wo 20197005867 A1 | 0K 00 0 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2019/005867 Al

03 January 2019 (03.01.2019) WIPOI|PCT

(51) International Patent Classification:

GO6F 11/36 (2006.01)
(21) International Application Number:
PCT/US2018/039596
(22) International Filing Date:
26 June 2018 (26.06.2018)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
62/526,339 28 June 2017 (28.06.2017) Us

(71) Applicant: APPLE INC. [US/US]; One Apple Park Way,
Cupertino, California 95014 (US).

(72) Imventors: GUIDA, Gianluca; Mail Stop 749-RE, 1
Hanover Street, London Greater London W1S 1YZ (GB).
RISTOVSKI, Aleksandar;, Mail Stop 4004-1RE, 411
Legget Drive, Suite 300, Ottawa, Ontario K2K 3C9 (CA).
VAN DER VEEN, Peter H.; Mail Stop 4004-1RE,
411 Legget Drive, Suite 300, Ottawa, Ontario K2K 3C9
(CA). WOODTKE, Shawn R.; Mail Stop 4004-1RE, 411
Legget Drive, Suite 300, Ottawa, Ontario K2K 3C9 (CA).
MCPOLIN, Stephen J.; Mail Stop 4004-1RE, 411 Legget
Drive, Suite 300, Ottawa, Ontario K2K 3C9 (CA).

74

62y

(84)

Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &
GOETZEL, P.C.; MERKEL, Lawrence J., P.O. Box 398,
Austin, Texas 78767-0398 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: INTERPOSITION

Composed Actor 2
(Composed Actor 1,

Base Actor 2) 16A

Composed Actor 1
(Base Actor 1,
Base Actor 3) 1613

Privileged

Interrupt | | Memory
Actor Actor
30 32

Timer CPU Channel
Actor Actor Actor

34 28

36

Kernel
10

I

Capabilities Channel Contexts
12 Table 38 20
Fig. 1
Third Third
Actor Actor
46 46
50
ICid} +—Icid3
. Cidl . Cids Cidl
First *—— Second First [« Interposer *«—— Second
Actor Cid2 Actor Actor Cid2 Actor Cidé Actor
0 — 42 40— 44 — 42

ICid4

Fourth
Actor

48

ICid—’l

Fourth
Actor

48

(57) Abstract: In an embodiment, an operating system is defined in terms
of a set of actors, each of which implements one or more capabilities built
into the system. The actors may establish channels between them for com-
munication of messages between the actors. Some actors may interpose
between other actors. These other actors may, in some cases, interpose on
channels used by the base actor. In some embodiments, some channels
may be interposed while others may be monitored by the interposing actor
but may still communicate directly with the underlying actor. Some chan-
nels may not be aftected by the interposition (e.g. the channels may not
be interposed or monitored), in an embodiment. Other examples of inter-
position may include debugging, simulation, and sandboxing.

[Continued on next page]

WO 2019/005867 A1 { I 7000000 T O

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

INTERPOSITION

BACKGROUND

Technical Field
[0001] This disclosure relates generally to electronic systems and, more particularly, to

operating systems on such electronic systems.

Description of the Related Art

[0002] Most electronic systems (e.g. computing systems, whether stand alone or embedded in
other devices) have a program which controls access by various other code executing in the
system to various hardware resources such as processors, peripheral devices, memory, etc. The
program also schedules the code for execution as needed. This program is typically referred to as
an operating system.

[0003] Typically, operating systems are coded as a set of processes containing threads. The
threads can be modified over time as the operating system evolves, and the code can become
unwieldy, inefficient, and error-prone. Interfaces between threads can evolve ad-hoc, and thus
changes in one thread can spiral out to many other threads, making maintenance difficult.
Accordingly, expansion of operating system functionality becomes more and more complex.

Debugging of such operating system code may also become more complex over time.

SUMMARY

[0004] In an embodiment, an operating system for a computer system is defined in terms of a
set of actors, each of which implements one or more capabilities built into the system. The actors
may establish channels between them for communication. A given actor may communicate with
another actor via messages on the channels. An actor receiving a message and determining that a
response is to be provided may also send those messages via a channel to the originating actor.

A set of base actors may be defined, which provide basic functionality such as memory access,
interrupt control, channel control, timer facilities, etc. Other actors may be defined which
incorporate (e.g. inherit) the base actors and add additional capabilities. These other actors may,
in some cases, interpose on channels used by the base actor. In some embodiments, some

channels may be interposed while others may be monitored by the interposing actor but may still

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

communicate directly with the underlying actor. Some channels may not be affected by the
interposition (e.g. the channels may not be interposed or monitored), in an embodiment. Other

examples of interposition may include debugging, sandboxing, and simulation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The following detailed description makes reference to the accompanying drawings,

which are now briefly described.

[0006] Fig. 11is a block diagram of one embodiment of an operating system in accordance
with this disclosure.

[0007] Fig. 2 is a block diagram of one embodiment of actors and an interposing actor.
[0008] Fig. 3 is a flowchart illustrating operation of one embodiment of the operating system
to instantiate an interposing actor.

[0009] Fig. 4 is a flowchart illustrating operation of one embodiment of the operating system
for an interposing actor capturing an inbound message to the interposed actor.

[0010] Fig. 5 is a flowchart illustrating operation of one embodiment of the operating system
for an interposing actor capturing an outbound message from the interposed actor.

[0011] Fig. 6 is a block diagram of one embodiment of a debug actor interposed on another.
[0012] Fig. 7 is a flowchart illustrating operation of one embodiment of the operating system
for debug instantiation.

[0013] Fig. 8 is a flowchart illustrating operation of one embodiment of the operating system
for a debug actor message capture.

[0014] Fig. 9is a block diagram of one embodiment of a sandboxing actor as an interposing
actor.

[0015] Fig. 10 is a block diagram of one embodiment of a simulation actor as an interposing
actor.

[0016] Fig. 11 is a block diagram of one embodiment of a computer system.

[0017] Fig. 12 is a block diagram of one embodiment of a computer accessible storage

medium.

[0018] While this disclosure may be susceptible to various modifications and alternative

forms, specific embodiments thereof are shown by way of example in the drawings and will

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

herein be described in detail. It should be understood, however, that the drawings and detailed
description thereto are not intended to limit the disclosure to the particular form disclosed, but on
the contrary, the intention is to cover all modifications, equivalents and alternatives falling within
the spirit and scope of the appended claims. The headings used herein are for organizational
purposes only and are not meant to be used to limit the scope of the description. As used
throughout this application, the word "may" is used in a permissive sense (i.e., meaning having
the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words
"include", "including", and "includes" mean including, but not limited to. As used herein, the
terms "first," "second," etc. are used as labels for nouns that they precede, and do not imply any
type of ordering (e.g., spatial, temporal, logical, etc.) unless specifically stated.

[0019] Within this disclosure, different entities (which may variously be referred to as

"units," "circuits," other components, etc.) may be described or claimed as "configured" to
perform one or more tasks or operations. This formulation—/[entity] configured to [perform one
or more tasks]—is used herein to refer to structure (i.e., something physical, such as an electronic
circuit). More specifically, this formulation is used to indicate that this structure is arranged to
perform the one or more tasks during operation. A structure can be said to be "configured to"
perform some task even if the structure is not currently being operated. A "clock circuit
configured to generate an output clock signal" is intended to cover, for example, a circuit that
performs this function during operation, even if the circuit in question is not currently being used
(e.g., power is not connected to it). Thus, an entity described or recited as "configured to"
perform some task refers to something physical, such as a device, circuit, memory storing
program instructions executable to implement the task, etc. This phrase is not used herein to
refer to something intangible. In general, the circuitry that forms the structure corresponding to
"configured to" may include hardware circuits. The hardware circuits may include any
combination of combinatorial logic circuitry, clocked storage devices such as flops, registers,
latches, etc., finite state machines, memory such as static random access memory or embedded
dynamic random access memory, custom designed circuitry, analog circuitry, programmable
logic arrays, etc. Similarly, various units/circuits/components may be described as performing a
task or tasks, for convenience in the description. Such descriptions should be interpreted as
including the phrase "configured to."

[0020] The term "configured to" is not intended to mean "configurable to." An
unprogrammed FPGA, for example, would not be considered to be "configured to" perform some

specific function, although it may be "configurable to" perform that function. After appropriate

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

programming, the FPGA may then be configured to perform that function.

[0021] Reciting in the appended claims a unit/circuit/component or other structure that is
configured to perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112(f)
interpretation for that claim element. Accordingly, none of the claims in this application as filed
are intended to be interpreted as having means-plus-function elements. Should Applicant wish to
invoke Section 112(f) during prosecution, it will recite claim elements using the "means for"
[performing a function] construct.

[0022] In an embodiment, hardware circuits in accordance with this disclosure may be
implemented by coding the description of the circuit in a hardware description language (HDL)
such as Verilog or VHDL. The HDL description may be synthesized against a library of cells
designed for a given integrated circuit fabrication technology, and may be modified for timing,
power, and other reasons to result in a final design database that may be transmitted to a foundry
to generate masks and ultimately produce the integrated circuit. Some hardware circuits or
portions thereof may also be custom-designed in a schematic editor and captured into the
integrated circuit design along with synthesized circuitry. The integrated circuits may include
transistors and may further include other circuit elements (e.g. passive elements such as
capacitors, resistors, inductors, etc.) and interconnect between the transistors and circuit
elements. Some embodiments may implement multiple integrated circuits coupled together to
implement the hardware circuits, and/or discrete elements may be used in some embodiments.
Alternatively, the HDL design may be synthesized to a programmable logic array such as a field
programmable gate array (FPGA) and may be implemented in the FPGA.

[0023] As used herein, the term "based on" or "dependent on" is used to describe one or more
factors that affect a determination. This term does not foreclose the possibility that additional
factors may affect the determination. That is, a determination may be solely based on specified
factors or based on the specified factors as well as other, unspecified factors. Consider the phrase
"determine A based on B." This phrase specifies that B is a factor is used to determine A or that
affects the determination of A. This phrase does not foreclose that the determination of A may
also be based on some other factor, such as C. This phrase is also intended to cover an
embodiment in which A is determined based solely on B. As used herein, the phrase "based on"
is synonymous with the phrase "based at least in part on."

[0024] This disclosure includes references to "one embodiment" or "an embodiment." The
appearances of the phrases "in one embodiment" or "in an embodiment" do not necessarily refer

to the same embodiment. Particular features, structures, or characteristics may be combined in

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

any suitable manner consistent with this disclosure. Generally, this disclosure is not intended to
refer to one particular implementation, but rather a range of embodiments that fall within the

spirit of the present disclosure, including the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

[0025] Turning now to Fig. 1, a block diagram of one embodiment of an operating system
and related data structures is shown. In the illustrated embodiment, the operating system
includes a kernel 10, a set of capabilities 12, a set of base actors, and a set of composed actors
16A-16B. The base actors, in this embodiment, may include a central processing unit (CPU)
actor 28, an interrupt actor 30, a memory actor 32, a timer actor 34, and a channel actor 36.
Other embodiments may include other base actors, including subsets or supersets of the
illustrated base actors and/or other actors. The kernel 10 may maintain one or more contexts 20.
The channel actor 36 may maintain a channel table 38. There may be any number of base actors
and composed actors in a given embodiment.

[0026] Each capability 12 includes a function in an address space that is assigned to the
capability 12. The data structure for the capability 12 may include, e.g., a pointer to the function
in memory in a computer system. In an embodiment, a given capability 12 may include more
than one function. In an embodiment, the capability 12 may also include a message mask
defining which messages are permissible to send to the capability 12. A given actor which
employs the capability 12 may further restrict the permissible messages, but may not override the
messages which are not permissible in the capability 12 definition. That is, the capability 12
definition may define the maximum set of permissible messages, from which a given actor may
remove additional messages. While message masks are used in some embodiments, any
mechanism for identifying valid messages for the capability and further restricting messages in a
given actor may be used. The union of the permitted messages may be the permitted messages in
the given actor.

[0027] Each base actor 28, 30, 32, 34, and 36 may employ one or more capabilities 12. A
given actor may employ any number of capabilities, and a given capability may be employed by
any number of actors. Because actors 28, 30, 32, 34, and 36 directly employ capabilities 12 and
do not include other actors, the actors 28, 30, 32, 34, and 36 may be referred to as base actors.
The base actors may provide the low level functions of the operating system. Other actors may

be composed actors, such as the actors 16A-16B. Composed actors 16A-16B may be assembled

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

from other actors, either base actors or other composed actors. Any amount of assembly may be
permitted in various embodiments (e.g. composed actors may include other actors that are
themselves composed actors, which may further include actors that are themselves composed
actors, etc.). In an embodiment, a composed actor 16A-16B may employ additional capabilities
12 as well. In an embodiment, the operating system disclosed herein may be viewed as a
lightweight capability system, as the structure to access the capability may simply be one or more
pointers to the capability function. This differs from the use of keys and tree spanning access
methods that some capability-based systems use.

[0028] Accordingly, an actor may generally be defined as a container for one or more
capabilities, either directly employed or employed via the inclusion of another actor. A container
may be any type of data structure, class, data type, etc. that can store data allowing the
capabilities to be accessed/executed. For example, a data structure with pointers to capabilities
(or to other actors which point to the capabilities in a pointer chain) may be one form of
container. More generally, a container may be any structure that organizes a group of objects in
a defined way that follows specific access rules. In an embodiment, actors may be compiled into
the operating system and may be optimized to limit the number of exceptions that may occur
(e.g. by merging code into the actor, allowing some or all of the actor to execute in privileged
space, etc.). When the code is merged together, the exception in the code one actor that would
have lead to execution of code in another actor may be eliminated since the code has been
merged. However, the model that the system is designed to may be that the actor is a container
and may be proven to be safe and stable. Then, the compiled version may be shown to be
equivalent to the model and thus also safe and stable. Safety and stability may be critical in
certain products in which the operating system may be employed. For example, the operating
system may be in a computing system that is embedded in the product. In one particular case, the
product may be a vehicle and the embedded computing system may provide one or more
automated navigation features. The vehicle may be any type of vehicle, such as an aircraft, boat,
automobile, recreational vehicle, etc. In some embodiments, the automated navigation features
may automate any portion of navigation, up to and including fully automated navigation in at
least one embodiment, in which the human operator is eliminated. Safety and stability may be
key features of such an operating system. Additionally, security of the operating system may be
key in such cases, as an attack which disables or destabilizes the system may disable the vehicle
or possibly even cause a crash. In a traditional monolithic kernel operating system, the one

operating system entity (the kernel) is responsible for all functions (memory, scheduling, 1/0,

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

time, thread management, interrupts, etc.). Any compromise in any of the functions could
compromise the whole system. In the present operating system, however, the entities are
separated and communicate via channels that do not permit compromise. Each entity may be
provided with as much privileged and as needed to complete its operation. Thus, a compromise
of one entity may not compromise the system and the leakage of privileged that often occurs in
the monolithic kernel is not possible.

[0029] In an embodiment, the operating system may be a real time operating system that is
designed to complete tasks within specified time intervals, so that the system may respond
quickly enough to manage events that are occurring in "real time" (e.g. without undue buffering
or other delays). For example, in the automated navigation functions mentioned above, the
system may be able to react quickly enough to inputs in order to effectuate corresponding
automated navigation outputs to keep the vehicle operating in a safe manner.

[0030] The dotted line 22 divides the portion of the operating system that operates in user
mode (or space) and the portion that operates in privileged mode/space. As can be seen in Fig. 1,
the kemel 10 is the only portion of the operating system that executes in the privileged mode in
this embodiment. The remainder of the operating system executes in the user mode. Privileged
mode may refer to a processor mode (in the processor executing the corresponding code) in
which access to protected resources is permissible (e.g. control registers of the processor that
control various processor features, certain instructions which access the protected resources may
be executed without causing an exception, etc.). In the user mode, the processor restricts access
to the protected resources and attempts by the code being executed to change the protected
resources may result in an exception. Read access to the protected resources may not be
permitted as well, in some cases, and attempts by the code to read such resources may similarly
result in an exception. Because most of the operating system executes in the user space, the user
mode protections may apply. Thus, "privilege leak," where privileged code that is expected to
access only certain protected resources but actually accesses others through error or nefarious
intent, may be much less likely in the disclosed embodiments. Viewed in another way, each
entity in the system may be given the least amount of privileged possible for the entity to
complete its intended operation.

[0031] Moreover, the kernel 10 may be responsible for creating/maintaining contexts 20 for
actors, but may include no other functionality in this embodiment. Thus, in an embodiment, the
kernel 10 may be viewed as a form of microkernel. The contexts 20 may be the data which the

processor uses to resume executing a given code sequence. It may include settings for certain

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

privileged registers, a copy of the user registers, etc., depending on the instruction set architecture
implemented by the processor. Thus, each actor may have a context (or may have one created
for it by the kernel 10, if it is not active at the time that another actor attempts to communicate
with it).

[0032] The CPU actor 28 may be an actor by which other actors may interact with one or
more CPUs in the computer system on which the operating system executes. For example,
access to various processor state may be provided through the CPU actor 28. Interrupt delivery
to a CPU may be through the CPU actor 28.

[0033] The interrupt actor 30 may be responsible for handling interrupts in the system (e.g.
interrupts asserted by devices in the system to the processor, or processor's assertions to other
processors). In an embodiment, the interrupt actor 30 may be activated by the kemel 10 in
response to interrupts (as opposed to exceptions that occur within a processor in response to
internal processor operation/instruction execution). The interrupt actor 30 may gather
information about the interrupt (e.g. from an interrupt controller in the computing system on
which the operating system executes, interrupt controller not shown) and determine which actor
in the system should be activated to respond to the interrupt (the "targeted actor" for that
interrupt). The interrupt actor 30 may generate a message to the targeted actor to deliver the
interrupt.

[0034] The memory actor 32 may be responsible for managing memory, providing access to
memory when requested by other actors and ensuring that a given memory location is only
assigned to one actor at a time. The memory actor 32 may operate on physical memory. Other
actors may be implemented to, e.g., provide a virtual memory system. Such actors may use the
memory actor 32 to acquire memory as needed by the virtual memory system. That is, such
actors may be composed actors that incorporate the memory actor 32 and other functions (e.g.
capabilities, or capabilities in other actors).

[0035] The timer actor 34 may be responsible for implementing a timer in the system. The
timer actor 34 may support messages to read the timer, set an alarm, etc.

[0036] The channel actor 36 may be responsible for creating and maintaining channels
between actors. Channels may be the communication mechanism between actors for control
messages. Data related to the control messages may be passed between actors in any desired
fashion. For example, shared memory areas, ring buffers, etc. may be used.

[0037] In an embodiment, an actor may create a channel on which other actors may send the

actor messages. The channel actor 36 may create the channel, and may provide an identifier (a

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

channel identifier, or Cid) to the requesting actor. The Cid may be unique among the Cids
assigned by the channel actor 36, and thus may identify the corresponding channel
unambiguously. The requesting actor may provide the Cid (or "vend" the Cid) to another actor or
actors, permitting those actors to communicate with the actor. In an embodiment, the requesting
actor may also assign a token (or "cookie") to the channel, which may be used by the actor to
verify that the message comes from a permitted actor. That is, the token may verify that the
message is being received from an actor to which the requesting actor gave the Cid (or another
actor to which that actor passed the Cid). In an embodiment, the token may be inaccessible to the
actors to which the Cid is passed, and thus may be unforgeable. For example, the token may be
maintained by the channel actor 36 and may be inserted into the message when an actor transmits
the message on a channel. Alternatively, the token may be encrypted or otherwise hidden from
the actor that uses the channel. In an embodiment, the token may be a pointer to a function in the
channel-owning actor (e.g. a capability function or a function implemented by the channel-
owning actor).

[0038] The channel actor 36 may track various channels that have been created in a channel
table 38. The channel table 38 may have any format that permits the channel actor to identify
Cids and the actors to which they belong. When a message having a given Cid is received from
an actor, the channel actor 36 may identify the targeted actor (the actor that is to receive the
message) via the Cid. The channel actor 36 may request activation of the targeted actor and
may relay the message to the targeted actor.

[0039] In an embodiment, an actor may not be active (e.g., in execution) unless a message
has been sent to the actor. An activation of an actor may be an instantiation of an actor to
process the message. Each activation may have an associated context 20, that is created when the
activation begins execution. Once the activation completes execution on the message, the
activation terminates (or is "destroyed"). The context 20 may be deleted when the activation is
destroved. A new execution of the actor may then cause a new activation.

[0040] In an embodiment, each actor/capability within an actor may be activated to respond
to a given message. The activation may be associated with a context 20, which may be created
for the activation if a context for the actor does not yet exist in the contexts 20. Once the
activation has completed processing the message, the actor may dissolve, or dematerialize, or
destroy itself. The dissolving may include deleting the context and closing the thread. Thus,
there may be not persistent threads in the system. Each thread may be activated when needed,

and dissolve when complete. In other embodiments, threads may be created for each

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

actor/capability. The threads may block, but remain live in the system, after completing
processing of a message. Accordingly, the thread may be initialized already, and may have a
context 20, when a given message is received for that thread to processor. Unless expressly tied
to activation/dissolution herein, various features disclosed herein may be used with the longer-
living threads. In such embodiments, an activation may be similar to unblocking a thread and a
dissolve may be similar to blocking a thread.

[0041] In another embodiment, one or more of the base actors (e.g. one or more of the actors
28, 30, 32, 34, and 36) may execute in the privileged mode/space (e.g. on the same side of the
dotted line 22 as the kernel 10 in Fig. 2).

[0042] Fig. 2 is a block diagram of one embodiment of a first actor 40, a second actor 42, an
interposer actor 44, a third actor 46, and a fourth actor 48. Any of the actors 16A-16B, 28, 30,
32, 34, and 36 may be used as any of the actors 40, 42, 44, 46, and 48, and any other actor may
be used. Fig. 2 illustrates interposition of the interposing actor 44 into an original configuration,
which is illustrated on the left of the arrow 50 in Fig. 2.

[0043] The original system may include two channels between the first actor 40 and the
second actor 42, identified by Cidl and Cid2 in Fig. 2. The second actor 40 also has a channel to
the third actor 46 (Cid3) and the fourth actor 48 (Cid4), respectively. Subsequently, the system is
updated to include the interposing actor 44 between the first actor 40 and the second actor 42.
The interposing actor 44 thus replaces the second actor 42 on the Cid2 channel from the first
actor 40, and the interposing actor 44 replaces the first actor 40 on the Cidl channel. A new
channel with Cid5 is created between the interposing actor 44 and the first actor 40, and a new
channel with Cid6 is created between the second actor 42 and the interposing actor 44.
Accordingly, any messages between the first actor 40 and the second actor 42 may be intercepted
by the interposing actor 44. In this example, the interposing actor 44 also monitors the messages
between the third actor 46 and the second actor 42, but does not intercept the messages.
Accordingly, the channel with Cid3 goes to both the second actor 42 and the third actor 44 in
parallel. On the other hand, messages between the fourth actor 48 and the second actor 42 (Cid4)
are not monitored or intercepted by the interposing actor 44 in the embodiment of Fig. 2. The
operation of the interposing actor 44 may not be impacted by the communication between the
fourth actor 48 and the second actor 42, for example.

[0044] Fig. 3 is a flowchart illustrating one embodiment of instantiating an interposer actor
(e.g. the interposer actor 44) in the operating system. While the blocks are shown in a particular

order for ease of understanding, other orders may be used. The operating system and/or various

10

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

actors in the operating system may include instructions which, when executed in a computer
system, may implement the operation shown in Fig. 3. That is, the operating system/actors may
be configured to implement the operation shown in Fig. 3.

[0045] The operation of Fig. 3 may be performed during the build of the operating system
(e.g. when the actors and kernel 10 are being compiled, or when the system is being launched).
Alternatively, the operation may be performed dynamically during operation if the interposer
actor 44 becomes desired during operation (e.g. via the enabling of operating system features
implemented, at least in part, by the interposer actor 44, or detecting conditions in the system that
warrant the use of the interposer actor 44).

[0046] The interposer actor 44 may be invoked, and may transmit create channel messages to
the channel actor 36 for channels on which the interposed actor (e.g. the second actor 42 in Fig.
2) communicates and which the interposer actor 44 intercepts (block 52). For example, in Fig. 2,
the interposer actor may transmit create channel messages for new channels in place of Cidl to
the first actor 40 and Cid2 to the second actor 42 The new channels with Cid5 and Cid6 may
thus be created.

[0047] The interposer actor 44 may also transmit requests for the channel actor 36 to redirect
channels on which the interposed actor receives messages and the interposed actor 44 is
intercepting the messages (e.g. a request to redirect Cid2 from the second actor 42 to the
interposer actor 44 for the embodiment in Fig. 2) (block 54). Similarly, for each channel on
which the interposed actor transmits and the interposed actor 44 is intercepting messages, the
interposer actor 44 may requests that the channel actor 36 redirect the channel to the interposer
actor 44 (e.g. arequest to redirect Cid1 to the interposer actor 44 instead of the first actor 40 for
the embodiment of Fig. 2) (block 56). In one embodiment, the Cids may be rescinded from the
actors to which the channels were previously connected (e.g. from the second actor 42 for Cid2).
Alternatively, the actor may still have the Cid, but the channel actor 36 may simply not activate
the actor for messages with that Cid. The actor may therefore not receive anything on the
channel. Such a configuration may be used, e.g., if the interposer actor 44 is may be dynamically
removed during operation, since the channel actor 36 may update the channel table 38 to activate
the original actor in response to messages on the Cid after the interposer actor 44 is removed.
[0048] The interposer actor 44 may also transmit requests to monitor channels which the
interposer actor 44 is to monitor but not intercept (e.g. a request to monitor cid3 in the
embodiment of Fig. 2) (block 58). In this case, a message on Cid3 may both activate the

receiving actor 42 or 46 and the interposer actor 44.

11

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

[0049] The flowchart of Fig. 3 presumes there is at least one type of each channel
(intercepted outbound, intercepted inbound, and monitored). However, in various embodiments,
one or more of the channel types may not be used and thus the corresponding requests may not
be transmitted. Additionally, the operation of the channel actor 36 is not illustrated in Fig. 3.
However, the channel actor 36 may determine whether or not to fulfill the requests of the
interposer actor 44 based on a level of trust that the channel actor 36 has for the interposer actor
44. For example, the operating system may have data structures describing which actors may
interpose on which other actors (not shown). The creator of the operating system may populate
the structure with data based on the level of trust. In an embodiment, the interposer actor 44 may
be authenticated prior to granting the level of trust and thus the ability to interpose.

[0050] Fig. 4 is a flowchart illustrating one embodiment of an interposer actor (e.g. the
interposer actor 44) in the operating system when intercepting an inbound message for the
interposed actor (e.g. a message on Cid2 to the second actor 42 in the embodiment of Fig. 2).
While the blocks are shown in a particular order for ease of understanding, other orders may be
used. The operating system and/or various actors in the operating system may include
instructions which, when executed in a computer system, may implement the operation shown in
Fig. 4. That is, the operating system/actors may be configured to implement the operation shown
in Fig. 4. Viewed in another way, the interposer actor 44 may perform the operation illustrated in
Fig. 4 in response to an activation for a message on a inbound channel.

[0051] The interposer actor 44 may process the message, determining the contents of the
message (block 60). For certain messages or message types, the interposer actor 44 may mimic
the response of the interposed actor. If the inbound message is to be mimicked (decision block
62, "yes" leg), the interposer actor 44 may perform any desired processing and transmit a
response to the source actor (block 64). In some cases, the interposed actor may still act on the
message as well. If so (decision block 66, "yes" leg), the interposer actor 44 may determine if the
message is to be modified before passing the message on to the interposed actor. If so (decision
block 68, "ves" leg), the interposer actor 44 may modify the message body (block 70). In either
case (decision block 68, "yes" or "no" legs), the interposer actor 44 may transmit the (possibly
modified) message to the interposed actor (block 72). Similarly, for messages which are not
mimicked but for which the interposer actor 44 is to affect the behavior of the interposed actor
for the message (decision block 62, "no" leg and decision block 68, "yes" leg), the interposer
actor 44 may modify the message to cause the desired behavior (block 70) and transmit the

modified message to the interposed actor (block 72). For messages which may be passed through

12

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

unmodified (decision blocks 62 and 68, "no" legs), the interposer actor 44 may transmit the
unmodified message to the interposed actor (block 72). Optionally, the interposer actor 44 may
log the contents of the messages and any mimicking/modification, if past messages may be used
for future message processing.

[0052] Fig. 5 is a flowchart illustrating one embodiment of an interposer actor (e.g. the
interposer actor 44) in the operating system when intercepting an outbound message from the
interposed actor (e.g. a message on Cid1 from the second actor 42 in the embodiment of Fig. 2).
While the blocks are shown in a particular order for ease of understanding, other orders may be
used. The operating system and/or various actors in the operating system may include
instructions which, when executed in a computer system, may implement the operation shown in
Fig. 5. That is, the operating system/actors may be configured to implement the operation shown
in Fig. 5. Viewed in another way, the interposer actor 44 may perform the operation illustrated in
Fig. 5 in response to an activation for a message on a outbound channel.

[0053] The interposer actor 44 may process the message, determining the contents of the
message (block 80). If the message is a response that was mimicked by the interposer actor 44
(but the inbound message was still provided to the interposed actor, possibly modified) (decision
block 82, "ves" leg), the interposer actor 44 may terminate the response (block 84). That is, the
message may not be forwarded any further.

[0054] If the message is not a response previously mimicked by the interposer actor 44
(decision block 82, "no" leg), the message may be a command or request from the interposed
actor that the interposer actor 44 filters (decision block 86, "yes" leg). If so, the interposer actor
44 may transmit a response to the interposed actor (block 88). The response may indicate that
the request/command is complete to the interposed actor, and the request/command was
successful, for example. The filtering of outgoing communications may be an analogue of
mimicking incoming communications, in an embodiment. It is possible that the outgoing
message may still be sent, in some embodiments. If so (decision block 90, "yes" leg), the
interposer actor 44 may optionally modify the message (decision block 92, "yes" leg and block
94). Similarly, for outbound messages which are not filtered (decision block 86, "no" leg), the
interposer actor 44 may optionally modify the message (decision block 92, "yes" leg and block
94). Another possibility is that the outgoing message includes a new Cid for a new channel that
the interposed actor created to communicate with another actor. If the outgoing message
includes a new Cid (decision block 98, "yes" leg), the interposer actor 44 may determine if the

interposer actor 44 is to intercept or monitor the channel (block 99). If so, the interposer actor 44

13

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

may communicate with the channel actor 36 to intercept the channel or to monitor the channel,
similar to Fig. 3, blocks 52, 54, 56, 58. That is, if the interposer actor 44 is to intercept the
channel, the interposer actor 44 may create a new channel and replace the new Cid in the
outgoing message with the Cid of the interposer actor's newly created channel. The interposer
actor 44 may also communicate with the channel actor 36 to reroute the new Cid from the
interposed actor to the interposer actor 44. If the interposer actor 44 is to monitor the channel,
the interposer actor 44 may communicate with the channel actor 36 to connect to the channel
indicated by the new Cid. If the interposer actor 44 does not monitor or intercept the channel, the
interposer actor 44 may permit the new Cid to pass through. The interposer actor 44 may
transmit the (possibly modified) message on the original outbound channel to the target actor
(block 96).

[0055] It is noted that, with respect to the flowchart of Fig. 4, it is possible that the inbound
message may contain a new Cid to be used by the interposed actor. In some embodiments, the
interposer actor 44 may detect the new Cid and possibly intercept or monitor the incoming
channel as well.

[0056] For messages that are monitored (e.g. messages on Cid3 in the embodiment of Fig. 2),
operation may be similar to those shown in Figs. 4 and 5 for inbound and outbound messages
to/from the interposed actor, except that the interposer actor 44 may monitor and potentially
record the message contents but may not make modifications to the messages.

[0057] Turning next to Fig. 6, a block diagram of one embodiment of a debug actor 100 that
may use interposition to aid in debugging an actor (e.g. the second actor 42, in this example) in a
system using the operating system of Fig. 1. The second actor 42 may be referred to as the
inferior actor since it is the actor being debugged, and thus may be subject to activation
interception by the debug actor 100. The debug actor 100 is coupled to the second actor 42, and
one or more of the channel actor 36, the CPU actor 28, the memory actor 32, the timer actor 34,
the interrupt actor 30, and various other actors 102. The debug actor 100 is also coupled to a
debug server 104.

[0058] The debug server 104 may be a process/thread-based debugger. Generally, in the
process/thread model, a process exists when at least one of its threads is in execution, and does
not exist when none of its threads are in execution. On the other hand, an actor may exist as a
dormant actor (no current activations). When an activation occurs, the actor may respond by
executing a function indicated in the message the caused the activation, after which the activation

may be destroyed. State associated with the activation may be deleted. However, the actor may

14

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

still exist.

[0059] In order to interact with the debug server 104 using a process/thread model, the debug
actor 100 may map activations in the system to threads in the debug server 104, and may map
actors to processes. By intercepting messages from other actors (activations), the debug actor
100 may detect activations and inform the debug server 104 that the activations are executing
(using messages indicating that threads are executing). The debug server 104 may respond,
indicating if the debug server 104 is to follow the activation (e.g. debug its execution) or allow it
to run without debug interference. In an embodiment, the message regarding activations may be
transmitted for activations of interest, e.g. in the case that not all channels are being interposed by
the debug actor 100.

[0060] The determination on the debug server 104 of whether or not to follow the activation
may be made based on user input (e.g. the individual performing the debugging using the debug
server 104). Alternatively or in addition, the determination may be automatic based on the debug
modes that are in effect. For example, single stepping may be in effect when an activation
occurs. Single stepping may be enabled over thread boundaries, which may automatically cause
single stepping into the activation. Altematively, single stepping may not be enabled over thread
boundaries, which may automatically cause the debug server 104 to permit the activation to run
without single step. Similarly, breakpoint addresses or other debug features may be enabled to
carry into an activation or not enabled to carry into an activation, and the determination may be
automatic based on the modes.

[0061] The debug server 104 and/or the user of the debug server 104 expects to be have
access to the inferior's memory address space, processor state, etc. Accordingly, the debug actor
100 may interpose on channels to the memory actor 32, the CPU actor 28, and/or the channel
actor 36. The inferior, in some cases, may also interact with the timer actor 34, the interrupt
actor 30, and/or other actors 102. The debug actor 100 may interpose on the channels to such
actors as well, as desired. The debug actor 100 may transmit messages to the various actors to
query state from those actors, which may be reported to the debug server 104,

[0062] Fig. 7 is a flowchart illustrating one embodiment of instantiating a debug actor 100 in
the operating system. While the blocks are shown in a particular order for ease of understanding,
other orders may be used. The operating system and/or various actors in the operating system
may include instructions which, when executed in a computer system, may implement the
operation shown in Fig. 7. That is, the operating system/actors may be configured to implement

the operation shown in Fig. 7.

15

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

[0063] The operation of Fig. 7 may be performed during the build of the operating system
(e.g. when the actors and kernel 10 are being compiled, or when the system is being launched).
Alternatively, the operation may be performed dynamically during operation if the debug actor
100 becomes desired during operation (e.g. when the debug server 104 is prepared to debug one
or more actors in the system).

[0064] The debug actor 100 may be invoked, and may transmit create channel messages to
the channel actor 36 for channels on which the inferior actor (e.g. the second actor 42 in Fig. 6,
or more generally the actor being debugged) communicates and which the debug actor 100
intercepts (block 110). The debug actor 100 may also transmit requests for the channel actor 36
to redirect channels on which the inferior actor receives messages and the debug actor 100 is
intercepting the messages (block 112). Similarly, for each channel on which the inferior actor
transmits and the debug actor 100 is intercepting messages, the debug actor 100 may requests
that the channel actor 36 redirect the channel to the interposer actor 44 (block 114).

[0065] Similar to the interposer actor 44, the debug actor 100 may also monitor one or more
channels without actually intercepting those channels. The debug actor 100 may, for example,
transmit the message contents (or may decode the message contents and transmit messages to the
debug server 104 describing the contents in a format that the debug server 104 expects). For
monitored channels, the debug actor 100 may transmit requests to monitor channels to the
channel actor 36 (block 116).

[0066] The flowchart of Fig. 7 presumes there is at least one type of each channel
(intercepted outbound, intercepted inbound, and monitored). However, in various embodiments,
one or more of the channel types may not be used and thus the corresponding requests may not
be transmitted. Additionally, the operation of the channel actor 36 is not illustrated in Fig. 7.
However, the channel actor 36 may determine whether or not to fulfill the requests of the debug
actor 100 based on a level of trust that the channel actor 36 has for the debug actor 100.

[0067] The debug actor 100 may also set initial debug resources (via messages to the CPU
actor 28) according to requests from the debug server 104. For example, initial breakpoints,
single step mode settings, if any, etc. may be set (block 118).

[0068] Fig. 8 is a flowchart illustrating one embodiment of the debug actor 100 when
intercepting a message for the inferior actor or monitoring a message to/from the inferior actor
from/to another actor. The message may be inbound or outbound. While the blocks are shown
in a particular order for ease of understanding, other orders may be used. The operating system

and/or various actors in the operating system may include instructions which, when executed in a

16

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

computer system, may implement the operation shown in Fig. 8. That is, the operating
system/actors may be configured to implement the operation shown in Fig. 8. Viewed in another
way, the debug actor 100 may perform the operation illustrated in Fig. 8 in response to an
activation for a message on a channel.

[0069] The debug actor 100 may process the message, determining the contents of the
message (block 120). The message may be a CPU exception from the CPU actor 28, or a
message from a monitored channel from which the debug server 104 is capturing information
(decision block 122). If the exception is a CPU exception, it may be a debug-related exception
such as a breakpoint exception /message, a single step exception/message, or any other debug-
related message from the CPU actor 28. Other types of exceptions (not debug-related) may also
be processed. If the message is a CPU exception or a message on a monitored channel (decision
block 122, "yes" leg), the debug actor 100 may inform the debug server 104. In the case of a
monitored message, the debug actor 100 may transmit the data to the debug server 104. Debug
data from debug-related messages may also be transmitted to the debug server 104. More
particularly, the debug actor 100 may convert the channel-formatted messages to messages in the
format the debug server 104 expects. In the case of a breakpoint, single step halt, or other event
that halts the CPU execution of the activation (decision block 126, "yes" leg), the debug actor
100 may receive various commands from the debug server 104 to explore and/or modify state in
the CPU, the memory space of the activation, etc. (block 128). The debug actor 100 may
communicate with the corresponding actors to gather and change state as directed. Viewed in
another way, the debug actor 100 may convert the messages from the debug server 104 to
appropriate messages on the channels to the other actors in the system to collect/change state.
Additionally, the debug actor 100 may determine if the capture message is to be forwarded to the
target actor prior to processing all of the debug commands from the debug server 104 (or in
response to a debug command from the debug server 104) (decision block 129). If so (decision
block 129, "yes" leg), the processing flow may proceed to decision block 134 to possibly mimic
and/or change the message). Furthermore, if directed by the debug server 104, the debug actor
100 may change various debug modes in the CPU, set new breakpoints, etc. via messages to the
CPU actor 28.

[0070] One of the commands from the debug server 104 may be a resume command
(decision block 130). If the resume command is not received, the debug actor 100 may continue
exploring state (decision block 130, "no" leg and block 128). On the other hand, if the resume
command is received (decision block 130, "yes" leg), the debug actor 100 may inform the CPU

17

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

actor 28 that execution is to be resumed (block 132). Additionally, it is possible that the debug
system would forward the message subsequent to the debug processing (decision block 133). If
so (decision block 133, "yes" leg), processing moves to decision block 134. It is noted that, even
if the CPU is not stopped (decision block 126, "no" leg), it is possible that the message will be
forwarded (decision block 133). In an embodiment, the message may be forwarded once (either
prior to completion of debug processing, decision block 129, or subsequent to completion,
decision block 133). That is, forwarding of the message prior to completion may be mutually
exclusive with forwarding of the message after completion, in an embodiment.

[0071] If the message is not a monitored message or a debug halt message from the CPU
actor 28 (decision block 122, "no" leg), processing of the intercepted message may be similar to
the discussion above for interposer actors. For certain messages or message types, the debug
actor 100 may mimic the response of the inferior actor to the actor that sent the message or the
response of an actor that would receive the message to the inferior actor, depending on whether
the message is inbound or outbound. If the message is to be mimicked (decision block 134, "yes"
leg), the debug actor 100 may perform any desired processing and transmit a response to the
source actor (block 136). In some cases, the inferior actor may still act on an inbound message as
well. If so (decision block 138, "yes" leg), the debug actor 100 may determine if the message is
to be modified before passing the message on to the inferior actor or other target actor. If so
(decision block 140, "yes" leg), the debug actor 100 may modify the message body (block 142).
In either case (decision block 140, "yes" or "no" legs), the debug actor 100 may transmit the
(possibly modified) message to the targeted (block 144). Similarly, for messages which are not
mimicked but for which the debug actor 100 is to affect the behavior of the targeted actor for the
message (decision block 134, "no" leg and decision block 140, "yes" leg), the debug actor 100
may modify the message to cause the desired behavior (block 142) and transmit the modified
message to the targeted actor (block 144). For messages which may be passed through
unmodified (decision blocks 134 and 140, "no" legs), the debug actor 100 may transmit the
unmodified message to the targeted actor (block 144).

[0072] Because the message may be forwarded while the CPU is stopped (decision block
129), the debug actor 104 may determine if the CPU is stopped after forwarding the message to
the target actor and/or mimicking the response to the source actor (decision block 143). If the
CPU is stopped (decision block 143, "yes" leg), processing may return to block 128 to continue
processing messages from the debug server 104 until the resume command is received.

[0073] In an embodiment, a message may contain a new Cid as well (e.g. similar to blocks 98

18

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

and 99 in Fig. 5). The debug actor 100 may manage the new Cid based on whether the channel is
to be intercepted, monitored, or neither, similar to the discussion above with regard to Fig. 5.
[0074] Fig. 9 is an example illustrating another type of interposing actor, a sandboxing actor
150. Similar to Fig. 2, the first actor 40 and the second actor 42 are illustrated on the left of the
arrow in Fig. 9 and the interposition of the sandboxing actor 150 is shown in the right side of the
arrow. The sandboxing actor 150 may isolate the operation of the underlying second actor 42
with respect to other actors in the system in various fashions. The isolation may prevent the
second actor 42 from being affected by the operation of the overall system and/or prevent the
second actor 42 from affecting the operation of the overall system, as desired. In an
embodiment, the sandboxing actor 150 may support recording of the messages transmitted and
received by the second actor 42, and replay of those messages at a later time.

[0075] Fig. 10 is an example of an actor interposing in place of the second actor 42. In this
example, the interposing actor is a simulation actor 152. The second actor 42 is shown in dotted
form on the right side of the arrow in Fig. 10 to illustrate that it has been fully replaced. If a
simulation is being performed, long latency operations may be short-circuited to allow the
simulation to complete faster. For example, if the second actor 42 were the timer actor 34, rather
than wait for the actual alarm time to send a message to the first actor 40, it may be desirable to
return the alarm message to the actor 40 upon receipt of the set alarm message. The simulation
may be updated to indicate that the period of time has elapsed, without actually waiting for that
amount of time. In an embodiment, the simulation actor may support the playback of messages
from the second actor 42, based on a preceding execution of the second actor 42 and/or based on
a record made by the sandboxing actor 150.

[0076] Tuning now to Fig. 11, a block diagram of one embodiment of an exemplary
computer system 210 is shown. In the embodiment of Fig. 11, the computer system 210 includes
at least one processor 212, a memory 214, and various peripheral devices 216. The processor
212 is coupled to the memory 214 and the peripheral devices 216.

[0077] The processor 212 is configured to execute instructions, including the instructions in
the software described herein such as the various actors, capabilities functions, and/or the kemel.
In various embodiments, the processor 212 may implement any desired instruction set (e.g. Intel
Architecture-32 (IA-32, also known as x86), IA-32 with 64 bit extensions, x86-64, PowerPC,
Sparc, MIPS, ARM, TA-64, etc.). In some embodiments, the computer system 210 may include
more than one processor. The processor 212 may be the CPU (or CPUs, if more than one

processor is included) in the system 210. The processor 212 may be a multi-core processor, in

19

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

some embodiments.

[0078] The processor 212 may be coupled to the memory 214 and the peripheral devices 216
in any desired fashion. For example, in some embodiments, the processor 212 may be coupled to
the memory 214 and/or the peripheral devices 216 via various interconnect. Alternatively or in
addition, one or more bridges may be used to couple the processor 212, the memory 214, and the
peripheral devices 216.

[0079] The memory 214 may comprise any type of memory system. For example, the
memory 214 may comprise DRAM, and more particularly double data rate (DDR) SDRAM,
RDRAM, etc. A memory controller may be included to interface to the memory 214, and/or the
processor 212 may include a memory controller. The memory 214 may store the instructions to
be executed by the processor 212 during use, data to be operated upon by the processor 212
during use, etc.

[0080] Peripheral devices 216 may represent any sort of hardware devices that may be
included in the computer system 210 or coupled thereto (e.g. storage devices, optionally
including a computer accessible storage medium 200 such as the one shown in Fig. 12), other
input/output (I/0) devices such as video hardware, audio hardware, user interface devices,
networking hardware, various sensors, etc.). Peripheral devices 216 may further include various
peripheral interfaces and/or bridges to various peripheral interfaces such as peripheral component
interconnect (PCI), PCI Express (PCle), universal serial bus (USB), etc. The interfaces may be
industry-standard interfaces and/or proprietary interfaces. In some embodiments, the processor
212, the memory controller for the memory 214, and one or more of the peripheral devices and/or
interfaces may be integrated into an integrated circuit (e.g. a system on a chip (SOC).

[0081] The computer system 210 may be any sort of computer system, including general
purpose computer systems such as desktops, laptops, servers, etc. The computer system 210 may
be a portable system such as a smart phone, personal digital assistant, tablet, etc. The computer
system 210 may also be an embedded system for another product.

[0082] Fig. 12 is a block diagram of one embodiment of a computer accessible storage
medium 200. Generally speaking, a computer accessible storage medium may include any
storage media accessible by a computer during use to provide instructions and/or data to the
computer. For example, a computer accessible storage medium may include storage media such
as magnetic or optical media, e.g., disk (fixed or removable), tape, CD-ROM, DVD-ROM, CD-
R, CD-RW, DVD-R, DVD-RW, or Blu-Ray. Storage media may further include volatile or non-
volatile memory media such as RAM (e.g. synchronous dynamic RAM (SDRAM), Rambus

20

10

15

20

WO 2019/005867 PCT/US2018/039596

DRAM (RDRAM), static RAM (SRAM), etc.), ROM, or Flash memory. The storage media may
be physically included within the computer to which the storage media provides
instructions/data. Alternatively, the storage media may be connected to the computer. For
example, the storage media may be connected to the computer over a network or wireless link,
such as network attached storage. The storage media may be connected through a peripheral
interface such as the Universal Serial Bus (USB). Generally, the computer accessible storage
medium 200 may store data in a non-transitory manner, where non-transitory in this context may
refer to not transmitting the instructions/data on a signal. For example, non-transitory storage
may be volatile (and may lose the stored instructions/data in response to a power down) or non-
volatile.

[0083] The computer accessible storage medium 200 in Fig. 12 may store code forming the
various actors 16A-16B, 28, 30, 32, 34, 36, 40, 42, 44, 100, 150, and 152, the kernel 10, and/or
the functions in the capabilities 12. The computer accessible storage medium 200 may still
further store one or more data structures such as the channel table 38 and the contexts 20. The
various actors 14A-14C, 30, 32, 34, 36, 40, 42, 44, 100, 150, and 152, the kernel 10, and/or the
functions in the capabilities 12 may comprise instructions which, when executed, implement the
operation described above for these components. A carrier medium may include computer
accessible storage media as well as transmission media such as wired or wireless transmission.
[0084] Numerous variations and modifications will become apparent to those skilled in the
art once the above disclosure is fully appreciated. It is intended that the following claims be

interpreted to embrace all such variations and modifications.

21

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

WHAT IS CLAIMED IS:

1. A system comprising:

one or more proCessors, and

a non-transitory computer accessible storage medium coupled to the one or more
processors and storing a plurality of instructions that are executable on the one or
more processors, the plurality of instructions comprising:

a channel actor configured to control channels between a plurality of actors
forming a system, wherein the plurality of actors communicate using the
channels; and

an interposer actor configured to interpose between a first actor of the plurality of
actors and at least one other actor of the plurality of actors, wherein the
interposer actor is configured to communicate to the channel actor to
reroute one or more channels between the at least one other actor and the

first actor to the interposer actor.

2. The system as recited in claim 1 wherein the interposer actor is further configured to receive
an inbound message to the first actor and to mimic a response to the inbound message to a sender

of the inbound message.

3. The system as recited in claim 2 wherein the interposer actor is configured to pass the inbound

message to the first actor.

4. The system as recited in claim 3 wherein the interposer actor is configured to modify the

inbound message prior to passing the message to the first actor.
5. The system as recited in claim 3 or 4 wherein the interposer actor is configured to receive a

second response to the inbound message from the first actor, and wherein the interposer actor is

configured to terminate the second response without forwarding the second response.

22

10

15

20

25

30

WO 2019/005867 PCT/US2018/039596

6. The system as recited in any of claims 1-5 wherein the interposer actor is configured to
receive an outbound message from the first actor to a targeted actor of the plurality of actors,

wherein the interposer actor is configured to filter the message.

7. The system as recited in claim 6 wherein the interposer actor is configured to mimic a

response to the outbound message.

8. The system as recited in claim 6 or 7 wherein the interposer actor is configured to modify the

outbound message.

9. The system as recited in any of claims 1-8 wherein the interposer actor is a debug actor

configured to communicate with a debug server.

10. The system as recited in claim 9 wherein the debug actor, responsive to a debug event that
halts processing of the first actor by one of the one or more processors, is configured to transmit

one or more messages to the debug server indicating the debug event.

11. The system as recited in claim 9 or 10 wherein the debug actor is configured to convert

messages received from the system into a format used by the debug server.

12. The system as recited in any of claims 9-11 wherein the debug actor is configured to receive
one or more messages from the debug server and to collect state from the system specified by the
one or more messages, wherein the debug server is configured to respond to the one or more

messages with the state.

13. The system as recited in any of claims 9-12 wherein the debug actor is configured to convert

messages received from the debug server into a format used on the channels.

14. The system as recited in claim 12 wherein the state includes processor state.

15. The system as recited in claim 12 or 14 wherein the state includes data from a memory space

of the first actor.

23

10

15

WO 2019/005867 PCT/US2018/039596

16. The system as recited in claim 10 wherein the debug actor is configured to forward an
intercepted message while the processor is stopped and before processing of debug messages

from the debug server.

17. The system as recited in claim 10 wherein the debug actor is configured to forward an

intercepted message after processing of debug messages from the debug server.

18. The system as recited in any of claims 10-17 wherein the debug actor is configured to record

messages corresponding to the first actor.

19. The system as recited in any of claims 10-18 wherein the debug actor is configured to play

back previously recorded messages corresponding to the first actor.

20. The system as recited in claim 19 wherein the debug actor is a simulation actor used in place

of the first actor in a simulation.

24

WO 2019/005867

1/9

Composed Actor 2
(Composed Actor 1,
Base Actor 2) 16A

Composed Actor 1
(Base Actor 1,
Base Actor 3) 16B

PCT/US2018/039596

——— —

| Privileged
|
|
Interrupt | | Memory Timer CPU Channel : Kernel
Actor Actor Actor Actor Actor : el 0 ©
30 3 4 || 28 36 1
i :
|
|
-
Capabilities Channel | | Contexts
12 Table 38 : 20
|
|
Fig. 1
Third Third
Actor Actor
46 46
50
A A
Cid3 v Cid3
. ' . . ‘
' Cidl ' Cid5 Cidl
First < Second First < Interposer [« Second
Actor Cid2 Actor Actor Cid2 Actor Cid6 Actor
40 » 42 40 > 44 » 42
ICid4 ICid4
Fourth Fourth
Actor Actor
48 48

WO 2019/005867 PCT/US2018/039596

2/9

(Start — Interposer Instantiation)

Send Create Channel Messages for S}
Each Channel on which the
Interposed Actor Communicates and
which the Interposer Intercepts

v
For Each Channel on which the
Interposed Actor Receives and
which the Interposer Intercepts,
Request Channel Actor to
Redirect to Interposer Channel

v

For each Channel on which
Interposed Actor Transmits and
which Interposer Intercepts, Request
Channel Actor to Redirect Channel to
Interposer

v

For each Channel that the Interposer
Monitors, Request Channel Actor to
Connect Channel to Interposer

54

— 56

— 58

(Start — Interposer Instantiation)

WO 2019/005867

3/9

PCT/US2018/039596

(Start — Interposer Capture InBound)

Process Message

60

62

iYes

Modify Message Body

No

N

Mimic Interposed Actor?

Yesl 64

Transmit Response to
Source

66

Interposed
Actor Need to Process
Message?

Transmit Message to
Interposed Actor

)

No

(End — Interposer Capture InBound)

Fig. 4

WO 2019/005867 PCT/US2018/039596

4/9

(Start — Interposer Capture OutBound)

80
Process Message

84

Yesl

82 Response
Previously Mimicked by

Interposer?

Terminate Response

No
86

Command Filtered

xYes by Interposer?

88 ¢

Transmit Response to

Interposed Actor

;Yes

Modify Message Body [~ g4

99

Determine if Interposer Intercepts
No | or Monitors, Communicate with

L Channel Actor Accordingly

[
— 96

Transmit Message on Outbound
Channel to Target Actor

No

(End — Interposer Capture OutBound)

Fig. 5

WO 2019/005867

Channel
Actor
36

CPU
Actor
28

Memory
Actor
32

Timer
Actor
34

Interrupt
Actor
30

Other
Actors
102

5/9

)
¢
o
=
7o
7§

h 4

PCT/US2018/039596
Second
Actor
42
Debug
» Server
104

WO 2019/005867 PCT/US2018/039596

6/9

(Start — Debug Instantiation)

Send Create Channel Messages for
Each Channel on which the Inferior
Actor Communicates and which the

Debug Actor Intercepts

v
For Each Channel on which the
Inferior Actor Receives and the — 112
Debug Actor Intercepts, Request
Channel Actor to Redirect to
Debug Channel

v

For each Channel on which Inferior
Actor Transmits and which Debug — 114
Actor Intercepts, Request Channel

Actor to Redirect Channel to Debug

Channel

v

For each Channel which the Debug
Actor Monitors, Request Channel
Actor to Attach Debug Actor to
Channel

¢ 118

Establish Initial Breakpoints, Single
Step Mode, etc.

— 110

— 116

(Start — Debug Instantiation)

Fig. 7

WO 2019/005867

7/9

PCT/US2018/039596

(Start — Debug Capture Message)

Process Message

134
136

iYes

CPU

Exception or Monitored

Channel?

Transmit Response to
Source

Inferior

Actor Need to Process

Modify Message Body

142

No

o

144 —

Transmit Message to
Targeted Actor

Yes

143

CPU Stopped?

120

122

Inform Debug Server

CPU Stopped?

es 128 Yes

v

Explore/Modify State
in CPU, Memory, etc.
per Commands from
Debug Server

12
Forward Message?

130
No

< Resume?

Yes

v
Inform CPU Actor

9

132

Yes

Forward Message?

No

No
\ 4

(End — Debug Capture Message)

Fig. 8

133

WO 2019/005867

Cidl
First [« Second
Actor Cid2 Actor
40 » 42
Cidl
First (¢ Second
Actor Cid2 Actor
40 » 42

PCT/US2018/039596
8/9
Cid3 ‘ Cidl
First < Sandboxing [« Second
Actor Cid2 Actor Cidd Actor
40 » 150 » 42
Fig. 9
Cid3 = |
First [« Simulation | Second |
Actor |~ 4y Actor | Actor i
40 > 152 42
| |

WO 2019/005867 9/9 PCT/US2018/039596

Processor 212

Memory 214 Peripherals 216

210 . A
Fig. 11

Computer Accessible Storage Medium 200

Composed Actor 2 Composed Actor 1

(Composed Actor 1, (Base Actor 1, Kelrél el
Base Actor 2) 16A Base Actor 3) 16B -
Interrupt | | Memory Timer Cilxa{[mrel In‘izrlzoser
Actor 30 | | Actor 32 Actor 34 ¢to ctor
36 44
First Second Sandboxing | | Simulation iect:olrg

Actor 40 | | Actor 42 Actor 150 Actor 152 100
Capabilities CPU Channel Contexts

12 Actor 28 Table 38 20

Fig. 12

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/039596

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/36
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y paragraph [0011]
paragraph [0013]
paragraph [0015]
paragraph [0018]
paragraph [0023]
paragraph [0025]
paragraphs [0035]
paragraphs [0040]
paragraph [0045]
paragraph [0046]
paragraph [0052]
paragraphs [0055]
paragraphs [0066]
figures 1, 4-7

[0037]
[0041]

[0057]
[0067]

X EP 1 086 423 Al (SUN MICROSYSTEMS INC
[US]) 28 March 2001 (2001-03-28)

1-8,11,
13-20
9,10,12

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

9 October 2018

Date of mailing of the international search report

17/10/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Roux-Desselas, D

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

column 3, lines 31-34

column 3, lines 38-49

column 4, lines 14-17

column 9, lines 38-45

column 15, lines 33-38
figures 1, 4

PCT/US2018/039596
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 9 569 339 Bl (VILLALOBOS ADAM JULIO 9,10,12
[US] ET AL) 14 February 2017 (2017-02-14)
A column 2, Tines 27-32 11,13

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2018/039596
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 1086423 Al 28-03-2001 DE 69903629 D1 28-11-2002
DE 69903629 T2 31-07-2003
EP 1086423 Al 28-03-2001
US 6971048 B1 29-11-2005
WO 9966398 Al 23-12-1999
US 9569339 Bl 14-02-2017 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report
	Page 38 - wo-search-report

