PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

HO01J 13/00, GOGF 13/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/00533

3 January 1997 (03.01.97)

(21) International Application Number: PCT/US96/10466

(22) International Filing Date: 17 June 1996 (17.06.96)

(30) Priority Data:

08/490,651 15 June 1995 (15.06.95) Us

(71) Applicant (for all designated States except US): INTEL COR-
PORATION [US/US]; 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DAVIS, Barry [US/US];
740 W. Saragosa Street, Chandler, AZ 85224 (US). FU-
TRAL, William, T. {[US/US]; 17715 N.W. Elk Run Drive,
Portland, OR 97229 (US). GARBUS, Elliot [US/US]; 2700
N. Hayden Road, No. 3106, Scottsdale, AZ 85257 (US).

(74) Agents: HYMAN, Eric, S. et al.; Blakely, Sokoloff, Taylor &
Zafman, 7th floor, 12400 Wilshire Boulevard, Los Angeles,
CA 90025-1026 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,
BB, BG, BR, BY, CA, CH, CN, CZ, CZ (Utility model),
DE, DE (Utility model), DK, DK (Utility model), EE, EE
(Utility model), ES, FI, FI (Utility model), GB, GE, HU, IL,
IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SK (Utility model), TJ, TM, TR, TT,
UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD,
SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,
TG).

Published
With international search report.

(54) Title: A METHOD AND APPARATUS FOR TRANSPORTING MESSAGES BETWEEN PROCESSORS IN A MULTIPLE

PROCESSOR SYSTEM

(57) Abstract
A message unit (210) that provides a hardware _LOCALBUS 204
queue interface between a host processor and a local - o354 334 ¥
processor handling I/O operations in an I/O platform. e T s e
Circuitry (214) manages the head and tail pointers of {210 MU | -7
an inbound free queue, an inbound post queue, an out- ! 214 332
bound free queue, and an outbound post queue. Cir- : State Machines Prefeich & Temporary
cuitry is also provided for enabling a host processor or 218 db
bus agent to access these queues in a single bus trans- ATU l
action by reading or writing inbound port registers or l Inbound Post 352 [::]
outbound port registers. The queue elements contain) i
handles of message buffers. The invention automat- I Outbound Retricve S
ically performs the specific task of locating the next { 386 [::
element in a queue, altering that element, and modi- 1 Outbound Release
fying a queue descriptor (i.e., a head or a tail pointer) [}_m
to indicate the next element for a next queue access. : i
A plurality of registers are used for selectively inter- | Quene Pointer Registers WP i
rupting either the host processor or the local processor = i |
when the queues are written to by either the host pro- 1 L l L I 344 !
cessor, a bus agent, or the local processor. §' = : :)
HL 1N I |
. l
SR R
\

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
IE

IT

JP

KE
KG

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 97/00533 PCT/US96/10466

1

A METHOD AND APPARATUS FOR TRANSPORTING MESSAGES
BETWEEN PROCESSORS IN A MULTIPLE PROCESSOR SYSTEM
BACKGROUND QF THE INVENTION

1. Eield of the Invention

This invention relates to the field of multiple
processor systems. More particularly, this invention
relates to a method and apparatus for transporting
messages between processors in a multiple processor

system.

2. Description of the Related Art

A message is simply a data structure for conveying
operational parameters and data. Messages are
generated by one or more processes (i.e., applications)
executing on one or more platforms. A platform
includes a processor or cluster of processors,
assoclated memory, and a local memory bus, and a memory
input/output bus. These elements within a platform
make up an operating environment.

Moreover, a platform executes a single instance of
an operating system. In other words the computer system
is a distributed processing system in which a single
operating system supports multiple processors. After a
message 1is generated by one of the processes on one
particular platform, it is sent to another processor
platform for processing.

A message may be indicated by a pointer to a
control block, residing in memory, that includes
instructions and other pointers to additional data
blocks of information. For example, a control block
may specify a particular peripheral device (i.e., a
hard disk drive), and request that data be read from

specifiad sectors of the device.

WO 97/00533 PCT/US96/10466

-2-

Message passing is used between processors in a
symmetric multiple processor system (SMP) where the
processors are “"tightly coupled" (i.e., where
processors share a single cache) and in asymmetric
multiple processor systems, where processors are
"loosely" coupled together by a common bus structure.

When a message is passed from one processor in a
first platform to a second processor in a second
platform, there is a need for the message to be queued
so that the processor, to which the message is
directed, may process the message when its resources
are free.

The prior art methods for queuing messages are
primarily implemented using software techniques. These
methods require multiple atomic accesses to shared
queue structures. For example, a plurality of
processes, running on a single processor, may share one
queue of messages, located in a memory shared by the
processors. To achieve an atomic access for one of the
processes, én operating system grants to the process,
requesting access to the queue, a semaphore that gives
that process exclusive rights (i.e., atomic access) to
the queue. A semaphore is simply an operating system
variable that gives a process exclusive access to a
shared data structure (i.e., part of the operating
system context). The process may then add or remove a
message from the queue. When a particular process
controls the semaphore, it locks out other processes
requiring access to that queue. The other processes
must wait for the first process to release the
semaphore before access to the shared structure is
available.

In a multiple processor system, more than one
processor could be trying to gain access to the

WO 97/00533 : PCT/US96/10466

-3-

semaphore concurrently. Thus, a bus lock is required
for synchronization (i.e., atomic access). While one
processor has the bus locked, another processor cannot
access the same shared structure in memory (i.e., a
memory block) until the first processor unlocks the
bus. Since semaphores are in system memory, the other
processors are locked out even though they are not
contending for a semaphore. Therefore, a bus lock can
never be used in a software module that can be
suspended (i.e., a multi-tasking operating system).
Instead, a call to the operating system kernel is
required when obtaining and releasing a semaphore in
these applications.

The above-described operation is very inefficient
because of the amount of time each process spends idle
while waiting for semaphores or waiting for bus access.
Furthermore, the above-described calls to an operating
system kernel cause expensive context switches.

Context is simply a memory area that is dedicated
to an application (i.e., application code and data).
An application context includes flags, variables, and
states of a current process. Since a semaphore is an
operating system variable in a different context (i.e.,
an operating system context) than an application
context, system resources are necessary to switch
contexts. For example, in a context switch data
pointers are changed, pointers are pushed onto stacks,
and process control parameters are also modified.

Prior art computer systems that do not have a bus
lock capability use highly complex algorithms to
provide synchronization between processors. In these

systems, performance is further reduced.

WO 97/00533 PCT/US96/10466

-4-

Thus, there is a need for a method and apparatus
for efficiently allowing direct access to the queues

without the use of semaphores.

SUMMARY OF THE INVENTION

A method and apparatus for transporting messages
between processors in a multiple processor system. The
present method and apparatus enables the communication
of messages between processors in an asymmetric
multiple processor system. An asymmetric multiple
processor system is simply a system where the
processors are concurrently executing different
operating systems. For example, application processors
on the application platforms are running standard
application operating system software such as Windows
NT™. However, the processor on the I/0 platform is
running a specific operating system adapted for I/0
operations (e.g., real time operating system: RTOS).
Specifically, the present invention provides a fast and
direct mechanism for queuing messages from one or more
processes executing on one or more processor platforms
to a platform that includes a local processor.

The present invention provides an inbound free
queue that allocates message buffers to the other
platforms, and an inbound work queue that posts
messages from processors and bus agents external to the
I/0 platform. Moreover, the present invention provides
an outbound work queue that posts messages from a local
processor (i.e., processor for an I/0 platform) to
another processor platform (i.e., a host processor)
such that processors on other platforms may retrieve
these messages. The present invention also provides an
outbound free queue to which the host processor may

WO 97/00533 PCT/US96/10466

5

release message buffers. This queue releases message
buffers to the local processor, after the host
processor has processed the message.

The present invention manages these queues with a
messaging unit which provides a very fast and efficient
hardware queue interface between the host platform and
the I/0 platform. The present invention enables the
provision of a free message buffer or an "Empty"
indicator in a single PCI bus transaction cycle (i.e.,
reading a register in the messaging unit).

Furthermore, the present invention enables the posting
or retrieving of a message or a "Full" indicator in a
single PCI bus transaction (i.e., writing to a register
in the messaging unit). _

Managing the queues with a hardware interface, the
present invention provides several advantages over
prior art software queue management techniques. First,
the present invention avoids deadlock or lock up when a
process attempts to perform a queue operation on a full
or empty queue. The messaging unit of the present
invention quickly returns an empty indication when an
attempt to fetch from an empty list or queue is
detected. Similarly, the present invention quickly
returns an indication that a particular queue is full
when an attempt to post to a full queue is detected.
The present invention may be efficiently implemented
with minimum hardware resources.

Furthermore, since the present invention executes
a gqueue access in a single bus transaction cycle, the
need for synchronization (i.e., acquiring and releasing
semaphores) is eliminated, and the performance of the
system is improved significantly. A queue access is
simply the adding of an element to a queue or the

removing of an element from a queue. A queue access

WO 97/00533 PCT/US96/10466

-6-

may include the specific tasks of locating the next
element, altering that element, and modifying a queue
descriptor to indicate next element for the next queue
access. These tasks are automatically performed by the
present invention. During the time these tasks are
being completed, the queue must be locked such that
another process does not acquire the same message
buffer or overwrite another message. The present
invention provides queue access in one bus transaction
to take advantage of the fact that a single PCI bus
transaction is inherently atomic (i.e., exclusive
access by a bus agent executing the transaction)
Furthermore, the present invention automatically
handles synchronization through a ready and a retry
signal.

Moreover, context switches that tie up system
resources are no longer necessary since the present
invention obviates the need for semaphores. Semaphores
are no longer required because a single read or write
to a register in the messaging unit is all that is
required to access a particular queue, and a read or

write may be accomplished in one bus transaction.

EF DE E WIN

The present invention is illustrated by way of
example and not limitation in the figures of the
accompanying drawings in which like references indicate

similar elements, in which:

Figure 1 illustrates a block diagram of an
asymmetric multiple processor computer system

implementing the present invention;

WO 97/00533 PCT/US96/10466

-7-

Figure 2 illustrates an I/0 platform including
the present invention;

Figure 3 illustrates one embodiment of the
present invention;

Figure 4 illustrates the circular queues of the
present invention;

Figure 5 further illustrates circular queue
operation for the present invention;

Figures 6A illustrates an Inbound Free State
Machine of the present invention; Figure 6B
illustrates a state diagram for the Inbound Free State
Machine;

Figures 7A illustrates an Inbound Post State
Machine of the present invention; Figure 7B
illustrates the state diagram for the Inbound Post
State Machine;

Figures 8A illustrates an Outbound Retrieve State
Machine of the present invention; Figure 8B
illustrates a state diagram for the Outbound Retrieve
State Machine; and

Figures 9A illustrates an Outbound Release State
Machine of the present invention; and Figure 9B
illustrates a state diagram for the Outbound Release
State Machine.

ILED NTION

Figure 1 illustrates a block diagram of a
multiple processor computer system implementing the
present invention. Multi-processor system 100 includes
a host processor 102. The host processor 102 may
include a plurality of processors (i.e., a cluster of

tightly coupled processors).

WO 97/00533 PCT/US96/10466

-8~

The host processor 102 is coupled to a host memory 104
through host bus 103. A memory bus 103 also couples
the host processor 102 and memory 104 to a host chip
set 105. Host chip set 105 includes a memory
controller, a cache controller, and a bridge providing
the interface between the memory bus 103 and an
input/output (I/0) bus 106 (e.g. a PCI bus).

A host chip set 105 is known in the art. For
example, when the host processor 102 is a Pentium™
processor made by Intel, a suitable host chip set 105

" is the Trident™ chip set also made by Intel.
Similarly, if a P6™ processor is used, then a suitable
host chip set 105 is the Orion™ chip<set also made by
Intel. The host processor 102, memory bus 103, host
memory 104, and host chip set 105 will be referred to
as a host platform in this multi-processor system 100.

The multiple processor system 100 further includes
an I/0 platform 108 that is coupled to the first PCI
bus 106. Furthermore, I/0 platform 108 provides an
interface between an address space of a first PCI bus
106 and an address space of a processor included in the
I/0 platform 108. 1I/0 platform 108 may also include a
bridge that couples the first PCI bus 106 to a second
PCI bus (not shown).

I/0 platform 108 further provides I1/0 support for
the host processor, and devices (not shown) coupled to
the first PCI bus 106 and the second PCI bus. For one
example of an I/0 platform 108, please see Application
Serial Number , filed assigned to

Intel Corporation. Figure 2 illustrates in
further detail the I/0 platform 200 (previously
referred to as element 108 in Figure 1) that includes
the present invention. The I/0 platform 200 includes a
local processor 202 coupled to local memory 206 via a

WO 97/00533 PCT/US96/10466

-0-

memory controller 205 through a local bus 204. The
local processor 202 may be an Intel 80960 JF processor.

An address translation unit (ATU) 218 is coupled
to the local bus 204 and to the first PCI bus 208
(previously refereed to as element 106 in Figure 1).
The address translation unit (ATU) 218 translates
addresses in the address space of the PCI bus 208 into
addresses in the processor 202 address space and vice
versa. Thus, a transaction on the PCI bus 208 having
an address in PCI address space, must be translated
into a local bus 204 address space so that the memory
controller 205 may access the correct location in local
memory 206 or the proper register 212 in MU 210.

The ATU 218 includes an outbound module for
translating local bus transactions to PCI bus
transactions, an inbound module for translating a PCI
bus transaction to a local bus transaction and a
control state machine to manage this address
translation. With respect to the present invention,
the ATU 218 can be seen as an address decoder that
detects that a particular PCI bus transaction accesses
one of the registers 212 in the MU 210. The ATU 218
after detecting that a transaction is an access to one
of the registers in the MU 210, sends a signal through
data path 221 to initiate the control state machines
214 in the MU 210, which will be described hereinafter.
The control state machines 214 send a plurality of
signals through data path 221 to the ATU 218 to notify
the ATU 218 that the MU 210 is either not ready to
receive the transaction or to instruct the ATU 218 to
signal a Retry to the requesting process.

Local bus arbitrator 240 grants control of the
local bus 204 to any of the local bus masters (i.e.,
the MU 210, the inbound module of the ATU 218, and the

WO 97/00533 PCT/US96/10466

-1 0_

local processor 202). The arbitration circuit 240 is
well known in the art.

Memory controller 205 is provided for accesses to
the local memory 206 through data paths 224 and 225.
Although local bus 204 is shown as a single data path,
the local bus 204 may consist of an address portion and
a data portion.

Bus agent 201 may be a host processor or another
I/0 platform. Moreover, bus agent 201 may include the
host memory 104, host processor 102, the host chip set
105, and the host bus 103 of Figure 1. 1In other
words, bus agent 201 may itself be a subsystem or any
intelligent bus agent.

A messaging unit (MU) 210 is coupled to the local
bus 204 and to the ATU 218. The MU 210 embodies the
teachings of the present invention and includes a
plurality of registers 212 and a plurality of state
machines 214. These registers 212 and state machines
214 will be further described with reference to Figure
3.

Figure 3 illustrates the present invention, as
embodied in the MU 210. The MU 210 includes a
plurality of state machines 214 coupled to the ATU 218
through control path 350. The MU 210 also includes a
plurality of prefetch and temporary registers 332.
These registers 332 are coupled to the ATU 218 through
data path 336. The prefetch and temporary registers
332 are also controlled by the control state machine
214 through data path 352. The registers 332 are also
coupled to the local bus 204 through data path 334 for
accessing local memory 206.

In this embodiment, the MU 210 includes a message
passing scheme that uses 4 circular queues. There are
four prefetch and temporary registers 332 in this

WO 97/00533 PCT/US96/10466

11

embodiment. Two registers are provided to allow the
host processor to write data to the circular queues.
Two registers are provided to allow the host processor
to read data from one of the circular queues.

The MU 210 also includes a plurality of queue
pointer registers 340 that are coupled to the control
state machines 214 through data path 342. These
registers 340 store the head and tail pointers of the
queues 207. These queues will be described in greater
detail with respect to Figures 4 and 5.

Circular Queues

The MU 210 provides access for the bus agent 201
to four circular queues 207. There are two inbound
queues and two outbound queues. "Inbound" and
"outbound" refer to the direction of the flow of active
messages. "Inbound" messages are either new messages
posted by bus agent 201 for the local processor 202 to
process or are empty or free message buffers that are
available for use by the bus agents 201. "Outbound"
messages are either posted messages by the local
processor 202 for the host processor 201 to process or
are free message buffers that are available for use by
the local processor 202.

In one embodiment, there are four circular queues
that are used to pass messages between host
processor/bus agent 201 and the local processor 202.
There are two inbound queues that are used to handle
inbound messages, and there are two outbound queues
used to handle outbound messages. One of the inbound
queues is designated as a Free queue, and it contains
inbound free message handles. A message handle is a
logical or physical address of a message buffer. The

other inbound queue 1is designated the Post or work

WO 97/00533 PCT/US96/10466

..12_

queue, and it contains inbound posted message handles.
Similarly, one of the outbound queues is designated a

Free Queue, and the other outbound queue is designated
a Post Queue.

The two outbound queues allow the local processor
202 to post outbound messages in the Post queue and to
receive freed messages returning from an external host
processor 201 into the outbound Free Queue. The two
inbound queues allow the bus agent 201 to acquire a
free message buffer from the inbound free gqueue and
subsequently post that buffer to the inbound free queue
for processing by the local processor 202.

The data storage for the circular queues 207 are
provided by local memory 206. In this particular
implementation, each entry in the queue is a 32-bit
data value which is a message handle. Moreover, a read
from or write to a gqueue may access exactly one gueue
entry.

Each circular queue has a head pointer and a tail
pointer. Writes to a queue occur at the head of the
queue and reads occur from the tail. The head and tail
pointers are incremented by software running on the
local processor 202 or by the messaging unit 210. The
details concerning how the head and tail pointers are
incremented by the local processor 202 and the MU 210
are described hereinafter.

The head and tail pointers are offsets into each
respective circular queue and range from 0 to the
circular queue size minus 1 (i.e., begin labeling the
pointers with 0). The pointers are incremented after
each queue access. Both head and tail pointers wrap
around to 0 when they reach the circular queue size
(i.e., end of the queue).

WO 97/00533 PCT/US96/10466

13.

The Messaging Unit 210 generates an interrupt to
the local processor 202 or generates a PCI bus
interrupt (i.e., interrupt to an external processor)
under certain conditions. In general, when a post
queue is written, an interrupt is generated to notify
the target processor that a message was posted.

In one embodiment the size of each circular queue
can range from 16 Kbytes (4096 handles) to 256 Kbytes
(65536 handles). Moreover, in this embodiment all four
queues are of the same size and are contiguous. The
total amount of local memory required by the circular
queues thus ranges from 64 Kbytes to 1 Mbytes. These
queues reside in local memory 206, and the head and
tail pointers of the queues reside in registers in the
MU 210. The queue size is determined by the Queue Size
field in the Messaging Unit Configuration Register
(MUCR) . One possible format of the MUCR is shown in
Table 1. In this embodiment there is alsu one base
address for all four queues. The starting addresses of
each queue is based on the Queue Base Address and the
Queue Size field. The base address is stored in a
Queue Base Address Register (QBAR) which also resides
in the MU 210. One possible format of the QBAR is
shown in Table 2. An embodiment to be illustrated in
Figures 6-9 includes a separate base address for each

queue.

WO 97/00533 PCT/US96/10466

.._14_

TABLE 1

guration Re

Bit ‘ Default ' Read/Write Description

31:05 0000000H Read Only Reserved

04:00 000002 Read/Write Queue Size - This field
determines the size of each

Circular Queue. All four

queues are the same size.

TABLE 2
gUEUE BASE ADDRESS IK_E_C;'v_l__STER - QBAR
Bit Default Read/Write Description
31:20 000H Read/Write Queue Base Address - Local

memory address of the;

circular gueues.

19:00 00000H Read Only Reserved

Figure 4 illustrates four circular queues of the
present invention. There are two outbound queues 410
and 420 and two inbound queues 430 and 440, residing in
local memory 206.

The local processor 202 posts outbound messages
422 by writing to the head of the outbound post queue
420. The host processor 201 retrieves the posted
messages from the outbound post queue 420 by reading
from the tail of the outbound post queue 420.

A host processor 201 releases outbound message
buffers 412 by writing to the head of the outbound free
queue 410. The local processor 202 reads free messages
buffers 414 from the tail of the outbound free queue
410.

WO 97/00533 PCT/US96/10466

15

A host processor or bus agent 201 posts inbound
messages 432 to an inbound post queue 430 by writing to
the head of the inbound post queue 430. The local
processor 202 reads these posted messages from the tail
of the inbound post queue 430. When the host processor
writes to the inbound post queue 430 an interrupt is
generated 436 to the local processor 202.

When messages are posted to the outbound post
queue 420 by the local processor 202 an interrupt 426
is generated to the host processor 201. The interrupts
as specified by the PCI Bus Specification Revision 2.0
may be used here.

The local processor 202 returns free message
buffers 442 to the inbound free queue 440.by writing to
the head of this queue 440. The host processor/bus
agent 201 acquires a free message buffer by reading
from the tail of the inbound free queue 440 through
data path 444.

Figure 5 illustrates an Outbound Free Queue 510,
an Qutbound Post Queue 520, an Inbound Post Queue 530,
and an Inbound Free Queue 540.

OQutbound Free Queue
The Outbound Free Queue (OFQ) 510 holds the

handlies for empty messages placed there (i.e.,
released) by bus agents 201 for the local processor 202
to use. A host processor 201 releases a message buffer
to the OFQ 510 by writing to a register in an Outbound
~Queue Port 516. The OFQ 510 is read from the queue
tail by the local processor 202, and is written to the
queue head by the host processor 201. The head pointer
(OFHP) 512 is maintained by the Messaging Unit 210.

The Outbound Free Queue tail pointer (OFTP) 514 is

WO 97/00533 PCT/US96/10466

-1 6._

maintained by software running on the local processor
202.

For a PCI write transaction that accesses the
Outbound Queue Port 516, the MU 210 writes a message
handle (i.e., an address to a free message buffer) to a
location in local memory 206 pointed to by the head
pointer (OFHP) 512, which is stored in an Outbound Free
Head Pointer Register (OFHPR) 926. The local memory
address is the Queue Base Address Register + 3 * Queue
Size + Outbound Free Head Pointer Register (OFHPR) 926.
One possible format of the OFHPR is shown in Table 3.

When data that is written to the Outbound Queue
Port 516 is written to local memory 206, the MU 210
increments the OFHP 512,

From the time that a PCI write transaction is
received by the MU 210 until data is written into local
memory 206, and the OFHP 512 is incremented, any PCI
transaction that attempts to access the Inbound Queue
Port 516 is delayed by inserting wait states. If a PCI
latency violilation occurs while inserting wait states,
the external PCI agent 201 is signaled a Retry.

The local processor 202 retrieves message buffer
handles from the OFQ 510 by reading the local memory
location pointed to by the Outbound Free Queue tail
pointer (OFTP) 514. The local memory address is Queue
Base Address Register + 3 * Queue size + Outbound Free
Tall Pointer Register (OFTPR) 438. One possible format
of the OFTPR is shown in Table 4. The local processor
202 then increments the OFTP 514 in the Outbound Free
Tail Pointer Register 938 (shown in Figure 93).

- TABLE 3

| Outbound Free Head Pointer Register - OFHPR I

WO 97/00533 PCT/US96/10466

1 7
Bit Default Access Description
31:19 0000H Read Only Reserved
18:02 0000H Read/Write Outbound Free Head Pointer
- Local memory offset of
the head pointer for the
Outbound Post Queue
01:00 002 Read Only Reserved
TABLE 4
H Outbound Free Tail Pointer Register - OFTPR
Bit Default Access Description
31:19 0000H Read Only Reserved
18:02 0000H Read/Write Outbound Free Tail Pointer
- Local memory offset of
the tail pointer for the
Qutbound Free Queue
01:00 002 Read Only Reserved

und P ueue

The Outbound Post Queue (OPQ) 520 stores handles
of posted messages placed there by the local processor
202 for the host processor 201 to retrieve and process.
The host processor 201 retrieves a message from the OPQ
520 by reading a register in the Outbound Queue Port
516. The local processor 202 adds to the OPQ 520 by
writing to the queue head. The head pointer (OPHP) 522
is maintained by the local processor 202. The tail
pointer (OPTP) 524 is maintained by the Messaging Unit
210.

WO 97/00533 PCT/US96/10466

_18...

For a PCI read transaction that accesses the
Outbound Queue Port 516, the MU 210 prefetches the data
at the local memory location pointed to by the OPTP
524. The local memory address is Queue Base Address
Register + 2 * Queue Size + Outbound Post Tail Pointer
Register (OPTPR) 826 (as shown in Figure 8A). If the
OPQ 520 is not empty (i.e., the head 522 and tail
pointers 524 are not equal), a message handle is
supplied for the requesting processor 201. If the OPQ
520 is empty (i.e., the head 522 and tail pointers 524
are equal), the value of -1 (FFFF.FFFFH) is supplied
for the requesting processor 201. If the OPQ 520 queue
is not empty, and the MU 210 succeeds in prefetching
the data at the tail, the MU 210 increments the tail
pointer (OPTR) 524 in the OPTPR 826.

As stated, a prefetch mechanism loads a value of
-1 (FFFF.FFFFH) into a prefetch register 806 (which
will be described further with a reference to Figure
8A) if the head 522 and tail 524 pointers are equal
(i.e., the OPQ 520 is empty). In order to update the
ORR 806 when messages are added to the OPQ 520, and it
becomes non-empty, the prefetch mechanism in the MU 210
automatically starts a prefetch if the ORR 806 contains
FFFF.FFFFH, and the Outbound Post Head Pointer Register
(OPHPR) 422 is written to by the local 202 processor.
One possible format of the OPHPR is shown in Table 5.
The local processor 202 updates the OPHPR 422 when the
local processor 202 adds messages to the OPQ 520.

A prefetch must appear atomic from the perspective
of an external bus agent 201. When a prefetch is
started, any PCI transaction that attempts to access an
Outbound Retrieve Register 806 (which will be described
with reference to Figure 8A) in the Outbound Queue
Port 516 is delayed by inserting wait states until the

WO 97/00533 PCT/US96/10466

-1 9_

prefetch is completed. If a bus latency violation
occurs while inserting wait states, the external bus
agent 201 is notified with a Retry signal.
A PCI interrupt is generated to the host processor
201 when the OPHP 522 is not equal to the OPTP 524.
When the OPHP 522 and the OPTP 524 are equal, no
interrupt is generated. The Output Post Queue
Interrupt bit in the Outbound Doorbell Register
indicates the status of the comparison of the values in
the OPHPR 838 and OPTPR 828. The interrupt is cleared
" when the head 522 and tail 524 pointers are equal.
This occurs when a host processor 201 reads enough
queue entries to empty the OPQ 520. An interrupt may
be masked by the Outbound Doorbell Mask Register, which
is controlled by software.
The local processor 202 may place messages in the
OPQ 520 by writing data to the local memory location
pointed to by the head pointer (OPHP) 522. The local
memory address is Queue Base Address Register +
Outbound Post Head Pointer Register 838. One possible
format of the OPTPR is shown in Table 6. The local
processor 202 then increments OPHP 522 in the Outbound
Post Head Pointer Register 838.

WO 97/00533 PCT/US96/10466

.20.
TABLE 5
' Default Access ‘ Description
31:19 0000H Read Only JReserved
18:02 0000H Read/Write Outbound Post Head Pointer
- Local memory offset of
the head pointer for the
Qutbound Post Queue
01:00 002 Read Only Reserved
TABLE 6

Outbound Post Tail Pointer Register - OPTPR

| sit | overawre | access |

31:19 0000H Read Only Reserved

Description

18:02 0000H Read/Write Outbound Post Tail Pointer
- Local memory offset of
the tail pointer for the
Qutbound Post Queue

01:00 002 Read Only Reserved

—

Inbound Post Queue

The Inbound Post Queue (IPQ) 530 holds handles of
posted messages placed there by bus agents 201 for the
local processor 202 to process. The host processor 201
or bus agent posts a message to the IPQ 530 by writing
to a register in the Inbound Queue Port 536. The IPQ
530 is read from the queue tail by the local processor
202 and is written to the queue head by external bus
agents 201. The tail pointer (IPTP) 534 is maintained

WO 97/00533 PCT/US96/10466

21

by software running on the local processor 202. The
head pointer (IPHP) 532 is maintained by the MU 210.

For a PCI write transaction that accesses the
Inbound Queue Port (IQP) 536, the MU 210 writes the
data to a local memory location pointed to by the IPHP
532 stored in Inbound Post Head Pointer Register
(IPHPR) 724 (shown in Figure 7A). The local memory
address is Queue Base Register + Queue Size + Inbound
Post Head Pointer Register (IPHPR) 724. One possible
format of the IPHPR is shown in Table 7. One possible
format of the IPTPR is shown in Table 8.

When the data written to the Inbound Queue Port
536 is written to local memory 206, the MU 210
increments the IPHPR 724. When data is written to
local memory 206 and the IPHPR 724 is incremented, the
MU 210 generates an interrupt to the local processor
202. This interrupt is recorded by setting the Inbound
Post Queue Interrupt bit of the Inbound Doorbell
Register. The interrupt may be masked by the Inbound
Doorbell Mask Register, which is controlled by

software.
TABLE 7
Inbound Post Head Pointer Register - IPHPR J
Bit Default Access Description
31:19 0000H Read Only Reserved
18:02 0000H Read/Write Inbound Post Head Pointer -

Local memory offset of the
head pointer for the
Inbound Post Queue

01:00 002 Read Only Reserved

WO 97/00533 PCT/US96/10466

-2
- IRBLE 8 S
Inbound Post Tail Pointer Register - IPTPR .
Bit Default Access I Description
31:19 0000H Read Only Reserved
18:02 0000H Read/Write Inbound Post Tail Pointer -
Local memory offset of the
tail pointer for the
Inbound Post Queue
01:00 002 Read Only Reserved
Inbound Fr ueu

An Inbound Free Queue 540 holds handles of empty
message buffers placed there by the local'processor 202
for bus agents 201 to use. The host processor 201 is
allocated a message buffer from the IFQ 540 by reading
a register in the Inbound Queue Port 536. The Inbound
Free Queue 540 is read from the queue tail by external
bus agents 201 and is written to the queue head by the
local processor 202. The head pointer 542 is
maintained by software running on the local processor
202. The tail pointer (IFTP) 544 is maintained by the
MU 210.

For a PCI read transaction that accesses the
Inbound Queue Port (IQP) 536, the MU 210 prefetches the
data at a local memory location pointed by the IFTP
544. The local memory address is Queue Base Address ‘
Register + .Inbound Free Tail Pointer Register (IFTPR)
626 that stores the tail pointer. One possible format
of the IFTPR is shown in Table 10. If the IFQ 540 is
not empty (i.e., head and tail pointers are not equal),
the data pointed to by IFTP 544 is supplied for the
next access by the host processor or bus agent. If the

WO 97/00533 PCT/US96/10466

23

IFQ 540 is empty (i.e., head and tail pointers are
equal), the value of -1 (FFFF.FFFFH) is supplied for
the requesting host processor or bus agent. If the IFQ
540 was not empty, and the MU 210 prefetches the data
pointed to by the IFTP 544, the MU 210 increments the
value of the pointer in the Inbound Free Tail Pointer
Register (IFTPR) 626 (as shown in Figure 6A).

To reduce latency for the PCI read access, the MU
210 implements a prefetch mechanism to anticipate
accesses to the IFQ 540. The MU 210 prefetches data-
from the tail of the IFQ 540 and loads it into an
internal prefetch register. When a PCI read access
occurs, the data can be read directly from the prefetch
register.

The prefetch mechanism loads a value of -1
(FFFF.FFFFH) into the prefetch register if the head and
tail pointers are equal (i.e., IFQ 540 is empty). In
order to update the prefetch register when messages are
added to the IFQ 540 and it becomes non-empty, the
prefetch mechanism automatically starts a prefetch if
the prefetch register contains FFFF.FFFFH, and the
Inbound Free Head Pointer Register (IFHPR) 638 is
written. One possible format of the IFHPR is shown in
Table 9. The software running on the local processor
202 updates the IFHP 542 when it adds messages to the
IFQ 540.

A prefetch must appear atomic from the perspective
of an external bus agent 201. When a prefetch is
started, any PCI transaction that attempts to access
the Inbound Free Register in the Inbound Queue Port 536
is delayed by inserting wait states until the prefetch
is completed. If a PCI latency violation occurs while
inserting wait states, the external bus agent 201 is
signaled a Retry by the MU 210.

WO 97/00533 PCT/US96/10466

_24..

The local processor 202 may place messages in the
IFQ 540 by writing the data to the local memory
location pointed to by the head pointer (IFHP) 542.
The local memory address is Queue Base Address Register
+ Inbound Free Head Pointer Register (IFHPR) 638. The
software running on the local processor 202 then
increments the IFHPR 638.
Inbound Free Table

TABLE 9

Inbound Free Head Pointer Register - IFHPR

Default Access Description
31:19 0000H Read Only Reserved
18:02 0000H Read/Write Inbound Free Head Pointer -

Local memory offset of the
head pointer for the
Inbound Free Queue.

01:00 002 Read Only Reserved

TABLE 10

Inbound Free Tail Pointer Re

| sic | verame | access |

Read Only

gister - IFTPR

Description

Reserved

18:02 0000H Read/Write Inbound Free Tail Pointer -
Local memory offset of the
tail pointer for the

Inbound Free Queue.

01:00 002 Read Only Reserved

WO 97/00533 PCT/US96/10466

~25-

Figure 6A illustrates how the present invention,
embodied in the MU 210, allocates free message buffers
to bus agents on the PCI bus. Data moves from an
Inbound Free Queue (IFQ) 540 located in local memory
206 through local data bus to an Inbound Free Register
(IFR) 606. 1In this context data specifically refers to
an address of a message buffer (i.e., message handle).
Subsequently, the data travels from the Inbound Free
Register 606 through data path 608 to ATU 218, and
thereafter to bus agents on PCI bus 208 through data
path 610.

The MU 210 includes an Inbound Free state machine
612 for allocating free message buffers that issues and
receives a number of control signals. The state
diagram for the Inbound Free state machine 612 will be
further described with reference to Figure 6B.

To request a message buffer from IFQ 602, a bus
agent sends a read transaction through the PCI bus 208
and data path 610 to the ATU 218. A read transaction
specifying the address of the Inbound Free Register 606
is detected by the ATU 218. Once the ATU 218 detects
that a bus agent wants to read the Inbound Free
Register 606, the ATU tests the state of the IFR_Ready
signal 614. If an IFR Ready signal 614 is asserted the
ATU completes the PCI transaction supplying the data in
the IFR 606 to the ATU 218 through path 608 and
generates a Read Inbound Free signal 616 to state
machine 612.

If the IFR Ready signal 614 is de-asserted (i.e.,
state machine 612 is not ready), the ATU 218 inserts
wait states, and does not send the Read IFR 616 until
the IFR Ready signal 614 i1s asserted. The IFR Ready
signal 614 is de-asserted when there is stale data in

WO 97/00533 PCT/US96/10466

.26

the IFR 606 (i.e., state machine 612 has not yet
completed a Prefetch of data into IFR 606).

Once state machine 612 receives the Read IFR
signal 616, state machine 612 sends a
Memory Read Request signal 618 to a local bus
arbitrator 240 and de-asserts the IFR Ready signal 614.
Upon a Grant signal 632, the MU 210 simply asserts the
proper tail address of the IFQ 602 onto the local
address bus 630. Data is then transferred from the
local memory 206 to the IFR 606 (i.e., reads the value
at the tail of the IFQ 602) through the local data bus
604. MU 210 includes an adder 624 that calculates the
appropriate tail address of the IFQ 602. Adder 624 |
generates the sum of the contents of the Inbound Free
Tail Pointer Register (IFTPR) 626 and the Inbound Free
Base Register (IFBR) 628.

After the data pointed to by the tail pointer of
the IFQ 540 is on the local data bus 604, state machine
612 sends a Latch signal 634 to latch the data on the
local data bus 604 into the IFR 606 and sends an
Increment signal 644 to the IFTPR 626. Thus, a
prefetch of the next available message buffer has been
accomplished.

The MU 210 alsc includes a comparator 636 that
compares the value in the Inbound Free Head Pointer
Register (IFHPR) 638 and the value in the Inbound Free
Tail Pointer Register (IFTPR) 626. If these two values
are equal, comparator 636 generates an Empty signal 640
(i.e., there are no free message buffers in the queue).
This Empty signal 640 is sent to state machine 612 and
causes state machine 612 to assert a Preset signal 642.
The Preset signal 642 causes the content of IFR 606 to
be set to a predetermined value that is reserved for an

empty indication (i.e., not a valid buffer address).

WO 97/00533 PCT/US96/10466

=27~

When a bus agent reads the IFR 606, it either
immediately accesses prefetched data stored in the IFR
606, or the Preset value, that indicates that the IFQ
602 is Empty.

Figure 6B illustrates the state diagram for
Inbound Free state machine 612. State machine 612 has
three stages: Empty 650, a Prefetch 652 and Primed
656. State machine 612 is in the Empty state 650 until
the Empty signal is de-asserted 654. A not_ Empty
signal transitions the state machine 650 from an Empty
state 612 to Prefetch state 652, and the state machine
612 issues a Memory Read Request signal 618 and de-
asserts the IFR Ready signal 614.

The state machine 612 transitions from the
Prefetch state 652 to a Primed state 656 upon a Grant
signal 632. Upon receiving a Grant signal 632, state
machine 612 outputs a Latch IFR signal 634, an
Increment IFTPR signal 644, and asserts an IFR Ready
signal 614. The state machine 612 transitions from the
Primed state 656 to the Prefetch state 652 when the
Read IFR signal 616 is received, and the Empty signal
654 is not asserted. This transition also generates a
Memory Read Request signal 618 and de-asserts the
IFR Ready signal 614.

The state machine 612 transitions from the Primed
state 656 to the Empty state 650 when the Read IFR
signal 616 is received, and the Empty signal 640 is
asserted. This transition generates the Preset signal
642.

Figure 7A illustrates how the present invention
posts a message, generated by a bus agent, into the
Inbound Post Queue (IPQ) 530 which is located in local

memory 206.

WO 97/00533 PCT/US96/10466

28

When a bus agent wants to write to an Inbound Post
Register (IPR) 706, the data travels from the PCI bus
208 through data path 702 to the ATU 218, and then to
the IPR 706 through data path 704. After the data is
latched into the IPR 706, it is transferred through
local data bus 604 into the IPQ 530 in local memory
206.

The ATU 218 tests the state of an IPR Ready signal
716. If the IPR Ready signal 716 is asserted, the ATU
218 completes the PCI transaction by supplying data to
the IPR 706 and generating a Write IPR signal 718 to
the state machine 712.

If the IPR Ready signal 716 is not asserted, the
ATU 218 inserts wait states, and completes the PCI
transaction when the IPR Ready signal 716 is asserted.
The requesting process retains control of the bus, and
the PCI transaction is completed unless PCI latency
rules are violated. |

The ATU 218 also tests the state of an IPR Retry
signal 714. If the IPR Retry signal 714 is asserted,
the PCI transaction is not completed, and a retry is
signaled to requesting process so it will release the
bus and try again at a later time.

The Inbound Post state machine 712 of the MU 210
is further illustrated by a state diagram illustrated
in Figure 7B. State machine 712 has three states: an
Idle state 750, a Post state 752 and a Full state 754.
State machine 752 will transition from an Idle state
750 to a Post state 752 when a Write Inbound Post
signal 718 is asserted by the ATU 218. When the
Write Inbound Post signal is received by the state
machine 712, the state machine 712 generates a
Memory Write Request signal 720 and de-asserts the
IPR Ready signal 716. The state machine 712

WO 97/00533 PCT/US96/10466

-29-

transitions from a Post state 752 back to the Idle
state 750 when the state machine 712 receives a Grant
signal 728 from the local bus arbitrator 240. Upon
receiving a Grant signal 728 and writing IPR data 604
to memory, the state machine 712 generates an Increment
signal 740 to the Inbound Post Head Pointer Register
(IPHPR) 724, and also asserts the IPR Ready signal 716.

The state machine 712 transitions from an Idle
state 750 to a Full state 754 when it receives a Full
signal 738 from the comparator 734. A Full signal 738
is generated by the comparator 734 when the contents of
the Inbound Post Tail Pointer Register (IPTPR) 730 and
the Inbound Post Head Pointer Register (IPHPR) 724
indicate that the Inbound Post Queue (IPQ) 530 is Full.
Upon receiving a Full signal 738, state machine 712
asserts a IPR Retry signal 714 to the ATU 218.

State machine 712 transitions from a Full state
754 to an Idle state 750 when the Full signal 756 is
de-asserted Full signal 756 (i.e., not Full). Upon
receiving a not Full signal, the state machine 712 de-
asserts the IPR Retry signal 714.

Comparator 734 also generates a not Empty signal
736 to interrupt generation logic (not shown) that
generates a local interrupt to the I/0 processor.

Logic to generate a local interrupt upon receiving a
not_Empty signal 736 is known in the art. This logic
may also include interrupt registers and also mask
registers controlled by software, to selectively mask
out interrupts.

Increment signal 740 is sent to the IPHPR 724 and
increments the Inbound Post Head Pointer. The adder
722 calculates a new inbound head pointer 723 by using
the value 725 of the IPHPR 724 and the value 727 of
IPBR 726. This address 723 is sent to memory

WO 97/00533 PCT/US96/10466

30

controller 205 to access local memory through the local
bus (i.e., local address bus 630).

As explained previously, the MU 210 asserts the
address 723 on the local address bus 630 and enables
the transfer of data (i.e., address of a message
buffer) that is latched in the IPR 706 into the head of
the IPQ 530.

Figure 8A illustrates the Outbound Retrieve State
Machine 812 and how the present invention allows a host
processor or bus agent to retrieve posted messages from
the Outbound Post Queue 520 (OPQ). When a host
processor or bus agent retrieves a posted message
handle, the data (i.e., the address of the Message
Buffer) travels from the OPQ 520 located in local
memory 206 to an outbound retrieve register (ORR) 806
through local data bus 604. The data is then passed
from the ORR 806 through data path 808 to the outbound
portion of the ATU 218. The data is then passed
through data path 810 through PCI bus 208 to the
respective host processor or bus agent. State machine
812 de-asserts ORR _Ready 814 to indicate stale data in
ORR 806. When ORR Ready signal 814 is de-asserted, the
ATU 218 will insert wait states until the ORR Ready
signal 814 is asserted, which indicates that the ORR
806 contains valid data.

The Outbound Retrieve state machine 812 of the MU
210 is further illustrated by a state diagram shown in
Figure 8B. The Outbound Retrieve state machine 812
has three states: Empty 850, Prefetch 852, and Primed
856. The Outbound Retrieve state machine transitions
from the Empty state 850 to the Prefetch state 852 when
the Empty signal 840 is de-asserted. In response, the
Outbound Retrieve state machine 812 asserts a
Memory Read Request 818 to the local bus arbitration

WO 97/00533 PCT/US96/10466

-31-

unit 240 and de-asserts the ORR Ready signal 814 while
it waits for a Grant signal 832. While waiting for the
Grant signal 832, the Adder 824 calculates the address
of the next message (i.e., tail pointer), and places
this address on the local address bus 630.

State machine 812 transitions from a Prefetch 852
to a Primed state 856 upon Grant signal 832. The
memory controller 205 uses the address 825 and reads
the appropriate message handle from the OPQ 520. This
message handle (i.e., pointer) is placed on the local
data bus 604 and transferred to the ORR 806. The state
machine 812 then generates a Latch ORR 834 to latch the
data from the OPQ 520 into the ORR 806 and also
generates the Increment OFTPR signal 844 to increment
the tail pointer of 0OPQ 520 which is stored in the
OPTPR 826. After this prefetch is completed, and new
data is latched into ORR 806, state machine 812 asserts
a ORR Ready signal 814 to notify the ATU 218 that it is
ready to complete another transaction from the PCI bus
208.

The state machine 812 transitions from a Primed
state 856 to a Prefetch state 852 when the Read ORR
signal 816 is generated, and the Empty signal 840 is
de-asserted. In response, the state machine 812
asserts the Memory Read Request signal 818 to the local
bus arbitrator 240 and de-asserts the ORR ready signal
814 to the ATU 218, so that a later transaction will
not read the contents of the ORR 806 until a prefetch
has been completed.

State machine 812 transitions from a Primed state
856 to an Empty state 850 upon detecting a Read ORR
signal that is asserted when an empty signal 840 1is
asserted. In response, state machine 812 asserts a
Preset signal 842. The Preset signal 842 causes the

WO 97/00533 PCT/US96/10466

-32~

content of the ORR 806 to be set to a value that is
reserved for an empty indication so that a transaction
requesting a read from the OPQ 520 will be notified
that the OPQ 520 is empty.

When comparator 836 compares the contents of OPHPR
838 and OPTPR 826, and the values are equal, the Empty
signal 840 is asserted. A non _empty OPQ 520 (i.e.,
not_Empty) indicates that there are messages pending
for processing by the host processor 201. The present
invention includes logic (not shown) to generate an
interrupt to the host processor 201'through the
interrupt lines specified in the PCI Bus Specification
Release 2.0.

Figures 9A and 9B illustrate the Outbound
Release state machine 912. After a host processor 201
processes a message, it returns the free message buffer
pointer via the PCI bus 208 through data path 904 to
the ATU 218 and is latched in an Outbound Release
Register (ORLSR) 906. The free message buffer handle
is then sent to the Outbound Free Queue (OFQ) 510 from
the Outbound Release Register (ORLSR) 906 through local
data bus 604. To release a free message buffer, a host
processor 201 simply writes the address of that free
message buffer to the ORLSR 906 in one bus transaction
cycle.

The ATU 218 tests the state of an ORLSR Ready
signal 916 and an ORLSR Retry signal 914. If the
ORLSR Retry signal 914 is de-asserted, the PCI
transaction (i.e., write to the ORLSR 906) is not
completed. The requesting process is signaled a Retry,
and the requesting process releases control of the bus
and tries again at a later time. If the ORLSR_Ready
signal 916 is de-asserted, the ATU 218 inserts wait
states until the ORLSR Ready signal 916 is asserted.

WO 97/00533 PCT/US96/10466

33

When the ORLSR Ready signal 916 is asserted, the ATU
218 generates the Write ORLSR signal 918 to the state
machine 912 and latches data into the ORLSR 906.

Figure 9B illustrates a state diagram for the
Outbound Release state machine 912. State machine 912
has three states: a Full state 954, an Idle state 950
and a Post state 952. The state machine 912
transitions from an Idle state 950 to a Full state 954
when a Full signal 940 is asserted by comparator 936.
In response to this Full signal 940, state machine 912
asserts a ORLSR Retry signal 914 to the ATU 218. Upon
generation of a ORLSR Retry signal 914, the process
that initiates a write transaction to the ORLSR 906 is
signaled to try again at a later time.

The state machine 912 transitions from a Full
state 954 to an Idle state 950 when the Full signal 940
is de-asserted. If the Outbound Free Queue OFQ 510 is
not full, then state machine 912 de-asserts the
ORLSR Retry signal 914 (i.e., there is room in the OFQ
510 for an additional free message handle).

State machine 912 transitions from an Idle state
950 to a Post state 952 when it receives a Write ORLSR
signal 918 from the ATU 218. The Write ORLSR signal
918 also serves to latch the free message handle into
the ORLSR 906. 1In response to the Write ORLSR signal
918 being asserted, state machine 912 asserts a
Memory Write Request signal 918 to the local bus
arbiter 240 and waits for a Grant signal 932 from the
arbiter. An Adder 925 calculates the next position in
the OFQ 510 where the next free message handle is to be
written. State machine 912 also de-asserts the
ORLSR Ready signal 916 to prevent a subsequent
transaction from overriding the data that is now
latched in the ORLSR 906.

WO 97/00533 PCT/US96/10466

34

The state machine 912 transitions from a Post
state 952 to an Idle state 950 when it receives a Grant
signal 932 from the local bus arbiter 240. 1In
response, the Outbound Release state machine 912
increments the head pointer in the OFHPR 926 through an
Increment OFHPR signal 944. State machine 912 also
asserts the ORLSR Ready signal 916, indicating to the
ATU 218 that it has already stored the contents of the
ORLSR 906, and that it has calculated the OFQ address
to which the next free message handle is to be stored,
and is ready for the next write to the ORLSR 906.

In summary, a host processor releases a free
message buffer to the OFQ 510 by writing its handle to
the ORLSR 906. If the OFQ 510 is full, the requesting
process is notified to retry later. If the OFQ 510 is
not full, the handle of the free message buffer is
latched into the ORLSR 906. State machine 912 then
waits for a Grant signal 932 from the local bus arbiter
240 to gain access to the local bus. Once control of
the local bus is granted, state machine 912 transfers
the data latched in the ORLSR 906 to the OFQ 510 at the
location pointed to by the pre-calculated head

pointer/address.

Thus, a method and apparatus that enables a remote
process to allocate a message buffer then posts that
message buffer to a work queue without the use of a
semaphore or locking of the bus has been described.

Furthermore, a method and apparatus for retrieving
a message from a work queue and releasing the message
to a free queue after the message has been processed by
a host processor, has been described.

The present invention also provides for
scalability, flexibility, and compatibility with other

WO 97/00533 PCT/US96/10466

35

platforms. For example, all platforms including an
inbound message queue, as previously described, can
easily send inter-processor messages. For
compatibility with other platforms that do not
implement an inbound message queue, an outbound message
queue supplies that platform with an equivalent
functionality without modifying the hardware of the
platform. Moreover, the present invention allows for
abstraction in that other platforms may use one
platform's inbound queue concurrently without express
knowledge that other processors exist in the computer
system.

Thus, the present invention provides a method and
apparatus for directly passing messages in a highly
efficient manner between processors without requiring
hardware modification to the processors in an
asymmetric multi-processor system.

In the foregoing specification, the invention has
been described with reference to specific exemplary
embodiments thereof. It will however be evident that
various modifications and changes made be made thereto
without departing from the broader spirit and scope of
the invention as set forth in the appended claims. The
specification and drawings are accordingly to be

regarded as illustrative rather than restrictive.

WO 97/00533 PCT/US96/10466

36

CLAIMS

1. A messaging unit coupled te a local processor
and memory through a local bus, and further coupled to
a host processor through a second bus, said messaging
unit comprising:

a) an inbound free storage means for storing
data for reading by the host processor;

b) an inbound free circuitry means coupled to
the inbound free storage means for operating on data in
an inbound free queue;

c) an inbound post storage means for storing
data written by the host processor; and

d) an inbound post circuitry means coupled to
inbound post storage means for operating on data in an

outbound free queue.

2. The messaging unit as set forth in claim 1
further comprising

a) an outbound retrieve storage means storing
data for reading by the host processor;

b) an outbound retrieve circuitry means coupled
to the outbound retrieve storage means for operating on
data in an outbound post queue;

‘ c) an outbound release storage means for storing
data written by the host processor; and

d) an outbound release circuitry means coupled
to the outbound release storage means for operating on
data in an outbound free queue.

3. The messaging unit as set forth in claim 1
wherein the operation on data by the inbound free
circuitry means further includes prefetching
information from the inbound free queue stored in the

memory if the inbound free queue is not empty, loading

WO 97/00533 PCT/US96/10466

37

the inbound free storage means with a predetermined
value if the inbound free queue is empty, and allowing
the host processor to read the inbound free storage
means if the prefetch operation is completed; and
wherein the operation on data by the inbound free
circuitry means further includes detecting if the
inbound post queue is full, returning a retry signal to
the host processor if the inbound post queue is full,
and allowing the host processor to write the inbound
post storage means if the inbound post queue is not
full and the current value stored in the inbound post
storage means has been stored into the inbound post

queue.

4. The messaging unit as set forth in claim 2

wherein the operation on data by the outbound
retrieve circuitry means further includes prefetching
data from the outbound post queue if the outbound post
queue is not empty, loading the outbound retrieve
storage means with a predetermined value if the
outbound post queue is empty. and allowing the host
processor to read the outbound retrieve storage means
if the prefetch is completed; and

wherein the operation on data by the outbound
release circuitry means further includes detecting if
the outbound free queue is full, returning a retry
signal to the host processor if the outbound free queue
is full, and allowing the host processor to write the
outbound release storage means if the outbound free
queue is not full and the current value in the outbound
release storage means has been stored into the outbound

free queue.

WO 97/00533 PCT/US96/10466

38

5. The messaging unit as set forth in claim 2
wherein the second bus is a PCI bus.

6. The messaging unit as set forth in claim 2

wherein the storage means are registers.

7. A method for enabling a host processor to
retrieve a message handle from an outbound post queue,
in one bus transaction, said queue being defined by a
tail pointer and a head pointer, said method comprising
the steps of:

a) detecting whether or not the queue is empty;

b) if the queue is empty, return to the host
processor a value that indicates an empty queue;

c) if the queue is not empty, then return the
message handle pointed to by the tail of the queue; and

d) prefetch the next message handle.

8. The method as set forth in claim 7 wherein
the step of prefetching a next message handle includes
incrementing the tail pointer of the queue;

reading data from queue; and

latching the data into a prefetch register.

9. A method for enabling a host processor to
release a free message handle to a queue in one bus
transaction, said queue defined by a tail pointer and a
head pointer, said method comprising the steps of:

a) detecting whether or not the queue is full;

b) if the queue 1is not full, then writing the
handle of the free.message to the queue; and

c) if the queue is full, signaling the host
processor to retry at a later time.

WO 97/00533 PCT/US96/10466

.3 9.

10. The method as set forth in claim 9, wherein
the step of writing the free message handle to the
queue further comprises the steps of:

latching the free message handle;

incrementing the head pointer of the queue; and

storing the latched handle to memory.

11. A method for enabling a host processor to
allocate a message handle from an inbound free queue,
in one bus transaction, said queue being defined by a
tail pointer and a head pointer, said method comprising
the steps of:

a) detecting whether or not the queue is empty;

b) if the queue is empty, return to the host
processor a value that indicates an empty queue;

c) if the queue is not empty, then return the
message handle pointed to by the tail of the queue; and

d) prefetch the next message handle.

12. The method as set forth in claim 11 wherein
the step of prefetching a next message handle includes
incrementing the tail pointer of the queue;

reading data from a memory; and

latching the data into a prefetch register.

13. A method for enabling a host processor to
post a free message handle to a queue in one bus
transaction, said queue defined by a tail pointer and a
head pointer, said method comprising the steps of:

a) detecting whether or not the queue is full;

b) if the queue is not full, then writing the
handle of the free message to the queue; and

C) if the queue is full, signaling the host
processor to retry at a later time.

WO 97/00533 PCT/US96/10466

40

14. The method as set forth in claim 13, wherein
the step of writing the message handle to the queue
further comprises the steps of:

latching the message handle;

incrementing the head pointer of the queue; and

and storing the latched handle to memory.

WO 97/00533 PCT/US96/10466

1/13
108
/(0]
Platform
106 Input/Output Bus

104 105

Host Host
Memory Chip Set
103 Memory Bus
102
Host 10
Processor -

FIGURE 1

WO 97/00533 PCT/US96/10466
2/13

200 207 Quewes = [
| VO Platform Quenes |
: 206 E N 202 :
i |
| Local Memory Local |
| A Processor |
| 225 |
| v |
| 305 A 240] |
: Memory Local Bus :
| Controller 226 Arbitrator [
| A A |
| 224 242 |
ILOCAL 204 Y Y / |
| BUS A A |
I 219 230 |
| y \ |
| 218 ATU - |
| Registers 212 |
i . Control | 5o, |
[Outbound { Inbound | “gyate > 214 [

Module | Module |Machine Control MU |
: State . |
| Machines 210 |
I A |
I . |

PCI_208(106) Y
BUS A
201
BUS
AGENT

FIGURE 2

WO 97/00533 PCT/US96/10466

3/13

LOCAL BUS 204

1 336 A<--354 0 /

>

_________________ ——— e ——

360
I
(=]
=
(o)

214 332
Prefetch & Temporary

State ine .
Machines Registers

218] . 3

Inbound Free

ATU

352

Inbound Post

Y

Outbound Retrieve

356

Outbound Release

|
|
|
}
|
|
|
|
|
|
|
|
|
! Rn
|
|
|
|
|
|
|
|
I
i
|

340
Queue Pointer Registers

362

PCI BUS 208

FIGURE 3

WO 97/00533

PCT/US96/10466

201

Host
Processor/
Bus Agent

QOutbound free messages
412 e

Head
Qutbound
Free Queue
410

Tail

—>

Inte
<

426

< 424

Head
QOutbound
Post Queue
420

Tail

|
|
|
|
| 414
1
|
: Outbound posted messages

202

422

Inbound posted messages
432 >

Head
Inbound
Post Queue
430

Tail

n't_lpt_‘vw%‘é_eus.is_wa'tw_.n

434

—

Head

Inbound
Free Queue

< |__Inbound free messages
442

——ade v - — e —— — S—— . —— v— —

7[0)
Processor

FIGURE 4

WO 97/00533 PCT/US96/10466
External Writey 516
Bus Agent «g¢——{Outbound Queue Port
201 Read [512
__| Head Pointer
(OFHP)
,— -{ Tail Pointer
| (OFTP)
] 514
ln%rememed by VO processor
202
Read
[0 Processor €
202 Vs i S 522
| Incremented by = — Head Pointer
(OPHP)
| VO processor 202 I Tail Pointer
| | (OPTP)
| ?_ R 524
Infrementcd by MU 210
|
|
External Write 536 |
Bus Agent
201g < Inbound Queue Port L _?_ N -
R Head Pointer
- lndlmmemcd by MU 210 — (IPHP)
, — | Tail Pointer
| (IPTP)
L 1_] 534
Indremented by VO processor
I 202
|
Read| |
VO Processor % |
202 Wi 1 i S 542
Incremented by — — Head Pointer
(IFHP)
l]IO processor 202 ___| Tail Pointer
| i (IFTP)
| 543

Infremem.ed by MU 210

FIGURE 5

PCT/US96/10466

WO 97/00533

6/13

(041 =
. 13ys139y|
Sng SSaIppV [0 TIMING LT | sng eieq [eoo] L7 | (D 4918t
P punoquj 709 ooowi punoquy =ong nLv <
ovs 81z 019
4 A
&
OWI | A H
0£9—> 2 b
=)} o
[-3
2
N
Tolonuos QY e outyoE IS =
soz Kousy ovz SNATE007] [1sonbay peay Alowajy 819 3a1,] punoquy
14
LAdwg
¥29—, gge OIUD g [zt
629 L29 % ﬁTm%
UdHAT
U ¥v9

L€9 I'_ MEN.J:»EB
20T 10553201 [€007] .

SNg15d

807

WO 97/00533 PCT/US96/10466

7/13

STATE DIAGRAM FOR THE INBOUND FREE STATE MACHINE

Read_IFR & Empty
{Preset}

not_Empty _
{Memory_Read_Request
& not_IFR_Ready)

Read_IFR & not_Empty
{Memory_Read_Request & not_IFR_Ready}

Legend = Input
{Output)

FIGURE 6B

PCT/US96/10466

WO 97/00533

8/13

~

VL HdNOIA

91L Apeay yd]

P1L Anoyyd]

©dn 3
3oy 15031 Snd Bied [e20] ddD 1318189y
Sng SSAIPPY [8307] _._:sh_:u_ 1504 puncquy
0cs 9 8I¢C
=
&2
. i o _
oo Adl yae] =
—> o
Yy
PR e IO 8¢CL > oUIOBA SNEIS
£ sng e t
S0T OWIN oyz SNE 180T (g 159nboy aMp AJOWRN OTL 1504 punoquy
€L p nnd 8¢L
0 >
—— L Jojerediuo)) _ ZiL
* y Y LdwgTIoN
9¢L
LeL szL TeL
dddl UdIAI 10SS3201d
O/1
0T

hmblv_
70T 108590014 [8307]

AdHJI wuswanuy ObL

SN4910d

802

WO 97/00533 PCT/US96/10466

9/13

STATE DIAGRAM FOR THE INBOUND POST STATE MACHINE

3
: IPR_Retry
not_Full Write JPR
no_IPK_Retry { Memory_Write_Request
& not_IPR_Ready}
Grant :
{Increment_IPHPR & IPR_Ready}
Legend = Input
{Output}

FIGURE 7B

PCT/US96/10466

WO 97/00533

10/13

0£9—>;

sng SSaIppy [8d07]

JD[[ONU0Y)
soz fMouwnp

QY
oyz St [0 [«

V& HY1OIA

p8 19said

918 WJO peay

81¢

nLv

§T8
yi8—,

678

JUIYOB| IS
ALY pUNOQINQD

v18 APEay W30

(©d0o)
30310 1504 | sng ®ie([e20]
punoqinp $09
8
=
o
=
=
o0
W
‘«V
jueln (4%} >
1sonboy peay AJOWIN 818
opg Hidwig
0
Joreredwo)
* ﬂ?mmw 4
; J0S$2201d
. UdHdO 1SOH
8¢8

LEG—>
Z0Z 108S3201d [e207]

AUdIJO wowauy 8

SN 10d

802

WO 97/060533 PCT/US96/10466

11/13

STATE DIAGRAM FOR THE OUTBOUND RETRIEVE STATE MACHINE

Read_ORR & Empty
{ Preset}

not_Empty - ﬁSZ\

Grant
[Memory_Read_Request ~ \ PreFetch {Latch_ORR &
& not_ORR_Ready} Increment_OPTPR
& ORR_Ready)

Read_ORR & not_Empty

Legend= Input {Memory_Read_Request & not_ORR_Ready}

{Output)

FIGURE 8B

PCT/US96/10466

WO 97/00533

12/13

20 105593014 [£307]

~
M Ve HH1OI1A
i ©40)
¥
; . 1915139
SV - um_wu@ w,um 3] sng ®eq [eo0] o iSTO) DISTE _om < v

ot " |gilos punoang 11
5 AR s Ln S % A A
A
w _m .,W m MW
i | S— o I I
{—Towaw 4STIO WIeT | B A |»

0£9—> & es0 R o |»
|90z . 2 15
0 A4 s R

wein (4] > m
Jajjonuo) Ruqly > uIYOB NBIS ”
coz Aiowsp 0vz SNH [e07] | TSonboy ot KIOWaN 816 2582}y PUNOQINO
ST6
g
L 086 soieredwo) 179 716
A .
626 <= 6£6
| uado |, 4dLd0
+|8z6 #8L6
LC6— ddH40 wowaadup ¥P6

SN 104

80C

SUBSTITUTE SHEET (RULE 26)

WO 97/00533 PCT/US96/10466

13/13

STATE DIAGRAM FOR THE OUTBOUND RELEASE STATE MACHINE

ORLSR_Retry
not_Full 950
.ORLSR_R Idle

no_U _Retry

Memory_Write_Request &
not_ORLSR_Ready}

Grant
{Increment_OFHPR & ORLSR_Ready}

Legend = Input
{Output}

FIGURE 9B

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/10466

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO1J 13/00; GOGF 13/00
US CL :395/200.01, 427, 800
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/200.01, 427, 800; 364/DIG.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS
search terms: asymmetric, multiprocessor, queue, head pointer, tail pointer, message transfer

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US, A, 5,333,269 (CALVIGNAC ET AL.) 26 July 1994,} 7,9,11,13
col.1, line 60 - col.2, line 52; col. 7, line 52 - col.8, line 66;
col.10, lines 20-55; col.11, line 32 - col.14, line 32.

A US, A, 4,956,771 (NEUSTAEDTER) 11 September 1990, 1-14
the entire document.

AE US, A, 5,630,933 (FRINK ET AL.) 25 June 1996, the entire| 1-14

document.

A US, A, 4,682,284 (SCHROFER) 21 July 1987, the entire| 1-14
document.

A US, A, 4,914,653 (BISHOP ET AL.) 03 April 1990, the entire| 1-14
document.

l:l Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited d T later d blished after thc ional filing date or priority
i . 5 dmlndnotmconfhctwnhlhc jon but cited to und d the
A" documentdefining the general state of the art which is not considered principle or theory underlying the inveation
to be part of particular relevance
- . . : . . . X" document of particular relevance; the claimed invention cannot be
E earlier document publishod on or afier the international filing daie considered novel or cannot be considered to involve an inventive step
document which may throw doubts on priority claim(s) or which is When the document is taken alone
cited 10 establish the ion datc of or other ., 4 of) . the claimed faveat b
ial reason ocument o plmuhl canno
spec (e wm) considered to involve an mvamvc step when the documeat is
0" document referving to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
Pt d blished prior to the international filing date but later than ~ *g* document member of the same pateat family
the pnonly date claimed
Date of the actual completion of the international search Date of mailing of the international search report
07 AUGUST 1996 25 SEP1996
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks -
Box PCT ’
Washi . D.C. 20231 ALYSSA H. BOWLER
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9702

Form PCT/ISA/210 (second sheet)(July 1992)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

