
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2016/068999 Al
6 May 2016 (06.05.2016) W P O P C T

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
G06F 13/40 (2006.01) G06F 9/46 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

PCT/US20 14/063479 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,

(22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

3 1 October 2014 (3 1.10.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every

(71) Applicant: HEWLETT PACKARD ENTERPRISE DE¬ kind of regional protection available): ARIPO (BW, GH,

VELOPMENT LP [US/US]; 11445 Compaq Center Drive GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

West, Houston, TX 77070 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Inventors: CHEN, Yuan; 1501 Page Mill Rd., Palo Alto, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
California 94304-1 100 (US). TALWAR, Vanish; 1501 LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Page Mill Rd., Palo Alto, California 94304- 1100 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
FAROOQUI, Naila; 1501 Page Mill Rd., Palo Alto, Cali GW, KM, ML, MR, NE, SN, TD, TG).
fornia 94304-1 100 (US). ROY, Indrajit; 1501 Page Mill
Rd., Palo Alto, California 94304-1 100 (US). Declarations under Rule 4.17 :

— as to the identity of the inventor (Rule 4.1 7(Ϊ))
(74) Agents: PAGAR, Preetam B. et al; Hewlett Packard En

terprise, 3404 E. Harmony Road, Mail Stop 79, Fort Published:
Collins, CO 80528 (US). — with international search report (Art. 21(3))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: INTEGRATED HETEROGENEOUS PROCESSING UNITS

(57) Abstract: According to an example, an instruction to run a kernel of an

300 application on an apparatus having a first processing unit integrated with a
second processing unit may be received. In addition, an application profile
for the application at a runtime of the application kernel on the second pro -

RECEIVE AN INSTRUCTION TO RUN AN
cessing unit may be created, in which the application profile identifies an af

APPLICATION KERNEL
finity of the application kernel to be run on either the first processing unit or

302 the second processing unit, and identifies a characterization of an input data
set of the application. The application profile may also be stored in a data
store.

CREATE AN APPLICATION PROFILE FOR THE

APPLICATION

304

0 0 FIG. 3
©
v

o

o

INTEGRATED HETEROGENEOUS PROCESSING UNITS

BACKGROUND

[0001] An ever-increasing number of integrated central processing unit

(CPU) and graphics processing unit (GPU) platforms are being used in computing

systems. In integrated CPU-GPU platforms, a CPU and a GPU are typically

integrated onto a single die and share the same physical memory. A GPU may

include multiple processing elements that are suited for executing the same

instruction in parallel on different data streams and may thus be designed to be

particularly suited for graphics processing operations. A CPU may function as a

host or controlling processor and may be suited for types of processing

operations that may not benefit from parallel processing of instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Features of the present disclosure are illustrated by way of example

and not limited in the following figure(s), in which like numerals indicate like

elements, in which:

[0003] FIG. 1 is a simplified schematic diagram of an apparatus, in which

various aspects of the methods disclosed herein may be implemented, according

to an example of the present disclosure;

[0004] FIG. 2 is a simplified block diagram of the apparatus management

module depicted in FIG. 1, according to an example of the present disclosure;

[0005] FIGS. 3 and 5-7, respectively, depict flow diagrams of methods for

managing an apparatus having integrated heterogeneous processing units,

according to examples of the present disclosure;

[0006] FIG. 4 depicts a runtime resource management framework,

according to an example of the present disclosure; and

[0007] FIG. 8 is schematic representation of a computing device, which

may include the apparatus 100 depicted in FIG. 1, according to an example of the

present disclosure.

DETAILED DESCRIPTION

[0008] For simplicity and illustrative purposes, the present disclosure is

described by referring mainly to an example thereof. In the following description,

numerous specific details are set forth in order to provide a thorough

understanding of the present disclosure. It will be readily apparent however, that

the present disclosure may be practiced without limitation to these specific

details. In other instances, some methods and structures have not been

described in detail so as not to unnecessarily obscure the present disclosure. As

used herein, the terms "a" and "an" are intended to denote at least one of a

particular element, the term "includes" means includes but not limited to, the term

"including" means including but not limited to, and the term "based on" means

based at least in part on.

[0009] Disclosed herein are an apparatus having integrated

heterogeneous processing units, a method for managing the apparatus, and a

non-transitory computer-readable storage medium on which is stored machine

readable instructions for managing the apparatus. The apparatus may have a

first processing unit integrated with a second processing unit, in which the second

processing unit has different operating characteristics as compared with the first

processing unit. According to an example, the first processing unit is a central

processing unit (CPU) and the second processing unit is a graphics processing

unit (GPU). The apparatus may also include an apparatus management module

that is to create an application profile for an application.

[0010] The application profile may be created from information obtained

through dynamic instrumentation of application kernels of the application during

runtime of the application kernels. In this regard, the application profile may be

generated online and without having to access the source code of the application.

The dynamic instrumentation may be implemented for graph applications where

performance is dependent on the type of the graph. In addition, the overhead

associated with dynamic instrumentation of the application kernels may be

reduced through selective instrumentation, in which for instance, only a first few

iterations of the application kernels is instrumented.

[001 1] As used herein, graph applications may refer to graph analytics, in

which useful information may be extracted from graphs. Graphs may be used to

capture and represent relationships between people, organizations, devices, etc.

Examples of graphs may include social networks, large network systems, natural

language understanding systems, etc. For instance, the structure of a website

may be represented by a directed graph, in which the vertices represent web

pages and the edges represent links from one page to another. Graph analytics

may be used, for instance, to uncover insights about customers, products,

operations, etc.

[0012] According to an example, the application profile may identify an

affinity of an application kernel of the application to be processed on either the

first processing unit (e.g., a CPU) or the second processing unit (e.g., a GPU) and

may identify a characterization of an input data set of the application. The affinity

of the application kernel may depend upon both the application kernel type and

the input data set. The application profile may also identify a characterization of

the application's memory contention. In one example, the application profile may

be used to determine which of the first processing unit and the second processing

unit is to process an application kernel of a subsequently received processing

request with a different input data set based, for instance, on the affinity of the

application kernel identified in the application profile. By processing the

application kernels in this manner, an increase in overall performance of

applications on the first and second processing units may be achieved. In

another example, an application kernel may have different GPU implementations

and an application profile may identify which kernel implementation is to be used

to improve the overall performance of the applications run on the GPU.

[0013] In another example, a plurality of application profiles for a plurality

of applications may be used to schedule processing of multiple applications on

the apparatus. For instance, the multiple applications may be scheduled for

processing on the first and second processing units such that the multiple

applications are processed on the unit to which the applications have greater

affinities as identified by the application profiles. In addition, the multiple

applications may be scheduled such that memory contention in the performance

of the multiple applications is minimized. By scheduling the multiple applications

in this manner, an increase in energy efficiency and performance of the first and

second processing units, which may respectively be a CPU integrated with a

GPU, may be achieved. For instance, the multiple applications may be

processed using relatively less energy and in a relatively less amount of time as

compared with other scheduling techniques.

[0014] With reference first to FIG. 1, there is shown a simplified diagram of

an apparatus 100, on which various aspects of the methods disclosed herein may

be implemented, according to an example. It should be understood that the

apparatus 100 depicted in FIG. 1 may include additional elements and that some

of the elements depicted therein may be removed and/or modified without

departing from a scope of the apparatus 100. For instance, the apparatus 100

may include an interface to enable data to be communicated into and out of the

apparatus 100.

[0015] As shown in FIG. 1, the apparatus 100 may include a first

processing unit 110, a second processing unit 120, a memory 130, a bus 140,

and an apparatus management module 150. The apparatus 100 may also

include a die 102 or equivalently, a chip, a circuit, etc., on which the first

processing unit 110, the second processing unit 120, the memory 130, the bus

140, and the apparatus management module 150 are integrated. Generally

speaking, the second processing unit 120 has different operating characteristics

as compared with the first processing unit 110, and thus, the apparatus 100 may

be construed as a heterogeneous apparatus. The different operating

characteristics may be, for instance, the efficiency with which the processing units

110, 120 process multiple instructions, the speeds at which the processing units

110, 120 process different types of input data, etc. By way of example, the first

processing unit 110 may have operating characteristics that enable the first

processing unit 110 to be better suited for processing applications that exhibit

larger regions of serialized code or irregular control-flow. In this example, the

second processing unit 120 may have operating characteristics that enable the

second processing unit 120 to be better suited for processing applications that

feature minimal synchronization, uniform control flow, and regular memory

access patterns.

[0016] As discussed in greater detail below, processing of an application

(e.g., an application kernel of the application) on one of the first processing unit

110 and the second processing unit 120 as compared with the other one of the

units 110, 120 may result in different performance improvements. That is, the

costs, e.g., efficiency, time-savings, power-savings, etc., of processing an

application kernel may be affected by the application kernel being processed by

the first processing unit 110 or the second processing unit 120. In addition, the

benefit that an application derives from the first processing unit 110 or the second

processing unit 120 may depend on runtime characteristics, such as input data

sets, control-flow irregularity, and memory bandwidth requirements.

[0017] According to an example, the first processing unit 110 is a central

processing unit (CPU) and the second processing unit 120 is a graphics

processing unit (GPU). In other examples, the first processing unit 110 is a CPU

and the second processing unit 120 is another CPU that has different operating

characteristics from the first processing unit 110. In other examples, the first

processing unit 110 and the second processing unit 120 are both GPUs but have

different operating characteristics. In other examples, the first processing unit

110 is a CPU and the second processing unit 120 is another processing unit other

than CPU and GPU, such as a field-programmable gate array (FGPA). In yet

other examples, the apparatus 100 may include multiple first processing units 110

and/or multiple second processing units 120. In still further examples, the first

processing unit 110 and/or the second processing unit 120 may include multiple

cores.

[0018] In an example in which the first processing unit 110 is a CPU, the

first processing unit 110 may execute control logic that controls the operation of

the apparatus 100. The first processing unit 110 may include a cache memory

(not shown) that may be used to temporarily hold instructions and/or parameter

values during the execution of an application. For example, the cache memory

may be used to temporarily hold one or more control logic instructions, values of

variables, values of constant parameters, etc., during the execution of control

logic instructions on the first processing unit 110 . In addition, the first processing

unit 110 may include multiple cores that are optimized for sequential serial

processing.

[0019] In an example in which the second processing unit 120 is a GPU,

the second processing unit 120 may execute specialized code for selected

functions. In this example, the second processing unit 120 may include a

massively parallel architecture that may include thousands of smaller, more

efficient cores than a CPU and may include specialized vector instruction

processing units, for instance, that may include a Streaming Single Instruction,

Multiple Data Extensions (SSE) unit. The second processing unit 120 may be

preferable over the first processing unit 110 for the execution of data-parallel

code. The second processing unit 120 may include a cache memory and a

plurality of processing elements (not shown). Each processing element may be

associated with registers and/or private memory and may include one or more of

a scalar and vector floating-point units. The processing elements may also

include special purpose units such as inverse-square root units and sine/cosine

units.

[0020] The memory 130 may include non-persistent memory such as

dynamic random access memory (DRAM). The memory 130 may hold

processing logic instructions, constant values, and variable values during

execution of portions of applications or other processing logic. By way of

example, the control logic, as well as other processing logic, of the apparatus

management module 150 may reside in the memory 130 during execution by the

first processing unit 110 of the apparatus management module 150.

[0021] The bus 140 generally interconnects the components of the

apparatus 100 to each other. In an example in which the first processing unit 110

is a CPU and the second processing unit 120 is a GPU, the bus 140 may be a

Radeon™ memory bus (RMB), a fusion compute link (FCL), or the like. As shown

in FIG. 1, the bus 140 is an on-chip bus that is integrated onto the die 102. In one

regard, therefore, the first processing unit 110 and the second processing unit

120 may share the memory 130 through the bus 140.

[0022] The apparatus management module 150 may perform various

management functions with regard to the first processing unit 110 and the second

processing unit 120. For instance, the apparatus management module 150 may

create application profiles of applications, in which the application profiles identify

affinities of the applications to be run on the second processing unit 120 and

identify characterizations of input data sets of the applications. The affinities of

the applications and the characterizations of input data sets are discussed in

detail below.

[0023] The apparatus management module 150 may store the created

application profiles in a data store for future reference. The apparatus

management module 150 may also determine, based upon the application

profiles, whether subsequently received applications are to be run on the first

processing unit 110 or the second processing unit 120. The apparatus

management module 150 may further determine and execute, based upon the

application profiles, a kernel implementation for an application that may result in

an improvement of an overall performance of the application. The apparatus

management module 150 may still further determine a schedule for multiple

applications to be run on the first processing unit 110 and the second processing

unit 120 that, for instance, minimizes the amount of power required to execute the

multiple applications. Particularly, for example, the apparatus management

module 150 may schedule compute kernels (also called application kernels) to be

executed in the first processing unit 110 and the second processing unit 120. A

compute kernel may refer to a kernel that may be executed in both of the first

processing unit 110 and the second processing unit 120 and may be defined as a

function containing instructions declared in a program and executed on data

items using a processor.

[0024] The apparatus management module 150 may be implemented

using software, firmware, hardware, or any combination thereof. When

implemented in software, the apparatus management module 150 may be a set

of machine readable instructions that when compiled and executed reside in the

memory 130. When in source code form and/or compiled executable form, the

apparatus management module 150 may be stored in a persistent memory (not

shown) or other computer readable storage medium. When implemented in

hardware, the apparatus management module 150 may be a circuit component or

other hardware device that is positioned on the die 102 or externally to the die

102.

[0025] Although the apparatus management module 150 has been

depicted as being integrated on the die 102 of the apparatus 100, it should be

understood that in other examples, the apparatus management module 150 may

be software, firmware, hardware, or any combination thereof that is external to

the apparatus 100.

[0026] Turning now to FIG. 2 , there is shown a simplified block diagram

200 of the apparatus management module 150 depicted in FIG. 1, according to

an example. It should be understood that the apparatus management module

150 depicted in FIG. 2 may include additional elements and that some of the

elements depicted therein may be removed and/or modified without departing

from a scope of the apparatus management module 150.

[0027] As shown in FIG. 2 , the apparatus management module 150 may

include an instruction receiving module 210, an application profile availability

determining module 212, an application profile creating module 214, an

application profile storing module 216, an application profile identifying module

218, an application mapping module 220, and an application scheduling module

222. As discussed above, the first processing unit 110 may execute or otherwise

implement the apparatus management module 150. In a similar regard, the first

processing unit 110 may execute or otherwise implement the modules 2 10-222 of

the apparatus management module 150.

[0028] As also discussed above, the apparatus management module 150

may be a set of machine readable instructions that is stored on a hardware

device. In an example, the apparatus management module 150 is the hardware

device. The hardware device may be, for instance, a volatile or non-volatile

memory, such as dynamic random access memory (DRAM), electrically erasable

programmable read-only memory (EEPROM), magnetoresistive random access

memory (MRAM), memristor, flash memory, floppy disk, a compact disc read only

memory (CD-ROM), a digital video disc read only memory (DVD-ROM), or other

optical or magnetic media, and the like, on which software may be stored. In this

example, the modules 210-222 may be software modules, e.g., sets of machine

readable instructions, stored in the hardware device.

[0029] In another example, the apparatus management module 150 may

be a hardware component, such as a chip component, an integrated circuit

component, etc., and the modules 210-222 may be hardware modules on the

hardware component. In a further example, the modules 210-222 may be a

combination of software and hardware modules.

[0030] The data store 230 may be used to store various information related

to the operation of and/or used by during implementation of the apparatus

management module 150, and particularly, the modules 210-222. For instance,

the application profile storing module 216 may store application profiles of

applications in the data store 230. The data store 230 may be volatile and/or

non-volatile memory, such as DRAM, EEPROM, MRAM, phase change RAM

(PCRAM), memristor, flash memory, and the like. In addition, or alternatively, the

data store 230 may be a device that may read from and write to a removable

media, such as, a floppy disk, a CD-ROM, a DVD-ROM, or other optical or

magnetic media.

[0031] The data store 230 may be integrated on the die 102 of the

apparatus 100 or may be external to the apparatus 100. The data store 230 may

also be accessible by the apparatus management module 150 while not being

accessible by the first processing unit 110 or the second processing unit 120.

[0032] Various manners in which the apparatus management module 150

in general, and the modules 210-222 in particular, may be implemented are

discussed in greater detail with respect to the methods 300 and 500-700

respectively depicted in FIGS. 3 and 5-7. Particularly, FIGS. 3 and 5-7

respectively depict flow diagrams of methods 300 and 400-700 for managing an

apparatus 100 having a first processing unit 110 integrated with a second

processing unit 120, according to multiple examples. It should be apparent to

those of ordinary skill in the art that the methods 300 and 400 may represent

generalized illustrations and that other operations may be added or existing

operations may be removed, modified, or rearranged without departing from the

scopes of the methods 300 and 500-700. Generally speaking, the apparatus

management module 150 depicted in FIG. 2 may implement the methods 300

and 500-700 through implementation of at least some of the modules 210-222.

[0033] The descriptions of the methods 300, 500, 600, and 700 are made

with reference to the apparatus 100 illustrated in FIG. 1 and the apparatus

management module 150 illustrated in FIGS. 1 and 2 for purposes of illustration.

It should, however, be clearly understood that apparatuses having other

configurations may be implemented to perform the methods 300, 500, 600,

and700 without departing from the scopes of the methods 300, 500, 600, and

700.

[0034] According to an example, the first processing unit 110, which may

be a CPU, may execute the apparatus management module 150 to implement

the methods 300, 500, 600, and 700. In other examples, a processing unit

external to the apparatus 100 may execute the apparatus management module

150 to implement the methods 300, 500, 600, and 700.

[0035] With reference first to the method 300 depicted in FIG. 3 , at block

302, an instruction to run an application kernel of an application on an apparatus

100 having a first processing unit 110 integrated with a second processing unit

120 may be received. For instance, following implementation of the apparatus

management module 150 in any of the manners discussed above, the instruction

receiving module 210 may receive an instruction to run an application on one of

the first processing unit 110 and the second processing unit 120. In another

example, receipt of the instruction to run the application kernel may trigger

implementation of the apparatus management module 150. In any regard, the

instruction receiving module 2 10 may receive the instruction to run the application

kernel.

[0036] At block 304, an application profile for the application may be

created, in which the application profile identifies an affinity of the application to

be run on the second processing unit 120 and identifies a characterization of an

input data set of the application. For instance, the application profile creating

module 214 may create the application profile for the application. Particularly, the

apparatus management module 150 may use a runtime resource management

framework that uses dynamic instrumentation and online workload

characterization to create the application profile. As discussed below, the

application profile may be used to optimize and schedule execution of application

kernels on either or both of the first processing unit 110 and the second

processing unit 120.

[0037] An example of the runtime resource management framework 400 is

depicted in FIG. 4 . As shown in that figure, an application 402 may interface with

a runtime of the framework 400 through an application programming interface

(API) 404. The API 404 may leverage the OpenCL runtime to provide

cross-platform support for executing computations across the first processing unit

110 and the second processing unit 120. For instance, the framework 400 may

maintain a single OpenCL context for both the first processing unit 110 and the

second processing unit 120, along with a separate command-queue for each

processing unit 110, 120. The API 404 may allow end-users to register their

applications with the runtime, which may give the runtime complete control over

dispatching work and transferring data between the first processing unit 110 and

the second processing unit 120 without requiring any programmer intervention or

even rebuild of application binaries.

[0038] The processing unit scheduler 406 may invoke the instrumentor

410 to instrument the application 402 during runtime. The instrumentor 410 may

embed instrumentation code into the application execution path at runtime to

measure a plurality of metrics, which may be customized and/or user-defined.

The instrumentation code may be embedded to run transparently to the

application during runtime and may not require access to the application's source

code. According to an example, the instrumentor 4 10 may selectively instrument

the application by instrumenting only a subset of the wavefronts and specific

basic blocks in a kernel. The selective instrumentation may be implemented, for

instance, because dynamic instrumentation may have a relatively high overhead

that may strongly depend on the capabilities of the underlying hardware. For

instance, the characteristics of many data mining kernels, and their input data,

may be approximated by selectively instrumenting only the first few iterations of

the kernels.

[0039] According to an example, the instrumentor 410 may dynamically

instrument, e.g., selectively instrument, the application 402, e.g., the OpenCL

kernel of the application, to determine various metrics associated with the

application. In addition, the instrumentor 4 10 may characterize the affinity of the

application to the second processing unit 120 based upon the determined

metrics. By way of example in which the second processing unit 120 is a GPU,

the instrumentor 410 may use the metrics determined from the instrumentation to

characterize the application's 402 effectiveness in using the GPU single

instruction, multiple data (SIMD) execution model, in which the affinity of the

application to the GPU may be based upon the characterized affinity. The

instrumentor 410 may also use the metrics determined from the instrumentation

to classify the application 402 as being either memory-bound or compute-bound.

[0040] According to an example, the instrumentor 410 may characterize

the affinity of the application to be run on the second processing unit 120 and

memory-boundedness through use of multiple instrumentation metrics. For

instance, the instrumentor 410 may use an activity factor (AF), which

characterizes how well an application is utilizing a processing unit by measuring

the degree of control-flow irregularity inherent in a given application's execution

run, to determine the affinity of the application to be run on the processing unit.

By way of example, the AF may characterize how well the application is utilizing

the GPU SIMD parallel execution model. When threads within a wavefront

diverge due to a data-dependent control flow statement, the wavefront serially

executes each branch path taken, disabling threads that are not on that path.

Threads that are not disabled on a given path are considered to be active.

Because control-flow irregularity is often data-dependent, the AF for an

application may vary for distinct inputs. The AF of the application 402 may be

defined as:

._ , executed instructions by all active threads
Equation (1) : AF

executed instructions by all launched threads

[0041] A relatively high AF may generally indicate a uniform or no

control-flow irregularity, which may be suited for GPU execution, whereas a

relatively low AF may be indicative of a higher degree of control-flow irregularity,

which may be better suited for CPU execution. For most data-intensive

applications, GPU threads have a one-to-one mapping to the number of input

elements that need to be processed. In these cases, the AF may gauge the

degree of workload imbalance exhibited by a given application. For instance, the

AF may characterize a graph application's regularity. In one regard, the AF of the

application may thus be used to characterize the input data of the application as

either being regular or irregular.

[0042] According to an example, the application 402 may be deemed to

have an affinity to be run on the second processing unit 120 versus being run on

the first processing unit 110 if the AF of the application 402 exceeds a

predetermined threshold. That is, the application 402 may be deemed to have an

affinity to be run on the second processing unit 120 if the AF exceeds the

predetermined threshold, otherwise, the application 402 may be deemed to have

an affinity to be run on the first processing unit 110. The value of the

predetermined threshold may be determined through testing and may vary

depending upon the characteristics of the first processing unit 110 and the

second processing unit 120. By way of particular example, the predetermined

threshold is approximately 20%. In another example, the application 402 may be

deemed to have an affinity to run on the second processing unit 120 if a variance

in the AF exceeds a predetermined threshold value.

[0043] The instrumentor 410 may use a memory intensity (Ml) metric

determination to characterize the memory-boundedness of the application 402.

The Ml of an application 402 generally characterizes the extent to which the

application 402 is memory-bound versus compute-bound. The Ml of the

application 402 may be defined as:

._ , . , dynamic global memory instructions
Equation (2): MI = — - .

total dynamic instructions

[0044] Global memory instructions may generally refer to read/write

accesses to the global memory subsystem of the second processing unit 120,

e.g., the GPU's global memory subsystem. The global memory subsystem may

reside in the first processing unit 110, which may be a CPU in various examples.

According to an example, the Ml metric may be used to determine which two

applications should or should not be run concurrently on a CPU and a GPU to

avoid memory contention. A relatively high value of Ml may imply that an

application is memory-bound, while a low value of Ml may indicate that an

application is compute-bound. An application may be deemed to be

memory-bound if the Ml of the application exceeds a predefined threshold. That

is, the application 402 may be deemed to be memory-bound if the Ml exceeds the

predefined threshold, otherwise, the application 402 may be deemed to be

compute-bound. The value of the predefined threshold may be determined

through testing and may vary depending upon the characteristics of the first

processing unit 110 and the second processing unit 120. By way of particular

example, the predefined threshold is between approximately 5% to approximately

10%.

[0045] According to an example, the contention of an application 402,

which may be defined as the level to which the application 402 contends with

another application being run concurrently in the apparatus 100, may be

determined based upon the Ml metric value of the application 402. The

correlation between the contention of the application 402 and the Ml metric value

of the application 402 may be determined through a measurement of the

slowdown introduced by different types of workloads concurrently running on the

first processing unit 110 and the second processing unit 120. For instance,

applications 402 with Mi's that exceed the predefined threshold may cause a

higher level of slowdown when concurrently run than those applications with

lower Mi's.

[0046] According to an example, the application profile creating module

214 may create the application profile for the application 402 based upon the

information obtained by the instrumentor 410 in dynamically instrumenting the

application 402. Particularly, the application profile for the application 402 may

include an identification of the affinity of the application kernel of the application

402, with a particular input data set, to be run on the second processing unit 120

or the first processing unit 110 . The application profile for the application 402 may

also include an identification of a characterization of input data set of the

application 402. For instance, the AF of the application 402 may be used to

characterize an input data set for certain types of applications. By way of

example, the regularity of an input data set for the application 402 may be defined

based on variance in activity factors. In this regard, the input data set of the

application 402 may be defined as being regular or irregular depending upon the

variance in the AF of the application 402 over multiple iterations. Regular input

data sets may be those data sets that do not vary substantially over time and are

input-independent. Irregular input data sets may be those data sets that are

input-dependent and time-varying such as graph applications. For instance, an

irregular graph may be construed as a graph that has a relatively large skew in

the distribution of edges across nodes in the graph. Graph applications may

include applications that implement graph-based algorithms such as breadth first

search (BFS), PageRank, etc.

[0047] As application characteristics may depend on the input data set, an

application profile may be generated for each distinct pair of application kernel

and input data set. In other words, if an application kernel is executed with N

distinct input data sets, N distinct application profiles for that application kernel

may be generated. Such application profiles may be created because

performance of an application 402 by a processing unit 110 , 120 may be sensitive

to input data sets and thus, the application profiles of the application 402 may

vary depending upon whether the input data set is regular or irregular. For

instance, one application profile for the application 402 having an input data set

that is regular may indicate a different affinity for the application 402 to be run on

the second processing unit 120 as compared with another application profile for

the same application 402 having another input data set that is irregular.

[0048] The application profile for the application 402 may further include an

identification of whether the application kernels are characterized as

memory-bound or compute-bound, for instance, based upon the Ml metrics of the

application kernels. The memory boundedness of the application kernels may

define the risk of memory contention associated with the application kernels as

discussed above.

[0049] At block 306, the created application profile or application profiles

for the application 402 may be stored in a data store. For instance, the

application profile storing module 2 16 may store the application profile or

application profiles for the application 402 in the data store 230, which may be

equivalent to the profile store 412 in FIG. 4 . According to an example, and as

discussed below, the kernel selector 408 may access the application profiles

stored in the profile store 412 to determine which of the kernel implementations in

the application profiles is to be executed for an application kernel.

[0050] Turning now to the method 500 depicted in FIG. 5 , at block 502, an

instruction to run an application kernel of an application on an apparatus 100

having a first processing unit 110 integrated with a second processing unit 120

may be received. For instance, following implementation of the apparatus

management module 150 in any of the manners discussed above, the instruction

receiving module 210 may receive an instruction to run an application on one of

the first processing unit 110 and the second processing unit 120. In another

example, receipt of the instruction to run the application kernel may trigger

implementation of the application apparatus module 150. In any regard, the

instruction receiving module 2 10 may receive the instruction to run the application

kernel.

[0051] At block 504, a determination may be made as to whether a

previously created application profile for the application is available. For

instance, the application profile availability determining module 212 may

determine whether an application profile for the application is available on the

data store 230. The application profile for the application may be stored on the

data store 230, for instance, if during a previous iteration, the application profile

was created for the application and stored in the data store 230.

[0052] In response to a determination that the application profile for the

application is not available, at block 506, an application profile for the application

may be created as discussed above with respect to block 304. The application

kernel of the application may be run on the second processing unit 120 to create

the application profile at block 304. In addition, at block 508, the created

application profile may be stored in the data store 230 as discussed above with

respect to block 306.

[0053] However, at block 504, in response to a determination that the

application profile for the application is available, a determination may be made at

block 5 10 as to whether the application kernel are to be run on the first processing

unit 110 or the second processing unit 120. For instance, the application

scheduling module 222 may determine whether the application kernel has an

affinity to be run on the second processing unit 120 or has an affinity to be run on

the first processing unit 110 . As discussed above, the application profile may

indicate the affinity of the application kernel based upon the calculated activity

factor of the application kernel. That is, for instance, if the activity factor of the

application kernel exceeds a predetermined threshold, the application kernel may

be identified as having an affinity to be run on the second processing unit 120.

Otherwise, the application kernel may be identified as having an affinity to be run

on the first processing unit 110 .

[0054] In response to the application kernel having an affinity to be run on

the first processing unit 110, the application kernel may be mapped to the first

processing unit 110, as indicated at block 512. Additionally, in response to the

application kernel having an affinity to be run on the second processing unit 120,

the application kernel may be mapped to the second processing unit 120. For

instance, the application mapping module 220 may implement the mapping to

cause the application kernel to be run on the selected one of the first processing

unit 110 and the second processing unit 120.

[0055] According to an example, at block 502, an input data set identifier of

the application may also be identified. The instruction receiving module 2 10 may

identify the input data set identifier of the application from, for instance, a

determination of the application corresponding to the application kernels. That is,

for instance, the instruction receiving module 210 may determine that the

application is a graph application and that the input data set is a set of data that

the graph application is to access. By way of particular example, the graph

application may be a search engine and the input data set may be the set of data

upon which the search engine performs a search. In this example, the input data

set identifier may identify the actual data set that is to be accessed during runtime

of the application kernels. The input data set identifier may additionally or

alternatively identify a characteristic of the input data set, such as whether the

input data set is regular or irregular.

[0056] In this example, a determination may be made at block 504 as to

whether a previously created application profile of the application that includes

the application kernel and the input data set identifier is available. For instance,

the application profile identifying module 218 may scan through the application

profiles stored in the data store 230 to determine whether such an application

profile exists. In response to a determination that such a profile does not exist, an

application profile for the application that includes the application kernel and the

input data set identifier may be created at block 506 and stored at block 508. In

one regard, an application profile for the application may be available, but the

application profile may not include the correct input data set identifier. For

instance, the available application profile for the application may include the

application kernel, but may be for a different type of input data set. As discussed

above, a plurality of application profiles for an application may be created and

stored, such that the application profiles are directed to different application

kernel and input data set identifier pairs.

[0057] However, if an application profile for the application that includes

the application kernel and the input data set identifier is determined to be

available, blocks 510-514 may be implemented to map the application kernel to

the first processing unit 110 or the second processing unit 120 based on the

application profiles.

[0058] According to an example, at block 510, the application scheduling

module 222 may determine that an application kernel with some data input sets

have an affinity to be run on the first processing unit 110 and that the application

kernel with other input data sets have an affinity to be run on the second

processing unit 120 based upon the information contained in the application

profiles. In this example, the application profiles for the application may indicate

that, for instance, the activity factors for some application kernel and input data

set pairs exceed a predetermined threshold and that the application kernels in

those application kernel and input data set pairs have affinities to be run on the

second processing unit 120. In addition, the application profiles may indicate that

the activity factors for other application kernel and input data set pairs fall below

the predetermined threshold and that the application kernels in those application

kernel and input data set pairs have affinities to be run on the first processing unit

110. In this example, the application mapping module 220 may map the

application kernel with some input data sets to the first processing unit 110 at

block 512 and the application kernel with other data sets to the second

processing unit 120 at block 514.

[0059] Turning now to FIG. 6 , at block 602, an instruction to run an

application kernel of an application on an apparatus 100 having a first processing

unit 110 integrated with a second processing unit 120 may be received. Block

602 may be similar to block 502 discussed above.

[0060] At block 604, an input data set identifier of the application may be

identified. The instruction receiving module 210 may identify the input data set

identifier of the application from, for instance, a determination of the application

corresponding to the application kernel as discussed above with respect to FIG.

5 .

[0061] At block 606, a determination may be made that the application

corresponds to a plurality of previously created application profiles. For instance,

the application profile identifying module 218 may determine that a plurality of

application profiles for the application have been previously created and stored in

the data store 230. As discussed above, a plurality of application profiles for an

application may be created that include different application kernel and input data

set identifier combinations. A plurality of application profiles for the application

may be created because different input data sets may result in the application

kernel having different affinities to be run on the second processing unit 120. In

addition, the plurality of application profiles may identify which kernel

implementation is best suited for execution of the application.

[0062] The kernel implementations of a processing unit may be different

algorithms that the processing unit may use in running an application kernel. As

such, for each application kernel, there may be multiple, alternative kernel

implementations. In addition, use of the different kernel implementations on the

same application kernel may result in different performance characteristics. That

is, use of one kernel implementation for an application kernel may result in a

faster performance as compared with the use of another kernel implementation.

A particular example is provided for a BFS application for which there are two

kernel implementations algorithm 1 (ALG1) and algorithm 2 (ALG2). In this

example, ALG1 uses a hierarchical queue to reduce the overheads associated

with a single, global task queue for the entire second processing unit 120. ALG1

may offer substantial performance improvements for regular graphs. In addition,

ALG2 uses a warp-centric programming method to address workload imbalance,

characterized as thread divergence in GPU programming. ALG2 may thus have

better performance than ALG1 for irregular graphs, which may be defined as

graphs that have a large skew in the distribution of edges across its nodes.

[0063] At block 608, the kernel implementation of the previously created

application profile having an input data set identifier that is similar to the input data

set identifier of the application may be selected. For instance, the application

mapping module 220 may select the application profile having the input data set

identifier that is similar to the input data set identifier of the application as

corresponding to the application. The kernel selector 408 in the framework 400

depicted in FIG. 4 may equivalently be construed as the application mapping

module 220.

[0064] At block 610, the selected kernel implementation may be executed.

For instance, the application scheduling module 222 may implement the selected

kernel implementation to execute the application kernel in the second processing

unit 120.

[0065] Turning now to FIG. 7 , at block 702, instructions to run application

kernels of multiple applications on an apparatus 100 having a first processing unit

110 and a second processing unit 120 may be received. For instance, following

implementation of the apparatus management module 150 in any of the manners

discussed above, the instruction receiving module 210 may receive the

instructions to run the application kernels of the multiple applications on the first

processing unit 110 and the second processing unit 120. In another example,

receipt of the instruction to run the application kernels may trigger implementation

of the application apparatus module 150. In any regard, the instruction receiving

module 210 may receive the instructions to run the application kernels.

[0066] At block 704, processing of the application kernels of the multiple

applications on the first processing unit 110 and the second processing unit 120

based upon the affinities of the multiple application kernels identified in the

application profiles of the multiple applications while minimizing memory

contention among the multiple applications. For instance, the application

scheduling module 222 may schedule processing of the application kernels of the

multiple applications in a manner that is affinity and contention aware based upon

the metrics information contained in the application profiles of the applications.

Thus, for instance, the method 700 may be implemented following the creation

and storage of the application profiles of the multiple applications. However, if an

application does not have a corresponding application profile or an application

profile for the application is not available, an application profile for the application

may be created and stored as discussed above.

[0067] According to an example, the application scheduling module 222

may schedule processing of the application kernels of the multiple applications

such that both the first processing unit 110 and the second processing unit 120

are leveraged to maximize system throughput. For instance, the application

scheduling module 222 may schedule processing of the application kernels of the

multiple applications such that applications are concurrently run on the first

processing unit 110 and the second processing unit 120 with minimal idle time.

The processing unit scheduler 406 in the framework 400 depicted in FIG. 4 may

equivalently be construed as the application scheduling module 222.

[0068] According to an example, each of the first processing unit 110 and

the second processing unit 120 has a queue for processing tasks (application

kernels). When a processing unit 110, 120 finishes a task, the application

scheduling module 222 may select a next task for the processing unit 110, 120 in

the following manner. The application scheduling module 222 (processing unit

scheduler 406) may select the task that has affinity towards the processing unit

110, 120 and exhibits the least contention with the task that is currently running

on the other processing unit 110 , 120. In other words, the application scheduling

module 222 (processing unit scheduler 406) may attempt to schedule tasks on

the processing unit 110, 120 on which the tasks will run well, while avoiding

co-scheduling two memory-bound tasks. The application scheduling module 222

(processing unit scheduler 406) may use a window and aging threshold to

prevent starvation and reduce turnaround time.

[0069] The next task may be selected from a fixed size window that

contains tasks from the beginning of the queue. A large window size may

improve the possibility of finding two least-contending tasks as it gives the

application scheduling module 222 (processing unit scheduler 406) more

choices. A small window size may limit the amount of tasks executed out-of-order

to improve fairness. Additionally, if a task is not scheduled according to its

position in the queue as many times as the aging threshold, the application

scheduling module 222 (processing unit scheduler 406) may schedule the task

next time on the processing unit 110 , 120 to which the task has an affinity, even if

there is a potential contention.

[0070] Some or all of the operations set forth in the methods 300 and

500-700 may be contained as utilities, programs, or subprograms, in any desired

computer accessible medium. In addition, the methods 300 and 500-700 may be

embodied by computer programs, which may exist in a variety of forms both

active and inactive. For example, they may exist as machine readable

instructions, including source code, object code, executable code or other

formats. Any of the above may be embodied on a non-transitory

computer-readable storage medium.

[0071] Examples of non-transitory computer-readable storage media

include computer system RAM, ROM, EPROM, EEPROM, and magnetic or

optical disks or tapes. It is therefore to be understood that any electronic device

capable of executing the above-described functions may perform those functions

enumerated above.

[0072] Turning now to FIG. 8 , there is shown a schematic representation of

a computing device 800, which may include the apparatus 100 depicted in FIG. 1,

according to an example. The computing device 800 may include a first

processing unit 802, a second processing unit 803, a input/output interface 804, a

network interface 808, such as a Local Area Network LAN, a wireless 802.1 1x

LAN, a 3G mobile WAN or a WiMax WAN; and a computer-readable medium 8 10 .

Each of these components may be operatively coupled to a bus 812. For

example, the bus 812 may be an EISA, a PCI, a USB, a FireWire, a NuBus, or a

PDS. The first processing unit 802 and the second processing unit 803 may

respectively be equivalent to the first processing unit 110 and the second

processing unit 120 depicted in FIG. 1.

[0073] The computer-readable medium 810 may be any suitable medium

that participates in providing instructions to the first processing unit 802 and the

second processing unit 803 for execution. For example, the computer-readable

medium 810 may be non-volatile media, such as an optical or a magnetic disk;

volatile media, such as memory. The computer-readable medium 810 may also

store modules 210-222 of the apparatus management module 150 depicted in

FIG. 2 . In this regard, the machine readable instructions 814 may include an

instruction receiving module 210, an application profile availability determining

module 212, an application profile creating module 214, an application profile

storing module 216, an application profile identifying module 218, an application

mapping module 220, and an application scheduling module 222.

[0074] Although described specifically throughout the entirety of the instant

disclosure, representative examples of the present disclosure have utility over a

wide range of applications, and the above discussion is not intended and should

not be construed to be limiting, but is offered as an illustrative discussion of

aspects of the disclosure.

[0075] What has been described and illustrated herein is an example of the

disclosure along with some of its variations. The terms, descriptions and figures

used herein are set forth by way of illustration only and are not meant as

limitations. Many variations are possible within the spirit and scope of the

disclosure, which is intended to be defined by the following claims - and their

equivalents - in which all terms are meant in their broadest reasonable sense

unless otherwise indicated.

What is claimed is:

1. A method for managing an apparatus having integrated heterogeneous

processing units, said method comprising:

receiving an instruction to run a kernel of an application on the apparatus,

wherein the apparatus has a first processing unit integrated with a second

processing unit, wherein the second processing unit has different operating

characteristics as compared with the first processing unit;

creating an application profile for the application at a runtime of the

application kernel on the second processing unit, wherein the application profile

identifies an affinity of the application kernel to be run on either the first

processing unit or the second processing unit and identifies a characterization of

an input data set of the application; and

storing the application profile for the application in a data store.

2 . The method according to claim 1, wherein creating the application profile

comprises:

dynamically instrumenting the application at a runtime of the application

kernel in the second processing unit to determine the affinity of the application

kernel to the second processing unit and an extent to which the application kernel

is memory-bound versus being compute bound.

3 . The method according to claim 2 , wherein dynamically instrumenting the

application further comprises selectively instrumenting the application to reduce

overhead associated with the dynamic instrumentation.

4 . The method according to claim 2 , wherein dynamically instrumenting the

application results in a gathering of values pertaining to a number of instructions

executed and memory accesses performed, the method further comprising:

determining the affinity of the application kernel based upon a comparison

of the gathered values or a variance in the gathered values with predetermined

threshold values.

5 . The method according to claim 1, further comprising:

determining whether a previously created application profile for the

application is available; and

wherein creating the application profile for the application further

comprises creating the application profile in response to a determination that a

previously created application profile for the application is not available.

6 . The method according to claim 1, further comprising:

receiving instructions to run an application kernel of a subsequent

application;

identifying an input data set identifier of the subsequent application;

determining whether a previously created application profile for the

subsequent application that includes the application kernel and the input data set

identifier is available; and

in response to a determination that a previously created application profile

for the subsequent application that includes the application kernel and the input

data set identifier is not available, creating an application profile for the

subsequent application that identifies the application kernel and the input data set

identifier.

7 . The method according to claim 6 , further comprising:

in response to a determination that a previously created application profile

for an application and input data set pair that includes the application kernel and

the input data set identifier is available, determining, from the previously created

application profile, which of the first processing unit and the second processing

unit is to process the application kernel of the application with the input data set;

and

mapping the application kernel to the first processing unit or the second

processing unit based upon the determination of which of the first processing unit

and the second processing unit is to process the application kernel with the input

data set.

8 . The method according to claim 1, further comprising:

receiving instructions to run an application kernel of an application;

identifying an input data set identifier of the application;

determining that the application corresponds to a plurality of previously

created application profiles, and wherein the plurality of previously created

application profiles corresponds to input data set identifier pairs and have

different kernel implementations;

selecting the kernel implementation of the previously created application

profile having an input data set identifier that is similar to the input data set

identifier of the application; and

executing the selected kernel implementation in running the application

kernel of the application.

9 . The method according to claim 1, further comprising:

receiving instructions to run application kernels of multiple applications on

the first processing unit and the second processing unit of the apparatus, wherein

each of the multiple applications is associated with a respective application

profile; and

scheduling processing of the application kernels of the multiple

applications on the first processing unit and the second processing unit based

upon affinities of the multiple applications to be run on the second processing unit

identified in the application profiles of the multiple applications while minimizing

memory contention among the multiple applications.

10. The method according to claim 1, wherein the application is a graph

application and wherein the characterization of the input data is whether the input

data is regular or irregular.

11. An apparatus comprising:

a first processing unit;

a second processing unit, wherein the second processing unit has different

operating characteristics as compared with the first processing unit;

a memory shared by the first processing unit and the second processing

unit over a bus; and

a module to receive an instruction to process a kernel of an application,

wherein the module is to create an application profile for the application that

identifies an affinity of the application kernel to be processed on either the first

processing unit or the second processing unit and identifies a characterization of

an input data set of the application, and wherein the module is to implement the

application profile in determining which of the first processing unit and the second

processing unit is to process an application kernel of a subsequently received

application.

12 . The apparatus according to claim 11, wherein the first processing unit is an

integrated central processing unit (CPU) and the second processing unit is a

graphics processing unit (GPU).

13 . The apparatus according to claim 11, wherein the module is to create the

application profile through a selective instrumentation of the application that

reduces overhead associated with the instrumentation at a runtime of the

application kernel on the second processing unit, to determine an activity factor of

the application that characterizes the affinity of the application to be run on the

second processing unit, and determine a memory intensity of the application that

characterizes an extent to which the application is memory-bound versus being

compute-bound.

14. The apparatus according to claim 11, wherein the module is further to

receive instructions to run application kernels of multiple applications on the first

processing unit and the second processing unit, wherein each of the multiple

applications is associated with a respective application profile, and to schedule

processing of the application kernels of the multiple applications on the first

processing unit and the second processing unit based upon affinities of the

multiple applications to be run on the second processing unit identified in the

application profiles of the multiple applications while minimizing memory

contention in the performance of the multiple applications.

15. A non-transitory computer-readable storage medium on which is stored

machine readable instructions that when executed by a processor cause the

processor to:

receive an instruction to run a kernel of an application on an apparatus

having a first processing unit integrated with a second processing unit, wherein

the second processing unit has different operating characteristics as compared

with the first processing unit;

determine whether a previously created application profile for the

application is available; and

in response to a determination that a previously created application profile

for the application is not available, perform a selective dynamic instrumentation of

the application at a runtime of the application kernel on the second processing

unit; and

create an application profile for the application based upon the selective

dynamic instrumentation, wherein the application profile identifies an affinity of

the application kernel to be run on either the first processing unit or the second

processing unit and identifies a characterization of an input data set of the

application.

INTERNATIONAL SEARCH REPORT International application No.

PCT/US2014/063479

A . CLASSIFICATION O F SUBJECT MATTER

G06F 13/40(2006.01)i, G06F 9/46(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B . FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F 13/40; G06F 9/54; G06F 15/80; G06T 1/00; G06F 9/38; G06F 9/46; G06F 15/76; G06F 15/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: processing unit, kernel, instruction, select, runtime, affinity, characterization, and similar terms.

DOCUMENTS CONSIDERED T O B E RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2013-0254783 Al (MORGAN S . MCGUIRE e t a .) 26 September 2013 1-15
See paragraphs [0026] - [0033] , [0044] , [0092] , and [0378] ;

c l aims 11 and 21; and f igure 1 .

US 2011-0057937 Al (REN TO e t a l .) 10 March 2011 1-15
See paragraphs [0014]-[0016] and [0026] - [0031] ; and f i gure 2 .

WO 2014-040003 Al (CARNEGIE MELLON UNIVERSITY) 13 March 2014 1-15
See paragraphs [0010] and [0034] ; and f igure 1 .

US 2013-0007774 Al (AAFTAB MUNSHI e t a l .) 03 January 2013 1-15
See paragraphs [0006]-[0009] and [0039H0044] ; and f i gure 4 .

US 2012-0069029 Al (ALEXEI V. BOURD e t a l .) 22 March 2012 1-15
See paragraphs [0011]-[0027] and f igure 1 .

□ Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents: "T" later document published after the international filing date or priority
document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to b e of particular relevance the principle or theory underlying the invention
earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot b e

filing date considered novel or cannot b e considered to involve an inventive
document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot b e
special reason (as specified) considered to involve an inventive step when the document is
document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

29 May 2015 (29.05.2015) 2 9 May 2015 (29.05.2015)

Name and mailing address of the ISA/KR Authorized officer
International Application Division

j fc ... Korean Intellectual Property Office

¾
NHO, Ji Myong

Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
¾ ¾ ¾

g tpt Republic o f Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8528 ·

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/063479

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2013--0254783 Al 26/09/2013 US 2007-0294663 Al 20/12/2007
US 8443348 B2 14/05/2013
us 8745603 B2 03/06/2014

us 2011--0057937 Al 10/03/2011 us 8400458 B2 19/03/2013

o 2014--040003 Al 13/03/2014 None

us 2013--0007774 Al 03/01/2013 US 2008-0276261 Al 06/11/2008
US 2014-0201755 Al 17/07/2014
US 8276164 B2 25/09/2012

us 2012--0069029 Al 22/03/2012 CN 103109274 A 15/05/2013
CN 103119912 A 22/05/2013
EP 2619666 Al 31/07/2013
EP 2619965 Al 31/07/2013
J P 2013-537993 A 07/10/2013
J P 2013-546035 A 26/12/2013

R 10-2013-0060337 A 07/06/2013
R 10-2013-0094322 A 23/08/2013

US 2012-0069035 Al 22/03/2012
us 8937622 B2 20/01/2015

o 2012-040121 Al 29/03/2012
wo 2012-040122 Al 29/03/2012

Form PCT/ISA/2 10 (patent family annex) (January 20 15)

	abstract
	description
	claims
	drawings
	wo-search-report

