UK Patent Application ..GB .,2503590

(13)A

(43)Date of A Publication 01.01.2014
(21) Application No: 1314586.7 (51) INT CL:
GOG6F 9/445 (2006.01) GOG6F 9/45 (2006.01)
(22) Date of Filing: 14.08.2013

(71) Applicant(s):
Micro Focus IP Development Ltd
The Lawn, 22-30 Old Bath Road, NEWBURY,
Berkshire, RG14 1QN, United Kingdom

(72) Inventor(s):
Stephen Gennard

(74) Agent and/or Address for Service:
EIP
Fairfax House, 15 Fulwood Place, LONDON,
WC1V 6HU, United Kingdom

(56) Documents Cited:
US 20060225033 A1
US 20030182460 A1

US 20050172299 A1

(58) Field of Search:
INT CL GO6F
Other: ONLINE: EPODOC & WPI; TXTE; XPI3E,
XPIPCOM and XPLNCS; Internet.

(54) Title of the Invention: Interoperability unit
Abstract Title: Interoperability bridge unit for dynamic linking of executable library functions to an

application using platform invoke

(57) An application program comprising executable code is deployed in an RTE (Runtime Environment) comprising an
interoperability bridge unit 405. A reference to a function, originally instructed in a system-independent

programming language, is received from the executable code 450 and the reference resolved to determine the
function name. The executable code is derived from an intermediate language code, e.g. bytecode. If the function
name is located in an export portion of an executable library 465 registered with the RTE, typically a DLL (Dynamic
Link Library) then program code, comprising a platform invoke statement referencing the library and function name,
is dynamically generated, prepared and executed to invoke the function. A function code detector 415 receives the
reference and a function locator resolves the reference to determine the function name. A code generator 435
dynamically generates program code 445 comprising the platform invoke statement for the function and this code is
passed to a code implementer 455 which prepares the executable code. A static arrangement is also disclosed in
which source code is parsed by a compiler. Program code containing a platform invoke statement for a function can
then be generated and compiled to intermediate language code before run time.

400

aN

FIG. 4

vV 069€09¢ 99

.......

o* o,

. o
o -

-
*

117

PROG 1:
VAR 1,
PROC 2:

> CALL X.

<
«

\4

110

140

1010101010111110101
0101010101011011111
1010101000000101010

1010101010101010000
0000111111001010101
1

P
«

n
[

150

170

160

FIG. 1

100

217

210

IL
Ary

Idc.i4.0

call class [X17]:X1(...)

\ 4

j 200
PROG 1: <«
VAR 1,
PROC 2:
CALL X.
225
240
v
< 230 %
/ 1010101010111110101
0101010101011011111 |250
1010101000000101010 |)
»| 1010101010101010000
0000111111001010101
1
\//_
| |
| I |260
| | y
200 280
= 282 | v
L SN
284 e 270

FIG. 2

37

301
302
305
306
307
308
309

310
311

390

DEC 1:
PROGRAM = MBSTATIC.

PROC 1:
CALL “MessageBox” USING
0 BY VALUE,
“Hello World” BY REFERENCE,
“TITLE” BY REFERENCE,
2 BY REFERENCE
END CALL

END

352

FIG. 3A

301
302
303
305
306
307
308
309

310
311

390

DEC 1:
PROGRAM = MBDYNAMIC1.
VAR function_name

PROC 1:
CALL function_name USING
0 BY VALUE,
“Hello World” BY REFERENCE,
“TITLE” BY REFERENCE,
2 BY REFERENCE
END CALL

END

354

FIG. 3B

4/7

301
302
303
304
305
306
307
308
309

310
311

390

DEC 1:

PROGRAM = MBDYNAMIC2.
VAR function_name

VAR P1, P2, P3, P4.

PROC 1:

CALL function_name USING
P1 BY VALUE,
P2 BY REFERENCE,
P3 BY REFERENCE,
P4 BY REFERENCE

END CALL

END

356

FIG. 3C

N
o

57

400

N
o

NN

N
[$)]

N
[$)]

A

N
(&)

\ 4

\ 4

\ 4

FIG. 4

6/7

510
Source code J

500

515
4 1/
Parse source code for
ALL stat t
L C statemen 500

v

(p
.| Analyse CALL statement

and determine target

\.

Target

located?

535

Generate platform invoke
statement to implement
target

J \ 4 j

Generate code with
runtime reference

Use any generated
intermediate code in
compilation of source
code to intermediate
code

FIG. 5

\ 4

Intermediate
Code J

717

610
Executable Code |/

615
Receive reference for
target function from
executable code
620

\ 4

Locate target

Target

600

630

Dynamically generate

Located?

640

Throw Exception

645

End

code in memory

\ 4

635
v Y,
Implement generated
code

A

FIG. 6

10

15

20

25

30

INTEROPERABILITY UNIT

Technical Field

The present invention relates to one or more of preparation and deployment of
computer program code upon a computing system. In particular, the present invention
relates to improvements in how a given set of computer program code is translated into

control instructions for a given computing system.

Background

There is often an inherent tension in computing technology between the pace of
change of computer architectures and the need for stable, reliable solutions that operate
for decades. Before personal computers entered the market in the 1980s and 1990s, the
concept of “computing” as a technical field was associated with large-scale, centralised
“mainframe” computing systems. These systems were often cabinet or room-sized and
were used for mission-critical tasks in large organisations, scientific institutions and
government. In the 1960s and 1970s many mainframe computing systems were
manufactured and supplied by International Business Machines Corporation (IBM®).
For example, well-known systems included the IBM 700/7000 series, and those based
on the System/360 and System/370 computing architectures. Many features that are
now taken for granted, such as transistor then complementary metal-oxide-
semiconductor (CMOS) central processing units (CPUs), 8-bit bytes, 32-bit words,
hardware floating point support and 32-bit words were introduced slowly over decades
in these systems.

In parallel with the development of modern computing architectures based on
mainframe innovations, there was a need to better control computing operations.
Although difficult to comprehend in the modern era, the System/360 computing
architecture was one of the first computers in wide use to include dedicated hardware
provisions for the use of an operating system. Before that time, mainframe systems
required computer program code to be manually initiated, often on punched cards. Early
mainframe systems were controlled and programmed using system-specific machine
code. Over time, mnemonic assembly languages developed, which added support for

macro instructions. This then led into the development of the first system-independent

10

15

20

25

30

programming languages, languages such as FORTRAN, LISP, COBOL and ALGOL
60 (so-called “third generation languages”). Grace Hopper, an early computing pioneer,
developed the first compiler and later the COBOL language. Much of the work in this
era paved for way for technical aspects of digital computing that are considered
fundamental today, such as subroutines, formula translation, relative addressing, link
loading, code optimization and symbolic manipulation. System-independent
programming languages, and the compiler technology that allowed system-independent
program code to be deployed as machine code to specific hardware architectures,
greatly improved the portability of computer programs, benefiting the control of
computing devices regardless of specific program content or function. It also enabled a
computer program to continue to control a computer system as a computer architecture
evolved. Hardware features could be added to the computer system or architecture
without requiring a rewrite of computer program code.

The success of system-independent programming languages brings its own set
of technical problems. As computer programs could survive upheaval in physical
architectures, resources could be invested in building stable, mission-critical computing
functions. These functions could be designed to be operational for decades, human
lifetimes even. For example, over the years many control, data recordal and file
handling functions were developed, embodied in computer program code and became
the foundation of modern engineering and production systems. As more functionality
was added, this was often achieved by appending additional computer program code to
existing computer programs. At the turn of the modern Internet era in the twenty-first
century, many organisations were reliant on computer program code originally written
and developed in the 1960s and 1970s.

As hardware developments have accumulated and incorporated global
networking aspects, modern computer systems are required to operate in an
environment quite different from the early eras of mainframe computing. However, as
described above, organisations, entities and control systems are deeply reliant on legacy
computer program code in programming languages that date from these earlier eras.
Migration is one option but may not be entirely possible. Legacy computer programs
can run to millions of lines of computer program code, contributed by thousands of

different programmers over tens of years. Early system-independent computing

10

15

20

25

30

languages were often sequential in nature, making it difficult to identify and extract
individual functions and often requiring a so-called “big bang” migration where all
computing functions are transferred to a new implementation at once. Even though they
are often rigorously tested, these tests cannot cover all of the complexity of the legacy
computer program. For implementations in hospitals, civil infrastructure, and aviation,
as just a few examples, the risk of failure may be too great to attempt migration. This
then requires aligning the technical benefits of modern hardware systems with computer

program code that may pre-date the implementing computer engineers.

Summa

Aspects of the present invention are set out in the appended claims.
Further features and advantages of the invention will become apparent from the
following description of preferred embodiments of the invention, given by way of

example only, which is made with reference to the accompanying drawings.

Brief Description of the Drawings

Figure 1 is a schematic diagram showing a first set of system components for
controlling a mainframe computing device according to an example;

Figure 2 is a schematic diagram showing a second set of system components for
controlling a computing device according to an example;

Figures 3A to 3C are schematic diagrams showing examples of computer
program code in a system-independent programming language;

Figure 4 is a schematic diagram showing components of an interoperability
bridge according to an example;

Figure 5 is a flow diagram showing a first method of linking managed and native
computer program code according to an example; and

Figure 6 is a flow diagram showing a second method of linking managed and

native computer program code according to an example.

10

15

20

25

30

Detailed Description

Certain examples described herein provide technical improvements when
deploying legacy computer programs. For example, computer program code that was
originally written in a computer programming language for use with legacy mainframe
computer systems, such as those based on the IBM System/360 computing architecture,
may be optimised for use with modern computing architectures. In this sense the
optimisation is independent of clever programming techniques in the computer program
itself; rather it is provided by adapting the control instructions that are used to operate
the underlying computer hardware, i.e. a more efficient set of control instructions are
provided that are independent of high-level program function. Optimisation may
involve improving the speed at which a computer implements a program for a fixed
CPU speed and/or making more efficient use of working memory, for example by
reducing the amount of memory used and/or optimising memory read/write operations.
Hence, the examples described herein make a computing system implementing any
machine code that results from said examples work better, faster or more reliably in
terms of its performance, the computing system is better controlled to provide
measurable, deep-level improvements.

It is also possible to make use of technical functionality that was never available
on legacy mainframe systems, for example modern Internet and networking functions
that may be employed and linked in a suitable runtime environment. These advantages
may be realised without need to alter the original legacy computer program code. This
is of benefit in mission critical computing systems, for example in health-care or
transportation, where it is not possible to modify the computer program code for fear of
failure or error. As the original legacy program is not modified, a technical contribution
provided by certain described examples is not provided within the computer program
as such; indeed in mission critical computing systems functionality of the computer
program code must not change. The examples do not relate to a better way to write a
program; rather they provide a measurable improvement as compared with fundamental
programming conventions.

Certain examples described herein are arranged to be implemented on one or

more computing systems, for example a system comprising one or more processors and

10

15

20

25

30

a memory, such as a random access memory. The examples described herein do not
comprise a method that is implemented manually or in the mind; indeed this is

impossible.

Native Environment

Figure 1 shows a first set of system components 100 for controlling a mainframe
computer system 160 according to an example. Source code 110 comprises computer
program code for a computer program written in a system-independent programming
language, e.g. data in the form of command statements and/or variable declarations.
The language may comprise one of FORTRAN, LISP, COBOL, PL/I and ALGOL 60.
Source code 110 may be retrieved from a computer-readable storage medium 120.
Source code 110 is typically human-readable. To control the mainframe computer
system 160, the source code 110 must be converted to a machine-readable version. This
is performed by a compiler unit 130 of a computer device 140. The compiler unit 130
takes source code 110 and converts it into object code 150. The object code comprises
a version of the source code 110 that may be read and executed by mainframe computer
system 160. The command statements and/or variable declarations in the source code
110 are converted into control instructions specific to the mainframe computer system
160, i.c. instructions that may be interpreted by the specific hardware components of
the mainframe computer system. The object code 150 is typically not human-readable,
¢.g. Figure 1 shows a binary version of the control instructions. It is sometimes referred
to as machine or executable code. In this case, the object code 150 is stored on a
computer-readable storage medium 170. When the computer program is to be
implemented the object code 150 is loaded from the computer-readable storage medium
170 into a memory 180 of the mainframe computer system 160. The memory 180 is
typically a random access memory. During execution, control instructions as defined in
the object code 150 are processed by one or more processors 190 of the mainframe
computer system 160. Each processor set typically has a different set of suitable control
instructions. An instruction may control operations such as, among others, load, jump,
and arithmetic logic unit commands.

In mainframe computer systems from the 1960s, 70s and 80s, the memory and

the one or more processors may be limited when compared to modern computer

10

15

20

25

30

systems. For example, a state-of-the-art system used by the National Aeronautics and
Space Administration (NASA) and installed in 1969 had a central processing unit cycle
time of 60 nanoseconds (e.g. a speed of 16MHz) and a memory cycle time of 780
nanoseconds (e.g. around 1.3MHz). The memory size was 2MB. Source code 110 may

be representative of programs written to run on these mainframe systems.

Managed Environment

The arrangement of Figure 1 may be referred to as a native environment,
wherein source code is compiled to native code, i.e. object code 150 for the mainframe
computer system 160. In contrast, Figure 2 shows an arrangement that may be referred
to as a managed environment. In this case, source code 210 is compiled by a first
compiler unit 230 of a first computer device 240. The first compiler unit 230 converts
the source code 210 to intermediate code 225. Intermediate code is system-independent
(e.g. processor and computer architecture independent). It is of a lower level than source
code 210, i.e. its instructions have a closer mapping to system-specific instruction sets.
Intermediate code 225 may comprise common intermediate language (CIL) code, as
defined by the common language infrastructure (CLI) standard and implemented as part
of a Microsoft® .NET or Mono framework, or Java® bytecode. Intermediate code 225
in the form of common intermediate language code may be assembled into a form of
bytecode called CLI assembly. This may be performed by the first compiler unit 230.
In Figure 2 the intermediate code 225 is further compiled by a second compiler unit 235
of a second computer device 245 into object code 250. The first and second computer
devices and/or the first and second compiler units may, in some cases, form part of the
same device or unit. The second compiler unit 235 may comprise a just-in-time and/or
ahead-of-time compiler unit, e.g. a Java virtual machine or a common language runtime
(CLR). In the former case, the intermediate code 225 is converted into object code 250
at runtime, this may occur in a piece-meal or line-by-line (i.e. interpreted) fashion; in
the latter case, the intermediate code 225 is converted into object code 250 before
execution. In this latter case, the object code 250 may be stored in a computer-readable
medium 270 before execution. In both cases, the object code is similar to object code
150 and at least a portion of object code 284 is loaded into a memory 280 of computer

system 260 for execution by at least one processor 290.

10

15

20

25

30

In Figure 2, computer system 260 may comprise a modern server computing
device (i.e. modern relative to the mainframe computer system 160). By compiling to
intermediate code 225, source code 210 may be optimised to make use of advanced
features of the computer system 260. For example, one or more of security, threading
and memory management may be improved by making use of run-time management
services 282. Run-time management services 282 are implemented by system libraries
that comprise executable code — they may form part of an execution or runtime
environment. This executable code is loaded into memory 280 along with at least a
portion of the object code 284 during execution. In one case, run-time management
services 282 may comprise the second compiler unit 235 in the form of a just-in-time
compiler, wherein the second computer device 245 comprises the computer system 260
(as indicated by the dashed line). In this case, the second compiler unit 235 may
comprise a virtual machine in the form of a common language runtime in the .NET
framework or a Java virtual machine. The virtual machine may then handle exceptions,
garbage collection (i.c. efficient use of space in memory 280), variable type safety (i.c.
a discrepancy between data types) and thread management (i.e. control of machine code
being processed by the at least one processor 290). These functions may not be available
on mainframe system 160, or at least may be implemented in an inefficient manner due
to the age of the hardware of the mainframe system 160. Even in a case where
intermediate code 225 is compiled ahead-of-time to object code 250, the same functions
of the run-time management services 282 may be implemented by suitable code
conversion from intermediate code to object code (e.g. a given intermediate code
statement may be compiled in a particular manner for a particular server computing
device to make use of hardware functionality of said device using appropriate machine
code functions).

Certain embodiments described herein may be implemented in a managed
environment as described in relation to Figure 2. In one case, source code may be
compiled to intermediate code for execution by a just-in-time compiler (e.g. a virtual
machine) within a runtime environment. In another case, intermediate code may be
compiled ahead of time. In both case, the output may be referred to as executable code,
as the code may be executed directly or by way of the just-in-time compiler.

Compilation may be performed on a first computing device for execution within a

10

15

20

25

30

runtime environment installed on a second computing device, wherein compilation
prepares control instructions based on the source code that may make use of functions
provided by the runtime environment. As such compilation is described as a
preparation step for subsequent deployment into a runtime environment that generates

a concrete output — executable code to control a computing device.

Function Call Command Statement

Figures 3A to 3C show three different examples of at least a portion of computer
program code. The computer program code may comprise command statements and/or
variable declarations that conform to a programming language specification, i.e. source
code written in a programming language. The programming language may be human-
readable and comprise one of FORTRAN, LISP, COBOL, PL/I and ALGOL 60.

Figure 3A shows a first portion 352 of computer program code that comprises
a “CALL” command statement 306. The “CALL” command statement runs a
subroutine specified by a function name that follows the command statement. For
example, in Figure 3A the function name is set by a static string variable with a value
“MessageBox”. Hence, the “CALL” command statement 306 passes programmatic
control to another portion of computer program code that implements a function
“MessageBox”. Lines 307 to 310 of the first portion 352 of Figure 3A specify
parameters that are passed to the function. These parameters follow a “USING”
statement. The manner in which the parameter is passed to the function is also provided,
¢.g. either by value or by reference in the present example. Line 311 ends the “CALL”
command statement 306.

In a comparative example, a subroutine that implements the function
“MessageBox” is declared and written in another portion of computer program code.
This other portion of computer program code and the first portion 352 are then compiled
to native (i.e. object) code and then a command line linking tool is used to link the two
portions.

Figure 3B shows a second portion 354 of computer program code that comprises
a “CALL” command statement 306 that references a dynamic rather than static function
name. For example, in Figure 3B there are no punctuation marks around the string

following the “CALL” portion of the statement. This indicates that the string represents

10

15

20

25

30

a variable and the contents of the variable may vary during execution on at least one
processor (i.e. at runtime). For example, line 303 of the second portion 354 declares
“function_name” as a string variable.

Figure 3C shows a third portion 356 of computer program code that comprises
a “CALL” command statement 306 that references a dynamic function name and that
passes dynamic parameters to the function, i.e. parameter values of parameters P1, P2,
P3, and P4 are determined at runtime rather than at the time the third portion 356 was
written. The parameters P1 to P4 are declared as variables in line 304 and referenced in

lines 307 to 310.

When using a managed environment as shown in Figure 2, a command line
linking tool is not available. Further the referenced function may be compiled to object
code whereas the referencing code is compiled to intermediate code. It is thus not
possible to link the object code files as in the comparative example. Moreover, in the
examples of Figures 3B and 3C the function name is not known at the time of a first
compilation; the value of a function name variable is only set at runtime. Hence, it is
not possible to specify a file name for referenced code ahead of the execution of the
referencing code. There is thus a problem of linking managed and native code that is
compounded when function names are dynamic.

In certain examples, it may also be desirable to instruct the execution of
computer program code that has been written in a programming language that is
different from the source language of the referencing computer program code. For
example, source code written in one of FORTRAN, LISP, COBOL, PL/I and ALGOL
60 in past decades may need to use and/or interface with one or more functions written
in a more recently developed programming language such as C#, PHP or Java®. The
latter functions may relate to, for example, network functions in a protocol that did not
exist at the time the original source code was written.

In certain circumstances a system implemented by one or more portions of
computer program code may need to be ported from a native environment to a managed
environment, ¢.g. adapted from the environment of Figure 1 to the environment of
Figure 2. As described previously, this may be to take advantage of modern computer

architectures and infrastructures. Alternatively, an original mainframe computing

10

15

20

25

30

10

system may need to be decommissioned due to aging and/or failing hardware. In this
case it may not be possible to migrate portions of a system. For example, source code
associated with these portions may have dependencies on third party libraries that are
not supported within the managed environment. Alternatively, it may be too risky to
port a large system in one go — this could lead to an unacceptable chance of error in
mission critical applications such as hospitals or air traffic control systems.
Embodiments of the invention as discussed herein solve these problems by
providing at least one of an adapted compiler system and an adapted runtime
environment. These adapted systems enable an application program to be implemented
by a combination of managed code and native code without modifying an original set

of source code.

Interoperability Unit Example

Figure 4 shows a computer system 400 that comprises a memory 480
communicatively coupled to at least one processor 490. The memory 480 and the at
least one processor 490 may comprise the memory 280 and processor 280 as shown in
Figure 2. Figure 4 further shows an interoperability bridge unit 405 that forms part of a
runtime environment. The runtime environment supports execution of a first set of
executable code 450 by way of the at least one processor and the memory. The first set
of executable code 450 comprises managed code, i.¢. code derived from an intermediate
language. For example, it may comprise assembled CIL, the assembled CIL being
compiled from the third generation code shown in Figures 3A to 3C. The first set of
executable code 450 in Figure 4 is loaded from a computer readable storage medium,
in this case a hard disk drive 470. The interoperability bridge unit 405 may be
implemented by way of computer program code (e.g. compiled C# code) that is loaded
into memory 480 and executed by the at least one processor 490. The first set of
executable code 450 may be representative of an application program originally written
as source code 110, 210 or 352 to 356. The interoperability bridge unit 405 is arranged
to, when a first set of executable code is implemented in the runtime environment,
implement a second set of executable code for the computer system in the runtime
environment to provide a function instructed in the system-independent programming

language. The second set of executable code being may comprise code that is directly

10

15

20

25

30

11

compiled from computer program code written in the system-independent
programming language; for example, native or machine code derived from third
generation code. It may alternative comprise a function provided by a standard library.

The interoperability bridge unit 405 comprises a function call detector 415, a
function locator 425, a code generator 435 and a code implementer 455. The function
call detector 415 receives a reference to the function in the first set of executable code.
For example, as described in more detail below, during compilation of the first set of
executable code every “CALL” command statement may be replaced in the
intermediate language with a call to the function call detector 425. The call to the
function call detector 425 passes a call-convention parameter, a variable representing
the name of the function to “CALL” and any parameters that need to be passed to the
function. The value of the variable representing the name of the function to “CALL”
may be set at runtime in the cases of Figures 3B and 3C, i.c. a value is determined as
the first set of executable code is being processed by processor 490. The function call
detector 415 is communicatively coupled to the function locator 425. The function call
detector 415 passes at least the variable representing the name of the function to the
function locator 425. The function locator 425 resolves this variable to determine the
name of the function. This may comprise extracting a relevant portion of a string and
saving the string in memory. The function locator 425 is then arranged to determine
whether the name of the function is located in at least the export portions of the one or
more executable libraries 465 that have been loaded as part of the runtime environment.
For example, the function locator 425 may retrieve a list of dynamic link libraries that
have been loaded to implement the runtime environment and scan the export tables of
these libraries to determine whether they contain the resolved function name. These
dynamic link libraries may comprise system libraries, e¢.g. libraries that are supplied
with the runtime environment and pre-registered with the runtime environment, and/or
user-defined libraries, e.g. libraries that have been registered with the runtime
environment. A combination of one or more of these library types are referred to herein
as executable libraries. In one case registration may occur during an installation process.
It may comprise making an entry in a system registry and/or adding a file system
location to a PATH variable. In the latter case, all libraries within said file system

location may be taken as registered with the runtime environment when the runtime

10

15

20

25

30

12

environment is loaded on the computer system. In one case, one or more operating
system libraries are automatically registered on installation of the runtime environment.
In the case of a user-defined library, the second set of executable code may be loaded
as part of the runtime environment independently of a set of system libraries used to
implement the runtime environment, in this case the second set of executable code is
effectively added as additional user-defined or user-loaded library.

If the function locator 425 locates the name of the function in an export portion
of a particular executable library it passes this information, e.g. the name of the located
function and the executable library name, to the code generator 435. On receipt of the
passed information, the code generator 435 dynamically generates computer program
code 445 comprising a platform invoke statement and stores this code in memory 480.
The computer program code 445 may be in a modern language that can be compiled to
at least intermediate language code such as C# or Java® or in a preferred case may be
generated at an intermediate code level, ¢.g. added to assembled CIL. The latter is
preferred as it results in more efficient code and avoids class name pollution. The
platform invoke statement references at least the executable library name passed to the
code generator 435 and the name of the located function. In one example, the function
call detector 415 also forwards to the code generator 435 resolved parameter
information derived from the call to the function call detector 415. This resolved
parameter information may also be used in the platform invoke statement. For example,
the resolved parameter information may indicate variable types and parameter names
for each parameter required by the function. The code generator 435 may generate the
computer program code 445 by looking up a template string for a platform invoke
statement and populating it with information received from the other components at
runtime. As well as a platform invoke statement, computer program code may also be
generated to use said statement and/or to pass parameters received from a native process
(i.c. a second set of executable code) to managed environment variables or objects. In
one case, code to use the platform code is generated inline wherever a “CALL” symbol
is used in the source code. An exemplary portion of code that is representative of code
generated by the code generator 435 is set out below (in an assembled version this may

be in a non-human readable form):

10

15

20

25

30

13

.method public static pinvokeimpl ("[located library name]" [received call-

convention parameter] lasterr) int32 '[located function name]'([parameterl

type], [parameter? type], ... [parameterN type]) preservesig { }

Once the code generator 435 has created the computer program code 445 in
memory 480, the code implementer 455 is notified. The code implementer 455 retrieves
the computer program code 445 from memory 480 and prepares it as a third set of
executable code. This may comprise a compilation stage, an assembly stage or a
formatting stage. The third set of executable code may be native or machine code for
the computer system comprising the processor, or it may be intermediate language code
such as assembled CIL or Java bytecode that can be implemented by a just-in-time
compiler forming part of the runtime environment (e.g. following compilation the
intermediate language code is ready for execution by way of the just-in-time compiler).
In any case, the code implementer 455 arranges for the third set of executable code to
be dispatched to the processor 490 for execution. This may be achieved by calling the
method defined by the computer program code 445 with the parameter values received
by the function call detector 415. Execution of the third set of executable code by the
processor 490 then executes the platform invoke statement. This in turn causes the
processor 490 to load and execute the second set of executable code that implements
the function, the function being able to use the parameter values provided by the
execution of the first set of executable code.

The system components shown in Figure 4 operate at runtime speed, i.e. when
code representing the original “CALL” command statement in the first set of executable
code is being executed by the processor 490. The present invention provides a “glue”
that enables external functions to be implemented even if the function name and/or
parameter values are only known at the time of execution. The interoperability bridge
unit forms part of a runtime environment and does not require modification of computer
program code representing either of the first or second set of executable code. This
means that legacy code, and even compiled versions of said code, need not be modified
yet may still be linked. This greatly reduces the risk of error, as any modification may
lead to an unknown change in function. This is possible, at least partly, by generating

additional computer program on-the-fly and then by compiling and executing this code

10

15

20

25

30

14

as part of the execution of the first set of executable code. Externally from the computer
system the process is transparent, when the execution of the first set of executable code

ends, memory may be cleared and the third set of executable code may be deleted.

Method of Compiling Source Code

Figure 5 shows a method 500 of compiling source code. It may be thought of as
a method of preparing a computer program for deployment, as it assumes the computer
program is complete and defined by the high-level system-independent language; the
method then readies this program for execution of a particular computer system. The
method 510 is configured to be performed by a compiler unit, such as compiler unit 230
in Figure 2.

The method begins at step 510 with at least a portion of source code 510. This
may comprise one of the examples in Figures 3A to 3C. At step 515 the source code
510 is parsed to find one or more “CALL” command statements. This step may
comprise scanning an input source code file for a particular string or character array
that matches at least “CALL”. At step 520, if one or more “CALL” command
statements have been found, a first “CALL” command statement in the source code 510
is analysed. If no “CALL” command statements are located then the method steps are
skipped and compilation to intermediate code occurs without adaptation. At step 520,
the analysis first determines a target of the “CALL” command statement. This may
comprise extracting a string or character array following the “CALL” command
statement. This string or character array may comprise the name of a function to be
initiated by the “CALL” command statement (i.c. a literal) or the name of a variable
storing such a name. In certain cases, a call-convention parameter may directly follow
the “CALL” command statement. In this case, the analysis at step 520 may extract the
first string or character array following the “CALL” command statement that does not
match a list of one or more predefined call-convention parameter values. These values
may be set out in a look-up table. These steps may be performed by a parser component
of the compiler unit.

At step 525, at attempt is made to locate the determined target of the “CALL”
command statement. For example, this may be performed by a function locator

component of the compiler unit that is communicatively coupled to the parser

10

15

20

25

30

15

component. If the target comprises the name of a variable configured to store a function
name, for example as shown in lines 306 of Figures 3B and 3C, then it is determined
that the target cannot be located at compile time and the method branches to step 535.
If the target comprises the name of a function, e.g. a string or character array within a
set of one or more inverted commas as shown in line 306 of Figure 3A, then further
steps are initiated to attempt to locate the determined target. This may comprise
determining whether the target is present within the source code 510. For example, a
compiler unit may store a list of declared internal function names, i.e. names declared
and used within the source code 510 itself. At step 525, it may be determined whether
the determined target matches a declared internal function name. If it does then the
remaining method steps are skipped and compilation to intermediate code occurs
without adaptation. If the determined target does not match any of the declared internal
function names, i.c. if the “CALL” command statement references a function that is not
implemented by the source code 510, then an attempt is made to locate the function in
an external source. In one case, one or more executable libraries may be identified in a
compiler unit command parameter. For example, a command line compiler unit
command may feature the names of one or more dynamic link library files (e.g.
“test.dll”, “systemlib1.dll”) as parameters. In other cases a file comprising a list of
executable libraries may be retrieved by the compiler unit. At step 525, to locate a
function in an external source, an export portion of one or more of the identified
executable libraries may be parsed by the compiler unit to determine if the target is
implemented by one of said executable libraries. For example, this may comprise
reading an export table of a dynamic link library file and seeing if the determined target
matches any entries within said table (e.g. a string match). If a match is found the
method continues to step 530 (i.e. the target is located). If a match is not found then
step 535 may be performed. In other cases, depending on the particular implementation,
if a match is not found at this stage an exception may be initiated.

If the method 500 branches to step 530, the compiler unit generates computer
program code comprising a platform invoke statement. This may be performed by a
code generator component of the compiler unit. The platform invoke statement
references the executable library associated with a located target and the function name

associated with the target, e.g. the literal extracted by the parser component. As such

10

15

20

25

30

16

the code generator component of the compiler unit and step 530 corresponds to the
runtime function of the code generator 435 of Figure 4. The computer program code
generated at this step may be similarly represented by the exemplary code set out above
with reference to Figure 4. The generated code may include a reference to the source
code 510.

If the method 500 branches to step 535, then the compiler unit generates an
alternate set of computer program code. This may also be generated by a code generator
component of the compiler unit. This alternate set of computer program code comprises
a reference to a component of a runtime environment, such as the runtime environment
described with reference to Figure 4. For example, it may comprise a call to a predefined
function provided by a particular executable library that implements the runtime
environment, ¢.g. the function call detector 415 of Figure 4. This call may be common
for all “CALL” command statements for which step 535 applies, ¢.g. regardless of any
variable names for the function and/or independent of the number and type of
parameters to be passed to the function.

At step 540 a check is made to see whether all located “CALL” command
statements have been processed. If source code 510 comprises a plurality of “CALL”
command statements at least steps 520 to 540 may be repeated for each located
statement. Once all “CALL” command statements have been processed the method 500
continues to step 545. At this step the compiler unit compiles the source code 510. In
one case, the compilation may occur together with any computer program code
generated at steps 530 or 535; in another case, the computer program code generated at
steps 530 or 535 may comprise executable code, in which case it is simply added to the
compiled source code. In any case, legacy code in a first programming language
represented by the source code 510 is compiled. Step 545 results in intermediate code
550. The intermediate code 550 may comprise CIL assembly or Java bytecode and as
such be executable by a virtual machine forming part of a runtime environment (e.g. a
Java virtual machine or common language runtime). In certain cases the intermediate
code may be compiled further to produce native or machine code; this may occur for
cases that do not use a virtual machine. The output of the method 500 may comprise
the first set of executable code 450 of Figure 4. This may be packaged for deployment

on the computing system implementing the compiler unit or another computing system.

10

15

20

25

30

17

For example, executable code may be packaged upon and/or copied to a computer-
readable storage medium that is then accessed by a further computer device. In one
case, executable code may be communicated over a network and stored within a storage
device of the further computer device (e.g. stored on a hard disk or flash-memory drive).
In use, the executable code may then be retrieved from storage and loaded into memory
ready for execution by one or more processors.

In cases where all “CALL” command statements reference a literal, e.g. cases
similar to Figure 3A, the output of method 500 may be deployed on a computing system
without an interoperability bridge unit. In this case, all adaptation may be performed at
compile time. Even if an interoperability bridge unit is not explicitly required, a runtime
environment is provided that corresponds to the compiler unit. This runtime
environment may still comprise the interoperability bridge unit, which may still be
active, i.e. ready to receive a function call if executed code did contain an appropriate
reference. Additionally or separately to the above process, compilation may insert other
function calls to libraries that form part of the runtime environment. As such, a specific
runtime environment may be required to execute executable code generated by the
described examples; in this case, the executable code would not run on a different
runtime environment. In the case that any “CALL” command statements reference a
dynamic variable and/or a target is not located at compile time, an interoperability

bridge unit is explicitly required.

Method of Operating an Interoperability Bridge Unit

Figure 6 shows a method 600 that may be implemented by the interoperability
bridge unit of Figure 4. At step 610, a first set of executable code is executed within a
runtime environment by way of a processor and a memory of a computer system. The
first set of executable code may comprise the output of method 500. At step 615, during
execution of the first set of executable code, a reference to a function instructed in an
original set of source code is received. For example, this may comprise a call to a
component of the runtime environment represented in a set of currently-processed
executable code. The reference may comprise the reference inserted by step 535 in
Figure 5. The reference may be received by the function call detector 415 of Figure 4.

At step 620, a target in the form of a function name in the reference is resolved and

10

15

20

25

30

18

located. This may be performed by the function locator 425 of Figure 4. Step 620 may
comprise determining whether the name of the function is located in at least the export
portions of one or more executable libraries that have been loaded into memory by the
runtime environment to support execution of executable code. At step 625, it is
determined whether the target has been located, e.g. in one of said export portions. If
the target is located then step 630 is performed. This involves dynamically generating
code in memory that initiates the target. This may be performed by the code generator
435 of Figure 4. At step 635, this generated code is implemented, i.c. it is converted
into executable code and dispatched to the processor. Step 635 may be performed by
the code implementer 455 of Figure 4. This then implements a second set of executable
code to implement function referenced by the target. If at step 625 no target is located
then an exception is thrown at step 640. This may be caught by the first set of executable
code and/or the runtime environment. For example, in the original source code the
“CALL” command statement may comprise an “on exception” clause that is
implemented if an exception is thrown. At step 645 the method 600 ends for a particular
implementation of a “CALL” command statement. As the first set of executable code
is processed further implementations of the same or different “CALL” command

statements may occur, in which case method 600 is repeated.

Certain examples as described herein enable different portions of executable
code to be “glued” together without modifying original source code for the calling
executable code or compiled code for the called code. This enables an application
program written in source code to be easily deployed in a variety of different managed
environments. For example, in a Microsoft .NET managed environment the compiler
and/or interoperability bridge unit may be arranged to perform the linking of executable
code within this environment. If an application program needs to be ported to a Java
managed environment, the same source code and called code can be used; in this case
an implementation of the compiler and/or interoperability bridge unit are configured for
Java. In a case where the called code represents an implementation of an operating
system function, e.g. display of a message box, this functionality can be provided from
the legacy code (i.e. the source code) without modification of this code and using

standard operating system libraries. Similar advantages apply if function from system

10

15

20

25

30

19

libraries of modern programming languages (e.g. C, C++, C#) are called from legacy
code. When migrating legacy code, portions that should not or cannot be modified may
be implemented as native code, e.g. using legacy binary executables, and called
transparently from unmodified source code that has been compiled within a managed
environment.

The above embodiments are to be understood as illustrative examples of the
invention. Further embodiments of the invention are envisaged. For example, the
location of a target, i.c. a function name received in a reference from executed code,
may involve a multi-step process. As a first step, a list of executable code sets loaded
into memory may be parsed for the target. For example, this list may comprise all
programs that are currently being executed at a particular time by the runtime
environment. The list may comprise a list of one or more of: program names, declared
method names and declared class names; all of these being associated with loaded
executable code. If the target is not found in the first step, a list of classes associated
with the system-independent programming language that are logged by the runtime
environment may be parsed for the target. If the target is not found in the second step,
a name of a executable library that is embedded in the function name may be extracted
and used to locate the target. For example, if the runtime value of function name as
used in line 306 of Figures 3B and 3C was in the form
“[system_lib name|function name]” then “system lib name” may be used to identify
the executable library required for code generation. If the target is not found in the third
step, a list of assemblies, i.e. collections of executable libraries already loaded by the
runtime environment may be parsed for the target. If the target is not found in the fourth
step then a computer-readable medium such as a hard disk may be scanned for a
executable library or assembly matching the target.

Another variation of the described examples involves reserving a fixed portion
of memory for passing parameters associated with a “CALL” command statement. In
one case, computer program code generated by either the code generator 435 or a code
generator of a compiler unit also comprises code to “pin” memory, i.¢. to reserve a fixed
number of memory locations for native parameters. In certain cases, where this is not
performed, garbage collection performed by components of the runtime environment

may delete parameter data that needs to be passed to a second set of executable code.

10

15

20

25

30

20

Memory may be reserved by generating intermediate code before intermediate code
representative of a platform invoke statement that calls a memory pinning function to
reserve the memory before a call in the intermediate code associated with the platform
invoke statement is implemented. Intermediate code to “unpin”, ie. remove the
memory reservation may then be inserted after the call in the intermediate code
associated with the platform invoke statement. Memory pinning may be applied where
the parameter types used by the “CALL” command statement are not natively supported
in the managed environment, e¢.g. are legacy variable types that do not have an
equivalent for compilation to CIL or Java bytecode. For example, when a parameter is
passed to a native piece of code, some managed environments may allow portions of
memory to be moved and/or rearranged, for example when garbage collection occurs.
This typically results in problems for larger data structures in memory or byte arrays.
In this case, a runtime environment automatically pins memory to ensure a memory
address for a structure or byte array is always consistent for the lifespan of a “CALL”
command statement. This is important when working with legacy native code that is
unaware that it is being used, i.c. called, from a managed environment.

Certain examples described herein refer to a “CALL” command statement. This
is a command statement, i.e. a string that is mapped to a particular set of one or more
machine instructions, for implementing a subroutine specified by a function name, i.c.
another set of one or more machine instructions that do not sequentially follow the
command statement. A “CALL” command statement may have one of three forms:
CALL [literal], which can be resolved at compile time; CALL [function name], where
function name is a variable that needs to be resolved at runtime; or CALL [ptr], where
ptr is a pointer to a function name that needs to be resolved at runtime. A “CALL”
command statement can take call-convention parameter (which may include the
function name) and zero or more parameters. A clause may be provided that determines
if a parameter is passed by value, by reference or by content. The first case may just
provide a parameter into a function whereas a second case may also provide an output
value of a parameter. Parameters are typically variables that are declared within the
source code.

Certain examples also refer to a runtime environment. This is sometimes

alternatively referred to as a runtime system or runtime. It may generally be considered

10

15

20

25

30

21

as a control system to implement a programming language. In certain cases it comprises
a virtual machine for implementing bytecode or equivalent. It refers to system
components that are present and usable at the time when executable code is loaded into
memory to be executed by a processor, i.e. the time at which a computer program is
run. The system components provide system resources, i.e. resources at an operating
system level or below, to enable the computer system comprising the processor to
operate as a programmed machine. System resources may comprise the management of
threads (in single or multi-threaded environments), error and exit handling, file
handling and file access and/or virtual machine code execution. The system components
used by a runtime environment may comprise so-called system libraries. These are
packages of executable code to provide the system resources. For example, they may
comprise dynamic link libraries or associated assemblies in a Microsoft Windows
environment or .jar files in a Java environment. A set of one or more system libraries
may comprise core runtime environment files and/or may comprise executable code
relating to other application programs that is imported into the run-time environment,
¢.g. user libraries that are registered with the runtime environment. For example, in a
case wherein the second set of executable code is directly compiled from computer
program code written in the system-independent programming language, this second
set of executable code may be loaded into the runtime environment as a user-defined
library for access by a function locator. Where reference is made to called or native
functions, i.e. functions referenced by a “CALL” command statement, these may relate
to a third party application program interface or a further native program.

In certain cases, a second compiler unit 235 may be provided separately, ¢.g.
may form part of an operating system and/or be installed separately. For example, a
common language runtime or a Java virtual machine may already be present on a
computer system or may be provided by way of independent installation processes.

In one variation of a computer system, a compile command receiver may receive
an identified executable library as a parameter. This variation may apply to the method.
In one variation of a method the reference to the function received from the first set of
executable code comprises a function call type, the name of the function and data
indicative of one or more parameters required by the function, and the step of

dynamically generating computer program code comprises generating computer

10

15

20

25

30

22

program code comprising a platform invoke statement referencing the particular
executable library, the name of the function and one or more parameter types as
determined from the data indicative of one or more parameters required by the function.
Any described example may add or omit features from other described examples.

The term “deployment” is used herein to describe the process of placing an
application program in a suitable form for execution by one or more processors.
Deployment may comprise an installation process that copies object or intermediate
code to a storage device of a computer system and that configures said code for
execution. This configuration may comprise registering the object or intermediate code
with an operating system and/or a runtime environment. The phrase “preparing for
deployment” is used to describe a compilation process that operates upon source code
to produce object or intermediate code suitable for execution. In one case, both
preparing for deployment and deployment may form part of a common process. The
term “legacy” is used herein to describe features that relate to a computing architecture
that is no longer in use. For example, a legacy programming language is a programming
language that was configured to operate on a superseded (i.e. legacy) computing
architecture. In certain case, the legacy programming language may relate to a
specification that has itself been superseded. Even though computer systems have been
described as including one or more processors and a memory, these components may
be excluded in particular cases.

As set out herein certain examples provide an interoperability bridge unit
arranged to, when a first set of executable code is implemented in a runtime
environment, implement a second set of executable code for the computer system in the
runtime environment to provide a function instructed in the system-independent
programming language. The interoperability bridge may form part of the runtime
environment.

It is to be understood that any feature described in relation to any one
embodiment may be used alone, or in combination with other features described, and
may also be used in combination with one or more features of any other of the
embodiments, or any combination of any other of the embodiments. Furthermore,
equivalents and modifications not described above may also be employed without

departing from the scope ofthe invention, which is defined in the accompanying claims.

23

Claims

1. A computer system comprising:

at least one processor;

a memory coupled to the at least one processor;

a computer-readable storage medium comprising a first set of executable code
representative of an application program, wherein the first set of executable code is
derived from intermediate language code, the intermediate language code being
compiled from computer program code written in a system-independent programming
language;

a runtime environment arranged to support execution of the first set of
executable code by way of the at least one processor and the memory, the runtime
environment comprising:

one or more executable libraries registered with the runtime
environment, the one or more executable libraries comprising executable code
to implement at least the runtime environment on the computer system, each
executable library comprising an export portion listing any functions
implemented by the executable code;

an interoperability bridge unit arranged to, when the first set of

executable code is implemented in the runtime environment, implement a

second set of executable code for the computer system in the runtime

environment to provide a function instructed in the system-independent
programming language, the interoperability bridge unit comprising:

a function call detector arranged to receive a reference to the
function from the first set of executable code;

a function locator arranged to resolve the reference to determine
at least a name of the function, the function locator being further
arranged to determine whether the name of the function is located in at
least the export portions of the one or more executable libraries;

a code generator arranged to, responsive to the name of the

function being located in an export portion of a particular executable

24

library, dynamically generate, in the memory, computer program code
comprising a platform invoke statement, the platform invoke statement
referencing at least the particular executable library and the name of the
function; and

a code implementer to prepare the generated computer program
code as a third set of executable code and dispatch said third set of
executable code for execution by the processor, wherein execution of
the third set of executable code by the processor executes the second set

of executable code.

2. A computer system according to claim 1, wherein the one or more
executable libraries are one or more of system libraries and user-loaded libraries, the
one or more executable libraries comprising one or more dynamic link libraries and
wherein the export portion of each executable library comprises one or more declared

export statements.

3. A computer system according to claim 1 or 2, wherein the intermediate
language code comprises one of:

code in a common intermediate language as defined by a common language
infrastructure specification; and

Java bytecode.

4. A computer system according to any one of claims 1 to 3,

wherein the reference to the function received from the first set of executable
code comprises a function call type, the name of the function and data indicative of one
or more parameters required by the function, and

wherein the code generator is arranged to generate computer program code
comprising a platform invoke statement referencing the particular executable library,
the name of the function and one or more parameter types as determined from the data

indicative of one or more parameters required by the function.

5. A computer system comprising:

25

at least one processor;

a memory coupled to the at least one processor;

a compiler unit arranged to compile computer program code written in a system-
independent programming language to intermediate language code, said intermediate
language code being executable for a defined computing system, the compiler unit
comprising:

a parser arranged to parse the computer program code and determine if
the computer program code comprises at least one function call command
statement that references a function that is not implemented by the computer
program code;

a function locator communicatively coupled to the parser to, responsive
to a positive determination from the parser, resolve a function call command
statement to determine at least a function name, the function locator being
further arranged to determine whether the function name is located in an export
portion of an identified executable library; and

a code generator communicatively coupled to the function locator to,
responsive to the location of a function name in an export portion of an
identified executable library by the function locator, generate computer program
code, the computer program code comprising a platform invoke statement, the
platform invoke statement referencing the identified executable library and the
function name,
wherein the compiler unit is arranged to compile the computer program code

written in a system-independent programming language to intermediate language code
and to prepare said intermediate language code together with the computer program
code generated by the code generator as executable code for the defined computing

System.

6. A computer system according to claim 5, wherein the one or more
executable libraries comprise one or more dynamic link libraries and wherein the export

portion of each executable library comprises one or more declared export statements.

26

7. A computer system according to claim 5 or 6, wherein the intermediate
language code comprises one of:

code in a common intermediate language as defined by a common language
infrastructure specification; and

Java bytecode.

8. A computer system according to any one of claims 5 to 7, wherein the
code generator is arranged to generate computer program code that reserves a fixed
portion of the memory for one or more parameters referenced by the function call

command statement.

9. A computer system according to any one of claims 5 to 8, wherein the
compiler unit comprises:
a compile command receiver to receive the identified executable library as a

parameter.

10. A computer-implemented method of deploying an application program
into a runtime environment of a computing system, the computing system comprising
at least one processor coupled to a memory, the method comprising:

retrieving, from a computer-readable storage medium coupled to the computing
system, a first set of executable code for the computing system representative of an
application program, wherein said first set of executable code is compiled from
intermediate language code, the intermediate language code being compiled from
computer program code written in a system-independent programming language;

executing the first set of executable code in the runtime environment by way of
the at least one processor and the memory, the runtime environment comprising one or
more executable libraries comprising executable code to implement at least the runtime
environment on the computing system, each executable library comprising an export
portion listing any functions implemented by the executable code;

receiving a reference to a function instructed in the system-independent

programming language, the function being implemented by second set of executable

27

code, the second set of executable code being separate from the first set of executable
code;

resolving the reference to determine at least a name of the function;

determining whether the name of the function is located in at least the export
portions of the one or more executable libraries;

responsive to the name of the function being located in an export portion of a
particular executable library, dynamically generating, in the memory, computer
program code comprising a platform invoke statement, the platform invoke statement
referencing the particular executable library and the name of the function;

preparing the generated computer program code as a third set of executable
code; and

executing the third set of executable code in the runtime environment by way
of the at least one processor and the memory, wherein execution of the third set of
executable code by the at least one processor executes the second set of executable code

and implements the function.

11. A computer-implemented method according to claim 10, wherein the
one or more executable libraries are one or more of system libraries and user-loaded
libraries, the one or more executable libraries comprising one or more dynamic link
libraries and wherein the export portion of each executable library comprises one or

more declared export statements.

12. A computer-implemented method according to claim 10 or 11, wherein
the intermediate language code comprises one of:

code in a common intermediate language as defined by a common language
infrastructure specification; and

Java bytecode.

13. A computer-implemented method according to any one of claims 10 to

12,

28

wherein the reference to the function received from the first set of executable
code comprises a function call type, the name of the function and data indicative of one
or more parameters required by the function, and

wherein the step of dynamically generating computer program code comprises
generating computer program code comprising a platform invoke statement referencing
the particular executable library, the name of the function and one or more parameter
types as determined from the data indicative of one or more parameters required by the

function.

14. A computer-implemented method of preparing an application program
for deployment into a runtime environment of a computing system, the computing
system comprising at least one processor coupled to a memory, the method comprising:

retrieving, from a computer-readable storage medium, a first set of computer
program code representative of the application program, the first set of computer
program code being written in a system-independent programming language;

parsing the computer program code to determine if the first set of computer
program code comprises a function call command statement that references a function
that is not implemented by the first set of computer program code;

responsive to a determination that the first set of computer program code
comprises a function call command statement that references a function that is not
implemented by the first set of computer program code, resolving the function call
command statement to determine at least a function name;

determining whether the function name is located in an export portion of an
identified executable library;

responsive to the location of the function name in the export portion, generating
a second set of computer program code, the second set of computer program code
comprising a platform invoke statement, the platform invoke statement referencing the
identified executable library and the function name;

compiling the first and second sets of computer program code to intermediate
language code;

preparing the intermediate language code as a first set of executable code for

the computing system,

29

wherein execution of the first set of executable code by the at least one processor
of the computing system executes a second set of executable code and implements the

function.

15. A computer-implemented method according to claim 14, wherein the
one or more executable libraries are one or more of system libraries and user-loaded
libraries, the one or more executable libraries comprising one or more dynamic link
libraries and wherein the export portion of each executable library comprises one or

more declared export statements.

16. A computer-implemented method according to claim 14 or 15, wherein
the intermediate language code comprises one of:

code in a common intermediate language as defined by a common language
infrastructure specification; and

Java bytecode.

17. A computer-implemented method according to any one of claims 14 to
16,

wherein the function call command statement comprises a function call type,
the name of the function and data indicative of one or more parameters required by the
function, and

wherein the step of generating a second set of computer program code comprises
generating a second set of computer program code comprising a platform invoke
statement referencing the identified executable library, the name of the function and
one or more parameter types as determined from the data indicative of one or more

parameters required by the function.

18. A computer-implemented method according to claim 17, wherein the
step of generating a second set of computer program code comprises generating
computer program code that reserves a fixed portion of the memory for said one or

more parameters required by the function.

30

19. A computer-implemented method according to any one of claims 14 to
16, comprising:

receiving the identified executable library as a parameter.

20. A computer-implemented method of deploying an application program
into a runtime environment of a computing system, the computing system comprising
at least one processor coupled to a memory, the method comprising:

retrieving, from a computer-readable storage medium, a first set of computer
program code representative of the application program, the first set of computer
program code being written in a system-independent programming language;

parsing the computer program code to determine if the first set of computer
program code comprises a function call command statement that references a function
that is not implemented by the first set of computer program code,

wherein, responsive to a determination that the first set of computer program
code comprises a function call command statement that references a function that is not
implemented by the first set of computer program code, the step of parsing comprises:

resolving the function call command statement to determine at least a
function name; and
determining whether the function name comprises a static or dynamic
variable,
wherein, responsive to the function name comprising a static variable,
the step of determining comprises:
determining whether the function name is located in an export
portion of an identified executable library; and
responsive to the location of the function name in the export
portion, generating a second set of computer program code, the second
set of computer program code comprising a platform invoke statement,
the platform invoke statement referencing the identified executable
library and the function name; and
wherein, responsive to the function name comprising a dynamic

variable, the step of determining comprises generating a second set of computer

31

program code, the second set of computer program code comprising a runtime
reference to the function;
compiling the first and second sets of computer program code to intermediate
language code;
preparing the intermediate language code as a first set of executable code for
the computing system;
executing the first set of executable code in the runtime environment by way of
the at least one processor and the memory, the runtime environment comprising one or
more executable libraries comprising executable code to implement at least the runtime
environment on the computing system, each executable library comprising an export
portion listing any functions implemented by the executable code,
wherein, responsive to receipt of the runtime reference, the step of executing
comprises:
resolving the runtime reference to determine at least a name of the
function; and
determining whether the name of the function is located in at least the
export portions of the one or more executable libraries,
wherein, responsive to the name of the function being located in an
export portion of a particular executable library, the step of determining
comprises:
dynamically generating, in the memory, computer program code
comprising a platform invoke statement, the platform invoke statement
referencing the particular executable library and the name of the
function,;
preparing the generated computer program code as a third set of
executable code; and
executing the third set of executable code in the runtime
environment by way of the at least one processor and the memory; and
wherein execution, by way of the at least one processor, of the first set of
executable code for a static variable or the third set of executable code for a dynamic

variable executes a second set of executable code and implements the function.

32

21. A computer program comprising computer program code arranged to,
when loaded into system memory and processed by one or more processors, causes said
processers to perform the computer-implemented methods of any one of claims 10 to

20.

22. A computer-readable storage medium having recorded thereon the

computer program of claim 21.

23. A computer system, substantially as hereinbefore described with

reference to the accompanying drawings.

24. A computer-implemented method substantially as hereinbefore described

with reference to the accompanying drawings.

1911 13

33

Amendment to the claims have been incorporated as follows

Claims

1. A computer system comprising:

at least one processor;

a memory coupled to the at least one processor;

a computer-readable storage medium comprising a first set of executable code
representative of an application program, wherein the first set of executable code is
derived from intermediate language code, the intermediate language code being
compiled from computer program code written in a system-independent programming
language;

a runtime environment arranged to support execution of the first set of
executable code by way of the at least one processor and the memory, the runtime
environment comprising:

one or more executable libraries registered with the runtime
environment, the one or more executable libraries comprising executable code
to implement at least the runtime environment on the computer system, each
executable library comprising an export portion listing any functions
implemented by the executable code;

an interoperability bridge unit arranged to, when the first set of

executable code is implemented in the runtime environment, implement a

second set of executable code for the computer system in the runtime

environment to provide a function instructed in the system-independent
programming language, the interoperability bridge unit comprising:

a function call detector arranged to receive a reference to the
function from the first set of executable code;

a function locator arranged to resolve the reference to determine
at least a name of the function, the function locator being further
arranged to determine whether the name of the function is located in at
least the export portions of the one or more executable libraries;

a code generator arranged to, responsive to the name of the

function being located in an export portion of a particular executable

1911 13

34

library, dynamically generate, in the memory, computer program code
comprising a platform invoke statement, the platform invoke statement
referencing at least the particular executable library and the name of the
function; and

a code implementer to prepare the generated computer program
code as a third set of executable code and dispatch said third set of
executable code for execution by the processor, wherein execution of
the third set of executable code by the processor executes the second set

of executable code.

2. A computer system according to claim 1, wherein the one or more
executable libraries are one or more of system libraries and user-loaded libraries, the
one or more executable libraries comprising one or more dynamic link libraries and
wherein the export portion of each executable library comprises one or more declared

export statements.

3. A computer system according to claim 1 or 2, wherein the intermediate
language code comprises one of:

code in a common intermediate language as defined by a common language
infrastructure specification; and

Java bytecode.

4. A computer system according to any one of claims 1 to 3,

wherein the reference to the function received from the first set of executable
code comprises a function call type, the name of the function and data indicative of one
or more parameters required by the function, and

wherein the code generator is arranged to generate computer program code
comprising a platform invoke statement referencing the particular executable library,
the name of the function and one or more parameter types as determined from the data

indicative of one or more parameters required by the function.

1911 13

35

5. A computer-implemented method of deploying an application program
into a runtime environment of a computing system, the computing system comprising
at least one processor coupled to a memory, the method comprising:

retrieving, from a computer-readable storage medium coupled to the computing
system, a first set of executable code for the computing system representative of an
application program, wherein said first set of executable code is compiled from
intermediate language code, the intermediate language code being compiled from
computer program code written in a system-independent programming language;

executing the first set of executable code in the runtime environment by way of
the at least one processor and the memory, the runtime environment comprising one or
more executable libraries registered with the runtime environment and comprising
executable code to implement at least the runtime environment on the computing
system, each executable library comprising an export portion listing any functions
implemented by the executable code;

receiving a reference to a function from the first set of executable code, the
function being instructed in the system-independent programming language and being
implemented by second set of executable code, the second set of executable code being
separate from the first set of executable code;

resolving the reference to determine at least a name of the function;

determining whether the name of the function is located in at least the export
portions of the one or more executable libraries;

responsive to the name of the function being located in an export portion of a
particular executable library, dynamically generating, in the memory, computer
program code comprising a platform invoke statement, the platform invoke statement
referencing the particular executable library and the name of the function;

preparing the generated computer program code as a third set of executable
code; and

executing the third set of executable code in the runtime environment by way
of the at least one processor and the memory, wherein execution of the third set of
executable code by the at least one processor executes the second set of executable code

and implements the function.

1911 13

36

6. A computer-implemented method according to claim 5, wherein the one
or more executable libraries are one or more of system libraries and user-loaded
libraries, the one or more executable libraries comprising one or more dynamic link
libraries and wherein the export portion of each executable library comprises one or

more declared export statements.

7. A computer-implemented method according to claim 5 or 6, wherein the
intermediate language code comprises one of:

code in a common intermediate language as defined by a common language
infrastructure specification; and

Java bytecode.

8. A computer-implemented method according to any one of claims 5 to 7,

wherein the reference to the function received from the first set of executable
code comprises a function call type, the name of the function and data indicative of one
or more parameters required by the function, and

wherein the step of dynamically generating computer program code comprises
generating computer program code comprising a platform invoke statement referencing
the particular executable library, the name of the function and one or more parameter
types as determined from the data indicative of one or more parameters required by the

function.

9. A computer-implemented method of deploying an application program
into a runtime environment of a computing system, the computing system comprising
at least one processor coupled to a memory, the method comprising:

retrieving, from a computer-readable storage medium, a first set of computer
program code representative of the application program, the first set of computer
program code being written in a system-independent programming language;

parsing the computer program code to determine if the first set of computer
program code comprises a function call command statement that references a function

that is not implemented by the first set of computer program code,

1911 13

37

wherein, responsive to a determination that the first set of computer program
code comprises a function call command statement that references a function that is not
implemented by the first set of computer program code, the step of parsing comprises:
resolving the function call command statement to determine at least a
function name; and
determining whether the function name comprises a static or dynamic
variable,
wherein, responsive to the function name comprising a static variable,
the step of determining comprises:
determining whether the function name is located in an export
portion of an identified executable library; and
responsive to the location of the function name in the export
portion, generating a second set of computer program code, the second
set of computer program code comprising a platform invoke statement,
the platform invoke statement referencing the identified executable
library and the function name; and
wherein, responsive to the function name comprising a dynamic
variable, the step of determining comprises generating a second set of computer
program code, the second set of computer program code comprising a runtime
reference to the function;
compiling the first and second sets of computer program code to intermediate
language code;
preparing the intermediate language code as a first set of executable code for
the computing system;
executing the first set of executable code in the runtime environment by way of
the at least one processor and the memory, the runtime environment comprising one or
more executable libraries registered with the runtime environment and comprising
executable code to implement at least the runtime environment on the computing
system, each executable library comprising an export portion listing any functions
implemented by the executable code,
wherein, responsive to receipt of the runtime reference from the first set of

executable code, the step of executing comprises:

1911 13

38

resolving the runtime reference to determine at least a name of the
function; and
determining whether the name of the function is located in at least the
export portions of the one or more executable libraries,
wherein, responsive to the name of the function being located in an
export portion of a particular executable library, the step of determining
comprises:
dynamically generating, in the memory, computer program code
comprising a platform invoke statement, the platform invoke statement
referencing the particular executable library and the name of the
function,;
preparing the generated computer program code as a third set of
executable code; and
executing the third set of executable code in the runtime
environment by way of the at least one processor and the memory; and
wherein execution, by way of the at least one processor, of the first set of
executable code for a static variable or the third set of executable code for a dynamic

variable executes a second set of executable code and implements the function.

10. A computer program comprising computer program code arranged to,
when loaded into system memory and processed by one or more processors, causes said

processers to perform the computer-implemented methods of any one of claims 5 to 9.

11. A computer-readable storage medium having recorded thercon the

computer program of claim 10.

12. A computer system, substantially as hereinbefore described with

reference to the accompanying drawings.

13. A computer-implemented method substantially as hereinbefore described

with reference to the accompanying drawings.

+?® INTELLECTUAL

ceo’ PROPERTY OFFICE

39

Application No:

Claims searched:

GB1314586.7
1-24

Examiner: Mr Jonathan Golding
Date of search: 25 September 2013

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - US 2006/0225033 Al
(YE ET AL)
A - US 2005/0172299 Al
(ZHAO ET AL)
A - US 2003/0182460 Al
(KHARE)
Categories:
X Document indicating lack of novelty or inventive Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™

Worldwide search of patent documents classified in the following areas of the IPC

| GO6F

The following online and other databases have been used in the preparation of this search report

| EPODOC & WPI; TXTE; XPI3E, XPIPCOM and XPLNCS; Internet.

International Classification:

Subclass Subgroup Valid From
GO6F 0009/445 01/01/2006
GO6F 0009/45 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

