

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2010-76757

(P2010-76757A)

(43) 公開日 平成22年4月8日(2010.4.8)

(51) Int.Cl.

B62D 25/08 (2006.01)
C08L 101/00 (2006.01)

F 1

B 62 D 25/08
C 08 L 101/00

J

テーマコード(参考)

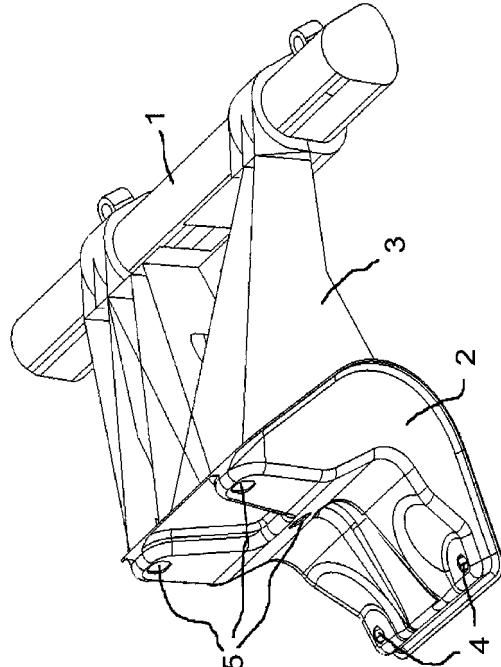
3 D 2 0 3
4 J 0 0 2

審査請求 未請求 請求項の数 10 O L 外国語出願 (全 38 頁)

(21) 出願番号 特願2009-194394 (P2009-194394)
 (22) 出願日 平成21年8月25日 (2009.8.25)
 (31) 優先権主張番号 10 2008 039 652.4
 (32) 優先日 平成20年8月26日 (2008.8.26)
 (33) 優先権主張国 ドイツ (DE)

(71) 出願人 505422707
 ランクセス・ドイチュランド・ゲーエムベ
 ーハー
 ドイツ・51369・レーフェルクーゼン
 (番地なし)
 (74) 代理人 100108453
 弁理士 村山 靖彦
 (74) 代理人 100064908
 弁理士 志賀 正武
 (74) 代理人 100089037
 弁理士 渡邊 隆
 (74) 代理人 100110364
 弁理士 実広 信哉

最終頁に続く


(54) 【発明の名称】自動車用の横部材モジュール

(57) 【要約】 (修正有)

【課題】自動車用の横部材モジュールを提供する。

【解決手段】自動車の計器盤を収容する横部材モジュールであって、少なくとも一部がプラスチックで取り囲まれた金属管1とステアリングコラムリテナーとして機能する単純成形シートメタル材2とを含み、上乗せ成形されたプラスチックとの複合体として第1にステアリングコラムと前壁との間を堅く連結し、第2に全体がプラスチックからなる構造体3によって金属管1にしっかりと連結するように構成および配置される。

【選択図】図1

【特許請求の範囲】

【請求項 1】

自動車の計器盤を収容する横部材モジュールであって、少なくとも一部がプラスチックで取り囲まれた金属管とステアリングコラムリテーナとして機能する単純成形シートメタル材とを含み、上乗せ成形されたプラスチックとの複合体として第1にステアリングコラムと前壁との間を堅く連結し、第2に全体がプラスチックからなる構造体によって金属管にしっかりと連結するように構成および配置される、横部材モジュール。

【請求項 2】

前記プラスチック構造体が補強リブを有することを特徴とする、請求項1に記載の横部材モジュール。

10

【請求項 3】

前記補強リブが、前記シートメタル材の打ち抜き穴の別々の連結場所で前記シートメタル材に確実に連結されており、前記プラスチックが前記打ち抜き穴を貫通しつつ前記打ち抜き穴の表面上に延在していることを特徴とする、請求項2に記載の横部材モジュール。

【請求項 4】

熱可塑性ポリマーがプラスチックとして使用されることを特徴とする、請求項1～3のいずれか一項に記載の横部材モジュール。

【請求項 5】

ポリアミド、ビニル芳香族ポリマー、ポリエステル、ASAポリマー、ABSポリマー、SANポリマー、POM、PPE、ポリアリーレンエーテルスルホン、ポリプロピレンまたはこれらのブレンドの群からの熱可塑性ポリマーを使用することを特徴とする、請求項4に記載の横部材モジュール。

20

【請求項 6】

前記熱可塑性ポリマーが0.001～75重量部の充填剤または補強材を含むことを特徴とする、請求項4または5に記載の横部材モジュール。

【請求項 7】

前記シートメタル材および/または前記金属管が接着促進剤または接着剤で被覆されていることを特徴とする、請求項1～6のいずれか一項に記載の横部材モジュール。

【請求項 8】

オーバーモールド工程の後で初めて、別個の工程段階で、熱間リベット打ちまたは他のタイプのリベット打ち、クリンチング、接着結合、またはねじ方式によって前記シートメタル材を前記プラスチック構造体に連結することを特徴とする、請求項1～7のいずれか一項に記載の横部材モジュール。

30

【請求項 9】

取り付けられた状態にある計器盤支持体の固有振動挙動に影響を及ぼして1次固有周波数が>36Hzとなるようにするための方法であって、

自動車において、少なくとも一部がプラスチックで取り囲まれた金属管とステアリングコラムリテーナとして機能する単純成形シートメタル材とを含み、さらに上乗せ成形されたプラスチックとの複合体として第1にステアリングコラムと前壁との間を堅く連結し、第2に全体がプラスチックからなる構造体によって前記金属管にしっかりと連結するように構成および配置される横部材モジュールを、前記計器盤の下に取り付けることを特徴とする方法。

40

【請求項 10】

自動車の計器盤を収容する横部材モジュールであって、少なくとも一部がプラスチックで取り囲まれた金属管とステアリングコラムリテーナとして機能する単純成形シートメタル材とを含み、さらに上乗せ成形されたプラスチックとの複合体として第1にステアリングコラムと前壁との間を堅く連結し、第2に全体がプラスチックからなる構造体によって前記金属管にしっかりと連結するように構成および配置される横部材モジュールの、取り付けられた状態にある計器盤支持体の固有振動挙動に影響を及ぼして1次固有周波数が>36Hzとなるようにするための使用。

50

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、計器盤を収容するための、また自動車の2本のフロントピラーを直接連結することによって車体構造を補強するための、横部材とステアリングコラムリテナー (steering - column retainer) とから構成される横部材モジュールであって、横部材モジュール (すなわち、横部材だけでなくステアリングコラムリテナーも) が金属 - プラスチックの複合構成で製造される (ハイブリッド技術) 、横部材モジュールに関する。

【背景技術】

10

【0002】

公知のステアリングコラムリテナー (ステアリングコンソール (steering consoles) とも称される) は、複数の鋼鉄の溶接シートメタル材またはダイカスト構成部品 (例えば、アルミニウムまたはマグネシウムから構成される) から構成されていて計器盤横部材の耐力構造との一体物 (single piece) を形成して横部材モジュールとなっているか、あるいは溶接形態または複合異形材 (combined profiles) (アルミニウム、鋼鉄、マグネシウム、あるいはプラスチック - 金属ハイブリッド構成から構成される) の形態でしっかりと連結されている。

【0003】

20

(特許文献1) は、自動車用の横部材モジュールであって、少なくとも一部がプラスチックで取り囲まれた金属管と、一体物が形成されるように上乗せ成形された (moulded-on) 、導線セットを貫通させることができるプラスチックダクトと、自動車の前壁へねじ方式 (screw-thread methods) で固定するためのプラスチックから構成される上乗せ成形された連結体 (link) とを含む、横部材モジュールを開示している。

【0004】

30

(特許文献2) は、自動車を対象とした横部材であって、管の湾曲部分の領域に溶接金属ステアリングコラム連結体を有し、その連結体上にステアリングコラムのねじ式板が取り付けられる、横部材を開示している。前記横部材の湾曲部の製造には、金属 - プラスチックのハイブリッド構成を使用している。

【0005】

(特許文献3) は、自動車のフロントピラー間に取り付けるためのハイブリッド型構成の計器盤支持体を開示しており、それは細長い貝殻のような本体と金属材料から構成される安定化挿入部品とを有し、それらは上乗せ成形された内部プラスチッククリップによって結合されて金属 / プラスチック複合部品となっており、それらの中を少なくとも1つのエアダクトが少なくともある程度貫通しており、ここで、プラスチックのリブと平行して、リテナー、コンソールおよび結合ポイント (プラスチックから構成され、本体から外側へ突出している) が一体物となるように上乗せ成形されている。

【0006】

40

(特許文献4) は、自動車用の構成部品、特に基本的に管状である本体を有する、自動車のフロントピラー間に配置するための横部材 (その中に少なくとも1つのダクトが備わっている) について記載している。より簡単かつより少ない作業で、またそれゆえに低コストで製造でき、さらに有利な仕方でダクトを組み込むことができる改良された軽量の構成部品を提供するために、(特許文献4) は、プラスチックから構成されるダクト壁を形成するプラスチック内部ライニングを、本体が有することを提案している。前記構成部品は、自動車の計器盤支持体として使用できる。ステアリングコラムホルダー (steering - column holder) などのホルダーは本体に取り付け、それらのホルダーは同様に好ましくは金属から構成される。(特許文献4) によれば、ホルダーはプラスチックで取り囲むことができ、こうして剛性を増大させ、がたつきをなくし、エッジを保護する。

50

【0007】

ステアリングコラムリテーナと横部材とを連結するための、先行技術に記載された解決法のすべてに共通する特徴として、それらが、金属から構成されるかまたはプラスチックから構成されるホルダーのみを含み、ホルダーは更なる作業が行われるまで、あるいはステアリングコンソールの上乗せ成形がリブ（これは（特許文献3）の場合のように、プラスチックだけで構成される）のプラスチックの上乗せ成形と同時に行われる限りにおいて、ステアリングコンソールを収容しないという点がある。

【0008】

2部品型構成の結果として作業コストが増大し、（特許文献3）に従った全体がプラスチックから構成される解決法の結果として、安定性が欠如する。先行技術に記載されている解決法はさらに、ハンドルにまで及ぶ知覚される不利な振動挙動を示す。（特許文献1）は、横部材モジュールの提案ハイブリッド構成により振動する塊が小さくなり、比較的高い固有周波数（intrinsic frequency）を有する横部材が提供され、高いレベルの振動快適性を有する横部材モジュールが得られることを示しているが、改良された乗り物構成では、この横部材のみの振動挙動は不十分であり、不快な振動挙動がハンドルにまで及ぶことが見出された。

10

【先行技術文献】

【特許文献】

【0009】

【特許文献1】独国特許出願公開第102005004605A1号明細書

20

【特許文献2】独国特許出願公開第10240395A1号明細書

【特許文献3】独国実用新案第20008201U1号明細書

【特許文献4】独国特許出願公開第10064522A1号明細書

【発明の概要】

【発明が解決しようとする課題】

【0010】

したがって本発明の目的は、第1にハンドルで測定される1次固有周波数（first mode natural frequency）が $> 36\text{ Hz}$ となることを目的として、ステアリングコンソールとそれに固定するステアリングコラム（ステアリングコラム管とも称される）とともに計器盤支持体全体の固有振動挙動を改善することであった。また、付加的な結果として、上記で引用した先行技術と比べて、さらなる重量削減、コスト低減、および簡略化された製造工程がもたらされる。

30

【0011】

ステアリングコラムリテーナには、ステアリングコラムを収容するという役目と、隔壁（耐力車体構造の構成要素）と計器盤横部材との間の重要な連結要素として働くという役目があるという事実に、特に難しさが存在する。ステアリングコラムリテーナは、本明細書では、計器盤横部材の固有振動挙動に決定的な影響を及ぼす最大剛性の連結を生み出さなければならない。望ましくない固有振動は、例えば、エンジン、パワートレインおよびシャシーに由来する加振によって生じる。こうした振動は車体構造によってステアリングロッド（steering rod）およびハンドルへ伝播し、またダッシュボード全体にも伝播して、ハンドルの振動および乗り物の内部の騒音が生じる。その結果として、快適性は受け入れがたいまで低下する。

40

【課題を解決するための手段】

【0012】

この目的は達成され、それゆえに本発明は、自動車の計器盤を収容する横部材モジュールであって、少なくとも一部がプラスチックで取り囲まれた金属管とステアリングコラムリテーナとして機能する単純成形シートメタル材とを含み、上乗せ成形されたプラスチックとの複合体として第1にステアリングコラムと前壁との間を堅く連結し、第2に全体がプラスチックからなる構造体によって金属管にしっかりと連結するように構成および配置される、横部材モジュールを提供する。

50

【0013】

意外にも、ハイブリッド構成によって同様に製造して横部材モジュールとステアリングコラムリテーナをしっかりと連結すると、取り付けられた状態では、ハンドルの固有振動挙動が最適化される、すなわち1次固有周波数が $> 36\text{ Hz}$ になり、また乗り物全体のコストおよび重量の低減がもたらされる。最後の点として、横部材モジュールとステアリングコラムリテーナとのこの組み合わせは、簡略化された仕方で単一の作業によって生み出すことができる。つまり、同じ金型において単一の作業で、オーバーモールドを行い2つの金属部品（金属管および成形された金属板）をつなぎ合わせることによって生み出すことができる。

【0014】

10

本発明はまた、取り付けられた状態にある自動車の計器盤支持体の固有振動挙動に影響を及ぼして1次固有周波数が $> 36\text{ Hz}$ となるようにするための方法であって、少なくとも一部がプラスチックで取り囲まれた金属管とステアリングコラムリテーナとして機能する単純成形シートメタル材とを含み、さらに上乗せ成形されたプラスチックとの複合体として第1にステアリングコラムと前壁との間を非常に堅く連結し、第2に全体がプラスチックからなる構造体によって金属管にしっかりと連結するように構成および配置される横部材モジュールを、計器盤の下に取り付けることを特徴とする方法を提供する。

【0015】

20

本発明はまた、自動車の計器盤の下に取り付けるための横部材モジュールであって、少なくとも一部がプラスチックで取り囲まれた金属管とステアリングコラムリテーナとして機能する単純成形シートメタル材とを含み、さらに上乗せ成形されたプラスチックとの複合体として第1にステアリングコラムと前壁との間を堅く連結し、第2に全体がプラスチックからなる構造体によって金属管にしっかりと連結するように構成および配置される横部材モジュールの、取り付けられた状態にある計器盤支持体の固有振動挙動に影響を及ぼして1次固有周波数が $> 36\text{ Hz}$ となるようにするための使用を提供する。1つの好ましい実施態様では、1次固有周波数は $36.1 \sim 50\text{ Hz}$ 、特に好ましくは $37.1 \sim 39\text{ Hz}$ である。

【0016】

30

1つの好ましい実施態様では、横部材モジュールの、射出成形手順で製造されたプラスチック構造体は、計器盤横部材との連結を強固にするだけでなく、オーバーモールドされたシートメタル材を補強および支持する機能も担い、しかも広い範囲にわたって前壁への力の伝達を引き起こす補強リブを備えている。そして次にその補強リブは、好ましくは、シートメタル材の打ち抜き穴によって別々の連結箇所でシートメタル材にしっかりと連結されており、ここでプラスチックは打ち抜き穴を貫通しつつ打ち抜き穴の表面上に延在している。

【0017】

40

本発明の1つの好ましい実施態様では、金属管および/またはシートメタル材（ステアリングコラムリテーナに使用される）は、接着促進剤または接着剤の被覆を有する。独立特許出願公開第102006025745A1号明細書は、本発明に従って使用される接着促進剤を開示しており、この主題に関連した内容すべてを本出願に援用する。接着促進剤または接着剤は、好ましくは、2つの連続段階で（好ましくは熱活性化によって）完全に架橋する2段階型接着促進剤（two-stage adhesion promoter）である。接着促進剤または接着剤は、打抜きおよび/または付形などを行う前にシートメタル材または金属材料に施すことができる。このタイプの施工は、好ましくは、シートメタル材への作業を行う前に「コイル被覆」法によってシートメタル材に行う。この方法は特に経済的である。しかし、接着促進剤または接着剤は、吹き付け法、浸漬被覆法、または粉末吹き付け法などでも施すことができる。シートメタル材および/または金属管への施工後に、最初の段階でそれは部分的に架橋され、こうして、「指触乾燥状態」の表面が形成され、取り扱いによる損傷に対して十分な抵抗性が得られる。プラスチックの上乗せ成形時またはその後に、接着促進剤または接着剤は完全に架橋され、その最終性質

50

が得られる。接着促進剤の架橋の第2段階に必要な活性化エネルギーを得るために、プラスチック金型を加熱し、かつ／または挿入シートメタル材または金属管を加熱し、かつ／または射出金型へプラスチック材料を注入するときの温度が架橋を生じさせるほど十分高くなるようにすることが有利でありうる。別の方法として、上乗せ成形法の後でアニールすることにより完全架橋を実現することが可能である。

【0018】

プラスチックおよびシートメタル材および／または金属管の間を緊密に結合させる接着促進剤または接着剤は、好ましくはポリウレタン系またはエポキシ系、特に好ましくは、ビスフェノールAおよび／またはビスフェノールBおよび／またはビスフェノールCおよび／またはビスフェノールFをベースにしたエポキシ樹脂である。

10

【0019】

本発明に従って使用されるプラスチック材料用の好ましい接着促進剤系または接着剤は、エラストマー変性エポキシ接着剤をベースにしており、特に1,3-ブタジエンの共重合による共有結合および／またはゴム添加による物理的結合による。

【0020】

別の好ましい実施態様では、オーバーモールド工程の後で初めて別個の工程段階で、熱間リベット打ちまたは他のタイプのリベット打ち、クリンチング(c l i n c h i n g)、接着結合、またはねじ方式によって、シートメタル材を金属管のプラスチック構造体に連結する。

【0021】

本発明の1つの好ましい実施態様においては、横部材モジュールに使用する金属管は両端が挟まれて締め付けられるパイプであり、挟まれて締め付けられる両端に穴が位置している。挟まれて締め付けられる端に設けられている穴は、乗り物の車体内の横部材モジュールの組み立て時に、フロントピラー用のねじ式ラグ(s c r e w - o n l u g s)の役割を果たす。このような設計の利点は、追加の角ブラケット(先行技術においてフロントピラーの連結に普通なら慣例的なものなど)を溶接する必要がないことである。したがって、フロントピラー連結体の溶接のための追加の製造工程を省くことができ、それゆえにこうした箇所のひずみの問題もなくなる。

20

【0022】

さらに、横部材モジュールが、ステアリングコラムリテナーに加えて、挟まれて締め付けられる金属パイプの各端部に上乗せ成形プラスチックラグを有すること、および各上乗せ成形プラスチックラグに貫通孔があることが好ましい。この更なる貫通孔は、横部材モジュールをフロントピラーにさらに連結するのに役立ち、特に金属管の長手方向軸を中心にして横部材モジュールが少しも回転しないようにするのに役立つ。

30

【0023】

本発明の1つの好ましい実施態様によれば、金属管は、鋼鉄から構成され、好ましくは継ぎ目がない。金属管の材料は一般には、求められている機械的性質を考慮に入れて選択できる。さらに、乗り物のタイプに応じて、取り付けスペースの最適化または重量の最適化を比較的重視しなければならず、このこともまた金属管の好適な材料の選択に影響を及ぼす。最後に、自動車において金属パイプとフロントピラーとの間の直接接触があるため、材料の選択では、この材料の組み合わせに関連した腐食要件も考慮に入れられる。金属管は好ましくは継ぎ目がないが、長手方向溶接線のある金属管あるいは押出金属管であってもよい。射出金型により鋼管がしっかりとシールされるように、また金属管およびステアリングコラムリテナーの、プラスチックによる部分的オーバーモールドの際に高い製造品質を達成できるように、金属管の外部寸法は好ましくは公差が小さい。1つの好ましい実施態様では、金属管は直線的な設計である。すなわち、(横からの衝撃が生じたとき)挟まれて締め付けられた端部によって圧力による力が金属管に加えられた場合に湾曲変形が起こりうる、湾曲部分がない。

40

【0024】

横部材モジュールは、好ましくは、乗客用エアバッグの上乗せ成形収容手段および／ま

50

たは膝プロテクター (knee protectors) の上乗せ成形収容手段および/またはラジオ装置および/またはナビゲーション装置 (navigation unit) 用の上乗せ成形収容手段を有する。既述の収容手段はすべて、代替手段として上乗せ成形されたものであってよい、または所望により互いに任意に組み合わせて横部材モジュール上の一體物として上乗せ成形されたものであってよく、これらによりさまざまな運転席構成部品の組み立てが容易になる。代替手段として、または組み合わせて上乗せ成形された更なる収容手段は、カルダントンネル (cardan tunnel) の連結に役立つ。カルダントンネル連結の利点は、横部材モジュールが、それぞれのフロントピラーの固定ポイント間に乗り物の車体の追加固定ポイントを有し、こうして第1に複合体全体の強度および剛性が増大し、第2に横部材モジュールの振動挙動に有利な影響も及ぼすことである。

10

【0025】

本発明の1つの好ましい実施態様によれば、横部材モジュールは、金属管上にプラスチックで取り囲まれていない領域も含み、これは連結要素の取り付けに役立つ。連結要素により、ステアリングコラムのねじ式プレートを固定することが可能である。連結要素を使用して、ステアリングコラム連結体を一体化することができる。好ましい連結要素はパイプクランプである。この方法により、ステアリングコラム連結体の領域でのひずみという付随的な問題がなくなるとともに、いかなる溶接連結も不要になる。確実に取り付けられるようにするために、この方法は、好ましくは金属管に直接用いる。すなわち、プラスチックで取り囲まれていない箇所で用いる。

20

【0026】

本発明の1つの好ましい実施態様によれば、横部材モジュールは、プラスチックダクトを貫通する導線セットを取り囲み、かつ金属管に任意選択的に設けられるプラスチックダクト内に挿入でき、かつ伸縮自在にプラスチックダクト内で伸張してその内壁に対して固定されるような寸法である、フォーム要素 (foam elements) も含む。フォーム要素は、好ましくはPEフォーム、フォームラバーまたはそれと類似した材料から構成される。PEフォームは非常に安価であるが、フォームラバーはプラスチックダクト内に固定するのに重要な弾性および摩擦係数との関連で有利である (PE = ポリエチレン)。フォーム要素の利点は、フォーム要素の弾性のおかげでさまざまな厚さの導線セットを受け入れることができることである。導線セットの厚さが異なるのは、特に顧客固有のケーブルハーネスを使用する場合である。フォーム要素の圧縮性およびその回復性を用いて、任意選択で存在するプラスチックケーブルダクト内に導線セットを固定できる。さらに、個々の導線の束全体の回りに巻き付ける接着テープの煩わしい使用を不要にすることも可能である。任意選択的に存在するプラスチックダクト内の個々の導線のがたつきがフォーム要素によってなくなるからである。

30

【0027】

プラスチックダクト内にはさらに、好ましくは、上乗せ成形され互いに平行に配列された誘導用の溝があり、その各々の間にフォーム要素を挿入できる。この方法により、フォーム要素の挿入時に正確な位置付けが容易になるだけでなく、プラスチックダクト内に個々のフォーム要素を正確に確実に位置付けることも可能になる。

40

【0028】

1つの好ましい実施態様によれば、任意選択的に存在するプラスチックダクトを貫通する導線セットは、基本的には結合剤によってのみまとめられる個々の導線を含む。結合剤は、分岐する導線の位置を定めるために使用する。言い換えれば、個々の導線の束全体の回りに巻き付けることを不要にすることができる、残りの唯一の必要条件は、結合剤が、個々の導線またはそのストランドの分岐が定められている箇所に存在することである。

【0029】

プラスチックダクトの寸法設計は、好ましくは、乗り物に搭載された回路網全体の導線セットを受け入れができるようにするものである。本明細書における導線セットは、エンジン室の導線セット (好ましくはプレートまたはブッシングによって取り囲まれて

50

いる)も含み、その寸法は乗り物の前壁の開口部の寸法に合わせられている。したがって、この横部材モジュールの組み立て方法では、この段階までにエンジン室の導線セットを含んでおりかつ前壁の適切な開口部を通ってエンジン室内に入る導線セットを、プラスチックダクト内で組み立てることが可能である。漏れが起こらないよう前壁の適切な開口部を再閉鎖できるようにするために、適切なプレートまたはブッシングがこの目的のためにこの段階までに設けられている。

【0030】

ステアリングコラムリテナーのシートメタル材に用いる材料、または金属管に用いる材料は、好ましくは、鋼鉄、アルミニウム、アルミニウム合金、鋼鉄合金、マグネシウム、チタン、あるいはガラス繊維強化または炭素繊維強化プラスチックである。本発明の別の実施態様では、上述の一連のものからの種々の材料から構成されるシートメタル材は、互いに組み合わせることができる。鋼鉄は、特に好ましくは金属管に使用される。

10

【0031】

管を取り囲む材料のリブ構造体を得るため、また横部材モジュールとステアリングコラムリテナーとを連結させるために、熱可塑性ポリマーを、好ましくはポリマー成形組成物 (polymer moulding compositions) の形で使用する。

【0032】

プラスチック - 金属の複合構成を用いた、上述の目的のためのポリマー成形組成物の加工は、熱可塑性プラスチックの付形加工によって、好ましくは射出成形、溶融押出、圧縮成形、打抜きまたはブロー成形によって行われる。原則として、達成される有益な効果はどのタイプのものについても明らかである。構成部品 A) として使用されるプラスチックのリストは、一例として、Kunststoff - Taschenbuch [プラスチックハンドブック] (Ed. Saechtling), 1989 edition に記載されており、それには出典も記載されている。これらのプラスチックを製造するための方法自体は当業者に知られている。達成される効果は、上で引用したハイブリッド技術の使用に関する先行技術に開示されているすべての変形形態において同じように明らかであり、そのことは、プラスチック部分が金属部分を完全に封入するか、あるいは欧州特許出願公開第 1380493 A2 号明細書の場合のようにその回りに単にウェブを形成するかに関係なく、さらにプラスチック部分が後で接着によって組み込まれるかまたは(一例として)レーザーによって金属部分に連結されるかどうか、あるいは国際公開第 2004/071741 号パンフレットの場合のように、プラスチック部分および金属部分が更なる作業で確実に連結結合 (interlock bond) されるかどうかに関わりない。

20

【0033】

ハイブリッド構成を使用した金属管とステアリングコラムリテナーとから構成される本発明の横部材モジュール用の好ましい半結晶質熱可塑性ポリマー(熱可塑性プラスチック)は、ポリアミド、ビニル芳香族ポリマー、ASAポリマー、ABSポリマー、SANポリマー、POM、PPG、ポリアリーレンエーテルスルホン、ポリプロピレン(PP)またはこれらのブレンドの群から選択されるものである。本明細書では、ポリアミド、ポリエステル、ポリプロピレンおよびポリカーボネート、あるいは基本的な構成成分としてポリアミド、ポリエステルまたはポリカーボネートを含むブレンドが好ましい。

30

【0034】

加工する成形組成物に使用する材料は、ポリエステル、ポリカーボネート、ポリプロピレンまたはポリアミドあるいはこれらの熱可塑性プラスチックと上述の材料とのブレンドよりなる群からの少なくとも 1 種のポリマーを含むのが特に好ましい。

40

【0035】

特に好ましくは、本発明に従って使用されるポリアミドは、半結晶質ポリアミド(PA)であり、これはジアミンおよびジカルボン酸から、および/または少なくとも 5 つの環員 (ring members) を有するラクタムから、または対応するアミノ酸から出発して調製できる。この目的で使用できる出発物質は、脂肪族および/または芳香族のジカルボン酸(アジピン酸、2,2,4-および 2,4,4-トリメチルアジピン酸、アゼ

50

ライン酸、セバシン酸、イソフタル酸、テレフタル酸など)、および脂肪族および/または芳香族のジアミン(例えば、テトラメチレンジアミン、ヘキサメチレンジアミン、1,9-ノナンジアミン、2,2,4-および2,4,4-トリメチルヘキサメチレンジアミン、異性体ジアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ビスマスアミノメチルシクロヘキサン、フェニレンジアミン、キシレンジアミン)、アミノカルボン酸、例えば、アミノカプロン酸、および対応するラクタムである。既述の複数種のモノマーからなるコポリアミドも含まれる。

【0036】

本発明による好ましいポリアミドは、カプロラクタムから、特に非常に好ましくは-カプロラクタムから調製され、またPA6、PA66、および他の脂肪族および/または芳香族のポリアミドまたはコポリアミドをベースにしたほとんどの複合材料(*com pounding materials*)からも調製され、ここで、ポリマー鎖中のポリアミド基ごとに3~11個のメチレン基がある。

10

【0037】

本発明に従って使用する半結晶質ポリアミドは、他のポリアミドおよび/または更なるポリマーとの混合物の形で使用することもできる。

【0038】

従来の添加剤、例えば、金型離型剤、安定剤および/または流動助剤(*flow aids*)は、溶融物の形でポリアミドと混ぜ合わせるか、または表面に施すことができる。

20

【0039】

さらに、芳香族ジカルボン酸をベースにした、また脂肪族または芳香族のジヒドロキシ化合物をベースにしたポリエステルは、本発明に従って用いるのに好ましい。

【0040】

好ましいポリエステルの第1グループは、ポリアルキレンテレフタレートのグループ、特にアルコール部分に2~10個の炭素原子を有するものである。

30

【0041】

この種のポリアルキレンテレフタレートは公知であり、文献に記載されている。それらの主鎖は、芳香族ジカルボン酸から得られる芳香環を含む。芳香環の中で、例えば、八ロゲン、特に塩素または臭素、あるいはC₁~C₄のアルキル基、特にメチル基、エチル基、i-またはn-プロピル基、あるいはn-、i-またはt-ブチル基による置換が行われていてもよい。

【0042】

これらのポリアルキレンテレフタレートは、芳香族ジカルボン酸またはそれらのエステルまたは他のエステル形成性誘導体(*ester-forming derivatives*)と、脂肪族ジヒドロキシ化合物とを公知の方法で反応させることによって調製できる。

【0043】

挙げることのできる好ましいジカルボン酸は、2,6-ナフタレンジカルボン酸、テレフタル酸およびイソフタル酸、およびこれらの混合物である。最高30モル%まで、好ましくは10モル%以下の芳香族ジカルボン酸を、脂肪族または脂環式のジカルボン酸(アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸およびシクロヘキサンジカルボン酸など)で置換してよい。

40

【0044】

脂肪族ジヒドロキシ化合物のうち、2~6個の炭素原子を有するジオール、特に1,2-エタンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールおよびネオペンチルグリコール、およびこれらの混合物が好ましい。

【0045】

特に非常に好ましく使用されるポリエステルは、2~6個の炭素原子を有するアルカン

50

ジオールから得られるポリアルキレンテレフタレートである。これらのうち、ポリエチレンテレフタレート(P E T)、ポリプロピレンテレフタレートおよびポリブチレンテレフタレート(P B T)、およびこれらの混合物が特に好ましい。他のモノマー単位として、1重量%まで、好ましくは0.75重量%までの1,6-ヘキサンジオールおよび/または2-メチル-1,5-ペンタンジオールを含む、P E Tおよび/またはP B Tも好ましい。

【 0 0 4 6 】

本発明に従って好ましく使用されるポリエステルの粘度数は、一般に50~220、好ましくは8~160の範囲である(I S O 1628に従って、25においてフェノール/o-ジクロロベンゼン混合物(重量比が1:1)中に0.5重量%濃度溶液で測定)。

10

【 0 0 4 7 】

カルボキシ末端基含量が、100 meq/kg(ポリエステル)まで、好ましくは50 meq/kg(ポリエステル)まで、特に40 meq/kg(ポリエステル)までであるポリエステルが特に好ましい。この種のポリエステルは、例えば、独国特許出願公開第4401055号明細書の方法で調製できる。カルボキシ末端基含量は、普通は滴定法(例えば、電位差測定法)で測定する。

【 0 0 4 8 】

ポリエステル混合物を使用する場合、成形組成物は、P B Tとは異なるポリエステル(一例としてポリエチレンテレフタレート(P E T)がある)をさらに含むポリエステルから構成される混合物を含む。

20

【 0 0 4 9 】

P A再利用物質またはP E T再利用物質(スクラップP E Tとも称される)などの再利用物質を、必要に応じて、ポリアルキレンテレフタレート(P B Tなど)と混ぜて使用することも有利である。

【 0 0 5 0 】

再利用物質とは、一般に以下のものである：

1) 工場使用済み(p o s t - i n d u s t r i a l)再利用物質として知られているもの：これらは、重縮合時または加工時の製造廃棄物であり、例えば、射出成形からのスプルー、射出成形または押出成型の出発材料(s t a r t - u p m a t e r i a l)、あるいは押出シートまたはフォイルからのエッジの切り取り部分がある。

30

2) 消費者使用済み(p o s t - c o n s u m e r)再利用物質：これらは、末端消費者が使用した後に回収して処理されるプラスチック品である。ミネラルウォーター、清涼飲料およびジュース用の吹込成型P E T瓶は、量の点で文句なく顕著な品目である。

【 0 0 5 1 】

どちらのタイプの再利用物質も、粉碎材料またはペレットの形のいずれかとして使用できる。後者の場合、加工されていない再利用物質を分離し精製してから溶融させ、押出機を用いてペレット化する。普通これによって、取り扱いが容易になり、自由に流れやすくなり、加工におけるさらなる段階のための計量が簡単になる。

30

【 0 0 5 2 】

使用する再利用物質は、ペレット化されたものか、またはリグラインドの形態のいずれかであってよい。エッジ長(e d g e l e n g t h)は、10mm以下にすべきであり、好ましくは8mm以下にすべきである。

40

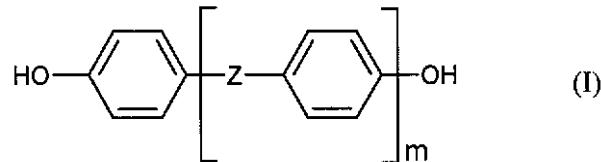
【 0 0 5 3 】

ポリエステルは、加工時に(微量の水分のせいで)加水分解するため、再利用物質を予備乾燥させるのが望ましい。乾燥後の残留含水量は、好ましくは<0.2%、特に<0.05%である。

【 0 0 5 4 】

挙げることのできる好ましく使用されるポリエステルのグループは、芳香族ジカルボン酸および芳香族ジヒドロキシ化合物から得られる完全芳香族ポリエステルである。

50


【0055】

好適な芳香族ジカルボン酸は、ポリアルキレンテレフタレートについて先に挙げた化合物である。好ましく使用される混合物は、5～100モル%のイソフタル酸および0～95モル%のテレフタル酸、特に約50～約80%のテレフタル酸および20～約50%のイソフタル酸から構成される。

【0056】

芳香族ジヒドロキシ化合物は、好ましくは次の一般式(I)で表される。

【化1】

10

20

30

40

式中、

Zは、8個までの炭素原子を有するアルキレンまたはシクロアルキレン基、12個までの炭素原子を有するアリーレン基、カルボニル基、スルホニル基、酸素または硫黄原子、または化学結合であり、

mは、0～2である。

【0057】

化合物のフェニレン基は、C₁～C₆のアルキル基またはアルコキシ基およびフッ素、塩素または臭素による置換が行われていてもよい。

【0058】

これらの化合物の親化合物の例には、ジヒドロキシビフェニル、ジ(ヒドロキシフェニル)アルカン、ジ(ヒドロキシフェニル)シクロアルカン、ジ(ヒドロキシフェニル)スルフィド、ジ(ヒドロキシフェニル)エーテル、ジ(ヒドロキシフェニル)ケトン、ジ(ヒドロキシフェニル)スルホキシド、，，-ジ(ヒドロキシフェニル)ジアルキルベンゼン、ジ(ヒドロキシフェニル)スルホン、ジ(ヒドロキシベンゾイル)ベンゼン、レスルシノール、およびヒドロキノン、ならびにこれらの環状アルキル化(ringing-around)および環状ハロゲン化誘導体がある。

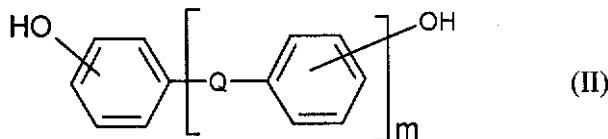
【0059】

これらのうち、4,4'-ジヒドロキシビフェニル、2,4-ジ(4'-ヒドロキシフェニル)-2-メチルブタン、，，'-ジ(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、2,2-ジ(3'-メチル-4'-ヒドロキシフェニル)プロパン、および2,2-ジ(3'-クロロ-4'-ヒドロキシフェニル)プロパンが好ましく、特に2,2-ジ(4'-ヒドロキシフェニル)プロパン、2,2-ジ(3',5'-ジクロロジヒドロキシフェニル)プロパン、1,1-ジ(4'-ヒドロキシフェニル)シクロヘキサン、3,4'-ジヒドロキシベンゾフェノン、4,4'-ジヒドロキシジフェニルスルホンおよび2,2-ジ(3',5'-ジメチル-4'-ヒドロキシフェニル)プロパンならびにこれらの混合物が好ましい。

【0060】

当然ながら、ポリアルキレンテレフタレートと完全芳香族ポリエステルとの混合物を使用することも可能である。こうした混合物は一般には、20～98重量%のポリアルキレンテレフタレートおよび2～80重量%の完全芳香族ポリエステルを含む。

【0061】


当然ながら、コポリエーテルエステルなどのポリエステルブロックコポリマーを使用することも可能である。この種の製造物は知られており、文献、例えば、米国特許出願公開第3651014号明細書に記載されている。これに相当する製造物は市販もされている(例えば、Hytreel(登録商標)(DuPont))。

【0062】

50

本発明によれば、ポリエステルとして好ましく使用される物質として、ハロゲンを含まないポリカーボネートも含まれる。好適なハロゲンを含まないポリカーボネートの例には、次の一般式(II)のジフェノールをベースにしたものがある。

【化2】

10

式中、

Qは、単結合、C₁～C₈のアルキレン基、C₂～C₃のアルキリデン基、C₃～C₆のシクロアルキリデン基、C₆～C₁₂のアリーレン基、または-O-、-S-または-SO₂-であり、mは0～2の整数である。

【0063】

ジフェノールのフェニレン基は、C₁～C₆のアルキルまたはC₁～C₆のアルコキシなどの置換基を有していてもよい。

【0064】

この式で表される好ましいジフェノールの例として、ヒドロキノン、レソルシノール、4,4'-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,4-ビス(4-ヒドロキシフェニル)-2-メチルブタンおよび1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンがある。2,2-ビス(4-ヒドロキシフェニル)プロパンおよび1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンが特に好ましく、また1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンも特に好ましい。

20

【0065】

ホモポリカーボネートまたはコポリカーボネートのいずれかが構成部品Aとして適しており、ビスフェノールAのコポリカーボネート、ならびにビスフェノールAのホモポリマーが好ましい。

【0066】

30

好適なポリカーボネートは、公知の方法で分岐させることができ、詳細には、好ましくは使用するジフェノールの総量に対して0.05～2.0モル%の少なくとも三官能価の化合物(特に、3個以上のフェノール性OH基を有するもの)を混ぜることによって分岐させることができる。

【0067】

特に好適であることが実証されているポリカーボネートは、相対粘度(η_{re1})が1.10～1.50、特に1.25～1.40である。これは、10000～20000g/モル、好ましくは20000～80000g/モルの平均モル質量M_w(重量平均)に相当する。

【0068】

40

この一般式で表されるジフェノールは公知であるか、または公知の方法で調製できる。

【0069】

ポリカーボネートは、例えば、ジフェノールを、界面法においてホスゲンと反応させるとか、あるいは均質相法(ピリジン法として知られる)においてホスゲンと反応させることによって調製できる。いずれの場合も、所望の分子量は、適切な量の公知の連鎖停止剤を用いて公知の方法で達成することができる。(ポリジオルガノシロキサン含有ポリカーボネートに関しては、例えば、独国特許出願公開第3334782号明細書を参照のこと)。

【0070】

好適な連鎖停止剤の例には、フェノール、p-tert-ブチルフェノール、あるいは

50

獨国特許出願公開第2842005号明細書にあるような4-(1,3-テトラメチルブチル)フェノールなどの長鎖アルキルフェノール、あるいは獨国特許出願公開第3506472号明細書にあるようなアルキル置換基中に合計8~20個の炭素原子を有するモノアルキルフェノールまたはジアルキルフェノール(p-ノニルフェノール、3,5-ジ-tert-ブチルフェノール、p-tert-オクチルフェノール、p-ドデシルフェノール、2-(3,5-ジメチルヘプチル)フェノールおよび4-(3,5-ジメチルヘプチル)フェノールなど)がある。

【0071】

本発明においては、ハロゲンを含まないポリカーボネートは、ハロゲンを含まないジフェノール、ハロゲンを含まない連鎖停止剤および(使用する場合には)ハロゲンを含まない分岐剤からなるポリカーボネートであり、ここで、例えば、界面法でのホスゲンを用いたポリカーボネートの調製から生じる加水分解性塩素のppmレベルの低含有量(the content of subordinate amounts)は、本発明においては、ハロゲン含有という用語に値するとは見なされない。加水分解性塩素の含有量がppmレベルであるこの種のポリカーボネートは、本発明においては、ハロゲンを含まないポリカーボネートである。

10

【0072】

挙げることのできる他の好適な熱可塑性ポリマーには、調製工程の際に、ホスゲンの代わりに芳香族ジカルボン酸単位(イソフタル酸および/またはテレフタル酸単位など)を使用した非晶質ポリエステルカーボネートがある。ここで、さらに詳細については欧州特許出願公開第0711810A号明細書を参照できる。

20

【0073】

欧州特許出願公開第365916A号明細書は、モノマー単位としてシクロアルキル基を有する他の好適なコポリカーボネートを開示している。

【0074】

ビスフェノールAの代わりにビスフェノールTMCを使用することも可能である。この種のポリカーボネートは、APECHT(登録商標)という商標でBayer AGから入手可能である。

30

【0075】

本発明の別の好ましい実施態様では、ポリマー成形組成物は、0.001~75重量部、好ましくは10~70重量部、特に好ましくは20~65重量部、特に好ましくは30~65重量部の充填剤または補強材を含む。

【0076】

使用する充填剤または補強材は、2種以上の異なる充填剤および/または補強材(例えば、タルクまたは雲母、ケイ酸塩、石英、二酸化チタン、珪灰石、カオリン、非晶質シリカ、炭酸マグネシウム、白墨、長石、硫酸バリウム、ガラスビーズをベースにしたもの)および/または纖維性の充填剤および/または補強材(炭素纖維および/またはガラス纖維をベースにしたもの)からなる混合物を含むこともできる。粒状無機充填剤(タルク、雲母、ケイ酸塩、石英、二酸化チタン、珪灰石、カオリン、非晶質シリカ、炭酸マグネシウム、白墨、長石、硫酸バリウムをベースにしたもの)および/またはガラス纖維を使用するのが好ましい。タルク、珪灰石、カオリンをベースにした粒状無機充填剤および/またはガラス纖維を使用するのが特に好ましく、ガラス纖維が特に非常に好ましい。

40

【0077】

さらに、針状無機充填剤の使用も特に好ましい。本発明によれば、針状無機充填剤という用語は、明白な針状の性質を有する無機充填剤を意味する。挙げることのできる一例として、針状珪灰石がある。その鉱物の長さ:直径の比は、好ましくは2:1~35:1、特に好ましくは3:1~19:1、特に好ましくは4:1~12:1である。CILAS GRANULOMETREを用いて測定した本発明の針状鉱物の平均粒径は、好ましくは20μm未満、特に好ましくは15μm未満、特に好ましくは10μm未満である。

【0078】

50

充填剤および／または補強材は、必要に応じて、例えばカップリング剤またはカップリング剤系（例えば、シランをベースにしたもの）で表面改質されてきた。しかし、こうした前処理は不可欠なものではない。しかし、特にガラス纖維を使用する場合は、シランに加えて、ポリマー分散物、皮膜形成剤、分岐剤および／またはガラス纖維加工助剤を使用することも可能である。

【0079】

本発明によって特に好ましく使用されるガラス纖維は、連続フィラメント纖維の形態または細断されるかまたは粉碎されたガラス纖維の形態で添加され、纖維の直径は一般には7～18 μm、好ましくは9～15 μmである。纖維は、好適な寸法体系のもので、カップリング剤またはカップリング剤系（例えば、シランをベースにしたもの）を用いて用意されたものであってよい。

10

【0080】

前処理に通常用いられる、シランをベースにしたカップリング剤は、シラン化合物、好ましくは次の一般式（I I I）で表されるシラン化合物である。

式中、

Xは、NH₂-、HO-または

【化3】

20

である。

qは、2～10、好ましくは3～4の整数である。

rは、1～5、好ましくは1～2の整数である。

kは、1～3の整数、好ましくは1である。

【0081】

さらに好ましいカップリング剤には、アミノプロピルトリメトキシシラン、アミノブチルトリメトキシシラン、アミノプロピルトリエトキシシラン、アミノブチルトリエトキシシランの群からのシラン化合物、さらに置換基Xとしてグリシジル基を有する対応するシランもある。

30

【0082】

充填剤の改質のための表面被覆用のシラン化合物の一般的な使用量は、無機充填剤に対して0.05～2重量%、好ましくは0.25～1.5重量%、特に0.5～1重量%である。

【0083】

粒状充填剤のd97またはd50値は、成形組成物または成形品を得るための加工の結果として、成形組成物または成形品の場合のほうが、最初に使用した充填剤の場合よりも小さくなりうる。ガラス纖維の長さの分布は、成形組成物または成形品を得るための加工の結果として、成形組成物または成形品では狭くなりうる。

40

【0084】

明確にするため述べるが、本発明の範囲は、一般に、または好ましい範囲で、上述した定義およびパラメータすべての任意の所望の組み合わせを含むことに注目すべきである。

【0085】

本発明を、添付の図を用いて以下にあくまでも例示として説明する。

【図面の簡単な説明】

【0086】

【図1】部分的にプラスチックでオーバーモールドされた本発明による横部材モジュールの部分を示す。プラスチックは、全体がリップ構成プラスチックから構成される構造体3の全体にわたってシートメタル材2まで延在しており、プラスチックはシートメタル材を同

50

様に部分的に取り囲んでいる。プラスチックでオーバーモールドされたシートメタル材2の構造体は、ステアリングコラム用の固定ポイント4および乗り物の車体の前壁用の固定ポイント5を有する。

【図2】ステアリングコラムリテーナおよび金属管から構成される本発明の横部材モジュールの別の図を示す。

【図3】プラスチック構造体がない状態のステアリングコラムリテーナのシートメタル材を示す。

【0087】

シートメタル材の打ち抜き穴は示されておらず(図3)、これらの全体にわたって成形されたプラスチックの領域およびエッジの全体にわたって成形されたプラスチックの領域も示されていない(図1および2)。

【発明を実施するための形態】

【0088】

本発明の実施方法

横部材モジュールにおいて参考番号1で概略的に示された金属管は、図1では部分的に示されているだけであり、金属管の特定のいかなる形状も個々の連結体要素の特定のいかなる形状も示されていない。とはいえ、特定の幾何学的形状も、以下の説明から明確でない限り、単なる一例としてのものであることは明らかであるはずである。

【0089】

ステアリングコラムリテーナおよび金属管から構成される本発明の横部材モジュールの、示されている部分は、乗り物の計器盤を収容する役割を果たし、組み立て時に自動車のフロントピラー(図示せず)に連結される。横部材モジュールは、継ぎ目のない、または長手方向溶接線を有する金属管(好ましくは鋼管)を含み、その外部寸法の公差が小さい。金属管は好ましくはその両端が挟まれて締め付けられている。こうした締め付けられる端に穴が位置しており、それらの穴はフロントピラー用のねじ式ラグとしての役割を果たす。したがって穴の位置は、フロントピラー間をしっかりと連結するために横部材が使用する金属管の領域にある。特に横からの衝撃が起きた場合に生じる大きな力も吸収できるようするために、金属管の設計はさらに好ましくは直線的である。すなわち、挟まれて締め付けられた端部によって圧力による力が金属管に加えられた場合に曲げ変形が起こりうる湾曲部分が金属管にはない。

【0090】

横部材の製造時に、金属管は射出成形工場内においてプラスチックでオーバーモールドされる。本明細書では、繊維強化プラスチック、例えば、ガラス繊維を充填したプラスチックを使用するのが好ましい。PA GF30(ガラス繊維含量が30重量%であるポリアミド)という材料が、本明細書では特に適していることが実証された。オーバーモールドされるプラスチックは金属管全体を覆うことができるか、あるいはオーバーモールドされたプラスチックのない領域が存在しうる。金属管を完全にはオーバーモールドしない場合、射出成形工場において、成形物の寸法精度に(また金属管の寸法精度についても)特別の必要条件が課せられ、したがって金属管の外部寸法の公差を小さくすべきである。

【0091】

金属管のオーバーモールドにプラスチックを使用する利点は、高い強度および剛性が求められる箇所については、金属管によって実現できるが、以下にさらに詳細に説明する構成部品の連結にのみ役立つ箇所はプラスチックで上乗せ成形することができる。同様にして、使用するプラスチックにおいても更なる差別化を行うことも可能である。一例として、繊維強化プラスチック、特にガラス繊維を充填したプラスチックを、プラスチックに課せられる機械的要求が(結果として)厳しくなる箇所にのみ使用することが可能になるであろうし、他の領域には繊維で強化されていない従来のプラスチックを使用できる。図1に示す横部材モジュール部品の場合、示されている部分のみが、ステアリングコラムリテーナに確実に連結される部分である。本明細書では、プラスチック部品すべてを单一の製造ステップで上乗せ成形することができる。

10

20

30

40

50

【0092】

獨国特許出願公開第102005004605A1号明細書は、別の実施態様と、更なる要素と、横部材の金属管の製造法とを開示している。

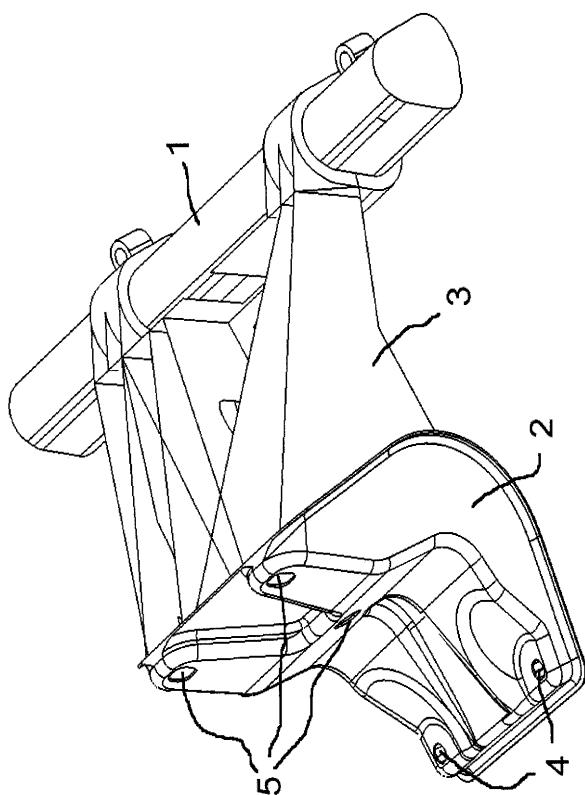
【0093】

すべてがプラスチックから構成されるという解決法とは対照的に、金属管とステアリングコラムリテーナとの形態の横部材モジュールに関する、本発明において説明するプラスチック-金属複合の解決法では、取り付けられた状態において1次固有周波数 $> 36 \text{ Hz}$ を達成することができ、こうした周波数は、普通なら金属から構成される（したがって著しく重くなる）構成を用いることによってのみ達成可能である。

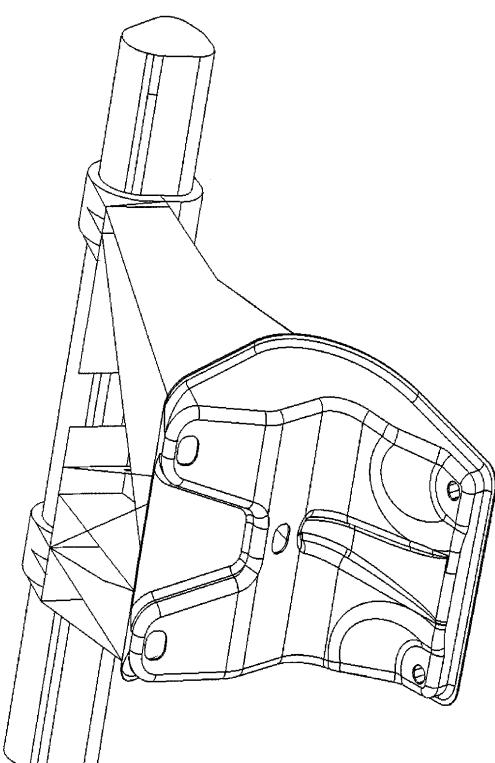
【0094】

金属管とステアリングコラムリテーナ（そのどちらもハイブリッド技術を使用している）から構成される横部材モジュールの構造体は、好ましくはプラスチックのリブを有し、製造方法が簡単でしっかりしたものとなるようにも設計されている。

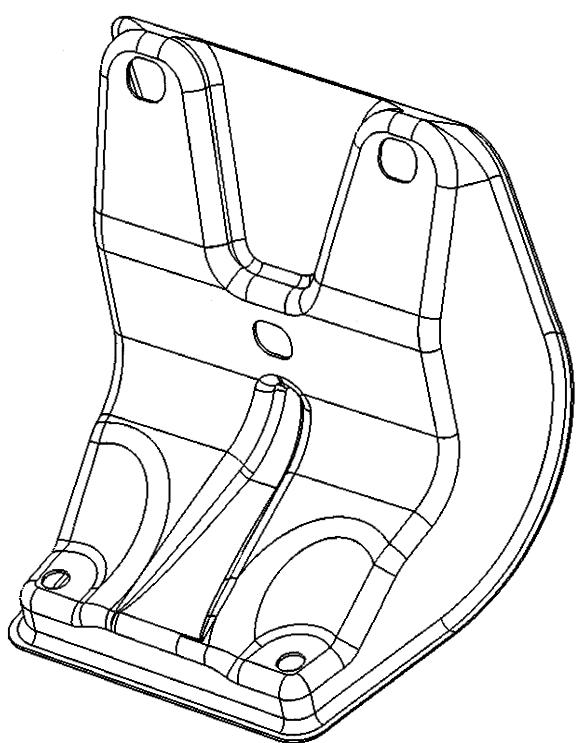
【符号の説明】


【0095】

- 1 金属管
- 2 シートメタル材
- 3 構造体
- 4 固定ポイント
- 5 固定ポイント


10

20


【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 トーマス・マレク
ドイツ・D - 5 0 2 5 9 ・ プルハイム・ツム・オメルシュタル・7 0

(72)発明者 フランク・ルッター
ドイツ・D - 4 0 6 2 9 ・ デュッセルドルフ・アム・メーゲルスベルク・7 6

(72)発明者 ボリス・コッホ
ドイツ・D - 4 2 9 2 9 ・ ヴェルメルスキルヒエン・タンネンヴェーク・5

(72)発明者 ウルリヒ・ダイエク
ドイツ・D - 5 1 3 7 5 ・ レーフェルクーゼン・アム・マルヒエン・4 0

F ターム(参考) 3D203 AA01 BB35 BB37 BB54 CA03 CA04 CA05 CA07 CA08 CA12
CA56 CA74 CA75 CA79 CA80 CA82 CA84 CB03 CB06 CB07
CB09 CB10 CB12 CB21 CB24 CB39 DA02 DA11 DA13 DA16
DA18 DA20 DA57
4J002 BB121 BC011 BG101 BN121 BN151 CB001 CF051 CF061 CF071 CF161
CG011 CH071 CL011 CL031 CL051 CN031 DA016 DE136 DE236 DG046
DJ006 DJ016 DJ036 DJ046 DJ056 DL006 FA046 FA076 FB096 FD016
GN00

【外國語明細書】

Transverse-member module for a motor vehicle

The present invention relates to a transverse-member module for receiving the instrument panel and reinforcing the bodywork via direct connection of the two A-pillars of a motor vehicle, composed of a transverse member with a steering-column retainer, where the transverse-member module, i.e. not only the transverse member but also the steering-column retainer, are produced using a metal-plastic-composite design (hybrid technology).

Known steering-column retainers, also termed steering consoles, are composed of a plurality of welded sheet-metal profiles in steel or diecast components (e.g. composed of aluminium or magnesium), forming a single piece with the load-bearing structure of the instrument-panel transverse member to give transverse-member modules, or securely connected in welded form or in the form of combined profiles, composed of aluminium, of steel, of magnesium, or of plastics-metal-hybrid design.

DE 10 2005 004 605 A1 discloses a transverse-member module for a motor vehicle comprising an at least partially plastics-surrounded metal tube, with, moulded on so as to form a single piece, a plastics duct through which a conductor set can be passed, with a moulded-on link composed of plastic, for fixing to the front wall of the motor vehicle by screw-thread methods.

DE 102 40 395 A1 discloses a transverse member which is intended for a motor vehicle and which, in the region of the curved portion of the tube, has a welded-on metal steering-column link, onto which the screw-on plate of the steering column is mounted. The manufacture of the curved section of the said transverse member uses a metal-plastics-hybrid design.

DE 200 08 201 U1 discloses an instrument-panel support in hybrid-type configuration for installation between the A-pillars of a motor vehicle and having an elongate, shell-like main body, and also stabilizing insert parts composed of metallic materials, which have been joined via moulded-on interior plastics ribbing to give a metal/plastics-composite part, and through which at least one air duct passes at least to some extent, where, simultaneously with the plastics ribbing, retainers, consoles and linkage points composed of plastic and projecting outwards from the main body have been moulded on so as to give a single piece.

DE 100 64 522 A1 describes a component for a motor vehicle, in particular transverse member for arrangement between A-pillars of a motor vehicle, with an essentially tube-like main body, within which there is at least one duct provided. In order to provide an improved lightweight component which can be produced more easily, with fewer operations, and therefore at lower cost, and into which a duct can be integrated in advantageous manner, DE 100 64 522 A1 proposes that the main body have an internal lining of plastic to form duct walls composed of plastic. The said component

can be used as instrument-panel support in a motor vehicle. Holders, such as a steering-column holder, are attached to the main body, and these holders are likewise preferably composed of metal. According to DE 100 64 522 A1, the holders can be surrounded by plastic, thus increasing their stiffness, eliminating rattle, and providing edge protection.

A feature common to all of the solutions described in the prior art for the connection of steering-column retainer and transverse member is that they either comprise only holders composed of metal or composed of plastic which do not receive a steering console until an additional operation is carried out, or, to the extent that the moulding-on of the steering console is simultaneous with that of the plastic for the ribbing, this is composed solely of plastic, as is the case in DE 200 08 201 U1.

The consequence of the two-part design is increased operating cost, and the consequence of the solution entirely composed of plastics according to DE 200 08 201 U1 is lack of stability. The solutions described in the prior art moreover exhibit disadvantageous vibration behaviour, perceptibly extending as far as the steering wheel. Although DE 10 2005 004 605 A1 indicates that the proposed hybrid design of the transverse-member module reduces oscillating mass, but provides a transverse member with relatively high intrinsic frequency, giving a transverse-member module with a high level of vibration comfort, it has been found that in modified vehicle configurations this vibration behaviour solely of the transverse member is insufficient, and that unpleasant vibration behaviour extends as far as the steering wheel.

The object of the present invention therefore consisted in improving the intrinsic vibration behaviour of the entire instrument-panel support together with the steering console and the steering column to be secured thereto (also termed steering-column tube) with the aim that firstly the first-mode natural frequency measured at the steering wheel is >36 Hz, and, in comparison with the prior art cited above, additional results are a further weight reduction, cost reduction, and also simplified production processes.

The difficulty consists specifically in the fact that the steering-column retainer has the task of receiving the steering column and serving as important connection element between the bulkhead (constituent of load-bearing bodywork) and the instrument-panel transverse member. The steering-column retainer here must produce a connection of maximum stiffness which has a decisive effect on the intrinsic vibration behaviour of the instrument-panel transverse member. The undesirable intrinsic vibrations are caused by, for example, excitation derived from the engine, from the power train and from the chassis. These vibrations propagate by way of the bodywork into the steering rod and into the steering wheel, and also into the entire dashboard, causing vibrations at the steering wheel and noise in the interior of the vehicle. The result is unacceptable reductions in

comfort.

The object is achieved, and the present invention therefore provides, a transverse-member module for receiving the instrument panel of a motor vehicle comprising an at least partially plastics-surrounded metal tube and a simply moulded sheet-metal profile functioning as steering-column retainer and designed and placed in such a way that it, in the composite with moulded-on plastic, firstly gives a stiff connection between steering column and front wall and secondly has firm connection to the metal tube by way of a structure consisting entirely of plastic.

Surprisingly, the secure connection of transverse-member module and a steering-column retainer likewise manufactured using hybrid design gives, in the installed condition, optimized intrinsic vibration behaviour, i.e. a first-mode natural frequency >36 Hz at the steering wheel, and also a reduction in the cost and the weight of the entire vehicle. Finally, this combination of transverse-member module and steering-column retainer can be produced in simplified manner in a single operation, by overmoulding and connecting two metal parts (metal tube and the moulded metal sheet) together in the same mould in a single operation.

The present invention also provides a process for influencing the intrinsic vibration behaviour of the instrument-panel support of motor vehicles in the installed condition to give a first-mode natural frequency >36 Hz, characterized in that a transverse-member module is attached under the instrument panel, comprising an at least partially plastics-surrounded metal tube and a simply moulded sheet-metal profile functioning as steering-column retainer and designed and placed in such a way that it, in the composite with moulded-on plastic, firstly gives a very stiff connection between steering column and front wall and secondly has firm connection to the metal tube by way of a structure consisting entirely of plastic.

The present invention also provides the use of a transverse-member module for attachment under the instrument panel of a motor vehicle, comprising an at least partially plastics-surrounded metal tube and a simply moulded sheet-metal profile functioning as steering-column retainer and designed and placed in such a way that it, in the composite with moulded-on plastic, firstly gives a stiff connection between steering column and front wall and secondly has firm connection to the metal tube by way of a structure consisting entirely of plastic, for influencing the intrinsic vibration behaviour of the instrument-panel support in the installed condition to give a first-mode natural frequency >36 Hz. In one preferred embodiment, the first-mode natural frequency is from 36.1 to 50 Hz, particularly preferably from 37.1 to 39 Hz.

In one preferred embodiment, the plastics structure produced in the injection-moulding procedure for the transverse-member module includes reinforcing ribs which not only stiffen the connection

to the instrument-panel transverse member but also assume the function of bracing and supporting the overmoulded sheet-metal profile, and bring about transmission of force into the front wall over a large area. The reinforcing ribs in turn have preferably been securely connected to the sheet-metal profile at discrete connection sites by way of perforations in the sheet-metal profile, where the plastic extends through the perforations and extends over the surface of the perforations.

In one preferred embodiment of the present invention, the metal tube and/or the sheet-metal profile used for the steering-column retainer has a coating of adhesion promoter or adhesive. DE 10 2006 025 745 A1 discloses adhesion promoters to be used according to the invention, and its entire content relating to this matter is incorporated by way of reference into the present application. The adhesion promoter or adhesive is preferably a two-stage adhesion promoter which crosslinks completely in two sequential steps, preferably via thermal activation. The adhesion promoter or adhesive can be applied to the sheet-metal profile or metal material prior to stamping and/or shaping, etc. This type of application preferably takes place onto the sheet-metal profile by the "coil-coating" process, prior to operations thereon. This process is particularly cost-efficient. However, the adhesion promoter or adhesive can also be applied by spray, dip-coat, or powder-spray methods, etc. After application to the sheet-metal profile and/or metal tube, it is partially crosslinked in a first step, thus forming a surface which is "dry to the touch", with adequate resistance to damage from handling. During or after the moulding-on of the plastic, the adhesion promoter or adhesive is crosslinked completely, so that it obtains its final properties. In order to achieve the activation energy necessary for the second phase of crosslinking of the adhesion promoter, it can be advantageous to heat the plastics mould and/or to heat the sheet-metal insert profile or the metal tube, and/or to ensure that the temperature of injection of the plastics material into the injection mould is sufficiently high to bring about crosslinking. As an alternative, it is possible to achieve complete crosslinking by annealing after the moulding-on process.

The adhesion promoter or adhesive which provides the coherent link between plastic and sheet-metal profile and/or metal tube is preferably a polyurethane system or an epoxy system, particularly preferably an epoxy resin based on bisphenol A and/or on bisphenol B and/or on bisphenol C and/or on bisphenol F.

Preferred adhesion-promoter systems or adhesives for the plastics materials to be used according to the invention are based on elastomer-modified epoxy adhesives, particularly with covalent linking via copolymerization of 1,3-butadienes and/or with physical binding via addition of rubber.

In an alternative, preferred embodiment, the sheet-metal profile is connected to the plastics structure of the metal tube in a separate process step, only after the overmoulding process, via hot-riveting or other types of riveting, clinching, adhesive bonding, or screw-thread methods.

In one preferred embodiment of the invention, the metal tube used in the transverse-member module is a pipe pinched at both ends, with holes located in both pinched ends. The holes provided at the pinched ends serve as screw-on lugs for the A-pillars during the assembly of the transverse-member module within the vehicle bodywork. The advantage of this design is that there is no need for welding-on of additional angle brackets, such as those otherwise conventional for linking A-pillars in the prior art. The additional manufacturing step for welding-on of an A-pillar link can therefore be omitted, and problems of distortion at these sites are therefore also eliminated.

It is moreover preferable that the transverse-member module has, in addition to the steering-column retainer, a moulded-on plastics lug at each pinched end of the metal pipe, and that there is a through-bore located in each moulded-on plastics lug. This further through-bore serves for further linking of the transverse-member module to the A-pillar, and particularly for excluding any rotation of the transverse-member module about the longitudinal axis of the metal tube.

According to one preferred embodiment of the invention, the metal tube is composed of steel and is preferably seamless. The material of the metal tube can generally be selected with a view to the mechanical properties demanded. As a function of vehicle type, moreover, relatively high importance has to be allocated either to installation-space optimization or to weight optimization, and this likewise influences the selection of a suitable material for the metal tube. Finally, because there is direct contact between the metal pipe and the A-pillar in the motor vehicle, the selection of material also takes into account corrosion requirements relevant to this pairing of materials. The metal tube is preferably seamless, but can also be a metal tube with a longitudinal weld seam or else an extruded metal tube. The exterior dimensions of the metal tube preferably have narrow tolerances, in order that the injection mould forms a tight seal with the steel tube and high manufacturing quality can be achieved during the partial overmoulding of the metal tube and of the steering-column retainer with plastic. In one preferred embodiment, the metal tube is of straight design, i.e. it has no curved portions where curvature deformation can occur if pressure forces are introduced into the metal tube by way of the pinched ends (in the event of a side impact).

The transverse-member module preferably has moulded-on receiving means for a passenger airbag and/or moulded-on receiving means for knee protectors and/or moulded-on receiving means for a radio unit and/or navigation unit. All of the receiving means mentioned, which can have been moulded on as alternatives or in any desired combination with one another, as a single piece on the transverse-member module, facilitate the assembly of various cockpit components. A further receiving means moulded-on as alternative or in combination serves for linking of the cardan tunnel. An advantage of cardan tunnel linking is that the transverse-member module has, between the securing points to the respective A-pillars, an additional securing point to the vehicle bodywork, thus firstly increasing the strength and stiffness of the entire composite and secondly

also advantageously influencing the vibration behaviour of the transverse-member module.

According to one preferred embodiment of the invention, the transverse-member module also comprises, on the metal tube, regions not surrounded by the plastic, these serving for the attachment of connection elements, by way of which it is possible to secure a screw-on plate of the steering column. Connection elements can be used to integrate the steering-column link. Preferred connection elements are pipe clamps. This method also eliminates any welded connection, with its attendant problems of distortion, in the region of the steering-column link. To permit secure attachment, this method is preferably used directly at the metal tube, i.e. at a site not surrounded by plastic.

According to one preferred embodiment of the invention, the transverse-member module also comprises foam elements which surround the conductor set passed through the plastics duct, and which can be inserted into a plastics duct optionally provided on the metal tube, and which are of dimensions such that they expand elastically in the plastics duct and become fixed against its inner wall. The foam elements are preferably composed of PE foam, foam rubber or similar materials. PE foam is very inexpensive, whereas foam rubber is advantageous in relation to elasticity and the coefficient of friction important for fixing within the plastics duct (PE = polyethylene). The advantage of the foam elements is that various thicknesses of conductor sets can be accepted by virtue of the elasticity of the foam elements. Conductor sets of differing thickness occur particularly with the use of customer-specific cable harnesses. The compressibility of the foam elements and their recovery properties can be used to fix the conductor set within the optionally present plastics cable duct. It is moreover possible to eliminate the complicated use of adhesive tape for winding around the entire bundle of individual conductors, because the foam elements eliminate rattle of the individual conductors in the optionally present plastics duct.

In the plastics duct there are moreover preferably moulded-on guide grooves arranged parallel to one another, between each of which a foam element can be inserted. This method can not only facilitate precise positioning during insertion of the foam elements but can also ensure exact positioning of the individual foam elements within the plastics duct.

According to one preferred embodiment, the conductor set passed through the optionally present plastics duct comprises individual conductors held together in essence only by binders. Binders are used in order to define the position of branching conductors. In other words, winding around the entire bundle of individual conductors can be eliminated, and the only remaining requirement is for binders at those sites where there is defined branching of individual conductors or of strands thereof.

The dimensioning of the plastics duct is preferably such that it can receive a conductor set for the entire on-board network. The conductor set here also comprises an engine-compartment conductor set, preferably surrounded by a plate or bushing, the dimensions of which have been matched to the size of an aperture in the front wall of the vehicle. It is therefore possible, with the assembly process for the transverse-member module, to assemble, within the plastics duct, a conductor set which by this stage comprises the engine-compartment conductor set, and which is passed into the engine compartment through an appropriate aperture in the front wall. To permit leakproof reclosure of the appropriate aperture in the front wall, the appropriate plate or bushing has been provided by this stage, for this purpose.

The materials used for the sheet-metal profile of the steering-column retainer, or those used for the metal tube, are preferably steel, aluminium, aluminium alloys, steel alloys, magnesium, titanium, or glass- or carbon-fibre-reinforced plastics. In an alternative embodiment of the present invention, the sheet-metal profiles composed of various materials from the abovementioned series can be combined with one another. Steel is particularly preferably used for the metal tube.

In order to obtain the rib structure of the material surrounding the tube, and to obtain the connection of transverse-member module and steering-column retainer, thermoplastic polymers are preferably used in the form of polymer moulding compositions.

The processing of the polymer moulding compositions for the abovementioned purposes, using a plastics-metal-composite design, takes place via shaping processes for thermoplastics, preferably via injection moulding, melt extrusion, compression moulding, stamping or blow moulding. In principle, the advantageous effects to be achieved are apparent with thermoplastics of any type. A list of the thermoplastics to be used as component A) is found by way of example in *Kunststoff-Taschenbuch* [Plastics Handbook] (Ed. Saechtling), 1989 edition, which also mentions sources. Processes for the production of these thermoplastics are known per se to the person skilled in the art. The effects to be achieved are likewise apparent in all of the variations disclosed in the prior art cited above of the use of hybrid technology, irrespective of whether the plastics part encapsulates the metal part completely or, as in the case of EP 1 380 493 A2, merely forms a web around it, and irrespective of whether the plastics part is subsequently incorporated by adhesion or connected by way of example by a laser to the metal part, or whether, as in WO 2004/071741, the plastics part and the metal part obtain the secure interlock bond in an additional operation.

Preferred semicrystalline thermoplastic polymers (thermoplastics) for the transverse-member module of the invention, composed of metal tube and steering-column retainer, using hybrid design, are those selected from the group of the polyamides, vinylaromatic polymers, ASA polymers, ABS polymers, SAN polymers, POM, PPE, polyarylene ether sulphones, polypropylene

(PP) or their blends, preference being given here to polyamide, polyester, polypropylene and polycarbonates or blends comprising polyamide, polyester or polycarbonates as essential constituent.

It is particularly preferable that the material used in the moulding compositions to be processed comprises at least one polymer from the series of polyester, polycarbonate, polypropylene or polyamide or blends of these thermoplastics with the abovementioned materials.

Polyamides to be used with particular preference according to the invention are semicrystalline polyamides (PA), which can be prepared starting from diamines and dicarboxylic acids and/or from lactams having at least 5 ring members, or from corresponding amino acids. Starting materials that can be used for this purpose are aliphatic and/or aromatic dicarboxylic acids, such as adipic acid, 2,2,4- and 2,4,4-trimethyladipic acid, azelaic acid, sebacic acid, isophthalic acid, terephthalic acid, and aliphatic and/or aromatic diamines, e.g. tetramethylenediamine, hexamethylenediamine, 1,9-nananediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine, the isomeric diaminodicyclohexylmethanes, diaminodicyclohexylpropanes, bisaminomethylcyclohexane, phenylenediamines, xylylenediamines, aminocarboxylic acids, e.g. aminocaproic acid, and the corresponding lactams. Copolyamides composed of a plurality of the monomers mentioned are included.

Polyamides preferred according to the invention are prepared from caprolactams, very particularly preferably from ϵ -caprolactam, and also most of the compounding materials based on PA6, on PA66, and on other aliphatic and/or aromatic polyamides or copolyamides, where there are from 3 to 11 methylene groups for every polyamide group in the polymer chain.

Semicrystalline polyamides to be used according to the invention can also be used in a mixture with other polyamides and/or with further polymers.

Conventional additives, e.g. mould-release agents, stabilizers and/or flow aids, can be admixed in the melt with the polyamides or applied to the surface.

Polyesters are likewise preferred for use according to the invention, these being polyesters based on aromatic dicarboxylic acids and on an aliphatic or aromatic dihydroxy compound.

A first group of preferred polyesters is that of polyalkylene terephthalates, in particular those having from 2 to 10 carbon atoms in the alcohol moiety.

Polyalkylene terephthalates of this type are known and are described in the literature. Their main chain comprises an aromatic ring which derives from the aromatic dicarboxylic acid. There may

also be substitution in the aromatic ring, e.g. by halogen, especially chlorine or bromine, or by C₁-C₄-alkyl groups, especially methyl, ethyl, iso- or n-propyl, or n-, iso- or tert-butyl groups.

These polyalkylene terephthalates may be prepared by reacting aromatic dicarboxylic acids, or their esters or other ester-forming derivatives, with aliphatic dihydroxy compounds in a known manner.

Preferred dicarboxylic acids that may be mentioned are 2,6-naphthalenedicarboxylic acid, terephthalic acid and isophthalic acid, and mixtures of these. Up to 30 mol%, preferably not more than 10 mol%, of the aromatic dicarboxylic acids may be replaced by aliphatic or cycloaliphatic dicarboxylic acids, such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acids and cyclohexanedicarboxylic acids.

Among the aliphatic dihydroxy compounds, preference is given to diols having from 2 to 6 carbon atoms, in particular 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,4-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanediolmethanol and neopentyl glycol, and mixtures of these.

Polyesters whose use is very particularly preferred are polyalkylene terephthalates derived from alkanediols having from 2 to 6 carbon atoms. Among these, particular preference is given to polyethylene terephthalate (PET), polypropylene terephthalate and polybutylene terephthalate (PBT), and mixtures of these. Preference is also given to PET and/or PBT which comprise, as other monomer units, up to 1% by weight, preferably up to 0.75% by weight, of 1,6-hexanediol and/or 2-methyl-1,5-pentanediol.

The viscosity number of polyesters whose use is preferred according to the invention is generally in the range from 50 to 220, preferably from 8 to 160 (measured in 0.5% strength by weight solution in a phenol/o-dichlorobenzene mixture in a ratio by weight of 1:1 at 25°C) in accordance with ISO 1628.

Particular preference is given to polyesters whose carboxy end group content is up to 100 meq/kg of polyester, preferably up to 50 meq/kg of polyester and in particular up to 40 meq/kg of polyester. Polyesters of this type may be prepared, for example, by the process of DE-A 44 01 055. The carboxy end group content is usually determined by titration methods (e.g. potentiometry).

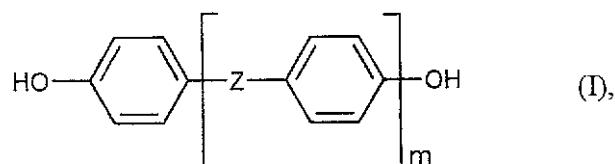
If polyester mixtures are used, the moulding compositions comprise a mixture composed of polyesters additionally including polyesters which differ from PBT, an example being polyethylene terephthalate (PET).

It is also advantageous to use recycled materials, such as PA recyclates or PET recyclates (also termed scrap PET), if appropriate mixed with polyalkylene terephthalates, such as PBT.

Recycled materials are generally:

- 1) those known as post-industrial recycled materials: these are production wastes during polycondensation or during processing, e.g. sprues from injection moulding, start-up material from injection moulding or extrusion, or edge trims from extruded sheets or foils.
- 2) post-consumer recycled materials: these are plastic items which are collected and treated after utilization by the end consumer. Blow-moulded PET bottles for mineral water, soft drinks and juices are easily the predominant items in terms of quantity.

Both types of recycled material may be used either as ground material or in the form of pellets. In the latter case, the crude recycled materials are separated and purified and then melted and pelletized using an extruder. This usually facilitates handling and free flow, and metering for further steps in processing.


The recycled materials used may be either pelletized or in the form of regrind. The edge length should not be more than 10 mm, preferably less than 8 mm.

Because polyesters undergo hydrolytic cleavage during processing (due to traces of moisture) it is advisable to predry the recycled material. The residual moisture content after drying is preferably < 0.2%, in particular < 0.05%.

Another group that may be mentioned of polyesters whose use is preferred is that of fully aromatic polyesters derived from aromatic dicarboxylic acids and aromatic dihydroxy compounds.

Suitable aromatic dicarboxylic acids are the compounds previously mentioned for the polyalkylene terephthalates. The mixtures preferably used are composed of from 5 to 100 mol% of isophthalic acid and from 0 to 95 mol% of terephthalic acid, in particular from about 50 to about 80% of terephthalic acid and from 20 to about 50% of isophthalic acid.

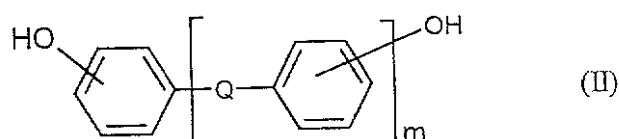
The aromatic dihydroxy compounds preferably have the general formula (I)

where

Z is an alkylene or cycloalkylene group having up to 8 carbon atoms, an arylene group having up to 12 carbon atoms, a carbonyl group, a sulphonyl group, an oxygen or sulphur atom, or a chemical bond, and where

m is from 0 to 2.

The phenylene groups of the compounds may also have substitution by C₁-C₆-alkyl or -alkoxy groups and fluorine, chlorine or bromine.


Examples of parent compounds for these compounds are dihydroxybiphenyl, di(hydroxyphenyl)alkane, di(hydroxyphenyl)cycloalkane, di(hydroxyphenyl) sulphide, di(hydroxyphenyl) ether, di(hydroxyphenyl) ketone, di(hydroxyphenyl) sulphoxide, α,α' -di(hydroxyphenyl)dialkylbenzene, di(hydroxyphenyl) sulphone, di(hydroxybenzoyl)benzene, resorcinol, and hydroquinone, and also the ring-alkylated and ring-halogenated derivatives of these.

Among these, preference is given to 4,4'-dihydroxybiphenyl, 2,4-di(4'-hydroxyphenyl)-2-methylbutane, α,α' -di(4-hydroxyphenyl)-p-diisopropylbenzene, 2,2-di(3'-methyl-4'-hydroxyphenyl)propane, and 2,2-di(3'-chloro-4'-hydroxyphenyl)propane, and in particular to 2,2-di(4'-hydroxyphenyl)propane, 2,2-di(3',5-dichlorodihydroxyphenyl)propane, 1,1-di(4'-hydroxyphenyl)cyclohexane, 3,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenyl sulphone and 2,2-di(3',5'-dimethyl-4'-hydroxyphenyl)propane and mixtures of these.

It is, of course, also possible to use mixtures of polyalkylene terephthalates and fully aromatic polyesters. These generally comprise from 20 to 98% by weight of the polyalkylene terephthalate and from 2 to 80% by weight of the fully aromatic polyester.

It is, of course, also possible to use polyester block copolymers, such as copolyetheresters. Products of this type are known and are described in the literature, e.g. in US-A 3 651 014. Corresponding products are also available commercially, e.g. Hytrel[®] (DuPont).

According to the invention, materials whose use is preferred as polyesters also include halogen-free polycarbonates. Examples of suitable halogen-free polycarbonates are those based on diphenols of the general formula (II)

where

Q is a single bond, a C₁-C₈-alkylene, C₂-C₃-alkylidene, C₃-C₆-cycloalkylidene, C₆-C₁₂-arylene group, or -O-, -S- or -SO₂-, and m is a whole number from 0 to 2.

The phenylene radicals of the diphenols may also have substituents, such as C₁-C₆-alkyl or C₁-C₆-alkoxy.

Examples of preferred diphenols of the formula are hydroquinone, resorcinol, 4,4'-di-hydroxybiphenyl, 2,2-bis(4-hydroxyphenyl)propane, 2,4-bis(4-hydroxyphenyl)-2-methylbutane and 1,1-bis(4-hydroxyphenyl)cyclohexane. Particular preference is given to 2,2-bis(4-hydroxyphenyl)propane and 1,1-bis(4-hydroxyphenyl)cyclohexane, and also to 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane.

Either homopolycarbonates or copolycarbonates are suitable as component A, and preference is given to the copolycarbonates of bisphenol A, as well as to bisphenol A homopolymer.

Suitable polycarbonates may be branched in a known manner, specifically and preferably by incorporating from 0.05 to 2.0 mol%, based on the total of the diphenols used, of at least trifunctional compounds, especially those having three or more phenolic OH groups.

Polycarbonates which have proven particularly suitable have relative viscosities η_{rel} of from 1.10 to 1.50, in particular from 1.25 to 1.40. This corresponds to an average molar mass M_w (weight-average) of from 10 000 to 200 000 g/mol, preferably from 20 000 to 80 000 g/mol.

The diphenols of the general formula are known or can be prepared by known processes.

The polycarbonates may, for example, be prepared by reacting the diphenols with phosgene in the interfacial process, or with phosgene in the homogeneous-phase process (known as the pyridine process), and in each case the desired molecular weight may be achieved in a known manner by using an appropriate amount of known chain terminators. (In relation to polydiorganosiloxane-containing polycarbonates see, for example, DE-A 33 34 782.)

Examples of suitable chain terminators are phenol, p-tert-butylphenol, or else long-chain alkylphenols, such as 4-(1,3-tetramethylbutyl)phenol as in DE-A 28 42 005, or monoalkylphenols, or dialkylphenols with a total of from 8 to 20 carbon atoms in the alkyl substituents as in DE-A-35 06 472, such as p-nonylphenol, 3,5-di-tert-butylphenol, p-tert-octylphenol, p-dodecylphenol, 2-(3,5-dimethylheptyl)phenol and 4-(3,5-dimethylheptyl)phenol.

For the purposes of the present invention, halogen-free polycarbonates are polycarbonates composed of halogen-free diphenols, of halogen-free chain terminators and, if used, halogen-free branching agents, where the content of subordinate amounts at the ppm level of hydrolyzable chlorine, resulting, for example, from the preparation of the polycarbonates with phosgene in the interfacial process, is not regarded as meriting the term halogen-containing for the purposes of the invention. Polycarbonates of this type with contents of hydrolyzable chlorine at the ppm level are halogen-free polycarbonates for the purposes of the present invention.

Other suitable thermoplastic polymers that may be mentioned are amorphous polyester carbonates, where during the preparation process phosgene has been replaced by aromatic dicarboxylic acid units, such as isophthalic acid and/or terephthalic acid units. Reference may be made at this point to EP-A 0 711 810 for further details.

EP-A 365 916 describes other suitable copolycarbonates having cycloalkyl radicals as monomer units.

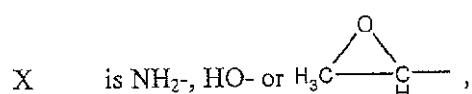
It is also possible for bisphenol A to be replaced by bisphenol TMC. Polycarbonates of this type are obtainable from Bayer AG with the trademark APEC HT®.

In another preferred embodiment of the present invention, the polymer moulding compositions comprise from 0.001 to 75 parts by weight, preferably from 10 to 70 parts by weight, particularly preferably from 20 to 65 parts by weight, with particular preference from 30 to 65 parts by weight, of a filler or reinforcing material.

The filler or reinforcing material used can also comprise a mixture composed of two or more different fillers and/or reinforcing materials, for example based on talc, or mica, silicate, quartz, titanium dioxide, wollastonite, kaolin, amorphous silicas, magnesium carbonate, chalk, feldspar, barium sulphate, glass beads and/or fibrous fillers and/or reinforcing materials based on carbon fibres and/or glass fibres. It is preferable to use mineral particulate fillers based on talc, mica, silicate, quartz, titanium dioxide, wollastonite, kaolin, amorphous silicas, magnesium carbonate, chalk, feldspar, barium sulphate and/or glass fibres. It is particularly preferable to use mineral particulate fillers based on talc, wollastonite, kaolin and/or glass fibres, very particular preference being given to glass fibres.

Particular preference is moreover also given to the use of acicular mineral fillers. According to the invention, the term acicular mineral fillers means a mineral filler having pronounced acicular character. An example that may be mentioned is acicular wollastonites. The length: diameter ratio of the mineral is preferably from 2:1 to 35:1, particularly preferably from 3:1 to 19:1, with particular preference from 4:1 to 12:1. The average particle size, determined using a CILAS

GRANULOMETER, of the inventive acicular minerals is preferably smaller than 20 μm , particularly preferably smaller than 15 μm , with particular preference smaller than 10 μm .


The filler and/or reinforcing material can, if appropriate, have been surface-modified, for example with a coupling agent or coupling-agent system, for example based on silane. However, this pre-treatment is not essential. However, in particular when glass fibres are used it is also possible to use polymer dispersions, film-formers, branching agents and/or glass-fibre-processing aids, in addition to silanes.

The glass fibres whose use is particularly preferred according to the invention are added in the form of continuous-filament fibres or in the form of chopped or ground glass fibres, their fibre diameter generally being from 7 to 18 μm , preferably from 9 to 15 μm . The fibres can have been provided with a suitable size system and with a coupling agent or coupling-agent system, for example based on silane.

Coupling agents based on silane and commonly used for the pre-treatment are silane compounds, preferably silane compounds of the general formula (III)

in which

q is a whole number from 2 to 10, preferably from 3 to 4,

r is a whole number from 1 to 5, preferably from 1 to 2 and

k is a whole number from 1 to 3, preferably 1.

Coupling agents to which further preference is given are silane compounds from the group of aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane, and also the corresponding silanes which have a glycidyl group as substituent X.

The amounts generally used of the silane compounds for surface coating for modification of the fillers is from 0.05 to 2% by weight, preferably from 0.25 to 1.5% by weight and in particular from 0.5 to 1% by weight, based on the mineral filler.

The d_{97} or d_{50} value of the particulate fillers can, as a result of the processing to give the

moulding composition or the moulding, be smaller in the moulding composition or in the moulding than in the fillers originally used. The length distributions of the glass fibres can, as a result of the processing to give the moulding composition or to give the moulding, be shorter in the moulding composition or in the moulding.

For clarification, it should be noted that the scope of the invention comprises any desired combinations of all of the definitions and parameters listed above in general terms or in preferred ranges.

Example

Brief description of the drawings

The invention is described purely by way of example below, using the attached figures:

Fig. 1 shows a section of a transverse-member module according to the invention partially overmoulded with plastic which extends over the structure 3 entirely composed of plastic in a ribbed design as far as the sheet-metal profile 2, which it likewise partially surrounds. The structure of the sheet-metal profile 2 overmoulded with plastic has securing points 4 for the steering column and securing points 5 for the front wall of the vehicle bodywork.

Fig. 2 shows another view of the transverse-member module of the invention, composed of steering-column retainer and metal tube.

Fig. 3 illustrates the sheet-metal profile of the steering-column retainer without plastics structure.

The perforations in the sheet-metal profile are not shown (Figure 3), and nor are the areas of plastic moulded over and through these and moulded over the edges (Figures 1 and 2).

Methods for carrying out the invention

The metal tube generally indicated by reference numeral 1 in the transverse-member module is shown only partially in **Figure 1**, and without any specific shaping of the metal tube or of any individual link elements. However, it should be clear that the specific geometry is intended only as an example, to the extent that this is not apparent from the explanation below.

The section shown from a transverse-member module of the invention, composed of steering-column retainer and metal tube, serves to receive the instrument panel of a vehicle, and is linked to the A-pillars (not shown) of a motor vehicle during assembly. The transverse-member module comprises a metal tube which is seamless or which has a longitudinal weld seam, preferably a steel tube, the external dimensions of which have narrow tolerances. The metal tube has preferably been pinched at both of its ends. There are holes located at these pinched ends and serving as screw-on lugs for the A-pillars. The location of the holes is therefore in that region of the metal tube which is used by the transverse member to produce a rigid connection between the A-pillars. In order in particular also to permit absorption of large forces arising in the event of a side impact, the design of the metal tube is moreover preferably straight, i.e. the metal tube has no curved sections where bending deformation can occur when pressure forces are introduced into the metal tube by way of

the pinched ends.

During the production of the transverse member, the metal tube is overmoulded with plastic in an injection-moulding plant. It is preferable here to use fibre-reinforced plastic, e.g. glass-fibre-filled plastic. The material PA GF30 (polyamide with 30% by weight glass fibre content) has proven particularly suitable here. The overmoulded plastic can cover the entire metal tube, or else there can be regions where it has no overmoulded plastic. If the metal tube is not to be completely overmoulded, there are particular requirements placed upon the dimensional accuracy of the moulds, and also of the metal tube, in the injection-moulding plant, and the metal tube should therefore have narrow tolerances with respect to the external dimensions.

The advantage of using plastic to overmould the metal tube is that sites where high strength and stiffness is demanded can be realized via the metal tube whereas sites serving merely for linking of components described in more detail below can be moulded on, from plastic. In the same way it is also possible to achieve further differentiation within the plastic used. By way of example, it would be possible to use a fibre-reinforced and in particular glass-fibre-filled plastic only at those sites where in turn increased mechanical requirements are placed upon the plastic, whereas conventional plastic without fibre reinforcement can be used in other regions. In the case of the transverse-member-module part shown in Figure 1, the only section shown is the section securely connected to the steering-column retainer. All of the plastics parts here can be moulded on in a single manufacturing step.

DE 10 2005 004 605 A1 discloses alternative embodiments, and also further elements, and also production methods for the metal tube of the transverse member.

In contrast to solutions consisting entirely of plastic, the plastics-metal-composite solution described in the present invention for the transverse-member module in the form of metal tube and steering-column retainer permits achievement of first-mode natural frequencies >36 Hz in the installed condition, these otherwise being achievable only by using designs which are composed of metal and are therefore markedly heavier.

The structure of the transverse-member module composed of metal tube and steering-column retainer, both using hybrid technology, preferably with plastics ribbing, is designed so as also to guarantee a simple, robust production process.

1. Transverse-member module for receiving the instrument panel of a motor vehicle comprising an at least partially plastics-surrounded metal tube and a simply moulded sheet-metal profile functioning as steering-column retainer and designed and placed in such a way that it, in the composite with moulded-on plastic, firstly gives a stiff connection between steering column and front wall and secondly has firm connection to the metal tube by way of a structure consisting entirely of plastic.
2. Transverse-member module according to Claim 1, characterized in that the plastics structure has reinforcing ribs.
3. Transverse-member module according to Claim 2, characterized in that the reinforcing ribs have been securely connected to the sheet-metal profile at discrete connection sites of their perforations in the sheet-metal profile, where the plastic extends through the perforations and extends over the surfaces of the perforations.
4. Transverse-member module according to Claims 1 to 3, characterized in that thermoplastic polymers are used as plastic.
5. Transverse-member module according to Claim 4, characterized in that thermoplastic polymers from the group of the polyamides, vinylaromatic polymers, polyesters, ASA polymers, ABS polymers, SAN polymers, POM, PPE, polyarylene ether sulphones, polypropylene or blends of these are used.
6. Transverse-member module according to Claim 4 or 5, characterized in that the thermoplastic polymers comprise from 0.001 to 75 parts by weight of a filler or reinforcing material.
7. Transverse-member module according to any of Claims 1 to 6, characterized in that the sheet-metal profile and/or the metal tube has been coated with adhesion promoter or adhesive.
8. Transverse-member module according to any of Claims 1 to 7, characterized in that, in a separate process step, only after the overmoulding process, the sheet-metal profile is connected to the plastics structure via hot-riveting or other types of riveting, clinching, adhesive bonding, or screw-thread methods.
9. Process for influencing the intrinsic vibration behaviour of the instrument-panel support in the installed condition to give a first-mode natural frequency >36 Hz, characterized in that,

in motor vehicles, a transverse-member module is attached under the instrument panel, comprising an at least partially plastics-surrounded metal tube and a simply moulded sheet-metal profile functioning as steering-column retainer and designed and placed in such a way that it, in the composite with moulded-on plastic, firstly gives a stiff connection between steering column and front wall and secondly has firm connection to the metal tube by way of a structure consisting entirely of plastic.

10. Use of a transverse-member module for receiving the instrument panel of a motor vehicle, comprising an at least partially plastics-surrounded metal tube and a simply moulded sheet-metal profile functioning as steering-column retainer and designed and placed in such a way that it, in the composite with moulded-on plastic, firstly gives a stiff connection between steering column and front wall and secondly has firm connection to the metal tube by way of a structure consisting entirely of plastic, for influencing the intrinsic vibration behaviour of the instrument-panel support in the installed condition to give a first-mode natural frequency >36 Hz.

1 Abstract

The present invention relates to a transverse-member module for receiving the instrument panel and reinforcing the bodywork via direct connection of the two A-pillars of a motor vehicle, composed of a transverse member with a steering-column retainer, where the transverse-member module, i.e. not only the transverse member but also the steering-column retainer, are produced using a metal-plastic-composite design (hybrid technology).

2 Representative Drawing

Fig. 1

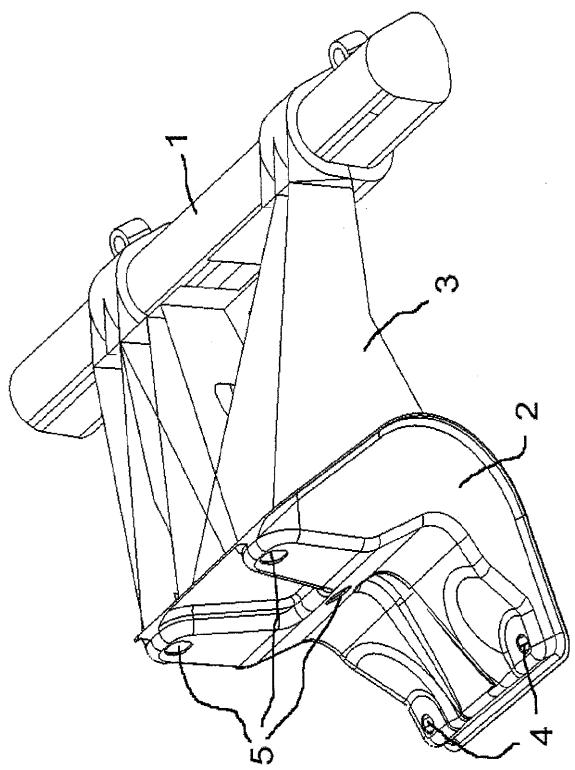


Fig. 1

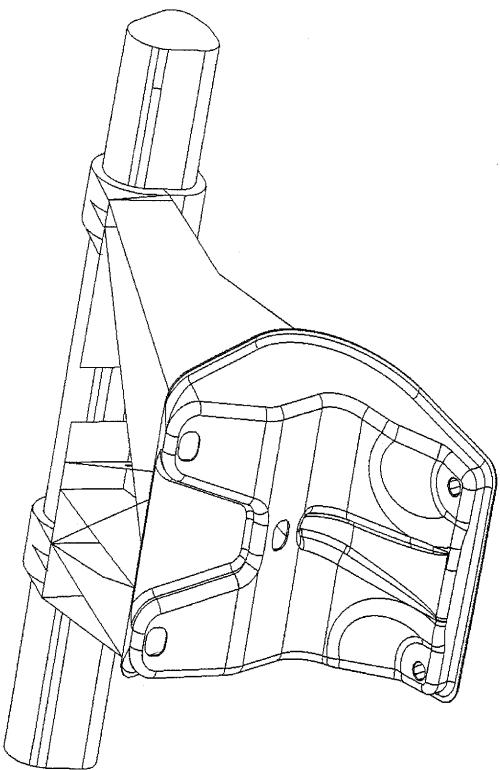


Fig. 2

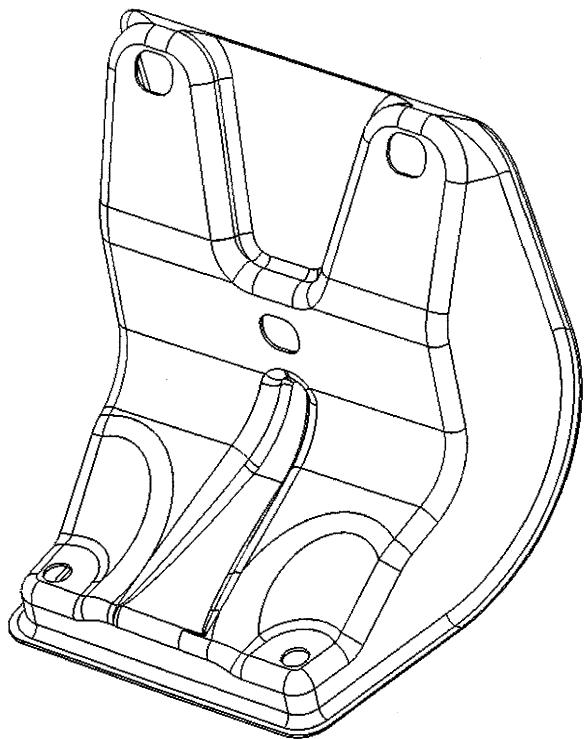


Fig. 3