(21) International Application Number: PCT/US96/20238
(22) International Filing Date: 23 December 1996 (23.12.96)
(71) Applicant: ABBOTT LABORATORIES [US/US]; CHAD W377/APG-2, 100 Abbott Park Road, Abbott Park, IL 60064-3500 (US).
(74) Agents: WEINSTEIN, Steven, F. et al.; Abbott Laboratories, D-377/APG-2, One Abbott Park Road, Abbott Park, IL 60064-3500 (US).

(54) Title: POLYKETIDE-ASSOCIATED SUGAR BIOSYNTHESIS GENES

(57) Abstract

The present invention provides isolated polynucleotides from *Saccharomyces erythraea* that encode enzymes involved in the biosynthesis of polyketide-associated sugars. Methods of using the polynucleotides to produce novel glycosylated modified polyketides are also provided.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>GE</td>
<td>Georgia</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GN</td>
<td>Guinea</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GR</td>
<td>Greece</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>IE</td>
<td>Ireland</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KE</td>
<td>Kenya</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>KG</td>
<td>Kyrgyzistan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LR</td>
<td>Liberia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LT</td>
<td>Lithuania</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LV</td>
<td>Latvia</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>MG</td>
<td>Madagascar</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>ML</td>
<td>Mali</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
<td>MN</td>
<td>Mongolia</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
</tbody>
</table>
POLYKETIDE-ASSOCIATED SUGAR BIOSYNTHESIS GENES

This application claims the benefit of U.S. Serial No. 08/576,626 filed December 21, 1995, now pending.

Field of the Invention

The present invention relates to methods for directing the biosynthesis of specific polyketide analogs by genetic manipulation. In particular, sugar biosynthesis genes are manipulated to produce precise, novel glycosylation-modified macrolides of predicted structure.

Background of the Invention

Polyketides are a large class of natural products that includes many important antibiotic, antifungal, anticancer, and anti-helminthic compounds such as erythromycins, amphotericins, daunorubicins, and avermectins. Their synthesis proceeds by an ordered condensation of acyl esters to generate carbon chains of varying length, side chain, and reduction pattern that are differentially cyclized and subsequently modified to give the mature polyketides. For many polyketides, maturation includes the addition of one or more sugar residues to the cyclized carbon chain. The sugar residues are frequently critical to the biological activity of the mature polyketide.

Streptomyces and the closely related Saccharopolyspora genera are prodigious producers of polyketide metabolites. Because of the commercial significance of these compounds, a great amount of effort has been expended in the study of Streptomyces genetics. Consequently, much is known about Streptomyces and several cloning vectors exist for introducing DNA into these organisms.

Although many polyketides have been identified, there remains the need to obtain novel glycosylation modified (as defined herein) polyketide structures with enhanced properties. Current methods of obtaining such molecules include screening of biological samples and chemical modification of existing polyketides, both of which are costly and time consuming. Current screening methods are based on gross properties of the molecule, i.e. antibacterial, antifungal activity, etc., and both a priori knowledge of the structure of the molecules obtained or predetermined of enhanced properties are virtually impossible. Standard chemical modification of existing structures has been successfully employed, but is limited by the number of types of compounds obtainable. Furthermore, the poor yield of multistep chemical syntheses often limits the practicality of this approach. The following modifications to sugar residues bound to polyketides are particularly difficult or inefficient at the present time: change the stereochemistry of specific hydroxyl or methyl groups, change the oxidation state of specific hydroxyl groups, and deoxygenation of specific carbons. Accordingly, there exists a need to obtain molecules wherein such changes are specified and
performed which would represent an improvement in the technology to produce altered glycosylation-modified polyketide molecules with predicted structure.

The present invention overcomes these problems by providing the genetic sequence of sugar biosynthesis genes involved in the biosynthesis of polyketide-associated sugars.

Summary of the Invention

In one aspect, the present invention provides an isolated single or double stranded polynucleotide, typically DNA, having a nucleotide sequence which comprises (a) a nucleotide sequence selected from the group consisting of (i) the sense sequence of FIG. 4A (SEQ ID NO:1) from about nucleotide position 54 to about nucleotide position 1136; (ii) the sense sequence of SEQ ID NO:1 from about nucleotide position 1147 to about nucleotide position 2412; (iii) the sense sequence of SEQ ID NO:1 from about nucleotide position 2409 to about nucleotide position 3410; (iv) the sense sequence of FIG. 4B (SEQ ID NO:2) from about nucleotide position 80 to about nucleotide position 1048; (v) the sense sequence of SEQ ID NO:2 from about nucleotide position 1048 to about nucleotide position 2295; (vi) the sense sequence of SEQ ID NO:2 from about nucleotide position 2348 to about nucleotide position 3061; (vii) the sense sequence of SEQ ID NO:2 from about nucleotide position 3214 to about nucleotide position 4677; (viii) the sense sequence of SEQ ID NO:2 from about nucleotide position 4674 to about nucleotide position 5879; (ix) the sense sequence of SEQ ID NO:2 from about nucleotide position 5917 to about nucleotide position 7386; and (x) the sense sequence of SEQ ID NO:2 from about nucleotide position 7415 to about nucleotide position 7996; (b) sequences complementary to the sequences of (a); (c) sequences that, on expression, encode a polypeptide encoded by the sequences of (a); and (d) analogous sequences that hybridize under stringent conditions to the sequences of (a) and (b). A preferred molecule is a DNA molecule. In another embodiment, the polynucleotide is an RNA molecule.

In another embodiment, a DNA molecule of the present invention is contained in an expression vector. The expression vector preferably further comprises an enhancer-promoter operatively linked to the polynucleotide. In a preferred embodiment, the DNA molecule in the vector is one of the preferred sequences mentioned above. In an especially preferred embodiment, the DNA molecule in the vector is the sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048.

The present invention still further provides for a host cell transformed with a polynucleotide or expression vector of this invention. Preferably, the host cell is a bacterial cell selected from the group consisting of *Saccharopolyspora* spp., *Streptomyces* spp. and *E. coli*.

The present invention also provides methods to produce novel glycosylation modified
polyketide structures by designing and introducing specified changes in the DNA governing the synthesis and attachment of sugar residues to polyketides. According to one method, the biosynthesis of specific glycosylation-modified polyketides is accomplished by genetic manipulation of a polyketide-producing microorganism comprising the steps of isolating a sugar biosynthesis gene-containing DNA sequence from those described above; identifying within the gene-containing DNA sequence one or more DNA fragments responsible for the biosynthesis of a polyketide-associated sugar or its attachment to the polyketide; creating one or more specified changes into the DNA fragment or fragments, thereby resulting in an altered DNA sequence; introducing the altered DNA sequence into a polyketide-producing microorganism to replace the original sequence whereby the altered DNA sequence, when translated, results in altered enzymatic activity capable of effecting the production of the specific glycosylation-modified polyketide; growing a culture of the altered polyketide-producing microorganism under conditions suitable for the formation of the specific glycosylation-modified polyketide; and isolating said specific glycosylation-modified polyketide from the culture.

In a second method the biosynthesis of specific glycosylation-modified polyketides is accomplished by isolating a sugar biosynthesis gene-containing DNA sequence from from those described above; identifying within the gene-containing DNA sequence one or more DNA fragments responsible for the biosynthesis of a polyketide-associated sugar or its attachment to the polyketide; reversing the strand orientation of the DNA fragment or fragments, thereby resulting in an altered DNA sequence which, when transcribed, results in production of an antisense mRNA; introducing the altered DNA sequence into a polyketide-producing microorganism having an mRNA capable of binding to the antisense mRNA which results in altered enzymatic activity capable of effecting the production of the specific glycosylation-modified polyketide; growing a culture of the altered polyketide-producing microorganism under conditions suitable for the formation of the specific glycosylation-modified polyketide; and isolating the specific glycosylation-modified polyketide from the culture.

In a third method the biosynthesis of specific glycosylation-modified polyketides is accomplished by isolating a sugar biosynthesis gene-containing DNA sequence from from those described above; identifying within the gene-containing DNA sequence one or more DNA fragments responsible for the biosynthesis of a polyketide-associated sugar or its attachment to the polyketide; introducing the DNA fragment or fragments into a polyketide-producing microorganism wherein transcription and translation of the DNA fragment or fragments generate an altered polyketide-producing microorganism that is capable of producing the specific glycosylation-modified polyketide; growing a culture of the polyketide-producing microorganism containing the DNA fragment or fragments under
conditions suitable for the formation of the specific glycosylation-modified polyketide; and isolating the specific glycosylation-modified polyketide from the culture.

Preferably, the sugar biosynthesis gene-containing DNA sequence of the processes described above comprises genes which encode an enzymatic activity involved in the biosynthesis of L-mycarose and/or D-desosamine. More preferably, the sugar biosynthesis gene-containing DNA sequence comprises the sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048.

The present invention is especially useful in manipulating sugar biosynthesis genes from *Streptomyces* and *Saccharopolyspora*, organisms that provide over one-half of the clinically useful antibiotics.

Brief Description of the Drawings

FIG. 1A illustrates the organization of the erythromycin biosynthetic gene cluster and the genetic designations of the biosynthetic genes; FIG. 1B illustrates an abbreviated erythromycin biosynthetic scheme that broadly associates the biosynthetic genes with their role in erythromycin biosynthesis. Seven *eryB* genes, *eryBI - eryBVII*, are responsible for the biosynthesis of L-mycarose or its attachment to the erythronolide B ring, and six *eryC* genes, *eryCI - eryCVI*, are responsible for the biosynthesis of D-desosamine or its attachment to 3-α-mycarosylerythronolide B. The dashed arrows indicate that the pathway through erythromycin B is not the principal natural biosynthetic route to erythromycin A.

FIG. 2 illustrates the proposed scheme for the biosynthesis of L-mycarose and the *eryB* genes responsible for the specific steps.

FIG. 3 illustrates the proposed scheme for the biosynthesis of D-desosamine and the *eryC* genes responsible for the specific steps.

FIG. 4A(1-4) illustrates the nucleotide sequence (SEQ ID NO:1) of the sugar biosynthesis genes *eryCII* (coordinates 54-1136), *eryCIII* (coordinates 1147-2412), and *eryBII* (coordinates 2409-3410), with corresponding translation of the open reading frames (SEQ ID NO:3, SEQ ID NO:4 and SEQ ID NO:5 respectively). Standard one letter codes for the amino acids appear beneath their respective nucleic acid codons as described herein.

FIG. 4B(1-9) illustrates the nucleotide sequence (SEQ ID NO:2) of the sugar biosynthesis genes *eryBIV* (coordinates 80-1048), *eryBV* (coordinates 1048-2295), *eryCVI* (coordinates 2348-3061), *eryBVI* (coordinates 3214-4677), *eryCIV* (coordinates 4674-5879), *eryCV* (coordinates 5917-7386), and *eryBVII* (coordinates 7415-7996) with corresponding
translation of the putative open reading frames (SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11 and SEQ ID NO:12 respectively). Standard one letter codes for the amino acids appear beneath their respective nucleic acid codons as described herein.

FIG. 5A illustrates the amino acid sequence identity between the sugar biosynthesis enzyme encoded by the _eryBIV_ gene of _Sac. erythraea_ (SEQ ID NO:6) and the sugar biosynthesis enzymes encoded by the _ascF_ gene of _Yersinia pseudotuberculosis_ [Thorson et al., _J. Bacteriol._, 176:5483 (1994)], (SEQ ID NO:13), the _rfbJ_ gene of _Salmonella enterica_ [Jiang et al., _Mol. Microbiol._, 5:695 (1991)]. (SEQ ID NO:14), the _strL_ gene of _Streptomyces griseus_ [Pissowotzki et al., _Mol. Gen. Genet._ 241:193 (1993)] (SEQ ID NO:15) and the _galE_ gene of _Escherichia coli_ [Lemaire and Hill, _Nucl. Acids Res._ 14:7705 (1986)] (SEQ ID NO:16). In this and all other Figures in which amino acid sequence identity is compared capitalized letters represent consensus (identical) amino acids between species or amino acids which are conservative substitutions for the consensus residues. Also in each Figure, the sequence identified as "consensus" is merely a convenient representation of conserved amino acids and is not intended as a representation of any existing polypeptide sequence.

FIG. 5D illustrates the amino acid sequence identity between the sugar biosynthesis enzymes encoded by the *eryBV* and *eryCIII* genes of *Sac. erythraea* (SEQ ID NO:7 and SEQ ID NO:4 respectively) and the sugar biosynthesis enzyme encoded by the *dnrS* gene of *Streptomyces peucetius* [Otten et al., *J. Bacteriol.*, 177:6688 (1995)] (SEQ ID NO:26).

FIG. 5E illustrates the amino acid sequence identity between the sugar biosynthesis enzyme encoded by the *eryCVI* gene of *Sac. erythraea* (SEQ ID NO:8) and the sugar biosynthesis enzymes encoded by the *srmX* gene of *Streptomyces ambofaciens* [Geistlich et al., *Mol. Microbiol.*, 6:2019 (1992)] (SEQ ID NO:27), the *rdmD* gene of *Streptomyces purpurascens* [GenBank Accession: U10405] (SEQ ID NO:28) and the glycine methyltransferase of *Rattus norvegious* [Ogawa et al., *Eur. J. Biochem.* 168:141 (1987)] (SEQ ID NO:29).

FIG. 6A through 6D illustrate the compounds conceivably formed in Examples 1-4 respectively and are representative of compounds formed from Type I (FIG 6A), Type II (FIG. 6B), and Type III (FIGS. 6C and 6D) alterations.

FIG. 7 illustrates the construction of the expression plasmid pASX2 described in Example 2. For FIGS 7-13 the following abbreviations have been used: *amp*, ampicillin resistance gene; *tss*, thioestrepton resistance gene; ROP, repressor of plasmid synthesis gene; *eryBI, eryBII, eryBIII, eryBIV, eryBV, eryBVI, eryBVI, eryCV, eryCIII, eryCIV, eryCV, and eryCVI* the erythromycin biosynthetic genes involved in the synthesis of mycarose or its attachment to the macrolide ring (*eryB*) or the synthesis of desosamine or its attachment to the macrolide ring (*eryC*) [the thin arrows above a gene indicate its relative size and the direction of transcription]; ori-*E. coli*, an origin of DNA replication that functions in *E. coli*, in the specific examples the CoIE1 origin; ori-*Streptomyces*, an origin of DNA replication that functions in *Streptomyces*, in the specific examples the pJV1 origin [Servin-Gonzalez et al., *Microbiology*, 141:2499 (1995)]; p-*ermE*, a modified promoter for the erythromycin resistance gene; t-fd, the gene VIII transcription terminator of bacteriophage fd; PCR, polymerase chain reaction. Restriction enzyme sites have been indicated by their standard commercial names (i.e. *BamHI, EcoRI*, etc). The abbreviations appended to the large arrows in the plasmid synthetic schemes summarize each of the steps involved in the plasmid constructions. These steps are described fully in the relevant Examples.

FIG. 8 illustrates the construction of the *eryBVII* antisense expression plasmid pASBVII described in Example 2.
FIG. 9A illustrates the construction of the carrier plasmid pK1.

FIG. 9B-E illustrates the construction of plasmid pKB6 which carries all of the *eryB* genes and is described in Example 3.

FIG. 10 illustrates the construction of expression plasmid pX1 described in Example 3.

FIG. 11 illustrates the construction of the *eryB* expression plasmids pXSB6 and pXB6 described in Example 3.

FIG. 12A-B illustrate the construction of plasmid pKC4 which carries all of the *eryC* genes described in Example 4.

FIG. 13 illustrates the construction of the *eryC* expression plasmids pXSC4 and pXC4 described in Example 4.

Detailed Description of the Invention

I. **The Invention**

The present invention provides isolated and purified polynucleotides that encode enzymes or fragments thereof responsible for the biosynthesis of polyketide-associated sugars or their attachment to polyketides, vectors containing those polynucleotides, host cells transformed with those vectors, a process of making novel glycosylated polyketides using those polynucleotides and vectors, and isolated and purified recombinant polypeptides and polypeptide fragments thereof.

II. **Definitions**

For the purposes of the present invention as disclosed and claimed herein, the following terms are defined.

The term "polyketide" as used herein refers to a large and diverse class of natural products, including but not limited to antibiotic, antifungal, anticancer, and anti-helminthic compounds. Antibiotics include, but are not limited to anthracyclines and macrolides of different types (polyenes and avermectins as well as classical macrolides such as erythromycins).

The term “glycosylated polyketide” refers to any polyketide that contains one or more sugar residues.
The term "glycosylation-modified polyketide" refers to a polyketide having a changed glycosylation pattern or configuration relative to that particular polyketide's unmodified or native state.

The term "polyketide-producing microorganism" as used herein includes any microorganism that can produce a polyketide naturally or after being suitably engineered (i.e. genetically). Examples of actinomycetes and the polyketides they naturally produce include but are not limited to those listed in Table 1 below (see Hopwood, D.A. and Sherman, D.H., *Annu. Rev. Genet.*, 24:37-66 (1990) incorporated herein by reference).

<table>
<thead>
<tr>
<th>Organism</th>
<th>Polyketide Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharopolyspora erythrea</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Streptomyces ambofaciens</td>
<td>Spiramycin</td>
</tr>
<tr>
<td>Streptomyces avermitilis</td>
<td>Avermectin</td>
</tr>
<tr>
<td>Streptomyces fraediae</td>
<td>Tylosin</td>
</tr>
<tr>
<td>Streptomyces griseus</td>
<td>Candidicidin, monactin, griseusin</td>
</tr>
<tr>
<td>Streptomyces violaceoniger</td>
<td>Granaticin</td>
</tr>
<tr>
<td>Streptomyces thermotolerans</td>
<td>Carbomycin</td>
</tr>
<tr>
<td>Streptomyces rimosus</td>
<td>Oxytetracycline</td>
</tr>
<tr>
<td>Streptomyces peucetius</td>
<td>Daunorubicin</td>
</tr>
<tr>
<td>Streptomyces coelicolor</td>
<td>Actinorhodin</td>
</tr>
<tr>
<td>Streptomyces glaucescens</td>
<td>Tetracenomycin</td>
</tr>
<tr>
<td>Streptomyces roseofulvus</td>
<td>Frenolicin</td>
</tr>
<tr>
<td>Streptomyces cinnamomensis</td>
<td>Monensin</td>
</tr>
<tr>
<td>Streptomyces curacaoi</td>
<td>Curamycin</td>
</tr>
<tr>
<td>Amycolatopsis mediterranei</td>
<td>Rifamycin</td>
</tr>
</tbody>
</table>

Other examples of polyketide-producing microorganisms that produce polyketides naturally include various *Actinomadura*, *Dactylosporangium* and *Nocardia* strains.

The term "sugar biosynthesis genes" as used herein refers to sequences of DNA from *Saccharopolyspora erythrea* that encode sugar biosynthesis enzymes and is intended to include sequences of DNA from other polyketide-producing microorganisms which are identical or analogous to those obtained from *Saccharopolyspora erythrea*.

The term “sugar biosynthesis enzymes” as used herein refers to polypeptides which are involved in the biosynthesis and/or attachment of polyketide-associated sugars and their derivatives and intermediates.
The term "polyketide-associated sugar" refers to a sugar that is known to attach to polyketides or that can be attached to polyketides by the processes described herein.

The term "sugar derivative" refers to a sugar which is naturally associated with a polyketide but which is altered relative to the unmodified or native state; examples only include N-3-α-desdimethyl D-desosamine, D-mycarose, 4-keto-L-mycarose, 4-keto-D-mycarose, 3-desmethyl L-mycarose and 3-desmethyl D-mycarose.

The term "sugar intermediate" refers to an intermediate compound produced in a sugar biosynthesis pathway.

The term "eryB" as used herein refers to sequences of DNA that encode enzymes involved specifically in the biosynthesis of the deoxysugar L-mycarose.

The term "eryC" as used herein refers to sequences of DNA that encode enzymes involved specifically in the biosynthesis of the deoxysugar D-desosamine.

III. Polynucleotides

The organization of the segment of the *Saccharopolyspora erythraea* (*Sac. erythraea*) chromosome that determines the biosynthesis of erythromycin and the corresponding genes that determine the biosynthesis of the sugars L-mycarose and D-desosamine, designated eryB and eryC, respectively, are shown in FIG. 1A. It is seen that several genes are required for the biosynthesis of each of the sugars and that these genes are interspersed among one another. It is predicted that each gene encodes an enzyme that catalyzes one or a few steps in the biosynthesis of L-mycarose or D-desosamine from thymidine diphospho-4-keto-6-deoxyglucose (TDP-glucose); these steps are outlined in FIG. 2 and FIG. 3. In the case of L-mycarose, (shown in FIG. 2), these steps include: (1) C-2" deoxygenation, (2) C-2"/C-3" enoyl reduction, (3) C-5" epimerization, (4) C-3" C-methylation, (5) C-4" keto reduction, and (6) transfer to erythronolide B. For D-desosamine, shown in FIG. 3, these steps comprise (1) C-4'/3' isomerization, (2, 3) C-3' deoxygenation and reduction, (4) C-3' amination, (5, 6) N-3a' N-dimethylation, and transfer to mycarosyl erythronolide B.

This classification of genes (as belonging to either the eryB class or eryC class) was determined by first altering the wild type genes of interest in an erythromycin producing strain (i.e. *in vivo*) to inactivate their expression. The erythromycin products resulting from such alterations were then analyzed. Genes whose alterations caused an accumulation of erythronolide B (indicating a lack of L-mycarose, or failure to attach L-mycarose to the erythronolide ring) were classified as eryB genes; genes whose alterations caused an accumulation of 3-α-L-mycarosyl erythronolide B (indicating a lack of D-desosamine, or failure to attach D-desosamine to the 3-α-L-mycarosyl erythronolide B ring) were classified as eryC genes. Accordingly, it should be noted that all such genes identified herein as eryB or eryC are involved in the synthesis of L-mycarose or D-desosamine. The predicted
functional activities of the polypeptides encoded by *eryB* and *eryC* will be discussed in further detail below.

In one aspect then, the present invention provides isolated and purified *eryB* and *eryC* polynucleotides from *Sac. erythraea* that encode enzymes involved in the production of glycosylated polyketides. A polynucleotide of the present invention that encodes a sugar biosynthesis enzyme is an isolated single or double stranded polynucleotide having a nucleotide sequence which comprises (a) a nucleotide sequence selected from the group consisting of (i) the sense sequence of FIG. 4A (SEQ ID NO:1) from about nucleotide position 54 to about nucleotide position 1136; (ii) the sense sequence of SEQ ID NO:1 from about nucleotide position 1147 to about nucleotide position 2412; (iii) the sense sequence of SEQ ID NO:1 from about nucleotide position 2409 to about nucleotide position 3410; (iv) the sense sequence of FIG. 4B (SEQ ID NO:2) from about nucleotide position 80 to about nucleotide position 1048; (v) the sense sequence of SEQ ID NO:2 from about nucleotide position 1048 to about nucleotide position 2295; (vi) the sense sequence of SEQ ID NO:2 from about nucleotide position 2348 to about nucleotide position 3061; (vii) the sense sequence of SEQ ID NO:2 from about nucleotide position 3214 to about nucleotide position 4677; (viii) the sense sequence of SEQ ID NO:2 from about nucleotide position 4674 to about nucleotide position 5879; (ix) the sense sequence of SEQ ID NO:2 from about nucleotide position 5917 to about nucleotide position 7386; and (x) the sense sequence of SEQ ID NO:2 from about nucleotide position 7415 to about nucleotide position 7996;
(b) sequences complementary to the sequences of (a),
(c) sequences that, when expressed, encode polypeptides encoded by the sequences of (a), and
(d) analogous sequences that hybridize under stringent conditions to the sequences of (a).

A preferred polynucleotide is a DNA molecule. In another embodiment, the polynucleotide is an RNA molecule.

The nucleotide sequence and deduced amino acid residue sequences of the sugar biosynthesis genes are set forth in FIG. 4A(1-4) and FIG. 4B(1-9). The nucleotide sequences of FIG. 4A(1-4) (SEQ ID NO:1) and FIG. 4B(1-9) (SEQ ID NO:2) represent full length DNA clones of the sense strand of two distinct clusters of sugar biosynthesis genes and are intended to represent both the sense strand (shown on top) and its complement. The amino acid sequences depicted below the sense strand correspond to polypeptides encoded by a nucleotide sequence selected from the group consisting of (i) the sense strand of SEQ ID NO:1 from about nucleotide position 54 to about nucleotide position 1136 (ii) the sense sequence of SEQ ID NO:1 from about nucleotide position 1147 to about nucleotide position 2412, (iii) the sense sequence of SEQ ID NO:1 from about nucleotide position 2409 to about
nucleotide position 3410, (iv) the sense sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048, (v) the sense sequence of SEQ ID NO:2 from about nucleotide position 1048 to about nucleotide position 2295, (vi) the sense sequence of SEQ ID NO:2 from about nucleotide position 2348 to about nucleotide position 3061, (vii) the sense sequence of SEQ ID NO:2 from about nucleotide position 3214 to about nucleotide position 4677, (ix) the sense sequence of SEQ ID NO:2 from about nucleotide position 5917 to about nucleotide position 7386 and (x) the sense sequence of SEQ ID NO:2 from about nucleotide position 7415 to about nucleotide position 7996. The polypeptides encoded by the nucleotide sequences of (i)-(x) above are set forth as SEQ ID NO:3-SEQ ID NO:12 respectively.

The present invention also contemplates analogous DNA sequences which hybridize under stringent hybridization conditions to the DNA sequences set forth above. Stringent hybridization conditions are well known in the art and define a degree of sequence identity greater than about 80%-90%. The modifier "analogous" refers to those nucleotide sequences that encode analogous polypeptides (i.e. in relation to a sugar biosynthesis enzyme), analogous polypeptides being those which have only conservative differences and which retain the conventional characteristics and activities of sugar biosynthesis enzymes. (A more detailed description of analogous polypeptides is provided below). The present invention also contemplates naturally occurring allelic variations and mutations of the DNA sequences set forth above so long as those variations and mutations code, on expression, for a sugar biosynthesis gene of this invention as set forth hereinafter.

As is well known in the art, because of the degeneracy of the genetic code, there are numerous other DNA and RNA molecules that can code for the same polypeptides as those encoded by the aforementioned sugar biosynthesis genes and fragments thereof. The present invention, therefore, contemplates those other DNA and RNA molecules which, on expression, encode the polypeptides of SEQ ID NO:3-SEQ ID NO:11 or fragments thereof. Having identified the amino acid residue sequence encoded by a sugar biosynthesis gene, and with knowledge of all triplet codons for each particular amino acid residue, it is possible to describe all such encoding RNA and DNA sequences. DNA and RNA molecules other than those specifically disclosed herein and, which molecules are characterized simply by a change in a codon for a particular amino acid, are within the scope of this invention.

The 20 common amino acids and their representative abbreviations, symbols and codons are well known in the art (see for example, Molecular Biology of the Cell, Second Edition, B. Alberts et al., Garland Publishing Inc., New York and London, 1989). As is also well known in the art, codons constitute triplet sequences of nucleotides in mRNA molecules and as such, are characterized by the base uracil (U) in place of base thymidine (T) which is present in DNA molecules. A simple change in a codon for the same amino acid residue
within a polynucleotide will not change the structure of the encoded polypeptide. By way of example, it can be seen from SEQ ID NO:1 that an AGC codon for serine exists at nucleotide positions 126-128 and again at positions 420-422 and 561-563. However, it can also be seen from that same sequence that serine can be encoded by a TCG codon (see e.g., nucleotide positions 192-194) and a TCC codon (see e.g., nucleotide positions 204-206). Substitution of the latter codons for serine with the AGC codon for serine, or visa versa, does not substantially alter the DNA sequence of SEQ ID NO:1 and results in production of the same polypeptide. In a similar manner, substitutions of the recited codons with other equivalent codons can be made in a like manner without departing from the scope of the present invention.

A polynucleotide of the present invention can also be an RNA molecule. An RNA molecule contemplated by the present invention is complementary to or hybridizes under stringent conditions to any of the DNA sequences set forth above. Exemplary and preferred RNA molecules are mRNA molecules that encode sugar biosynthesis enzymes of this invention.

IV. Polypeptides

In another aspect, the present invention provides polypeptides which are reasonably believed to be sugar biosynthesis enzymes. A sugar biosynthesis enzyme of the present invention is a polypeptide of about 21 kdal to about 47 kdal. As set forth in FIG. 5A-5E, analogs of the predicted polypeptides encoded by certain _eryB_ and _eryC_ genes have been identified in various species and their sequences compared using the PRETTY routine (Genetics Computer Group (GCG) Sequence Analysis Software Package, Madison, WI). Due to the degree of amino acid sequence identity existing between the polypeptides of these other sugar biosynthesis genes and the polypeptides encoded by the _eryB_ and _eryC_ genes, certain enzymatic activities can reasonably be attributed to the _eryB_ and _eryC_ polypeptides.

By way of example, analogs of the polypeptide encoded by the _eryBIV_ gene have been identified in _Yersinia pseudotuberculosis_ _Salmonella enterica_ _Streptomyces griseus_ and _Escherichia coli_ (see FIG. 5A). The various analogs have been identified with from 290-328 amino acid residues and are characterized by a low degree of amino acid sequence identity. (For example, the identity between the sugar biosynthesis enzyme encoded by the _eryBIV_ gene of _Sac. erythraea_ and the sugar biosynthesis enzyme encoded by the _galE_ gene of _E. coli_ is 20% at the amino acid level). However, a conserved amino acid sequence motif, G x x G x x G (where G represents the amino acid glycine and x represents any other amino acid residue) is found within the first 30 amino acid residues of all analogs shown. Since the polypeptide encoded by the _galE_ gene has been shown to be an epimerase (whose mechanism includes a ketoreduction (Bauer et al., _Proteins_ 12:372 (1992)), the _eryBIV_ gene product is
reasonably predicted to be a ketoreductase.

As set forth in FIG. 5B analogs of the sugar biosynthesis enzyme encoded by the
eryBVII gene have been identified in *Streptomyces griseus* Salmonella enterica, Yersinia entercolitica and Yersinia pseudotuberculosis. The various analogs have been identified with
from 183-200 amino acid residues and are characterized by a moderate degree of amino acid
identity. By way of example, the identity at the amino acid level between the sugar
biosynthesis enzyme encoded by the *eryBVII* gene of Sac. erythraea and the sugar
biosynthesis enzyme encoded by the *rfbC* gene of Salmonella enterica or the *strM* gene of
Streptomyces griseus is 37% and 61%, respectively. Furthermore, a common characteristic
of these particular polypeptides (including that of *eryBVII*), is that they are only associated
with L-sugar biosynthesis and not with D-sugar biosynthesis. Thus the gene product of
eryBVII is reasonably predicted to function as a C-5 epimerase which converts the
stericchemistry of the sugar from the “D” configuration to the “L” configuration.

As set forth in FIG. 5C analogs of the sugar biosynthesis enzyme encoded by the
eryCIV gene have been identified in Sac. erythraea and Yersinia pseudotuberculosis. As set
forth in FIG. 5C, the predicted amino acid sequences of the protein products of *eryCI* and
eryCIV share 34% sequence identity to each other, 27% and 25% respectively to the
predicted amino acid sequence encoded by ascC from Yersinia pseudotuberculosis. The
enzyme encoded by ascC has been shown to remove a hydroxyl group located at the C-3
least one of the polypeptides encoded by *eryCI* or *eryCIV* is predicted to be an enzyme which
functions in deoxygenation reactions.

Furthermore, the enzyme encoded by the ascC gene requires the biochemical cofactor
pyridoxamine, which is the same cofactor used in biochemical transamination reactions.

Consequently, it has been proposed that some protein analogs (such as dnrJ from
Streptomyces peucetius, prg1 from *Streptomyces alboniger* and strs from *Streptomyces
griseus*) having a moderate degree of sequence similarity to the polypeptide encoded by ascC
function as transaminases in amino sugar biosynthesis (Thorson et al., *J. Am. Chem. Soc.*
115:6993 (1993)). Since the biosynthesis of D-desosamine requires both deoxygenation and
transamination, it is reasonable to predict that at least one of the polypeptides encoded by the
eryCI or *eryCIV* genes functions in transamination reactions.

As set forth in FIG. 5D the predicted polypeptides encoded by *eryBV* and *eryCIII*
share 43% identity at the amino acid level and as such, may be assumed to have similar
activities with respect to their particular sugars. However, as shown in FIGS. 2 and 3, there
are no common steps in the proposed pathways of L-mycarose and D-desosamine
biosynthesis. Rather than having similar sugar biosynthesis functions, these polypeptides are
predicted to be nucleotidyl-sugar transferases which, (in Sac. erythraea at least), function to
attach L-mycarose and D-desosamine to erythronolide B and 3-α-mycarosylerythronolide B, respectively.

As set forth in FIG. 5E analogs of the polypeptide encoded by the eryCVI gene have been identified in *Streptomyces ambofaciens*, *Streptomyces purpurascens*, and *Rattus norvegicus*. The various analogs have been identified with from 237-293 amino acid residues and are characterized by a low to moderate degree of amino acid identity. By way of example, the identity between the polypeptide encoded by the eryCVI gene of *Sac. erythraea* and the glycine methyltransferase of *Rattus norvegicus* is 26% at the amino acid level. Furthermore these sugar biosynthesis enzymes share a common sequence motif, LDVACGTG (SEQ ID NO:30 = amino acid positions 64-71 in the consensus sequence in FIG. 5E), with rat glycine methyltransferase whose biochemical function is known (Ogawa et al., *Eur. J. Biochem.* 168:141 (1987)). Thus these polypeptides are predicted to be N-methyltransferases.

In another aspect, the present invention provides a recombinant C-4" keto reductase from *Sac. erythraea*. A recombinant *Sac. erythraea* C-4" ketoreductase of the present invention is a polypeptide of about 322 or less amino acid residues. A preferred recombinant *Sac. erythraea* C-4" ketoreductase is that encoded by the nucleotide sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048.

The present invention also contemplates amino acid residue sequences that are substantially duplicative of the sequences set forth herein such that those sequences demonstrate like biological activity to disclosed sequences. Such contemplated sequences include those analogous sequences characterized by a minimal change in amino acid residue sequence or type (e.g., conservatively substituted sequences) which insubstantial change does not alter the fundamental nature and biological activity of the aforementioned sugar biosynthesis enzymes.

It is well known in the art that modifications and changes can be made in the structure of a polypeptide without substantially altering the biological function of that peptide. For example, certain amino acids can be substituted for other amino acids in a given polypeptide without any appreciable loss of function. In making such changes, substitutions of like amino acid residues can be made on the basis of relative similarity of side-chain substituents, for example, their size, charge, hydrophobicity, hydrophilicity, and the like.

As detailed in United States Patent No. 4,554,101, incorporated herein by reference, the following hydrophilicity values have been assigned to amino acid residues: Arg (+3.0); Lys (+3.0); Asp (+3.0); Glu (+3.0); Ser (+0.3); Asn (+0.2); Gln (+0.2); Gly (0); Pro (-0.5); Thr (-0.4); Ala (-0.5); His (-0.5); Cys (-1.0); Met (-1.3); Val (-1.5); Leu (-1.8); Ile (-1.8); Tyr (-2.3); Phe (-2.5); and Trp (-3.4). It is understood that an amino acid residue can be substituted for another having a similar hydrophilicity value (e.g., within a value of plus or
minus 2.0) and still obtain a biologically equivalent polypeptide.

In a similar manner, substitutions can be made on the basis of similarity in hydropathic index. Each amino acid residue has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. Those hydropathic index values are:

Ile (+4.5); Val (+4.2); Leu (+3.8); Phe (+2.8); Cys (+2.5); Met (+1.9); Ala (+1.8); Gly (-0.4); Thr (-0.7); Ser (-0.8); Trp (-0.9); Tyr (-1.3); Pro (-1.6); His (-3.2); Glu (-3.5); Gln (-3.5); Asp (-3.5); Asn (-3.5); Lys (-3.9); and Arg (-4.5). In making a substitution based on the hydropathic index, a value of within plus or minus 2.0 is preferred.

V. Production of novel glycosylated polyketides

In another aspect, the present invention comprises a general procedure for producing novel polyketide structures in vivo by selectively altering, inactivating, or augmenting the genetic information of the organism that naturally produces a related polyketide. That is, in the present invention, novel polyketides of desired structure are produced by manipulation of the eryB and/or eryC genes followed by their introduction into various polyketide-producing microorganisms. These manipulations result in the formation of "glycosylation-modified" polyketides (i.e. polyketides having an altered glycosylation pattern or configuration relative to their native state). For example, "glycosylation-modified" polyketides are those which have additional sugar groups attached (where none previously existed), different sugars (such as sugar intermediates) attached in place of the natural sugars or lack sugar groups (at positions where sugar groups previously existed).

In the case of Type I and Type II alterations (further described below) glycosylation-modified polyketides may arise through mechanisms which cause either (1) the non-production of the sugar attachment enzyme (i.e. the enzyme involved in attachment of a sugar to the polyketide structure) or (2) the non-production of a sugar biosynthesis enzyme. In the first instance, the sugar will not be attached to the polyketide since the enzyme which functions to attach the sugar will be lacking. In the second situation, a sugar intermediate from the biosynthesis pathway will be produced (depending on which enzyme is lacking) and attached to the polyketide provided it is recognized as a suitable substrate by the sugar attachment enzyme; alternatively, it will not be recognized and therefore, not attached. In the case of Type III alterations (also described in detail below), glycosylation-modified polyketides arise via attachment of additional or different sugars (i.e. not normally found in a particular polyketide-producing strain) to the polyketide. It should be noted, that these postulated mechanisms are simply provided to enhance understanding of the novel processes described herein; the actual mechanisms by which the Type I, II and III alterations produce glycosylation-modified polyketides is not presently known.

In the first type of alteration (referred to herein as Type I alterations), genetically
altered \(\text{eryB} \) and/or \(\text{eryC} \) genes are introduced into the chromosome of \textit{Sac. erythraea} or another glycosylated polyketide-producing organism that also produces L-mycarose, D-desosamine, or their closely related derivatives such as mycanose (4-hydroxy D-desosamine). The genetic alteration of an \(\text{eryB} \) and/or \(\text{eryC} \) gene is such that it causes a non-functional enzyme to be synthesized. Once introduced into an appropriate strain, the altered gene replaces its corresponding wild type gene causing the strain to lose the ability to produce a particular enzymatic activity involved in sugar biosynthesis. As a result, a glycosylation-modified polyketide is produced via either of the mechanisms previously described for a Type I alteration.

In a Type I change described herein, a specific mutation in an \(\text{eryB} \) and/or \(\text{eryC} \) gene of the \textit{Sac. erythraea} chromosome is accomplished by a three step process which involves: 1) specifically altering the DNA sequence of a desired sugar biosynthesis gene, 2) subcloning the altered sequence into a suitable vector capable of recombining in the chromosome of an appropriate host and 3) introducing the vector containing the subcloned sequence into the appropriate host so that exchange of the wild type allele with the mutated one will occur. The first step is accomplished using standard recombinant DNA techniques to effect a deletion, base pair conversion or frame-shift in the DNA sequence. The second step, which also employs standard recombinant techniques, involves subcloning the altered sequence into a vector which does not replicate in \textit{Sac. erythraea} or the desired host. In the final step, the vector is introduced into a suitable host, where by the process of gene replacement, the altered allele replaces the wild-type one. All techniques employed in a Type I change are well known to those of ordinary skill in the art.

Example 1 illustrates the process of gene replacement of an \(\text{eryB} \) gene. As Example 1 shows, the \(\text{eryB} \) gene of interest is mutated and along with adjacent upstream and downstream DNA sequences, cloned into a non-replicating \textit{Sac. erythraea} plasmid vector. The vector carrying the mutated allele and adjoining DNA is then introduced into the host strain by the process of protoplast transformation. Transformants are regenerated under selective conditions (i.e. conditions that require expression of a particular plasmid marker) in order to induce recombination of the plasmid into the host cell chromosome. In other words, since the plasmid does not replicate autonomously, it must reside in the chromosome to be maintained in the cell and to express a particular marker under selective conditions. Insertion is achieved when the regenerated cells undergo a single homologous recombination between one of the two DNA segments that flank the mutation on the plasmid and its homologous counterpart in the chromosome. The cells are then grown without selection for the marker which induces plasmid loss from the chromosome. This loss arises after the cells have undergone a second recombination between the second DNA segment that flanks the mutation and its homologous chromosomal counterpart. This second recombinational event
results in the loss of the plasmid sequences and the wild type allele from the chromosome; the mutant allele however is retained.

In a variation of a Type I change, the non-production of the sugar biosynthesis enzyme (or attachment enzyme) may be achieved by the alternative mechanisms of promoter inactivation and/or transcriptional terminator insertion. These variations do not effect the gene sequence itself but rather regulatory mechanisms involved in gene transcription. “Promoter” as used herein refers to that region of a DNA molecule which controls the initiation of RNA transcription. Such regions are known to bind RNA polymerases (i.e. the enzymes involved in synthesizing RNA molecules). This form of Type I change (i.e. promoter inactivation) involves two steps of 1) identifying the promoter region of the desired gene and 2) rendering the promoter region inoperable by mutation. As in the replacement mechanism described above such mutations may be effected by creating deletions in the promoter sequence or by base pair conversion. In the case where the promoter controls transcription of a single gene, inactivation of the promoter will eliminate expression of that particular gene; of course, where the promoter controls expression of an entire operon (i.e. a series of genes whose expression is controlled by a single promoter), promoter inactivation will effectively eliminate expression of all genes in that operon.

In a similar manner, the non-production of a sugar biosynthesis enzyme (or attachment enzyme) may arise from inserting a transcriptional terminator upstream from the gene to be inactivated. A “transcriptional terminator” as used herein is a nucleotide sequence which signals RNA polymerase to cease transcription. An example of a transcriptional terminator is a palindromic sequence capable of forming a stem-loop structure that is followed by a stretch of U residues (for example the transcriptional terminator that follows gene VIII of bacteriophage fd (Beck and Zink, Gene, 16:35 (1981)). Effecting a change in production of a sugar biosynthesis gene by this process involves 1) identifying of the gene or genes of interest (in the case of an operon arrangement) to be inactivated and 2) cloning a transcriptional terminator sequence in a region of the DNA upstream from such gene(s). A transcriptional terminator will cause the polymerase involved in RNA transcription to stop (at or near the signaling region) thereby preventing transcription of any downstream sequences. Thus, changes such as promoter inactivation and transcriptional insertion, which directly effect expression of sugar biosynthesis genes are also intended to be within the scope of the invention.

In the second case (referred to herein as Type II alterations) eryB and/or eryC genes are arranged on a vector in an antisense orientation relative to a promoter capable of allowing expression of the gene in Sac. erythraea or Streptomycetes. The vector is then introduced into a polyketide producing microorganism. As a result of this vector construction, antisense messenger RNA (mRNA) is produced which interferes with the translation of the wild-type
mRNA. Similarly to the Type I manipulation, novel glycosylation modified polyketides will be produced in which the normal mycarose, desosamine, and/or closely related sugar residue is lacking or is substituted by a sugar intermediate.

In a Type II change, inactivation of the \textit{eryB} and/or \textit{eryC} genes by antisense expression is accomplished by a two step procedure in which (1) a specific sugar biosynthesis gene is subcloned into an expression vector in an antisense (i.e. reverse) orientation; and (2) the anti-sense expression vector is introduced into the desired strain. The first step is accomplished using standard recombinant DNA techniques employing either \textit{E. coli} or \textit{Streptomyces} as the host, and an expression vector (capable of replicating in either host) that can be assembled to contain a \textit{Streptomyces} promoter. \textit{Streptomyces} promoters may be obtained from any commercially available \textit{Streptomyces} plasmids or \textit{Streptomyces- E. coli} shuttle plasmids. In step 2, the anti-sense expression vector is introduced into a suitable \textit{Streptomyces} strain and the transformed cells are grown under selective conditions in order to maintain the expression plasmid in the cell.

As described in Example 2, the gene to be inactivated is subcloned in its reverse orientation downstream of a \textit{Streptomyces} promoter (which is contained within a replicating \textit{Sac. erythraea} plasmid). The plasmid carrying the antisense gene is then introduced into the host strain by protoplast transformation. Transformants are regenerated under selective conditions in order to maintain the autonomously replicating plasmid in the cells. Subsequent expression of the antisense gene causes the production of an antisense messenger RNA (mRNA) that is complementary to the mRNA of the native allele of the selected gene. Through standard nucleotide base pair interactions, the antisense mRNA and the native mRNA form an RNA duplex that occludes the ribosome binding site of the native mRNA. This interaction prevents ribosomal translation of the native mRNA and the corresponding synthesis of the enzyme encoded by that mRNA. In this way, specific enzymatic steps in sugar biosynthesis corresponding to the identity of the gene expressed in the antisense orientation are blocked leading to the production of novel sugar intermediates which, when attached to the polyketide ring of the host microorganism, give rise to novel glycosylation-modified polyketides. Alternatively, the antisense expression vector can be constructed using a non-replicating \textit{Sac. erythraea} vector that includes flanking DNA from a nonessential region of the \textit{Sac. erythraea} chromosome, such as the region immediately upstream from the \textit{eryK} gene (FIG. 1). This vector can then be used to stably insert the antisense construction into the chromosome by homologous recombination in a fashion similar to that described for the construction of a Type I alteration.

In the third case (referred to herein as Type III alterations), novel glycosylation-modified polyketides of desired structure are produced by arranging all or a subset of the \textit{eryB} and/or \textit{eryC} genes on a replicating vector and introducing these genes \textit{en bloc} into a
"distinct" polyketide-producing organism, i.e. one other than the microorganism from which the \(\text{eryB} \) and/or \(\text{eryC} \) genes were taken. As an example, \(\text{eryB} \) and/or \(\text{eryC} \) genes may be taken from \textit{Sac. erythraea} and introduced into \textit{Streptomyces violaceoniger} or \textit{Streptomyces venezuelae}. In this case, mycarose, desosamine, their biochemical intermediates and/or their closely related derivatives will be synthesized and attached at specific positions to polyketide compounds that do not necessarily carry these, or any, sugar residues. Some examples of novel glycosylated polyketides that may be produced in hosts that carry such manipulations are shown in FIG. 6.

In Type III changes, the genes for the biosynthesis of mycarose and/or desosamine are introduced into a polyketide-producing organism other than \textit{Sac. erythraea} by another simple two step procedure: 1) all or a subset of the \(\text{eryB} \) and/or \(\text{eryC} \) genes are assembled together on a replicating plasmid downstream of a \textit{Streptomyces} promoter; and 2) the plasmid is introduced into the polyketide-producing organism. Step 1 requires standard recombinant DNA manipulations employing \textit{E. coli} and/or \textit{Streptomyces} as the host. Step 2 requires one or more plasmids out of the several \textit{Streptomyces} vectors or \textit{E. coli-Streptomyces} shuttle vectors available, one or more promoters that function in \textit{Streptomyces}, and a selection for the presence of the strain carrying the plasmid. As described in Examples 3 and 4, sets of the \(\text{eryB} \) and/or \(\text{eryC} \) genes are sequentially subcloned together on a replicating vector downstream of a suitable promoter that functions in the desired host. The plasmid carrying the grouped genes is then introduced into the host strain by electroporation or by transformation of protoplasts employing selection for a plasmid marker.

GENERAL METHODS

Materials, Plasmids, and Bacterial Strains

Restriction endonucleases, T4 DNA ligase, competent \textit{E. coli} DH5\(\alpha \) cells, X-gal, IPTG and plasmids pUC18, pUC19, and pBR322 were purchased from Bethesda Research Laboratories (BRL), Gaithersburg, MD. Vent\(\text{Tm} \) DNA polymerase was purchased from New England Biolabs (Beverly, MA). Plasmids pGEM\(\text{R} \)5Zf, pGEM\(\text{R} \)7Zf, and pGEM\(\text{R} \)11Zf were from Promega, Madison, WI, plasmids pIJ4070 and pIJ702 were obtained from the John Innes Institute, Norwich, England, and plasmids pWHM3 and pWHM4 (\textit{J. Bacteriol.} 1989 171:5872) were obtained from C. R. Hutchinson, University of Wisconsin, Madison, WI. [\(\alpha -\text{32P} \)]dCTP, Hybond\(\text{Tm} \)-N nylon membranes, and Megaprime nick translation kits were from Amersham Corp., Chicago, IL. SeaKem\(\text{R} \) LE agarose and SeaPlaque\(\text{R} \) low gelling temperature agarose were from FMC Bioproducts, Rockland, ME. \textit{E. coli} K12 strains carrying the \textit{E. coli-Sac. erythraea} shuttle plasmids pWHM3 and pWHM4 (Vara et al., \textit{J}
Bacteriol, 171:5872 (1989)) and pAIX have been deposited at the Agricultural Research Culture Collection (NRRL) 1815 N. University Street, Peoria, Illinois 61604, as of December 5, 1995, under the terms of the Budapest Treaty and will be maintained for a period of thirty (30) years from the date of deposit, or for five (5) years after the last request for the deposit, or for the enforceable period of the U.S. patent, whichever is longer.

Plasmids pWHM3, pWHM4 and pAIX were accorded the accession numbers NRRL B-21512, NRRL B-21513 and NRRL B-21514, respectively. *Sac. erythraea* strain NRRL2338 is also available from the Agricultural Research Service culture collection. *Staphylococcus aureus* Th\(^R\) (thiostrepton resistant) was obtained by plating \(10^8\) cells of *S. aureus* on agar medium containing 10 \(\mu\)g/ml thiostrepton and picking a survivor after 48 hr growth at 37°C. Thiostrepton was obtained from Sigma Chemical, St. Louis, MO. All other chemicals and reagents were from standard commercial sources unless otherwise specified.

DNA Manipulations

Standard conditions were employed for restriction endonuclease digestion, agarose gel-electrophoresis, isolation of DNA fragments from low melting agarose gels, DNA ligation, plasmid isolation from *E. coli* by alkaline lysis, and transformation of *E. coli* employing selection for ampicillin resistance (150 \(\mu\)g/ml) on LB agar plates (Sambrook *et al.*, *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Plainview, NY, 1989). Total DNA from *Sac. erythraea* and *Streptomyces* species (including *S. fradiae*, *S. celestes*, *S. violaceoniger*, *S. hygroscopicus*, *S. venezuelae*) was prepared according to described procedures (Hopwood *et al.*, *Genetic Manipulation of Streptomyces, A Laboratory Manual*, John Innes Foundation, Norwich, UK (1985)). Transfer of DNA from agarose gels to Hybond™-N membranes and Southern analysis using Megaprime™ nick translated probes was performed according to the manufacturers instructions.

Amplification of DNA Fragments

Synthetic deoxyoligonucleotides were synthesized on an ABI Model 380A synthesizer (Applied Biosystems, Foster City, CA) following the manufacturers recommendations. Amplification of DNA fragments was performed by the polymerase chain reaction (PCR) using a Perkin Elmer GeneAmp® PCR System 9600. Reactions contained 100 pmol of each primer, 1 \(\mu\)g of template DNA (chromosomal DNA from *Sac. erythraea* NRRL2338), 2 units Vent\(\textregistered\) DNA polymerase in 100 \(\mu\)l volume of PCR buffer (10 mM KCl, 10 mM (NH\(_4\))\(_2\)SO\(_4\), 20 mM Tris-HCl (pH 8.8, @ 25°C), 2.5 mM MgSO\(_4\), 0.1% Triton\(\textregistered\) X-100) containing dATP (200 \(\mu\)M), dTTP (200 \(\mu\)M), dCTP (250 \(\mu\)M), and dGTP (250 \(\mu\)M). The reaction mixture was subjected to 30 cycles. Each cycle consisted of one period of 35 sec at 96°C and one period of 2 min at 72°C. The reaction products were visualized and
purified from low melting agarose. The PCR primers described in the examples were derived from the nucleotide sequence of the eryB and eryC genes of FIG. 4.

Transformation and Gene Replacement in *Sac. erythraea*

Protoplasts of *Sac. erythraea* strains were prepared and transformed with miniprep DNA isolated from *E. coli* according to published procedures (Yamamoto *et al.*, *J Antibiotics*, 39:1304 (1986)). Non-integrative transformants, in the case of pWHM4 derivatives, were selected by regenerating the protoplasts and overlaying with thiostrepton (final concentration 20 µg/ml) as described (Weber *et al.*, *Gene*, 68:173 (1988)). Integrative transformants, in the case of pWHM3 derivatives, were selected on thiostrepton-containing agar plates (15 µg/ml) as described by Weber *et al.*, *Gene*, 68:173 (1988). Loss of the ThR phenotype was monitored after two rounds of non-selective growth in SGGP media (Yamamoto *et al.*, *J Antibiotics*, 39:1304 (1986)) followed by protoplasting and serial dilution on non-selective agar media. Regenerated protoplasts were replica plated on thiostrepton-containing media. ThS (thiostrepton-sensitive) colonies arose at a frequency of 10⁻¹. Retention of the mutant allele was established by Southern hybridization of several ThS colonies.

Fermentation

Sac. erythraea or *Streptomyces* cells are inoculated into 100 ml SCM medium (1.5% soluble starch, 2.0% Difco Soytone, 0.15% Yeast Extract, 0.01% CaCl₂) and allowed to grow for 3 to 6 days. The entire culture is then inoculated into 10 liters of fresh SCM medium. The fermenter is operated for a period of 4 to 7 days at 32°C maintaining constant aeration and pH at 7.0. After the fermentation is complete, the cells are removed by centrifugation at 4°C and the fermentation beer is kept cold until further use. When antibiotic selection to maintain a plasmid, such as pXC4 or pXB6, is required, thiostrepton (10 µg/ml) is added to both the 100 ml starter culture and the 10-liter fermenter.

The invention will be better understood in connection with the following examples, which are intended as an illustration of and not a limitation upon the scope of the invention. Both below and throughout the specification, it is intended that citations to the literature be expressly incorporated by reference.

Example 1: Construction and characterization of *Sac. erythraea* ERBIV that produces 4'-deoxy-4'-oxo-erythromycin A

A. **Construction of Plasmid pRBIV**: A 4.3 kb *PstI*-HindIII fragment, which included
the *eryBIV* gene, was isolated from the plasmid pAIX5 and subcloned into *PstI-HindIII* digested pUC19 to generate plasmid pUCBIV. After transformation and isolation of the plasmid from *E. coli*, the identity of pUCBIV was confirmed by digestion with *MunI* which released a fragment of 370 bp. Plasmid pUCBIV was then cut with the restriction enzyme *NcoI*, the restriction site filled in with Klenow enzyme, and the plasmid religated to generate plasmid pNCOBIV, (which now carried a frameshift mutation in the *eryBIV* gene). After transformation and isolation of the plasmid from *E. coli*, the identity of pNCOBIV was confirmed by digestion with *NsiI* and *HindIII* which released a fragment of 1.59 kb. (The *NsiI* site was formed by the fill-in and religation of the *NcoI* site.) Finally, plasmid pNCOBIV was digested with *HindIII* and *SstI* and the 3.2 kb fragment carrying the altered *eryBIV* gene was isolated and ligated into *HindIII* and *SstI* digested pWHM3 to generate plasmid pRBIV. After transformation and isolation of the plasmid from *E. coli*, the identity of pRBIV was confirmed by digestion with *KpnI* which released fragments of 5.2 kb, 4.4 kb, and 0.72 kb.

B. Construction of *Sac. erythraea* ERBIV: *Sac. erythraea* protoplasts were transformed with plasmid pRBIV and integrative transformants selected as described in General Methods. Resolution of the integrants by nonselective growth as described in General Methods yielded *Sac. erythraea* ERBIV in which the wild type copy of the *eryBIV* gene was replaced with the inactive mutant copy. Gene replacement was confirmed by Southern analysis of *NcoI* digested *Sac. erythraea* DNA and *NcoI-NsiI* digested *Sac. erythraea* DNA using the 1.58 kb *NcoI-HindIII* fragment isolated from plasmid pUCBIV (coordinates 681-2214, FIG. 4B) as a probe. Wild type *Sac. erythraea* and wild type resolvents display a hybridizing DNA fragment of 2.75 kb when digested with either *NcoI* or *NcoI-NsiI*, whereas *Sac. erythraea* strain ERBIV is characterized by hybridization to either a 16 kb DNA fragment or a 2.75 kb DNA fragment when digested with *NcoI* or *NcoI-NsiI*, respectively.

C. Isolation, purification, and properties of 4′-deoxy-4′-oxo-erythromycin A from *Sac. erythraea* ERBIV: *Sac. erythraea* strain ERBIV is fermented for 4 days in SCM media as described in General Methods. The fermentation broth of *Sac. erythraea* ERBIV is then cooled to 4°C and adjusted to pH 4.0 and extracted once with methylene chloride. The aqueous layer is readjusted to pH 9.0 and extracted twice with methylene chloride and the combined basic methylene chloride extracts are concentrated to a solid residue. This is digested in methanol and chromatographed over a column of Sephadex LH-20 in methanol. Fractions are tested for bioactivity against a sensitive organism, such as *Staphylococcus aureus* ThR, and active fractions are combined. The combined fractions are concentrated and the residue is digested in 10 ml of the upper phase of a solvent system consisting of n-heptane, benzene, acetone, isopropanol, 0.05 M, pH 7.0 aqueous phosphate buffer
(5:10:3:2:5, v/v/v/v/v), and chromatographed on an Ito Coil Planet Centrifuge in the same system. Active fractions are combined, concentrated and partitioned between methylene chloride and dilute ammonium hydroxide (pH 9.0). The methylene chloride layer is separated and concentrated to yield the desired product as a white foam.

Example 2: Construction and characterization of *Sac. erythraea* ER720(pASBVII) that produces 3-α-D-mycarosyl-5-β-D-desaminomyl-12-hydroxy-erythronolide B

A. Construction of plasmid pASX2 (see FIG. 7): The 290 bp *EcoRI-BamHI* segment carrying the *ermE* promoter is isolated from plasmid pIJ4070 and ligated into *EcoRI-BamHI* digested pWHM4 DNA to form pASX1. After transformation and isolation of the plasmid from *E. coli*, the identity of pASX1 is confirmed by digestion with *ApaI* which releases fragments of 3.9 kb, 2.5 kb, 1.2 kb, 0.5 kb, and 0.4 kb. Two oligonucleotides of the sequences: SEQ ID NO:31 (5'-GATCCAGGTCGACCAGCATGCTTCAAGATCTACGAAGATTTCTCC-3') and SEQ ID NO:32 (5'-AGCTACCGTGGAAAAATCCTGCGAAAAGGGCTCCAAA GGAGCGCTTTAATTGTATCTAGACGCTGCGCCTGCAGCACGCTG-3'), corresponding to the (+) and (-) strands of the bacteriophage fd gene VIII transcription terminator (t-βd) (Beck et al. (1978) *Nucl. Acids Res.* 5:4495) and including restriction enzyme sites for the enzymes *PstI*, *Sphi*, and *XbaI*, and overhanging ends compatible with *BamHI* and *HindIII* are synthesized and approximately 250 ng of each oligonucleotide are then mixed together in TE buffer and heated to 99°C for 1 min. The solution is cooled slowly to room temperature allowing the oligonucleotides to anneal due to self complementarity, and the annealed oligonucleotides are then ligated into *BamHI-HindIII* digested pASX1 to give pASX2. After transformation and isolation of the plasmid from *E. coli*, the identity of pASX2 is confirmed by DNA sequencing of the 1.2 kb *EcoRI-SalI* fragment that contains the *ErmE* promoter and the bacteriophage fd terminator.

B. Construction of plasmid pASBVII (see FIG. 8): The 598 base pair DNA segment that carries the *eryBVI* gene, comprising coordinates 7398-7996 (FIG. 4B), is amplified by PCR employing two oligonucleotides, SEQ ID NO:33 (5'-GATCGCATGCTCTAGAGTGACGCTGGGCTGGGTG-3') and SEQ ID NO:34 (5'-GATCAGAGATCCGCATGCTT-CAACGTTCCGGTGGGCGGG-3'). After digestion of the purified PCR product with *BamHI-XbaI* the PCR fragment was ligated to *BamHI-XbaI* digested pASX2 to give pASBVII. After transformation and isolation of the plasmid from *E. coli*, the identity of pASBVII is verified by DNA sequencing of the 880 bp *EcoRI-XbaI* insert.

C. Construction of *Sac. erythraea* ER720(pASBVII): *Sac. erythraea* strain ER720
protoplasts are transformed with plasmid pASBVII and transformants are selected for with thiostrepton (15 μg/ml). To confirm transformation, total DNA is isolated from ThR colonies and used to transform E. coli. After transformation and isolation of the plasmid from E. coli, the identity of pASBVII is verified by restriction analysis with the enzymes PvuII and BamHI which releases a 1.48 kb fragment. Those Sac. erythraea colonies that are found to contain pASBVII are designated Sac. erythraea ER720(pASBVII).

D. Isolation, purification, and properties of 3-α-D-mycarosyl-5-β-D-desosaminoyl-12-hydroxy-erythronolide B from Sac. erythraea ER720(pASBVII): Sac. erythraea ER720(pASBVII) is fermented for 3 days in SCM media with thiostrepton selection as described in General Methods. The fermentation broth is then cooled to 4°C and adjusted to pH 4.0 and extracted once with methylene chloride. The aqueous layer is readjusted to pH 9.0 and extracted twice with methylene chloride and the combined extracts are concentrated to a solid residue. This is digested in methanol and chromatographed over a column of Sephadex LH-20 in methanol. Fractions are tested for bioactivity against a sensitive organism, such as Staphylococcus aureus ThR, and active fractions are combined. The combined fractions are concentrated and the residue is digested in 10 ml of the upper phase of a solvent system consisting of n-heptane, benzene, acetone, isopropanol, 0.05 M, pH 7.0 aqueous phosphate buffer (5:10:3:2.5, v/v/v/v/v), and chromatographed on an Ito Coil Planet Centrifuge in the same system. Active fractions are combined, concentrated and partitioned between methylene chloride and dilute ammonium hydroxide (pH 9.0). The methylene chloride layer is separated and concentrated to yield the desired product as a white foam.

Example 3: Construction and characterization of Streptomyces antibioticus ATCC 11891(pXB6) that produces 3-des-oleandroside-3-mycarosyl oleandomycin

A. Construction of plasmid pKB6 and intermediates (see FIG. 9)

i) Construction of plasmid pK1: The DNA sequences of pBR322 (GenBank Accession #: J01749) and pUC19 (GenBank Accession #: Y02514) are known. The 805 nt DNA segment comprising coordinates 1673 through 2478 of pBR322 is amplified by PCR employing two oligodeoxynucleotides, SEQ ID NO:35 (5′-GATCAGATTTCTTTCCCGTGTTATCCCCG3′) and SEQ ID NO:36 (5′-GATCGGATCCATGCTAGACATCGCAGATGCTGGC-3′). After digestion of the purified PCR product with AflIII and BamHI, the fragment is ligated into AflIII and BamHI digested pUC19 to give plasmid pK1. The identity of plasmid pK1, after transformation and isolation from E. coli, is verified by PvuII digestion which releases fragments of 0.55 kb and 2.55 kb. Plasmid pK1 contains the ROP region of pBR322 that controls plasmid copy number.

ii) Construction of plasmid pKB1: The 2.24 kb DNA segment that carries the
eryBIV and eryBV genes, comprised between coordinates 56 and 2296 of the sequence presented in SEQ ID NO:2, is amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:37 (5'-GAATGCATCCTGGAAAGCGAGCAAATGCTCCGGTG-3') and SEQ ID NO:38 (5'-GATCTAGAGCTAGCCGGCTGCGCGCGTG-3'). After digestion with NsiI and XbaI the fragment is ligated into NsiI and XbaI digested pK1 to yield plasmid pKB1, 5.3 kb in size. The identity of plasmid pKB1, after transformation and isolation from E. coli, is verified by KpnI digestion which releases fragments of 0.72 kb, 1.14 kb and 3.42 kb.

iii) Construction of plasmid pKB2: The 1.56 kb DNA segment that carries the eryBVI gene, comprised between coordinates 3121 and 4677 of the sequence presented in SEQ ID NO:2, is amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:39 (5'-GATCGCTAGCCGGCAGCGCCTTTACAGTGAGTG-3') and SEQ ID NO:40 (5'-GATCTAGACTTAACTCAGCTCCGGGCTCTGTGAGACGGC-3'). After digestion with NheI and XbaI the fragment is ligated into NheI and XbaI digested pKB1 to give plasmid pKB2, 6.9 kb in size. The identity of plasmid pKB2, after transformation and isolation from E. coli, is confirmed by BamHI digestion which releases fragments of 0.22 kb, 0.40 kb, 2.6 kb and 3.7 kb.

iv) Construction of plasmid pKB3: The 0.6 kb DNA segment that carries the ery BVII gene, comprised between coordinates 7385 and 7987 of the sequence presented in SEQ ID NO:2, is amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:41 (5'-GATCTTAAGAACGGGATTTGCGAGTGAGCTGGCG-3') and SEQ ID NO:42 (5'-GATCTAGACCTAGTCACTCGGCTGTCGCTGGGCTC-3'). After digestion with AflII and XbaI the fragment is ligated into AflII and XbaI digested pKB2 giving plasmid pKB3, 7.5 kb in size. The identity of plasmid pKB3, after transformation and isolation from E. coli, is verified by PstI digestion which releases fragments of 1.1 kb and 6.4 kb.

v) Construction of plasmid pKB4: The 1.0 kb DNA segment that carries the eryBII gene, comprised between coordinates 2385 and 3410 of the sequence presented in SEQ ID NO:1, is amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:43 (5'-GATCCTAGCCGGCAGGGAGAGAGAACCAC-3') and SEQ ID NO:44 (5'-GATCTAGATTTACCTGCAAGCCAGGCTCCGGC-3'). Following digestion with AvrII and XbaI the fragment is ligated into AvrII and XbaI digested pKB3 yielding the desired plasmid pKB4. After transformation and isolation of the plasmid from E. coli, the identity of pKB4, 8.5 kb in size, is verified by BglII and EcoRI digestion which releases fragments of 0.41 kb, 1.6 kb, 3.1 kb and 3.4 kb.

vi) Construction of plasmid pKB5: The DNA sequence of eryBIII has been reported (Haydock et al (1991) Mol Gen Genet 230:120). The 1.3 kb DNA segment that carries the eryBIII gene, comprised between coordinates 3965 and 5232 of the sequence depicted in Haydock et al, is amplified by PCR employing two deoxyoligonucleotides, SEQ
ID NO:45 (5'-GATTAATTGGCCGGCGCCGCAGCTC-GTTATG-3') and SEQ ID NO:46
(5'-GATCTAGATATACTCATACGACTCCAGTC-CCGGTAG-3'). After digestion
with *MseI* and *XbaI* the fragment is ligated into *MseI* and *XbaI* digested pKB4 to give the
desired plasmid pKB5, 9.8 kb in size. The identity of pKB5, after transformation and
isolation from *E. coli*, is verified by *PstI* digestion which releases fragments of 1.1 kb, 2.5 kb,
and 6.1 kb, visualized by gel electrophoresis.

vii) **Construction of plasmid pKB6**: The *eryB* gene has been mapped
(Haydock *et al* (1991) *Mol Gen Genet* 230:120) and the DNA sequence on both flanks of
eryB is known (Haydock *et al* (1991) *Mol Gen Genet* 230:120) and GenBank Accession #
M11200. The 2.5 kb DNA segment that carries the *eryB* gene, comprised between
coordinates 1.1 and 3.6 of the map presented in Haydock *et al.*, is amplified by PCR
employing two deoxyoligonucleotides: SEQ ID NO:47 (5'-GATTAATTGAATGATCA-
AGCTGAAATGTGTGATC-3') and SEQ ID NO:48 (5'-GATCTAGACTGCGGGCT-
CAGCCTTCCAGGTTCG-3'). After digestion with *PacI* and *XbaI* the fragment is ligated
into *PacI* and *XbaI* digested pKB5 to give plasmid pKB6, 12.3 kb in size. The identity of
pKB6, after transformation and isolation from *E. coli*, is verified by *BamHI* digestion which
releases fragments of 0.22 kb, 0.40 kb, 1.4 kb, 2.6 kb, 3.3 kb and 4.4 kb. Plasmid pKB6
carries all of the *eryB* genes, *eryB*-*eryBVI*, that are involved in the biosynthesis of mycarose
and its attachment to the polyketide.

B. **Construction of Plasmid pXSB6 (see FIG. 11)**: The 9.2 kb NsiI-*XbaI* segment of
pKB6, prepared as described in Example 3(A)(vii) above, that carries all of the *eryB* genes is
isolated and ligated into *PstI*-*XbaI* digested pASX2, prepared as described in Example 2(A)
above, to give plasmid pXSB6. After transformation and isolation of the plasmid from *E.
coli*, the identity of pXSB6, 17.2 kb in size, is verified by the observation of fragments of
0.41 kb, 1.9 kb, and 14.9 kb after *EcoRI* digestion. Plasmid pXSB6 carries all of the *eryB*
genes in a transcriptional fusion downstream of the *ermE* promoter on an *E. coli-
Streptomyces* shuttle plasmid.

C. **Construction of Plasmid pXB6**

i) **Construction of plasmid pN702 (see FIG. 10)**: Two oligonucleotides of the
sequences: SEQ ID NO:49 5'-GGAATTCTAGATCTATGCATTCTAGAA-3') and
SEQ ID NO:50 (5'-GGCGTTCTAGAATGCATCTAGATCTGAACTTCTGCA-3') that include
restriction enzyme sites for the enzymes *EcoRI*, *BglII*, *NsiI*, and *XbaI* and overhanging ends
compatible with *PstI* and *MluI* are synthesized. Approximately 250 ng of each
oligonucleotide are then mixed together in TE buffer and heated to 99°C for 1 min. After
the solution is cooled slowly to room temperature allowing the oligonucleotides to anneal due to
self complementarity, the annealed oligonucleotides are ligated into *PstI*-*MluI* digested
pIJ702 to yield the desired plasmid pN702. After transformation and isolation of the plasmid
from *Streptomyces lividans* 1326, the identity of plasmid pN702, 4.3 kb in size, is verified by the observation of fragments of 0.75 kb and 3.6 kb after EcoRI-BamHI or XbaI-BamHI digestion.

ii) Construction of plasmid pX1 (see FIG. 10): The 290 bp EcoRI-BamHI segment that carries the *ermE* promoter is isolated from plasmid pIJ4070 and ligated into EcoRI-BglII digested pN702 to give plasmid pX1. The resulting mixture contains the desired plasmid pX1. After transformation and isolation of the plasmid from *Streptomyces lividans* 1326, the identity of plasmid pX1, 4.6 kb in size, is verified by the observation of fragments of 1.0 kb and 3.6 kb after NsiI-BamHI digestion.

iii) Construction of plasmid pXB6 (see FIG. 11): The 9.2 kb NsiI-XbaI segment of pKB6, prepared as described in Example 3(A)(vii) above, that carries all of the *eryB* genes is isolated and ligated into NsiI-XbaI digested pX1 to give the desired plasmid pXB6. After transformation and isolation of the plasmid from *Streptomyces lividans* 1326, the identity of plasmid pXB6, 13.8 kb in size, is verified by the observation of fragments of 0.41 kb, 1.9 kb, and 11.5 kb after EcoRI digestion. Plasmid pXB6 carries all of the *eryB* genes in a transcriptional fusion to the *ermE* promoter on a *Streptomyces* plasmid.

D. Construction of *Streptomyces antibioticus* ATCC 11891(pXB6): Approximately 500 µg of plasmid pXB6, isolated from *Streptomyces lividans* 1326(pXB6), are electroporated into the oleandomycin producer *Streptomyces antibioticus* ATCC 11891 and several of the resulting Thio*R* colonies that appear on the R3M-agar plates containing thioestreptone are analyzed for their plasmid content. The presence of plasmid pXB6, 13.8 kb in size, is verified by the observation of fragments of 0.41 kb, 1.9 kb, and 11.5 kb after EcoRI digestion.

E. Isolation, purification, and properties of 3-des-oleandrosyl-3-mycarosyl oleandomycin from *Streptomyces antibioticus* ATCC 11891(pXB6): *Streptomyces antibioticus* ATCC 11891(pXB6) is fermented for 5 days in SCM media with thioestrepton selection as described in General Methods. The fermentation broth is then cooled to 4°C and adjusted to pH 4.0 and extracted once with methylene chloride. The aqueous layer is readjusted to pH 9.0 and extracted twice with methylene chloride and the combined extracts are concentrated to a solid residue. This is digested in methanol and chromatographed over a column of Sephadex LH-20 in methanol. Fractions are tested for bioactivity against a sensitive organism, such as *Staphylococcus aureus* Th*R*, and active fractions are combined. The combined fractions are concentrated and the residue is digested in 10 ml of the upper phase of a solvent system consisting of n-heptane, benzene, acetone, isopropanol, 0.05 M, pH 7.0 aqueous phosphate buffer (5:10:3:2:5, v/v/v/v/v), and chromatographed on an Ito Coil Planet Centrifuge in the same system. Closely eluting active fractions are combined, concentrated and partitioned between methylene chloride and dilute ammonium hydroxide
(pH 9.0). The methylene chloride layer is separated and concentrated to yield the desired product as a white foam.

Example 4: Construction and characterization of *Streptomyces violaceoniger* NRRL 2834(pXC4) that produces 5-des-chalcosyl-5-desosaminoyl lankamycin

A. Construction of plasmid pKC4 and intermediates (see FIG. 12)

i) Construction of plasmid pKC1: The 2.4 kb DNA segment that carries the *eryCII* and *eryCIII* genes, comprised between coordinates 33 and 2413 of the sequence presented in SEQ ID NO:1, is amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:51 (5'-GAATGCATCTGGCTGGGCAGGAATCCATG-3') and SEQ ID NO:52 (5'-GATCTAGACTTAAGTCATCGTGTTCTCTCCCTCTGC GGC-3'). After digestion with *NsiI* and *XbaI* the purified PCR fragment is ligated into *NsiI* and *XbaI* digested pK1 to give plasmid pKC1, 5.5 kb in size. The identity of plasmid pKC1, after transformation and isolation from *E. coli*, is verified by *EcoRI* digestion which releases fragments of 2.2 kb and 3.3 kb.

ii) Construction of plasmid pKC2: The 732 bp DNA segment that carries the *eryCVI* gene, comprised between coordinates 2331 and 3063 of the sequence presented in SEQ ID NO:2, is amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:53 (5'-GATCCCTTAAGCTCGGAGGGAGCAGGGATG-3') and SEQ ID NO:54 (5'-GATCTAGACCTAGGTATCCGCGCAACCCGACGAAC-3'). After digestion with *AflII* and *XbaI* the purified PCR fragment is ligated into *AflII* and *XbaI* digested pKC1 to give plasmid pKC2, 6.2 kb in size. The identity of plasmid pKC2, after transformation and isolation from *E. coli*, is verified by *XbaI-EcoRI* digestion which releases fragments of 0.95 kb, 2.2 kb and 3.1 kb.

iii) Construction of plasmid pKC3: The 2.7 kb DNA segment that carries the *eryCIV* and *eryCV* genes, comprised between coordinates 4650 and 7386 of the sequence presented in SEQ ID NO:2, is amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:55 (5'-GATCTAGGCCGTCTACACCCAGGACCGCCGG-3') and SEQ ID NO:56 (5'-GATCTAGATTAATACCTTCCCGCGAGAAGCCGC-3'). After digestion with *AvrII* and *XbaI* the purified PCR fragment is ligated into *AvrII* and *XbaI* digested pKC2 to yield plasmid pKC3, 9.0 kb in size. The identity of plasmid pKC3, after transformation and isolation from *E. coli*, is verified by *SphI* digestion which releases fragments of 4.0 kb and 5.0 kb.

iv) Construction of plasmid pKC4: The DNA sequence of the *eryCI* gene has been determined (GenBank Accession #X15541). The 1.1 kb DNA segment that carries the *eryCI* gene, comprised between coordinates 38 and 1161 of the sequence indicated above, is
amplified by PCR employing two deoxyoligonucleotides, SEQ ID NO:57 (5'-GATCTTAAGCCGCCACTCGAACCGACACTCG-3') and SEQ ID NO:58 (5'-GATCTAGATCAAGCCC-CAGCCTTGGAGGG-3'). After digestion with *Mse*I and *Xba*I the fragment is ligated into *Mse*I and *Xba*I digested pKC3 to give plasmid pKC4, 10.1 kb in size. The identity of plasmid pKC4, after transformation and isolation from *E. coli*, is verified by *Kpn*I digestion which releases fragments of 0.15 kb, 0.31 kb, 4.1 kb and 5.5 kb. Plasmid pKC4 carries all of the *eryC* genes, *eryCI-eryCVI*, that are involved in the biosynthesis of desosamine and its attachment to the polydetide.

B. Construction of Plasmid pXSC4 (see FIG. 13): The 6.9 kb *Nsi*I-*Xba*I segment of pKC4 that carries all of the *eryC* genes is isolated and ligated into *Nsi*I-*Xba*I digested pASX2, prepared as described in Example 2(A), to give the desired plasmid pXSC4, 14.9 kb in size, wherein all of the *eryC* genes are transcriptionally linked downstream of the *ermE* promoter on an *E. coli*-Streptomyces shuttle plasmid. The identity of plasmid pXSC4, after transformation and isolation from *E. coli*, is verified by the observation of fragments of 0.29 kb, 2.2 kb, and 12.4 kb after *Eco*RI digestion.

C. Construction of Plasmid pXC4 (see FIG. 13): The 6.9 kb *Nsi*I-*Xba*I segment of pKC4 that carries all of the *eryC* genes is isolated and ligated into *Nsi*I-*Xba*I digested pX1, prepared as described in Example 3(C)(ii), to give the desired plasmid pXC4, 11.5 kb in size, wherein all of the *eryC* genes are transcriptionally linked downstream of the *ermE* promoter on a Streptomyces plasmid. After transformation and isolation of the plasmid from *Streptomyces lividans* 1326, the identity of plasmid pXC4 is verified by the observation of fragments of 0.29 kb, 2.2 kb, and 9.0 kb after *Eco*RI digestion.

D. Construction of *Streptomyces violaceoniger* NRRL 2834(pXC4): Approximately 500 µg of the plasmid pXC4, isolated from *Streptomyces lividans* 1326(pXC4), are electroporated into the lankamycin producer *Streptomyces violaceoniger* NRRL 2834 and several of the resulting ThioR colonies that appear on the R3M-agar plates containing thiostrepton are analyzed for their plasmid content. The presence of plasmid pXC4 is verified by the observation of fragments of 0.29 kb, 2.2 kb, and 9.1 kb in size after *Eco*RI digestion of the plasmid.

E. Isolation, purification, and properties of 5-des-chalcosyl-5-desosaminoyl lankamycin: *S. violaceoniger* NRRL 2834(pXC4) is fermented for 5 days in SCM media with thioestrepton selection as described in General Methods. The fermentation broth is then cooled to 4°C and adjusted to pH 4.0 and extracted once with methylene chloride. The aqueous layer is readjusted to pH 9.0 and extracted twice with methylene chloride and the combined extracts are concentrated to a solid residue. This is digested in methanol and chromatographed over a column of Sephadex LH-20 in methanol. Fractions are tested for bioactivity against a sensitive organism, such as *Staphylococcus aureus* ThR, and active
fractions are combined. The combined fractions are concentrated and the residue is digested in 10 ml of the upper phase of a solvent system consisting of n-heptane, benzene, acetone, isopropanol, 0.05 M, pH 7.0 aqueous phosphate buffer (5:10:3:2:5, v/v/v/v/v), and chromatographed on an Ito Coil Planet Centrifuge in the same system. Active fractions are combined, concentrated and partitioned between methylene chloride and dilute ammonium hydroxide (pH 9.0). The methylene chloride layer is separated and concentrated to yield the desired product as a white foam.

Although the present invention is illustrated in the examples listed above in terms of preferred embodiments, these examples are not to be regarded as limiting the scope of the invention. The above illustrations serve to describe the principles and methodologies involved in creating the types of genetic alterations that can be introduced into Sac. erythraea and/or other Streptomyces that result in the synthesis of novel glycosylation-modified polyketide products. Although a single Type I alteration, leading to the production of for example, 4'-deoxy-4'-oxo-erythromycin A, is specified herein, it is obvious to those skilled in the art that other Type I changes can be introduced into the eryB and/or eryC genes leading to novel glycosylation-modified polyketide structures. Examples of additional Type I alterations leading to useful novel compounds include but are not limited to: mutations in the eryBVII gene conceivably leading to 3-α-D-mycarosyl-5-β-D-desosaminoyl-12-hydroxy-erythronolide B and mutations in the eryCVI gene conceivably leading to N-3α'-des-dimethyl erythromycin A. Moreover, it is obvious that Type I alterations in two or more different eryB and/or eryC genes can be combined leading to novel glycosylation-modified polyketide structures. Examples of combinations of two Type I alterations leading to useful compounds include but are not limited to: mutations in the eryBIV and eryBVII genes conceivably leading to 3-α-D-4'-deoxy-4'-oxo-mycarosyl-5-β-D-desosaminoyl-12-hydroxy-erythronolide B; mutations in the eryBIV and eryCVI genes conceivably leading to 4'-deoxy-4'-oxo-(N-3α'-des-dimethyl)-erythromycin A; and mutations in the eryBIV, eryBVII, and eryCVI genes conceivably leading to 3-α-D-4'-deoxy-4'-oxo-mycarosyl-5-β-D-(N-3α'-des-dimethyl)-desosaminoyl-12-hydroxy-erythronolide B. All Type I mutations or combinations of two or more Type I mutations in the eryBII, eryBIV, eryBV, eryBVI, eryBVII, eryCII, eryCIII, eryCIV, eryCV, or eryCVI genes, the Sac. erythraea strains that carry said mutations or combinations of mutations, and the corresponding polyketides produced from said strains, therefore, are included within the scope of the present invention.

Although the Type II mutation specified herein was constructed with the eryBVII gene on a self-replicating plasmid it is obvious that other eryB genes and eryC genes can be expressed in an antisense orientation leading to novel glycosylation-modified polyketide structures. Examples of additional Type II alterations leading to useful compounds include but are not limited to: antisense expression of the eryBIV gene conceivably leading to 4'
deoxy-4''-oxo-erythromycin A and antisense expression of the eryCVI gene conceivably leading to N-3α'-des-dimethyl erythromycin A. Moreover, it will occur to those skilled in the art that promoters other than the ermE* promoter, for example the melC promoter of pIJ702, will be suitable for antisense expression, and that many self-replicating vectors in addition to pWHM4 will function to carry the antisense alteration. It will also occur to those skilled in the art that a self-replicating vector is not required for this invention and that the antisense alteration can be introduced directly into the chromosome using the same principles employed to construct a Type I gene alteration. An example of a Type II alteration that is introduced directly into the chromosome is the eryBVII antisense alteration described in Example 2 wherein DNA segments immediately upstream of the eryK gene are used to flank the ermE-eryBVII-phage fd terminator grouping in a pWHM3 vector, and this vector is integrated into and then resolved from the chromosome leaving the ermE*-eryBVII-phage fd terminator grouping stably incorporated into this nonessential region of the chromosome of Sac. erythraea conceivably leading to the production of 3-α-D-mycarosyl-5-β-D-desosaminoyl-12-hydroxy-erythronolide B. All Type II mutations in the eryBII, eryBIV, eryBV, eryBVI, eryBVII, eryCII, eryCIII, eryCIV, eryCV, or eryCVI genes whether carried on a self-replicating plasmid or integrated into a nonessential region of the chromosome, the Sac. erythraea strains that carry said mutations, and the corresponding polyketides produced from said strains, therefore, are included within the scope of the present invention.

Although Type III alterations, leading to the production of 5-des-chalcosyl-5-desosaminoyl lankamycin in Streptomyces violaceoniger and 3-des-oleandrosyl-3-mycarosyl oleandomycin in Streptomyces antibioticus, are specified herein, it is obvious that Type III alterations can be introduced into any polyketide producing microorganism leading to novel glycosylation modified polyketides. It will also occur to those skilled in the art that both the eryB and eryC genes can either be cotransformed into a polyketide producing microorganism or grouped together on a single vector that is introduced into a polyketide producing microorganism. An example of a Type III change using both the eryB and eryC genes together is their introduction into Streptomyces violaceoniger conceivably leading to 3-des-(4''-O-acetylarcansosyl)-3-mycarosyl-5-des-chalcosyl-5-desosaminoyl lankamycin. Although the Type III alterations specified herein have indicated a specific genetic order of the eryB or eryC genes, it will occur to those skilled at the art that many different genetic arrangements of the eryB or eryC genes will produce similar results. It will also that occur to those skilled at the art that certain arrangements of the eryB and/or eryC genes that lack one or more of the respective eryB and/or eryC genes will lead to the production of novel glycosylated polyketides in which intermediate compounds in the biosynthesis of mycarose and/or desosamine, respectively, such as those outlined in FIGS. 2 and 3, are attached to the polyketide. An example of a Type III alteration in which only a subset of the eryB and/or
eryC genes are used is the introduction of a pXC4 derivative that lacks the eryCVI gene, removed by digestion of plasmid pXC4 with AflIII and AvrII followed by treatment with the Klenow fragment of DNA polymerase I and religation, into Streptomyces violaceoniger leading to the production of to 5-des-chalcosyl-5-((N-3α'-des-dimethyl desosaminoyl) lankamycin. It will also that occur to those skilled at the art that promoters other than ermE or ermE*, such as the melC promoter of plasmid plJ702, and vectors other than pWHM4 or pIJ702 can also be utilized in the construction of a Type III alteration, and these variants are, of course, considered to be within the scope of the invention. Finally, it will also occur to those skilled in the art that a self-replicating vector is not required for this invention and that an assembly of sugar biosynthesis genes can be introduced directly into the chromosome of a heterologous host using the same principles employed to construct a Type I gene alteration once a nonessential region of the heterologous host chromosome has been identified. Alternatively, plasmids or bacteriophages which undergo site-specific recombination with host genes may also be used to introduce eryB and eryC genes into a host to effect Type III alterations. All Type III alterations using one or more of the eryBII, eryBIV, eryBV, eryBVI, eryBVII, eryCII, eryCIII, eryCIV, eryCV, or eryCVI genes, the polykletide producing strains that carry said alterations, and the corresponding polyketides produced from said strains, therefore, are included within the scope of the present invention.

In addition, it is also possible to create combinations of Type I and Type II alterations such that some Type I eryB and/or eryC mutations are introduced directly into the Sac. erythraea chromosome in the appropriate locus, while other eryB and/or eryC genes are inactivated by Type II alterations using a self-replicating or integrating vector. For example, combination of a Type I alteration, such as a mutation in eryBIV, and a Type II alteration, such as transformation with pASBVII, will conceivably lead to production of 3-α-D-4''-deoxy-4''-oxo-mycarosyl-5-β-D-desosaminoyl-12-hydroxy-erythronolide B. All combinations of two or more alterations of Type I and Type II, the Sac. erythraea strains that carry such alterations, and the glycosylated polyketides produced from such strains are included within the scope of the present invention.

As an extension of the examples reported with the eryB and/or eryC genes, it is possible to apply the method described herein to heterologous sugar biosynthesis genes that are similar to the eryB and/or eryC genes. The construction of strains carrying heterologous sugar biosynthesis genes that lead to the production of novel glycosylated polyketides requires: (i) cloning of the sugar biosynthesis genes from any other glycosylated-polyketide producing actinomycete, (ii) determining the nucleotide sequence of the cloned gene(s); (iii) excising and assembling the cloned gene(s) into vectors suitable for Type I, Type II, or Type III alterations; and (iv) transformation of polyketide producing microorganisms and screening for the novel compound. Any polyketide-associated sugar biosynthesis gene can thus be
precisely excised from the genome of a glycosylated polyketide producing microorganism and altered or arranged with other sugar biosynthesis genes and then introduced into the same or another polyketide producing microorganism to create a novel glycosylated polyketide of predicted structure. Thus, for example, a Type I or Type II alteration of a heterologous gene that is similar to an eryB and/or eryC gene, such as can be found in the eryBII homolog for the synthesis of L-oleandrose in *Streptomyces antibioticus*, to result in the production of 3-des-L-oleandrosyl-3-D-oleandrosyl oleandomycin is included within the scope of the present invention. Similarly, a Type III assembly of the genes for the synthesis of a sugar other than mycarose or desosamine, such as can be found in the genes for the synthesis of angolosamine in *Streptomyces eurythermus*, and their transformation into *Sac. erythraea* to result in the synthesis of 5-des-desosaminoyl-5-angolosaminoyl-erythromycin A is included within the scope of the present invention.

It will occur to those skilled in the art that the Type I, Type II, and Type III genetic manipulations described herein and the polyketide producing microorganisms into which they are introduced are in no way exclusive. Hence, the choice of a convenient host and the choice of a Type I, Type II, or Type III alteration is based solely on the relatedness of the desired novel glycosylated polyketide to a natural counterpart. Therefore, Type I, Type II, and Type III alterations can be constructed in any polyketide producing microorganism employing either endogenous or exogenous sugar biosynthesis genes. Thus all Type I, Type II, and Type III mutations or various combinations thereof constructed in any polyketide producing microorganism according to the principles described herein, and the respective polyketides produced from such strains, are included within the scope of the present invention. Examples of glycosylated polyketides that can be altered by creating Type I, Type II, or Type III changes in the producing microorganisms include, but are not limited to macrolide antibiotics such as erythromycin, tylosin, spiramycin, etc; aromatic polyketides such as daunorubicin and doxorubicin, etc; polyenes such as candidicidin, amphotericins, etc; and other complex polyketides such as avermectin.

Whereas the novel derivatives or modifications of erythromycin described herein have been specified as the A derivatives, such as 4'-deoxy-4'-oxo-erythromycin A, those skilled in the art understand that the wild type strain of *Sac. erythraea* produces a family of erythromycin compounds, including erythromycin A, erythromycin B, erythromycin C, and erythromycin D. Thus, modified strains of *Sac. erythraea*, such as strain ERIV, for example, would be expected to produce the corresponding members of the 4'-deoxy-4'-oxo-erythromycin family, including 4'-deoxy-4'-oxo-erythromycin A, 4'-deoxy-4'-oxo-erythromycin B, 4'-deoxy-4'-oxo-erythromycin C, and 4'-deoxy-4'-oxo-erythromycin D. Similarly, all other modified strains of *Sac. erythraea* that produce novel glycosylated erythromycin derivatives would be expected to produce the A, B, C, and D forms of said
derivatives. For example, modified *Sac. erythraea* strains that produce 6-deoxyerythromycin, 6,12-dideoxyerythromycin and 6,7-anhydroerythromycin would be expected to produce novel glycosylation-modified polyketides by introduction of the additional modification of a Type I, II or III change in a sugar biosynthesis gene. Therefore, all members of the family of each of the novel erythromycins described herein or produced by these methods are included within the scope of the present invention.

Variations and modifications of the methods for obtaining the desired plasmids, hosts for cloning and choices of vectors and *eryB* and/or *eryC* genes to clone and modify, other than those described herein will occur to those skilled in the art. For example, although we have described the use of plasmids pWHM3, pWHM4, and pIJ702, other vectors can be employed wherein all or part of said plasmids is replaced by other DNA segments that function in a similar manner, such as replacing the pUC19 component of pWHM3 and pWHM4 with pBR322, available from BRL; or employing different segments of the pIJ101 replicon in pWHM3 and pIJ702, or the pJV1 replicon in pWHM4, respectively; or employing selectable markers other than thiostrepton- or ampicillin-resistance. These are just a few of a long list of possible examples all of which are included within the scope of the present invention. Similarly, the segments of the *eryB* and *eryC* loci that have been specified herein to generate the various Type I, Type II, and Type III alterations can readily be substituted for other segments of different length encoding the same functions, either produced by PCR-amplification of genomic DNA or of an isolated clone, or by isolating suitable restriction fragments from *Sac. erythraea*. In the same way it is possible to create Type I mutations functionally equivalent to those described herein by altering through deletion, insertion, or site directed mutagenesis different portions of the corresponding genes. It is also possible to create Type II mutations functionally equivalent to those described herein by employing larger or smaller portions of the corresponding genes; and it is possible to create Type III mutations using larger or smaller segments of the corresponding genes in the same or different linear order described herein. Additional modifications include changes in the restriction sites used for cloning or in the general methodologies described above. All such changes are included in the scope of the present invention. It will also occur to those skilled in the art that different methods are available to ferment *Sac. erythraea* and other polyketide producing microorganisms and to extract the novel polyketides specified herein, and all such methods are also included within the scope of this invention.

It will also be apparent that many modifications and variations of the invention as set forth herein are possible without departing from the spirit and scope thereof, and that, accordingly, such limitations are imposed only as indicated by the appended claims.
We claim:

1. An isolated single or double stranded polynucleotide having a nucleotide sequence which comprises (a) a nucleotide sequence selected from the group consisting of (i) the sense sequence of SEQ ID NO:1 from about nucleotide position 54 to about nucleotide position 1136; (ii) the sense sequence of SEQ ID NO:1 from about nucleotide position 1147 to about nucleotide position 2412; (iii) sense sequence of SEQ ID NO:1 from about nucleotide position 2409 to about nucleotide position 3410; (iv) the sense sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048; (v) the sense sequence of SEQ ID NO:2 from about nucleotide position 1048 to about nucleotide position 2295; (vi) the sense sequence of SEQ ID NO:2 from about nucleotide position 2348 to about nucleotide position 3061; (vii) the sense sequence of SEQ ID NO:2 from about nucleotide position 3214 to about nucleotide position 4677; (viii) the sense sequence of SEQ ID NO:2 from about nucleotide position 4674 to about nucleotide position 5879; (iv) the sense sequence of SEQ ID NO:2 from about nucleotide position 5917 to about nucleotide position 7386; and (x) the sense sequence of SEQ ID NO:2 from about nucleotide position 7415 to about nucleotide position 7996;

 (b) sequences complementary to the sequences of (a);

 (c) sequences that, on expression, encode a polypeptide encoded by the sequences of (a); and

 (d) analogous sequences that hybridize under stringent conditions to the sequences of (a).

2. The polynucleotide of claim 1 that is a DNA molecule or RNA molecule.

3. The polynucleotide of claim 2 wherein the nucleotide sequence is the nucleotide sequence of (a) selected from the group consisting of (i) the sense sequence of SEQ ID NO:1 from about nucleotide position 54 to about nucleotide position 1136; (ii) the sense sequence of SEQ ID NO:1 from about nucleotide position 1147 to about nucleotide position 2412; (iii) the sense sequence of SEQ ID NO:2 from about nucleotide position 2348 to about nucleotide position 3061; (iv) the sense sequence of SEQ ID NO:2 from about nucleotide position 4674 to about nucleotide position 5879; and (v) the sense sequence of SEQ ID NO:2 from about nucleotide position 5917 to about nucleotide position 7386.

4. The polynucleotide of claim 2 wherein the nucleotide sequence is the nucleotide sequence of (a) selected from the group consisting of (i) sense sequence of SEQ ID NO:1 from about nucleotide position 2409 to about nucleotide position 3410; (ii) the sense
sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048; (iii) the sense sequence of SEQ ID NO:2 from about nucleotide position 1048 to about nucleotide position 2295; (iv) the sense sequence of SEQ ID NO:2 from about nucleotide position 3214 to about nucleotide position 4677; and (v) the sense sequence of SEQ ID NO:2 from about nucleotide position 7415 to about nucleotide position 7996.

5. The polynucleotide of claim 2 wherein the nucleotide sequence is the nucleotide sequence of (a) having the sense sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048.

6. A vector comprising the DNA molecule of claim 2.

7. The vector of claim 6 further comprising an enhancer-promoter operatively linked to the polynucleotide.

8. The vector of claim 6 wherein the polynucleotide has the nucleotide sequence of claim 5.

9. A host cell transformed with the vector of claim 6 or claim 7 or claim 8.

10. The transformed host cell of claim 9 that is a bacterial cell.

11. The transformed host cell of claim 10 wherein the bacterial cell is selected from the group consisting of *Streptomyces* and *E. coli*.

12. A method for directing the biosynthesis of specific glycosylation-modified polyketides by genetic manipulation of a polyketide-producing microorganism, said method comprising the steps of:

 (1) isolating a sugar biosynthesis gene-containing DNA sequence according to claim 1;

 (2) identifying within said gene-containing DNA sequence one or more DNA fragments responsible for the biosynthesis of a polyketide-associated sugar or its attachment to a polyketide;

 (3) creating one or more specified changes into said DNA fragment or fragments, thereby resulting in an altered DNA sequence;

 (4) introducing said altered DNA sequence into a polyketide-producing microorganism to replace the original sequence, said altered DNA sequence, when translated,
resulting in altered enzymatic activity capable of effecting the production of said specific glycosylation-modified polyketide;

(5) growing a culture of said altered polyketide-producing microorganism under conditions suitable for the formation of said specific glycosylation-modified polyketide; and

(6) isolating said specific glycosylation-modified polyketide from said culture.

13. The method of claim 12 wherein said specified change in said DNA fragment or fragments results in the inactivation of at least one enzymatic activity involved in the biosynthesis of a polyketide-associated sugar or in its attachment to a polyketide.

14. The method of claim 13 wherein said polyketide-associated sugar is L-mycarose.

15. The method of claim 13 wherein said polyketide-associated sugar is D-desosamine.

16. A method for directing the biosynthesis of specific glycosylation-modified polyketides by genetic manipulation of a polyketide-producing microorganism, said method comprising the steps of:

(1) isolating a sugar biosynthesis gene-containing DNA sequence according to claim 1;

(2) identifying within said gene-containing DNA sequence one or more DNA fragments responsible for the biosynthesis of a polyketide-associated sugar or its attachment to a polyketide;

(3) reversing the strand orientation of said DNA fragment or fragments, thereby resulting in an altered DNA sequence which, when transcribed, results in production of an antisense mRNA;

(4) introducing said altered DNA sequence into a polyketide-producing microorganism having an mRNA capable of binding to said antisense mRNA to produce an altered polyketide-producing microorganism capable of producing said specific glycosylation-modified polyketide;

(5) growing a culture of said altered polyketide-producing microorganism under conditions suitable for the formation of said specific glycosylation-modified polyketide; and

(6) isolating said specific glycosylation-modified polyketide from said culture.

17. A method for directing the biosynthesis of specific glycosylation-modified polyketides by genetic manipulation of a polyketide-producing microorganism, said method comprising the steps of:

(1) isolating a sugar biosynthesis gene-containing DNA sequence according to claim
38

(2) identifying within said gene-containing DNA sequence one or more DNA
fragments responsible for the biosynthesis of a polyketide-associated sugar or its attachment
to a polyketide;

(3) introducing said DNA fragment or fragments into a distinct polyketide-producing
microorganism to produce an altered polyketide-producing microorganism capable of
producing said specific glycosylation-modified polyketide;

(4) growing a culture of said polyketide-producing microorganism containing said
DNA fragment or fragments under conditions suitable for the formation of said specific
glycosylation-modified polyketide; and

(6) isolating said specific glycosylation-modified polyketide from said culture.

18. The method of claim 13 or claim 16 or claim 17 wherein said DNA fragment
comprises one or more genes which encode an enzymatic activity involved in the
biosynthesis of L-mycarose or in its attachment to a polyketide.

19. The method of claim 13 or claim 16 or claim 17 wherein said DNA fragment
comprises one or more genes which encode an enzymatic activity involved in the
biosynthesis of D-desosamine or in its attachment to a polyketide.

20. The method of claim 13 or claim 16 or claim 17 wherein said DNA fragment is the
sequence of claim 8.

21. An isolated polypeptide having an amino acid sequence encoded by a nucleotide
sequence selected from the group consisting of the sense sequence of SEQ ID NO:1 from
about nucleotide position 54 to about nucleotide position 1136; the sense sequence of SEQ ID
NO:1 from about nucleotide position 1147 to about nucleotide position 2412; sense sequence
of SEQ ID NO:1 from about nucleotide position 2409 to about nucleotide position 3410; the
sense sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide
position 1048; the sense sequence of SEQ ID NO:2 from about nucleotide position 1048 to
about nucleotide position 2295; the sense sequence of SEQ ID NO:2 from about nucleotide
position 2348 to about nucleotide position 3061; the sense sequence of SEQ ID NO:2 from
about nucleotide position 3214 to about nucleotide position 4677; the sense sequence of SEQ
ID NO:2 from about nucleotide position 4674 to about nucleotide position 5879; the sense
sequence of SEQ ID NO:2 from about nucleotide position 5917 to about nucleotide position
7386; and the sense sequence of SEQ ID NO:2 from about nucleotide position 7415 to about
nucleotide position 7996.
22. An isolated polypeptide of claim 31 encoded by the sequence of SEQ ID NO:2 from about nucleotide position 80 to about nucleotide position 1048.
FIG. 4A-1
FIG. 4B-3

SUBSTITUTE SHEET (RULE 26)
FIG. 4B-4
FIG. 4B-7

SUBSTITUTE SHEET (RULE 26)
FIG. 4B-9

SUBSTITUTE SHEET (RULE 26)
FIG. 5A-1
FIG. 5A-2
FIG. 5A-3
FIG. 5B-1
<table>
<thead>
<tr>
<th></th>
<th>151</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryBVII</td>
<td>yEqaIdpfdp alglpwpadl evvlsDrdtv avdletarrg gmlpdyadcl</td>
<td></td>
</tr>
<tr>
<td>strM</td>
<td>rEhgVhpldp dlgiawpdgi epvlsEkdrq apgiaemerr gllpdyeecl</td>
<td></td>
</tr>
<tr>
<td>rfbC</td>
<td>sEgsIlwnde aigiewp... fsq1pE.......lsakdaa aplldqallt</td>
<td></td>
</tr>
<tr>
<td>rfbF</td>
<td>hDrcIrfdns dinikwk... egisEqqvi eyklsskdis gnsladaevf</td>
<td></td>
</tr>
<tr>
<td>ascE</td>
<td>cDsgIkwnsf gfkwpid... npiisEkdns lcyfdefdss f........</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>-E--I---- ------ -----E---- ------ ------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>201</th>
<th>212</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryBVII</td>
<td>geepastgr ...</td>
<td></td>
</tr>
<tr>
<td>strM</td>
<td>afrrslerg tg</td>
<td></td>
</tr>
<tr>
<td>rfbC</td>
<td>e........... ...</td>
<td></td>
</tr>
<tr>
<td>rfbF</td>
<td>............. ...</td>
<td></td>
</tr>
<tr>
<td>ascE</td>
<td>............. ...</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>-------- --</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 5B-2
FIG. 5C-1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryCIV</td>
<td>...........mk raltdLaifg gpeaFlhtly vgrptVgd... rerFfa</td>
<td></td>
</tr>
<tr>
<td>eryCI</td>
<td>...........md vpflDlqaa ayleLrsdid qAcrrVlg... sgwY...</td>
<td></td>
</tr>
<tr>
<td>ascC</td>
<td>...msqelr qqiaeLvaq. aetaMapkpf eAgksVvpps gkvigtkelq</td>
<td></td>
</tr>
<tr>
<td>dnrJ</td>
<td>...........vustyvWqyln eyreeradil dAVetVfe... sgQL...</td>
<td></td>
</tr>
<tr>
<td>prgl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strS</td>
<td>...........mssFqelp rwpqLttdddi eAavaalr... snrl...</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>___</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>51</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryCIV</td>
<td>rlewalnnnw Ltnnggplvre FEgrvAdl... aGvrHcVatc natvAlgLvlL</td>
<td></td>
</tr>
<tr>
<td>eryCI</td>
<td>lhgpe...nea FEaeFAAy... cenaHcVtvg SGcdAleLsL</td>
<td></td>
</tr>
<tr>
<td>ascC</td>
<td>lmveasldgw L.ttgfnda FEkkLgeYl... .Gvpvylttt SGssAn1LAL</td>
<td></td>
</tr>
<tr>
<td>dnrJ</td>
<td>ilgt...vrs FEeeFAAyd... hG1pyctgvd nGtAlvLgL</td>
<td></td>
</tr>
<tr>
<td>prgl</td>
<td>...........sgp..igq LEaefFlaFld hGvryaVtfn SGtsAllaAy</td>
<td></td>
</tr>
<tr>
<td>strS</td>
<td>...........vgqgnstvve FEaAlAa...g qGveHaVvds tGtAavhLAL</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>___L---L---A---V---</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryCIV</td>
<td>rAs...........dV...sgEVl mPsMTFaata haasw1GleP VFcDVDpeTg</td>
<td></td>
</tr>
<tr>
<td>eryCI</td>
<td>Val...........gVgqGDEVI vPsHTFiaTw lgV.pvGAvP VpVEpigvsh</td>
<td></td>
</tr>
<tr>
<td>ascC</td>
<td>tALTspklgv ralkPGDEVI tvaagFptTv nptiqnGlip VVFVDVdpT.</td>
<td></td>
</tr>
<tr>
<td>dnrJ</td>
<td>rAL...........gIgPGDEEV tvsnTaapTv vaIaVgAtP VFVDVhe...</td>
<td></td>
</tr>
<tr>
<td>prgl</td>
<td>fAL...........gVReGvEaa gPaITYhaal spVfalrgdv VLVDIDpsvr</td>
<td></td>
</tr>
<tr>
<td>strS</td>
<td>hAL...........dVgPGDEVI vPthTFigsaa spVtlyGArP VFAdVtpdT</td>
<td></td>
</tr>
</tbody>
</table>
| Consensus | __ --V--PGDEVI --P--TF--T--V--GA--P | VFVDVD--T--
<table>
<thead>
<tr>
<th>Consensus</th>
<th>301</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryCIV</td>
<td>tNgkMsEcaA AmlgtsLdxF aetrvhnrln halysdeLrd vrGisvhafd</td>
<td></td>
</tr>
<tr>
<td>eryCI</td>
<td>tNaRLdELQa AvlrvkLrhL DdWnarRttl aghyqteLkd vpGitlpeth</td>
<td></td>
</tr>
<tr>
<td>ascC</td>
<td>yNikitDMQA AcglaqLepi EeFvekRkan fkylkdaLqs cadf.ielpe</td>
<td></td>
</tr>
<tr>
<td>dnrJ</td>
<td>hNsRLdEvQA eilrrkLrrL DaYvegRrav arryeegLgd ldGlvlpt..</td>
<td></td>
</tr>
<tr>
<td>prgl</td>
<td>lghRr......</td>
<td></td>
</tr>
<tr>
<td>strS</td>
<td>yNvRLtswQA psaspsnkL gdLveaRrrn aaylserLag veGlelpvep</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>-N-R-L-E-QA A-----L----D-W----R---- -----L-- --G------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus</th>
<th>351</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryCIV</td>
<td>pgeqmnyqYv iisVdsaatg idr..dqLqa iLraekVvaq pyFspgcHqm</td>
<td></td>
</tr>
<tr>
<td>eryCI</td>
<td>pwads..awH lFvrlcenrDhLqr hLtqdagVqlt ihYptpvlHls</td>
<td></td>
</tr>
<tr>
<td>ascC</td>
<td>atensdpsWf gFpI.tlkeD sgvsridLvk fLdeakVgtr llFagnltrq</td>
<td></td>
</tr>
<tr>
<td>dnrJ</td>
<td>iaegndhvYy vYvVrhperDriLe aLtaydIhln isYpwpvHtm</td>
<td></td>
</tr>
<tr>
<td>prgl</td>
<td>.................</td>
<td></td>
</tr>
<tr>
<td>strS</td>
<td>p..gtthayW kYaVrvvpgD grrsadaiaa hLrsrgVpvl lrYpyplHkq</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>-------W- -Y-------D -------L-- -L----V--- --Y----H--</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 5C-4

eryCIV
eryCI
ascC
dnrJ
prg1
strS
Consensus

401
pYrte...p plrLentEqL sdrvLaLPtg PavssEdiirr Vcdiirlaat
paYdglp.p pGgSpvaEsL agevLsLPig PhLsrEaaDh VIatlkaga
pyFhdkvyRv vGeLtnlDri mnqtFwigiY PgLthDh1Dy VVskfieeffg
sgFAhlg.Yg pGdLpvtERL ageiFsLpmy PsLrpDaqEk VIdavrevvg
...........
paFAe...Yh gvsLpvaERL sqelLaLPsh PgLvegh1Dh aVeevkava
--FA----Y--G-L---ERL ----L-LP-- P-L--E--D-- VV-------

451
468
sgeinaqwd qrtrngs

.............
lnf...........
s1...........
.............
.............
s...........

Consensus

FIG. 5D-1
Fig. 5D-2

<table>
<thead>
<tr>
<th>Consensus</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLWGS Dltgy frgrFqaqlr rrPpEdRdp LgtWL Tevag rfGv. eFgeD</td>
<td></td>
</tr>
<tr>
<td>LLWGP Dittr arqnFlgllp dqPeEhRegp LaeWL Twtле kyGgp FaFdeE</td>
<td></td>
</tr>
<tr>
<td>LLWGP Dflr vhdrFqqvlh evPaErRdda LeeWL Twtłe rhGа. aFgpE</td>
<td></td>
</tr>
<tr>
<td>LLWG-D---- ----F----- --P-E-R--- L--WLT---- --G---F--E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>---G--W--ID-- P--RL--T-- TV--R--- YNG----VVP -WL-------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV--T--G-- -------- L----- -D-EIV-T-- --------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1ciTgGfsg lg1a. adadq fartLaqlar fDgEIVvTgs gpdt sav...</td>
<td></td>
</tr>
<tr>
<td>RVclTlGiss ren sigqvs. ieelLgavgd vDaEIIaTfd aqPlegvani</td>
<td></td>
</tr>
<tr>
<td>RV11TqGite rstgftglpr aegLlasiae lDaEIVvAtvk aeereglppl</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 5D-3

<table>
<thead>
<tr>
<th></th>
<th>301</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryBV</td>
<td>PdNIRlVdfv</td>
<td>pMgvlLqnCA</td>
</tr>
<tr>
<td>eryCIII</td>
<td>PhNVRtVgfV</td>
<td>pMhalLptCA</td>
</tr>
<tr>
<td>dnrS</td>
<td>PgNVRvVds1</td>
<td>sLhvvLpsCA</td>
</tr>
<tr>
<td>Consensus</td>
<td>P-NVR-V---</td>
<td>-M---L--CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>351</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryBV</td>
<td>mlRgqqtaeL</td>
<td>GAGIyLrp..</td>
</tr>
<tr>
<td>eryCIII</td>
<td>gvrAqrtqeF</td>
<td>GAGIaLp..v</td>
</tr>
<tr>
<td>dnrS</td>
<td>vfrAgqklekL</td>
<td>GAGIfLpphg</td>
</tr>
<tr>
<td>Consensus</td>
<td>--R------L</td>
<td>GAGI-L----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>401</th>
<th>433</th>
</tr>
</thead>
<tbody>
<tr>
<td>eryBV</td>
<td>EaLsdPtPqe</td>
<td>IVprlEeLtr</td>
</tr>
<tr>
<td>eryCIII</td>
<td>DmLaePsPae</td>
<td>VVgicEeLaa</td>
</tr>
<tr>
<td>dnrS</td>
<td>EmLrtPaPga</td>
<td>VVptlEqLta</td>
</tr>
<tr>
<td>Consensus</td>
<td>E-L--P--P--</td>
<td>VV---E-L--</td>
</tr>
</tbody>
</table>
Fig. 5E-1

<table>
<thead>
<tr>
<th>Position</th>
<th>CTB1</th>
<th>CTB2</th>
<th>CTB3</th>
<th>CTB4</th>
<th>CTB5</th>
<th>CTB6</th>
<th>CTB7</th>
<th>CTB8</th>
<th>CTB9</th>
<th>CTB10</th>
<th>CTB11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MYegg.fAel YDrfyrgRgK DYaaeaqva rlvrdr1psA ssLLDVACGT</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>GtHLrRFAdL FddVtG1ELS aaMieArpq LgGIpvlqGD MrDFAldreF</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>DaVtCMFsSI GhMrdgAELd qAlasfARHL apgGVvvVEP WWFpEdFlDG</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 5E-2
FIG. 6C

FIG. 6D

SUBSTITUTE SHEET (RULE 26)
FIG. 8

SUBSTITUTE SHEET (RULE 26)
FIG. 9E
FIG. 11
FIG. 12A
FIG. 12B
FIG. 13