速、简单地制造出用于引入传动轴的通风结构。

【0018】在空心轴的一种有利实施形式中，所述空心轴作为输出轴形成在行星架上或另外的行星架上。其优点是，可以可靠地从行星架向输出轴传递转矩，传动轴可以简单地与输出轴连接。

【0019】对于另外的行星架，重要特征是，做成盲孔式空心轴的输出轴一体形成在该另外的行星架上，其中在空心轴的形成柱形表面的内壁上加工出螺旋形槽。其优点是，传动轴可以简单地与行星架或另外的行星架连接。

【0020】在另外的行星架的另一种有利实施形式中，所述空心轴从输出侧起包括——优选具有圆形周界的——缺口，其中，所述缺口的直径朝向输入侧变小，其中最靠近输出侧的缺口具有一在空心轴的内壁中加工出的螺旋形槽。其优点是，输出轴可以简单地与行星架或另外的行星架连接。

【0021】在另外的行星架的另一种有利的实施形式中，所述槽的一端部在一空心轴的输出侧端面上的倒角中引出。其优点是，即使在传动轴插入的情况下也保持单孔式空心轴的通风。

【0022】在另外的行星架的另一种有利实施形式中，最靠近输入侧的缺口盲孔式地终止于该另外的行星架中。其优点是，另外的行星架是稳定的。

【0023】在另外的行星架的另一种有利实施形式中，在所述缺口之间在空心轴中分别加工出退刀槽，所述退刀槽的直径大于相邻缺口的直径。其优点是，传动轴被完全限定地保持在输出轴中。

【0024】在另外的行星架的另一种有利实施形式中，所述缺省和退刀槽在该另外的行星架中共同形成一不连贯的口。其优点是，该另外的行星架比较稳固。

【0025】对于行星减速器，本发明的重要特征是，该行星减速器具有第一级和第二级，其中第二级的太阳轮的一端部区域作为带动件接合到第一级的行星架中，所述太阳轮具有一沿轴向连接的齿轮。其优点是，行星减速器制造简单。

【0026】在一种有利的结构中，第二级的太阳轮具有一中间区域，在所述中间区域处所述连接的齿部被中断。其优点是，第二级的太阳轮制造较为简单并且需要较少的材料。

【0027】在另一种有利的结构中，连贯的齿部在端部区域中在一分区内具有缩短的齿，由
此形成一轴向止挡。其优点是，能从行星架向第二级的太阳轮传递轴向力。
[0028] 在另一种有利的构型中，第二级做成输出级，其中输出级的另外的行星架做成两
侧壁式(zweiwängig)并且在输出侧做成空心轴或实心轴，其中空心轴优选被一收缩盘/收
紧盘(Schrumpfscheibe)包围。其优点是，可可靠地传递转矩并且简单地制造行星减速
器。
[0029] 在另一种有利的构型中，第一级具有三个行星轮。其优点是，可以可靠地传递转
矩。
[0030] 在另一种有利的构型中，第二级具有四个另外的行星轮。其优点是，可以传递更
大的转矩。
[0031] 在另一种有利的构型中，第一级的行星架制成铸件并近似具有等腰三角形的形
状，其中用来支承行星轮的销轴近似在三角形的角部中沿轴向伸长，所述销轴能由所述铸
件在距行星架的中心的不同的轴向距离处制成。其优点是，可以简单地实现不同的传动比。
[0032] 在另一种有利的构型中，第二级的另外的行星架由一个部件制成。其优点是，可以
传递更大的转矩。
[0033] 在另一种有利的构型中，在输出侧能在行星减速器上固定一柱壳形护罩，该柱壳
形护罩包围空心轴或实心轴，该柱壳形护罩——特别是仅仅——由相互螺纹连接的弯曲件
(Biegeteilen)制成。其优点是，行星减速器运行可靠，制造简单。
[0034] 在另一种有利的构型中，行星减速器包括一中央的柱壳形铸件，该中央的柱壳形
铸件为第一级和第二级各具有一齿圈/空心轮并在输入侧设有在端壁中的孔，在该端壁上
能螺纹连接一输入侧法兰，该中央的柱壳形铸件在输出侧做成法兰，在该法兰上螺纹连接
一输出侧盖。其优点是，可以传递较大的转矩。
[0035] 在另一种有利的构型中，在输入侧法兰上能法兰连接一前置减速器，特别是锥齿
轮减速器或圆柱齿轮减速器。其优点是，行星减速器能变地使用并覆盖一很大的传动比
范围。
[0036] 在另一种有利的构型中，输出侧盖上能螺纹连接一具有近似环形的分段的L形
支脚，其中，所述支脚的四边形框架垂直于该环形分段设置，该四边形框架通过一圆形件以
及环形框架的翻边部与环形框架连接，其中角形件接合到环形分段的侧向翻边部中的四边
形长孔中。其优点是，可以可靠地固定行星减速器。
[0037] 在另一种有利的构型中，第二级的太阳轮通过一太阳轮轴承支承在另外的行星架
中，其优点是，可靠地支承太阳轮。
[0038] 根据本发明的、用于一体式行星架的铸件包括一盘片形的、近似的三角形基体，与
该盘片形的、近似三角形的基体近似垂直地或垂直地从该基体伸出毛坯销轴，其中毛坯销
轴具有的形状使得从所述形状能在所述盘片形的基体上在不同的位置处制造出用于行星
轮的销轴。其优点是，可以用同一转模制造出用于具有不同传动比的行星减速器的行星架。
[0039] 在另一种实施形式中，毛坯销轴具有半形或近似于三角形的底面。其优点是，可以
在距行星架的中心轴线的不同距离处制造出用于行星轮的销轴。
[0040] 本发明的行星架由一铸件制成，该铸件具有盘片形的、近似三角形的基体和与该
基体垂直的毛坯销轴，其中基体具有带内齿部的中央圆形开口并围绕该圆形开口加厚，行
星架近似在基体的角部中具有用于行星轮的销轴，所述销轴可以在距所述圆形开口的中心
的不同距离处由毛坯销轴制成。因此，行星架具有更轻、更灵活的有利几何结构。

附图标记表

<table>
<thead>
<tr>
<th>编号</th>
<th>名称</th>
<th>页号</th>
</tr>
</thead>
<tbody>
<tr>
<td>0042</td>
<td>附图标记表</td>
<td></td>
</tr>
<tr>
<td>0043</td>
<td>行星减速器</td>
<td></td>
</tr>
<tr>
<td>0044</td>
<td>中央的柱壳形壳体件</td>
<td></td>
</tr>
<tr>
<td>0045</td>
<td>安装螺栓</td>
<td></td>
</tr>
<tr>
<td>0046</td>
<td>端壁中的孔</td>
<td></td>
</tr>
<tr>
<td>0047</td>
<td>螺栓</td>
<td></td>
</tr>
<tr>
<td>0048</td>
<td>法兰</td>
<td></td>
</tr>
<tr>
<td>0049</td>
<td>输入侧法兰</td>
<td></td>
</tr>
<tr>
<td>0050</td>
<td>输出侧盖</td>
<td></td>
</tr>
<tr>
<td>0051</td>
<td>另外的螺栓</td>
<td></td>
</tr>
<tr>
<td>0052</td>
<td>第一级</td>
<td></td>
</tr>
<tr>
<td>0053</td>
<td>第一级的齿轮</td>
<td></td>
</tr>
<tr>
<td>0054</td>
<td>另外的太阳轮</td>
<td></td>
</tr>
<tr>
<td>0055</td>
<td>销轴</td>
<td></td>
</tr>
<tr>
<td>0056</td>
<td>退刀槽</td>
<td></td>
</tr>
<tr>
<td>0057</td>
<td>行星架</td>
<td></td>
</tr>
<tr>
<td>0058</td>
<td>行星轮</td>
<td></td>
</tr>
<tr>
<td>0059</td>
<td>行星轮轴承</td>
<td></td>
</tr>
<tr>
<td>0060</td>
<td>圆形缺口</td>
<td></td>
</tr>
<tr>
<td>0061</td>
<td>第二级</td>
<td></td>
</tr>
<tr>
<td>0062</td>
<td>第二级的齿轮</td>
<td></td>
</tr>
<tr>
<td>0063</td>
<td>第二级的太阳轮</td>
<td></td>
</tr>
<tr>
<td>0064</td>
<td>太阳轮轴承</td>
<td></td>
</tr>
<tr>
<td>0065</td>
<td>端部区域</td>
<td></td>
</tr>
<tr>
<td>0066</td>
<td>封闭螺栓</td>
<td></td>
</tr>
<tr>
<td>0067</td>
<td>马达</td>
<td></td>
</tr>
<tr>
<td>0068</td>
<td>盘片形基体</td>
<td></td>
</tr>
<tr>
<td>0069</td>
<td>中央圆形开口</td>
<td></td>
</tr>
<tr>
<td>0070</td>
<td>底面</td>
<td></td>
</tr>
<tr>
<td>0071</td>
<td>止挡面</td>
<td></td>
</tr>
<tr>
<td>0072</td>
<td>固定槽</td>
<td></td>
</tr>
</tbody>
</table>

附图说明

附图纯粹示意图性地表示；
具体实施方式
[0084] 图1以分解图表示本发明的行星减速器10。行星减速器10具有一中央的柱壳形壳体件12。在该中央的柱壳形壳体件12的输入侧侧上固定一个固定在端壁中的孔14内的螺栓15，其螺纹连接一输入侧法兰17。在输入侧法兰17上设置安装螺栓13。安装螺栓13用来安装前置减速器。
[0085] 在输出端，中央的柱壳形壳体件12形成法兰16，在法兰16上借助于另外的螺栓19，其螺纹连接一输出侧盖18。中央的柱壳形壳体件12具有通风装置72和封闭螺栓74。
[0086] 在中央的柱壳形壳体件12中，在输入侧布置行星减速器10的第一级20。中央的柱壳形壳体件12的内表面在一分区内做成第一级的齿圈21。第一级的另外的太阳轮22以做成花键的端部区域从中央的柱壳形壳体件12中伸出。该另外的太阳轮22的齿部区域与一行星轮27啮合。行星轮27借助于一行星轮轴承28以可绕一旋转轴线旋转的方式支承在第一级20的行星架26的销轴24上。行星轮轴承28通过相应的固定圈向轴向固定。第一级20优选具有三个行星轮。
[0087] 图7、8和9详细示出第一级20的行星架26。第一级20的行星架26具有基体100，该基体优选做成盘形。这里盘形仅仅是指，基体100在一个平面内的延伸尺寸设计成很薄，亦即该基体在旋转轴线方向上的延伸尺寸小于在垂直于旋转轴线的平面内的延伸尺寸。
[0088] 在铸造过程后沿轴向方向从基体100伸出毛坯销轴。毛坯销轴的形式使得可以在基体上在不同位置处制造出用于行星轮的销轴。
[0089] 沿轴向观察方向，毛坯销轴优选具有一在相对于基体(突出)的凸台上的、在径向卵形加长的底面102。除了由铸造过程决定的、必要的拔模斜度外，毛坯销轴的形状做成具有底面102作为表面的柱体。毛坯销轴的悬伸端部的端面同样由于铸造过程而外凸地弯曲。
[0090] 由所述毛坯销轴可以以距行星减速器10的中心轴线的不同径向距离形成销轴24。优选通过切削方法，例如车削或铣削来由毛坯销轴制造销轴24。
优选在两个工步中以变小的直径由毛坯端轴切断加工出销轴24，由此脱离底面形状止挡面104。在销轴的直线端部区域上加工出固定槽105。在安装于固定槽105中的固定圈与止挡面104之间能以完全限定的方式安装用于行星轮27的行星轮轴承28的内圈。

但毛坏端轴也可以例如具有三角形底面，从而还能够沿圆周方向在不同的位置处制造销轴。

基体100优选做成带有中央圆形开口101的近似等腰的三角形。

优选在做成等腰三角形的盘片形基体100的每个角部形成一毛坯端轴。通过在铸件上的毛坯端轴的特别设计可以由相同的铸件制造出用于第一级20的不同传动比的行星架26，这是因为再另外的太阳轮22相同的情况下可以安装具有不同直径的行星轮27。

销轴24在基体100上的位置的可变性很大，以致于在销轴24距行星架26的中心旋转轴线的径向距离最小的情况下基体沿径向方向伸出销轴外的程度使得在基体周面（的直径距离）与销轴周面之间的距离大于等于销轴24的直径或至少大于销轴24的半径。

在各销轴24的径向距离最小的情况下，多余的基体100材料促使行星架26平稳运转。

在行星架26的一种替代实施方式中，直接在行星架26上浇铸成一输出轴。该输出轴优选做成空心轴。该空心轴在柱壳形的内表面中具有一盘旋形延伸的槽，如在另外的行星架40所示实施形式中那样。

在行星架26的制造方法方面，首先浇铸带有毛坯销轴的基体。然后，确定销轴24到行星架26的中心旋转轴线的径向距离，并相应地在毛坯销轴加工出销轴24。在此，首先以比销轴直径大的直径切除毛坯销轴材料，直至销轴26相对于基体的凸台的底面102。

接着以最终的直径加工出销轴，这时相对于底面102台阶形地形成止挡面104。将毛坯销轴的悬伸的端部切平面，优选在销轴26中加工出一做成盲孔或通孔的中心孔。

此外，在行星架26的由基体100包围并围成一与行星架26的旋转轴线同心的开口的柱形表面中加工、特别是铣削出内齿部。所述开口优选是心形的。替代的实施形式具有卵形或其他形状的开口，这样的开口使得能够与应该和行星轮连接的零件，例如第二级的太阳轮23形锁合地，无转动地连接。

如图1和图2所示，在输出侧在中央的柱壳形壳体件12中设有第二级30。在中央的柱壳形壳体件12的内表面中形成用于第二级30的齿圈31。第二级30的太阳轮23具有连贯制成的齿部，亦即不同齿部区域的齿相互对齐。第二级30的太阳轮23的连贯的齿部在第二级30的太阳轮23的中部区域36中通过一种退刀槽/沉割槽断开。

第二级30的太阳轮23的输入侧的端部区域在一分区35中具有一缩短的齿部，因此具有缩小的齿顶圆直径。第二级30的太阳轮23以这个分区35接合到第一级的行星架26中。与此第一级20的行星架26在其中央的圆形开口中具有相对应的齿部，因此，行星架26和太阳轮23形联接连接。通过齿面进行定心。在齿部之间的配合可以做成间隙配合、过渡配合或过盈配合。对于特别是无间隙的设计也可以是（自）切削连接。

通过在分区35中缩短的齿顶圆形成一轴向止挡38，行星架26以输出侧的端面靠在该轴向止挡上。

第二级30的太阳轮23以输出侧的端部区段通过太阳轮轴承33支承在第二级30的另外的行星架40中，该太阳轮轴承优选做成深沟球轴承。
该另外的行星架40或者如图1所示做成两侧壁式行星架，或者在另一示出的实施方式中与第一级20的行星架26相应地制成带有可变销轴的单侧壁式行星架。

在该另外的行星架40中，借助销轴轴承47在另外的销轴49上支承另外的行星轮41。该另外的销轴49保持在该另外的行星架40的侧壁中的缺口内。优选地，在该另外的销轴49和该另外的行星轮41之间设置两个双列滚柱轴承作为销轴轴承47。

该另外的行星架40在输入侧由一行星架轴承43支承在中央的柱壳形壳体件12的中间壁中。

该另外的行星架40在输出侧或者做成空心轴42，或者做成实心轴46。该空心轴42或实心轴46形成行星减速器10的与该另外的行星架40做成一体的输出轴。

图10表示带有做成空心轴42的输出轴的该另外的行星架40的局部剖视图。该空心轴42的内壁形成一柱形表面。在该内壁中加工出螺旋形槽39。

该空心轴内从输出侧起由缺口29构成，该缺口优选具有圆形的周壁。缺口29的直径从该另外的行星架40的输出侧向输入侧变小。

在每一个缺口29之间设置具有比相邻缺口29大的直径的、柱壳形的退刀槽25。缺口29和退刀槽25在该另外的行星架40中或者说在其输出轴中形成一盲孔。

图11表示最靠近输出侧的缺口29中加工螺旋形槽39。该螺旋形槽在输出侧在空心轴42的端面上的倒角37中引出。倒角37设置在端面的内棱边上。

在该空心轴中能插入一传动轴，通过该螺旋形槽为在空心轴中被传动轴封闭的空间通风。通过在空心轴旋转运动期间简单地移动刀具，可以特别简单、经济地在空心轴的内表面上加工出该螺旋形槽。

本发明具有螺旋形槽的空心轴42的实施形式可以在具有用于传动轴的盲孔形的接纳部的任何一种空心轴中实施。

另外的位于内部的缺口29用来吸收传动轴的弯矩。最靠近输出侧的缺口29用于和在最靠近输出侧的缺口29的区域中包围空心轴42的收缩盘44相结合传递弯矩。

通过螺旋形延伸的槽39在倒角37中的出口，即使在行星减速器10运行期间也保证通风。因此，该另外的行星架40的发热不会导致传动轴从空心轴42中压出。

如图1和图2所示，实心轴46或空心轴42的另一端部区段从输出侧盖18中伸出，并通过一输出轴轴承45支承在输出侧盖18中。在实心轴46或空心轴42与输出侧盖18之间，为密封而设置一轴密封圈70，优选是双轴密封圈。为了固定待驱动的装置，一收缩盘44至少部分地包围空心轴42的该另一端部区段。

为了避免损伤可在输出侧盖18上以不能相对转动的方式固定一柱壳形护罩48。柱壳形护罩48优选，特别是仅仅，由彼此螺纹连接的弯曲件制成。

图3和图4表示一种本发明的实施形式，其中在输出侧盖18上螺纹连接一L形支脚50。L形支脚具有近似环形的分段52和作为安放面或固定面的四边形框架54。环形分段52包括翻边部，四边形框架54固定在该翻边部上。此外，近似环形的分段52和四边形框架54通过一角形件56相互连接。角形件56的一端部区域穿过近似环形的分段52上的翻边部的四边形长孔58。这两个零件优选相互焊接，这便简化了L形支脚50的安装。

此外，图3和图4表示一连接在行星减速器10的输入侧上的圆柱齿轮减速器60，该圆柱齿轮减速器又连接在一马达80上。
[0121] 图5和图6表示具有作为前置减速器的锥齿轮减速器70的实施形式。
图2
图8
图9